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Geometric acoustics has been used to study the propagation of sound waves in a homogeneous moving 
medium with sheared flow bounded by the hard walls of a duct. Differential equations, describing the ray 
trajectories and the spreading losses along each ray were developed and solved numerically for a range of 
centerline Math numbers and shear boundary-layer thicknesses. Results were obtained which show the 
effects of upstream and downstream sound propagation on the ray paths. A method was also developed 
to allow the calculation of intensity loss profiles at specified downstream cross sections of the duct. 

PACS numbers: 43.20.Dk, 43.20.Mv 

INTRODUCTION 

The transmission of sound through ducts and tubes is 
a subject which has attracted considerable attention re- 
cently because of its importance in the control of jet en- 

- gine noise. The solution to the problem of sound trans- 
mission through a duct of constant cross-sectional area 
without fluid flow is well known. However, the situation 
becomes more complex when fluid flow through the duct 
is included. Further complication is added if the cross- 
sectional area of the duct is allowed to vary. 

Numerous attempts have been made to solve the dif- 
ferential wave equations for transmission through a duct 
carrying flow. The case of a duct with a uniform flow 
has been treated by Ingard/ Eversman, 2 Morfey, a Tack 
and Lambert, 4 and Doak and Vaidya, s among others. 
Pridmore-Brown6 was the first to solve the wave equa- 
tion with the inclusion of both uniform flow and flow- 

gradient effects for sound propagating between two plane 
parallel walls. Pridmore-Brown solved this equation 
for downstream propagation of the lowest order mode 
in the shear layer for both constant gradient and one- 
seventh power-law flow profiles, assuming an inviscid 
fluid. His solution for downstream propagation predic- 
ted an increased sound-pressure level near the hard 
walls caused by refraction of the sound wave by the 
sheared flow. The effects of refraction were found to 

be more pronounced at higher frequencies and higher 
Mach numbers. The solution obtained by l•ridmore - 
Brown, however, did not hold near the duct walls for 
the turbulent flow case. The difficulties near the wall 

were overcome in a numerical solution obtained by 
Mungur and Gladwell. 7 Their results agreed quite well 
with Pridmore-Brown's solution at points not near the 
duct wall and was valid at points near the duct wall as 
well. The effects of a flowing medium have also been 
confirmed experimentally in work performed by Mech- 
el, Mertens, and Shilz. a For downstream propagation, 
they found a frequency below which attentuation de- 
creased with flow and above which attenuation increased 

with flow. For upstream propagation, convection ef- 
fects caused increased attenuation and refraction effects 

caused decreased attenuation. Mungur and Plumblee ø 
modeled the flow in a cylindrical duet with a constant 
velocity core and a shear layer near the walls. Their 
objective was to study the effect of varying the shear- 
hayer thickness. For downstream propagation the 
effects of sound refraction were found to increase with 

increasing boundary-layer thickness and were found to 
cause higher sound pressure levels near the duet walls. 
Eversman •ø found, however, that this refraction of 
sound for downstream propagation was less significant 
than for upstream propagation. Eversman also showed 
a pronounced decrease in acoustic wall liner perform- 
anee due to upstream refraction. Hersh, Beranek, and 
Newman n concluded that the effects of shear-layer re- 
fraction became significant when the ratio of shear- 
layer thickness to acoustic wavelength was equal to or 
greater than unity. In yet another study on boundary- 
layer refraction, Savkar t2 also concluded that refraction 
effects cannot be ignored for the high Maeh numbers and 
high frequencies typically encountered in turbojet en- 
gines. 

The problems of finding normal-mode solutions to the 
wave equations for sound being transmitted in a duct 
with flow, and possibly with variable cross-sectional 
area, remain unsolved. A review paper by Nayfeb, 
Kaiser, and Telionis •a indicates the considerable 
amount of effort that has been applied to finding a solu- 
tion. The best approaches at present seem to be numer- 
ical in nature and are based on various approximations. 
It seems appropriate, therefore, to consider an ap- 
proximate solution to the problems in terms of geomet- 
ric acoustics. Despite low-frequency limitations/4 the 
method has the advantage of simplicity and gives a clear 
picture of the sound field. 

I. MODEL TO BE STUDIED 

The model investigated in this study was a two-dimen- 
siom/1 one. That is, the flow and sound propagation 
were assumed to occur between two parallel planes of 
infinite length and width. These "duet" walls were as- 
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FIG. 1. Two-dimensional 

duct model. Flow profile 
is for a centerline Mach 

number of 0.5 and a shear- 

layer thickness of 30% of 
the duct height. 

sumed to be perfectly rigid and smooth. The temper- 
ature in the duct was assumed to be uniform and all 

viscous absorption by the medium wa• neglected due to 
the short propagation distances considered. 

The flow model used consisted of a potential core in 
the duct center matched to a boundary layer of constant 
thickness near the duct walls. The model used and the 

coordinate system chosen are illustrated in Fig. 1. 
This model was felt to be a realistic one for those cases 

where turbulent flow exists but is not fully developed, 
such as found in aircraft engine inlet and exhaust ducts. 
The flow model was similar to one used by Mungar and 
Plumblee, •s and by Hersh and carton, •6 except that these 
investigators used a quarter of a sine wave to model the 
flow profile in the boundary layer. 

Considerable thought was given to the choice of an ap- 
propriate flow model in the boundary layer for this in- 
vestigation, since the simple models used by previous 
investigators would not work for the geometric acou- 
stics study. In geometric acoustic calculations in a 
flow field, the curvature of the sound rays is dependent 
upon the gradient of the flow field, and the spreading of 
the rays is dependent on the spatial changes in the flow 
gradient. For these reasons it was necessary that the 
first and second spatial derivatives of the flow field be 
defined and continuous functions. The equation for the 
shear layer must have first and second spatial deriv- 
atives which vanish at the interface between the poten- 
tial core and the boundary layer, and which remain fin- 
ite at points very near the duct wall. A power-law flow 
model was developed which fulfilled these requirements. 
The equation for this flow profile was 

_ [(a)-"'(a- }, (1) 

where M(z) is the Mach number at height z, Mol is the 
centerline Mach number, d is the thickness of the shear 
layer, and m is an exponent chosen to obtain a realistic 
profile. This equation was used to establish the flow 
parameters in the lower shear layer (0 •< z •< d), and 
symmetry was used to establish the flow parameters 
in the upper shear layer. Various flow profiles were 
considered by specifying the centerline Mach number 
Mol and theboundary-layer thickness d. By experi- 
mentation, a realistic profile was achieved by using 
an integer power m of four. The profile obtained com- 
pared favorably with those used by previous investi- 
gators, and with the seventh power flow profiles often 
discussed in fluid mechanics literature. 

In accordance with the two-dimensional approach to 
this problem, the sound source was assumed to be a 
pulsating line source parallel to the y axis. 

FIG. 2. Phase velocity and 
ray velocity directions in 
a moving medium. 

mi. RAY TRACING EQUATIONS 

In the presence of a sheared flow, acoustic rays do 
not remain straight but are bent in the x-z plane be- 
cause of diffraction effects. A set of coupled nonlinear 
differential equations must be solved to find the ray 
paths through the moving medium. These paths repre- 
sent the trajectories along which the acoustic energy of 
the sound wave is flowing. The derivation of these equa- 
tions for the ray paths will be presented next. 

Figure 2 shows a wave travelling through a moving 
medium. The wavefront is shown at an arbitrary time 
t, proceeding through the medium in the direction given 
by the wavefront normal vector n. The direction of the 
wavefront normal vector is given by the angie /•. The 
medium through which the sound is travelling is as- 
sumed to have a velocity V which is a function of z and 
which is parallel to the x axis. 

As discussed in Hayes, Haefeli, and Kulsrud, •? an 
acoustic ray can be considered as the trajectory of a 
point which moves from the point of emission of a 
spherelet to the point of tangency of the spherelet 
with the envelope wavefront at a time At later. This 
is shown in Fig. 3, where the wavefront is shown 
at to+ At tangent to spherelets which originated at 
the initial wavefront. The position vector r shows 
the location of the ray point at time t + at. This point 
moves with the group velocity U r 

dr 

Ur= •- =cn+ ¾. (2) 

The U• vector is shown in Fig. 2. It is evident that this 
vector is not generally perpendicular to the wavefront, 
but is inclined at angie •). 

V 
FLOW VELOCITY 

WAVE FRONT 

t,- f•o 

FIG. 3. Wave propagating 
through constant flow vel- 
ocity region. 
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The group velocity (U r) is different from the phase 
velocity U n. The phase velocity is the velocity with 
which the wave expands normal to one wavefront. The 
direction of the wave normal n is given by 0, shown on 
Fig. 2. The phase velocity is given by 

Ur=(c+n.V)n. (3) 

The determination of the ray trajectory is obtained by 
integration of the group velocity equation. This is most 
easily done in this case in terms of its coordinate com- 
ponents. As Fig. 2 makes evident, 

dx 

d-T =(U,)•= c cos0 + V, (4a) 
dz 

d-• = (Ur)• = c sin 0. (4b) 
Along with these equations it is also necessary to know 

how the wave normal vector n changes along the ray 

path. The refraction law for the wave normal in its 
most general form, can be written as (see, for exam- 
ple, Hayes et al. •?) 

-dn 
=Vc+ (VV).n- n[n. Vc+n. (VV).n]. (5) 

dt 

In this study the speed of sound was assumed constant 
across the duct, and the flow velocity was a function of 
z only. The unit normal can be replaced by its compo- 
nents. Under these conditions, Eq. (5) reduces to 

dO dV(z) (6) d-F =-cøs•'0 dz ' 
The solutions for x, z, and 0, from Eqs. (4a), (4b), and 
(6), completely describe the paths of the sound rays 
through a boundless medium. 

The medium under study is bounded, however, by the 
wall of the duct. At those surfaces the assumption was 
made of total reflection of the ray with no phase change. 
Therefore, the only change in the ray-trace variables 
was a sign change for the ray-normal angle since the 
angle of reflection necessarily equalled the angle of 
incidence. Thus the boundary conditions at the walls 
are 

Ax=0, Az=0, A0=-20 . (7) 

Each ray path can then be uniquely defined by specifying 
an initial source position (Xo,Z o) and wave normal angle 
0 o ß 

To make the results of this work more generally use- 
ful, the following nondimensional parameters were used: 

M = V/c, the Mach number, 

T* = tc/H, nondimensional time, 

L* = L/H nondimensional duct length, 

x* =x/H nondimensional x coordinate, 

z* = z/H nondimensional z coordinate, 

F* =fH/c nondimensional frequency, also equal to 
the duct height divided by the wavelength, 

c = speed of sound. 

With these definitions, the nondimensional ray trace 
equations solved were: 

-coso (8) dT* 

= sin0, (9) dT* 

dO - cos20 (10) 
dT* dz* ' 

III. RAY TRACING RESULTS 

The solutions to the ray-trace equations were found 
numerically through the use of a Runge-Kutta integra- 
tion .routine. The computer output was generated in 
graphical format. The result acoustic ray diagrams 
are shown in Figs. 4-7. 

Figures 4 and 5 show the sound rays for upstream 
propagation (i.e., for the sound propagating against the 
flow). Both are for a boundary-layer thickness equal to 
30% of the duct height. The centerline Mach number is 
the only difference between the conditions for these two 
figures. In the first case, a centerline Mach number of 
0.5 was used, while the Mach number of 0.7 was used to 
generate the second diagram. The diffraction of the 

c•).00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.•0 

c•' I 6 

o o 
ß ! ! ß 

DISTANCE 

FIG. 4. Ray diagram for upstream 
propagation; centerline Mach No. 
= 0.5; shear-layer thickness of 30% of 
the duct height. 
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FIG. 5. Ray diagram for upstream pro- 
pagation; centerline Mach No. = 0.7; 
shear-layer thickness of 30% of the duct 
height. 

sound away from the duct walls is evident, as is the de- 
pendence on Mach number. The upstream propagation 
diagrams are also characterized by the presence of 
caustics. From a purely geometrical point of view, 
the location of a caustic can be identified as the envel- 

ope of points where the ray tube areas go to zero. 
These can be recognized from the fact that adjacent 
rays cross without encountering a reflecting surface. 
Ray methods cannot be used to calculate the sound field 
on or near these lines. When the ray bundle area 
shrinks to zero, theory indicates that the intensity 
would go to infinity. In reality, the intensity near the 
location of a caustic will not be infinite, but the region 
will be a region of high energy concentration. 

Although the appearance of caustics prevented calcu- 
lating the intensity in the duct for upstream propagation, 
the ray plots provide a good indication of where the 
acoustic energy should be concentrated. The highest 
concentration of energy should occur in the shear layers 
near the caustics. In the central part of the duct, the 
intensity should vary widely because of the interference 
between the reflected and turned rays. In the regions 
where there are no rays adjacent to the duct walls, ray 
theory predicts a shadow zone with complete silence. 
Higher-order solutions have shown, however, that in 
such regions the sound field decreases monotonically 
with distance from the maximum near a caustic. 

Figures 6-9 show the results obtained for .down- 
stream propagation. In the first three figures (Figs. 
6-8), the shear-layer thickness has been held at 30% 
of the duct height, while the centerline Mach number 
has been varied from 0.3 to 0.7. For Figs. 7 and 9, 
however, the centerline Mach number has been held 
at 0.5 and the shear-layer thickness varied from 30% 
to 10% of the duct height. 

Each of the ray plots for downstream propagation is 
similar in appearance. Unlike the upstream ray plots, 
the bending of the rays was not as pronounced in the 
shear layers. The rays bend slightly towards the duct 
wall in the shear-layer region. Less bending was ob- 
served for the downstream case because the flow grad- 
ients did not contribute to variations in the index of re- 
fraction to the degree present in upstream propagation. 
This was because the index of refraction g is related to 
both the flow Mach number and the cosine of the angle • 
between the wave normal and the flow velocity direction 

by the relationship 

/•=[1 +M(z) cos• ] '• . (11) 

For the higher downstream angles of incidence, the 
component of flow velocity in the direction of propaga- 
tion was very small. Thus variations in the flow veloc- 
ity had small effects on the wave phase velocity. For 
upstream propagation, the rays were bent in the direc- 

•0 00 0.25 0.50 0.75 ! .00 ! .25 1.50 ! .75 2.•0 
I I I I I I ß 

'c• 

'C) 

00 0 25 0 50 0 75 ! 00 1 25 ! 50 ! 75 2',•0 
DIST^NCE 

FIG. 6. Ray diagram for downstream 
propagation; centerline Mach No. -- 0.3; 
shear-layer thickness of 30% of the duct 
height. 
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FIG. 7. Ray diagram for downstream 
propagation; centerline Mach No. = 0.5; 
shear-layer thickness of 30% of the duct 
height. 
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tion of decreasing wave normal angles to the point where 
some rays even reached turning points. For these low 
angles of incidence the contribution of the flow velocity 
component to the. phase velocity was maximum. Flow 
gradients caused greater changes in the phase velocity 
and thus caused greater refraction of the rays. 

The phase velocity for the downstream rays was found 
to be greater than the phase velocity for the upstream 
rays. This result can be attributed to the component of 
flow in the direction of wave propagation. The ray vel- 
ocity was also greatest for downstream propagation. 
The ray velocity has a significant effect on the distribu- 
tion of energy in the duct, because energy flow is found 
from the product of intensity and ray velocity. There- 
fore, the total energy which flows through a given point 
in an instant of time is a function of both the intensity of 
the ray and the speed of energy transport along the ray. 

IV. INTENSITY LOSS CALCULATIONS 

The ray diagrams yield interesting information about 
the paths of propagation of the acoustic energy. How- 
ever, it is also important to know the intensity of the 
sound at various locations in the duct. Consequently, 
the next step is to determine the intensity profiles 
across the duct. This was done in terms of the loss of 

intensity from the reference intensity close to the 

source. 

The intensity I• at any point along a ray path can be 
related to a reference intensity I o at a point near the 
sound source by the basic energy relationships 

o,4o 

where A o and A, are ray-bundle areas. Spreading loss 
accounts for the changes in intensity associated with 
the changes in ray-bundle area along the ray path, and 
it can be calculated directly from ray geometry. The 
spreading loss of a ray bundle is defined as 

N = - 10 log(I/Io): - 10 log(Ao/A ) dB. (13) 

Thus the problem of calculating the intensity loss along 
a ray path becomes a geometric problem stated in 
terms of ray-tube area. 

The set of differential equations required to calculate 
spreading loss were derived through partial differenti- 
ation of the ray-trace equations. This differentiation 
was performed with respect to 0o, the initia! angle of 
the wave normal. The approach follows one developed 
by Anderson e! al., 18 and by Ugincius, •9 for an inhomo- 
geneous still medium. The approach was applied here 
to a homogeneous moving medium. 

Consider two rays separated by a small initial angle 

•0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.•0 

FIG. 8. Ray diagram for downstream 
propagation; centerline Mach No. = 0.7; 
shear-layer thickness of 30% of the duct 
height. 
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FIG. 9. Ray diagram for downstream 
propagation; centerline Mach No. 0.5; 
shear-layer thickness of 10% of the duct 
height. 

difference as shown in Fig. 10. It is assumed that the 
intensity is known at a reference radial distance r o from 
the source, and that all spreading losses or gains may 
be calculated from this point. The ray-bundle area at 
this radius for a unit-width slice of the wavefront will 
be 

dAo=r o dO o . (14) 

Now consider points A and B which lie on adjacent 
rays at points of equal phase. To calculate the ray- 
bundle area, it is necessary to calculate the are length 
of the wavefront's xz-plane intercept connecting these 
points. At points of equal time, the location of points 
A and B become functions of another independent vari- 
able besides time, the initial wave normal angie 0 o. 
For rays distinguished by a small initial angle change, 
points of equal phase will be separated in relation to the 
derivative of the ray-trace variables (x,z) with respect 
to the initial wave normal angle. This gives rise to a 
set of spreading loss variables which are defined as fol- 
lows: 

Xt= d-•'o t' Z t= d-•'o t' or= ' (15) t 

Another variable closely related to these is the cor- 
responding change in arc length of the wavefront with 
respect to 0 o which is symbolized by 

where W= ray bundle arc length. From the geometry 
shown in Fig. 10, this arc length variable can be written 
in terms of the variable Z as 

'b --CONST\..• 
Ep•'; • W •e. 

z t/Xo•• 

• •Aeo 
Xo, Z o 

•x 

FIG. 10. Side view of an 

infinitesimal ray bundle. 

Wt =Zt/cosOo . 

When the solution of Eq. (17) is known, the ray-tube 
area for a unit slice of the wave can be written as 

(17) 

dA = WdO o . (18) 

The spreading loss along the ray path can then be calcu- 
lated by the use of Eq. (12) as 

(½) N =-10 log\•-•-! =-10 log . (19) 

The procedure used for calculating spreading loss, 
required solving for the variables defined by Eq. (15). 
Differentiation of the ray-trace system of equations, 
with respect to 0 o yields the following: 

ax ( z ) 
d'T* = -sin0Ot + dz Z t, (20a) 

dZ 

tiT* = cos0Ot, 

ae ,) 
tiT* - dZz * Zt cøs•'O +2 dz* 

(20b) 

cos0 sin00 t . 

(2Oc) 

The initial conditions can be calculated by evaluating 
x*(T*), y*(T*), and O(T*) at T* =0 and then differenti- 
ating with respect to 0 o. Performing this differentiation 
gives the required initial conditions for the spreading 
loss system: 

(2[) 

The solutions to the spreading loss equations [(20a)- 
(20c)], along with the ray-trace equations, furnished 
enough information to calculate spreading loss at any 
point on a given ray for a boundless medium with a con- 
tinuous index of refraction. 

Since the transmitting medium in this case is not in- 
finite, however, it is necessary to find the boundary 
conditions using the same variables used in the spread- 
ing loss calculations. This derivation has been reported 
by Ugincius. •9 Ugincius used length along the rays as 
his independent parameter, rather than time, t, as was 
used in this development. However, the spreading loss 
is a scalar point function and is thus independent of the 
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ray parameters, as was proved by Warfield and Jacob- 
son. •'ø Similarly, the reflection conditions can be de- 
rived from first principles and shown to be independent 
of the ray parameters (see Grimm)f '• It should be noted 
that when time, rather than distance along the ray, is 
used, the necessary derivative in the numerator of the 
second term of Eq. (22c) is dO/dT*, not dO/ds, so that 
the substitution of ray curvature made by Ugincius must 
not be followed. 

Derivation of the boundary conditions begins with re- 
cognition that the ray parameters may be expressed as 
functions of x and z, which in turn are functions of the 
independent variables time t and starting angie 0o: 

f =f[x(t, Oo) , Z(t, 0o) ] . 

Formal manipulations with the derivative relationships, 
as detailed in Ugincius/ø yield 

These are the necessary boundary conditions. The 
spreading loss equations could then be solved using a 
Runge-Kutta integration scheme. 

Spreading loss profiles at a selected duct location 
were obtained by finding the spreading loss at 97 of 100 
equally spaced points across the duct at the desired x 
location. Finding the spreading loss at any one point 
involved finding the spreading loss along each of the 
rays emanating from the sound source and passing 
through the point. A coherent summation of the spread- 
ing loss at the point could then be obtained. In theory 
this summation would have to carried out over an infin- 
ite number of rays passing through the source and re- 
ceiver points. In practice, however, it was found that 
finding the five shortest rays was sufficient. Inclusion 
of additional (longer) rays did not change the intensity 
loss calculations appreciably. 

(22a) 

(225) 

(0 '/z')Z,, (22c) 

where the primes indicate differentiation with respect to 
time T* and capital letters represent differentiation with 
respect to 0 o. The values of all parameters just after 
reflection can be expressed as the sum of the value be- 
fore reflection and a change (A) in the value. The 
changes in the values may be obtained by subtracting 
the parameter values prior to reflection from those 
just after reflection. The reflection conditions require 

/Xx' =0, zXz'=2z', (23) 

zXX• =0, /xO•=_20•, 

Furthermore, since the velocity is a function of z only, 
dO/dT* does not change at a horizontal boundary, so 

•x(dO/dT*) =0. (24) 

Algebraic combination of the zX forms of Eqs. (22) with 
Eqs. (23) and (24), yield 

+ , 

=- [2z, + 

=- [20 + 

(25a) 

(25b) 

(25c) 

An additional condition is needed to solve this set of 
equations. With Ugincius, we choose •Jft = 0, since x' 
is a continuous function of t and 0 o at the reflection 
point. The derivative relationships needed are those of 
Eqs. (9) and (10). With these substitutions, the 
boundary conditions become 

AXt=0, AZt=--2Zt, 

AOt = 2( --cøs•8[ (dM(z)/dz)]Zt ' sin8 -Or ' (26) 

Finding the five shortest ray paths was a major nu- 
merical calculation problem. The difficulty arose in 
trying to constrain the ray-trace solution to pass 
through a fixed end point at some unknown time along 
the ray path. An iterative scheme relying on complete 
calculation of the ray path, followed by initial angie 
correction and re-calculation, was found to be too time 
consuming. An approach which proved to be much more 
efficient was the ray sweep-out methodY •' Since the 
phase velocity varied only with height, it was possible 
to calculate each ray to its first wall reflection and 
from that to predict its final position relative to the re- 
ceiver point. A Newton-Raphson scheme was then used 
to adjust the initial ray angie so that the next ray cal- 
culated would pass through the desired receiver point. 

An arbitrary axial distance equal to one duct height 
(x* = 1) was chosen for summing the contributions from 
the rays. The arbitrary reference distance r o in Eq. 
(19) was chosen as 0.05, for •-• of the duct height. The 
effect of this choice was simply an overall scaling of 
the intensity loss without change in the shape of the in- 
tensity loss curve. 

Typical intensity loss plots are shown in Figs. 11-14. 
Figures 11 and 12 give the intensity loss profiles for the 
rays shown in Fig. 7 (centerline Mach number of 0.5 and 
boundary-layer thickness of 30% of the duct height). 
Different frequencies were used for these two cases, 
however, resulting in different interference effects at 
the receiver locations. Figure 11 is for a frequency 
which would have a wavelength of • of the duct height, 
while Fig. 12 is for a frequency which would have a 
wavelength of 2-• of the duct height. Figure 13 shows 
the effect of changing the boundary-layer thickness: All 
conditions are the same as for Fig. 12 except for bound- 
ary-layer thickness. Figure 14 shows the effect of 
changing the centerline Mach number on the results. 

Conditions for Fig. 14 are identical to those for Fig. 
12 except for flow rate. 

In general, all of these figures show marked intensity 
level changes as one proceeds across the duct. These 
changes are the result of constructive or destructive 
interference between sound travelling along the rays 
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FIG. 11. Downstream intensity loss at a distance of 1 duct 
height from the source for a centerline Mach No. of 0.5, a 
shear layer of 30% of duct height, and a wavelength of 10% of 
the duct height. 
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FIG. 13. Downstream intensity loss at a distance of 1 duct 
height from the source, at a centerline Mach No. of 0.5, a 
shear-layer thickness of 10% of duct height, and a wavelength 
of 5% of the duct height. 

reaching each point. These results were consistent 
with the observation, made during debugging of the 
computer program, that extremely small initial angle 
changes could often result in great changes in ray des- 
tination and path length. This was particularly true for 
the reflected rays. The number of peaks and valleys 
in the plot approximately doubled when [he frequency 
was doubled, since the sensitivity of intensity loss to 
path length changes was doubled. Two intensity loss 

peaks appeared in each plot, and these can be seen to 
change position markedly with changes in flow para- 
meters. When a centerline Mach number of 0.7 was 

used, the diffraction effects became quite strong. It is 
interesting to note on that plot the appearance of neg- 
ative intensity loss spikes, indicating that the intensity 
at those heights one duct height downstream was greater 
than the intensity at a distance of 0.05 from the 
source. 

c•0 00 2,. 00 4.00 6.00 6.00 0•00 ß I I I ß 

o 

O0 2'. O0 4'. O0 6'. O0 8'. O0 
INTENSITY LOSS, dB 

o 

•.o00 

FIG. 12. Downstream intensity loss at a distance of 1 duct 
height from the source, at a centerline Mach No. of 0.5, a 
shear-layer thickness of 30% of duct height, and a wavelength 
of 5% of the duct height. 
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FIG. 14. Downstream intensity loss at a distance of 1 duct 
height from the source, at a centerline Math No. of 0.7, a 
shear-layer thickness of 30% of duct height, and a wavelength 
of 5% of the duct height. 
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V. CONCLUSIONS 

Geometric acoustics was found to be a valuable tool 

with which to study the propagation of sound through a 
sheared flow within a hard-walled duct. It was found 

that the ray plots could provide an excellent represen- 
tation of the sound field by showing the paths of energy 
flow, and that the intensity loss plots could be Used to 
show the distribution of acoustic energy at a specified 
cross section of a duct. The method was applied to a 
variety of flow velocity and flow-gradient situations. 
The method encountered difficulty in upstream propa- 
gation, where the theory broke down because of the ap- 
pearance of caustics. 

Two phenomena were found which affected the sound 
field as a result of [he flow of the medium. First, the 
effects of refraction were found to result from vari- 

ations in the wave phase velocity encountered as the 
sound propagated through regions of changing flow vel- 
ocity. These effects were found to be greater for up- 
stream propagation where the rays bent very sharply 
towards the center of the duct, and less significant for 
downstream propagation where the rays were bent only 
slightly towards the walls of the duct. Second, convec- 
tive effects of the flow were shown to cause the wave to 

travel faster for downstream propagation and slower 
for upstream propagation. 

The geometric acoustics theory proved to be simpler 
to apply than normal-mode theory for the case with 
flow in the duct. Further extensions of this method to 

include finite boundary impedances and variable duct 
geometry also appear simple, and open the possibility 
of obtaining solutions to acoustic problems which are 
not yet tractable with normal-mode approaches. 
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