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(ABSTRACT) 

Optimization of dynamic systems involving complex non-hermitian 

matrices is often computationally· expensive. Major contributors to the 

computational expense are the sensitivity analysis and reanalysis of a 

modified· design. The present work seeks to alleviate this computational 

burden by identifying efficient sensitivity analysis and approximate reanalysis 

methods. 

For the algebraic eigenvalue problem involving non-hermitian matrices, 

algorithms for sensitivity analysis and approximate reanalysis are classified, 

compared and evalu9ted fo.r efficiency and accuracy. Proper eigenvector 

normalization is discussed. An improved method for calculating derivatives 

of eigenvectors is proposed based on a more rational normalization condition 

and taking advantage of matrix sparsity. Important numerical aspects of this 

method are also discussed. 

To alleviate the problem of reanalysis, various approximation methods for 

eigenvalues are proposed and evaluated. Linear and quadratic 

approximations are based directly on the Taylor series. Several 
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approximation methods are developed based on the generalized Rayleigh 

quotient for the eigenvalue problem. Approximation methods based on trace 

theorem give high accuracy without needing any derivatives. Operation 

counts for the ·computation of the approximations are given. General 

recommendations are made for the selection of appropriate approximation 

technique as a function of the matr1x size, number of design variables, number 

of eigenvalues df interest and the number of design points at which 

approximation is sought. 
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Chapter 1 

Introduction 

1.1 Eigenvalue and Eigenvector Derivatives and their 

Applications 

Dynamic response and loads are an important consideration in the 

understanding and design of many physical systems. The analytical models 

for a wide range of these systems are governed by linear differential equations 

so that dynamic model analysis often consists of the solution of an eigenvalue 

problem. The eigenvalues and the eigenvectors of the system are fundamental 

quantities employed in determining the behavior of the system. Variations in 

system parameters lead to changes in the eigenvalues and the eigenvectors 

and hence in the response characteristics of the system. It is important to 
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know the magnitude of these variations, and this information. is contained in 

the derivatives of the system eigenvalues and eigenvectors. Thus derivatives 

of eigenvalues and eigenvectors are of immense interest in several fields of 

physical sciences and engineering and much research effort has been 

expended in developing methods to calculate them. 

The applications of these derivatives (or synonymously, sensitivities) are 

~anifold. Probably the most important applications are in the area of design 

optimization. System response sensitivities provide vital information in an 

optimization procedure and in general the cost of calculating derivatives is the 

dominant contributor to the total cost in an optimization procedure so that the 

efficient computation of eigenvalue and eigenvector derivatives is desirable. 

Derivatives can also be effectively used to approximate the eigenvalues and 

eigenvectors of a modified system and thus reduce the cost of reanalysis, 

substantially lowering the computational burden in optimization tasks. The 

derivatives are very useful even in non-automated design procedures because 

it is often not clear, from analysis alone, how to modify a design to improve 

or maintain the d~sirable properties. The derivaJives identify design 

parameters that have the most or the least influence on the design process 

and thus ease the effort in design trend studies. 

Derivatlves of eigenvalues and eigenvectors are particularly valuable in 

calculating the statistics of eigenvalue locations in stochastic dynamic 

systems. All physical systems are essentially subject to random environments 

and the effect of randomly changing environments is crucial for such systems 
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as missiles, spacecraft, airplanes, land vehicles, buildings and machinery. In 

addition, many system mooels do not have well-defined prop~rties and it is 

frequently difficult to predkt these properties (for example, stiffnesses) 

accurately[1-4]. The uncertainties in the system eigenvalues and eigenvectors 

are calculated from the estimated uncertainties in the properties of the system 

and the environment by using the derivatives of eig,envalues and eigenvectors. 

The application of derivatives is not restricted. to design-oriented activities. 

Sensitivity analysis is also playing an increasing role in determining the 

analytical model itself. In the areas of system identification and analytical 

model improvement using test results, sensitivity analysis is of growing 

importance. Much recent work in these fields is directly dependent on the 

ca!culation of eigensystem derivatives. 

1.2 Importance of higher order derivatives 

While in the past attention was mostly restricted to first order derivatives 

of eigenvalues, higher order derivatives are assuming a greater importance 

recently. It has been found in certaia cases that second order derivatives are 

very effective in improving accuracy of approximations[S-13] and efficiency of 

design[7, 11, 12]. In almost all instances, eigenvalues are non-linear functions 

of system parameters and a second order approximation offers a wider range 

of applicability compared to the first order approximation. Intermediate 

Introduction 3 

----------' ___ _:______:_ __ --------------



variables which may improve the quality of first order approximations are not 

generally available for eJgenvalue approximations. Also, some op1imization 

algorithms require second order derivatives, and first order derivatives of 

optimal solutions require second order derivatives of constraints[13]. The use 

of second derivatives can also greatly reduce the number of reanalyses 

required for the convergence of an optimization procedure[11, 14]. Further, in 

, certain opt1mization algorithms, second order approximations for eigenvalue 

constraints can drastically relax the move limits, thus achieving a nearly 

optimum trajectory, and can virtually eliminate the need for trial and error 

adjustment of move limits, ·thus improving the performance of the 

optimizer[14]. Looking at another aspect, in problems where instabilities are 

to be avoided, a first order calculation may completely fail to detect 

instabilities[6]. References [15, 16] also offer examples of the usefulness o.f 

second order derivatives. 

1.3 General Matrices 

The problem of calculating the derivatives of symmetric and hermitian 

eigenproblems is relatively simple and solution procedures are 

well-established, e.g.[1T-21]. However, many physical problems give rise to 

non-self-adjoint formulations and thus lead to general matrices. An important 

example is aeroelastic stability which requires the solution of eigenproblems 
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with complex, general and fully populated matrices. General matrices are also 

· obtained in damped structural systems and in network analysis and control 

system design where the eigenvalues are usually called poles. In the present 

study, the emphasis is on general matrices and the special properties of 

matrices, such as symmetry, are not considered. 

1.4 Approximate Updates to Eigenvalues 

Eigenvalue calculation· for any but the smallest systems is an expensive 

process and is a. major contributor to the computational expense of the typical 

dynamic analysis. In the design of structural systems, an iterative 

design/analysis process is performed until a satisfactory design is achieved. 

The cycle of the iterative process consists of an update of the structural 

design, a response analysis and calculation of updated· responses and loads. 

When the process is not automated, a revision of the mathematical model may 

also be present., in typical dynamic analyses, each design cycle is an 

expensive process because the mathematical models are large and the time 

and effort required for analysis of an updated design are often prohibitive and 

greatly reduce the effectiveness of the design process. Apart from the 

computational effort, organizational effort can also be substantial. 

Appreciable cost savings can be realized if a quick evaluation of a change 

in system response resulting from the design changes is possible. An 
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efficient, even if approximate, evaluation of eigenvalues of a modified system 

is valuable in these applications. The value of an approximation depends on 

its efficiency as well as its accuracy in applications. A quick approximation 

that is valid in a very limited range of design space is of little use as it can 

severely reduce the global efficiency by requiring many more evaluations for 

convergence of the design process. 

Several researchers have worked on suitable approximations for 

eigenvalues of a modified design. However, in the past, attention seems to 

have been restricted to real symmetric systems which have eigenvalues in the 

real number field. It is one of the objectives of the present work to extend the 

techniques of approximation to general (complex non-hermitian) systems and 

perform a comparative analysis of the various techniques. 

1.5 Objectives of the Present Work 

The objectives of.the present research are to: 

1. Review and perform a comparative analysis of the various methods 

available for calculating the derivatives of eigenvalues and eigenvectors 

of general matrices. 

2. Propose and evaluate some modifications to existing techniques. 

Introduction 6 



3. Formulate guidelines for selecting the most efficient computational 

algorithm for particular applications. 

4. Review the various approximations to eigenvalues for real symmetric 

systems and extend them to the case of complex general systems. 

5. Compare the various approximations in terms of efficiency and accuracy 

for some systems. 

1.6 Outline 

Chapter 2 reviews the various methods available for the calculation of 

derivatives of eigenvalues and eigenvectors for general matrices. The 

important consideration of normalization of eigenvectors of complex general 

matrices, which has not been adequately dealt with in the literature, is 

discussed. A new algorithm to calculate the derivatives of eigenvalues and 

eigenvectors simultaneously, based on a better normalizing condition, is 

described and important numerical aspects regarding the implementation of 

the algorithm are discussed, with consideration being given to sparse 

matrices. The various algorithms are classified as Adjoint or Direct. 

The efficiency considerations of the various algorithms are examined in 

Chapter 3. Operation counts are presented in terms of matrix size, number 

of design parameters, and the number of eigenvalues and eigenvectors of 
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interest. Actual CPU times are also presented for typical matrices for a range 

of parameters that influence the efficiency of the algorithms. 

Chapter 4 provides a survey of approximation methods proposed in the 
J 

.literature for real symmetric matrices, describing their special features. The 

approximation methods are extended to complex general matrices wherever 

feasible. Some approximation methods which do not seem to have been 

applied in the past are also presented. The approximation methods are 

classified on the basis of their theoretical origin. 

Numerical results from applying the proposed techniques of 

approximations are presented in Chapter 5. Operation counts are presented 

in terms of matrix size, number of design parameters, number of eigenvalues 

of interest and the number of times the approximation is to be performed. The 

approximation techniques are applied to typical matrices ~nd random matrices 

and are evaluated in terms of their accuracy and efficiency. 

Chapter 6 contains the concluding remarks. General guidelines for 

selecting approximation methods and algorithms for calculation of eigenvalue 

and eigenvector derivatives are summarized. This chapter also contains 

remarks about the limitations of the present work and recommendations for 

further research. 
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· Chapter 2 

Derivatives of Eigenvalues and Eigenvectors for 

General Matrices 

2.1 Problem Definition' 

The matrix eigenproblem is defined as follows: 

(2.1.1) 

and the corresponding adjoint problem is 

(2.1.2) 
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where A is a general complex matrix of order n. and f...{k), u(k) and y(k) are the 

k -th eigenvalue and right and left eigenvectors respectively. A superscript T 

denotes the transpose. 

(The adjoint problem is defined by some authors in an alternative form as 

where superscript * denotes a ·conjugate-transpose. Howeyer, the notation of 

eq. (2.1.2) is more popular in the literature on structural dynamics) .. 

The eigenvalues and eigenvectors are complex and do not necessarily 

occur in complex-conjugate pairs. All eigenvalues are assumed to be distinct. 

The matrix A and hence, t,.(k), u(k) and v(k) are functions of design 

parameter vector p with individual parameters denoted by Greek subscripts, 

e.g. Pa· Derivatives with respect to Pa are denoted by the subscript , a. e.g., 

g~ = A. a . All the design variables are assumed to be real. 

The well-known biorthogonality properties of the eigenvectors are given 

by .· 

(2.1.3) 

and 

(2.1.4) 
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Note that, the left hand side of eq. (2.1.3) is not an inner product as usually 

understood, since v(i) and/or uV1 may be complex vectors. Note also that the 

left eigenvectors of A are the right eigenvectors of AT and vice versa. I\ 

2.2 Normalization of eigenvectors 

The eigenvectors u(k) and v(k) are not completely defined by eqs. (2.1.1) 

and (2.1.2). A normalization condition has to be imposed to obtain unique 

eigenvectors. For brevity, let us consider only the normalization of the right 

eigenvector. A normalizing condition frequently imposed in the self-adjoint 

case is the following: 

(2.2.1) 

However, it is not always possible to use, eq. (2.2.1) for non-self-adjoint 

problems as u(k)T u{k) can equal zero _or a very small number causing numerical 

::::,~ti:•~ I~is .~:re ~:~:~~:a:e:~t::~i:e::',·e a::~f::,::Y e~~:t:x:m~~: 
literature regarding this point and several authors arbitrarily adopted 

eq.(2.2.1) as a normalizing condition for non-self-adjoint problems, 

e.g.[11,12,15,22..;25]. In this respect, the formulations of these references are 

not rigorous for general matrices. 

One possible way to avoid the above difficulty is to replace eq.(2.2.1) by 
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(2.2.2) 

where superscript* denotes a conjugate-transpose. Eq. (2.2.2) is not prone to 

the difficulties of eq. (2.2.1) because u(k)*u(k) is always guaranteed to be 

non-zero. But, eq.(2.2.2) is not a complete normalizing condition as it does not 

render the eigenvector unique. If u satisfies eq.(2.2.2), then w = ueic, where 

i = .J--::::i- and c is an arbitrary real numt5er, also satisfies eq.(2.2.2). Despite 

this limitation, eq.(2.2.2) can be used satisfactorily in certain 

formulations[26,27]. 

Another normalization condition, inspired by the biorthogonality property 

of the left and right eigenvectors, is 

(2.2.3) 

Eq.(2.2."3) also does not fender the eigenvectors unique, since a pair 

u(k), v(k) can be replaced by cu(k),(1/c)v(k), where c is an arbitrary non-zero 

complex number, and still satisfy eq. (2.2.3). Again, this is not necessarily a 

severe restriction for calculation of the derivatives of eigenvectors[S, 16,28-30]. 

It must, however, be emphasized that if the eigenvector is not unique, nor is 

its derivative. 

The normalization condition 

u(k) = 1 m 
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is very attractive because it renders the eigenvectors unique and at the same 

time, the index m can be chosen easily to avoid ill-conditioning. Apparently, 

only Nelson[31] used this normalizing condition in obtaining the derivatives 

of eigenvectors. The index, m, may be chosen such that 

Another choice form, used by Nelson[31], is 

= max I u?) I I v;(k) I 
i 

(2.2.5) 

(2.2.6) 

The nature of uncertainty al the derivative of the eigenvector is of some 

interest. Without a normalizing condition, an eigenvector is uncertain to the 

extent of a non-zero constant multiplier. The derivative of an eigenvector is 

uncertain to the extent of an additive multiple of that eigenvector. To show 

this, let u(k) be an eigenvector so that w(k) = cu(k) is also an eigenvector. 

Then, if Pa is a design parameter, 

(2.2.7) 

The quantity d = 0°c is not zero since the quantity c is not really a 
Pa 

constant, but is a function of the nature of the normalization criterion. In 

practice, the constant d depends on the way the eigenvectors u(k) and w(k) are 

normalized. 
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2.3 Methods of Calculation 

The various methods of calculating the derivatives of eigenvalues and 

eigenvectors can be divided into three categories: 

1. Adjoint Methods, which use both the right and the left eigenvectors. 

2. Direct Methods, which use only the right eigenvectors. 

3. Iterative Methods, which use an iterative algorithm that converges to the 

required derivatives. 

2.3.1 Adjoint Methods 

The first expressions for the derivatives of eigenvalues of a general matrix 

seem to have been derived by Lancaster[32]. Considering only a single 

parameter, Lancaster obtained the following expressions for the first and 

second derivatives of an eigenvalue: 

(2.3.1) 
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(2.3.2) 

Eq. (2.3.1) can be obtained in the following manner. Differentiate eq. (2.1.1) 

with respect to the parameter Pa to obtain 

A u(k) + Au{k) = /.., (k)u(k) + /.., (k)u(k) 
,a ,a ,a ,a (2.3.3) . 

Premultiplying both sides by v(k)T, we get 

(2.3.4) 

The last terms in the expressions on both sides are equal due to eq. 

(2.1.2), so that 

(2.3.5) 

Eq. (2.3.1) follows immediately. Eq. (2.3.2) is derived in its more general form 

later. An expression corresponding to eq. (2.3.1) for a non-linear eigenvalue 

problem 

(2.3.6) 

was obtained by Pedersen and Seyranian[33] in a similar manner as 
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(2.3.7) 

To obtain the second derivatives of eigenvalues, the first derivatives of left 

and right eigenvectors are calculated either explicitly[5,12,16,26,30] as in eq. 

(2.3.16) or implicitly[12,15,32] as in eq. (2.3.18). Since the e.igenvalues are 

assumed to be distinct, the·set of eigenvectors forms a basis for the h-space 

and the fir:.st derivatives of eigenvectors can be expressed in terms of the 

eigenvectors as 

u(k) = £ c . u(J) and 
, a j= 1 kJa 

v(k) = £ d · v(J) 
, a j= 1 kJa (2.3.8) 

Now, the calculation of the first derivatives of eigenvectors reduces to the 

evaluation of the coefficients ckja and dkja: 

Premultiplying eq. (2.3.3) by y(J)T, where j -::P k , we get 

(2.3.9) 

Now, substituting the expansions of eq. (2.3.8) and using eqs. (2.1.1) and (2.1.2) 

and the bi-orthogonality property of eq. (2.1.3), we obtain 

k -::p j (2.3.10) 
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Proceeding in a similar manner after differentiating eq. (2.1.2) with respect to 

the parameter Prv we obtain 

k ::fo j (2.3.11) 

/· 

The above expressions for the coefficients ckja and dkja were obtained by 

Rogers[29]. 

It can be observed that 

(2.3.12) 

Reddy[34] derived an equivalent expression for· the response derivative by. 

casting the derivative as the solution of a forced response problem for the 

same system. 

Note that, in view of eq. (2.2.7), the coefficients ckka and·dkka. in eq. (2.3.8) 

are arbitrary and depend on the normalization of the eigenvectors. For 

example, if eq. (2.2.4) is used to normalize the right eigenvectors, then 

n (J) 
l: ckJ"a. Um 

j= 1 
j#-k 

and if eq. (2.2.3) is used to normalized the left eigenvectors, then 
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It has been proposed[31,35,36] that the eigenvector derivative be 

approximated by using less than the full set of eigenvectors in the expansion 

of eq. (2.3.8) so that the evaluation of eigenvector derivative by Adjoint method 

could become cheaper~ This variant of Adjoint method has received mixed 

reports in the literature[31,35]. The quality of such an approximation is difficult 

to assess beforehand and the selection of the number of eigenvectors to be 

retained in the expansion is problem dependent. It is not considered in this 

work because a meaningful comparison with other methods cannot be easily 

be made. However, this consideration should not be ignored while 

implementing the sensitivity calculations for particular problems. 

The expressions for the second derivatives of eigenvalues were obtained 

by Plaut and Huseyin[30]. Fat the sake of. simplicity in expressions, let us 

assume, without loss of generality, that the right and left eigenvectors are 

normalized as in eq. (2.2.3). Eq. (2.3.1) can then be written as 

(2.3.15) 

Differentiating with respect to a parameter p~ uncorrelated to the parameter 

Pa• we obtain 

(2.3.16) 

which can be equivalently written, without involving the derivative of the left 

eigenvector, as 
\ 
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Eq. (2.3.16) can be rewritten using eqs. (2.3.10) and (2.3.11) as 

(k) _ (k)T (k) n (k) _ (J) _ 
A., a~ - v A, a~U + j~ 1 (A. A. )(ckjadkj~ + ckj~dkja) (2.3.18) 

j:;!:.k 

Crossley and Porter[S,28] derived similar expressions for derivatives with 

respect to the elements of the matrix. Expression for the N~th order diagonal 

derivative was derived by Elrazaz and Sinha[9] and it is 

(2.3.19) 

Morgan[37] developed a different computational approach for the 

derivative of an eigenvalue without requiring the eigenvectors explicitly. His 

expression is equivalent to 
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trace of {[ adj(A - A. (k)I) ]A a} 
A. (k) = ' 
'a trace of adj(A - A. (k)I) · 

(2.3:20) 

The corresponding expression for derivatives with respect to matrix elements 

was derived by Nicholson[38]. 

It can however be shown that{39] 

(2.3.21) 

where tk is a constant and that[40] 

/ 

trace of {[ adj(A - A. (k)I) ]A, a} = tkv(k)!A, au(k) 

trace of adj(A - A. (k)I) = tkv(k)T u(k) 
(2.3.22) 

/ 

Thus, in the compu~ion of adj(A - J..(k)I), both right and left eigenvectors 

are implicitly computed, in view of eq. (2.3.21). Eqs. (2.3.22) also show that 

Morgan's eq. (2.3.20) is equivalent to Lancaster's eq. (2.3.1). Woodcock[41] 

also obtained formulas invo.lving the adjoint matrix for the first and second 

derivatives of eigenvalues. An operation count shows that calculation Of the 

adjoint matrix is several times more expensive than the explicit calculation of 

right and· left eigenvectors so that Lancaster's formula is preferable to 

formulas requiring the adjoint matrix. This conclusion is also supported by 

sample computations[42]. In addition, although eq. (2.3.20) was used 

satisfactorily for small problems[43,44J, numerical difficulties were reported for 

reasonably large problems[45]. Woodcock's formula for the second derivative 
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of the eig·envalue requires a partial derivative of th_e adjoint matrix and this is 

so complicated that Woodcock himself recommends the finite difference 

method. Formulas due to Morgan and Woodcock are not therefore com~idered 

in the following. 

In calculating the derivatives by Adjoint Methods, i.e., using eqs. (2.3.1), 

(2.3.8)-(2.3.18), 

• the first derivative of an eigenvalue requires the corresponding right and · 

left eigenvectors. 

• the first derivative of an eigenvector requires all the left and right 

, eigenvectors. 

• the second derivative of an eigenvalue requires the corresponding right 

and left eigenvectors and their first derivatives. 

2.3.2 Direct Methods 

The second category comprises methods that evaluate the derivatives 

using only the right eigenproblem. Direct methods typically involve either the 

evaluation of the characteristic polynomial or the solution of a system of linear 

simultaneous equations without requiring all the left and right eigenvectors. 

Methods requiring the evaluation of the characteristic polynomial and the 

derivative of the determinant[45,46] are O(nS) processes while other methods. 
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c.onsidered here are at most O(n3) processes. In addition, the determination 

of the characteristic polynomial is, in general, an unsatisfactory process with 

respect to numerical stability, even when all the eigenvalues are 

weH-conditioned[47]. While numerically stable algorithms have been 

proposed for evaluation of the characteristic polynomial[48], the computational 

expense still seems to be formidable. Hence, we do not consider these 

methods. Methods requiring the solution of a system of equations have the 

particularly attractive feature that the coefficient matrix needs to be factored 

only once for each eigenvalue regardless of the number of parameters and the 

order of the derivatives required. Thus, they are very useful in applications 

where higher order derivatives are required. 

The earliest method in this class is due to Garg[22] who obtained the first 

derivatives of the eigenvalue and the eigenvector by solving two systems of 

(n + 1) equations each in the real domain, without requiring any left 

eigenvectors. 

multiplications. 

However, his formulation involves several matrix 

Rudisi11[23] proposed a scheme in which only the 

corresponding left and right eigenvectors are required to calculate the first 

derivative of the eigenvalue and the eigenvector. This was refined by Rudisill 

and Chu[24] to avoid calculating the left eigenvectors altogether. Solution of 

a system of only (n + 1) equations is required (though in the complex domain) 

to obtain the first derivatives of eigenvalue as well as eigenvector. Extension 

to higher order derivatives is straightforward. Cardani and Mantegazza[25] 
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proposed solution methods of the same formulation for sparse matrices and 

extended it to the quadratic eigenproblem. 

One weakness that is common to all the above formulations that do not 

require left eigenvectors[22-25] is that they rely on the normalization condition 

given by eq. (2.2.1), which is unreliable as discussed earlier. 

Nelson[31] circumvented this difficulty by using the normalizing conditions 

and u(k) = 1 m (2.3.23) 

However, the formulation of Rudisill and Chu is superior to Nelson's 

formulation in that it does not require any left eigenvectors. 

In this work, we propose a variation of the Rudisill and Chu formulation 

which does not rely on the questionable normalizing condition of eq. (2.2.1) 

and at the same time requires no left eigenvectors. 

Differentiating eq. (2.1.-1 ), we get 

(2.3.24) 

which can be rewritten in partitioned matrix form as 

- A . u(k) 
I a. (2.3.25) 

Now, we impose the normalizing condition of eq. (2.2.4). Differentiation of 

eq. (2.2.4) yields, 
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u(k) = 0 
m, a (2.3.26) 

Because of eq. (2.3.26), the m-th column of the coefficient matrix in eq. 

(2.3.25) can be deleted. Eq. (2.3.26) also reduces the number of unknowns by 

one so that eq. (2.3.25) is now a system of n equations in n unknowns. Eq. 

(2.3.25) is rewritten as 

(2.3.27) 

where 

- u(k)] . 
m-th column deleted 

u(k) { ,<I} 
Y1 = -(k) 

A., a with m-th element deleted 

r= - A u(k) 
' a (2.3.28) 

To get second derivatives, differentiate (2.3.24) with respect to Pp and get, 

(2.3.29) 

or, in partitioned matrix form, 
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u<k) 
-u(k)J{-·a!} = - A r.tU(k) - (A - A.(k)l)u(kJ 

A. (k) , a.., , a , a , 13 
'af3 (2.3.30) 

Following the same reasoning as before, eq. (2.3.30) is written as 

(2.3.31) 

where 

u(k) 

{ .a~} Y2 = - -
A.~~~· with m-th element deleted 

. (2.3.32) 

Note that; if A,(k) is a distinct eigenvalue of A and if u~) # 0, then the matrix 

A is of rank (n - 1) and the m-th column that is deleted is linearly dependent 

on the other columns. Hence the matrix B is non-singular. The matrix B will 

also be well-conditioned if u~) is the largest component in the eigenvector 

u{k) and the matrix A is itself not ill-conditioned. The vectors y1 and y2 can be 

obtained by standard solution methods. If the matrix A is banded or if the 
i' 

derivatives of both right and left eigenvectors are required, it may be more 

efficient to use a partitioning scheme as described below. 
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2.3.3 Modification of Direct Method for Banded Matrices 

Equations (2.3.27) and (2.3.31) can be written as 

- (k) (k) ' - (k) (k) -
(A f... l)m-th column deletedu, a m-th row deleted f..., au - r (2.3.33) 

Let u(k) be normalized so that ut/{) = utf{b = constant 

Eq. (2.3.33) is a system of n equations. Writing the m-th equation 

separately, we .have,. if the superscript (k) is omitted for notational 

convenience, 

Cx -/... x=t ,a ,a (2.3.34) 

and 

(2.3.35) 

where 

C = (A - A.l)m-th row and column deleted 

x, a = u, a m-th row deleted 

X = Um-th row deleted 

t = rm-th row deleted 
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a~ = m-th row of Awith the m-th column deleted 

From (2.3.35), 

(2.3.36) 

From (2.3.34), 

(2.3.37) 

Eliminating x a• we have 
' 

'A. = ,a ,(2.3.38) 

where 

Proceeding in a similar manner for the left eigenvector, 

(2.3.39) 

where 

Y, a = v, a m-th row deleted 

Y = V m-th row deleted 
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t, = (r1)m-th row deleted 

r1 being the appropriate right hand side. 

Thus the following procedure can be used to obtain the derivatives A. a and 
' ' 

1. Form a LU decomposition of the matrix C. 

2. Solve bm = [CT]-1am by forward substitution. 

3. Calculate A., a from (2.3.38). 

4. Calculate x a from (2.3.37) by backward substitution. 
' I 

5. Expand x, a to 'u, a setting um, a = 0. 

If the derivatives v, a of the left eigenvectors are also required, only three 

further steps are needed. 

6. Calculate Y, a from (2.3.39) by forward substitution. 

7. Expand Y,a to v,a setting Vm,a = 0. 

8. Normalize v, a appropriately depending on the normalization of v. fo,r 

example, to obtain the derivative of the left eigenvector that satisfies the 

normalization condition of eq. (2.2.3), subtract (vr u, a + v;au)v . 
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The matrix C needs to be factored only once. Also, the matrix C retains 

the bandedness characteristics of the ori.ginal matrix A, so that advantage can 

be taken of it. Furthermore, higher order derivatives can be obtained by 

merely substituting an appropriate right hand side vector, r. However, higher 

order derivatives can suffer in accuracy because of accumulated round-off 

error. 

The conditioning of matrix C needs some co~ment. Note that C is 

obtained from the singular matrix (A - A,(k)1) by deleting both the row and 

column corresponding to index m. Hence, for matrix C to be non-singular, one 

must make sure that the m-th row is linearly dependent on the other rows as 

well as that the m-th column is linearly dependent on the other columns. In 

other words, C is non-singular iff u~) ¥= 0 and v~) ¥= 0 . If v~) is very small 

compared to the largest element in v(k), steps 2 and 4 in the above procedure 

will give inaccurate results even if u~) is the largest element in u(kl. In 

general, it is not possible to make a good choice for m without the knowledge 

of the left eigenvector. Since the calculation of left eigenvector using forward 

substitution in an inverse iteration scheme is cheap (as explained later in 

Section 3.1 ), it is suggested that the left eigenvector be calculated and the 

index m be chosen as in eq.(2.2.6). This is the same criterion used by 

Nelson[31] and will assure as well-conditioned a matrix C as possible. 

In summary, we note that, in calculating derivatives by Direct Method, 

• left eigenvectors are not used. 

Derivatives of Eigenvalues and Eigenvectors for General Matrices 29 

__ (.: ______ _ 



• a complete solution of the eigenvalue problem is· not required, if the 

derivatives of only a few of the eigenvalues and eigenvectors are sought. 

This is in contrast to Adjoint Method which requires all the left and right 

eigenvectors to calculate the first derivative of any eigenvector. 

• calculation of any derivative requires the solution of a system of linear 

equations. 

• only one matrix factorization needs to be performed for all orders of 

derivatives of an eigenvalue and its corresponding right and left 

eigenvectors. 

2.3.4· Iterative Methods 

Andrew[27] proposed an iterative algorithm to calculate the first 

derivatives of eigenvalues and eigenvectors. This algorithm is a refined and 

generalized version of the iterative scheme developed by Rudisill and Chu[24J. 

Except for the dominant eigenvalue, the convergence of this algorithm seems 

to be very much dependent on the choice of the initial values for the 

derivatives. To be efficient for non-hermitian matrices, this iterative method 

requires a complex eigenvalue shifting strategy which is not easy to 

implement. Hence this method is not considered. 
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Chapter 3 

Efficiency Considerations in Calculating Derivatives 

In order to establish criteria for the selection of the most efficient algorithm 

for calculating the derivatives of eigenvalues and eigenvectors in a given 

application, we compare the operation counts and actual CPU times required 

by Adjoint and Direct methods. The decision as to which algorithm is best is 

necessarily problem-dependent. The comparison is, however, described in 

terms of three variables that can usually be ascribed to a given problem and 

which significantly influence the decision. These variables are 

1. the size of the matrix n 

2. the number of design parameters m 

3. the number of eigenvalues of interest /. 
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3.1 Operation Counts 

To start with, let us consider the operation counts (multiplications and 

divisions only) for the adjoint methods given by eqs. (2.3.1 ),(2.3.8)-(2.3.18) and 

the direct methods given by eqs.(2.3.27)-(2.3.32). They are summarized in 

Table 1. It should be noted that the operation counts represent an estimate 

of the actual number of operations performed by a solution routine and include 

only the most significant terms. The actual number of operations will vary 

slightly depending on programming details. The effect of the sparsity of the 

matrix derivative A, a is modeled in the operation counts by the parameter K, 

defined such that the number of operations in evaluating the product A, au is 

equal to Kn2(that is, K = 1 corresponds to a full A, a). 

The eigenvalues are calculated using the EISPACK subroutine package[49] 

by first reducing the matrix to upper hessenberg form using unitary similarity 

transformations and then applying the QR algorithm. The number of 

operations and the CPU time for calculating the eigenvalues is not relevant in 

evaluating the methods to calculate the derivatives. The operation count for 

eigenvalue computation is given only for comparison. 

The right eigenvectors are calculated by inverse iteration on the same 

upper hessenberg matrix used for calculating the eigenvalues and are back 

transformed using standard subroutines in the package EISPACK. The 

corresponding operation count is given in Table 1. The inverse iteration 

algorithm is an extremely powerful method for computing eigenvectors and is 
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much superior in accuracy as well as speed of convergence to the common 

alternative algorithms based on the solution of homogeneous equations or 

direct Iteration. Algorithms based on the solution of homogeneous equations 
I 

are limited in their accuracy by the accuracy of the eigenvalue and those 

based on direct iteration are limited in their convergence, particularly·. for 

eigenvectors not corresponding to either the largest or the smallest 

eigenvalu~. 

For the calculation of left eigenvectors, it is important to note that there is 

no need to repeat the process with the transposed matrix. The left 

eigenvectors are obtained cheaply using forward substitution in place of 

backward substitution in the inverse iteration process. There is also. no need 

to repeat the matrix factorization. A subroutine was written to calculate the 

.right and left eigenvectors in this manner and the corresponding operation 

count is. given in Table 1: 

Table 1 gives the operation count of evaluating the individual steps. To 

obtain the number of operations involved in evaluating the derivatives, we 

must add the operation counts for all the steps required in the calculations. 

These counts are given in the following discussion, 
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Table 1. Operation Counts 

Eigenvalues and Eigenvectors 

Operation 

Evaluation of eigenvalues 
Evaluation of right eigenvectors 

Evaluation of left eigenvectors 

Operation Count 

Bn 3 to 1Qn3 
/(2n2) 

t(ln2) 
2 

Adjoint Methods 

Operation 

Evaluation of eq. (2.3.1) 
Evaluation of eq. (2.3.8), 

(2.3.10),(2.3.11) 

Evaluation of eq. (2.3.18) 

Operation Count 

lmn2K 
/mn2(K + 2) 

Direct Methods 

Operation 

LU decomposition of matrix B 
Formulation and solution of eq.(2.3.27) 

Formulation and solution of eq.(2.3.31) 
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3.2 CPU Time Statistics 

In the following tables, computational cost for the calculation of the first 

and second derivatives of eigensystems are compared for matrices of order 

20, 40 and 60. The CPU time statistics are obtained on the IBM 3084 computer 

using the VS-FORTRAN compiler with no compiler optimization. The 

corre.lation between operation counts and CPU times is shown in Tables 2 and 

3. The ratio of operation count(OC) and CPU time for various operations, 

tabulated in Tables 2 and 3, is about 10s operations per CPU second with a 

variablity of 27 percent. 

The typical matrices are generated for the dynamic stability aeroelastic 

analysis of a compressor stage rotor with mistuned blades. The geometric and 

structural parameters of the rotor and formulation and method of analysis are 

the same as those of NASA Test Rotor 12 described in reference[50] except 

that the number of blades and the torsional frequencies are varied. The 

torsional frequency values are selected randomly from a population of mean 

1.0 and standard deviation 0.01. The standard deviations of the actual 

samples are slightly different. 
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Table 2. Correlation between Operation Count(OC) and CPU time 

n 

60 
60 

n 

60 
60 

n 

60 
60 
60 
60 

n 

60 
60 
60 
60 

I 

60 
10 

Calculation of right eigenvectors 

QC/CPU seconds (x1 o4) 

8.6 
8.3 

Calculation of right and left eigenvectors 

I QC/CPU seconds (x1 o4) 

60 8.5 
10 9.2 

Evaluation of eq. (2.3.1) 

I m QC/CPU seconds (x1 o4) 

60 10 10.7 
60 5 10.7 
10 10 10.7 
10 5 10.7 

Evaluation of eq. (2.3.8),(2.3.10),(2.3.11) 

I m CC/CPU seconds (x1 o4) 

"60 10 12.0 
60 5 11.9 
10 10 11.9 
10 5 11.9 
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Table 3. Correlation between Operation Count(OC) and CPU time(Contd.) 

Evaluation of eq. (2.3.18) 

n I m OC/CPU seconds (x1 o4) 

60 60 10 9<1 
60 10 5 7.4 

Decomposition of matrix B 

n I OC/CPU seconds (x1 o4) 

60 60 8.5 
60 10 9.2 

Evaluation of eq. (2.3.27) 

n I m OC/CPU seconds (x1 o4) 

60 60 10 12.9 
60 10 5 13.0 
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3.3 Calculation of First derivatives of Eigenvalues only 

Adjoint Method 

Direct Method 

Operation Count 

/( ~ n2 + Kmn2) 

3 
/[..!L + (ic + 1·)mn2] 

3 

-- ---------

It is clear from the operation count that the Adjoint Method, which is an 

O(n2) process, is superior to Direct Method, an O(n3) process, for large n. The 

number ofdesign variables and the number of eigenvalues of interest have no 

bearing on this conclusion. As the order of the matrix increases, the direct 

method becomes more expensNe. For example, for 5 design variables and 

10 eigenvalues of interest, the CPU time for the Direct method is 2.3 times , 
more expensive than for the Adjoint Method for n = 20, and for n = 60, the 

ratio is 3.0. 
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3.4 Calculation of First derivatives of Eigenvalues and 

Eigenvectors 

Adjoint Method 

Direct Method 

Operation Count 

1-na + /mn2(K + 2) 
2 

1~3 + /mn2(K + 1) 

When the derivatives . of both eigenvalues and right eigenvectors are· 

required, the choice of method is dependent on the values of I and m. When 

very few eigenvalues are of interest, the Direct method is cheaper. When 

many eigenvalues are of interest, the Direct method is more expensive than 

the Adjoint method. However, this effect of the number of eigenvalues of 

interest is less significant when the number of design variables is large. As 

the number of design variables increases, the direct method becomes more 

competitive, even when all eigenvalues are of interest. For a 60 x 60 full 

(K = 1) matrix, this is illustrated in Figure 1 on page 40. 

The operation count shows that the computation by adjo·int method of 

eigenvector derivative, which is necessary for the second derivative of 

eigenvalue, is an O(n3) process and is more expensive than the computation 
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of the eigenvector itself which is an O(n2) process using the procedure 

described in Section 3.1. This fact is significant as some authors have stated 

the opposite[6,7]. 
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3.5 Calculation of First and Second derivatives of 

Eigenvalues only 

Operation Count 

Adjoint Method 

Direct Method 

Direct-Adjoint Method 

The Direct-Adjoint Method denotes the calculation of the eigenvector 

derivatives by the Direct method and the eigenvalue second derivatives by the 

Adjoint Method. The third term in the operation count for the Direct-Adjoint 

Method is significant only when m is small. From the operat!on count, it is 

seen that the Direct-Adjoint Method is always cheaper than the Direct Method. 

Hence, the choice lies between the Adjoint Method and the Direct-Adjoint 

method. Here, considerations similar to those of the last section hold and the 

choice of method depends on the values of I and m. When few eigenvalues 

are of interest, the Direct-Adjoint method is cheaper. When many eigenvalues 

are of interest, the Adjoint method is superior. But this advantage of Adjoint 
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Method diminishes as the number of design variables increases. This is again 

illustrated for a 60 x 60 full matrix (ic = 1) in Figure 2 on page 43. 

I 
I 
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Chapter 4 

Approximate Eigenvalues of Modified .Systems 

4.1 Introduction 

The eigenvalue problem to be solved is 

(4.1.1) 

and 

(4.1.2) 

where A is a general complex matrix of order nand A,(k), u(k) and v(k) are the 

k -th eigenvalue and right and left eigenvectors respectively. 
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The matrix A differs by a small amount from a nominal matrix A0. The 

eigenvalues A.0 and the right and left eigenvectors u0 and v0 are taken to be 

known. 

and 

A= Ao+ /iA 

A U(k) _ 1 (k)u(k) 
0 0 - 1\,0 0 

V(k) TA _ 1 (k)v(k) T 
0 0 - 1\,0 0 

(4.1.3) 

(4.1.4) 

(4.1.5) 

Throughout this chapter, we will also assume that the l~ft eigenvectors are 

normalized such that 

(4.1.6) 

The eigenvalues A, and the eigenvectors u and v can be written as 

(4.1.7) 

Let Pao be the vector of nominal design variables and lipu be a vector of 

perturbations from the nominal design variables so that 
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(4.1.8) 

and 

(4. t.9) 

Approximate quantities are denoted by the subscript a. For example, an 

approximation for the eigenvalue t.Jk) is denoted by'/1.~k). All derivatives are 

evaluated at the nominal design. 

An exact relation exists between AA., 6.A, 6.u and 6.v as follows: 

"-bk) + Vbk)T 6.Aubk) + "-W)(vbk)T 6.u(k) + Av{k)T uo) 

+ v(k)T AAl:!..u(k) + Av(k)T A Au(k) 0 . 0 

+ 6.v(k)TAAu0(k) +. A.v(k)T AAl:!..u(k) 
A. (k) = -------------------

1 + 6.v(k)Tu0 + v66.u + 6.v(k)T Au(k) 
(4.1.10) 

The object is to obtain A.(k) without solving a full eigenvalue problem. A.(k) 

can be obtained exactly using eq. (4.1.10), if Au and Av are known. Since the 

exact values Au and 6.v cannot be obtained without solving a full eigenvalue 

problem, various approximations can be formed based on the above 

expression. 

The approximations are broadly class.ified into 

1. Derivative based approximations 

2. Rayleigh-Quotient based approximations 
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3. Trace-theorem based approximations 

4. Others 

4.2 Derivative Based Approximations 

Derivative based approximations are of special importance in optimization 

problems because first derivatives are required anyway in most optimization 

algorithms. 

· The most common of the derivative based· approximations are based 

directly on truncated Taylor series. We. will consider Linear and Quadratic 

approximations in this category. The enormous cost associated with the 

computation of . any higher derivatives with multiple design variables 

effectively precludes the possibility of using higher order approximations 

based on the Taylor series. 

4.2.1 Linear Approximation(LIN) 

This is the simplest approximation to be considered in this work. Linear 

Approximation is obtained by truncating the Taylor series expansion for the 

eigenvalue after two terms. 
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m (f;..,.(k) 
'A(k) = 'A(k) + I: --1),.p 

a 0 a= 1 opa a (4.2.1) 

A linear approximation is usually inadequate in terms of accuracy because 

eigenvalues are often highly non-linear functions of design variables. The 

linear approximation will be referred to herein as LIN approximation. 

4.2.2 Quadratic Approximation(QUAD) 

The Quadratic approximation is obtained by truncating the Taylor series 

expansion for the eigenvalue after three terms. 

(4.2.2) 

The quadratic approximation can be quite expensive for large orders of the 

matrix or large number of design variables. Miura and Schmit[14] used a 

simplified form of the quadratic approximation and found that, considering 

global efficiency, the higher cost of the quadratic approximation can 

sometimes offset the higher accuracy in an optimization problem. The 

quadratic approximation will be referred to herein as QUAD approximation. 

Because of these efficiency considerations, attempts were made to 

improve the accuracy of the linear approximations through the use of 

intermediate variables with respect to which the eigenvalues may be nearly 
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linear. However, Miura and Schmit[14] concluded that such intermediate 

variables cannot be found for a general structural problem. 

The accuracy of linear approximations can also be improved in another 

fashion. This is by introducing non-linearities without, however, introducing 

the second derivatives, which are expensive to calculate. 

4.2.3 Conservative Approximation 

In optimization applications, it is often desired to have a conservative 

approximation. For eigenvalue problems, this usually means underestimating 

the· eigenvalues. Starnes and Haftka[51] proposed a hybrid approximation, 

which is a combination of a linear approximation and a reciprocal 

approximation (linear in 1/pa ) such that it is the most conservative 

combination of the two. Since this approximation is only applicable to real 

quantities, it is applied to the real part and/or the imaginary part of the 

eigenvalue as required in particular applications. 

(4.2.3) 

where 

Approximate Eigenvalues of Modified Systems 50 



ot... (kl 
1 if --~o 

Ba. 
opa. 

= 
Pa.a ot... (kl 

if -->O Pa. opa. 

Even though this approximation is not, in general, more accurate than the 

linear approximation, it is popular because it is more conservative than the 

linear approximation and it is also convex. 

4.2.4 Generalized Inverse Power Approximation 

Non-linearities can also be introduced into the linear approximation in a 

more direct manner, as in the Generalized Inverse Power approximation, 

described by Prasad[52,53]. 

The linear approximation is first reformulated as 

~a(k) -- ~o(k) + " I 't' ~ m [ of... (k) Offla. ] 
/\, /\, ,... ---- v<pa. 

a.= 1 opa. opa. 
(4.2.4) 

and the function <i>a. is chosen as 

p~ 
<i>a. = r (4.2.5) 

where r is any real number. 
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Prasad[52] also gave an alternate formulation for r = 0. The real number 

r. is a controlling parameter for the approximation. There is no obvious choice 

for r in a general problem. 

4.2.5 Generalized Hybrid Approximation 

.Woo[54] combined the concepts of the conservative approxim~tion of 

Starnes and Haftka[51] and the Generalized Inverse Power approximation and 

defined a Generalized Hybrid approximation as 

'Aa(k) = f..o(k) + m of.. (k) in ) (. Pa )r 
a~ 1 opa \/Ja - Pao Pao 

where 

r = 

a1..<kl 
g if --;;:::o 

OP a 

. a1..{k) 
g - h if -· -- < 0 . 

0Pa 

(4.2.6) 

g being a real number and h being a positive integer such that 

g ::;::: 0 and g - h ::5:: -1. The choice of g and h is again not obvious, though 

the fact that larger values for g and h make the approximation more 

conservative may provide some guideline. Since this approximation too is 

only applicable to real quantities, it is applied to the real part and/or the 

imaginary part of the eigenvalue as required in particular applications. 
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4.2.6 Reduction Method(RDN) 

A different approach to derivative based approximations is based on the 

Taylor series approximation to the eigenvectors. This consists of reducing the 

original eigenvalue problem to a series of smaller order eigenproblems and is 

inspired by Noor's concept of global approximation vectors[55]. The concept 

of global approximation vectors is extended here to general matrices. 

Noor's formulation is simplified by assuming that the eigenvectors can be 

treated as linear functions of the design variables. For the sake of simplicity, 

consider only one design variable. Let 

(4.2.7) 

and substituting eq. (4.2.7) in eq. (4.1.1 ), we get, 

(4.2.8) 

If the above equation is premulti plied by [ vfj<) v~'i) Jr, then we have 

(4.2.9) 

where 
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and 

Eq. (4.2.9) is a 2 x 2 linear eigenvalue problem and can be solved almost 

effortlessly. Of the two eigenvalues of eq. (4.2.9), the one closest to the linear 

approximation is chosen. In the case of multiple design variables, the only 

change needed is to replace ~:~ and u:~ by the respective derivatives in th.e 

direction of change in design. It can be proved that, if the eigenvectors are 

linear functions of the design variable, eq. (4.2.9) gives an exact eigenvalue 

when u0 and v0 are normalized such that their first derivatives are respectively 

orthogonal to them. This approximation will be referred to herein as the RON 

approximation. · 

4.3 Rayleigh Quotient Based Approximations 

The Rayleigh quotient for the general eigenproblem given by eqs. (4.1.1) 

and (4.1.2) is defined as 

(4.3.1) 

When all the eigenvalues of matrix A are distinct, then the Rayleigh 

quotient R(x, y) has a stationary value at x = u(k) and y = v(k) (the right and 
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left eigenvectors associated with the eigenvalue /..(k) } for k = 1,2, ... , N. 

Further, this stationary value is equal to /..(k)[56]. That is, 

(4.3.2} 

The approximations in this section are based on the above property. They 

seek to approximate the eigenvectors u(k) and v(k) and use them in the 

Rayleigh quotient to calculate the approximate eigenvalue. 

4.3.1 Rayleigh Quotient with Nominal Eigenvectors(RAL 1) 

This approximation is obtained by simply using the nominal eigenvectors 

in the Rayleigh quotient. 

(4.3.3) 

Equivalently, 

.., (k) _ .., (k) + v(k)T AAu(k) 
~a - 11.0 0 Ll O (4.3.4} 

The second expression is cheaper to compute when LlA is sparse. We will 

refer to this approximation as the RAL 1 approximation. 

Approximate Eigenvalues of Modified Systems 55 



4.3.2 Rayleigh Quotient with linearly Approximated 

Eigenv~ctors(RAL2) 

The left and right eigenvectors are approximated from those of the nominal 

matrix using a 2-term Taylor series: 

u(k) = u(k) + ~ u(k) 11p 
a 0 a= 1 , a a 

v(k) = v{k) + ~ v(k) 11p 
a 0 a= 1 , a a (4.3.5) 

The computation of the eigenvector derivatives u~~ and v~~ is discussed 

in Chapters 2 and 3. 

These linearly approximated eigenvectors are then used in a Rayleigh 

quotient to generate an approximate eigenvalue. Our RAL2 approximation is 

therefore given by 

(4.3.6) 

4.3.3 Rayleigh Quotient with Perturbed Eigenvectors(RAL3) 

In this algorithm, the perturbation /1A in the matrix is used to evaluate the 

perturbations in the right and the left eigenvectors either by Adjoint or Direct. 
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Method, which are analogous to the Adjoint and Direct methods described in 

Chapter 2. In the Adjoint method, assuming that the eigenvectors are 

normalized according to eq. (2.2.3) and (2.2.4), the perturbations in the right 
' 

and left eigenvectors, ou(k) and ov(k) respectively, are calculated as follows: 

ou(k) = £ e ·U(J) and 
. 1 kj 0 1= 

where 

ekj = 
vg)r ~A u&k) 

(A-W) - Ag>) 

fkj = 
vW>r~A ug) 

(A.bk) _._ A.g>) 

and 

OV(k) = £ f: ·V(J) 
j= 1 kj 0 

k=l=j 

k =l=j 

(4.3.8) 

(4.3.9) 

(4.3.10) 

(4.3.11) 

McCalley[57] used this approach for error analysis of real symmetric 

eigenvalue problems. Chen and Wada[58,59] and Chen and Garba[60]used an 

equivalent formulation for real symmetric matrices and obtained eigenvalue 

approximations for all eigenvalues of the matrix simultaneously. Faddeev and 

Faddeeva[61] applied this approach to general matrices to improve the 
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accuracy of approximate eigenvalues. Meirovitch and Ryland[62] presented 

an extension to second order perturbations for general matrices. 

In the Direct method, assuming that the right eigenvectors are normalized 

according to eq. (2.2.4), the perturbations in eigenvectors are calculated as 

follows. In eq. (4.1.1), substitute eq. (4.1.3) and 

'A (k) = 'Abk) + 8'A (k) 

(4.3.11) 

to get, after ignoring second order perturbation terms, 

(4.3.12) 

Eq. (4.3.12) is identical to eq, (2.3.24) when the derivatives are replaced by 

perturbations. Hence, the same solution methods described in Section 2.3 can 

be used to solve eq. (4.3.12) for the perturbations in the eigenvector. Thus, 

ou(k) = 0 m (4.3.13) 

and 

Ba8Y =or (4.3.14) 

Where 
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B - [A - 1 (k)I I - u(k)] 0 - 0 /\.Q 0 m-th column deleted 

ou(k) 

oy = {- -} oA. (k) with m-th element deleted 

(4.3.15) . 

The perturbations in left eigenvectors are obtained similarly using forward 

substitution. 

The perturbations in the right and left eigenvectors are used to 

approximate the eigenvectors. Thus, 

(4.3.16) 

The approximate eigenvectors are then used in the Rayleigh quotient as 

in eq. (4.3.6) to form an approximation to the eigenvalue. Ramstad, et. al [63] 

presented both the Adjoint method approach and an equivalent Direct method 

approach of this approximation for real symmetric matrices. However, they 

obtained different numerical results with the two approaches because of an 

error in their expressions for eigenvector perturbation by Adjoint method. 
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4.3.4 Rayleigh Quotient with One-step Inverse lteration(RAL4) 

The Inverse Iteration method has been recognized as a powerful tool for 

accurate computation of eigenvectors[47 ,64]. The unusual feature of the 

Inverse Iteration method is that accurate eigenvectors can be computed even 

when the eigenvalue is not known accurately as long as the eigenvalue is 

close enough to the correct eigenvalue. This feature can be used effectively 

to improve the accuracy of a rapid but rough approximation. In addition, a 

one-step inverse iteration is usually sufficient because most of the 

improvement in accuracy normally occurs in the first step and in a 

modification problem, the nominal eigenvector is available and provides an 

excellent initial iterate. 

In this algorithm, a first approximation A.~kJ to the eigenvalue A,(k) is formed 

as a Rayleigh Quotient (RAL1) given by eq. (4.3.3). This approximation is then 

used in a one-step inverse iteration scheme to obtain approximate 

eigenvectors as follows: 

u1k) = (A - "'-1kf I) -1 ubk) 
v1k) = (AT - "'-1k{I) -1 vbk) 

(4.3.17) 

The approximate eigenvectors are then used in the Rayleigh quotient as 

in eq. (4.3.6) to form an approximation to the eigenvalue. We will refer to this 

approximation as RAL4. 
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Note that the evaluation of the u~k) and v~k) requires only one matrix 

factorization, since the second part of eq. (4.3.17) can be solved by forward 

substitution using the same factored matrix used in solving the first part. 

4.4 Trace-Theorem Based Approximations 

These approximations are based on well-known iterative methods for 

finding the roots of a polynomial. We apply these methods to the 

characteristic polynomial, p('A) of matrix A using only one step of the iteration 

for the approximation. 

The remarkable feature of the approximations in this section lies in the fact 

that the coefficients of the characteristic polynomial need not be calculated 

explicitly. This is achieved by employing the following result, known as the 

Trace Theorem[56]. 

Trace Theorem: If p('A) ¥= 0, then 

'('A) 
f(/..) = _P_ = - [Trace of (A - 'Al)- 1] 

p(/..) 
(4.4.1) 

where p'('A) = :~ . 
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4.4.1 One-siep Newton-Raphson lteration(NRT1) 

Here, we employ the Newton-Raphson formula 

(4.4.2) 

where t..W is an initial approximation for the eigenvalue A,(k). 

Using the Trace Theorem, eq. (4.4.1), an approximation is formulated as 

A.~k) = A.~k{ + _____ 1 ___ _ 
Trace of (A - A.~k{I) - 1 

(4.4.3) 

Note that this approximation requires a matrix inversion. The initial 

approximation t..W is chosen as the Rayleigh quotient of eq. (4.3.3). 

We will refer to this approximation as NRT1 approximation. 

4.4.2 Refined One-step Newton-Raphson lteration(NRT2) 

In this approximation, we utilize the second derivative of p(A.) to obtain a 

better approximation. To refine the Newton-Raphson Iteration using the 

second derivative, consider the truncated Taylor series expansion 
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Use eq. (4.4.2) to eliminate A.~k) in the third term on the right hand side, to get 

"(A.(k)) 2(A. (k)) 
0 = (A. (k)) + '(A. (k))(A. (k) _ A (k)) + P a1 P a1 

P a1 P a1 a a1 (k) 2 
2[p'(A.a1 )] 

so that the refined Newton-Raphson formula is 

p"(A.~~)p 2(A.~k{) 

2[p'("-~k{n3 

From the definition of f(A.), we have 

Now, differentiating eq. (4.4.1) with respect to A., while noting that 

we get, 

f(A.) = - Trace of [(A - A.1)- 1] 2 

(4.4.5) 

(4.4.6) 

(4.4.7) 

(4.4.8) 

(4.4.9) 

This expression is then used in the refined Newton-Raphson formula of eq·. 

(4.4.6) to obtain our next approximation given below. 

(4.4.10) 
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Note that, in evaluating f('A) using eq. (4.4.9), the matrix multiplication need 

not be performed completely, since only the diagonal elements of the matrix 

product are needed. 

This approximation will be referred to herein as the NRT2 approximation. 

4.4.3 One-step Laguerre lteration(LIT) 

Laguerre iteration is often used to compute eigenvalues and is known to 

have excellent convergence properties[47]. For our purposes, we need. only 

one step of the Laguerre iteration. The one-step Laguerre iteration consists 

of 

np('Aa1) 
A. =A. 1 - --------------------

a a P.' ('Aa1) ± [ (n - 1 )2p,2('Aa1) - n(n - 1 )p('Aa1 )p" ('Aa1) J 1/2 
(4.4.11) 

This approximation also utilizes the second derivative of p(A.) . The 

derivation of eq. (4.4.11) is given in Wilkinson[47]. To obtain our 

approximation, we rewrite the above, using the trace theorem, as 

n Aa = Aa1 - ------------------
f(A.81) ± [ - (n - 1)f2('A81) - n(n -1)f(A.81 )] 112 

(4.4.12) 

The evaluation of f('A) is described in Section 4.4.2. The sign in the 

denominator is chosen so as to make the denominator have the greater 

absolute value. We will refer to this approximation as the LIT approximation. 

Approximate Eigenvalues of Modified Systems 64 



4.5 Other Approximations 

An alternative approach to approximate eigenvalues is taken by Paipetis 

and Croustalis[65] who developed an algorithm to approximate the coefficients 

of the characteristic polynomial which is then solved to obtain approximate 

eigenvalues. In adqition to the numerical difficulties associated with the 

evaluation of the coefficients of the characteristic polynomial and its solution, 

this method severely restricts the characteristics of the system matrix. 

We will consider one more approximation called [1,1]Pade approximation. 

\. 

4 .. 5.1 [1,1] Pade Approximation(PAD1) 

We derive the [1, 1] Pade approximation by geometrical construction along 

the lines of Johnson[66]. Let us for the moment assume that the eigenvalue 

to be approximated is real. 

Let A.W and A.~'2 be the first and second approximations to the eigenvalue 

J..(k). The information contained in these approximations is exploited by 

Aitken's method[67] to obtain a hopefully better approximation. We form the 

differences 

(4.5.1) 
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If A.bk), A,~k~ and A.~'2 is a converging series, we will have 

(4.5.2) 

to extrapolate to ()A,(k) = 0 on a (A,(k), ()A,(k)) plot. This is illustrated in Figure 3. 

It is expected that the extrapolated value A,~k) would be a better approximation 

The result is 

ot.1k{ ot.1kd 
8/i..~k{ - oA.~1 

(4.5.3) 

Although the motivation applied only to real eigenvalues, this result can 

be immediately extended to complex eigenvalues. Using eqs.(4.5.1), eq. (4.5.3) 

is rewritten as 

A.(k) = a 
(A.~k{)2 - A.t)A.~kd 

2A.~{ - A.bk) - A.~kJ 
(4.5.4) 

If the approximations A,~k~, A.~'2 are the linear and the quadratic 

approximations, the approximation of eq. (4.5.4) can be recognized to be in the 

form of the [1,1] Pade approximant. In the following, this is assumed and this 

approximation will be referred to as PAD1 approximation. 
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Figure 3. Derivation of [1, 1] Pade Approximation using Geometric Construction 
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Chapter 5 

Accuracy and Efficiency of Eigenvalue 

Approximations 

5.1 Introduction 

In Chapter 4, we listed several approximations for the eigenvalues of 

general matrices. For a given application, the selection of the appropriate 

approximation usually depends on the saving of computational time that a 

given approximation entails. In the task of selecting a good approximation, 

information about the accuracy and the efficiency of computation of the 

approximations is essential. Accuracy and efficiency are not independent 

elements in the selection of an approximation algorithm. Poor accuracy 

usually translates into low efficiency in the global process. 
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In this Chapter, the accuracy and efficiency considerations relating to the 

appro,ximations listed in the last chapter are discussed. The accuracy 

considerations are treated in Section 5.2 and the efficiency considerations in 

Section 5.3. The· Conservative, Generalized Inverse Power and the 

Generalized Hybrid approximations are not studied as their accuracy is 

problem dependent and a general assessment is not feasible. 

Some of the approximations discussed have been applied to symmetric 

matrices by researchers in structural dynamics. However, there exists no 

systematic comparison of accuracy and efficiency. To the best of the author's 

knowledge, the trace theorem based algorithms have never been used for 

approximating eigenvalues of modified systems in the structural dynamics 

literature. 

5.2 Accuracy Considerations in Approximating 

Eigenvalues 

For simplicity of notation, we consider a single design variable. It will be 

obvious, however, that the results of the error analysis are applicable to the 

case of multiple design variables as well. 
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5.2.1 Order of an Approximation 

For a useful comparison of the various approximations, we define the 

order of an approximation as follows: 

Definition: .If an approximation "-a to an eigenvalue A. is such that the error 

(5.2.1) 

then that approximation is said to be of s-th order. 

Note that, for a rigorous estimate of the error in an approximation, 

information about both the order of the approximation as well as the 

proportionality constant C in eq. (5.2.1) is needed. However, the order of the 

approximation is usually the most import~nt property of the approximation and 

the proportionality constant is useful only when comparing approximations of 
. , 

the same order. In this work, attention is focused on the order of the 

approximation and the proportionality constant is discussed only in examples. 

5.2.2 First Order Approximations 

Among the approximations described in the last chapter, the linear 

approximation(LIN) and the Rayleigh quotient with nominal eigenvectors 

(RAL 1) are first order approximations. 
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It is easy to show that the Linear approximation is of first order. Consider 

the two term Taylor series for f..(k) with remainder given by 

aJ.. (k> 1 a2J.. (k> 2 
/...(k} = f...o(k) + --11p + 2 2 (~a.)(11pa.) 

opa. a o Pa. 
(5.2.2) 

where Pa. ::::;; ~a. ::::;; Pa. + 11pa. . 

Comparing this to the linear approximation, eq. (4.2.1), we have the error 

').. (k) - ').. (k) . = 0(!1p2) a LIN a. (5.2.3) 

Hence the linear approximation is a first order approximation. 

To find the error in the RAL 1 approximation, subtract eq-. (4.3.4) from the 

exact expression of eq. (4.1.10). Ignoring the third order terms, we have 

- vo(k)T !1Auo(k)(vo{k)T !1u(k) + !1v(k)T ua(k)) - f...ol1v(k)T/1u(k) 
"> (k) - '\ (k) - --------------------/\, 11.RAL 1 - . (5.2.4) 

Considering that, to the first order, 

we have 

/... (k) - Akk_1L 1 = 0(!1p~) (5.2.5) 
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Thus, RAL 1 is a first order approximation. 

5.2.3 Second Order Approximations 

The Quadratic approximation and its improvement by [1, 1] Pade 

approximation(PAD1) are the second order approximations we described. To 

show that the quadratic app-roximation is of second order, consider the three 

term Taylor series with remainder given by 

Comparing this to eq. (4.2.2), we have the error in the quadratic 

approximation as 

'I (k) 'I (k) = 
""a - ""QUAD O(~p~) (5.2.7) 

showing that the quadratic approximation is a second order approximation. 

The PAD1 approximation is an improvement on the quadratic approximation 

and so it is at least of second order. 

The linear, quadratic and the PAD1 approximations are applicable to all 

functions and do not take advantage of the special properties of the eigenvalue 

problem. All the other approximations we are going to discuss are developed 
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specifically for approximating the eigenvalues and it will be shown that they 

achieve higher accuracy with less computational effort. 

5.2.4 Third Order Approximations 

The reduction method RON, the Rayleigh quotient based methods RAL2 

and RAL3 and the one-step Newton-Raphson iteration NRT1 are the third 

order methods of approximation that we considered. As the first three 

approximations, RON, RAL2 and RAL3 are closely related, we will derive the 

order of only the RAL2 approximation and infer the orders of the RAL3 and the 

RON from this derivation. 

Recall that in the RAL2 algorithm, the eigenvalue is approximated by using 

linearly approximated left and right eigenvectors in the Rayleigh quotient. 

Hence, we may write the two term Taylor series with remainder for the 

eigenvectors as 

u{k) =' u{k) + J_u(k) (r )(dp )2 a 2,aa'=>a a 

v{k) = v(k) + ..1.v(k) (r )(dp )2 a 2 .aa'=>a a (5.2.8) 

Hence, the approximate eigenvectors can be rewritten in terms of the exact 

eigenvectors as 
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v(k) = v(k) _ ..1.v(k) (r )(L\p )2 a 2 ,aa Sa a (5.2.9) 

Substituting these expressions in eq. (4.3.6) and using the eqs. (4J .1-2), we 

get 

= 

where 

A.(k)(1 - z(k)) + O(L\p:) 

1 - z(k) + O(L\p:) 
(5.2.10) 

(5.2.11) 

Carrying out the long division and putting f..~k) = A.~1t2 , we find the error 

in the RAL2 approximation as 

A. {k) - A.~1t2 = O(f1p~) (5.2.12) 

It is hence proved that the RAL2 approximation is of third order. 

It may be recalled that in the RAL3 approximation, we approximate the 

eigenvalue by a Rayleigh quotient using left and right eigenvectors that were 

obtained by using first order perturbations whereas in the RAL2 algorithm, we 

approximated the eigenvectors using their first derivatives in a two-term 

Taylor series. There is mathematically no difference between these two 
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methods and their difference lies only in ~he computational algorithms. It 

follows then that RAL2 is also a third order approximation. There is indeed 

little difference in the accuracy of the two approximations when they were 

tested on example matrices. 

The order of the reduction method approximation{RON) is difficult to 

obtain algebraically. However, we can infer the order of the RON 

approximation by comparing it to the RAL2 approximation. We first note that 

the chief characteristic of the RAL2 approximation is that the eigenvector of 

the modified matrix is assumed to be in the subspace consisting only of the 

linearly approximated eigenvector. The RON approximation is more flexible 

in that the eigenvector of the·modified matrix is assumed to be in the subspace 

consisting of the original eigenvector and its derivative. Thus, the RON 

approximation· can be expected. to be somewhat better than the· RAL2. 

approximation. Hence, the RON and the RAL2 approximations are expected 

to be of the same order but possess a different proportionality constant in the 

sense of eq. (5.2.1). This conclusion is validated by several numerical 

experiments. 

To. derive the order of the one-step Newton-Raphson iteration(NRT1 ), we 

first write the Taylor's series for the characteristic polynomial, p('A.) and its 

derivative, p'(A.), as 

(5.2.13) 

and 
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(5.2.14) 

where primes denote derivatives evaluated at ~Jk). Then the Newton-Raphson 

Algorithm of eq. (4.4.2), modified by by subtracting A,(k) from both sides and 

noting that p(A,(k)) = O, 

A. (k) - A.(k) = A. (k1) - A. (k) a a 

(A.1k{ - A. (k))p' + 0.5(A.~{ - /..(k))2p" + ... (5.2.15) 

p' + 0-.1k{ - A. (k))p" + ... 

may be written as 

0.5(A.~{ - A.(k))2p" + (113)(A.1k{ - A. (k))3p"' + ... 
A.1k) - A.(k) = -----------------

p.' + (A.1k{ - A.(k))p" + ... 
(5,2.16) 

giving 

(5.2.17) 

We have chosen the initial approximation t..W to be the RAL 1 approximation, 

which has already been shown to be a first order approximation. Hence, 

(5.2.18) 

so that 
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(5.2.19) 

establishing that the NRT1 approximation is a third order approximation. 

5.2.5 Higher Order Approximations 

The remaining approximations, RAL4, NRT2 C;tnd LIT are all fifth order 

approximations. We proceed to obtain the order of these approximations. 

To get the order of the RAL4 approximation, we follow Ostrowski's 

approach[68] using, however, the simplifying assumption that all the 

eigenvalues are well-separated. Let U and V denote the matrices whose 

columns are the right eigenvectors u and the left eigenvectors v respectively 

of the matrix A. Let A denote the diagonal matrix of eigenvalues. From the 

biorthogonal property of the left and right eigenvectors normalized as given 

by eq. (2.2.3), we have 

and (5.2.20) 

Define 

n(k) = VTu(k) r.(k) = UTv(k) n(k) = Vru· (k) r.(k) = UTv(k) 
·10 o • ~o o ' ·•a a ' ~a a (5.2.21) 

From eqs. (5.2.20), we have 
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{5.2~22) 

so that 

(5.2~23) 

Using the above and the definitions ofeq. (5.2.21) after premultiplying the 
' 

first part ofeq. {4.3.17) by vr, we obtain the relation 

(5.2.24) 

From the second part of eq. (4~3.17), we can obtain·; in a similar manner, 

(5.2:25) 

Using; eqs·. (5.220-21 ), the· RAL4 approximation. can now be written as 

(5.2.26) 

Substituting the expressions (5.2.24) and (5.2.25) in eq. (5.2.26), we have 

n J...Y)~(~)'ll(~) 
I . 01 01 

)= f ('\ (i} - '\ (k))2 
(k) _ · 11. 11.a1 · 

A.a - . · (k) (k) I ~Oi 110; 
i = 1 (A. (i) - ')..~k{)2 

(5.2.27) 
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Subtracting the exact eigenvalue A,(k) from both sides of this expression, we 

. get after considerable algebra, 

A.~k) - 1.,(k) 

(/..~ki - /..(k))2 =-------------- (5.2.28) 

Then,. if the eigenvalues are wefl separated and if f..~k{ is a reasonably close 

approximation of the eigenvalue f..(k) , the second term in the denominator will 

· be negligible compared to the first. So; we may write 

~(k)ll (k) 
~Ok Ok. 

(5.2;29) 

However, A.~k{ is taken to be the RAL.1 approximation. Hence we have, 

(5.2~30) 

Subtracting A,(k) from both sides as before, 
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(5.2.31) 

Or; 

£ {A.(i)·_ A.(k))l;(~)ll(~) 
J=1 01 01 

(k) (k) _ i"#k . . n (k) · (k) 
l;okllok - ---.. -(k-) --(k_) __ - ;~ 1 l;o; llo;· 

(A.a1 - A. ) 
i"#k 

(5.2.32)• 

·. When the: eigenvalues are well-separated and· ·A.IN is close to, the exact 

eigenvalue A,(k), the. first term is dominant, so that 

i:-(kln(k) - __ ..;....._ _____ _ 
~Ok ·•Ok = 

(A.~{. - A. (k» 
(5.2.33) 

Substituting eq. (5.2.33) in eq. (5.2.29), 
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£ (Ii. (i) - Ii. (k))~b~)TJb~l 

i=1 (/i.(i) _ 1i.<kl)2 
'*k a1 

A~) - A (k) ,..,, (k) - (k) I ' ' 
----- = (Aa1 A )·-------
(/..~k{ - A (k))2 £ (A (i) - A (k))~b~)TJb~) 

i= 1 
i*k 

Now, putting A.~k) = "-~AL4 and fi.~k1 = "-WAL 1, we have 

"I (k) - "I (k) cc ("I (k) "I (k))3 
"'RAL4 "' "'RAL 1 - "' 

(5.2.34) 

(5.2.35) 

Since RAL 1 is a first order approximation as shown in Section 5.22, 

(A. (k) . - A (k)) = O(~p 6 .. ) RAL4 · a (5.2:36) 

proving that the RAL4 approximation is of fifth order. 

The derivation of the order of the NRT2 approximation is analogous to that 

of NRT1 approximation given in the last section if eq. (4.4.10) is used in place 

of eq. (4.4.2). After considerable algebra, we get 

"-~kn - A (k) = O[(A.~k{ - A (k))3] (5.2.37) 

For the Laguerre Method, Wilkinson[47] gives 

A.~~ - A. (k) = O[(fi.~k{ - Ii. (k))3] (5.2.38) 

Since the initial approximation used in both these algorithms is of first order, 

we have 
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0-~kT2 - A. (k)) = O(L\p~) 

(A.L~~ - A. (k)) = O(L\p~) 

(5.2.39) 

(5.2.40) 

so that both the NRT2 and the LIT approximations are fifth order 

approximations as stated. 

5.2.6 Validation of the Theoretical Results 

Taking logarithms of both sides of eq. (5.2.1), we have 

log (A.8 - A.) = (s + 1) log (L\pa) + constant (5.2.41) 

so that if the error in an s-th order approximation is plotted against the change 

in design variable on log-log scale, one must obtain a straight line with slope 

(s + 1). 

The orders of approximations obtained in the last section are verified by 

numerical experiments, summarized in the following figures. In order to 

minimize the effect of round-off errors as much as possible, a small matrix of 

order 5 is used for validation of theoretical results. The matrix elements are 

the quadratic polynomials of a design variable. where the coefficients are 

generated using a random number generator. The errors in the approximate 

eigenvalues are in comparison to the exact eigenvalue that is obtained by the 

QR algorithm and improved by using the eigenvectors computed by inverse 
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iteration in a Rayleigh quotient. Figures 4, 5 and 6 show the errors in the 

absolute value, the real part and in the imaginary part of an eigenvalue of the 

5 x 5 matrix plotted on a log-log scale against the change in design variable. 

In all the following figures, 10; is represented in the FORTRAN notation 1Ei. 

The slopes of the straight line segments in Figure 4, 5 and 6 agree very closely 

with the orders of the approximations derived in Section 5.2. The difference 

in accuracy between the high order and the low order approximations is 

clearly apparent. 

Approximations are also applied to one of the eigenvalues of a larger 

matrix of order 40, generated· in the same manner as the smaller matrix of 

order 5 before. The· results obtained are showf'! in Figures 7, 8 and 9. The· 

results for a flutter analysis matrix are shown In Figures 10, 11 an"CI 12. The 

generation of the flutter analysis matrix is described in Section 3.2: The design 

variable used in the Figures 10, 11 and 12 is the reduced frequency, 

, k defined as (ro:) where ro is the vibration frequency, b the blade 

semi-chord and V the air speed in far field. 

The deviations from straight line behavior appearing in Figures 10, 11 and 

12 at small values of ~.Pa are typical instances of round-a~ error with which 

we are not concerned. 

In all these Figures, approximations of equal order are indicated by 

straight lines of equal slope~ The proportionality constant, which reflects 

accuracy, is indicated by the vertical position of the corresponding straight 

line. 
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It is seen that both the first order approximations have about the same 

accuracy and that the improvement achieved by the PAD1 approximation over 

the quadratic approximation is marginal. The reduction method approximation 

with good consistency shows substantially more accuracy than the other third 

order methods. Among the fifth order approximations, the NRT1 

approximation is consistently poorer in accuracy than others. 

5.3. Efficiency Considerations in Approximating 

Eigenvalues 

Efficiency is probably the mosfTrnportant consideration in the comparative 

evaluation of the various approximations, particularly in the context of design 

optimization: The comparison is once again made in terms of variables which 

significantly influence the cost of computing an approximation. In addition to 

the size of the matrix n, the number of design parameters m and the number 

of eigenvalues of interest I that we considered in Chapter 3, we have an 

additional variable in the approximation context and this is the number of 

design points d at which an approximation is sought based on the same 

nominal design. 

Tables 4 and 5 present the operation counts for all ·the approximations 

studied. The operation counts include the necessary computations of the left 

and right eigenvectors at the nominal design represented by the matrix A0, if 
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Table 4. Operation Counts for First and Second Order Approximations 

Approximation 

LIN 

RAL1 

Approximation 

QUAD 

PAD1 

First Order Approximations 

Operation Count 

nLn2 + temn2 + dn) 
2 

/(ln2 + tedn2) 
2 

Second Order Approximations 

Operation Count 

· ,n3
3 ·+I (;)n2K + /mn2(2te + 1) + dln2 

- Direct-Adjoint Method 

l..n3 + (K'.: + 1)mn3 + r (·m)· n2~ + dfn2 2 .2 . 

- Adjoint Method 

Same· as QUAD 
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Table 5. Operation Counts for Third and Higher Order Approximations 

Third Order Approximations 

Approximation Operation Count 

3 
/[ ~ + 2(x: + 1)mn2 + 2dn2] RON 

~ n3 + /n2[(x: + 2)m + 2d] 

3 
/[~ + 2(x: + 1)mn2 + dn2] RAL2 

~, n3 + /n2[(x: + 2)m + d] 

3 
di[~.·· + 2(x: + 1)n2] RAL3 

~n3 + d/n2(x: + 3) 

NRTt dJn3 

Higher.· Order Approximations 

App.roximation Operation Count 

RAL4 
. 3: 

di(~ ) 

NRT2 d/n3 

LIT d/n3 
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they are significant. But they do not include the operations for the calculation 

of the nominal eigenvalues A.0 since these do not affect the comparison of the 

efficiency of the different approximations. When the derivatives of 

eigenvectors or the second derivatives of the eigenvalues are needed for an 

approximation, operations counts for both the Adjoint method algorithm and 

Direct method algorithm are given separately. The details of the Adjoint and 

the Direct methods are discussed in Chapters 2 and 3. 

Note that the computational expense of RAL 1, RAL3, RAL4 and all the fifth 

order approximations is independent of the number of design variables. 

5.4 Discussion of Approximations 

5.4.1 Case When No Derivatives are Available 

The results depicted in Figures 4-12 show that both the first order 

approximations we studied, LIN and RAL 1, are practically identical in 

accuracy. Comparing their operation counts, we conclude that, when first 

order accuracy is acceptable, LIN approximation is preferable if the number 

of design variables is small and the number ·of design points for approximation 

is large. When the number of design variables is large, the RAL 1 

approximation is more efficient. 
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The experience of numerical experiments also shows that the improvement 

achieved by the PAD1 approximation over the quadratic approximation is 

marginal so that we have two second order approximations of nearly the same 

accuracy. The behavior of the [1, 1] Pade approximation based on initial 

approximations other than the linear and the quadratic has not been studied. 

However, the operation counts show that the evaluation of the second 

derivatives is very expensive. The third and higher order approximations are . . . 
not only more accurate but are also more efficient so that the second order 

approximations QUAD and PAD1 can be completely dropped from 

consideration. Among the third order methods, RAL2, RAL3 and NRT1 have 

similar or same accuracy while the Reduction method RD~ shows higher 

accuracy in most cases, sometimes close to that of some of the fifth order 

approximations. This is explained by the fact that the reduction method 

approximates the eigenvectors in a subspace of two vectors whereas RAL2 

and RAL3 approximations use a subspace of only one vector. However, the 

reduction method is also more expensive than RAL2 and RAL3 as shown by 

the operation counts in Table 5. 

Hence, among. the third order methods, the trade-off between accuracy 

and efficiency determines the choice of the approximation. When accuracy is 

more important than efficiency, the reduction method is chosen over the 

others. When efficiency is more important, we have the choice between RAL2 

and RAL3. The Newton-Raphson approximation(NRT1) is dropped from 

consideration because there are higher order methods which give higher 
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accuracy with the same computa~ional expense. Note that the Direct method 

computation of the RAL3 approximation is more expensive than the Adjoint 

method computation except for very few eigenvalues of interest and very few 

design points of approximation. The choice between RAL2 and RAL3 is similar 

to that between LIN and RAL 1 in the first order case. RAL2 approximation is 

preferable if the number of design variables is small and the number of design 

points for approximation is large. When the number of design variables is 

large, the RAL3 approximation is more efficient. 

The higher order approximations are particularly efficient when the 

number of design variables is large and the number of design points and the 

number of eigenvalues of interest is small. The RAL4 algorithm is somewhat 

more: efficientthanthe· other two; Among these approximations, for the cases 

tested, the RAL4 and the LIT methods give better accuracy than NRT2; As the 

NRT2 approximation is no cheaper than the LIT approximatio~. this eliminates 

the. NRT2 approximation from consideration. Whether there is any 

considerable difference in accuracy between the RAL4 and the LIT methods 

requires further investigation. In the absence of any such difference, the RAL4 

approximation may be considered to be the best higher order approximation 

available in terms of accuracy and efficiency. 

The computational cost of the highe.r order approximations escalates 

rapidly to equal that of the exact computation of eigenvalues. Comparing the 

operation count of the RAL4 approximation and the exact computation, we 
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note that the RAL4 approximation is more expensive than the exact 

computation when the product di is above 30. 

5.4.2 Case When Derivatives are Available 

Most design optimization algorithms require first derivatives of 

constraints. Design optimization of dynamic response in structures almost 

always involves constraints on the eigenvalues and sometimes constraints on 

eigenvectors are also involved. In such cases, the first derivatives of the 

eigenvalues and perhaps eigenvectors are already available free for use in 

approximations so that the operation counts for derivative-based. 

approximations given in Tables 4 and 5 are reduced, affecting some of the 

conclusions. In this· section, we discuss the relative merits of the 

approximations when·the first derivatives are already available. 

We first consider the case when constraints are placed only on the 

eigenvalues so thatthe first derivatives of only eigenvalues are available free; 

In such a case, the operation count for on1y the linear approximation is 

affected and is shown in Table 6. The linear approximation is now an O(n) 

process and is practically free in terms of computational expense compared to 

any other approximation. Thus, when constraints are placed on the 

derivatives of eigenvalues, the linear approximation is the best approximation 

unless particularly high accuracy is required. If high accuracy is desired, the 

conclusions of Section 5.3.1 still hold. 
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Table 6. Operation Counts for First Order Approximations when Eigenvalue Derivatives are Free 

Approximation 

LIN 

RAL1 

First Order Approximations 

Op.eration Count 

ldn 

/( ~'n2 + x:dn2) 
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We next consider the case ~hen the constraints are placed on both the 

eigenvalues and eigenvectors so that all first derivatives are available free. In 

such a case, the operation counts for all derivative-based approximations are 

affected and are shown in Tables 7 and 8. 

The derivative based approximations except the quadratic approximation 

are much more attractive when all the first derivatives are available. The 

linear approximation is again practically free so that it always makes sense to 

use linear approximation in terms of efficiency~ The third order 

approximations RON and RAL2 are now O(n2) processes and are substantially 

cheaper than the fifth order approximations which are still O(n3) processes~ 

However, the RON approximation is now twice as expensive~ as .the RAL2 

approximation and the- additional computational expense of the RON 

approximation is less easily justified even though it is somewhat more 

accurate. The quadratic approximation is. again more expensive than the more 

accurate third order approximations. Operation counts for the fifth order 

approximations are not affected by the availability of the first derivatives and 

hence the conclusions regarding the same are also unaffected. 
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Table 7. Operation Counts for First and Second Order Approximations when All First Derivatives 
are Free 

Approximation 

LIN 

RAL1 

Approximation 

QUAD 

P:ADt 

First Order Approximations 

Operation Count 

ldn 

Second Order Approximations 

Operation Count 

I (~) n2K + lmn2K + d/n2 

-Direct:·Adjoint Method 

(K + 1)mn3~ + I (~J n2K + d/n2 

- AdjointMethad· 

Same' as QUAD 
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Table 8. Operation Counts for Third and Higher Order Approximations when All First Derivatives 
are Free 

Approximation 

RON 

RAL2 

RAL3 

NRTt 

Approximation 

RAL4 

NRT2 

LIT 

4d/n2 

dfn2 

Third Order Approximations. 

Operation Count 

Ln3 + dtn2(1\. + 3) 
2 
dln3 

Higher Order Approximations. 

Operation Count 

173; 
dl(-a,:-l 

d/n3 

dln3 
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Chapter 6 

Conclusions 

The large computational expense associated with the flutte~ optimization 

·of a cascade of rotating blades motivated this study. The problem of 

computational expense is attacked from two. fronts, sensitivity analysis and 

approximations. The existing literature was surveyed in both fields and 

improvements are suggested. General recommendations for the selection of 

the most efficient algorithms are presented. 

The normalization of the eigenvector needs to be properly related to its 

derivative. In practice, this means that the derivative of the eigenvector is to 

be normalized before it is used, to confom:i to the normalization of the 

eigenvector itself. When the eigenvector is not normalized in a unique 

manner, its derivative cannot be evaluated. lthas been shown that fixing one 

of the components of the eigenvector is the best normalizing condition for 

computation of the derivative. 
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In the sensitivity analysis part, the algorithms presently available for 

computing exactly the derivatives of eigenvalues and eigenvectors are 

classified. in.to Adjoint and Direct- Methods. Adjoint Methods use both the left 

and the right eigenvectors whereas the Direct Methods use only the right 

eigenvectors. The Adjoint Methods and the Direct Methods found in the 

literature are extended to apply to eigenvectors normalized in the manner 

described above. Algorithms that compute approximate derivatives are not 

studied as their implementation is problem dependent or complicated. 

The Adjoint and the Direct methods are examined for their efficiency under 

different sets. of conditions. The choice reflects whether the solution of the 

adjoint problem is worth the extra computational expense. The solution of the 

adjoint problem is shown to be cheaper than the solution ofthe direct problem 

because left and right eigenvectors can be calculated using the same factored 

matrix. It is concluded that if only the first derivatives of eigenvalues are 

required, the solution of the adjoint problem is worth the expense since the 

Adjoint· method is superior to. the Direct Method. When first derivatives of 

eigenvectors are also required, the decision is dependent on the problem size, 

the number of design variables and the number of eigenvalues of interest. The 

Direct method is more competitive if the number of design variables is large 

and the eigenvalues of interest are few. When the first and second derivatives 

of eigenvalues are required, similar considerations hold. It is also shown that 

once the first derivatives of eigenvectors are calculated, the second 
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derivatives of eigenvalues are calculated more efficiently by the Adjoint 

method than by the Direct method. 

In the approximation part, many existing approximation methods are 

applied to general matrices. Some new approximation methods, inspired by 

the computational techniques in linear algebra, are proposed. Noor's concept 

of global approximation vectors is simplified and then extended to general 

matrices to arrive at another approximation called the reduction method . 
. 

The approximations are classified as Derivative Based, Rayleigh Quotient 

Based, Trace Theorem Based and [1, 1 ]Pade approximations according to their 

theoretical origin. In terms of accuracy, the approximations are reclassified 

according to the order of the error expected from the approximation. The 

approximation methods are also examined for computational expense as this 

is a significant issue in the selection of a particular method. At each order of 

accuracy, the approximations are compared in terms of their efficiency and 

general recommendations are made. Additional recommendations are made 

for the case when the derivatives are already available. In particular, it is 

concluded that the quadratic approximation is inferior to many other 

approximations both in accuracy and efficiency. 

The analysis performed in this work is applicable also to the generalized 

eigenvalue problem in a straightforward manner so that all the conclusions are 

valid for the usual structural stability problem. However, the conclusions are 

limited by the assumption of distinct and well:.separated eigenvalues of 

interest. The sensitivity analysis and approximation methods for multiple or 
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closely spaced eigenvalues is fraught with difficulties, numerical as well as 

theoretical. The multiple eigenvalue case is suggested as a topic for further 

research. 
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