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(ABSTRACT)

The effect of humps on the stability of subsonic boundary layers over an airfoil is
investigated. The mean flow is calculated by using an interacting boundary-layer solver which
accounts for strong viscous/inviscid interaction and separation bubbles. The code is capable
of solving compressible as well as incompressible flows. Then, the two-dimensional mean
flow is fed into a stability program which is capable of doing two-and three-dimensional
analysis. The output of this stability program is the growth rates which are integrated along
a prescribed path to yield the amplification factor (i.e., N-factor), which is used to predict
transition from laminar to turbulent flow. The analysis is performed for different heights and
locations of the hump and for different Mach numbers. The results show that compressibility
stabilizes the flow and that the most dangerous frequency decreases as the Mach number
increases for a fixed location of the hump. Also this most dangerous frequency decreases as
the hump is moved downstream. Moreover, the amplification factor increases as the hump
height increases and as the hump is moved downstream.

The influence of suction and heat-transfer strips on controlling the destabilizing influence
of the hump is investigated. The results show that cooling and suction strips stabilize the flow
and therefore delay transition from laminar to turbulent flow. Moreover, a heating strip
destabilizes the flow in the presence of a hump. Applying suction through multiple strips can
be as effective as continuous suction. Also the total flow rate required using multiple strips is
less than that required using a single strip. We optimize the locations of these strips for a
certain hump location. Moreover, cooling through multiple strips is as effective as cooling
through a single strip. We optimize the locations and levels of these cooling strips for a

certain hump location.
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1. Introduction

The design of laminar-flow wings involves the control of disturbances within the boundary
layer in order to delay transition to a location significantly downstream on the chord with a
minimum compromise of the other factors that affect the aerodynamic or structural efficiency
of the wing. Significant chordwise extents of laminar flow can be achieved by the selection
of a wing shape that yields the proper pressure distribution with the minimum value being as
close as possible to the trailing edge, because transition occurs before or at the location of
minimum pressure. Therefore, recent progress in aerodynamics research has led to the
design of airfoils and bodies with considerable extents of laminar boundary-layer flow. Passive
methods have been proposed for stabilizing the laminar flow. They include application of
suction and/or heating or cooling through the surface. The suction and heating can be
continuous or through discrete strips.

Granting that extensive laminar flow can actually be attained, however, the first requisite
is that the surface shouid be extremely smooth as not to disturb the stability of the boundary
layer. Even a small degree of surface roughness may produce premature transition to
turbulent flow. Generally speaking, the presence of roughness favors transition in the sense
that, under otherwise identical conditions, transition occurs at a lower Reynolds number on

a rough wall than on a smooth wall. The presence of a roughness element gives rise to
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additional disturbances in the laminar stream which must be added to those generated by the
turbulence already present in the boundary layer.

The preceding considerations show complete agreement with experiments. When the
roughness elements are very large, transition will occur at the location of the roughness.
Earlier papers, namely those by Schiller [1], Tani, Hama, and Mituisi [2], Goldstein [3], and
Fage and Preston [4], assumed that the point of transition is located at the positions of
roughness elements when they are large, or that their presence has no influence at all when
they are smalil. However, the empirical correlations of Fage [26] has shown that the point of
transition moves continuously upstream as the height of the roughness element is increased
until it ultimately reaches the position of the roughness element. These results are confirmed
by the theoretical calculations of Masad and Nayfeh [47]. It is therefore of great importance
to provide an approximate estimate of the maximum degree of surface roughness that can be
tolerated without affecting transition.

The air flow over conventional aircraft wings is turbulent almost from the leading edge.
By reshaping the wing and increasing the smoothness of its surface, the air flows uniformly
along the wing skin without turbulence. Such a laminar flow could reduce the total drag of the
aircraft by as much as 15%. This implies a saving in fuel consumption, which translates into
a 2 to 3% decrease in Direct Operating Costs (DOC) [5]. The dramatic reduction in fuel
consumption means a comparable cut-back in pollutive emissions and the environmental
impact of air transportation.

The performance of Natural Laminar Flow (NLF) airfoils is strongly dependent on the
location of transition, which may be strongly influenced by surface imperfections. Although
modern technology can provide smooth surfaces that are suitable for Laminar Flow Control
(LFC) and NLF, manufacturing tolerance criteria are needed for other unavoidable surface
imperfections. These imperfections are in the forms of waviness and bulges, steps and gaps
at junctions, and three-dimensional roughness elements, such as flush head slots and
incorrectly installed flush rivets [6-9]. Other kinds of roughness elements include dust

particles, snow, and drizzle rain. Other unavoidable discontinuities arise from the installation
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of leading-edge panels on wings, nacelles, and empennage surfaces and the installation of
access panels, doors, and windows on fuselage noses and engine nacelles [6-9]. Since
discontinuities cannot be avoided, a manufacturing guide is needed for their tolerances so that
laminar flow can be maintained. The mechanisms by which these imperfections cause
transition include laminar separation (hence shear-layer instability), amplification of
Tollmien-Schlichting waves, amplification of cross-flow vorticity, Gértler instability, and
interaction between two or more of these mechanisms [10-22].

Walker and Greening [23] performed wind-tunnel experiments to determine the effect of
two-dimensional smooth bulges and hollows on the transition of the flow over a flat plate.
They used surface tubes to determine the location of transition from laminar to turbulent flow.
Their bulges and hollows were mounted on one side of a smooth flat aluminum plate having
an elliptic leading edge. Hislop [24] carried out similar experiments for narrow spanwise
surface ridge corrugations on a flat plate. Walker and Cox [25] performed wind-tunnel
experiments to study the effect of spanwise corrugations on an airfoil. These experiments
were made for three forms of narrow corrugations (flat, arch, and wire) situated in the laminar
boundary layer of a large symmetric airfoil (EQH1260 section) mounted at a zero angle of
attack.

Fage [26] collected the three previous works [23-25] and established criteria for the
critical heights of these imperfections that cause transition from laminar to turbulent flow. He
found that the flow conditions near a corrugation that affect transition are associated with a
separation of the laminar boundary layer from its surface. The criteria of Fage for steps and
gaps did not include the effects of the shapes of these imperfections. However, the flight
experiments of Hoimes, Obara, Martin, and Domack [8] demonstrate the strong influence of
the shapes of steps on the transition location and hence on the allowable heights of such
imperfections. They found out that by rounding a forward-facing step, the critical Reynolds
number increases from 1800 to 2700.

Carmichael, Whites, and Pfenninger [27], Carmichael and Pfenninger [28], and

Carmichael [29] performed flight experiments on the wing glove of an F-34A airplane. The
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modified 652-213 airfoil had 69 suction slots distributed between 41% and 95% chord. They
investigated single and multiple sinusoidal waves located at 15%, 28%, and 64% chord. Their
results show that the allowable sizes of the waves increase when embedded in the suction
region. They found that maintaining laminar flow across the airfoil requires an 8% increase
in the suction level over the clear airfoil case. Carmichael [29] established criteria for
allowable single and multiple bulges or sinusoidal waviness fdr both swept and unswept wing
surfaces using the results of these experiments, which partially include the influence of
compressibility, suction, pressure gradients, multiple imperfections, and wing sweep.
Carmichael’s criteria are based on experimental results for waves located more than 25%
chord downstream of the leading edge and hence they will underpredict allowable
imperfections in the leading edge region and overpredict allowable imperfections in regions
of unaccelerated flows.

These empirically based criteria are for special cases and geometries, and they do not
explain the instability mechanisms enhanced by the imperfections or the physics of ways to
control them. To determine the mechanism by which two-dimensional roughness elements
induce boundary-layer transition, Kiebanoff and Tidstrom [30] carried out an experiment using
cylindrical rods attached to the surface of a flat plate. They placed primary emphasis on the
nature of disturbances within the recovery zone; that is, the region immediately downstream
of the rods where the mean flow was distorted by their presence. They made detailed
measurements of the mean-velocity distributions, disturbance spectra, growth, and decay of
disturbances at discrete frequencies for a range of Reynolds numbers. They concluded that
"the basic mechanism by which a two-dimensional roughness element induces earlier
transition is by the destabilizing effect of the flow in the recovery zone on existing
disturbances which hasten the downstream development of the instability.” Dovgal and
Kozlov [31] investigated the influence of two-dimensional humps and forward- and
backward-facing steps on the stability of flows over a flat plate. They used a vibrating ribbon

to introduce a disturbance with a specific frequency into the boundary layer and measured the
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streamwise growih and development of the disturbance as well as its distribution across the
boundary layer.

To explain the instability mechanisms enhanced by the imperfection and the physics of
ways to control them, Nayfeh, Ragab, and Al-Maaitah [13] investigated the instability of flows
around hump and dip imperfections over a flat plate. They computed the mean-flow profiles
for incompressible flows using an interacting boundary-layer code which accounts for
viscous/inviscid interaction and separation bubbles. They analyzed the two-dimensional linear
stability of the flow for several height to width ratios and locations. They correlated the
theoretical results with the experimental results of Walker and Greening [23]. They found that
separation significantly increases the amplification factor.

Ragab, Nayfeh, and Krishna [41] and Krishna [42] studied compressible boundary layers
over a smooth backward-facing step on a flat plate. They compared the mean-flow profiles
obtained from the interacting code with a Navier-Stoke solver. They found good agreement.
Moreover, they found that compressibility increases the size of separation bubbie but overall
stabilizes the flow.

Nayfeh, Ragab, and Masad [22] investigated the influence of a two-dimensional hump on
the two-dimensional primary and three-dimensional subharmonic secondary instabilities over
a flat plate. Again, they calculated the mean-flow profiles for incompressible flow by using
interacting boundary layers, thereby accounting for the viscous/inviscid interaction. They
found that, in the absence of separation, increasing the height of the hump results in an
increase in the ampilification factor of the primary and subharmonic waves at all considered
frequencies. In the case of separation, they found that the amplification factors are much
larger than those obtained for the case of no separation. They concluded that the presence
of separation bubbles can be detrimental to the maintenance of laminar flow.

Masad and Nayfeh [21] extended the study of Nayfeh, Ragab, and Masad [22] to the case
of compressible flow. Masad and Nayfeh [47] performed stability calculations for the forward-
and back-ward facing steps of Dovgal and Kozlov and found good agreement between

experimentally and theoretically obtained growth rates. They determined the effect of the
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hump height, compressibility, spanwise wavenumber, and frequency on the growth rates and
amplification factors of the primary and subharmonic waves. They showed that, although
compressibility significantly reduces the amplification factor in the case of a smooth surface,
this stabilizing effect decreases as the hump height increases. In the absence of separation,
they found that, increasing the hump height results in an increase in the amplification factors
of both the primary and subharmonic waves. In the case of separation, they found that the
amplification factors are considerably increased.

Al-Maaitah, Nayfeh, and Ragab [16] investigated the effect of suction on the
two-dimensional linear stability of subsonic flows over two-dimensional surface imperfections
over a flat plate. They calculated the flow over smooth humps and backward-facing steps with
Mach numbers up to 0.8. They found, as expected, that suction considerably reduces the
separation region. They showed that continuous suction stabilizes the flow outside the
separation bubble, but it destabilizes the flow inside it. They found that the N-factor decreases
as the suction level increases. This is due to the considerable reduction in the separation
bubble. They found that for the same suction flow rate, properly distributed suction strips
stabilize the flow more than continuous suction. They also found that the size of the separation
bubble, and hence its effect on the instability, can be considerably reduced by placing strips
with high suction velocities in the separation region. They showed that suction does not have
much effect on the most dangerous frequency obtained with no suction.

Al-Maaitah, Nayfeh, and Ragab [15] studied the effect of continuous wall cooling on the
two-dimensional linear stability of subsonic flows over two-dimensional surface imperfections
over a flat plate. They calculated the flow over smooth humps and backward-facing steps with
Mach numbers up to 0.8. They showed that, whereas cooling reduces the viscous instability,
it increases the shear-layer instability and hence it increases the growth rates in the
separation region.

Masad and Nayfeh [46] investigated the effects of suction and heat-transfer strips on the
stability of subsonic boundary layers over a flat plate. They found a reversal in the effect of

heating by strips compared with uniform heating. A heating strip located near branch | of the
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neutral stability curve very much stabilizes the flow, in contrast with uniform heating, which
destabilizes the flow. Also a cooling strip located near branch | of the neutral stability curve
destabilizes the flow, in contrast with uniform cooling, which stabilizes the flow. They
concluded that a properly placed cooling strip can delay transition in subsonic boundary
layers. They determined the optimal locations of heating and cooling strips. Moreover they
calculated the influence coefficients for suction strips. These influence coefficients can be
used to design “smart” suction configurations.

In this thesis, we extend the work referenced above by investigating the influence of a
two-dimensional hump on the stability of compressible boundary layers over an EQH1260
airfoil. We investigate the effects of the height and location of the hump, compressibility, and
suction and heat-transfer on the stability of the flow. Continuous suction as well as suction
through multiple strips are considered. Moreover, we investigate the effect of heat-transfer
through single and multiple strips on controlling the boundary layer. We find that the
amplification factor increases as the hump height increases and as the hump is moved
downstream. Moreover, we find that compressibility stabilizes the flow and that the most
dangerous frequency decreases as the Mach number increases and as the hump is moved
downstream. We find that cooling and suction through multiple strips is as effective as
continuous cooling and suction. The N-factor decreases as either the suction or cooling rate

is increased.
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2. Problem Formulation

In conventional boundary layers, one solves for the inviscid flow to determine the slip
velocity at the body, which he uses to determine the pressure gradient, and then solves the
boundary-layers equations. For smooth surfaces, one can use a conventional boundary-layer
formulation to solve for the mean flow over an airfoil. However, conventional boundary-layer
solvers cannot account for flows over surfaces with imperfections, such as waviness and
bulges, steps and gaps at junctions, three-dimensional roughness elements, suction
discontinuities (e.g., suction strips), heat-transfer discontinuities (e.g., cooling or heating
strips), and trailing edges, because of the strong viscous/inviscid influence and flow
separation.

To account for viscous-inviscid interactions, one needs to use an interacting
boundary-layer formulation, a triple-deck formulation, or a Navier-Stokes solver. All of these
methods account for the viscous/inviscid interaction as well as separation bubbles, but the
Naiver-Stokes solvers are very expensive as compared to the Interacting Boundary-Layer
(IBL) solver. Comparison of solutions obtained using IBL with solutions of the Navier-Stokes
solvers and/or experiments had shown good agreement. Davis, Carter, and Reshotko [34]
developed an interacting boundary-layer technique for the calculation of transitional
separation bubbles over infinite swept wings. Veldman [35] developed a quasi-simultaneous

interacting-boundary-layer solver for incompressible flow over a flat plate. Gleyzes, Cousteix
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and Bonnet [36], Carter and Vasta [37], and Davis and Carter [38] used interacting
boundary-layer theory to analyze separation bubbles near the leading edges of airfoils. Davis
and Werle [39] used an IBL code to study high Reynolds number flows. Davis [40] solved the
compressible interacting boundary layer using an alternating direction explicit method for
handling the pressure interaction in supersonic flows past flat plate related bodies.

One approach for carrying out the computations for the case of weak viscous-inviscid
interactions starts with an estimate for the displacement surface. Then, the inviscid problem
is solved to determine the slip velocity over the new body. The slip velocity is used to
compute the pressure gradient and then the boundary layer, which is used to compute the
displacement surface. Comparing the estimated and computed displacement surfaces, one
can set up an iteration scheme to drive the difference to within a specified tolerance.

In this work, we develop a computer code using an interacting boundary-layer formulation
to solve for compressible as well as incompressible flows over airfoils. We solve for the
displacement surface and boundary layer simultaneously by using an interaction law, as
described next. The analysis follows closely the development which Dr. Saad Ragab gives in

his viscous course.

2.1 Boundary-Layer Formulation

The steady boundary-layer equations for a compressible flow consisting of an ideal gas

with constant C, and C, are:

Conservation of Mass

2+ (o) =0 @1
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x-Momentum Equation

du du _ Op @8 du
U TP =" Ty (" ay ) (2:2)
y-Momentum Equation
ap
———=0 2.3
; (23)

Energy Equation

ar T _ a2, 9P
pu ox + pv ay =(y — HM_u X
1 2 aT o\’ @4
2 u
+ Pr oy ( ady )+(y_1)M°°#( dy )
Equation of State
yMZp = pT @5)

where x is the distance along the airfoil, y is the distance normal to the airfoil, and the

curvature is assumed to be small. All variables are nondimensionalized as follows:

x* y

T Y= VRe

X =

* vt
u= u* , v=—1—/Re
UOO

p” e’ T
p_ * {2’ = + ' T= +
PooYoo Poo To
* . u C
pm e m potele
,'LOO KOO KOO
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M= pe=Pfelle®

oo . ’
VIR, Hoo

where c¢* the airfoil chord. We assume that C,, C;, R*, and y are constant.

The wall boundary conditions are
u=0 no-slip condition (2.6)

0 no-penetration condition
v= 2.7
vu(x) if there is suction or blowing

and

a7
T=T,(x) or 6_y =q(x) (2.8)
where T, is a specified temperature distribution and q(x) is a specified rate of heat transfer.

For an insulated wall, g(x) =0,

*_K. T Kyl RE T
T o =T - ay

Hence,

ar gL

- = 29
=kl 29)

The boundary conditions at infinity are provided by the matching conditions, as y — oo,
U=uUg(x) and T =Tg(x) (2.10)

where u.(x) and T.(x) are the inviscid values of u and T evaluated at the displacement body.

It follows from eq. (2.3) that
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P = p(X) = pe(X)

Because p is independent of y, it follows from eqg. (2.5 ) that

PT=pele
or
_ pele
P77

2.2 Inviscid Flow

2.11)

(2.12)

(2.13)

To determine u.(x), T.(x), and p.(x), we need to calculate the inviscid flow. We assume it

to be isentropic so that

It follows from eq. (2.14) that

* +* - yMoop
R'pooToo
Hence,
2
Pz = yMoopB

It follows from egs. (2.5) and {2.16) that

-1
Te=/’;
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(2.15)

(2.16)

(2.17)
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Evaluating the inviscid parts of egs. {2.2) and (2.4) at the wall, we obtain

du, dpe
Pele dx - dx (218)
ar, o dp
Pelle = (1 — WMol = 2.19)
Eliminating p. from eq. (2.18) and (2.19) yields
Te 2 dug
ax +@y— 1)M°OUBW =0 (2.20)
which has the integral
Te+ l( - 1)M2 u? = constant (2.21
€ 2 Y oo-'e . )

At the stagnation point, u.=0 and T,=T, where T, is the stagnation temperature; thus,

evaluating eq. (2.20) at the stagnation point, we have
1 2,2
Tet+ o (r = WMooue =Ty (2.22)
But the stagnation temperature is given by
To=1+ 2
o=1+50—NM (2.23)
Hence,
1 2 2
Te=1 +?(y — DOM__ (1 —ug) (2.24)

Consequently, given y, M,,, and one of the four quantities u.(x), Te(x), pe(x), and p.(x), one can
calculate the other three from eq. (2.16), (2.17), and (2.24).

Usually, the pressure-coefficient distribution C,(x) is given, where
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_ Pe—Pa,
o= 5
_2_poooo

It follows from eq. (2.25) that

Hence,

1
2
M,

1
Pe = +—2‘Cp

(2.25)

(2.26)

Consequently, given C,(x), one can calculate p.(x) from eq. (2.26) and then calculate p.(x) from

eq. (2.16), T.(x) from eq. (2.17), and u.(x) from eq. (2.24).

2.3 Viscosity

Variation of the viscosity coefficient u* with temperature T* is given by the Sutherland

formula

3/2 .
n _(r) T s
1y T, T"+S
where pu; is the viscosity coefficient at the reference temperature
S$*=110.4°K. Here,

_7 slugs
9 _3s8x107 =18

cm3 sec ﬂ‘3 sec

py=1.716 x 107

2. Problem Formulation
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2.4 Initial Conditions

To complete the problem formulation, one needs to specify upstream conditions at some

streamwise location xg; that is,
u=up(y) and T=Ty(y) at x=xj

There is no need to specify v at the initial location.

2.5 Levy-Lees Variables

The boundary-layer problem is first transformed by using the Levy-lees variables

X

&) = J;) PeltelledX

Yy
u
H=— .[pdy
0

J2¢

u(x.y)
Ue(X)

F(&,n) =

TOW) _ e
T Pl

Q.=

" [pv + /28 F]

= Peltele

2. Problem Formulation
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(2.29)

(2.30)

(2.31)

(2.32)
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Using the chain rule, we find that

0 _ 00 a0

ox 9¢ Ox O Ox
or

-(%— = pekelle 7% + nxjan‘ (2.33)
where 5, = dn/dx. Similarly,

3 _ 8 on

_2.% 2
dy 8¢ oy an oy

0¢

Because ¢ = £(x), oy =0, and hence

u
~FPe 0 (2.34)

0
dy fag On

Because 5, = n(Xx.y),

Ony _ Onyx 3¢  Onyx Oy

oy o0& oy oy Oy

or

(2.35)

Hence,
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Ony _ V2& Oy

d ~ PUe Oy

or

m P ax | U oax (2.36)

e _ 10 V2 o ( “e,)
J2t

Substituting eq. (2.30) into eq. (2.1) and using eqs. (2.33) and (2.34), we obtain

oF 0ug 9p
peueuelipue'a—é-_*_pF af +ue 6{ :I
(2.37)

oF dp PUe 9
+Uet1XI:p on +FE’—:I+\/§_§_ on pv

or

oF du, oF
Pel‘euepl:uea—g +F— dE ] + Uepnx 7~ n

plUe 9 P op | _
+ \/E_{— 6’1 (PV)+ueF[Peﬂeue aé +"X a" ]—O

or

(2.38)

on account of eq. (2.33). Differentiating eq. (2.32) with respect to » yields

2
o= V2t [%(w)mxﬂg + 2L (nx)]

Peltele
which, upon using eq. (2.36), becomes
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2
v _ 2 [g—(pv>+n@g—§

On  Pelele

(2.39)
J2EF 00 28 o (o
p ox Ue ax /26
It follows from eq. (2.38) that
0 — OF J2EF dp
ou (2.40)
e oF e
Substituting eq. (2.40) into eq. (2.39) yields
OV __gp OF 28 0. Y2 o ( U
611 a¢& Ug o¢ Petele Ox /2&
or
ov oF _ 2¢ | Oug 0 Ug
—=—-2{———F —4/2
3 ‘e [ag ‘:6.{([—25)]
or
2§F§+V,1+F=O (2.41)
Substituting eqgs. (2.18), (2.30)-(2.34) into eq. {2.2), we obtain
d oF
PueF[P eMelle 5_{ (UeF) + nxug E{ ]
2 3
PUe F 2 odUg pUs 5 [  9F
e J2E On = Petelle Tgr 28 (p“ on )
or
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F[ oF _ F due] Mx_ . OF PV O

LA L
0t Ue d¢ Petelle =~ On [, 1 u,J2E O

_pe e 4 o ( pn oF
-~ PUe d¢ 2¢ On \ PeMe 0y

which, upon using eq. (2.32), becomes

d oF
26FF; + VF, —— (80— )|+ BIFF - Q)= 2.42
¢ n ( an ) ﬁ( ) (2.42)
where
_ 2 dug ___pH
ﬁ —W az and 0= Pelle (243)

Substituting eqs. (2.18), (2.30), {2.31), (2.33), and (2.34) into eq. (2.4), we have

6Q o
PueF[Pe“eue( e af +Q d& )+’1xTe on ]

pUT, Q o dug
+pV \/g 6’1 (y 1)M UeFPelleue dc

2 4 2 2
PUele o ( 0Q 2 Uep® [ oF
*2zpr on (“”‘ B )”” Mookt —o¢ ( o )

or
Q2% w2y Sl
2er 2 ag + e[ e 0= MU ]FQ
2‘5 2 (2.44)
7102 @ pr_ 0Q oF \ _
* Peltelle [pV+nx 2¢ F]W—W( PeltePr 511 ) aH( on ) =0
where
2
a=(y— ML ‘* (2.45)
e
19
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Differentiating eq. (2.21) with respect to ¢ and using eq. (2.32), we simplify eq. (2.44) into

2
o { 8 0Q oF \ _

where

uPr

A
Pr=—

Therefore the boundary-layer equations are summarized as follows :

2LF; +V, +F=0

2£FF§+VF"——£1—(6~%:—)+ﬂ(F2_Q)=0
3 8 oQ oF 2
Pr
where
2¢ du, pu
T g¢ M 0=7on
A uPr 2 ug
Pr= and a=(y—1)M°°T—
e

For a Newtonian fluid % =1

(2.46)

(2.47)

(2.48)

(2.49)

(2.50)

We solve eqs. (2.48), (2.49), and (2.50) using an adaptive second-order finite-differencing

scheme in n and a three-point backward-differencing scheme in ¢ in the form

Gim=2a0mCm+ 81mGm 1+ 3mGm_2

Therefore, F, and Q, are replaced with

2. Problem Formulation

(2.51)
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F§m = agmFm +81mFm -1+ 8mfm -2 (2.52)

ng =a0mQm + a1mQm_1+ 3mQm -2 (2.53)

where

2fm_ Em—-1 _ém—z

qom = = Cm—tm_a) (2.54)
¢m—Em—2

N 2.55

L P (2.55)

e (2.56)

oo = Em—2Cm—1—%m_2)

Equations (2.52) and (2.53) imply that F and Q are known at the previous grid points m-1 and

m-2, which is true for allm = 3. At m=1,¢, =0 and hence ¢(F, =0 and (Q, = 0. Thus, we take
8y =ayy=ay =0 (2.57)

At m = 2, we drop the accuracy to first order in A, use a two-point backward differencing

scheme, and obtain

agy = —a12=—_1_— and ay, =0 (2.58)
52 51
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2.6 Boundary-Layer Parameters

The friction coefficient C; is defined by

fop—
1 U2
?poo oo
But
TQ _ + @L
w Hw aya Y =0
hence
* * + 2
o, 2Hlo/Re oy 2pwtoc/RE pulle oF
Ty T . vl I
L*pooloo % ly=o0 PooUool '\ 2¢ on In=o0 (2.59)
1 oF
= 2upp ui—o0,2
ePeYe '—2§Re w n =0
Consequently,
_ 2 [X p OF
Cr/Re, =2pgpelig 28 0, o o (2.60)

The displacement thickness is defined by

or
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o ,/Re
[, (-5 )
Peue
It follows from eq. (2.29) that
V2¢
dy =g
Hence, eq. (2.61) can be rewritten as
é*./Re J' o
- Ln = peu (Q F)

on account of egs. {(2.30) and (2.31).

2.7 Interacting Law

(2.61)

(2.62)

Because conventional boundary-layer theory fail in the presence of a separation bubble,

we use an interacting-boundary-layer formulation to solve for the pressure gradient and

boundary layer simultaneously. Using thin airfoil theory, one obtains the following interacting

law for the total velocity [41]:

hed dt (Ue‘s)

Ug = Ug +

where U, is given by

2. Problem Formulation

nJR_;/ M2 LE x—t

(2.63)
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d d
oo '—(erf) oo ——(In e)
L f at f ot (2.64)

Ug = Ugy +
¢ eo 1—M2 L.E. x—t L.E. x—t

e e]

Here, u,, is the inviscid velocity in the absence of the the imperfection and y = f(x} is the shape

of the imperfection given by

y=y"L* = (h*[LYE) = hA(C) (2.65)
in the present work, we choose f({) to be

2 3
1-120°+161¢] if [¢] <1
Q)= (2.66)
0 if 1] >1

L= (X" = Xp)Ib* = (X = Xp)Ib (2.67)

where h* is the height of the hump, b* is the width of the hump, x,, is the streamwise distance
from the leading edge of the airfoil to the center of the hump, and the star denotes a
dimensional quantity.

Equations (2.63) and (2.64) are singular at t=x ; therefore the principal values of the
Cauchy integrals are assumed. To determine the principal values of the singular integrals in
eqgs. (2.63) and (2.64), we approximate f and é§ by piecewise linear functions.

The integrals in eqgs. (2.63) and (2.64) have the form

=J-°° dt_ g (2.68)

We assume that the interaction region extends from x, to x, and hence approximate eq. (2.68)

as
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oo Xr
- J —d—t—dtxj 9t g (2.69)
L X, x—t

Because the integral in eq. (2.69) is singular at t=x, we break the integral into two parts and

obtain

X—g —— X,
I=1lim f —‘i—dt+f | S (2.70)
X X X

where ¢ is a small positive number. Using integration by parts in eq. (2.70), we obtain

X —¢& X,
t=tim| T |7
e—0 x—t X, x—t X +&

X—€ T X, T
_ ' gt —L_at
Le x - 1) f +e (x—1)? }

X

(2.71)
_Tx)  Te) L T T—0) TG+
=x—=x, “x=x;, T)m e T —s
X —¢ X,
Y S S L
x, (x—1) x4e (X —1)
Now, we evaluate the integrals
X —¢€
=] L% 2.72)
x (x=1
and
X!
= f _Tdt_ (2.73)
X+ (X — t)
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in eq. (2.71) by approximating T by a piecewise linear function. We divide the interval (x,, x;)
into equally spaced intervals with length Ax. The interacting boundary-layer equations are
solved at the midpoints xi, x, ..., X, of these equally spaced intervals. In terms of x; and x,,

X, and x, are given by
Xp =Xy — %Ax . (2.74)
X=X + o AX (2.75)

We approximate the variation of T over an interval by a linear function. Thus, over the interval

x; — % Ax, x; + %Ax) centered at x;, we have
T=Tj+alt—x). x— 2 AXSt<x+Ax 2.76)
where
a =—Tif%xr’i1— @.77)
is the slope. Letting
t—-xj
= or t=1Ax+X (2.78)
in eq. {(2.76) and using eq. (2.77), we obtain
T=Tjt (= Tjo)r  —w<t<— (2.79)

Next, we evaluate the integral in eq. (2.72) at x = x;; that is,
X; —¢
Tdt
lo(x)) = f — (2.80)
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We isolate the contribution of the part of the interval containing x;; that is,

Xy X;—¢€
lo(x;) = J- —Tat__ 3 +f —Tat__ 5 (2.81)
X (xi—1) X (xi—1)

where
1
Xp=X; _4 +—2-Ax (2.82)

Next, we determine the contribution of the interval (x,-—%Ax, x,-+%Ax) centered at x;

on element x.. In this interval, we have
1
T=Tjt o (T —Tjo o)t (2.83)
t= X; + 7Ax, dt= Axdr (2.84)

Using eqgs. (2.83) and (2.84), we find that the contribution of the interval centered at x; on

element x; can be evaluated as follows:

1 1
Ax 2 Tt 5 =T
) = J' _Tdt __ — Axdr (2.85)
X __12_ (x;— x; — 14x)

Using the fact that x; — x; = (i — j))Ax, and carrying out the integration in (2.85) yields
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1 1
T2 (Tiy1—Ti—9) 72
I[(x,-):—l- dr +l j+1 j=1 f T dr
! Ax ) 1 k-1? 2 Ax 1 (k—1)?
T2
i 1
R H LA G4m0 | ke _J‘ dr
T Ax k—c!_1 2 Ax (k———r)2 k—1
T | Tor=T_)
j 1 1 1 U=l K
_AXLk_i_ k+_l_}+2 Ax [k_1+|n(k 1)]
2 2
__ +i(Tj+1—T/—1)[ 2k 2k 2kt
4T; Tiz1—Ti—q) —
ey et [ 2t
Ax(1 — 4k%) X akc —1 +

or
4
lefxi) = = 5 LTPk+ ElTj 44 = Tj_9)]
where k=i —j ,

1
Dy=—
1— ak?

2k—1
2k +1

E. = k

1
=——Ff —_—in
k

2(1— 4k 8

Using eqgs. (2.83) and (2.84), we find that the second integral in eq. (2.81) is

2. Problem Formulation

(2.86)

(2.87)

(2.88)
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X;—¢ Xi—e Tig1—=Ti_9e
5 =07 oL 2(Ax)
£ __E
__EJ'—AXQT_+ Tf+1*T'-1j Ax dr
TAx ) 4 2 2Ax 1 7
-7 -5 (2.89)
£ £
R BNy o P /B P
Ax T _% 2Ax __%_

Adding eqs. (2.86) and (2.89), we find that the value of the integral in eq. (2.72) is

x;—¢ i=1
! Tdt 4
lp= ’ —(x—t)2 =IZ:1_E[7.]DR+EK(7-]+1_T]—1)
¢ = (2.90)
T, 2Ty T —Ti_y 2
L T S— v '"("AY)

Following the same procedure, we rewrite the integral in eq. (2.73) as

X

X, X,
’r____J' Tdt . ____J. Tdt . +J Tdt - (2.91)
+e (x—1) x (x—10 x+e (X —1)

X
X=X+ o AX (2.92)

The contribution of the jth interval to the first integral in eq. (2.91) is

Axdr

X+ 4 A T+ ( —Ti_r
rj(xl J.
X;

2
1 — X, —
I_.i. , X; TAX)

or

2. Problem Formulation 29



1 1
ooy A7 Jr T 7T
rj(xi)— Ax (/—1—1)2 T

1 1
, 1 [7 o T =Tj-0) (2«
7 Ax _%(k+7)2 28x -1 (k + 1)
1 1
=_TL(_ L2 i1 =T (2] _dr  kde
Ax k+1_1 2Ax 1| k++ (k+1)2
] 2 -7
_ ) 1/2
U/ D T B PN/E S el /5 |nk+'2—+ k
Ax 1 1 2Ax 1 " k+t
k—— k+— k——
L AT 2 2
- —1/2
a1 1= T—1 [ 2k+1 4k
= > + In 2k 1+ 5
Ax(4k% — 1) 24x - 1— 4K

4 1 1, 2k—1
=“H[D"Tf_(Ti+1_Ti—1)(FKDk'_zs"" 2k + 1 )]

or
Iy=——2[D,T T,_E
=" "ax LPTj— (Tj4 1= Tj—9)E]

where k =j —i and D, and E; are defined in eqs. (2.87) and (2.88).

Substituting eqs. (2.83) and (2.84) into the second integral in eq. (2.91), we have

Axdt

Iri

1 1 1
J.X,-‘I-?AX Tdt =J-"é— T'+‘é‘(Ti+1—'T’_1)T
X+ o= t)? . 2(Ax)?

Carrying out the integration in eq. (2.96) yields

2. Problem Formulation

(2.93)

(2.94)

(2.95)

(2.96)
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1 1
Ti 1172 Tiv1—Ti_y 5
= | 7 |t 24X In=
Ax AX
or
2T, T Tipq—Ti_y Ax
’”.__E.FT_FT“](K) (2.97)

Adding eqs. (2.95) and (2.97), we obtain the following expression for the integral in eq. (2.73):

M
X
’ Tdt 4
Ir=J T T Ax Z LT0k—ElTj 41— Tj_4)]
. —t) x £
X;te (X f=i+1 (298)
2N T TieamTion 26
Ax & 2Ax Ax

Adding eqs. (2.90) and (2.98), we find that the principal value of the singular integral in

eq. {(2.70) is

dT
g9t Tx)  T(xp)
10x;) =f

Xi—t X=X X=X

£
4 i—1
+7§}Z1U,-Dk+ BTy 1~ Ty_1)] (2.99)
4T

M
4
tae 2 TP BT =T+ 5y
=i+

where D, is given by eq. (2.87), E, is given by eq. (2.88), and k = |i — j|. Equation (2.99) can

be rewritten as
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x 9T . T0)

4 X X
J’ dt g _ (xr) ¢
X

x—t X=X Xj—Xg
L [ (2.100)
| D TP+ 59 —DET) 41~ Ty 1)
j=1
where
1 if i>j
sgn(i—j)=| 0 if i=j
—1 if i<j
Going back to eq. {2.63), we rewrite it as
d
L~ aAx [ ar e
Ug=Ug + ) J.L'E. Y —1 dt (2.101)
where
1= 4 (2.102)
Axn\/Re(1 — M%)
Letting 7= u.d in eq. (2.100) and substituting the result into eq. (2.101), we obtain
~ Augd)pyAx  A(ugd)1Ax
Up = U, -
S AX—x) A —X)
M (2.103)
+ 1) [(Ued)Dy + 5910 — DE(Ued)y 4 1 — (Ued)y— 1)]
j=1

or in expanded form
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Ug, = Ug, + A% (Ue)1GL(1) + (Ued)G2(7) + (UeS);

+ Z [(Ued) Dy + Eil(Ued); 4 1 — (Ued);_ 4)] (2.104)
j=1

M .
+ ) [(Ueb)Di— Exl(Ued); 4 1 — (Ued)y_ )]
j=i+1

where

N Ax
g1(’) - 4(xi _ X!)

g,(i) = —4()(,_’31‘ 0

When i = 1, the contribution of the first summation in eq. (2.104) is zero and hence

Ugt = Ugy + A< (1 + g1 (1)) (Ue) + (Ue)yga(1)

(2.105)

M
+ Z [(Ueé)jDk - Ek((ueé)]+ 17 (Ue‘s)j- 1]
j=2

We expand the summation in eq. (2.105) to j=3 and obtain

Ugy = Ugq + A< [1 4+ g4(1)I(Ueb)1 + (Ue)yga(1)

+ D4(Ugd)y — Eq(Ugb)3 + Eq(Ueb)4 (2.106)
M

+ [(Ued)Dk — Ex((Ued); 4 1 — (Ueb); _ 1)]

j=3
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Ugy = 4Gy + AT {(U6), (2.107)

~

ue
Gy = T1 + (UedIng2(1) + D1(Uebd); — E4(Ugd)s

(2.108)

M
+ ) L(Ueb)Dx — El(Ueb) 4 1 — (Ued)y_ )]
j=3 .

When i = M, the contribution of the last summation in eq. (2.104) is zero. Then, we expand the

summation to M-2 and obtain

Ug, = Ug, + A% (Ue8)191(M) + (UeS)pga(M)

+ (Ueb)py + (Ugd)yy — 1D4 + Eq(Ugd)py (2.110)
M-2
~ EWedy_o+ ) [(Ued)Dy+ Ex(Ueb)j 4 1 — (Ued)_1)]
j=1
Ug, = AGy + AT y(UeO)yy (2.111)
Ty =1+ go(M) + E, (2.112)
Ge,
Gy = g1(M)(ugd) + - T Dy(ueb)ps — 4
M—2 (2.113)
— EvUdhy—2+ ), [(Ueh)D+ El(Ugb) 1 1 — (Ueb);_1)]
j=1

When 1 < i < M, eq. (2.104) becomes

Uei = AG, + lr,—(ueé)i (21 14)

=1+ 2E, (2.115)
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~

U,
Gj = (Ugd)191(7) + (UeBIMT2() + —~
+ D4(Ugd); — 1 — E4(Uugd)i— o + D1(Ued); 5 4
i—2
—EyUe)i 4 2+ ) [(Ue)Di+ Ex(Ueb)) 4 1 — (Ug); _ )]
j=1

M
+ ) [(ed)Dk~ Exl(Ued); 4 1 — (Ugb); _ )]
j=i+2

~

e,
Gj = (Ug6)1g4(7) + (Ugd)pTo(i) + -
i1

+ Z [(ued)Dy + Eil(Ued); 4 1 — (Ueb);_4)]
j=1

M
+ D L8Pk Ed(Ued) 4 1 — (e )]

j=i+1
— 2, (ueé)i

2.8 Boundary Conditions

The boundary conditions are

u(x.y)

F(¢ n) = )

=0 whenn =0

V(0) =V, where V, < O for suction and V,, > 0 for blowing

dQ(&, 0
Q(gi )= Gy or Q. 0)=CT,uy

2. Problem Formulation
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(2.117)
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where g, = 0 if the wall is insulated, C > 1.0 for heating , C < 1.0 for cooling, and C = 1.0

for an insulated wall. As y — oo,

. T(x,
Fem= =1 and  QUm) ==

The nonlinear boundary condition on § is derived as follows. We start with eq. (2.48),

which is repeated here

2§F§+Vn+F=0 (2.118)
We add Q + 2¢£Q, to both sides of eq. (2.118) and obtain
28Fs+V, + F+ Q+2LQ; = Q + 2£Q;

or

V, +Q+28Q; = Q — F+25(Q; — Fp) (2.119)

Integrating eq. (2.119) from =0 to n = #. yields

. e He He
v+ [ @+2tQpan=| (@—Pdn+26-L | @-Fon (2.120)
0 0 0 a: 0

Using eq. (2.62), we find that eq. (2.120) tends to

JRe dpou, d | Re dpgue
V-V0)+K =+ 22 | —— 2.121
as #. — oo, Where
Ne
K(ne) = | (@ +2¢Q)dn (2122)
0
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V)=V, (2.123)

Carrying out the differentiation in eq. (2.121) vields

op U
V—VW+K(ne)=ﬂ/Re[—pe—e

J2r : (2.124)
+ —% jjé- (6peli) — :/% - Qépeue]
which can be rewritten as
V4 Klte) = Vi + V22 55 (petid) (2.125)
The pressure-gradient parameter f§ is defined as
_ %‘z_ ‘;”; (2.126)

Using a three-point backward-differencing scheme, as in eq. {2.51), we rewrite eq. (2.126) as

Biue, = 2&i[ague, + a4 ug, ,+ 32ue!__2] (2.127)
Solving eq. (2.127) for u.,, yields
2.5,[5:1%.',_1 + azue;_z]
U, = = AG; + AT (u,d); (2.128)

i 2880 — Bi
on account of eq. (2.114). Solving eq. (2.128) for (u.6); yields

5 G, 2¢[a Ug, ,+ a2uei—z] 2.129
(Ugd); = T T, M2¢a,— BT e

Using the three-point backward-differencing scheme defined in eq. (2.51), we rewrite eq.

(2.125) as
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V+k(ne) — Vg =2&; [(peed)idg + a1(peUed); 1 + an(peled)i_ 5] (2.130)

Substituting eq. (2.129) into eq. (2.130), we obtain

G; 2¢ (a4 Ue, + e, )
V+ Kng) = Vig=~/2¢; agpe| — : :
i

AT (280 — B)) (2.131)
+1/2¢; [ay(peted); — 1 + 32(peled); _ 5]
which can be rewritten as
$2
V4 g+ ——~"—=0 2.132
¢1 2839 — B ( )
where
V2¢; agpeGi

b1 =Klte) = Viy + ———— = /28 [a1(petied) -1 + aalpatied)i 2] (2139)

3/2
(2¢) ! ag(agle, , +axe. _)pe,

h= i (2.134)
Finally, we rewrite eq. (2.132) as
V(28180 — B) + $1(2880 — B) + o =0 (2.135)
or
VBi+ d4Bi—2¢agV — ¢y — 28394 =0 (2.136)
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2.9 Stability Problem

We consider the linear two-dimensional quasiparallel stability of the mean flow calculated

by using the interacting boundary-layer formulation. We assume that the specific heats and

Prandtl number are constant. Because we are limiting the calculations to subsonic flows, this

assumption has a small effect on the accuracy of the stability results. Moreover, the viscosity

and thermal conductivity coefficients u and x are assumed to be functions of temperature only.

Because Pr and C, are constant, x = p.

To derive the stability equations, we superimpose two-dimensional disturbances on the

mean flow calculated by using the interacting boundary-layer formulation to obtain the

total-flow quantities
P =pmy) + p(xy.0)
U= un(y) + u(x.y.b)
v =v(x,y.f)
P =pmy) +pxy.t)
B=pmy) + pxy.t)
A= Apm(y) + A(x.y.0)

T =Tply) + T(x.y.0)

where A and u appear in the definition of the bulk-viscosity coefficient k as

2
k—2+§'u
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(2.140)

(2.141)

(2.142)
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The subscript m refers to mean-flow quantities and the overbar refers to total-flow quantities.

Since m and 1 are functions of temperature only, we have

1=y (Tm)T and Mo T T T (2.144)
= —— = an H=—"F =u .
dTm m\'m dTm my'm

Substituting eqs. (2.137)-(2.144) into the two-dimensional compressible Navier-Stokes

equations, subtraciing the mean-flow quantities, and linearizing the resulting equations, we

obtain
dp op dom du ov
7+um—67+—d}—v+pm E-F'B? =0 (2.145)
du du Um op
m(6t+’"ax+dyv) ox
1 0 du ov
—TQ-—X—[fumgx—"qum'gy—] (2.146)
1 9 u , v dup,
‘Rw[ m(WJfa) d —0]
v v o 1 9 ou
”m(at + max)+ay"R ay[r“ma + max]
2.147
10 ov  ou ), dUm | _o (2147
R ox |¥m\ “ax y Hay
T ar |, dTp 2 { 9p ap
”m( ot T Umax t gy ")‘(’_1)“”% at +Umox
_tm (T TN, 1 0w ATy 2 148
RPr\ ox2 ' 2 RPr 9y dy : (2.148)
p A Gemogr  O=DMLH  w T,
RPr dy dy R RPr dy2
where
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K} 3 du du,, \°
_ u v m m
¢ = 2;1,,,[ ( By + Px ) dy ] + u( By ) (2.149)

lm
m=m,r=2+m, (2.150)
U* 6‘ * V* X'
R=—22 5 = oo (2.151)
voo Uoo

The linearized equation of state for a perfect gas is
2
YMooP = pml + pTm

or

p=0Mop—pmDITr (2.152)

The boundary conditions are
u=v=0T=0 at y=0 (2.153)
u,v,p,T—=0 as y—> oo (2.154)

We seek a quasiparallel solution of eqgs. (2.145)-(2.148), (2.153), and (2.154) in the

normal-mode form

qg= 3 W) exp{iJ-adx — jwt} + complex conjugate (2.155)

where q stands for (u, v, p, T), « is the complex wavenumber, and « is the frequency. For a
spatial-stability analysis, « is complex and o is real, whereas for a temporal-stability analysis
w is complex and « is real. Here, we present results for the spatial-stability case and
determine » from the nondimensional frequency F as w = FR.

Dropping the hat from 6\ for convenience and defining
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Q=w—aup, (2.156)
we find that « is governed by the eigenvalue problem

. DT iQp QT
Dv=—iau+ T v+ Pm T, (2.157)

—ip QR ' DT,
D= (—ﬁ"————+rcx2)u— (pm—mDu)

Em
pmRDUy, . W mDTh .
+ [ Tl L by e v —i(14+ maDv (2.158)

Duy . Du, |, W
* o P—[ Fim D(“m“W“m]T—WD“mDT

) DT, 2u',,DT, .
xolp = —m(r T + i u—iaDu

; [0k PR VO (o)
+( iRQ 2 m #' m(DTm) )V

—a +r

EmTm Tm HmTm
. ’ (2.159)
. r m ﬂm
o) o)
, Em r irQup, irQd
+[I(aDum)( T T )-— T DTm]T— T, DT
D’T= —2 2 Gl Y .
= — 2y = YMPrDUyDu + | RPr —"5—" — 2i(y — Mg PraDuy, v
2 '
' , P (OTm) B’
+i(y — 1)M§°PrR—%p+[—:RPm72—+a2——’zm L (2.160)
2
, D T 2 w 2 # mDT
— W= (0 = 1) MPr— - (Dup,) ]T—Z'Z—mmDT
u=v=T=0 at y=0 (2.161)
uv,p,T,-0 as y— oo (2.162)

where
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=4 , R ;0 -
D_dy’xo_#m lrpm,andpm—

1

2
M,

(2.163)

For a given mean flow, w, and R, we solve for the eigenvalue a and the eigenfunctions,

and then determine the amplification factor from

N=—-| 2a0R (2.164)

where R, corresponds to the location where the disturbance starts first to grow and «; is the
imaginary part of «. The eigenvalue problem is solved by using the IMSL second-order
finite-difference subroutine DBVPFD [43]. In all cases, unless otherwise specified, the results
are for the most dangerous frequency, defined to be the one that results in an N factor of 9.0

in the shortest distance.
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3. Results and Discussion

A parametric study of the effect of a hump on the stability of laminar boundary layers over
an airfoil was performed for different Mach numbers and heights and locations of the hump.
The airfoil used in this study is EQH1260 (Fig. 1), which was extensively studied in the United
Kingdom in the forties. The Reynolds number based on the chord is 6.5 x10% The
pressure-coefficient distributions over the clean airfoil were calculated using an Euler code for
different Mach numbers. In Fig. 2, we show the pressure distributions for the Mach numbers
0.14, 0.50, and 0.65, respectively. We note that the minimum pressure is located at
approximately 75% of the chord. The cubic hump shown in Fig. 3 was added to the airfoil.
Then, thin airfoil theory was used to calculate the total inviscid velocity over the modified
airfoil.

In this work, we use linear stability theory to identify the characteristics of permissible
disturbances, including the eigenfunctions (disturbance waveforms), wavelengths,
frequencies, orientations, amplification rates, and amplification factors. The amplification
factor is defined as the natural logarithm of the ratio of the disturbance amplitude at any point
in the boundary layer to the disturbance amplitude A, at the neutral stability point. it can be
computed by integrating the local amplification rates along a prescribed path.

When correlated with experimental transition data, linear stability may play an important

role as a transition prediction method in the design of Ilaminar-flow wings. A
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transition-prediction method, now known as the “exp(N) method”, was first proposed,
independently, by Smith and Gamberoni [32] and Van Ingen [33] in 1856. The basis of the
method is the premise that transition is caused by a certain amount of amplification of initially
small disturbances as they propagate downstream in the boundary layer. For low-speed
two-dimensional flows on smooth surfaces, Smith found that the calculated N factor is near 9
(an amplification of about 8000) at the onset of transition. Nay.feh, Ragab and Al-Maaitah [13]
studied the stability of the flow around hump and dip imperfections. They correlated their
results with the experimental data of Walker and Greening [23]. The observed transition
locations correspond to amplification factors varying between 7.4 and 10, consistent with
previous results for flat plates. Therefore, the “exp(n) method” can be used for correlating
transition and evaluating natural laminar flow and laminar flow control over smooth surfaces
as well as surfaces with imperfections.

In this work, an N-factor of 9 was used to correlate transition from laminar to turbulent
flow over an airfoil with a hump. We refer to the frequency that produces an N-factor of 9 in
the shortest distance as the most dangerous frequency. If the N-factor does not reach 9, we
refer to the frequency that produces the largest N-factor as the most dangerous frequency.

In this thesis, the following abbreviations are used:

1. Considered heights of the hump: h, no hump, hy = h: =50x10" h;= 22 =7.5x 104

hy = :f =8.0x 104, hy= :f =08.0x 104, hs = hs _ 10x 10-3, and hg = he

=12x1073,

A *

2. Considered locations of the hump: L1 for x,=0.2 to x, =0.3, L2 for x,=0.3 to x, = 0.4,

and L3 for x,=0.4 to x, =0.5.
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3.1 Clean Airfoil

We calculated the mean flow for the clean airfoil using the given pressure distributions
for the different Mach numbers and a conventional boundary-layer solver. The solution breaks
down near x = 0.75 because the boundary layer separates there. Reported experimental data
[26] indicate that transition occurs at this point of minimum pressure and the flow is tu.rbu|ent
beyond this point. Then, we fed the calculated mean-flow profiles into a two-dimensional
compressible spatial stability code. We swept the frequency from
F=25x10-%to F =55 x 10-%. In Figs. 4-6, we show the variation of the amplification factor
with the streamwise position for several frequencies for the Mach numbers 0.14, 0.50, and 0.65,
respectively. In all cases, the N-factor remains below 9 up to x=0.75, then it increases
dramatically, indicating that the boundary layer undergoes transition to turbulent flow as
indicated by the experiments. We note that, for each Mach number, the peak of the N-factor
moves upstream as the frequency increases. When M =0.14, the maximum value of the
N-factor increases as F increases from 25 x 10-% to 30 x 10-® and then it decreases as the
frequency increases further. For M =0.50 and 0.65, the maximum value of the N-factor
decreases as the the frequency increases from 25 x 10-® to 55 x 10-%. The maximum N-factor
for the Mach number 0.14 is 7.21, and it corresponds to F = 30 x 10-%. The maximum N-factors
for the Mach numbers 0.50 and 0.65 are 5.41 and 3.97, respectively, and they correspond to
F = 25 x 10-%. Moreover, we note that compressibility has a stabilizing influence on the flow in
that, for a given frequency and streamwise position, the amplification factor decreases as the

Mach number increases.
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3.2 Influence of the Hump

3.2.1 Mean-Flow Characteristics

In Fig. 7, we show the displacement thickness for a clean airfoil when
M=0.14, M=0.50, and M =0.65. The hump should not be large so as to produce a
breakaway separation. In such a case, one needs to use a Navier-Stokes solver. in this work,
we consider only hump heights of the order of the displacement thickness so that we can
calculate the mean flow using interacting boundary layers.

The mean flow was calculated for different heights and locations of the hump and different
Mach numbers. In Fig. 8, we show variation of the skin-friction coefficient C; with streamwise
position for three humps when M =0.14,Re =6.5x 10%, x,=0.20 and x,=0.30. Humps
h; and hy do not produce any separation while hump hs corresponds to incipient separation.
In Fig. 9, we show variation of C; with streamwise position for the same three humps and the
same location when M = 0.50. At this Mach number, hump hs produces a small separation
bubbie, while hump h, corresponds to incipient separation. In Fig. 10, we show variation of
Cr with streamwise position for the same three humps and the same location when M = 0.65.
In this case, humps h, and hs produce separation bubbles, while hump h; corresponds to
incipient separation. It is clear from Figs. 8-10 that the size of the separation bubble increases
when the hump height increases and/or the Mach number increases. In other words,
increasing either the hump height or the Mach number increases the size of the separation
bubble.

Moving the hump downstream to location L2 (i.e., x, = 0.30 and x, = 0.40), we calculated
C, for the same three heights and Mach numbers. In Fig. 11, we show variation of C, with
streamwise position. Then, we moved the hump to location L3 (i.e., x, =0.40 and x, = 0.50)
and repeated the calculations. The resulting variation of C, with streamwise position is shown

in Fig. 12. Comparing Figs. 11 and 12, we conclude that moving the hump downstream, while
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keeping both the hump height and width and the Mach number fixed, increases the size of the
separation bubble.

It is clear from Figs. 8-12 that separation occurs after the center of the hump. One might
expect that moving the hump downstream, without changing its height and the Mach number,
reduces the separation bubble and therefore the interaction effects due to the fact that the
hump is embedded in a thicker boundary layer. This is true for a uniform flow over a flat plate,
as shown by Al-Maatiah [17]. In our results, it is not the case because of variations in the
pressure. In fact, transition occurs on the clean airfoil very close to the location of minimum
pressure, which is located downstream close to the trailing edge. Therefore, placing the hump
downstream increases the size of the separation bubble and in turn resulits in premature
transition.

The upstream influence of the hump is weaker than the downstream influence. In fact, the
upstream influence decays exponentially, while the downstream influence decays
algebraically as shown by Smith [44] for small humps. In Fig. 13, we show variation of C,; with

streamwise position for the clean airfoil and hump hs located at L1 when M = 0.50.

3.2.2 Stability Characteristics

The effect of the hump height and Mach number for a fixed hump location on the growth

rates and therefore on the amplification factors of two-dimensional waves was studied for

x_*
@’y
U

X,, decreases the growth rate in the interval (x, , x,+%b), increases the growth rate again

several nondimensionless frequencies F = . The hump increases the growth rate up to

in the interval (x, + %b . X;), where b is the width of the hump (i.e., b = x, — x,).
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3.2.2.1 Location L1

For a given Mach number and hump height and location, we performed the calculations
for several frequencies and found the most dangerous frequency. In Table 1, we list the most
dangerous frequency for each Mach number and hump location. It is clear that the most
dangerous frequency decreases as the Mach number is increased for a fixed location.

In Fig. 14, we show variation of the N-factor for the most dangerous frequency with
streamwise position for h; at M =0.14, M =0.50, and M = 0.65. It is clear that compressibility
stabilizes the flow; the amplification factor of the most dangerous frequency decreases at each
streamwise position as the Mach number increases. Assuming that N =8 corresponds to
transition, we conclude from Fig. 14 that h, produces transition at x = 0.308 when M = 0.14.
Note that when M =0.50 and M =0.65 transition is not produced upstream of the
minimum-pressure location at x =0.75

In Fig. 15, we show variation of the N-factor for the most dangerous frequency with
streamwise position for hy at the same Mach numbers. This hump produces transition
approximately at x =0.300 when M =0.14 and at x=0.313 when M =0.50 but does not
produce transition upstream of the minimum pressure location when M = 0.65. For the larger
hump hs, it follows from Fig. 16 that transition occurs upstream of the location of minimum
pressure at all three Mach numbers considered. Comparing Figs. 14-16, we conclude that the
transition location moves upstream as the hump height increases. These resulis are
consistent with the empirical correlations of Fage [26] and the theoretical calculations of
Masad and Nayfeh [21] for a hump mounted on a flat plate.

In Figs. 17-19, we show variation of the N-factor for the most dangerous frequency with
streamwise position for several heights at location L1 and for the same three Mach numbers.
We note that the critical heights for transition are h=7.5 x 10-* when M =0.14, h=9.0 x 10~*
when M =0.50, and h=1.0x 103 when M = 0.65. |t is clear that increasing the hump height
results in an increase in the N-factor for alf three Mach numbers. We note that, at the same

location, the hump height that produces transition increases as the Mach number increases,
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which reflects the overall stabilizing influence of compressibility. Above a hump height of
approximately 1.0 x 1073, the transition location is within 0.03 of the chord for all three Mach
numbers, indicating that compressibility has a negligible influence on the transition location

for large humps.

3.2.2.2 Location L2

In Fig. 20, we show variation of the N-factor with streamwise position for the same three
Mach numbers for h; located at L2. Again compressibility is stabilizing. Whereas this hump
produces premature transition when M = 0.14 and 0.5, it does not produce premature
transition for M = 0.65. Moreover, transition moves slightly downstream as M increases from
0.14 10 0.50. Comparing Figs. 14 and 20, we find that the transition location when M = 0.14 has
moved to x =0.390 and the most dangerous frequency has decreased from F =45 x 10-% to
F =40 x 10-¢. The decrease in the most dangerous frequency as the hump is moved
downstream is consistent with the results in Table 1. Furthermore, we note from Table 1 that
this most dangerous frequency decreases as the Mach number increases. It follows from
Figs. 14 and 20 that, when M = 0.50, whereas hump h; does not produce transition upstream
of the minimum pressure location when placed at L1, it does so when placed at L,. Thus, a
certain height that does not produce transition when placed at one location might produce
transition when placed at a downsiream location. In other words, the critical height for
transition decreases as the hump is moved downstream. In Figs. 21 and 22, we show variation
of the N-factor for the same three considered Mach numbers for humps hs and hs, respectively.
It follows from these figures and Table 3 that h, and hs produce premature transition at all
Mach numbers and that above hs=9.0 x4, transition occurs at all three Mach numbers
considered. In all cases, the transition location moves downstream as the Mach number

increases.
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3.2.2.3 Location L3

In Figs. 23-25, we show variation of the N-factor for the same three Mach numbers and
same three heights. The most dangerous frequency decreases as the hump is moved further
downstream and/or the Mach number is increased. Moreover, we note that compressibility
is stabilizing. I is clear from these figures that the transitioﬁ locations are downstream of
those corresponding to location L2. Above h; = 9.0 x 104, transition occurs at all three Mach
numbers, M = 0.14, 50, and 0.65. Again, transition moves downstream as the Mach number
increases, as shown in Table 4. It is also clear from Table 4 that, at a given Mach number, the
transition location moves upstream as the hump height increases.

Comparing Figs. 23-25 with Figs. 20-22 and Figs. 17-19, we conclude that for a given hump
height and Mach number, the peak amplification factor increases and moves further

downstream as the hump location moves downstream.

3.3 Boundary-Layer Control with Suction

It has long been recognized that application of suction to laminar boundary layers is an
effective tool for delaying transition and hence reducing drag. Suction influences the stability
of laminar boundary layers through two important effects. First, it reduces the boundary-layer
thickness which makes the boundary layer less prone to becoming turbulent. Second, it
changes the shape of the velocity profiles by making them fuller and hence increases the
critical Reynolds number, decreases the growth rates which results in smaller N-factors, and
narrows the band of frequencies receiving amplification.

For the case of continuous suction, the resulting surfaces may not be sufficiently rigid to
carry the aerodynamics loads. Hence, application of suction through multiple strips, although

more difficult to analyze, is more attractive for structural considerations. Reed and Nayfeh

3. Results and Discussion 51



[45], Nayfeh and Reed [48-49], Reynolds and Saric [50], and Masad and Nayfeh [46] showed
that, for the case of smooth flat-plate boundary layers, suction applied through multiple
discrete strips can be as effective as suction applied continuously through a much wider
surface. In this work, we show that this conclusion is true for boundary-layer flows over an
airfoil with imperfections.

To account for the upstream influence of suction strips, Qe calculated the mean flow by
using interacting boundary layers. Conventional ( parabolic) boundary layers fail to account
for this influence. Reed and Nayfeh [45] showed that, for incompressible flow, the growth rates
calculated using profiles obtained with conventional boundary layers are different from those
calculated using profiles obtained with interacting boundary layers. The difference between
these growth rates increases with increasing suction level. Masad and Nayfeh [46] compared
the growth rates for both incompressible and compressible flows for a single strip. They
showed that the growth rates drop sharply at the upstream left end of the strip when the mean
flow is calculated using conventional boundary layers, whereas they vary smoothly when the
mean flow is calculated using interacting boundary layers. Moreover they showed that
conventional boundary layers underpredict the minimum. Far downstream of the strip, the
growth rates corresponding to both mean-flow profiles approach each other. Although the
differences between the growth rates calculated using the conventional and interacting
boundary-layer formulations are significant near the suction strips, the difference between the
N-factors calculated using both approaches is small.

We considered the flow over the airfoil for hump hs located at L3 when M =0.14. We
chose this location because it produces N-factors that are larger than those of the other

locations. The calculations were performed by using the following steps:

1. We chose a suction strip that extends from x =0.37 to x =0.54 and selected a suction
level of C,=1.5x10-* Then, we calculated the mean flow using interacting boundary

layers.
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2. We fed the mean-flow profiles into the stability code and swept the frequency from
F=25%x10"%to F =55 x 1078 In Fig. 26, we show variation of the N-factor with streamwise
position for several frequencies. It is clear that this suction configuration delays transition
to the location of minimum pressure because none of the amplification factors reaches
N = 9. The frequency that produces the largest N-factor is F =35 x 10-¢, which is the
same as the most dangerous frequency in the absence oI.r suction. This might not be the

case for other locations and Mach numbers.

3. After determining the most dangerous frequency, we varied the location of the suction
strip while we kept its width and suction level fixed (i.e., Ax=0.17 and C; = 1.5 x 10-4).
The locations we considered for the upstream end of the strip were
x=0.27,x=037, and x=0.42. In Fig. 27, we show variation of the N-factor with
streamwise position for the three locations of the suction strip. It is clear that all three
strips delay transition to the location of minimum pressure. Moving the suction strip
upstream reduces the first local maximum but increases the second local maximum.
Moreover, configuration S; is the optimum one because it produces the smallest global
maximum. In fact, it eliminates the second local maximum. Because the N-factor is
brought down to zero, one can reduce the suction level or strip width and hence the total

flow rate and yet control the boundary layer.

4. We reduced the strip width to Ax =0.08, located its upstream end at x = 0.45, and studied
the effect of the suction level on the N-factor. In Fig. 28, we show variation of the N-factor
with streamwise position for the three suction levels C,=1.5x 104, C,= 3.0 x 104, and
C,=4.5x 10" Comparing curve b of Fig. 27 with curve b of Fig. 28, we conclude that
decreasing the strip width to about one-half and keeping C; = 1.5 x 10~* is not a good idea
because the flow will undergo premature transition. It is clear that increasing the suction

level at this location does not affect the first peak but drastically reduces the second peak.
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5. We kept the width of the suction strip equal to Ax=10.08, chose a suction level of
C,=45x10"4 and varied the location of the strip. The locations considered for the
upstream end of the strip are x=0.34,x=0.37,x=0.40,x=0.45, and x=0.49. In Fig
29, we show variation of the N-factor with streamwise position for these suction
configurations. Strips S,, S;, and S, delay transition to the location of minimum pressure,
whereas strips Sy and Ss do not. Strip Ss is placed almost downstream of the hump and
consequently it has a negligible effect on the upstream local maximum and a small effect
on the second local maximum, which is decreased only to N =12.3. On the other hand,
strip Sy is placed almost upstream of the hump and consequently it reduces the first local
maximum significantly but does not decrease the second local maximum below N =3.
Strip S4, which starts at the middle of the hump, has a negligible effect on the first local
maximum but reduces significantly the second local maximum. On the other hand, strip
S,, which starts ahead of the hump and extends to its middle, reduces significantly both
maxima. Finally, strip S;, which almost coincides with the hump, reduces slightly the first
maximum and eliminates the second maximum. Therefore, it appears that the optimum
location would extend slightly upstream of the hump and cover a large portion of the

hump.

6. We divided the suction strip into two equal strips, while keeping the total width fixed (i.e.,
Ax =0.08). The first strip extends from x=0.34 to x = 0.38, while the second strip
extends from either x = 0.44 to x = 0.48 or x = 0.45 to x = 0.49. In Fig. 30, we show
variation of the N-factor with streamwise position for different suction levels and the two
locations of the second strip. Configuration S; consists of one strip which starts upstream
of the hump and ends slightly downstream of x,, the start of the hump. This configuration
reduces significantly the first maximum but does not reduce the second maximum below
N =28. We divided this strip into two, kept the suction level at C; = 4.5 x 10~4, moved the
second half downstream so that its upstream end coincides with the middie of the hump.
The result is dramatic: all maxima decreased significantly, as evident from curve f.

Consequently, multiple strips can be more effective than a single strip, in agreement with
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the results of Masad and Nayfeh [46]. Then, we decreased the suction level in both strips
from 4.5 x 10-* to 3.0 to 10~* and repeated the calculations. For this S; configuration, the
maximum amplification factor is below 6. Next, we kept the suction level at 3.0 x 104 in
both strips and moved the upstream end of the second strip slightly upstream from x =
0.45 to x = 0.44. As a result, the maximum amplification factor decreased from N = 6.19
to N = 5.57. Finally, we fixed the location of the second strip (x = 0.44 to x = 0.48) and
decreased its suction level from 3 x 10~ to 2 x 10-*. The maximum amplification factor
increased from N = 5.57 to N = 7.48, which is below N=9. Therefore, it appears that

configuration S, is near an optimum one.

3.4 Boundary-Layer Control with Heat Transfer

As do suction strips, a cooling strip has an upstream as well as a downstream influence.
This influence is due to the abrupt change in the thermal boundary condition. Because
conventional boundary layers are modeled by parabolic equations, they are not expected to
account for the upstream influence and hence they are not expected to produce accurate
mean flows and consequently growth rates. Masad and Nayfeh [46] compared growth rates for
incompressible and compressible flows obtained using conventional and interacting
boundary layers. They showed that the growth rates drop sharply at the upstream end of the
strip when the mean flow is calculated using conventional boundary layers, whereas they vary
smoothly when the mean flow is calculated using interacting boundary layers. Moreover,
conventional boundary layers underpredict the minimum and overpredict the maximum of the
growth rate. Far downstream of the strip, the growth rates corresponding to both mean-flow
profiles approach each other. Although the differences between the growth rates calculated
using conventional and interacting boundary-layer formulations are significant near the

cooling strips, the differences between the N-factors calculated using both approaches are
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small. In this work, we used interacting boundary layers to solve for the mean flow. For the
same total energy the results show that, application of cooling through muitiple strips with a
higher wall temperature can be as effective as continuous cooling with a lower wall
temperature.

We considered the flow over hump hs located at L3 for M = 0.14 as follows:

1. We chose a cooling strip extending from x = 0.45 to x = 0.49, chose the wall temperature

Tw/Ts¢ = 0.6, and calculated the mean flow using interacting boundary layers.

2. We fed the mean-flow profiles into the stability code and swept the frequency from
F =25x10"% to F =55 x 1075 In Fig. 31, we show variation of the N-factor with streamwise
position for seven frequencies. It is clear that the chosen cooling strip delays transition
to the location of minimum pressure. The maximum amplification factor is 7.95,
corresponding to F = 35 x 10-%, which is the most dangerous frequency in the absence of

cooling. This might not be the case for other locations and Mach numbers.

3. After determining the most dangerous frequency, we raised the temperature of the
cooling strip from T,/T,s=0.6 to T7,/T..=0.8, kept its width fixed (i.e., Ax=0.04), and
varied its location. The locations considered for the upstream end are x =0.30, x = 0.34,
and x =0.38. In Fig. 32, we show the effect of the cooling strip location on the N-factor.
It is clear that the farther upstream the cooling strip is placed, the larger the decrease in
the first local maximum is. The second local maximum is slightly affected. We note that

all of these cooling strips are upstream of the hump.

4. We kept the width of the cooling strip AXeoming = 0.04, located its upstream end at
x =0.34, and raised its temperature 7,/T.s from 0.8 to 0.9. In Fig. 33, we show variation
of the N-factor with streamwise position. As expected, decreasing the cooling level

increases the N-factor.
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5. Having lowered the first local maximum, we added a second cooling strip of width
Ax = 0.04, set its temperature at T,/T,s = 0.8, and varied its location. In Fig. 34, we show
variation of the N-factor with streamwise position for five configurations. Configurations
C, and C; reduce the second local maximum to N = 6.10 and N = 5.85, respectively, and
hence delay transition to the location of minimum pressure. On the other hand,
configurations Cs, Cs, and Cs reduce the second local maximum but not enough to prevent
premature transition. Clearly, the optimum location for the second strip is close to the
start of the hump. In fact, configuration C, is the optimum of the five considered
configurations; the strip starts at x = 0.422, which is slightly downstream of the upstream

end (x, = 0.40) of the hump.

6. Finally, we considered a heating strip with wall temperature 7,/T,s = 1.3 and width = 0.04.
Then, we varied the location of the strip: x = 0.09 to x = 0.143 and x = 0.34 to x = 0.38.
We swept the frequency from F=25x10"°%1to F=55x10"% The most dangerous
frequency is F =30 x 10-% In Fig. 35, we show the effect of heating on variation of the
N-factor with streamwise position. It is clear that in the presence of an imperfection, a

heating strip destabilizes the flow and results in premature transition.
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4. Conclusions and Recommendations

4.1 Conclusions

The effect of surface imperfections in the form of a cubic hump on the stability of
compressible and incompressible flows over the EQH1260 airfoil was analyzed. The mean
flow was calculated using interacting-boundary-layer theory. Linear quasiparallel spatial
stability theory was used to calculate the growth rates and mode shapes of two-dimensional
disturbances. Then, the amplification factor was computed. A search for the most dangerous
frequency for each Mach number and location of the imperfection was conducted (i.e., the
frequency that produces an amplification factor of 9 in the shortest distance).

Based on the present investigations, we conclude that

1. The geometrical factors of the imperfection that govern the instability are its height,

location, and width.

2. Increasing the imperfection height increases the growth rates and amplification factors for

each hump location and Mach number.
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10.

Compressibility is stabilizing for all hump heights and locations.

Moving the imperfection downstream increases the amplification factor.

A hump height that does not produce transition at one location might produce transition

at a downstream location.

For a given Mach number and hump location, the most dangerous frequency might

change with suction.

For a given Mach number and hump location, the most dangerous frequency might

change with heat transfer.

Application of cooling through multiple cooling strips with a higher wali temperature can

be more efficient than cooling through a single strip with a lower wall temperature.

Application of suction through multiple strips with a lower suction level can be more

efficient than suction through a single strip with a higher suction level.

Heating strips have a destabilizing effect on the whole mean flow in the presence of

imperfections.

4.2 Recommendations

1.

The present study needs to be extended so it accounts for:

Nonlinear effects { in view of the large growth rates encountered in separation regions).
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2. Nonparallel effects.

3. Influence of imperfection shapes.

4. Influence of free-stream Reynolds number.

5. Receptivity to acoustic and free-stream disturbances.

6. Interaction between the instability mechanisms.

Experiments need to be conducted to provide detailed measurements of the pressure
distributions, mean profiles, mode shapes, and growth rates that can be used to validate the

theoretical results.
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Table 1. Variation of the most dangerous frequency with Mach number and hump location for ali

considered humps

Mach #
0.14
0.50

0.65

Tables and Figures

L1

F
45 x 10-¢
45 x 10-8

40 x 10-8

L2

F
40 x 10-°
35 x 108

35 x 10-®

L3
E

35 x 10-¢

.30 x 10-®

30 x 10-¢
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Table 2. Transition location (i.e., N = 9) for different hump heights and different Mach numbers
at location L1

Hump height M = 0.14 M = 0.50 M = 0.65
X X X

7.5x 10 0.320 -- --

8.0 x 104 0.308 - : -

9.0x 10 0.300 0.313 -

1.0x 103 0.293 0.301 0.315
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Table 3. Transition location (i.e., N = 9) for different hump heights and different Mach numbers
at location L2

Hump height M = 0.14 M = 0.50 M = 0.65
X X X

7.5 x 104 0.400 0.420 -~

8.0 x 10-* 0.394 0.410 . --

9.0 x 104 0.391 0.401 0.417

1.0x 10~ 0.388 0.395 0.405
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Table 4. Transition location (i.e., N = 9) for different hump heights and different Mach numbers
at location L3

Hump height M = 0.14 M = 0.50 M = 0.65
X X X
7.5 x 10 0.492 0.510 -
8.0x 10-* 0.490 0.503 . -
9.0 x 10~ 0.487 0.496 0.516
1.0 x 103 0.485 0.491 0.505
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EQH1260 Airfoil
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Figure 1. EQH1260 airfoil: chord = 70.4 in.
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Figure 2. Pressure distributions for the EQH1260 airfoil calculated by using an Euler code: a)
M =0.14,b) M = 0.50, and c} M = 0.65.
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Figure 3. Shape of the considered cubic
x¢ = 0.40 and x, = 0.50).
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Figure 4. Variation of the N-factor with streamwise position for the clean airfoil when M = 0.14
for several frequencies: a) F=25x10"% b) F=30x 105 c) F=35x 10" d)
F=40x 10-% e) F=45x10-% f) F =50 x 10-%, and g) F = 55 x 10-5.
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Figure 5. Variation of the N-factor with streamwise position for the clean airfoil when M = 0.50
for several frequencies: a) F=25x10"% b) F=30x10"% c) F=35x 105 d)
F=40x 105 ¢e) F=45x 105 f) F=50 x 10-5, and g) F = 55 x 10-%
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Figure 6. Variation of the N-factor with streamwise position for the clean airfoil when M = 0.65
for several frequencies: a) F=25x10"% b) F=30x10"% ¢) F=35x10"% d)
F=40x10"%¢e) F=45x 105 f) F=50 x 10-%, and g) F = 55 x 10-5.
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Figure 7. Variation of the displacement thickness with streamwise position for the clean airfoil
at three Mach numbers: a) M =0.14, b) M =0.50, and c) M = 0.65.
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Cn/Re

Figure 8. Variation of the skin-friction coefficient with streamwise position for humps # 34,5
located at L1 when M = 0.14: a) h;=80x 104 b) hy=9.0x 10-% and c)
hs =1.0 x 10-3; L1 (x, = 0.20 and x, = 0.30).
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Figure 8. Variation of the skin-friction coefficient with streamwise position for humps # 3,4,5
located at L1 when M = 050: a) h;=80x10"% b) A=9.0x10"% and ¢)
hs =1.0 x 10-3; L1 (x, = 0.20 and x, = 0.30).
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Figure 10. Variation of the skin-friction coefficient with streamwise position for humps # 34,5
located at L1 when M = 0.65: a) h;=8.0x10"% b) hy=9.0x 104 and c)
hs =1.0 x 10~%; L1 (x, = 0.20 and x, = 0.30).
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Figure 11. Variation of the skin-friction coefficient with streamwise position for humps # 3,4,5
located at L2 when M = 050: a) h;=8.0x10"% b) hy=9.0x 104 and c)
hs =1.0 x 10-3; L2 (x, = 0.3 and x, = 0.4).
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Figure 12. Variation of the skin-friction coefficient with streamwise position for humps # 34,5
located at L3 when M = 050: a) A3 =80x 104 b) hy=9.0x10"% and c)
hs = 1.0 x 10-3; L3 (x, = 0.40 and x, = 0.50).

Tables and Figures

84



[

0.1 015 02 0325 0.3 0.35 04 045 0.5 0.55 0.6

Figure 13. Variation of the skin-friction coefficient with streamwise position for the clean airfoil
and hump # § located at L1: a) clean airfail, b) h3=1.0x 10-% M =0.50 and L1 (
Xe = 0.20 and x, = 0.30).
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Figure 14. Variation of the N-factor for the most dangerous frequency with streamwise position
for - hump # 3 located at L1 and all three Mach numbers: a)
F = 45x10~% when M = 0.14, b) F = 45x10-¢ when M = 0.50, and c)
F = 40x10-¢ when M = 0.65; h3 = 8.0 x 10~4 and L1 (x, = 0.2 and x, = 0.3).

Tables and Figures

86



10

N-factor
()
T

Figure 15. Variation of the N-factor for the most dangerous frequency with streamwise position
for hump # 4 located at L1 and all three Mach numbers: a)
F = 45x10-¢ when M = 0.14, b) F = 45x10-% when M = 0.50, and c)
F = 40x10-¢ when M = 0.65; hy = 9.0 x 10~* and L1 {x, = 0.20 and x, = 0.30).
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Figure 16. Variation of the N-factor for the most dangerous frequency with streamwise position
for hump # 5 located at L1 and all three Mach numbers: a)
F = 45x10-% when M = 0.14, b) F = 45x10-¢ when M = 0.50, and c)
F = 40x10-¢ when M = 0.65; hs = 1.0 x 10~% and L1 (x, = 0.20 and x, = 0.30).
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Figure 17. Variation of the N-factor for the most dangerous frequency with streamwise position

when M=0.14 for seven heights at location L1: a) hy clean airfoil, b) Ay = 5.0 x 104,
c) hy=75x%x10"% d) hy=80x 1074 e) hy=9.0x10"% f) hs=1.0x10-3 and g)
hg=1.2x10-3% F =45 x 10~® and L1 (x, = 0.20 and x, = 0.30).
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Figure 18. Variation of the N-factor for the most dangerous frequency with streamwise position
when M=0.50 for seven heights at location L1: a) hy clean airfoil, b) iy = 5.0 x 104,
€) hy=75%x10% d) h;=80x10"% e) hy=9.0x10"4 f) hs=1.0x10"3 g)
hg=1.2x10"% and F =45 x 10-% and L1 (x, = 0.20 and x, = 0.30).
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Figure 19. Variation of the N-factor for the most dangerous frequency with streamwise position
when M=0.65 for six heights at location L1: a) hg clean airfoil, b) hy = 5.0 x 104, ¢)
h;=75x%x10"% d) h;=80x10"* e) hy=90x10"4 and f) hs=1.0x 1073
F =40 x 10~% and L1 (x, = 0.20 and x, = 0.30).
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Figure 20. Variation of the N-factor for the most dangerous frequency with streamwise position
for hump # 3 located at L2 and all three Mach numbers: a)
F = 40x10-% when M = 0.14, b) F = 40x10-% when M = 0.50, and c)
F = 35x10-¢ when M = 0.65; h; = 8.0 x 10~* and L2 (x, = 0.30 and x, = 0.40).
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Figure 21. Variation of the N-factor for the most dangerous frequency with streamwise position
for hump # 4 located at L2 and all three Mach numbers: a)
F = 40x10-¢ when M = 0.14, b) F = 40x10-% when M = 0.50, and c)
F =35x10-% when M = 0.65; hy = 9.0 x 10~* and L2 (x, = 0.30 and x, = 0.40).
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Figure 22. Variation of the N-factor for the most dangerous frequency with streamwise position
for hump # 5 located at L2 and all three Mach numbers: a)
F = 40x10-¢ when M = 0.14, b) F = 40x10-¢ when M = 0.50, and c)
F =35x10"% when M = 0.65; hs = 1.0 x 10~? and L2 (x, = 0.30 and x, = 0.4).
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Figure 23. Variation of the N-factor for the most dangerous frequency with streamwise position
for hump # 3 located at L3 and all three Mach numbers: a)
F = 35x10-® when M = 0.14, b) F = 30x10-% when M = 0.50, and c)
F =30x10-% when M = 0.65; h; = 8.0 x 104 and L3 (x, = 0.40 and x, = 0.50).
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Figure 24. Variation of the N-factor for the most dangerous frequency with streamwise position

for hump # 4 located at L3 and all three Mach numbers:
F = 35x10-% when M = 0.14, b) F = 30x10-¢ when M = 0.50, and
F =30x10-¢® when M = 0.65; hy = 9.0 x 10~* and L3 (x, = 0.30 and x, = 0.40).
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Figure 25. Variation of the N-factor for the most dangerous frequency with streamwise position
for hump # 5 located at L3 and all three Mach numbers: a)
F = 35x10-% when M = 0.14, b) F = 30x10-% when M = 0.50, and c)
F =30x10-® when M = 0.65; hs = 1.0 x 10~2 and L3 (x, = 0.30 and x, = 0.40).
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Figure 26. Variation of the N-factor with streamwise position for several frequencies with suction
for hump # 5 located at L3 when M = 0.14: a) F=25x10"%, b) F =30 x 10-¢, ¢)
F=35x10% d) F=40x 1075 e) F=45x 1078, f) F=50 x 10-5, and g) F = 55 x 10-5;
AXsuction =0.37 10 0.54, Cqg = 1.5 x 1074, hs = 1.0 x 1073, and L3 (x, = 0.40 to x, = 0.50).
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Figure 27. Variation of the N-factor for the most dangerous frequency with streamwise position
for three suction location when M = 0.14 a) no suction, b) S;:x =10.34 to 0.54, c)
S, x=0.27100.44, and d) S;:x=0.421t00.59; F=35x10"% C,=1.5x10"*
hs =1.0 x 10-3, and L3 (x, = 0.40 and x, = 0.50).
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Influence of a suction strip on the variation of the N-factor for the most dangerous
frequency with streamwise position for three suction levels when M = 0.14 a) no
suction, b) C;=15x10"* «¢) C;=30x10" and d) C,=45x10"%

F =35 x 10-%, suction strip extends from x = 0.45 to 0.53, hs = 1.0 x 10-%, and
L3 (x, = 0.40 and x, = 0.50).
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Figure 29. Variation of the N-factor for the most dangerous frequency with streamwise position
for different locations of a suction strip of width 0.08: a) no suction, b)
S1:x=0.34t0 0.42, c) S,:x=0.37 to 0.45, d) S;3:x=0.40 to 0.48, e)
S4:x=0451t0053, and f) Ss:x=0491t0057, F=35x10"% C,=4.5x 10"
M =0.14, and L3 (x, = 0.40 and x, = 0.50)..
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Figure 30. Variation of the N-factor for the most dangerous frequency with streamwise position
for two-suction-strip configurations and different suction levels: a) no suction, b)
S1:x=10341t00.42 with C;=45x10"4 c) S;:x=0.341t00.38 with Cq=3.0 x 10
and x = 0.44 to 0.48 with C; =20 x 104, d) S3:x = 0.34 to 0.38 with C, =3.0 x 10-*
and x = 0.45 to 0.49 with Cq =3.0 x 1074 e) S4:x =0.34 to 0.38 with C;=3.0 x 104
and x=0441t0048 with C,=30x10"4 and f) Ss:x=034t00.38 with
Cq=4.5x 107* and x = 0.45 to 0.49 with Cq=4.5 x 104 F =35 x 105, M = 0.14, and
L3 (x, = 0.40 and x, = 0.50).
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Figure 31. Variation of the N-factor with streamwise position for several frequencies with cooling
for hump # 5 located at L3 when M = 0.14: a) F=25x 105, b) F=30 x 10-5, ¢}
F=35x10"%d) F=40x 10-% e) F=45x 10°8, f) F =50 x 10-5, and g) F =55 x 107§,
AXcooling = 0.45 10 0.49, T,,/T,g = 0.60, A5 = 1.0 x 10-3, and L3 (x, = 0.40 and x, = 0.50).
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Figure 32. Variation of the N-factor for the most dangerous frequency with streamwise position
for three cooling-strip locations when M = 0.14: a) no . cooling, b)
Ci:x=030and 034, c) C;:x=034t0038, and d) C;:x=0.38to 042
F=35x10"% T,/T.s=0.8, hs = 1.0 x 10-3, and L3 (x, = 0.40 and x, = 0.50).
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Figure 33. Variation of the N-factor for the most dangerous frequency with streamwise position
for three cooling levels when M = 0.14: a) no cooling, b) T,/T.s = 0.8, and c)
Tw/Taa =0.9; F =35 x 10-8, cooling extends from x = 0.34 to 0.38, hs = 1.0 x 103, and
L3 {x, = 0.40 and x, = 0.50).
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Figure 34. Variation the of N-factor with streamwise position for the most dangerous frequency
and five two-cooling-strip configurations: One of the strips extends from
x =0.34to x =0.38 with T,/T,¢=0.9, and the second strip was varied but its
temperature was kept at T,/7,s=0.80. a) no cooling b) Cy:x=0.405 to 0.445, c)
Cz:x=0.422 t00.462, d) C3:x=0.440 to 0.480, e) C4:x =0.455 to 0.495, and f)
Cs:x=0475 t00.515, F=35x10"% hs=10x10"3, M=014, and L3 {
xp = 0.40 and x, = 0.50).
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Figure 35. Variation of the N-factor for the most dangerous frequency with streamwise position
for hump # 5 located at L3 and two heating strips: a) no heating, b)
x=0.09 t0 0.140, and ¢) x =0.34t0 0.38; F =30 x 1078, T,/Tos = 1.3, hs=1.0 x 1073,
M =0.14, and L3 (x, = 0.40 and x, = 0.50).
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