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(ABSTRACT) 

We use a perturbation analysis to predict some of the instabilities in a 

single-machine quasi-infinite busbar system. The system’s behavior is 

described by the so-called swing equation, which is a nonlinear second-order 

ordinary-differential equation with additive and multiplicative harmonic terms 

having the frequency Q. When Qa, and Q22w,, where w, is the linear 

natural frequency of the machine, we use digital-computer simulations to 

exhibit some of the complicated responses of the machine, including 

period-doubling bifurcations, chaotic motions, and unbounded motions (loss 

of synchronism). To predict the onset of these complicated behaviors, we use 

the method of multiple scales to develop approximate closed-form expressions 

for the periodic responses of the machine. Then, we use various techniques 

to determine the stability of the analytical solutions. The analytically predicted 

periodic solutions and conditions for their instability are in good agreement 

with the digital-computer results.
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CHAPTER 1 

Introduction 

The stability of a power system is closely related to the notion of a disturbance. 

A disturbance in a power system is a sudden change or a sequence of changes 

in one or more of the parameters of the system, or in one or more of the 

operating quantities (IEEE Task Force, 1982). A small disturbance is one for 

which the equations that describe the dynamics of the power system may be 

linearized for the purpose of analysis (IEEE Task Force, 1982). The tools of 

assessment for this type of stability belong to linear system theory, which 

includes eigenvalue analysis and frequency-response methods (Hughes and 

Hamdan, 1976; Hamdan, Hamdan, and Kahhaleh, 1989). A power system is 

steady-state stable for a particular steady-state operating condition if, 

following any small disturbance, it reaches a steady-state operating condition 

which is identical or close to the pre-disturbance operating condition: this is 

also known as small! disturbance stability. A large disturbance is a disturbance 
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for which the equations that describe the dynamics of the power system cannot 

be linearized for the purpose of analysis (IEEE Task Force, 1982). The tools 

of assessment in this case belong to nonlinear dynamics, which includes 

numerical simulation as well as geometric methods and energy functions 

(Anderson and Fouad, 1977; Pai, 1981). The ability of the system to maintain 

synchronism under large disturbances is associated with transient stability 

(Pai, 1981). We are interested in disturbances that lead to a nonlinear 

representation; such a_= representation can be studied by using 

nonlinear-dynamic methods and perturbation techniques (Nayfeh, 1973,1981), 

which are widely used tn nonlinear mechanics (Nayfeh and Mook, 1979). 

Perturbation techniques were used by Tamura and Yorino (1987) and Hamdan 

and Nayfeh (1989) to investigate the stability of a single-machine-quasi-infinite 

busbar system. 

In power system dynamics attention is focused sometimes on a single 

machine. For convenience and simplicity the rest of the system is represented 

by an infinite busbar where the voltage and frequency are assumed to be 

constant. The dynamics of the machine itself can be represented in varying 

degrees of detail. If the machine is represented by a classical representation 

(a fixed voltage behind a transient reactance), then the single machine infinite 

busbar system is reduced to a second-order differential equation with constant 

coefficients. The resulting swing equation does not offer much information 

about the response of the machine (Anderson and Fouad, 1977). The classical 

swing equation is analogous to the equation describing a harmonic oscillator. 
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Tamura et al. (1984,1987) introduced an innovative concept of a quasi-infinite 

busbar, where the rest of the system is represented by a busbar whose voltage 

is modulated in magnitude and phase. They formulated the problem as a 

Mathieu equation with both parametric and external excitations. Hamdan and 

Nayfeh (1989) enhanced the concept of a quasi-infinite busbar by extending the 

formulation to include quadratic and cubic nonlinearities. The formulation 

includes both parametric and external excitations. The new formulation makes 

it possible to apply the techniques of perturbation theory to the 

single-machine-quasi-infinite busbar system. 

The swing equation that describes the motion of the rotor of the machine in 

Figure 1 can be written as (Anderson and Fouad, 1977; Pai, 1981; Tamura et 

al., 1984, 1987) 

BH EY 4 7 Ew Py AEE sin(d ~ A (1.1) 

where 

Va = Veo + Va; cos(Qt + 4) (1.2) 

Og = Op + Op, cos(Qt + dp) (1.3) 

Here, @ is the rotor angle measured with respect to a synchronously rotating 

reference frame moving with constant angular velocity w,, H is the inertia 

constant of the machine, D is the damping, and P,, is the mechanical power 
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input to the machine. The sinusoidal term in equation (1.1) corresponds to the 

electrical power output of the machine, V, is the voltage of the machine, X, is 

the transient reactance of the machine, V, is the voltage of the bus, and 9, is 

the phase of the bus. For an infinite busbar, V;, = 0 and @,, = 0, whereas for 

a quasi-infinite busbar, V;, and @,,40. The magnitudes of V,, and @,, are 

assumed to be small. The introduction of the time-varying components of the 

voltage and phase of the infinite busbar in equations (1.2) and (1.3) enriches 

the dynamics of the machine considerably. 

The complex behavior of the machine for a given resonance can be studied 

by digital-computer simulation; that is, numerically integrating equations 

(1.1)-(1.3). The newly developed concepts in nonlinear dynamics can be used 

to interpret the results of the simulation. But even for this low-order system, 

which is a second-order differential equation coupled to two algebraic 

equations, the simulation requires a lot of time and effort. This is especially 

true if a parametric study is to be undertaken to assess the effect of the various 

parameters on the response. Thus, it is desirable to resort to any method that 

reduces the amount of time and effort needed to understand the behavior of 

the system. Such methods need not supplant simulation but they can 

supplement it. It is with this rationale that we are interested in approximate 

closed-form analytical solutions of equations (1.1)-(1.3). 

We use digital-computer simulations to exhibit some of the complicated 

responses of the machine, including period-doubling bifurcations, chaotic 
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  Figure 1. Single machine quasi-infinite busbar system     
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motions, and unbounded motions (loss of synchronism) '. To predict the onset 

of these complicated behaviors, we use the method of multiple scales (Nayfeh, 

1973,1981) to develop approximate closed-form expressions for the periodic 

responses of the machine. Then, we use various techniques to determine the 

Stability of the analytical solutions. The analytically predicted periodic 

solutions and conditions for their instability are in good agreement with the 

digital-computer results. 

1.1 Formulation 

To carry out a perturbation analysis, we find it convenient to apply the 

following transformation: 

6-Ag=S)47 (1.4) 

Thus, 

oy = Oo _ O50 and y= Ad — Ap, cos(Qt + Pp) (1.5) 

where @, is the operating value of ( around which the variation A0@ takes place. 

Substituting equations (1.4) and (1.5) into equations (1.1)-(1.3), expanding 

sin(d, + 7) in a Taylor series around 6 = 6,, and retaining terms up to third 

order, we obtain the following modified swing equation: 

1 If the relative rotor angle increases indefinitely (diverges) then synchronism is lost. 
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dy WpD dn 

dt? 2H at 
  + Ky = oon” + o3n° 

1.6) 
+ Fyn cos(Qt + ¢,) + Fon? cos(Qt + ¢,) + Fan? cos(Qt + «),) ( 

+ G, cos(Qt + dg) + Gg sin(Qt + 9) + G3 cos(Qt + ¢,) 

where the parameters K, a, &3,F,, F,,F3,G,,G., andG,; are defined in 

Appendix A. The external excitations in equation (1.6) can be combined into 

a single external excitation term as follows: 

G cos(Qt + o.) = G; cos(Qt + dy) + Go sin(Qt + dp) 

  

1.7 
+ G; cos(Qt + ¢,) (1.7) 

Equation (1.6) can be rewritten as 

dn, RO any 2 ayn + F Qt + ¢ dt2 oH dt + = “on + &3n + 17 cos( v) (1 8) 

+ Fon* cos(Qt + oy) + Fan” cos(Qt + ,) + G cos(Qt + ¢$,) 

The time-varying coefficients multiplying 4,7?, and 4? in equation (1.8) 

represent the multiplicative part of the excitation, which is called a parametric 

excitation. The inhomogeneous term G cos(Qt-+ @,) represents the additive 

part of the excitation, which is called the effective external excitation. The 

solutions of equation (1.8) depend on the external excitation G, the parametric 

excitations represented by F,, F,, F;, and the relation between the frequency Q 

and the linear natural frequency w, = \/K . 
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A resonance occurs when a small excitation leads to a large response in 7 . 

The strongest parametric resonance occurs when Q~2w,, which is the 

principal parametric resonance. The external resonance is either primary if 

Q~a, or secondary if MQ~nw, , where m and n do not have common factors. 

lfm = 1 andn > 1 then the resonance is subharmonic and if n = 1 andm 

> 1 the resonance is superharmonic. If both m and n are > 1 then the 

resonance is ultrasubharmonic (Nayfeh and Mook, 1979). We will use the 

method of multiple scales (Nayfeh, 1973,1981) to treat the cases of primary 

resonance (i.e., Qyaw, ) and of simultaneous principal parametric resonance 

and subharmonic resonance of order one-half (ij.e.,.Q2~2a),). 

1.2 Free Oscillation 

Depending on the excitation amplitude and frequency and the _ initial 

conditions, equations (1.1)-(1.3) may possess bounded periodic or chaotic 

steady-state solutions or it may possess unbounded solutions. 

The free undamped vibration of the machine is given by 

2 d°@ — ®RPm | ORVGVeo |. 
_ — = 9 We oH t 2HXc sin(@ — 439) = 0 (1.9)   

where D,V;, and @;, have been set to zero in equations (1.1)-(1.3). In the 

interval [ — x, 7], there are two equilibrium positions: @=@, and 6=2— 4, 
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where 0,<2 — @,. The equilibrium position 0 = 0, is a center, which is stable, 

and the equilibrium position 6 = z — 0, is a saddle, which is unstable. A phase 

portrait of the solutions of equation (1.9) is shown in Figure 2a. If the initial 

conditions lie inside the homoclinic orbit (i.e., the closed part of the separatrix 

that starts and ends at the saddle point) the response of the machine will be 

a bounded periodic motion. However, if the initial conditions lie outside the 

homoclinic orbit, the response of the machine will be unbounded and hence 

loss of synchronism will occur. 

Including the damping term in equations (1.1)-(1.3), one finds that the free 

motion of the machine is governed by 

a6 1 OpD go  ®pPy  WrRVGVa0 
dt? 2H dt 2H 2HX¢ sin(? — Ag9) = 0 (1.10)   

In this case the phase plane is modified as shown in Figure 2b. The 

equilibrium points do not change; however, 0 = 0, becomes a focus rather than 

a center. In this case the homoclinic orbit is destroyed. |f the initial conditions 

lie inside the region formed by the separatrices that flow into the saddle, the 

response of the machine will decay to zero. On the other hand, if the initial 

conditions lie outside this region. the response of the machine will grow 

quickly and foss of synchronism will occur. 
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CHAPTER 2 

Relevant Concepts of Nonlinear Dynamics 

The equations describing the dynamics of a power system are nonlinear 

differential and algebraic equations as shown by Varaiya, Wu and Chen (1985). 

The equations can be linearized only under the assumption that all variables 

undergo small variations around an operating point. The linear analysis is 

indispensable for understanding the dynamical phenomena of power systems: 

however, the linearized system cannot capture all of the phenomena that occur 

in real power systems. Power systems are rich with complicated dynamics 

that can be explained by qualitative and geometrical methods of nonlinear 

analysis (Chiang, Hirsch, and Wu, 1988; Zaborsky, Huang, Zheng, and Leung, 

1988). With this in mind, the following sections provide an overview of some 

of the basic concepts and definitions regarding the solutions of nonlinear 

ordinary-differential equations. 
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A typical system studied is modeled by a set of n first-order autonomous 

ordinary-differential equations of the form 

LE = 1K; 9) x(t) = Xo (2.1) 

where ft € [f, co), x e R” , fIR” x R > R’ is a smooth vector field, and ye Risa 

bifurcation (control) parameter of the system. We assume that the system is 

dissipative; that is, its phase space (the space defined by displacement vs. 

velocity) is continuously contracting with increasing time {i.e., Ve«f< 0) 

(Lichtenberg and Lieberman, 1983). The contraction leads to a surface of 

lower dimension than the original phase space. The solution of equation (2.1) 

at time t with the initial conditions x, is the trajectory or flow ¢,(x,) (Mees, 

1981). We are interested in the asymptotic behavior of the solutions of 

equation (2.1) (i.e., the behavior of @, as f > oo). 

An attractor, loosely speaking, is a region in the phase space which the flow 

of equation (2.1) approaches asymptotically (Lichtenberg and Lieberman, 

1983). There is no universally accepted definition of an attractor. Lanford 

(1981) gave the following definition: 

A subset X of the phase space is an attractor if 

a. X is invariant under the flow. 

b. There is an (open) neighborhood around X that shrinks down to X 

under the flow. 

c. No part of X is transient. 

d. X cannot be decomposed into two nonoverlapping invariant pieces. 
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The set of states in the phase space that approach X asymptotically is called 

the basin of attraction. The different types of attractors discussed in this work 

are equilibrium points, limit cycles, tori, and chaotic attractors. 

2.1 Equilibrium Points 

A point x, € R’ is called an equilibrium point of equation (2.1) if 

f(x,iy)=0 fort>0 (2.2) 

The stability of an equilibrium point can be determined in many cases by 

linearizing the flow around this equilibrium point. Thus, we let 

x(t) = xp + E(t) (2.3) 

where ¢(f) is a small perturbation. Then, equation (2.1) becomes 

Xo + E= f(Xe: y) + D(x: y)é + ... (2.4) 

Of, 
where Df = Fa is the Jacobian of f(x; y). Neglecting nonlinear terms, we 

} 

obtain from equations (2.2) and (2.4) the variational equation 

& = Di(xe: v6 (2.5) 
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Equation (2.5) is a system of n linear ordinary-differential equations with 

constant coefficients, which possess solutions of the form x(t) =rexp(zt) 

where r is a constant vector and yu is an eigenvalue of the Jacobian matrix. 

Hence, for an equilibrium point of (2.1) to be asymptotically stable, the 

perturbation € must decay to zero as t — co; that is, if and only if 

Re(u;)<0O fori=1,2,...,n (2.6) 

An equilibrium point x, with Re(u,) = 0 while the remaining Re(u,) < 0 is usually 

called neutrally stable; a nonlinear analysis is needed to determine the 

stability for a neutrally stable system. An equilibrium point with Re(u;) > 0 for 

all ¢ is called unstable. An equilibrium point with some 

Re(u,;) < 0 and the other Re(u,) > 0 is called non-stable (Hirsch and Smale, 

1974). 

2.1.1. Bifurcations of Equilibrium Points 

As the control parameter y is varied, the value for which the flow of equation 

(2.1) experiences a qualitative change is called a bifurcation point (Sanchez, 

1989). We are only concerned with codimension one bifurcations or 

bifurcations due to varying one parameter of the system. Equilibrium points 

may undergo one or more of the following three types of bifurcations 

(Thompson and Stewart, 1986; Seydel, 1988): saddle-node, pitchfork, and Hopf 

bifurcations. 
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The saddle-node (turning point) occurs when a real eigenvalue of the Jacobian 

matrix crosses the imaginary axis along the real axis into the right-half of the 

complex plane. Geometrically, this is seen when stable and unstable 

equilibrium points coalesce and annihilate each other, resulting in the solution 

of equation (2.1) jumping to another equilibrium point or to infinity in the phase 

space. This can been seen in Figure 3a. 

The pitchfork bifurcation is similar to the saddle-node bifurcation in that it 

occurs when a real eigenvalue crosses the imaginary axis along the real axis 

into the right-half plane; however, it occurs in symmetric systems (i.e., systems 

that are invariant under linear transformations). The pitchfork bifurcation 

results in either two equilibrium points annihilating each other or two new 

equilibrium points being created. There are two types of pitchfork bifurcations: 

Supercritical (Figure 3b) and subcritical (Figure 3c) pitchfork bifurcations. 

Both the saddle-node and pitchfork bifurcations are static or stationary 

(steady-state) bifurcations (the system goes from one type of equilibrium to 

another). A bifurcation where a state of equilibrium gives rise to a periodic 

oscillation is called a Hopf bifurcation. A Hopf bifurcation occurs when two 

complex conjugate eigenvalues transversely (with nonzero speed) cross the 

imaginary axis into the right half-plane. A theorem postulated by Hopf in 1942 

is summarized by Carr (1981) as 

Assume 
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a. f(X, Yn) = 0. 

b. Df(x,;y,) has a simple pair of purely imaginary eigenvalues 

uy,) = + if and no other eigenvalue with a zero real part. 

d 
Cc. ay [Re(u)] 4 0. 

Then there is a birth of limit cycles at (x, y,). The initial period is 7, = en 
B 

A Hopf bifurcation could be either supercritical or subcritical. The supercritical 

case involves a stable equilibrium point losing stability giving way to stable 

periodic oscillations, and leaving an unstable equilibrium point in its place 

(Figure 3d). A subcritical Hopf bifurcation occurs when an_ unstable 

equilibrium gives rise to unstable periodic oscillations, leaving a stable 

equilibrium point in its place (Figure 3e). 

2.2 Limit Cycles 

A limit-cycle solution of equation (2.1) corresponds to a periodic oscillation. 

In other words, given a solution x(t) of equation (2.1), if 

x(t) = x(t + T) (2.7) 

then x(t) is a limit cycle with 7 being its period of oscillation. In the phase 

plane this corresponds to a closed trajectory. To determine the local stability 
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O--o. 

      
Figure 3. Bifurcation patterns: The figures represent solutions (vertical axis) versus a 

bifurcation parameter y (horizontal axis); (___) stable and (--) unstable equilibrium 
points, solid (empty) circles represent stable (unstable) limit cycles. (Raouf, 1989).       
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of a limit-cycle solution X(t), which has a period T, we superimpose on it a 

small disturbance ¢(t) and obtain 

x(t) = X(t) + C(t) (2.8) 

The stability of X(t) depends on whether ¢€(t) decays or grows as t~— oo. 

Substituting equation (2.8) into equation (2.1), we obtain 

E(t) = F[X(t) + E(t):y] — FLX] (2.9) 

Expanding the right-hand side of equation (2.9) in a Taylor series for small 

¢(t) and keeping only linear terms, we obtain the variational equation 

E(t) = DA(X; y)E(t) (2.10) 

Of, 
where Df(X: y = 3%»). Equation (2.10) is a set of n_ linear 

I 

ordinary-differential equations with periodic coefficients having the period T. 

The growth or decay of &(t) with tf is determined from Floquet theory. If é(ft) is 

an n-dimensional solution vector of equation (2.10), then ¢(t+ 7) is also a 

solution of equation (2.10). Consequently, if ©, is a fundamental matrix 

solution (the columns of ®, are n linear independent vector solutions ¢,(t) of 

equation (2.10)), then 

D4, 7 = AP, (2.11) 
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where A is called the Monodromy matrix, which is a matrix of constant 

coefficients. It can be determined by calculating n linearly independent 

solutions ¢,(t) by integrating equation (2.10) over the interval [0,7] with the 

initial conditions ®, = I; hence, A = @,. The behavior of the ¢,(t) and hence the 

stability of X(t) depends on the eigenvalues (Floquet multipliers) of A. To show 

this, we introduce the similarity transformation (Nayfeh and Mook, 1979) 

U(t) = P®, (2.12) 

where P is a nonsingular matrix. Introducing equation (2.12) into equation 

(2.11) leads to 

U(t +T) = PAP 'U(t) = BU(t) (2.13) 

where P can be chosen so that B is a Jordan canonical form. We note that the 

eigenvalues of B are the same as the eigenvalues of A because of the 

similarity transformation. It should be noted that one of the Floquet multipliers 

always equals unity for an autonomous system (Parker and Chua, 1989). 

For the case of distinct eigenvalues u,, we can rewrite equation (2.13) as 

u(t+ T)=pult, f= 1,....0 (2.14) 

It follows from equations (2.14) that 

u({t+mT)=p7 u(t), i= 1,..,0 (2.15) 
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where m is an integer. Hence, if all of the | u; |< 1, u, and hence é, tend to zero 

as m— co (i.e., t— co). Consequently, the limit cycle X(t) is stable (attracting). 

lf at least one of the | u;| > 1, the limit cycle is unstable (repelling). These 

stability conditions also apply to repeated Floquet multipliers (Nayfeh and 

Mook, 1979, pp.279-283). 

2.2.1 Bifurcation of Limit Cycles 

A bifurcation of a limit cycle is called and orbital bifurcation and occurs when 

the limit-cycle undergoes a qualitative change. As the control parameter y is 

varied, a bifurcation of the limit cycle is associated with a Floquet multiplier 

leaving the unit circle. There are four types of orbital bifurcations: cyclic-fold 

(saddle-node), symmetry-breaking (pitchfork), period-doubling (flip), and 

secondary Hopf bifurcations (Thompson and Stewart, 1986). 

The type of bifurcation that occurs depends on how the Floquet multipliers 

leave the unit circle. If a Floquet multiplier leaves the unit circle through +1, 

a symmetry-breaking or cyclic-fold bifurcation occurs. The symmetry breaking 

bifurcation is associated with a symmetric limit cycle losing stability to 

asymmetric limit cycles (the unstable limit cycle continues to exist after the 

bifurcation). The cyclic-fold bifurcation is a result of stable and unstable limit 

cycles colliding, giving rise to a new attractor in the phase space. The 

cyclic-fold bifurcation occurs in systems with asymmetric limit cycles. If a 

Floquet multiplier leaves the unit circle through -1, a period-doubling (flip) 
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bifurcation occurs. It follows from equation (2.14) that when yz, = —1, 

u(t + 2T) = u(t). Thus, a solution with a period of 2T has been created. If two 

complex conjugate Floquet multipliers leave the unit circle, a secondary Hopf 

bifurcation occurs, which is usually associated with the creation of a 

two-period quasi-periodic (2-torus) attractor. 

2.3 Torus or Quasi-periodic Attractors 

A quasi-periodic function whose time variation is characterized by two or more 

incommensurate frequencies (Berge et. al., 1984). The solution of equation 

(2.1) associated with a quasi-periodic function is defined on a r-torus, where r 

is the number of incommensurate frequencies. We did not observe any 

quasi-periodic responses because we _ considered the case of a 

single-degree-of-freedom system, which does not permit this type of attractor. 

Two or more degrees of freedom are needed for incommensurable frequencies 

to exist. 

2.4 Chaotic or Strange Attractor 

An attracting set, which is not an equilibrium point, a limit cycle, or a torus is 

called a chaotic attractor. A Chaotic attractor is characterized as having a 
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fractal dimension, being sensitive to initial conditions, and whose 

corresponding flow has a broadband power spectrum (Moon, 1987). Strange 

attractors are not smooth surfaces or manifolds, they are fractal (i.e., have 

infinitely many-layered structures). Usually, the term strange is used to 

describe an attractor’s geometrical nature, while the term chaotic is used to 

describe the motion on strange attractors. It should be noted that chaotic 

attractors do not exist in continuous systems of order less than three. The 

fallowing sections describe different tools used to identify chaos. 

2.4.1. Dimension 

Equilibrium points, limit cycles, and tori all have integer dimensions. An 

equilibrium point has dimension zero, a limit cycle has dimension one, and an 

r-torus has dimension r. As mentioned earlier, chaotic attractors are not 

smooth surfaces or manifolds but fractal in nature and one speaks of a fractal 

dimension (Mandelbrot, 1982). 

A commonly used definition of dimension is the Hausdorff dimension. 

Suppose that N(c) is the number of small n-dimensional cubes of side length ¢ 

that are required to cover the attractor. Then, the dimension or Hausdorff 

dimension is defined as 

D = tim NW) 
£0 In(1/e) (2.16) 
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2.4.2 Liapunov Exponents and Dimension 

A useful tool for distinguishing the various types of attractors (equilibrium 

points, limit cycles, tori, chaotic attractors) consists of the determination of the 

Liapunov exponents. The Liapunov exponents are related to the rate of 

divergence or convergence of trajectories corresponding to initial conditions 

arbitrarily close to one another. The Liapunov exponents are related to the 

Floquet multipliers because they are also obtained from the variational 

equation (2.1). Parker and Chua (1989) define the Liapunov exponents as 

, 1 
A= lim [= In| a(t) | J (2.17) 

where the u(t) are the eigenvalues of ®,. There are n Liapunov exponents for 

an n-dimensional system. We note that one of the n-exponents will always be 

equal to zero for an autonomous system. For a dissipative system, Df < 0 and 

the sum of the Liapunov exponents is always less than zero, hence the flow is 

always contracting, and the volume occupied by an attractor is zero. 

Using Liapunov exponents to characterize the asymptotic behavior of the 

system (Parker and Chua, 1989), we have 

Stable equilibrium point: A, < 0, for/=1,...,n 

Stable limit cycle: A, = 0 and J, < 0 fori=d2,...,n 
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Stable r-torus: 1, =...=A,=0, and /, < 0 fori=r+1.,...,n 

A chaotic attractor is characterized by having at least one Liapunov exponent 

being positive. Because the sum of the Liapunov exponents for a dissipative 

system is less than zero and one of the Liapunov exponents is always zero for 

an autonomous system, chaos does not exist in autonomous dissipative 

systems of order less than three. The consequence of the presence of a 

positive Liapunov exponent is that the chaotic attractor is sensitive to initial 

conditions. 

Another commonly used dimension is the Liapunov dimension defined by 

Frederickson et al.(1983) as 

j 

Ar D,=j+ (2.18) 
Aja | 

i=k 

  

where the J, are ordered such that 1,>/,.,>-°: >A, >A, and j is the largest 

integer such that 

j 
yA >0 (2.19) 
k=1 
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Wolf et al. (1984) and Parker and Chua (1989) developed algorithms to 

compute the Liapunov exponents from experimental data and numerical 

simulations, respectively. Grebogi et al. (1984) showed that a fractal Liapunov 

dimension indicates a strange attractor and not a chaotic attractor. Moreover, 

strange attractors are usually chaotic but this is not always the case. 

2.4.3 Sensitivity to Initial Conditions 

A chaotic system is unpredictable. Any two distinct initial conditions 

arbitrarily close to one another on the attractor will diverge with time, resulting 

in two trajectories with no correlation between them. The chaotic systems’ 

property of amplifying errors or initial uncertainties is called sensitivity to 

initial conditions. 

2.4.4 Power Spectrum 

Another method of characterizing a chaotic attractor is by its power spectrum. 

An equilibrium point is characterized by having only a dc component. A limit 

cycle is characterized by discrete peaks at the fundamental frequency and its 

harmonics. A quasi-periodic attractor is characterized by peaks aft its 

fundamental frequencies, their harmonics, and combinations. A _ chaotic 

attractor is characterized by a broadband power spectrum. 
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2.4.5 Transitions to Chaos 

So far we have described various types of bifurcations as the parameter y is 

varied. In this work, we are also interested in the values of y which result in 

chaotic attractors. Three possible routes to chaos (Berge et al., 1984) have 

been identified in the literatures: via torus bifurcation, period-doubling 

bifurcations, and intermittency. We only observed the period-doubling route 

to chaos. 

2.4.5.1 Torus Bifurcation Route to Chaos 

Newhouse, Ruelle, and Takens (1978) proposed that chaos can arise after a 

finite number of secondary Hopf bifurcations. This is in contrast with Landau 

(1944) who proposed that an infinite number of secondary Hopf bifurcations 

are needed for a chaotic attractor to occur. The proposition of Newhouse et 

al. has been proven both experimentally and numerically, while Landau’s 

proposition has not. Schematically, Newhouse et al. proposition can be 

described as follows: suppose a control parameter is increased resulting in 

the equilibrium point losing stability and giving rise to a stable periodic 

oscillation with frequency f, . Then two secondary Hopf bifurcations occur 

resulting in the creation of two new frequencies f, andf,. The system is now a 

3-torus, which they showed leads to a chaotic attractor because the 3-torus is 

inherently unstable. 
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2.4.5 Transitions to Chaos 

So far we have described various types of bifurcations as the parameter y is 

varied. In this work, we are also interested in the values of y which result in 

chaotic attractors. Three possible routes to chaos (Berge et al., 1984) have 
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2.4.5.1 Torus Bifurcation Route to Chaos 

Newhouse, Ruelle, and Takens (1978) proposed that chaos can arise after a 

finite number of secondary Hopf bifurcations. This is in contrast with Landau 

(1944) who proposed that an infinite number of secondary Hopf bifurcations 

are needed for a chaotic attractor to occur. The proposition of Newhouse et 

al. has been proven both experimentally and numerically, while Landau’s 

proposition has not. Schematically, Newhouse et al. proposition can be 

described as follows: suppose a control parameter is increased resulting in 

the equilibrium point losing stability and giving rise to a stable periodic 

oscillation with frequency f, . Then two secondary Hopf bifurcations occur 

resulting in the creation of two new frequencies f, and f,. The system is now a 

3-torus, which they showed leads to a chaotic attractor because the 3-torus is 

inherently unstable. 
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2.4.5.2 Period-Doubling Route to Chaos 

The route to chaos we observed is through a sequence of period-doubling 

bifurcations (Feigenbaum, 1978). As a control parameter is varied a limit cycle 

of period T and frequency f loses its stability giving rise to a new limit cycle 

having a period that is 2T and a frequency that is af. As the parameter is 

increased further, repeated period-doubling bifurcations give rise to the 

1 
frequencies FATS etc.. This process continues till it accumulates at a 

critical value where a broadband frequency spectrum occurs, indicating chaos. 

2.4.5.3 Intermittency 

The third route to chaos is that of intermittency. The concept of intermittency 

was proposed by Pomeau and Mannevelle (1980). Intermittency refers to 

oscillations that are periodic, but contain infrequent variations of large 

amplitudes (bursts of aperiodic oscillations of finite duration). As the system 

becomes chaotic the duration of the variations becomes longer. 
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2.5 Invariant Manifolds 

An invariant manifold E is a subset of the phase space such that for any initial 

value x,éE, the corresponding flow ¢,(x,) will remain in E. From equation 

(2.10) the solution space defined by ,(x,) can be divided into three subspaces: 

center subspace: E°= span{w',..., w’c} 

stable subspace: E° = span{v', ..., vs} 

unstable subspace: E“ = span{u',..., u%} 

where {w'}rc,, {v/}7,, and {u*}fu, are the eigenvectors corresponding to the 

eigenvalues with zero real parts, negative real parts, and positive real parts, 

respectively (Guckenheimer and Holmes, 1983). The center, stable, and 

unstable manifolds are invariant manifolds tangent to the center, stable, and 

unstable subspaces at the equilibrium point, respectively. 

Invariant manifolds are used to describe the limit sets that consist of 

trajectories that connect saddles (non-stable equilibrium points) and nodes 

(unstable equilibrium points with no complex eigenvalues). A homoclinic orbit 

connects a saddle to itself and a heteroclinic orbit connects a saddle to 

another saddle (Seydel, 1988). A stable manifold approaches a saddle as 

t—-co and an unstable manifold approaches a saddle as t—-—oco. 

Determination of these manifolds is important because they give insight to the 

local as well as the global behavior of the system in the phase space. 
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2.6 Poincaré Section 

In an n-dimensional autonomous system an (n-1)-dimensional hypersurface & 

is said to be a Poincaré section if the flow lines intersect 2 transversally and 

in the same direction (Hirsch and Smale, 1974). The hypersurface % divides 

the phase space into two regions 2, and ~_, where the ’+’ and ’-’ correspond 

to trajectories that cross % from the front and rear, respectively, and 

2, and 2 are called one-sided Poincaré sections. The Poincaré map has three 

advantages: it reduces the number of coordinates from n ton — 1, reduces the 

amount of data, and time is discretized (Eckmann and Ruelle, 1985). The 

points that cross 2 are related by difference equations instead of differential 

equations, which define the Poincaré maps. The hypersurface ~ is typically 

chosen such that the trajectories intersect it every T seconds, where 7 is the 

period of the limit cycle. Poincaré maps are useful in distinguishing among 

the various attractors. A single point in the map corresponds to an equilibrium 

point or a period-one limit cycle. Two points correspond to a period-two limit 

cycle. A closed curve corresponds to a 2-torus. A Poincaré map which is not 

one of the above may be a strange attractor. 
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CHAPTER 3 

Primary Resonance 

3.1 Introduction 

In this chapter we concentrate on the case of primary resonance, which occurs 

when Q is near «,. We demonstrate using digital simulation that, for a given 

set of parameters of equations (1.1)-(1.3), the primary resonance leads to a 

complicated behavior. We show that as Q is varied from a value above w, the 

response is periodic, then as Q is decreased a series of period-doubling 

bifurcations takes place culminating in a chaotic motion, and finally the 

response becomes unbounded as the machine experiences loss of 

synchronism. 
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The effect of varying a control parameter of the system is studied by forming 

a bifurcation diagram in a two parameter space indicating where cyclic-fold 

(saddle-node, tangent) instabilities and period-doubling (flip) bifurcations 

occur. The variation of a control parameter affects the basins of attraction, as 

shown by Grebogi, Ott, and Yorke (1988), Nayfeh and Sanchez (1989), and 

Soliman and Thompson (1989). Alternatively we use perturbation analysis to 

obtain a closed-form approximate solution of equations (1.1)-(1.3). We 

demonstrate that the period-one results obtained by numerical simulation can 

be obtained directly and with less effort from the perturbation solution. 

Moreover, we show that the instability of the closed-form solution predicts the 

onset of period-doubling bifurcations, which are precursors to chaos and loss 

of synchronism. 

3.2 Numerical Simulation 

Equations (1.1)-(1.3) were simulated on the digital computer by using a fifth- 

and sixth-order Runge-Kutta algorithm for the parameters given in Appendix 

B. The effect of varying the excitation frequency {2 and the initial conditions 

when V,, = 0.1 was studied in detail, and representative results are shown in 

Figure 4. 

For large (2, there exists only one stable steady-state solution (attractor), 

which is periodic having the period T = 2z/Q. An example is shown in Figure 
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4a. The phase portrait of the attractor forms a closed orbit. Since it takes the 

period T = 2z/Q to close, this attractor is called a period-one attractor. This 

can be verified by observing the FFT (Figure 4b) and Poincaré map (Figure 4c) 

of the time trace of the attractor. The FFT has discrete frequency components 

at the excitation frequency 2 and its harmonics and the Poincaré map has only 

one point. As Q is decreased, the period-one orbit deforms and increases in 

size until © reaches the threshold value © = 8.43018 rad/sec. As Q is 

decreased further, the orbit changes qualitatively as well as quantitatively as 

shown in Figure 4d. Now, the orbit has two loops instead of one loop and it 

takes a time of 2T to close. The FFT (Figure 4e) of its time trace has discrete 

components at + 2, Q, and their harmonics and combination frequencies. 

The Poincaré map (Figure 4f) now has two points, indicating that the period of 

the attractor has doubled. The doubling of the system’s period is a result of 

a period-doubling bifurcation. 

As Q) is decreased further, the period-two attractor deforms and increases in 

size until another threshold value of 022 = 8.29411 rad/sec is reached. Beyond, 

this value, the attractor again changes quantitatively and qualitatively, as 

shown in Figure 4g. The phase portrait now has four loops, the FFT (Figure 

42,529. their harmonics and 

combination frequencies, and the Poincaré map (Figure 4i) has four points. 

4h) has discrete components at 

Hence the period of the attractor has doubled again, resulting in a period-four 

attractor. This sequence of period-doubling bifurcations continues as Q is 

decreased further and eventually culminates in a chaotic attractor, as shown 
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in Figure 4j. The FFT (Figure 4k) of the time trace of this chaotic attractor has 

a broadband character and the Poincaré map (Figure 4!) shows now a strange 

attractor. The corresponding Liapunov exponents are 1.4427, 0.0, and -7.69 

and the Liapunov dimension is D, = 2.19. As (is decreased even further the 

response of the system becomes unbounded (Figure 4m), resulting in loss of 

synchronism. 

We note that equations (1.1)-(1.3) have another small steady-state response 

(attractor) having the same period as that of the excitation. This small attractor 

may coexist with either the large period-one attractor or its bifurcated 

attractors. When more than one attractor coexist, the initial conditions 

determine the response. The coexistence of multiple attractors is due to the 

nonlinearities in equation (1.1). 

To understand the effect of varying the parameters on the system’s response, 

we study the two-parameter space corresponding to the frequency Q and 

amplitude V,;, of the external excitation. A comprehensive picture of the 

behavior of the nonlinear system in this space is given in Figure 5. The power 

system has the typical Y-shaped zones found in Grebogi et al. (1989) and 

Nayfeh and Sanchez (1989). Region A lies below the arm with negative slope 

defined as y,, which is where the small orbit exists. When any of the 

parameters are varied to cross y, in the direction of the arrow, a tangent 

(saddle-node, cyclic-fold) instability occurs. The resulting solution depends 

on the state of the system and the attracting set of the subsequent parameter 
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space. If the parameters are varied to cross y, into region B, the small orbit 

loses stability and the system jumps to the large orbit, which is the attracting 

set in that parameter space. However, if the parameters are varied to cross 

y, into region D the smail orbit losses stability, and the system’s response 

becomes unbounded. Region B defined as the region lying under the curve 

y,, it corresponds to the attracting set of the large attractor. The cure y, 

indicates the occurrence of the first period-doubling bifurcation. Shortly after 

the first period-doubling bifurcation occurs a sequence of period-doubling 

bifurcations occur culminating in a chaotic attractor. This region is very small 

and is not shown. If the parameters are varied to cross the curve y, into region 

A, then the existing attractor loses stability giving way to a small attractor and 

an unbounded motion otherwise. 

In Region C, large and small attractors coexist. The response of the system 

in this region depends on the initial conditions. Usually this region would be 

bounded by another curve connecting y, and y,. This figure is typically given 

as g versus {), however, g is a function of V,,,6,,, and the phase between 

them, which can be seen from equations (1.1)-(1.3). Thus, if #,, 4 0, g can be 

greater than zero even if V,, = 0. For this curve to exist the amplitude g of the 

effective external excitation must become small enough, causing the 

frequency-response curve to be single-valued and the large attractor to lose 

stability by jumping down to the small attractor. Because 0,, = 0.1 rad in these 

simulations, we cannot obtain a single-valued frequency-response curve 

because the effective external excitation is not small enough for V,, = 0. 
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As mentioned previously, the system’s response depends on the initial 

conditions. The chart in Figure 6 was constructed by studying the local 

Stability of the different possible attractors; we note that some solutions may 

be locally stable but globally unstable. To understand the global behavior of 

the system, we formed a map of all the possible solutions for various initial 

conditions (i.e., basin of attraction). For a given set of parameters, we covered 

the region —-1<u<3.5 and —20<u<20 by a grid of 400x450 initial 

conditions. For each set of initial conditions, we integrated equations 

(1.1)-(1.3) for 20 cycles, sometimes 100 or 400 cycles. If the solution becomes 

unbounded the corresponding grid point is marked by a black dot; otherwise, 

it is marked by a white dot. By changing one of the system parameters, we 

can observe the metamorphoses that the basins of attraction undergo. Figure 

6 shows a series of metamorphoses that the system undergoes as V,, is varied 

at Q = 8.26 rad/sec. 

As V,, is increased past V,, = 0.06 the smooth basin boundary begins to form 

fingers that corrupt the once stable region formed by the separatrices of the 

free oscillating system. The corrupted region becomes more complicated and 

possibly fractal as V,, is increased as shown in Figures 6(c-h). As V,, is 

increased further the region becomes less complicated, but the stable region 

becomes smaller and smaller. Nevertheless there continues to be stable 

regions interspersed in the unstable regions as shown in Figures 6(i-j). 
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In the next section, we show that one can develop a fairly accurate closed-form 

expression for the period-one attractor. Moreover, one can use this solution 

to predict conditions for the onset of the saddle-node and period-doubling 

bifurcations, which are precursors to chaos and loss of synchronism. 

3.3 Perturbation Analysis 

In this section, we concentrate on the case of primary resonance Qx«,. We 

use the method of multiple scales to determine a uniform solution of equation 

(1.8) for the case of small but finite amplitudes (i.e., weak nonlinearities). To 

analyze this case we need to order the damping, the nonlinearities, and the 

excitation so that their effects occur at the same order. This ordering is 

accomplished by introducing a small dimensionless parameter « that is used 

as a bookkeeping device and will be set equal to unity in the final analysis. If 

  

D 
n = O(c), then = = O(c?) and we assume that V,, = 0(£3) and 0,, = O(e?). With 

this ordering, we put 

Fy = 86), Fo = Of, Fy= eh, andG=eg 

Moreover, to quantitatively describe the nearness of the resonance, we 

introduce the detuning parameter o defined according to 

wg = 2? + (3.1) 
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Then, equation (1.8) can be rewritten as 

y+ 267 nN + (QQ? + ea)n = aon? + agn° + fin cos(Qt + ,) 

+ fon? cos(Qt + @,) + © tn? cos(Qt + ¢,) (3.2) 

+ 9 cos(Qt + ¢,) 

where the overdot indicates the derivative with respect to t. 

We seek a uniform solution of equation (3.2) in the form 

2 3 
n(t; &) = €n4(To, Ty, Tz) + €°n2(To, Ty, To) + & 3(To 7, Ta) + --- (3.3) 

where 7, = tis a fast scale, characterizing motions occurring at the frequencies 

Q) and w,, and T, = et and T, = «*t are slow scales, describing the modulations 

of the amplitude and phase with damping, nonlinearities, and resonances. In 

terms of these time scales, the time derivatives become 

a = Do + ED, + &°D» +... (3.4a) 

d? 2 2 2 “eo Dg + 2&DoD, + &°(2DpD> + Df) + ... (3.4b) 

where D, = 0/cT,. Substituting equations (3.3) and (3.4) into equation (3.2) and 

equating coefficients of like powers of ¢ , we obtain 

2 2 
Don, + Q°n, = 0 (3.5) 

2 2 2 
Dong + 2D—Dyny + Q*ng = aon} (3.6) 
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2 2 
DoN3 + 2D 9D 12 + (D; + 2D D>)n 4 + 2uDon | 

, ; (3.7) 
+ O%ns + oy = 2ooH Ng + a5n; + g cos(Qt + ¢,) 

We note from equations (3.5)-(3.7) that, in this case, the effects of the 

parametric terms are unimportant, thus we only have an external forcing term. 

The solution of equation (3.5) can be expressed in the form 

ny = A(Ty, Tre?” + A(T;, Tee (3.8) 

where A is an undetermined function at this level of approximation; it will be 

determined by eliminating the secular terms at the next orders of 

approximation. Substituting equation (3.8) into equation (3.6) yields 

Ding + Q?ng = — 21QD, Ae?” + anf A2e7 + AA] + cc (3.9) 

where cc is the complex conjugate of the preceding terms. In equation (3.9), 

D,A has to be zero, otherwise a secular term appears in 4,, making the 

expansion nonuniform for large t. Hence A = A(T,) and the solution of 

equation (3.9) can be written as 

aAe% yn A%e 2% Oa AA 
1o=- — + (3.10) 

° 302 302 Q? 
  

Substituting equations (3.8) and (3.10) to equation (3.7) and eliminating the 

terms that lead to secular terms yields 
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2iQ(A’ + WA) + 8a,A2A — + ge'te + GA =0 (3.11) 

where 

  Sa 3 (3.12) “, =— - = X3 . 

“429? 8 

Next, we express A in the polar form 

A =z ae te) (3.13) 

Substituting equation (3.13) into equation (3.11) and separating real and 

imaginary parts, we obtain 

1 Qa’ + wa) + 2 gsinf=0 (3.14) 

— Qaft’ + 04° - 4g cos i +ca=0 (3.15) 

Therefore, to the second approximation 

ean, 
y = ca cos(Qt + f+ o,) + 5 

6Q. 

  

[3 — cos(2Qt + 28 + 2h,) | +... (3.16) 

where a and #} are given by equation (3.14) and (3.15). We can set ¢=1 and 

consider a as the perturbation parameter and thus rewrite equations (1.5) and 

(3.16) as 
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Af = @g, cos(Qt + o,) + a cos(Qt + f + hg) 

aa, (3.17) 
+ o? [3 - cos(2Qt+ 2} + 26,)] +... 

6 

  

Equation (3.17) shows that the excursions of the rotor from the operating point 

follow an oscillatory motion, which includes a drift or what is called a steady 

an 
streaming (Nayfeh and Mook,1979). The drift term sor , due to the quadratic 

nonlinearity, indicates a shift in the operating point so that the oscillatory 

motion is not centered at @ = 4). 

To determine the character of the solutions of equations (3.14) and (3.15), we 

need to determine their singular or fixed points. The fixed points of equations 

(3.14) and (3.15) correspond to a' = f’ =0. They are given by 

  

a = are (3.18a) 

a xa g cos 8 Co e 
= 3. 20" 9 20 (3.185) 

Squaring and adding equations (3.18) yields the frequency-response equation 

    

2 2 
2 o %_a 2 g wet ( + = (3.19) 

Equation (3.19) is an implicit equation for the amplitude a as a function of the 

detuning parameter o (the frequency of the excitation) and the amplitude g of 
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the excitation. The plot of a as a function of Q for a given uw and g is called a 

frequency-response curve (Figure 7). 

3.3.1 Comparison of the Perturbation Solution with Numerical 

Simulations 

Next, we compare the results of the second-order closed-form analytical 

solution with numerical simulations. The solutions of equations (3.18a) and 

(3.18b) are obtained numerically by using a Newton-Raphson procedure. Then 

n and yn are calculated from equation (3.16). A typical time history and phase 

portrait are shown in Figures 8a and 8b for Q = 8.6 rad/sec. 

It follows from equation (1.4) that 

n= 0-05 — 5 (3.20) 

n=0-4, (3.21) 

Substituting the time histories for @ and 0 obtained by the numerical simulation 

into equations (3.20) and (3.21), we calculate 7 and 7. The results for Q = 8.6 

rad/sec are also shown in Figures 8a and 8b. The agreement between the 

closed-form analytical expression and the results of the numerical simulation 

is remarkable. 

To compare the analytical results with the numerical simulations at other 

frequencies, we plot in Figure 7 the maximum values of 7 obtained by using 

Primary Resonance 44



  

  

  

      

Figure 7. Frequency-response curve for case of primary resonance: 
(___) stable, (—) unstable; numerical solution: A. 

  

perturbation solution:     
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Figure 8. Comparison of perturbation solution with numerical simulations for case of primary 
resonance: (a) Time history and (b) phase-plane comparison of perturbation (—-) and 
numerical (___) solutions for Q = 8.26 rad/sec.     
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the two approaches. The continuous curves represent the analytical solution 

and the triangles represent the results of the numerical simulation. Again, the 

agreement between them is remarkable up to the value of Q corresponding to 

the onset of period-doubling bifurcations. 

3.4 Stability of Period-One Solutions 

3.4.1 Floquet Theory 

Different methods are used to determine the stability of the analytically 

predicted period-one solutions n(t). The first method is a numerical application 

of Floquet theory (Nayfeh and Mook,1979). We introduce an arbitrary small 

disturbance ¢(t) and obtain 

n(t) = n(t) + é(t) (3.22) 

The stability of (ff) depends on whether €(t) decays or grows as t— oo. 

Substituting equation (3.22) into equation (1.8) and retaining only linear terms 

in €(t), we obtain the variational equation 

d*~ | wD dé 
dt 2H aft 
  + (K — 2a9n — 3agy*)é = 0 (3.23) 
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which is a linear differential equation with periodic coefficients having the 

period T = 2z/Q. The behavior of €(t) with t is determined from Floquet theory. 

lf €,(t) and &,(t) are two linearly independent solutions of equation (3.23), then 

€,(t+ 7) and é,(t + T) are also solutions of equation (3.23) and they are linear 

combinations of ¢,(t) and ¢,(t); that is, 

(t+ T) = 44404 (t) + ay9C0(t) (3.24) 

Colt + T) = a9104(t) + aneCo(t) (3.25) 

Here, the a, are constants that can be determined by calculating two linearly 

independent solutions ¢,(t) and ¢,(t). Two linearly independent solutions of 

equation (3.23) were calculated for t = [0,7] using the initial conditions 

E,(0)=1, &,(0)=0 (3.26) 

E(0)=0, &(0)=1 (3.27) 

Hence, the a, are the elements of the so-called Monodromy matrix 

E,(T) &,(7) 
A= (3.28) 

E(T) €(T) 

The behavior of &(t) and hence the stability of 7(t) depends on the eigenvalues 

(Floquet multipliers) 1, and A, of A. If both Floquet multipliers lie inside the 

unit circle, then &(f) — 0 as t > oo and hence y(t) is stable. If one of the Floquet 

multipliers lies outside the unit circle, then #(f) is unstable. The type of 
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instability that occurs as a control parameter is varied depends on how the 

Floquet multiplier leaves the unit circle. For the single-degree-of-freedom 

studied, A can either leave the unit circle along the real axis through +1 or -1. 

If 2 leaves the unit circle through +1 a saddle-node bifurcation occurs. If 

leaves the unit circle through -1 a period-doubling bifurcation occurs. 

Figure 9 shows a comparison of the bifurcation diagram generated by applying 

Floquet theory to the analytically calculated periodic solutions and the 

numerical results. It is obvious that the analytical solution predicts the 

saddle-node bifurcation very accurately. The analytical solution does not 

predict the onset of period-doubling bifurcations as accurately as the 

saddle-node; it, nevertheless, predicts the bifurcation to within a 9% error. 

3.4.2 Method of Strained Parameters 

Next we use the method of strained parameters (Nayfeh, 1981) to predict the 

onset of period-doubling bifurcations. To this end, we substitute equation 

(3.16) into equation (3.23) and obtain to second order 

é + Que +kK*E=y&EcosD + Agcos 2M (3.29a) 

P= Ot+ f+ (3.29b) 
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where K*,x, and A are defined in Appendix C. We introduce a small 

dimensionless parameter ¢ as a bookkeeping device and order the damping 

and parametric term at0(s), and rewrite equation (3.29a) as 

é + Qepe +K*é = ecy€é cos P + cAé cos 20 (3.30) 

We seek a uniform expansion of the solutions of equation (3.30) in the form 

E(tr 2) = 0£,(t) + °E,(t) +... (3.31) 

K* = + Q? + 65, + £55 +... (3.32) 

According to this method, we determine 5, and 6, such that the resulting 

expansion is periodic. Thus, equation (3.32) defines the transition curves 

separating stability from instability (i.e., transition curve for period-doubling 

bifurcation). 

Substituting equations (3.31) and (3.32) into equation (3.30) and equating the 

coefficients of equal powers of ¢ on both sides, we have 

. 1 

Cot QE, =0 (3.33) 

Ey + 4 2%, = — 2b) — b;f9 + xZq cos D + A%y cos 20 (3.34) 

Eo + 7 Pe, =— Que, — 646, — O09 + ¥€, cos D+ AZ; cos2M (3.35) 
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b= acos + +bsin 4 & (3.36) 

where a and b are constants. 

Substituting equation (3.36) into equation (3.34), we obtain 

: 1 ,2 1 
Opt 7 QC, = ( aan a ub | cos +0 

_ in 3.37 + | na ~ ( ($x+5;)o Janz ( ) 

+F(x+ Ajacos b+ (y- AjbsinS O+.. 

Eliminating the terms that produce secular terms in equation (3.37) requires 

that 

( y1- 5, a — 1Qb =0 (3.38) 

uQa — ($x +5; )b=0 (3.39) 

For a nontrivial solution to exist 

git? Po (3.40) 

Using equations (3.38) and (3.39), we express the solution of (3.37) in the form 
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1 ; 1 
cy = D cos > D + E sin D 

+A — A)b (x Ja cos — @ (x ) 

4Q? 2 4Q? 

3 (3.41) 

sin > P+... 

where D and E are constants. Substituting equations (3.36) and (3.41) into 

equation (3.35) and eliminating the secular terms, we have 

A)A (x - 51)D — pQE = 5, + ao ) (3.42) 

~A)A wQD — F(x + 5,)E = E + a i (3.43) 

Because the homogeneous equations (3.42) and (3.43) have a nontrivial 

solution, the inhomogeneous equations have a solution if and only if a 

consistency (solvability) condition is satisfied; that is, 

2+ 4A6, + A? 

80? 
  55 = (3.44) 

Hence, the transition curves determining the period-doubling bifurcation are 

given by 

x + 4( + x? = wea? IPA +A? 
  sO +... (3.45) 

Equation (3.45) predicts the onset of period-doubling bifurcations to within a 

10% error. The accuracy would probably improve if more terms were kept in 
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equations (3.30)-(3.32), however, the algebra would become much more 

involved. 

Harmonic Balance 

The third method used to determine the period-doubling bifurcations is the 

method of harmonic balance. Using the analytical solution as a guide in 

choosing the form of the solution of equation (3.29a), we assume a solution of 

the form 

n=acosz O+bsint+ccossO+dsin>o (3.46) 

Substituting equation (3.46) into equation (3.29a), equating the coefficients of 

the different harmonics, and setting the determinant of the resulting coefficient 

matrix equal to zero, we have 

810° + y,Q% + yo? + 74Q? + 4 = 0 (3.47) 

where the yj, are defined in Appendix C. From equations (3.19) and (3.47) we 

obtained the curves shown in Figure 9. Again this method predicts the onset 

of saddle-node bifurcations very well. but it has difficulty in predicting the 

onset of period-doubling bifurcations. 
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3.4.4 Tangent Instability 

To determine the tangent (saddle-node) instabilities we locate the points 

corresponding to the vertical tangents (infinite slopes) in the 

frequency-response curves given by equation (3.19). We begin by rewriting 

equation (3.19) as 

2 

4u°Q? + (6 + 20,a°)? = S (3.48) 
a 

Letting p = a2, x = Q?, and o = wi — Q? we have 

4u°xp + p(wg — x + 2u—p)° = 9° (3.49) 

Taking the derivative of equation (3.49) with respect to x, we obtain 

d d d 2, ap 2 2 ap 2 p Aux + + (99 — x + 2ap) = + 4a.p(wo — x + 2a,p) aX (3.50) 

+ 4u°p — 2p(«4 —X+ 2p ) =0 

. “os dp 
Setting the coefficient of Te equal to zero. we have 

2 2 2 2 4u°x + (wo — x + 2a—p)° + 4pa.(wg — x + 2a,p) = 0 (3.51) 

It follows from equations (3.49) and (3.51) that 

g” = 4p x.(5 —x+ 20p ) (3.52) 

Next, we let 
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Z= we —x + 2ap (3.53) 

Substituting equation (3.53) into equation (3.51) we obtain 

2 2 2 3z° + 2z(a9 + x) + 4u°x = 0 (3.54) 

To locate the tangent instability curve, we determine z from equation (3.54) for 

a specific value of Q, then compute p from equation (3.53), and finally compute 

g from equation (3.52). The results obtained by using this technique are very 

accurate, as can be seen from Figure 9. 
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Figure 9. Stability of perturbation solution for case of primary resonance: Floquet theory(A); 
harmonic balance (*); method of strained parameters (x); tangent instabilities (+).   
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CHAPTER 4 

Subharmonic Resonance 

4.1. Introduction 

In this chapter, we use numerical simulations and perturbation analyses to 

understand the behavior of the system near the subharmonic resonance of 

order one-half. Numerical simulations are used to show that the combined 

effect of a principal parametric resonance and a subharmonic resonance of 

order one-half leads to complicated dynamics. As the excitation frequency is 

varied, we demonstrate that the response undergoes a sequence of 

period-doubling bifurcations culminating in chaos, after which the solution 

becomes unbounded. Using numerical simulations alone to locate the regions 

of complex behavior requires a lot of time and effort. Thus it is of interest to 

develop approximate solutions that will reduce the time and effort. First, we 
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investigated the use of the first-order perturbation solution of Hamdan and 

Nayfeh (1989). We found that this expansion predicts fairly accurately the 

period-one motions and their bifurcations into period-two motions for small 

excitation amplitudes. However, as the excitation amplitude increases, we 

found that the first-order perturbation solution becomes less accurate. 

Therefore, we use the method of multiple scales to determine a second-order 

approximate solution that improves on the accuracy of the solution given by 

Hamdan and Nayfeh (1989), and whose loss of stability agrees fairly well with 

the onset of period-doubling bifurcations, which is a precursor to chaos and 

loss of synchronism. 

4.2 Numerical Simulation 

Equations (1.1)-(1.3) were simulated on the digital computer by using a fifth- 

and sixth-order Runge-Kutta algorithm. The parameters of the system are 

listed in Appendix D. We studied the effect of varying the excitation frequency 

Q. near the subharmonic resonance of order one-half; that is, Q22«,. The 

effect of varying the excitation frequency Q and the initial conditions is shown 

in Figure 10. 

For €2 much larger than 2w,, the steady-state solution (attractor) is periodic 

having the period 2z/Q. The phase portrait corresponds to a period-one limit 

cycle (Figure 10a). This can be verified by observing the corresponding FFT 
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Figure 10. Numerical simulation for case of subharmonic resonance:  (a)-(c) period-one 
Q = 26.0 rad/sec; (d)-(f) period-two Q = 21.03 rad/sec; (g)-(i) period-four Q = 19.416 
rad/sec; (j)-(1) chaos Q = 19.374 rad/sec; (m) loss of synchronism Q = 19.373 rad/sec.     
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(Figure 10b) and Poincaré map (Figure 10c), where the FFT consists of 

frequency components at 92 and its harmonics and the Poincaré map contains 

only one point. As Q is decreased, the period-one orbit deforms until © 

reaches the threshold value 24.155 rad/sec, where the period-one attractor 

loses its stability and gives way to a period-two attractor (Figure 10d) with the 

period 47/Q. The FFT (Figure 10e) and Poincaré map (Figure 10f) verify the 

occurrence of a period-doubling bifurcation. The FFT has new frequency 

components at 52, +9, 3 Q,... and their harmonics and the Poincaré map 

contains two points. As Q is decreased further the period-two orbit deforms 

until it goes through a period-doubling bifurcation at Q = 19.65 rad/sec. The 

phase portrait shows an attractor consisting of two loops as shown in Figure 

10g; the period of this attractor is 82/€Q2. These period-doubling bifurcations 

continue as {2 is decreased further and eventually the solution becomes 

chaotic at Q = 19.374 rad/sec (Figure 10j). The FFT of the chaotic attractor 

(Figure 10k) has a broadband power spectrum and the Poincaré map (Figure 

101) shows a strange attractor. The corresponding Liapunov exponents are 

1.4437, 0.0, -7.452 and the Liapunov dimension D, = 2.19. As Q is decreased 

even further (€2 = 19.373 rad/sec), the sequence of bifurcations culminates in 

an unbounded motion (Figure 10m) (i.e., loss of synchronism). 

As in Chapter 3 we study the behavior of the solutions of equations (1.1)-(1.3) 

in the two parameter space corresponding to the frequency Q and amplitude 

V;, of the external excitation (Figure 11). The region on the left side of the 

bifurcation diagram corresponds to the region studied in Chapter 3. lf a 
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parameter is varied across S,, the small attractor loses its stability through a 

saddle-node bifurcation. The system response will either go unbounded for 

values of V;, >C, or jump to the large attractor for values of V;,<C,. The 

large attractor will go through a sequence of period-doubling bifurcations if 

any parameters are varied across P,. If a parameter is varied across J, the 

chaotic attractor either goes unbounded (V;,>C,) or jumps to the small 

attractor (V,,<C,). The large attractor loses its stability in the region of the 

subharmonic resonance {2 = 2.0 rad/sec. The primary resonant response is 

unstable in the region between P, and P,. When P, is crossed from left to right 

the attractor goes through a period-doubling bifurcation and jumps to the 

subharmonic response. If P, is crossed from left to right the subharmonic 

response loses its stability and jumps to the primary resonant response. 

The primary resonant response loses its stability through a period-doubling 

bifurcation for parameter variations across P, (right to left), giving rise to the 

subharmonic response. The subharmonic response goes through a sequence 

of period-doubling bifurcations leading to chaos when P, is crossed from right 

to left. The chaotic attractor loses its stability and jumps to the primary 

resonant response for values of V,;,< C, and goes unbounded for values of 

Va, > Cz. 

Of major importance is the ability to predict regions of bounded and 

unbounded motions. Hence, we studied various basins of attraction for 

different values of V,, and @,,. We studied the region —1<6@<3.5 and 
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(c) Va, = 0.1 (d) Vay = 0.15 

Figure 12. Basins of attraction (0 vs. 4) for case of subharmonic resonance: © = 19.375 rad/sec 
and @,, = 0.2 rad.   
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Figure 13. Basins of attraction (0 vs. 0) for case of subharmonic resonance: 2 = 19.375 rad/sec 
and V,, = 0.0 rad.       
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—25 <0 < 15 with a grid of 400x450 initial conditions. Figure 12 shows a 

series of metamorphoses that the system undergoes as V,, is varied for 

Q. = 19.375 rad/sec and 6,,=0.2 rad. At V;,=0.2 (Figure 12a) the basin of 

attraction seems fractal. The fractal nature of the basin indicates the 

sensitivity to initial conditions present at this voltage. As V,, is decreased the 

fingers begin to subside; however, even for V,;, = 0.0 the basin of attraction is 

still corrupted by regions of unbounded motions, this is due to the effect of 

Oa. 

Figure 13 shows the metamorphoses that the basin of attraction undergoes as 

45, is varied with V;,=0.0. As @,, is decreased, the fingers of unbounded 

motions decrease and eventually disappear at 0,, = 0.13 (Figure 13f). Values 

of #,, < 0.13 correspond to smooth basin boundaries. Eventually, at @,, = 0.0 

the system will have basin boundaries defined by the separatrices of the free 

damped oscillations of the system (Figure 2b). 

4,3. Perturbation Analysis 

To predict the onset of the period-doubling bifurcations, which are precursors 

to chaos and loss of synchronism, we use the method of multiple scales 

(Nayfeh, 1973,1981) to determine a second-order approximate expression for 

the period-two solutions for the case of Q22w,. We demonstrate how a 
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second-order analytical approximate solution can be used to predict the onset 

of complex dynamics and instability. 

Hamdan and Nayfeh (1989) used a first-order expansion where the 

nonlinearities and damping terms were ordered to counter the effect of 

resonances. Thus, the nonlinear, damping, and excitation terms were ordered 

so that their effects occur at the same order. Their solution becomes less 

accurate as the excitation amplitude increases because of its inability to 

account for the frequency shift caused by the external excitation. In this 

chapter, we extend their analysis to second order, thereby accounting for the 

frequency shift due to the external excitation. To accomplish this, we 

introduce a small dimensionless parameter ¢ that is used as a bookkeeping 

device and will be set unity in the final analysis. If 7 = O(c), then we let 

wWpD/2H = 0(¢), F, = O(c), G = O(e), and we assume that 

Vz, = O(c) and 4,, = O(c). Quantitatively, this implies that 

F, = &f,, Fy = &F5, F3 = fy, and G=erg 

With these orderings equation (1.6) can be rewritten as 

n + 2eun + wen = a5" + o3n° + ef;n cos(Qt + ¢,) 

+ fon? cos(Qt + @,) + efsn° cos(Qt + ¢,) (4.1) 

+ eg cos(Qt + ¢,) 

where pz = w,D/4H. 
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We seek a second-order uniform solution of equation (4.1) in the form 

2 
n(ts £) = €94(To, Ty, To) + E'N2(T, Ty, To) (4.2) 

+E n3(To, qT, T>) +... 

where 7, =t is a fast scale, characterizing motions occurring at the frequencies 

Q. and @,, and T, = et and T, = £*t are slow scales, describing the modulation 

of the amplitude and phase with damping, nonlinearities, and resonances. In 

terms of these time scales, the time derivatives become 

f= Dy + Dy + 7D, +... (4.3) 

d* 2 2 2 
at = Do + 2éD oD; + €& (2D)D> + D;) +... (4.4) 

where D,=0/0T,. To express the nearness of Q to 2,, we introduce the 

detuning parameter o according to 

we = aa Q? + £0 (4.5) 

This detuning is different from that used in Hamdan and Nayfeh (1989). It has 

the advantage of allowing larger deviations of Q from 2a, . Substituting 

equations (4.2)-(4.5) into equation (4.1) and equating coefficients of like powers 

of «, we obtain 

1 7 Xm = GJ cos(Qt + be) (4.6) 2 
Don, + 
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2 1 92 
Done + | Q2'ng = — 2uDony — 2D—D1 ny — ony 

2 
+ Aor} 4 + fn cos(QT, + Py) 

2 1 n2 2 
Dong + 7 "nz = — ong — 2DoDiN2 — (Dy + 2D 9D.) 

3 
— 2u(Dyny + Dong) + 2a0n4N2 + a3) 

+ fyny cos(QT) + fy) + fon? cos(QT, + ¢,) 

The solution of equation (4.6) can be expressed in either the form 

Ny = a(To, Ty, To) cos| F QT + B(T, T, T2) | 

+ 2A cos(QT, + $,) 

or the form 

1. _ 1, 

"y= A(T, Ty)e 2 i2To + A(T;, T)e 2 i92T 

4 A@i2o 4 Ke WiQ" 

where A is the complex conjugate of A and 

2 . 
g aite A=- 

3Q? 
  

Comparing equations (4.9) and (4.10) shows that 
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Substituting equation (4.10) into equation (4.7) leads to 

Dens + — On» =[ —iQ(D,A + pA) — cA + 20,AA 
1 
4 

++ fs, 
+3 

[eon 

se lor 2 'To + T — 2inQA — oA + aA? Jel? 
(4.12) 

+ | 2a,AA +> Af 5 Ane’ Je? 2 (To 4 | 2a(aa + AA) + > Are] 

+ ire le @ 7227 +¢¢ 0 4, 
2 

where cc stands for the complex conjugate of the preceding terms. Eliminating 

the secular terms (terms that render the expansion nonuniform for large t) in 

equation (4.12), we have 

— (QD,A — iQuA — cA + ATe'®’e =0 (4.13) 

where 

Telfer = 2agA +7 fe (4.14) 

Hence, the solution of equation (4.12) can be written as 

  

  

4 2 . iQT, A (2 QT) + Pee) Yo= - OA“ — (2inQ. + c)A je ° -—— Te 2 ee 
30? 20° 
4 a Aky a 1 Xei 

+ ry | 2a(Aa +- AA) + 2 f, Kel | (4.15) 

_ 2, 1 idy | ,212T, 5602 | aA a) f,Ae |e + ce 

Substituting equations (4.10) and (4.15) into equation (4.8) yields 
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Ding + 4 Q?ng = — 1QD,A — DGA — 2uD,A 

8a5 . = 2> aAA ip 5! [ — (2iuQ + o)AA + 047A] ~-*— re'tee 
3 Q 
Ba _ _ . . 

+> | 202872 + 20AAA + + f,A(Ael?r + Ae") | (4.16) Q 2 

  

x — ALE; 
+ Ga3AAA + 30,A°A — —— e'l?ee~ Pv) 

4Q 
+ fA(Ae'? + Ae'**) + NST + cc 

It follows from equation (4.13) that 

DA =—(u+ SA + 5 Alelte (4.17) 

and 

  

2i 2. 2 iu _ . 

ota [4 - > + —" \a +> Are'te (4.18) 

Eliminating the secular terms from equation (4.16) and using equations (4.13) 

and (4.18), we obtain 

    

2_ 2 anoAD , 1603 _ 
~iQp,A+|2-Lo¢_™ om (Go a 

Q? Q? 2 

_ ; . 4a.f If 
4. (Ae’*v + ne( et 4 ) _ — el (Pee _ "| (4.19) 

Q 4Q) 

    

4005, \ 5 Bay _ 
+ | 3a3 + 7 JA A+ (2inQ + a)AA =0 

3Q 3Q 
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Using the method of reconstitution (Nayfeh, 1985), we form the derivative of A 

with respect to t by substituting equations (4.13) and (4.19) into equation (4.3), 

putting «= 1, and obtaining 

iQ(A + uA) + 0,4 — 40,A°A — Te’? =0 

where the dot indicates the derivative with respect to t, 

Ue=Ur- sin(¢,. — de) + —= sin(?.. — y), 
e 5 ee e 3 ee V 

  

  

    

    

  

Q? 3Q2 2 

4g Aah, 

+ Oy (+ Gt) c0s(y ~ #e) 
2a.9T 

_ 4 COS( Pee ~ Pe) + 2 COS(Pee Py), 

1003 3 
Le = 302 a Xs, 

and 

A id id 6aog id 
Te"e=Te a (HO + oe e 

(4.20) 

(4.21) 

(4.22) 

(4.23) 

(4.24) 

Expressing A in the polar form (4.11b) and separating real and imaginary parts 

in equation (4.20), we obtain 
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Q(a + wea) — al’ sin y=0 (4.25) 

— Qaf +o,a— a,a° — al’ cos y=0 (4.26) 

where 

A 

y= be — 2p (4.27) 

Therefore, to the second approximation 

  

    

    

      

    

  

A 4 
n=a cos| 1 (Qt+ 6, - p) | _—9 cos(Qt + ¢,) 

2 30? 
32 16 

“ sin(Qt+ 6.) — “¢ cos(Qt + ¢,) 
90) 9Q 

2 2 
2a A 320 

— 2 cos(Qt + @,.— y) — a cos[ 2(Qt + ,) | 
3Q 5Q. 

f 2a 16q" (4.28) any 3 1/4 2 { .2 -3 cos| Saot+ +4 (be) | + = (: + 
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+ 7 cos(2Qt + de + $,) + ... 
45Q 

Consequently, 
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A 4 
A@ = 65, cos(Qt + gy) +a cos| 1 (Qt + pe — b) | ~ z 2 3Q 
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908 °" 9Q4 30? ° 
2a,ag 3 1 

+ 30° cos| 5 Ot + be+F (be 7) | | | 

4.29 
af, 3 1,4 205 2 169° 

— 1 cos| Ott by + (be) | +> at 904 

8f.g 3200g° 
+ cos(¢, — ¢,): ——cos[ 2(Qt + ¢,) 

gat Pv Pe) eee Cosl 
8f,9 

7 Cos(2Qt + Pe + Gy) + ... 
45Q 

For the steady state, we have a = B = 0. Hence equations (4.25)-(4.27) become 

A 

Qu.a—Tasiny =0 (4.30) 

T,a — aa” + [a cos y=0 (4.31) 

It follows from equations (4.30) and (4.31) that the steady-state amplitude can 

be either trivial (i.e., a = 0) or nontrivial (i.e., a 40). When a = 0 it follows 

from equations (1.4) and (4.29) that the variations in the rotor angle of the 

machine are given by 
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4g 
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cos(Qt + @,) + Seg ag 
9° 304 

2 
320 8f 

+ er cos[ 2(Qt + $,)] + 7 
135Q 45Q 

160g 

Q4 
—-     cos(h, — Pe) (4.32) 

  cos(2Qt+ do + Py) 

When a +0, one can eliminate y from equations (4.30) and (4.31) to obtain the 

frequency-response equation 

a= a lo. + ./ p2 2 | (4.33) 

Equation (4.33) relates the amplitude of the response to the frequency of the 

excitation. The plot of a as a function of Q is called the frequency-response 

curve (Figure 14). 

4.3.1 Comparison of the Perturbation Solution with Numerical 

Simulations 

To analyze the accuracy of our closed-form analytical solution, we compare it 

with numerical simulations of equations (1.1)-(1.3). For a given Q, we calculate 

a from equation (4.33) and then calculate y from equations (4.30) and (4.31). 

Substituting the values of a and y into equations (4.28), we determine 4 and 4 

from equations (3.20) and (3.21). A typical long-time history of the response 
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and its phase portrait are shown in Figures 15a and 15b for Q = 26 rad/sec. 

Figures 15a and 15b show that there is good agreement between the results 

of the numerical simulation and the perturbation solution. To form an overall 

comparison, we plot in Figure 14 the maximum values of 7 obtained from the 

perturbation solution (frequency-response curve) and the numerical 

simulation. Again we have good agreement. 

4,4 Stability of Periodic Solutions 

To determine the stability of the periodic solutions predicted by the 

perturbation analysis, we used Floquet theory. We computed 7 and a from 

equations (4.28) and (4.33) and then integrated equation (3.23) with the initial 

conditions given by equations (3.26) and equation (3.27) over the interval 

f=[0,7]. The analytical solution predicted the loss of stability of the 

primary-resonant solution very accurately as can be seen in Figure 16 (curves 

P,;andP,). To predict the sequence of period-doubling bifurcations that lead 

to chaos, we integrated the same equations but over an interval of 2T. The 

interval 2T was used because we are interested in the loss of stability of the 

subharmonic response. As was the case for primary resonance, the analytical 

solution had difficulty in predicting the occurrence of period-doubling 

bifurcations leading to chaos, as can be seen in Figure 16. 
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CHAPTER 5 

Conclusions 

5.1 Present Work 

The concept of an infinite-busbar is fictitious yet it is very useful. A more 

realistic concept of a busbar whose voltage is modulated in magnitude and 

angle has been introduced by Tamura and co-workers (1984, 1987). Hamdan 

and Nayfeh (1979) enhanced the concept of a quasi-infinite busbar by including 

quadratic and cubic nonlinearities. To determine the period-one responses 

and the onset of period-doubling bifurcations, we use the method of multiple 

scales to develop an approximate closed-form expression for the response of 

the machine for the case of primary resonance. The analytical results are in 

good agreement with the results of the digital-computer simulation. Using 

Floquet theory and other approximate methods, we determine the conditions 
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under which the analytically predicted periodic solution loses its stability. 

These conditions are in good agreement with those obtained by the 

digital-computer simulation for the onset of the period-doubling bifurcations 

and the jump to either a large attractor or an unbounded motion (loss of 

synchronism). To help understand the effect of parameter variations on the 

system’s response, we determined a bifurcation diagram in the two parameter 

space (Q2 vs. V;,). The sensitivity to initial conditions was studied by 

integrating the equations of motion to locate the regions of attraction for 

bounded and unbounded motions. We showed that parameter variations had 

a very considerable affect on the regions of stability. 

it was demonstrated by numerical simulation the existence of complex 

dynamics in a_ single-machine-quasi-infinite-busbar system due to the 

simultaneous occurrence of a principal parametric resonance and a 

subharmonic resonance of order one-half. By decreasing the frequency of 

excitation we showed that oscillatory solutions (limit-cycles) lose their stability 

through a series of period-doubling bifurcations leading to chaos and 

unbounded motions. We formulated a second-order approximate solution that 

improves on the accuracy of the solution given by Hamdan and Nayfeh (1989). 

Our solution accounts for the frequency shift caused by the combined effect 

of the excitations. The loss of stability of the second-order solution, which is — 

a precursor to chaos and unbounded motions, agrees fairly well with the 

numerical simulations. As for the case of primary resonance, bifurcation 
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diagrams and basins of attraction were studied. For the subharmonic case, 

however, we noticed that the interaction of the voltage and phase of the 

quasi-infinite busbar has a substantial affect on the system’s stability. 

5.2 Future Work 

The next step in our analysis is to study the case of two machines connected 

to an infinite busbar, resulting in a two-degree of freedom system. Many 

aspects of the complicated dynamics that result are due to internal 

resonances. Also, of interest are the effect of a quasi-infinite busbar and 

feedback control on the two machine system. 
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Appendix A 

Coefficients in Expanded Form of Swing Equation 

a, = + K tan do, 03 = K, 1 
2 6 

_ Var 
2V50 

Vv, 
F,=-—k, Fo K tan dp, 

Ve0 0 

_ Ver 
  F, K, Gy = 2708), 

QDwpAs, Vai 
= = 5 2 oH , G3 Veo K tan 09, 

VeVaqWrR cos 9 

2HX¢ 
  K= 
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Appendix B 

Parameters of Machine Used in Chapter 3 

The parameters of the machine have been taken from Table D3 of Appendix D 
of the textbook of Anderson and Fouad (1977). They are 

Rated MVA = 160, Rated PF = 0.85, Rated KV = 15, 

Freq = 60 Hz, X’, = 0.245,H = 2.37 S, 

The rest of the parameters of the SMQIBS are 

Xjine = 0.4 per unit, Vz, = 1 per unit, V;, = 0.1 per unit, 

05, = 0.1 rad, 

Xg = Xiine + X's = 0.645 per unit 

D is varied between 0.002 - 0.016. 
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Appendix C 
Coefficients for Stability Analysis 
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Appendix D 

Parameters of Machine Used in Chapter 4 

The parameters of the machine have been taken from Table D3 of Appendix D 

of the textbook of Anderson and Fouad’. They are 

Rated MVA = 160, Rated PF = 0.85, Rated KV = 15, 
Freq = 60 Hz, X’, = 0.245, H = 2.37 S, 

The rest of the parameters of the SMQIBS are 

Xiine = 0.4 per unit, Vz, = 1 per unit, Vz, = 0.2 per unit, 
6,, = 0.2 rad, D = 0.004 
Xo = Xiine + X'g = 0.645 per unit 
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