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(ABSTRACT) 

Although there remains some controversy as to the 

benefits of individual tree growth and yield prediction models 

over stand level models, individual tree models still have 

wide acceptance. A generalized thinning response variable 

which can account for the intensity of thinning, as well as 

the age of the stand at the time of thinning and the time 

elapsed since thinning, was applied to two existing models for 

loblolly pine (Pinus taeda) in cutover  site-prepared 

plantations. A site index equation for predicting mean total 

height of dominant and codominant trees and a diameter 

increment model were developed to incorporate the thinning 

response variable. New fits of height increment and mortality 

functions to the available data were also completed. Separate 

mortality functions were fit to data from unthinned and 

thinned stands. 

The base models for this analysis were from the 

individual tree growth simulation model PTAEDA2. Evaluations



for predictive ability of these models were done in a reduced 

version of the growth simulator which was modified to accept 

external data. The mean total height model had improved 

predictive ability over the original PTAEDA2 model for this 

variable. The diameter increment model produced no 

Significant improvement in simulation comparisons. Fitting 

the two mortality functions to the multiple observation data 

resulted in reduced predictive ability of the simulator 

compared to the original mortality model from PTAEDA2 which 

was fit to data from unthinned stands only.
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INTRODUCTION 

Much work has been done recently with individual tree 

growth and yield models. Although there remains some 

controversy as to the benefits of individual tree prediction 

over stand level models, individual tree models still have 

wide acceptance. 

In the individual tree growth simulation model PTAEDA2 

(Burkhart et al. 1987), response to thinning was implicit in 

changes in each tree’s competitive status. Amateis et al. 

(1989) developed separate diameter increment models for 

unthinned and thinned stands. A more efficient approach is to 

have one prediction model which can function well in either 

unthinned stands or stands thinned to a wide range of 

Gifferent intensities. 

Recent work in tree and stand response to thinning 

practices has focused on developing a generalized thinning 

response variable which can account for the intensity of 

thinning, as well as the age of the stand at the time of 

thinning and the time elapsed since thinning (Short and 

Burkhart, 1992; Liu et al. in press). These recently- 

published analyses were focused on describing crown growth. 

A thinning response variable which would explain diameter 

growth and tree mortality across time under different 

intensities of thinning has not been developed previously.



In this paper, a thinning response variable developed by 

Liu et al. was applied to a site index equation for predicting 

mean total height and to a DBH (diameter at breast height) 

increment model. The base models for this work were those 

developed in PTAEDA2. The evaluations for predictive ability 

of these models were done in a reduced version of the growth 

Simulator which was modified to accept external data. 

The Data 

The data used in this analysis are from a thinning study 

using permanent plots established by the Loblolly Pine Growth 

and Yield Research Cooperative. The thinning study contains 

186 permanent locations established from 1980 to 1982 in 

plantations on cutover, site-prepared lands spread across 

twelve southeastern states. This area includes most of the 

natural range of loblolly pine. At each location, three 

Similar plots were established, and individual trees were 

tagged and measured. Plots had to be similar in site index, 

Stocking, and basal area. Diameter, total height, and height 

to live crown were measured on volunteer, as well as planted 

loblolly pines, and competing hardwoods. Stem maps were 

generated for each plot at the time of plot establishment. 

One plot at each location was randomly selected as a 

control, one was thinned to about 70 percent residual basal 

area (light thin), and the third plot was thinned to



approximately 50 percent (heavy thin) of the starting basal 

area. The thinning treatments were primarily from below, with 

an occasional row removed for access. An effort was made to 

avoid confounding the thinning with release from competing 

hardwoods by only removing those natural pines and hardwoods 

that would normally by cleared in an operational thinning 

(Burkhart et al. 1987). 

There have been three remeasurements at three-year 

intervals since plot establishment. At each remeasurement, 

mortality was recorded, as well as diameter at breast height, 

total height, and height to the base of the live crown. A 

fourth remeasurement is under way at this time. In this 

remeasurement, one half of the plots are being thinned a 

second time for future analysis of stand response to multiple 

thinnings. 

Only the interior trees in the Coop dataset were used for 

model analysis and development in this project. Interior 

trees are those for which all competitors within a 10 BAF 

(basal area factor) angle gauge sweep are within the measured 

research plot. Thus, only these trees could have valid 

competition indices calculated for them based on actually 

measured competitors. Table 1 provides a detailed description 

of the data used.



Table 1. Mean stand and tree values for interior trees from the Coop thinning study dataset, 

by thinning treatment at plot establishment and the third remeasurement. 

  

  

  

  

  

  

  

Plot Establishment ___|Third Remeasurement 

Un- Light Heavy Un- Light Heavy 
Variables Thinned Thinned Thinned Thinned Thinned Thinned 

Stand 

MTH 41.14 41.33 41.40 56.23 56.60 56.56 

VOLUME 36.00 106.55 81.08 35.94 153.30 107.69 

AGE 15.17 15.17 15.18 24.17 24.17 24.18 

| 1.00 0.73 059  ----- --2-+ ----- 

Tree 

DBH 4.61 5.61 5.85 5.71 7.28 7.76 

HT 32.64 36.10 36.78 46.35 51.33 51.73 

CR 0.44 0.48 0.50 0.31 0.37 0.40 

Cl 1.26 0.64 0.46 1.57 0.95 0.74     
  

All values are for planted loblolly pines only. 

MTH = mean total height of dominant/codominant trees in each plot in feet, VOLUME = 

cubic feet per plot, outside bark, | = intensity of thinning = basal area after thinning / basal 

area before thinning, DBH = diameter at breast height in inches, HT = total height in feet, 

CR = crown ratio, Cl = competition index. 

Page 4



PREVIOUS WORK 

Individual tree growth simulation models have gained much 

acceptance in recent years. Prior models were largely based 

on stand level predictions or distributional analysis (Daniels 

and Burkhart, 1975). Newnham (1964) is credited with the 

first stand model based on individual tree simulation (Daniels 

and Burkhart, 1975). He put forth a diameter increment model 

for Douglas-fir plantations in which individual tree diameter 

growth was estimated as open-grown growth modified by a 

measure of competition. 

Burkhart et al. (1987) developed an individual tree 

growth simulation model for loblolly pine. In this distance- 

dependent model, called PTAEDA2, diameter and height increment 

are predicted on an annual basis, then added to the current 

diameter and height values to be carried forward to the next 

growing season. Mortality is predicted annually, and the 

value of the competition index is calculated for each tree 

dependent on current tree size and the growth or loss of 

competitors. 

PTAEDA2 is the revised version of PTAEDA, originally 

developed by Daniels and Burkhart (1975). The most notable 

improvements were an option to consider hardwood competition 
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in the growth simulation, improved estimates of crown ratio, 

and improved versatility for the user in output volume 

determination. Also, the growth models were refitted to new 

data, and height increment prediction was improved by a new 

Site index equation used to determine the potential height 

increment. 

The core of any growth simulation program is the 

individual prediction models. The height increment model in 

PTAEDA2 predicted height growth as the potential height 

increment modified by a function of crown ratio and 

competition index. The potential height increment is 

calculated within PTEADA2 from a site index equation developed 

by Amateis and Burkhart (1985), and is based on stand age, 

Site index, and the average height of dominant and codominant 

trees. The height increment model with its modifier is shown 

below. 

HIN=PHIN* [B,+B,CR*?*exp (-B,CI-B.CR) ] 

where: HIN predicted height increment 

PHIN potential height increment, computed as 

the first difference in height froma



Site index equation 

CR crown ratio 

CI competition index 

The above model has some good biological properties. 

Crown ratio expresses the tree’s photosynthetic potential. It 

is in the model twice to describe its positive relationship to 

potential height increment, and its negative relationship to 

it when the tree approaches an open-grown condition. 

As with the height increment model, the predicted 

diameter increment is the potential diameter increment 

modified by a function of the tree’s crown ratio and 

competition index. The potential diameter increment was 

developed and fitted in the first version of PTEADA and was 

based on data gathered from 81 open-grown loblolly pines. It 

uses the current height increment of each tree to predict the 

tree’s potential diameter increment. The diameter increment 

model is shown below. 

DIN=PDIN* [B,CR*?#exp (-B,CZ) ] 

where: DIN = predicted diameter increment



PDIN = potential diameter increment, computed 

from an equation fitted to data from 

open-grown trees 

other variables are as described previously 

Potential diameter increment model: 

PDIN=0 .286583 *HIN+0.209472 

where: HIN = observed current height increment 

Mortality prediction is also based on each trees 

competitive stress and vigor expressed in its competition 

index and crown ratio. The mortality equation determines a 

value between 0 and 1, which is then compared to a uniform 

random variate. The tree is considered dead if the calculated 

value is less than the uniform random variate. This survival 

equation is: 

PLIVE=f,CR***xexp (-B,cr**) 

where: PLIVE = probability that a tree remains alive



other variables are as described previously 

The competition index used in PTAEDA2 was applied by 

Daniels and Burkhart in the first version of this program. 

Developed by Hegyi (1974), this compact measure of competition 

has worked well in several applications. The index is a 

summation of the ratios of the diameters of each competitor to 

the subject tree, divided by their separation distance. 

Competitors were determined annually in a 10 BAF angle gauge 

sweep. The competition index is calculated as: 

n 

CI,= » (D,/D;) /DIST,; 
J=1 

where: CI, competition for the it subject tree 

D, = diameter breast height of the i‘ subject tree 

D; = diameter breast height of the j°" competitor 

DIST = distance between the i tree and the j™ 

competitor 

n = number of competitors within a 10 BAF sweep



Final estimates for the models where fit to data from the 

unthinned control plots over the first three year 

remeasurement period of the Coop thinning study dataset. When 

thinned stands in the same study area were used as a semi- 

independent validation data set for the individual models, the 

researchers found only a slight underprediction. 

In these models, response to thinning is incorporated via 

the competition index. Elapsed time since thinning is not 

explicitly included, but rather is implicit in the annual 

change in the trees crown ratio and in its competition index 

due to the growth of it’s competitors. 

In 1989, Amateis, Burkhart, and Walsh developed separate 

distance-independent diameter increment equations for thinned 

and unthinned stands. These models were of the same form as 

the diameter increment model applied in PTAEDA2, but were 

designed for use where stand spatial data were not available. 

The potential diameter increment used in these models was 

identical to that used in PTAEDA2. 

In place of an individual tree competition index, a 

Spatially insensitive analog to it was used. The ratio of 

stand mean quadratic DBH to each tree’s DBH, subtracted from 

one, was used to describe the competitive stress of each tree. 
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The model developed for application in unthinned stands was of 

the form shown below. 

DIN=PDIN* [B,CR*?*exp (-B; (1-D,/D) ) ] 

where: D, = mean quadratic DBH of the stand 

D = diameter breast height 

other variables are as described previously 

A separate model was developed for thinned stands with 

two variables added to the exponential portion. The stand age 

at thinning was added, and the thinning intensity in the stand 

was described by a ratio of stand basal area after thinning to 

the basal area before thinning. In the below model, both B, 

and B, must be negative to ensure the proper response of the 

model. 

DIN=PDIN* [B,CR*?*exp (-B, (1-D,/D) +B,A,+B, (B,/B,) ) ] 

stand age at thinning = oy
 

1) K ty)
 ie + 

M" 

wo
 

» " Stand basal area after thinning 

11



B, = Stand basal area before thinning 

other variables are as described previously 

Amateis et al. (1989) also fit models to describe 

diameter growth in thinned and unthinned stands when the basal 

area of competing hardwoods is considered. For each of these 

four conditions, a distance-independent survival equation was 

fitted. The survival equations were of the same form as the 

PTAEDA2 model. 

The models for unthinned and thinned conditions were 

fitted to the data from unthinned and thinned plots 

respectively from the same Coop data set used for PTAEDA2. 

The researchers used data from the first remeasurement period, 

and all of the second remeasurement data that was available at 

that time. Analysis of the model predictions showed a slight 

increasing underprediction over time. Deviations of .02" at 

the first remeasurement and .06" at the second one were seen 

for both the thinned and unthinned models. 

What was lacking at this point was a thinning response 

variable which would allow individual tree diameter increment 

prediction across a wide range of conditions; i.e., from 

unthinned to heavily thinned stands. Also, an important 

characteristic that is missing from the thinned stand model 

12



above is a term to describe the elapsed time since thinning. 

This factor is necessary to give a more biologically valid 

shape to the growth curve in response to thinning. 

Working with crown height increment models, Short and 

Burkhart (1992) developed a thinning response variable which 

describes thinning intensity and age at thinning. This 

thinning response variable enables prediction of crown 

recession in thinned and unthinned stands using the same 

model. In this work, a distance-dependent, a distance- 

independent, and a stand level model were developed. Also, 

there was an in depth analysis of various model forms and 

associated biases. Below is the multiplicative thinning 

response variable developed. 

_ (Aa) (78) 
BA, 

where: BA a Stand basal area after thinning 

BA, = Stand basal area before thinning 

TA = stand age at thinning 

A = present stand age 

other variables are as described previously 

13



T will equal 1 in unthinned stands since BA, and BA, are 

equal. With the above variable, heavier thinning results in 

a smaller T and thus less crown recession. The negative 

impact of thinning on crown height increment increases as age 

at thinning increases. Also note that the variable T is at 

its minimum immediately after thinning, then slowly returns to 

1 as time since thinning increases. The final form of the 

distance-dependent, individual tree model for predicting crown 

height increment was: 

HLCIN=B ,T**HT*:*exp (B,CR°-5+B,CI+B,A) 

where: HLCIN crown height increment 

HT total tree height 

other variables are as described previously 

When the distance-independent model was fit without T to 

the unthinned data, analysis in thinned stands showed an 

overprediction that increased with thinning intensity. The 

increment model with T showed an overprediction in the 

unthinned stands and a trend towards underprediction as 

thinning intensity was increased. Raising the thinning 

variable to a power greatly improved the fit and reduced these 

14



biases. 

The one failing of this thinning variable is that it is 

monotonically decreasing across time. The thinning response 

variable does not accurately describe the actual relationship 

between thinning and elapsed time since thinning. The 

variable predicts a maximum response to thinning at the time 

of thinning, with response declining thereafter. In reality, 

a trees response is more curvilinear, reaching its maximum at 

some point in time after thinning has occurred and then 

declining. 

Liu et al. (in press) improved upon the thinning response 

variable from Short and Burkhart by incorporating time elapsed 

Since thinning as an actual measure, rather than as a ratio. 

This variable gives a more biologically natural shape to the 

thinning response function. In fitting an allometric model 

for predicting crown ratio (CR), they developed a thinning 

response variable (TRV) that accounts for the age at thinning, 

the thinning intensity, and the elapsed time since thinning. 

This thinning variable is: 

r[-(A,-A,)2+K(A,-A,)] 
  

T= (PAs) a2 

BA, 

15



where: r rate parameter 

A i duration parameter 

A s = current stand age 

A, 

other variables are as described previously 

stand age at thinning 

The "rate" parameter, r, is unitless. It helps to 

describe the shape of the response curve primarily by its 

relationship to K. The closer the estimates for r and K are 

to each other, the more intense the level of modification 

becomes. Parameter K’s units are years, and it determines the 

duration of the thinning response, as well as the year of 

maximum response which is dependent on the relationship 

between K and A,. 

This TRV is designed to neutralize when the elapsed time 

Since thinning equals the duration parameter, thus the value 

of T equals 1 and no modification occurs. The intensity of 

modification is also controlled by the relationship between 

the age at thinning and the elapsed time since thinning. As 

age at thinning is increased, less modification is produced. 

The base ratio, the intensity of thinning, also has control of 

the level of modification. Less intense thinning results in 

less intense modification. 

16



The final form of the allometric CR model was: 

CR=1- [T*exp (~ (B,+B,/A,) *D/H) ] 

where: H = total tree height 

other variables are as described previously 

The above allometric model, using the new thinning 

variable, was compared to the increment model developed by 

Short and Burkhart for predicting crown recession. When the 

originally published thinning response variable was retained 

in the increment model, they found that an allometric 

determination of crown ratio, rather than an increment 

approach in predicting crown height, produced less biased 

results. 

To test the general applicability of the new TRV, the 

researchers refit the increment model developed by Short and 

Burkhart, replacing the original TRV with the newly developed 

one. They found little difference between the increment and 

the allometric approach to predicting crown development in 

thinned stands. Thus, they concluded that model selection 

17



could be based on model efficiency and application concerns, 

rather than predictive ability. 

The above analysis demonstrated that the new TRV could be 

applied to a variety of prediction applications in which the 

expected response to a particular treatment would be null 

initially, increase to some maximum over time, then gradually 

return to the null condition. Since the TRV is unitless, it 

is applicable to a variety of silvicultural treatments. 

Imprecise estimates of parameters can result from the 

temporal correlation inherent in repeated observations over 

several remeasurement periods. In Liu et al., the effect of 

this correlation was examined. The researchers used two 

different methods in splitting the data for fitting and 

validation. One dataset was a random split of the entire 

dataset, and a second dataset was generated by randomly 

selecting one remeasurement observation from each tree, 

thereby eliminating the temporal correlation. After fitting 

each of the models they examined to each dataset, they found 

"no substantial differences" in bias or precision. 

Thus, their final recommendation was to use all the data 

in fitting any final models to ensure the most stable 

parameter estimates. This was qualified in their conclusions 

18



by stating that additional remeasurement periods or shorter 

intervals may have a much greater impact on model fitting. 

A similar analysis, aimed at assessing the effects of 

unmeasured time-dependent variables was conducted by Avila and 

Burkhart (1992) in their development of distance-dependent and 

distance-independent mortality functions for loblolly pine. 

The models were fit to one-half of a random split dataset and 

validated on the other half, and they were fit to the first 

remeasurement period and validated on the second. They found 

"no practical differences" in validation statistics between 

the two data splitting methods. 

The distance-dependent logistic model developed for 

predicting survival of individual trees was of the form: 

1 
PLIVE=7 exp [~(B,+B,CR+B,HH-B,C1) 1 
  

where: HH = ratio of total height to average height of 

dominant and codominant trees 

other variables are as described previously 
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Analysis of this model in thinned stands showed that no 

improvement in model performance was achieved by including 

variables to describe intensity of thinning, age at thinning, 

or time elapsed since thinning. When this model was fit to 

data from unthinned stands and compared to the survival 

equations published by Burkhart et al. (1987) and Amateis et 

al. (1989), only modest improvement was found for the above 

equation. 
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Analysis 

All model fitting for this thesis was done using the 

Statistical analysis package (SAS) developed by SAS Institute 

Incorporated, Cary, NC. All non-linear regressions were done 

with the automated regression method DUD. 

Since I was using the multiple observation Coop dataset, 

temporal correlation was a concern. However, based on the 

results of Liu et al. (in press) in their analysis of temporal 

correlation in this dataset, I proceeded as though there were 

no temporal correlation problem. 

Another consideration was the validity of dividing three- 

year interval observations by three and using those values to 

fit one-year interval models. It is a common procedure to use 

what is known as the "linear averaging method", which assumes 

linear growth over each three-year period, to obtain annual 

data from multi-year data. McDill and Amateis (1993) 

compared four methods for fitting difference equations when 

the desired time interval is not the same as the interval at 

which the data used to fit the equation were collected. They 

found that the linear averaging method worked best for the 

younger ages, but it underpredicted for the older ages. 

Because the linear averaging method has generally produced 
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Satisfactory results and because it is the simplest method to 

apply, it was used in these analyses. 

Analyses of model performance were also based on these 

observed values divided by three in order to validate the 

models on a one-year basis. Thus, given the three-year 

measurement interval of the data, predictions could only be 

made and analyzed for the first, fourth, and seventh growing 

seasons following plot establishment. 

Note that throughout this discussion, residual or 

residuals are defined as observed minus predicted values. 

The first step was to determine if a thinning response 

variable was warranted in the diameter increment, height 

increment, and mortality functions. If no significant 

differences in model parameters across thinning regimes 

existed, then the increased complexity of an additional 

variable to describe thinning response would not be necessary. 

For each of the three models under examination, separate 

parameters were fit for the no thin, light thin, and heavy 

thin data, and again across all of the data. The sums of 

squares for error from these fits were used in a simple F-test 

as described by Swindel (1970) to determine if there were 
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Significant differences between the parameters fit to 

different thinning intensities. 

For example, when testing the diameter increment (DIN) 

model, which has three parameters, the null and alternative 

hypotheses of this F-test were as follows: 

Ho: B,, = Bi, = By and 

Ha: at least one of the above three conditions is false 

where B,,, B,,, and B,, represents the first parameter in 

the no thin, light thin, and heavy thin fits, respectively; B,, 

through B,, symbolizes the second parameter in each of the 

three models, etc. In this test, the full model is the model 

in which separate parameters have been fit for each thinning 

regime, thus totalling nine parameters for the DIN model. The 

reduced model is the three parameter model fit to the entire 

dataset. The form of the F statistic is: 

_(SS,-SS,) / (d£,-df ,) 
~ SS,/df, 
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where: SS, = sum of squares for error of the reduced model 

SS, = total of the sums of squares for error of each 

of the separate fit models 

df, = degrees of freedom of the reduced model 

df. = sum of the degrees of freedom of the separate 

fit models 

Within the simulator, mean total height is calculated 

first. This in turn is used to determine a potential height 

increment which is used in the height increment determination. 

The height increment result is the basis of the potential 

diameter increment calculation, which is modified in the DIN 

model. Considering this flow in the simulator, the HIN model 

was the first focus. 

Height Increment Model 

Prediction of height increment (HIN) is accomplished by 

the modification of the potential height increment with a 

function of crown ratio and competition index. The potential 

height increment (PHIN) is based on the difference between the 

observed mean total heights of dominant and codominant trees 

in each plot at two consecutive remeasurement periods. The 

HIN model from PTAEDA2 is restated here: 
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HIN=PHIN* [B,+B,CR*?+exp (-B,CI-B.CR) ] 

Fitting the HIN model to the multi-year data proved to 

have several problems. Attempts were first made at separate 

fits of one-year increment models for each thinning regime. 

These were necessary for the F-test for significant 

differences. The data from unthinned plots fit well, with 

only B, being insignificant (indicated by its asymptotic 

confidence interval including zero). 

It was very difficult to obtain a non-linear regression 

convergence with data from either the light thinned or heavy 

thinned plots. Several sets of starting parameters were 

tried. When convergence was achieved, the estimates for B, 

and B, had no standard errors in each of the thinned data 

fits, and SAS reported " the Jacobian is singular". This 

indicated that all information in these two parameters was 

completely explained by the other three parameters in the 

model . Estimates of this type will hereafter be called 

Singular estimates. The estimates for B,, B,, and B, were all 

insignificant. No set of starting parameters could improve 

upon this result. 
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It was decided to attempt three-year prediction fits in 

the hope of getting valid convergence with the data from the 

thinned plots. Convergence was more successful using three- 

year increments but again all estimates for the fit to heavy 

thin data were insignificant, and only B, was significant in 

the fit to light thinned data. Correlation matrix analysis 

identified part of the cause of these problems. In both of 

the datasets from thinned plots, correlation was greater than 

0.98 between B,, B,, and B,. In the data from heavy thin 

plots, correlation between B, and B, exceeded 0.99, and was 

greater than 0.94 for the fit to data from light thinned 

plots. Correlations were low (less than 0.6) for B, or B, to 

B,, B,, or B,, even in the fit to all of the data. 

Originally, this model was fit to data from unthinned 

plots only for PTAEDA2. In that fit, correlations were 

Similarly high, but not nearly as high as the current fit to 

unthinned data. The original fit was across only one three- 

year increment period of unthinned plot data. In that fit, 

over 10,000 observations were used by translating the plot so 

that border trees would have competitors on the opposite plot 

edge. However, only 2,500 observations were used in this 

analysis, due to only interior trees being used in the current 

fits. These are expanded to 5,700 observations by including 

second and third remeasurement data. 
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To test whether temporal correlation was affecting the 

fits, non-temporally correlated datasets were generated by 

randomly selecting one of the three remeasurement period 

observations for each tree. This reduced the total available 

data by two-thirds. Fits to data from unthinned, light, and 

heavy thinned plots were done for one-year and three-year 

increments. 

Using non-temporally correlated data gave no reduction in 

the correlations between B,, B,, and B, for any of the thinning 

regimes or increment levels. The correlations between these 

estimates and B, and B, either greatly increased or decreased 

depending on the thinning intensity in the three-year 

increment fits. These correlations could not be compared with 

temporally correlated one-year increment fits because these 

values were not available for the singular estimates for B, 

and B,. 

The HIN fits were not improved using the non-temporally 

correlated data. All estimates in the fits to data from 

thinned plots were again insignificant, and the estimate for 

B, waS again singular in both the three-year and one-year 

increment fits to heavy thinned data. The standard errors for 

each estimate increased dramatically, particularly for B, and 

B,. The fit statistics, such as they are, are presented in 
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table 2 for the non-temporally and temporally correlated fits, 

for both the one and three-year fits. The significance of the 

estimates is also given. 

The unthinned plot data were randomly split and the one- 

year HIN model was fit and validated. The S,, for this fit 

was 0.6604, an improvement over both of the other fits to 

unthinned plot data. Validation residuals were similar to the 

fit residuals, and indicated no particular bias. 

When high correlations exist between parameters, it 

usually indicates that one or more of those parameters should 

be fixed at a particular value, rather than being fitted 

through iterations. This was tried with B, and B,. When B, 

was set to 0.12, the model failed to converge with several 

sets of starting parameters. Fixing B, at the approximate 

value of previous fits generated better results. 

The B, parameter was set to 0.5 for unthinned, 0.6 for 

light thinned, and 0.3 for heavy thinned plot data. The fits 

were improved for all three thinning regimes, for both one- 

year and three-year increments over previous fits using five 

parameters. The improvements were not significant, but some 

estimates which were insignificant became significant and no 

Singular estimates occurred. Future analysis may prove this 
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to be a better design for the height increment model. The fit 

statistics and status for these fits for one and three years 

are given in table 3, and can be compared with the table 2 

fits to temporally correlated data. 

To go one step further, an attempt was made to fit the 

HIN model with B, set and to incorporate the thinning response 

variable developed in Liu et al. (in press) multiplied against 

CI in the exponent. Convergence was achieved, but the 

estimates for R and K were found to be insignificant. The 

parameter K was estimated at 725 which was obviously not 

valid. 

Other variations of this model were tried. The estimate 

for B, was always insignificant. Fitting the model without 

this parameter allowed more stable estimates for the other 

parameters, but there was no improvement in the residual 

analysis and no practical gain was seen from this design. 

When the model was fit without CR or its parameter (B,) in the 

exponent of the model, it resulted in the worst fit of any of 

the forms tried. 

Spreadsheet analysis was done on the models fitted to 

data from light and heavy thinned plots to determine the 

impact of each of the variables CR, CI, and PHIN on the HIN 
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Table 2. Fit statistics and significance of estimates for height increment models fit to 
temporally and non-temporaily correlated data. 

  

  

          

Model SSE MSE Sy.x Df Significance 

1 2536.9304 0.4520 0.6723 5613 |B1 insignificant 
2 5526.2522 0.4271 0.6535 12940 {All insignificant 

3 3695. 1913 0.4171 0.6458 8859 |All insignificant 

4 22858. 1896 4.0724 2.0180 5613 |B1 insignificant 
5 49982.4027 3.8632 1.9655 12938 only B2 significant 

6 33480. 1545 3.7801 1.9442 8857 |All insignificant 

7 863.2771 0.4614 0.6793 1871 |B1, B3, BS insig. 

8 1813.7477 0.4280 0.6542 4238 |All insignificant 

9 1284.8736 0.4379 0.6617 2934 |All insignificant 

10 7769.4939 4.1526 2.0378 1871 |B1, B3, BS insig. 

11 16323.7290 3.8518 1.9626 4238 |All insignificant 

12 11563.8625 3.9413 1.9853 2934 __ |All insignificant 
  

SSE = sum of squares for error, MSE = mean square error, Sy.x = standard 

error of the estimate, Df = fitting degrees of freedom. 

Models: 

D
P
A
O
L
C
A
N
O
D
A
W
N
 =
 1 Year unthinned data fit to temporally correlated data 

1 Year light thinned data fit to temporally correlated data 

1 Year heavy thinned data fit to temporally correlated data 

3 Year unthinned data fit to temporally correlated data 

3 Year light thinned data fit to temporally correlated data 

3 Year heavy thinned data fit to temporally correlated data 

1 Year unthinned data fit to non-temporally correlated data 

1 Year light thinned data fit to non-temporally correlated data 

1 Year heavy thinned data fit to non-temporally correlated data 
3 Year unthinned data fit to non-temporally correlated data 

3 Year light thinned data fit to non-temporally correlated data 

3 Year heavy thinned data fit to non-temporally correlated data 
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Table 3. Fit statistics and significance of estimates for height increment models fit with 

parameter B5 set to 0.5 for unthinned data, 0.6 for light thinned data, and 0.3 for heavy 

  

  

            

thinned data. 

Model SSE MSE Sy.x Df Significance 

1 2533.7036 0.4513 0.6718 5614 {all significant 

2 §507.3832 0.4257 0.6525 12936 |B1 insignificant 

3 3692.3467 0.4168 0.6456 8858 [only B3 significant 

4 22803.3317 4.0619 2.0154 5614 — /all significant 

5 49567.3491 3.8317 1.9575 12936 /|B1 insignificant 

6 33231.1141 3.7515 1.9369 ° 8858 __ [only B3 significant 
  

SSE = sum of squares for error, MSE = mean square error, Sy.x = standard 

error of the estimate, Df = fitting degrees of freedom. 

Models: 

O
o
h
 

W
N
 

=
 1 Year unthinned data fit with B5 set to 0.5 

1 Year light thinned data fit with B5 set to 0.6 

1 Year heavy thinned data fit wth B5 set to 0.3 

3 Year unthinned data fit with B5 set to 0.5 

3 Year light thinned data fit with B5 set to 0.6 

3 Year heavy thinned data fit with B5 set to 0.3 
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prediction. Each of these variables was varied across its 

observed range while holding the other two variables constant 

at their means, and the HIN prediction was analyzed. 

It was found that HIN changed by less than a foot across 

the entire range of either competition index or crown ratio. 

The HIN prediction was about equal to PHIN across the range of 

potential heights (about 5 feet). This indicated that CR and 

CI seemed to have very little power in the modification of 

PHIN, thus the value of PHIN largely controls the HIN 

prediction. This condition was more prominent for the 

estimates fit to data from heavy thin plots. The lack of 

impact of changes in CR or CI as thinning intensity is 

increased was another possible explanation for the difficulty 

in obtaining valid fits to the thinned data. 

There now appeared to be two possible explanations for 

the difficulty in fitting the height increment model to data 

from thinned plots. One was that there was no measurable 

variation in height increment response between different 

intensities of thinning, a possibility supported by much 

previous research. This lack of variation, coupled with the 

inherent error in field measurements of height could easily 

explain the fitting difficulties. 
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The second possibility was that the response is already 

incorporated in the model in the observed potential height 

increments. This second possibility would explain why it 

becomes increasingly difficult to obtain valid estimates for 

the parameters associated with CR and CI as the intensity of 

thinning is increased. Modification of PHIN in the HIN model 

seems to become insignificant as thinning intensity is 

increased. This was indicated by the spreadsheet analysis. 

When the observed PHIN’s were plotted, the second 

possibility became very likely. Refer to figure 1 and note 

the inversion of potential growth between intensities as 

elapsed time since thinning increases. These plots show that 

thinning the stand slows the decrease in height growth with 

increasing age, at least on a mean analysis level. 

During analysis for this thesis, fourth remeasurement 

data for 44 of the 186 plots became available. The three 

remeasurement dataset is labeled REM3. When the data from 

this fourth remeasurement (REM4) was included in the unthinned 

plot fit of the HIN model, results similar to the three 

remeasurement fit to REM3 data were obtained. However, when 

only three remeasurements from the REM4 dataset were used, fit 

statistics were similar but all estimates were insignificant 

except B,. 
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Figure 1. Means of potential height increments from the observed data. 

Means of Potential Height Increments 
Observed Values Using REM4 Data 
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Figure 2. Means of potential height increments including the observed fourth 
remeasurement data. 
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When PHIN plots were generated to include the available 

fourth remeasurement data, the PHIN’s of all three thinning 

intensities rose sharply between nine and twelve years (see 

figure 2). Since these plots are essentially current annual 

increment (CAI) plots and loblolly pine reaches its peak CAI 

at four to five years of age, PHIN should not increase again. 

A comparison of the mean site indices between the 44 

fourth remeasurement plots and the total of 186 plots found 

the mean values to be only two feet higher on the REM4 plots, 

but the minimum site indices were about eight feet higher on 

these plots. Tt is unknown if this could account for the 

differences seen between the two PHIN plots, but it is one 

possible explanation. 

Thus, based on this analysis and the HIN fitting problems 

with three remeasurements from REM4 data, it was decided that 

only three remeasurements of REM3 data should be used in 

fitting the HIN model to avoid confounding the results, and 

that it be fit to unthinned data only, as was done originally 

for PTAEDA2. The final estimates from this unthinned data fit 

are presented in table 4. 

To maintain consistency between the different models in 

this project, all of the models were fit to only three 
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Table 4. Final estimates for the fitted models. 

  

  

  

PLIVE PLIVE 

MTH Model HIN Model DIN Model Unthinned Thinned 

B1 -0.016003 -0.547476 0.789332 1.057593 1.012884 

B2 -3.020419 2.420062 0.773562 0.062350 0.021765 

B3 0.207179 0.703278 0.006169 0.000962 

B4 0.171205 2.518345 4.763163 

B5 0.381199 

R -0.689758 8.866352 

K 10.773257 5.027573 

Sy.x 1.7898 0.6723 0.0901 0.1330 0.0759   
  

Sy.x = standard error of the estimate. 
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remeasurements uSing the REM3 dataset. The 44 plots with REM4 

data were used in certain validation analyses described later. 

The goal then became to develop a model incorporating a 

thinning response variable (TRV) to describe the response of 

mean total height of dominant and codominant trees to thinning 

intensity. This model would then provide the predicted PHIN’s 

in a height increment model fitted to unthinned plot data 

only. The modeled PHIN would then, in effect, become the 

modifier to the HIN prediction, rather than the modified 

portion of the model. In this way, thinning response would be 

incorporated into the HIN prediction. 

Mean Dominant and Codominant Height Model 

Examination of the PHIN plots indicated that the model 

should be conditioned such that the mean dominant/codominant 

height at all thinning intensities would be equal directly 

after thinning and at six years after thinning. To test this 

conditioning, the data were equally divided into four groups 

defined by the plot ages at thinning. The groups were 8 - 12 

years, 12 - 14 years, 14 - 18 years, and 18 - 25 years of age 

at the time of thinning. Figure 3 shows plots of observed 

PHIN’s in each of these four groups. 
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Figure 3. Plots of the means of observed potential height increments for four ranges of plot ages at 
thinning. Each plot represents 25% of the total number of research plots.



Each PHIN plot shows a variation in mean dominant/ 

codominant height between thinning intensities over time, 

indicating the need for a model to describe these variations. 

However, they show very different patterns for the youngest 

and oldest plots than was indicated by the plots of all the 

data. Thus, the idea of conditioning the model was discarded. 

Another consideration was that the definition of mean 

total height (MTH) was at the core of the observed variation. 

In the United States, MTH is defined as the mean total height 

of the dominant and codominant trees oon ae plot. 

Identification of these trees is always subjective, depending 

on the cruiser’s skill and experience. If variation in MTH 

between thinning intensities proved to be absent under a 

different definition of MTH, then this could provide an 

alternate path of analysis for the thinning response modeling. 

Two other definitions for mean total height were examined. 

MTH defined as the mean total height of the tallest 100 trees 

per hectare (40 trees per acre), as is common practice in many 

European countries, and the mean total height of only the 

dominant trees on each plot. 

The plots of observed PHIN’s under each of these 

definitions shown in figure 4, demonstrate a similar variation 

in MTH between thinning intensities over time as was observed 
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Figure 4. Observed means of potential height increments calculated by 

subtraction of consecutive mean total heights under two definitions of MTH. 
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under the traditional definition. The variations of course 

differed between definitions, but they still existed, thus 

this path of analysis was abandoned. 

Development of a model to describe the variations between 

thinning intensities in mean dominant/codominant height 

proceeded under the traditional definition of MTH described 

above. This model is hereafter referred to as the MTH model. 

The candidate models for predicting MTH were variations on 

Site index equations. The general form of the model is 

MTH=f (age) *T 

where f(age) is a site index equation to describe the 

age/height relationship, and T is a thinning response 

variable. 

The thinning response variable applied in all following 

analyses of the MTH model was that developed by Liu et al. for 

their crown ratio model. This previously described TRV is 

restated below. 

r[-(A,-A,)?2+K(A,-A,) ] 
  

T= (==) As 
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The first step was to select potential site index 

equations for the MTH model. One consideration in model 

selection was the number of parameters involved. Plots of the 

mean total heights over time indicated very little variation 

between thinning intensities. Thus, the number of parameters 

to be estimated would have to be limited to avoid difficulty 

in fitting. 

Several site index equations were examined (Clutter et 

al., 1983, Amateis and Burkhart, 1985). A paper by Cao (1993) 

provided the best source of candidate models. In this paper, 

the author fit different transformations of several site index 

models to determine the best form of each equation in terms of 

Fit statistics. The author labeled these different model 

forms as Method A, Method B, etc., and they will hereafter be 

referred to in the same manner. The models examined were from 

Schumacher (1939), Bailey and Clutter (1974), and Amateis and 

Burkhart (1985). The five models selected are shown below. 

Schumacher, Method A: 

1n (MTR) =[B,+B,/agel] *T 
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Schumacher, Method C: 

MTH2= [MTH1+*exp (B,* (1/age2-1/age1))]*T 

Bailey and Clutter, Method C: 

MTH2= [exp (B,+ (1n (MTH1) -B,)) * (age2/age1) °2] «T 

Amateis and Burkhart, Method B: 

1n (MTH2) = [1n (MTH1) * (age1/age2) ***exp (B,* (1/age2-1/agel))]*T 

Amateis and Burkhart, Method C: 

MTH2= [exp (1n(MTH1) * (age1/age2) *+*exp (B,* (1/age2-1/agel1)))]* 

where: MTH1 is the mean total height at the start of a 

prediction period 

MTH2 is the mean total height at the end of a 
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prediction period 

agel is the plot age at the start of a prediction 

period 

age2 is the plot age at the end of a prediction 

period 

Each of these models was fitted to the entire dataset. 

The fits were compared on the basis of residuals (observed - 

predicted) and on the plots of the predicted PHIN’s calculated 

by subtraction. The Schumacher, method A had an entirely 

different pattern of residuals when plotted compared to the 

other four models. This could have been due to this model 

being strictly anamorphic. It was decided that a more 

polymorphic model was needed for this application. Thus, the 

non-differential Schumacher, method A was eliminated. 

There was little variation in fit statistics between the 

four differential models (see table 5). All estimates were 

Significant with the exception of B, in the Amateis and 

Burkhart, method B fit. Since the Amateis and Burkhart, 

method B could not be directly compared with the other models, 

the selection criteria became the residual and PHIN plots. 

All four residual plots showed a change to an underprediction 

from three to six years with the Schumacher, method C being 

the worst of these (see figure 5). From six to nine years, 
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variation in mean fit residuals between thinning intensities 

increased for all four models. The Bailey and Clutter, method 

C model had the best residuals, varying less than 0.2 from 

zero. The Schumacher, method C model had far worse residuals 

in this third remeasurement period than the other three 

models. 

The PHIN plots for each of the four models were similar 

to one another, and were similar to the observed data for the 

first six years after thinning. These plots are shown in 

figure 6. From the second to the third remeasurement (6 to 9 

years), the predicted PHIN’s for the thinned plots increased 

in all cases. As was discussed earlier, PHIN values should 

not increase again. The Schumacher, method C was again the 

worst of these plots. 

To determine if this third remeasurement variation was 

resulting from the TRV, spreadsheet plots of the fitted TRV’s 

for each model were generated for each of four ages at 

thinning (8, 12, 18, and 25). The plots shown in figure 7 for 

a thinning age of 8 demonstrate that this TRV has all of the 

required characteristics. Modification of the MTH prediction 

decreases as age at thinning increases (indicated by the other 

age at thinning plots not displayed), and increases with the 

intensity of thinning. However, these plots all continue to 
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rise after the duration parameter K is reached and show no 

indication of returning to 1 even 18 years after thinning. 

After the TRV exceeded 1, it was hoped that it would return to 

1 at some point, indicating that the effect of thinning was 

eventually negated. 

It is quite possible that this continuous increase in the 

TRV above 1 after K is reached is responsible for the 

increasing PHIN’s during the third remeasurement. If so, 

there were only two choices, redesign the TRV to return to 1 

after a certain period has elapsed, or simply truncate the TRV 

at 1 in application and analyze the MTH model performance. 

The plots of the TRV’s (figure 7) revealed that once 

again the Schumacher, method C was the most extreme case. Its 

rise above 1 far exceeded the other three models. Considering 

this, and the poor residual and PHIN plots for this model, the 

Schumacher, method C was dropped from further analysis. 

A vital requirement of any prediction model lies in the 

path invariance property. A predictive model should be able 

to generate the same result regardless of the length of the 

prediction period. That is, performing two five year 

predictions, using the first result as input to the second, 

should generate the same result as one ten year prediction. 
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Table 5. Fit statistics and estimates for K and R in the thinning response 

variable for the mean total height model analysis. 

  

  

          

Model SSE MSE Sy.x K R 

1 4905.0562 3.1605 1.7778 6.08 0.98 

2 4418.2868 2.8487 1.6878 6.48 0.23 

3 2.2555 0.0015 0.038 1 6.67 0.57 

4 5023.6650 3.2390 1.7997 6.35 0.76 

5 4472.6445 2.8837 1.6981 4.71 0.42 

6 2.2446 0.0014 0.0380 9.63 ~0.64 

¢ 2.2450 0.0014 0.0380 10.12 -~0.61 

8 4968.3817 3.2033 1.7898 10.77 -0.69 

9 4959.4939 3.1976 1.7882 8.62 ~-0.87 

10 1.0561 0.0014 0.0371 8.58 ~0.86 

11 2290.2976 2.9978 1.7314 7.64 ~1.06   
  

SSE = sum of squares for error, MSE = mean square error, Sy.x = standard 

error of the estimate. R and K are estimated parameters in the TRV's. 

Models: 

Schumacher, Method C with 1 TRV 

Bailey and Clutter, Method C with 1 TRV 

Amateis and Burkhart, Method B with 1 TRV 

Amateis and Burkhart, Method C with 1 TRV 

Bailey and Clutter, Method C wth 2 TRV's 

Amateis and Burkhart, Method B wth 2 TRV's 

Amateis and Burkhart, Method B with 4 TRV's 

Amateis and Burkhart, Method C with 2 TRV's 

Amateis and Burkhart, Method C with 4 TRV's 

Split data analysis of Amateis and Burkhart, Method B with 2 TRV's 

Split data analysis of Amateis and Burkhart, Method C with 2 TRV's S
o
e
*
V
N
O
G
H
A
W
D
 =
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Figure 5. Mean fit residuals for four mean total height models fit to all available data. 
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Figure 7. Plots of the fitted thinning response variable for four mean total height models. Residual 

basal areas are 0.5 for the heavy thinned data and 0.67 for the light thinned data. 
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This property was tested on each of the three remaining 

differential models. The tests revealed that all three models 

were path variant in their present form. Two five year 

predictions did not yield exactly the same results as one ten 

year prediction. It was identified that this was the result 

of multiplying the entire model by the TRV. Since these are 

differential models, each age factor must be multiplied by its 

own corresponding TRV to maintain path invariance. 

The three models were refit with each age factor 

multiplied by a TRV based on the same age as that factor (agel 

or age2), and fitting the same parameters to both. In the 

Amateis and Burkhart models, a ratio of ages and a difference 

of ages are used. Since it was uncertain whether the ratio 

ages would require separate TRV’s as well as the difference 

ages, these two models were fit both ways, using two TRV’s and 

using four TRV’s. 

The fit statistics for these five models are also shown 

in table 5 with the corresponding estimates for K and R. The 

estimate for B, was again insignificant in each Amateis and 

Burkhart, method B fit. Note that using multiple TRV’s rather 

than multiplying the entire model by the TRV resulted in 

improved statistics in every case except the Bailey and 

Clutter model. In figure 8, the residual plots for the Bailey 
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Figure 8. Plots of mean fit residuals from five mean total height models fit to all the data using multiple 
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and Clutter model were markedly different from those of the 

other four models. This is possibly attributable to the 

significantly smaller value of K for this fit, compared to the 

other models. The Bailey and Clutter fit was the only one in 

which the estimated value of K became smaller. 

All of the previously examined plots of mean PHIN’s 

indicate that stand thinning has an impact on height growth 

through at least nine years. Thus, it was expected that the 

duration parameter would be estimated somewhere in the range 

of nine to 12 years. This was the case for the four 

variations of the Amateis and Burkhart model. The fact that 

k became smaller in the Bailey and Clutter model than its 

value in the single TRV fit makes this model questionable. 

These five fitted models were then analyzed for path 

invariance. Only the Amateis and Burkhart models using TRV’s 

multiplied against the difference ages were path invariant. 

The three models in which the ratio ages were multiplied 

failed the test. This eliminated the Bailey and Clutter, 

method C model from further analysis and reduced the selection 

process to two models. These two are shown below. 

Amateis and Burkhart, Method B: 
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Ln (MTH2) =1n (MTH1) * (age1/age2) *+xexp (B,* (TRV2/age2-TRV1/agel 

Amateis and Burkhart, Method C: 

MTH2=exp (1n (MTH1) * (age1/age2) *++exp (B,* (TRV2/age2-TRV1/agel 

where: TRV1 is the previously described TRV with agel in 

the denominator of the exponent, and elaps = 

agel - age at thinning. 

TRV2 is the previously described TRV with age2 in 

the denominator of the exponent, and elaps = age2 - 

age at thinning. 

Again, fit statistics could not be used for model 

comparison, thus selection was based on residual and PHIN 

plots. The method C residual plot showed considerably less 

bias than the method B plot (see figure 8). There was little 

difference in the mean predicted PHIN plots between the two 

models shown in figure 9. The method B plots had a slightly 

steeper decline over time than the method C model, but it was 

not known if this was significant for comparison. Both plots 
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had declining mean PHIN’s through nine years after thinning, 

which was the desired condition. 

The data were randomly split and the two models were fit 

to one half of the data and validated on the other half. 

Figure 10 compares the residuals from these two validations. 

From these plots, it is difficult to determine which model is 

less biased, but the method C plot appears slightly better. 

Once again, fit statistics for these fits can not be directly 

compared. Both had somewhat better S,,’s than their full data 

counterparts. These statistics are included in table 5. 

The only other factor to consider was the value of the 

duration parameter for each fit. K was 9.63 for method B and 

10.77 for method C. Either value seems reasonable, but it was 

thought that a larger K was more appropriate for this 

application. Based on this, the better residual plots, and 

the fact that B, was insignificant in the method B fits, the 

Amateis and Burkhart, method C model with two TRV’s was 

selected. 

Figure 9 also contains a plot of predicted PHIN’s from 

the MTH model fit without TRV’s. Fit statistics were 

considerably worse for this fit, and as can be seen, PHIN 

prediction is greatly compromised without the TRV’s 
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Figure 9. Predicted PHIN's for the final two mean total height models, 
and for the MTH model fit without a thinning response variable. 
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Amateis & Burkhart MTH Model with 2 T's 
Method B Split-Data Validation 
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Figure 10. Validation residuals from split-data fit/validation analysis on the final 
mean total height model choices. 
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The final estimates are presented in table 4. These 

estimates were used to generate site index curves for site 

indices of 50, 60, and 70. Three sets of curves were 

generated for three ages at thinning, 12, 25 and 30 years. 

Curves for unthinned stands and stands thinned by fifty 

percent have been superimposed. They are displayed in figures 

11, 12, and 13. 

Note particularly in the curves for an age at thinning of 

12 that the curves for unthinned stands initially exceed the 

thinned stand projected growth, but later fall below the 

thinned stands. Also note a greater separation between the 

growth of thinned and unthinned stands for higher site indices 

at a plot age of thirty-five years. Finally, mean total 

height is equal to the correct site index at the base age of 

25. These curves indicate that the desired relationship 

between thinned and unthinned stands has been correctly 

modeled. 
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Figure 12. Site index curves for an age at thinning of 25. 
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Diameter Increment Model 

Tree diameter is commonly known to have a large response 

to changes in stand density. Therefore, thinning should have 

the strongest impact on growth simulation through changes in 

tree diameter and the resulting changes in competition index, 

which impacts the other models. A thinning response variable 

which describes these changes should be of most value in the 

diameter increment model. 

The predicted diameter increment is the potential 

diameter increment modified by a function of the tree’s crown 

ratio and competition index. For all model fitting, PDIN was 

derived from the previously described model (Daniels and 

Burkhart, 1975) based on open grown trees and using observed 

height increments. During application in the growth 

Simulator, PDIN is derived by subtraction of the previous mean 

total height from the current one. The diameter increment 

model from PTAEDA2 is restated here. 

DIN=PDIN* (B,CR®?*exp (-B,CZ) ] 
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Separate fits of the DIN model across all of the data in 

each thinning regime and across all of the data were first 

done for calculation of the F statistic. The statistics from 

these four fits are shown in table 6. Analysis of these fit 

residuals showed a large underprediction (0.01 to 0.025) at 

the first remeasurement which increased with thinning 

intensity. Residuals were less than 0.005 at the second and 

third remeasurement. 

This analysis also showed the residuals from the fit to 

light thin data to be nearly identical to the all data fit 

residuals. This was not surprising since the light thinned 

data comprises about fifty percent of all the available data, 

but it indicates that a model fit to all of the data would 

underpredict DIN in heavily thinned stands and overpredict it 

in unthinned stands. 

The first fits of the DIN model incorporating a TRV were 

of the form shown below using the previously described TRV 

developed by Liu et al. 

DIN=PDIN* T* [B,CR’?*exp (-B,CZ) ] 
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where: T = the Liu et al. thinning response variable 

The separate fits of this model were improved in all 

cases over the fits without a TRV, with the exception of the 

fit to the unthinned data of course, since the TRV’sS value is 

1 in unthinned stands (see table 6). The mean residuals were 

improved at the first remeasurement, however, they were made 

considerably worse at the third remeasurement. 

Although mean residuals were improved at the first 

remeasurement by multiplying the DIN model by the TRV, it is 

the performance of the model over time that is the major 

concern. Stand thinning results in sudden changes in the 

calculated competition index which can sometimes be quite 

large. Large levels of mortality can also result in sudden 

changes in CI in subsequent remeasurements. 

Natural systems such as trees take time to respond to 

changes in competition. The DIN model assumes an instant 

response to these changes and since one-year predictions are 

being modeled, this discrepancy could result in erroneous 

predictions. These changes in CI may not be severe in an 

annual simulator, but when using three-year data, they can 

possibly have a large impact on the fitted estimates. 
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Table 6. Fit statistics for diameter increment models fit to all of the data. 

  

  

        

Model SSE MSE Sy.x Df 

1 28.1075 0.005006 0.0708 5615 

2 104.4083 0.008069 0.0898 12937 
3 90.5932 0.010226 0.1011 8859 

4 224.8853 0.008202 0.0906 27417 

5 28.1075 0.005006 0.0708 5615 

6 100.6405 0.007780 0.0882 12935 

7 85.4583 0.009649 0.0982 8857 

8 216.1075 0.007883 0.0888 27415 
9 28.1075 0.005006 0.0708 5615 

10 102.0641 0.007891 0.0888 12935 

11 87.9961 0.009935 0.0997 8857 

12 220.7055 0.008051 0.0897 27415 
  

  
SSE = sum of squares for error, MSE = mean square error, Sy.x = standard 

error of the estimate, Df = degrees of freedom. 

Models: 

y
V
m
O
o
l
P
@
M
r
N
O
N
R
W
N
 =
 Fit to unthinned data with no TRV 

Fit to light thinned data with no TRV 

Fit to heavy thinned data with no TRV 

Fit to all the data wth no TRV 

Fit to unthinned data wth TRV multiplied against model 

Fit to light thinned data with TRV multiplied against model 

Fit to heavy thinned data wth TRV multiplied against model 

Fit to all the data wth TRV multiplied against model 

Fit to unthinned data wth TRV multiplied against Cl 
Fit to light thinned data with TRV multiplied against Cl 

Fit to heavy thinned data with TRV multiplied against C! 

Fit to all the data wth TRV multiplied against Cl 
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A model form which allows this change in CI to gradually 

impact the prediction would be more consistent with the 

natural system. One way to accomplish this is to multiply the 

TRV times CI directly in the exponent of the DIN model, rather 

than multiplying it times the entire model. The following 

model formulation was fitted to each thinning regime to 

parallel the analysis with the TRV multiplied against the 

entire model. 

DIN=PDIN* [B,CR*?*xexp (-B,CI*T) ] 

The statistics for these model fits are also displayed in 

table 6 for comparison to the previous TRV fits and to the 

fits without a TRV. The table shows that using the TRV in the 

exponential position results in poorer fits for all regimes 

than multiplying the TRV against the entire model. These fits 

are however still better than the fits without a TRV. The fit 

residual plots also confirm the poorer fits with the TRV in 

the exponent. Mean fit residuals were slightly worse in all 

three remeasurements. Figure 14 compares the fit residual 

plots for the three analyses described above. 
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Figure 14. Fit residuals from separate fits of the diameter increment 
model to each thinning regime with and without a TRV. 
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The idea of modifying competition index rather than the 

entire model seemed sound, even though preliminary analysis 

was dissatisfying. It was decided to try some other forms of 

thinning response variables. 

It was believed that in order for an individual tree’s 

response to thinning be accurately modeled, an expression of 

the change in the individual tree’s competitive status must be 

included. Note that the previously discussed TRV’s are stand 

level variables. Their base is a ratio of after thinning 

basal area to basal area before thinning, thus the TRV’s value 

is the same for every tree in each particular stand. A tree 

level TRV was developed which is based on a ratio of each 

trees competition index after to competition index before 

thinning, rather than the residual basal area ratio previously 

used. This TRV design is shown below. 

r[-(A,-A,)?+K(A,-A,)] 

_ CIA AS 
  

where: CIA = the trees competition index after thinning 

at plot establishment 

CIB = the trees competition index calculated for 
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before thinning competitive status 

other parameters and variables are as described 

previously for the tree level TRV 

The model was fit as before with the new TRV multiplied 

against the entire model and multiplied against CI in the 

exponent. The TRV developed in Short and Burkhart (1992) was 

also analyzed in this fashion using the basal area ratio based 

and CI ratio based TRV’s. Table 7 provides a comparison of 

these six models which include a TRV. For simplicity, the 

fits to unthinned data have not been included in this table, 

Since they are not altered by different approaches to 

including a TRV. 

As can be seen in this table when compared to table 6, 

not one of these TRV designs improved upon the Liu TRV 

multiplied against the entire model. The same is true for the 

original Liu TRV multiplied against CI, with the exception of 

the design using the Liu TRV with a CI ratio base multiplied 

against the entire model (models 2 and 3 in table 7 ). The 

fit to light thinned data did not perform as well as the basal 

area ratio based TRV in the exponent, but the fits to heavy 

thinned data and to all the data are somewhat improved when 

compared to models 11 and 12 in table 6. 
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Table 7. Fit statistics for diameter increment models fit to all of the data, 

using various thinning response variables. 

  

  

  

      

Model SSE MSE Sy.x Df 

1 102.9050 0.007956 0.0892 12935 

2 87.8937 0.009924 0.0996 8857 

3 219.7937 0.008017 0.0895 27415 

4 103.0570 0.007967 0.0893 12935 

5 88.9278 0.010040 0.1002 8857 

6 221.6138 0.008084 0.0899 27415 

7 110.1898 0.008517 0.0923 12937 

8 100.9302 0.011393 0.1067 8859 

9 264.9213 0.009663 0.0983 27417 

10 103.6169 0.008009 0.0895 12937 

11 89.3093 0.010081 0.1004 8859 

12 224.9926 0.008206 0.0906 27417 

13 137.5653 0.010633 0.1031 12937 

14 145.2180 0.026392 0.1625 8859 

15 338.2935 0.012339 0.1111 27417 

16 104.7965 0.008101 0.0900 12937 

17 90.6628 0.010234 0.1012 8859 

18 225.9657 0.008242 0.0908 27417   
    
SSE = sum of squares for error, MSE = mean square error, Sy.x = standard 

error of the estimate, Df = degrees of freedom. 

Models: 

Fit to light thinned data using a Cl ratio TRV multiplied against model 

Fit to heavy thinned data using a Cl ratio TRV multiplied against model 

Fit to all the data using a Cl ratio TRV multiplied against model 

Fit to light thinned data using a Ci ratio TRV multiplied against Cl 

Fit to heavy thinned data using a Cl ratio TRV multiplied against Cl 

Fit to all the data using a Cl ratio TRV multiplied against Cl 

Light thinned fit with A. Short B/A ratio TRV multiplied against model 

Heavy thinned fit with A. Short B/A ratio TRV multiplied against model 
Ail data fit with A. Short B/A ratio TRV multiplied against model 
Light thinned fit with A. Short B/A ratio TRV multiplied against Cl 

Heavy thinned fit with A. Short B/A ratio TRV multiplied against Cl 

All data fit with A. Short B/A ratio TRV multiplied against Cl 
Light thinned fit with A. Short Cl ratio TRV multiplied against model 

Heavy thinned fit with A. Short Cl ratio TRV multiplied against model 
All data fit with A. Short Cl ratio TRV multiplied against model 

Light thinned fit with A. Short Cl ratio TRV multiplied against Cl 

Heavy thinned fit with A. Short Ci ratio TRV multiplied against Cl 

All data fit with A. Short Cl ratio TRV multiplied against Cl 
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The Short and Burkhart TRV with a CI ratio base performed 

extremely poorly compared to the other designs, particularly 

when multiplied against the entire model. Although fitting of 

models utilizing the Short and Burkhart TRV is easier due to 

fewer parameters, it seems obvious that the exponent of this 

TRV is not descriptive enough to utilize the information ina 

CI ratio base. Residual plots similarly indicated poorer 

predictive ability for the TRV based on a ratio of CI values. 

It should be noted that in all of the above described 

fits, all parameter estimates were significant. The DIN 

models did not have any of the fitting problems found with the 

HIN model, probably because there is much more variation in 

the diameter data, compared to the height data, and much less 

inherent measurement error. 

Based on these results and to remain consistent with the 

other models in the simulator, it was decided to limit further 

analysis to the Liu TRV using the basal area ratio base. This 

TRV has been shown in the MTH analysis above and in LIU et al. 

to have better characteristics for describing biological 

systems than previous variables. Thus, analysis was focused 

on the configuration of the TRV in the model. 
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The data were randomly split, using one-half as the 

fitting dataset and one-half for validation. Each of the two 

model forms, the TRV multiplied against the entire model, 

hereafter called the multiplicative model, and multiplying CI 

in the exponent by the TRV, called the exponential model, were 

fit and validated. These split-data fit statistics are shown 

in table 8. In these fits, as before, the multiplicative 

model had slightly better statistics than the exponential 

model. However, in the residual plots, validation was much 

better for the exponential model (see figure 15). 

The two models were again fit to all of the data, then 

validation residuals were generated for each thinning regime 

using the fitted estimates. These fit statistics are also 

shown in table 8. Figure 16 shows the validation of these two 

models on each thinning intensity. Although this validation 

is not on an independent dataset, it demonstrates how well or 

poorly the thinning response variable is performing. The 

exponential model again had slightly worse fit statistics, as 

earlier analysis found, but the validation shows a much 

tighter relationship between intensities. There was very 

little bias compared to the multiplicative model. 
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Table 8. Fit statistics and estimates for K and R in the thinning response variable 

for diameter increment models with different elaps/age configurations in the 

thinning response variable. 

  

  

  

Model SSE MSE Sy.x K R 

1 105.6967 0.007776 0.0882 -4.45 7.47 

2 107.6455 0.007920 0.0890 9.01 7.69 

3 216.1075 0.007883 0.0888 -4.59 7.51 

4 220.7055 0.008051 0.0897 9.16 7.66 

5 110.1552 0.008104 0.0900 -0.28 9.57 

6 108.6441 0.007993 0.0894 8.38 5.01 
7 219.3568 0.008001 0.0894 -6.20 4.96 

8 222.7511 0.008125 0.0901 8.87 5.03 

9 216.0319 0.007880 0.0888 -6.07 7.46 

10 218.7138 0.007978 0.0893 -8.91 5.00               

SSE = sum of squares for error, MSE = mean square error, Sy.x = standard 

error of the estimate. R and K are estimated parameters in the TRV's. 

Models: 

B
D
O
M
N
O
M
A
W
N
 =
 Split-data fit wth TRV multiplied against entire model 

Split-data fit wth TRV multiplied against Cl 

All data fit wth TRV multiplied against entire model 

All data fit wth TRV multiplied against Cl 

Split-data fit wth TRV multiplied against entire model (1 year elaps) 

Split-data fit wth TRV multiplied against Cl (1 year elaps) 

All data fit wth TRV multiplied against entire model (1 year elaps) 
All data fit wth TRV multiplied against Ci (1 year elaps) 

All data fit using two TRV's 

All data fit using two TRV's (1 year elaps) 
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Figure 15. Residuals from split-data fit/validation analysis on the diameter 

increment models using a three-year elaps/age configuration. 
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Figure 16. Fit residuals from diameter increment models fit to all of the data 
using a three-year elaps/age configuration in the thinning response variable, 
with validation on each thinning regime. 
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At this time, the structure of the variables in the TRV 

came into question. Up to this point in the analysis, the 

elapsed time (age minus age at thinning), termed elaps, used 

in the TRV was 3 years, 6 years, and 9 years. This was also 

true of the age factor in the denominator of the exponent of 

the TRV. Since these are one-year models, it seems logical 

that the elapsed time the TRV is predicting across should also 

be one year. 

Split-data analyses were again run on the two models. 

This time, the values for elaps used in the TRV were 1, 4, and 

7. Also, the age factor in the denominator was set to age at 

thinning plus 1, plus 4, and plus 7. This age factor must be 

the same as the age used to calculate elaps. In this 

configuration, the exponential model performed slightly better 

than the multiplicative model; however, there was very little 

difference in the validation residuals for the two fits (see 

figure 17). The exponential model was better at the second 

remeasurement and the multiplicative was better at the third. 

Each model was refit to all of the data using the new 

elaps/age configuration. The fit statistics for this and the 

split-data fits are also in table 8 for comparison to the 

three-year elaps fits. Once again, the multiplicative model 

had a higher quality fit. But again, in the validation plots 
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of these estimates on each regime shown in figure 18, the 

exponential model performed better than the multiplicative 

design. Included in figure 18 is a validation of estimates 

fit without a TRV for comparison to the TRV plots. 

In every case using the one-year elaps/age configuration, 

fit statistics were slightly worse than the similar fit with 

the original configuration. It is difficult to explain why 

the fit statistics were worsened by using the intuitively 

correct one-year configuration. However, the change resulted 

in a substantial improvement in the validation plots for the 

multiplicative model, when figures 16 and 18 are compared. 

The exponential model shows little change in this comparison. 

Another factor which seemed to indicate that the 

exponential model design was superior were the estimates for 

K. In ail of the fits, both three-year and one-year, in which 

the TRV was multiplied directly against CI, this estimate was 

always between 8.8 and 9.2 (see table 8). Even the split-data 

fits fell in this range. This estimate for the multiplicative 

model was very variable, and thus appears unstable. 

To ensure the correct model choice, the six previously 

described model forms with variations of the TRV were refit 

using the one-year elaps/age configuration. Not one of these 
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Figure 17. Residuals from split-data fit/validation analysis on the diameter 

increment models using a one-year elaps/age configuration in the thinning 
response variable. 
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models generated fit statistics which were better than the 

three-year elaps/age configuration fits previously discussed. 

Two more fits were done to analyze the performance of the 

DIN model incorporating two TRV’s, one multiplied against the 

entire model and one multiplied against CI. This fit was done 

for each of the two elaps/age configurations. These 

Statistics are the last two entries in table 8. Using two 

TRV’s resulted in slightly improved fit statistics, but a 

validation of these estimates on each regime demonstrated the 

worst performance of any of the models examined. 

The exponential model had slightly worse fit statistics 

than the multiplicative model, but appeared to perform 

considerably better. The idea of modifying CI directly still 

seemed sound. Using a one-year elaps/age configuration also 

generated poorer statistics but better performance. This 

configuration still seemed intuitively correct. Based on 

these results and the goal of sound, long-term prediction 

Stability, the DIN model form in which the TRV is multiplied 

directly against CI in the exponent using a one-year elaps/age 

configuration was selected as the best choice. The final 

estimates are given in table 4. 
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Spreadsheet plots were generated to examine the TRV 

behavior in this fitted model. Plots were generated for ages 

at thinning of 8 and 25. These are shown in figure 19. This 

TRV behaves very similar to the TRV in the MTH model. After 

K is exceeded, the response variable increases without bound 

for 20 years (the range of the graph). The bottom plot is on 

an expanded scale to more closely display the thinning 

response during the first 8 years after thinning for a 

thinning age of 8. 

The plots indicated that this TRV would probably have to 

be truncated at 1 in application similar to the TRV in the MTH 

model. This would be determined through simulator analysis. 

Since the time period between thinning and K years is the most 

critical for modification of the diameter increment prediction 

in thinned stands, truncation after K is exceeded should not 

have a large impact on the prediction. 
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Figure 19. Behavior of the thinning response variable in the diameter 

increment model for two ages at thinning. 
Page 82



Mortality Function 

The mortality function estimates values between 0 and 

about 1. The high end of this range is fixed by the B, 

estimate, which in past applications has been near 1.0. The 

resulting values are then compared to a uniform random 

variate. The tree is considered dead if the calculated value 

is less than the uniform random variate. This function is 

restated here: 

PLIVE=,CR*?*exp (-B,Cr*+) 

where: PLIVE = probability that a tree remains alive 

other variables are as described previously 

Several changes had to be made to the dataset prior to 

fitting and analysis for this model. Several of the plots 

have been damaged by severe storms and southern pine beetle 

infestation since plot establishment. Many of these were 

completely destroyed. An analysis of the percent mortality in 

each plot at each remeasurement was used to determine which 

observations were suspect. To avoid confounding the model 

fits with large levels of catastrophic mortality, all plots 
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which had been completely destroyed since the previous 

remeasurement have had all observations for that and all 

subsequent remeasurements deleted. 

Also, since this is a one-year prediction model, only 

Mortality which occurred during the first year of each 

remeasurement period was retained. All observations in which 

the estimated year of death was the second or third year of a 

remeasurement period were deleted. These combined deletions 

resulted in about a 15% reduction in the total amount of data 

available for fitting. 

The first fits of this model to each thinning regime were 

completed for calculation of the F statistic. The fit 

statistics are shown in table 9. The estimate for B, was 

insignificant in the fit to light thinned data. Both 

estimates associated with competition index (B, and B,) were 

insignificant in the fit to heavy thinned data. The fit to 

all of the data converged in four iterations and all estimates 

were significant. The thinned data fit results seemed to 

indicate that CI becomes less important in predicting 

mortality as thinning intensity increases. 

The calculated F statistic for significant differences 

between thinning intensities was 24.7. This indicates that 
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mortality prediction could benefit from either separate models 

for different thinning intensities or a single model 

incorporating some form of thinning response variable. 

Previous research has shown that there are significant 

differences in mortality response between unthinned and 

thinned stands (Avila and Burkhart, 1992). There remained a 

question as to how much difference in response there was 

between different intensities in thinned stands. If these 

differences are not Significant, then a thinning response 

variable would be of no value to the model. 

The model was fit to all of the thinned plot data. The 

estimate for B, was insignificant in this fit. The Swindel F- 

test was applied to the two fits to thinned plot data, 

treating them as the full model, while the reduced model was 

that fit to all thinned plot data. This F statistic was 5.36, 

much lower than the statistic involving unthinned plot data. 

This F value indicated a much smaller variation in parameter 

estimates than between the three thinning regimes. 

This F statistic does not provide a lot of power for 

rejecting the null hypothesis , considering the large number 

of degrees of freedom. It could not be said for certain that 

there are significant differences in the parameter estimates. 

Considering the other controls on thinning intensity response 
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in the reduced simulator, particularly the MTH and DIN models, 

an additional thinning response variable in the PLIVE function 

could possibly overcompensate for what appears to be only 

slight variations in mortality response between thinning 

intensities. 

The data were randomly split into fitting and validation 

datasets. Models were fit to data from unthinned and thinned 

plots, and to all of the data. Standard errors of the 

estimate were better for the fits to all the data and to 

unthinned plots than for their all data counterparts (see 

table 9). However, the split-data fit to thinned plot data 

required many more iterations than when all of the thinned 

plot data was used, and the estimates for B, and B, were both 

highly insignificant. Apparently, reducing the amount of data 

by one-half greatly impacted the fit to thinned plot data. 

The plots of fit and validation residuals for these 

split-data fits indicated fairly good performance of the 

fitted estimates on semi-independent datasets for the fits on 

thinned plot data and on all the data. However, the 

validation of the split-data fit to unthinned plot data was 

not as good. These three plots are displayed in figure 20. 
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Table 9. Fit statistics and significance of estimates for the mortality function. 

  

  

            

Model SSE MSE Sy.x. Df Significance 

1 103.7195 0.017700 0.1330 5860 |All significant 

2 70.1972 0.005340 0.0731 13146 |B3 insignificant 

3 57.2638 0.006365 0.0798 8997 |B3 & B4 insignificant 

4 127.5845 0.005761 0.0759 22147 |B3 insignificant 

5 232.8119 0.008311 0.0912 28011 {All significant 

6 51.2612 0.017406 0.1319 2945 |All significant 

7 71.2356 0.006443 0.0803 11056 |B3 & B4 insignificant 

8 114.5197 0.008174 0.0904 14011 {All significant 
  

SSE = sum of squares for error, MSE = mean square error, Sy.x = standard 

error of the estimate, Df = fitting degrees of freedom. 

Models: 

O
N
 
O
A
 

W
N
 
=
 Fit to unthinned data 

Fit to light thinned data 

Fit to heavy thinned data 

Fit to all thinned data 

Fit to all the data 

Split-data fit/validation on unthinned data 

Split-data fit/validation on thinned data 
Split-data fit/validation on all the data 
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Figure 20. Residuals from split-data fit/validation analysis of the mortality 

function on unthinned, thinned, and all of the data. 
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It was decided to fit two PLIVE models, one to data from 

unthinned plots and one to data from thinned plots, then 

analyze their performance in the reduced simulator before 

making a decision about incorporating a TRV. All of the data 

was used in these two final fits. These estimates are 

presented in table 4. 

It was discovered that the estimate for B,, B,, and B, 

varied very little between the different intensity fits. 

However, B, changed greatly. Its value was 2.5 for unthinned 

plot data and 5.75 for the fit to light thinned data. 

Correlations between the parameters were examined. 

Correlations were low in most cases, but B, and B, had 

correlations between one another of greater than 0.97 in all 

three thinning regimes. 

To determine if the fits could be improved by stabilizing 

the value of B,, each intensity was refit with B, fixed. Three 

values for B,, 2.5, 3.0, and 3.5 were tried for each of the 

three thinning intensities. There was a very slight 

improvement in the fit to data from unthinned plots when B, 

was set at 2.5 (see table 10). For the six fits on the 

thinned plot data, while the sums of squares for error 

improved, the MSE was increased in all cases. Improvement was 

seen, however, in the significance of the estimates. All 
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estimates were significant in these fits except B, in the fits 

to data from heavy thinned plots. This model form was also 

fit across all thinned plot data. 

Isolated simulations were run on these models to 

determine if differences in performance existed between a 

model fit to all thinned plot data and models fit to each 

thinning intensity. Of course, separate models for each 

thinning intensity are not practical, but the analysis showed 

whether a TRV for the PLIVE model was needed and should be 

pursued. These results are described later. 
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Table 10. Fit statistics and status of estimates for mortality functions wth parameter B4 

fixed at 2.5, 3.0, and 3.5. 

  

  

        

Model SSE MSE Sy.x Df Status 

1 103.7193 0.017690 0.1330 5861 |All significant 

2 103.8819 0.017724 0.1331 5861 ‘|All significant 

3 104.2647 0.017790 0.1334 5861 ‘|All significant 
4 70.5804 0.005369 0.0733 13147 |All significant 

5 70.4424 0.005358 0.0732 13147 |All significant 

6 70.3334 0.005350 0.0731 13147 |All significant 

7 57.2645 0.006364 0.0798 8998 /|B3 insignificant 

8 57.2633 0.006364 0.0798 8998 |B3 insignificant 

9 57.2633 0.006364 0.0798 8998 /B3 insignificant 

10 127.9965 0.005779 0.0760 22148 |All significant 

11 127.8440 0.005772 0.0760 22148 |All significant 

12 127.7199 0.005767 0.0759 22148 |All significant     
  

  
SSE = sum of squares for error, MSE = mean square error, Sy.x = standard 

error of the estimate, Df = fitting degrees of freedom. 

Models: 

Unthinned data fit with B4 set to 2.5 

Unthinned data fit wth B4 set to 3.0 

Unthinned data fit with B4 set to 3.5 

Light thinned data fit with B4 set to 2.5 

Light thinned data fit with B4 set to 3.0 

Light thinned data fit with B4 set to 3.5 

Heavy thinned data fit with B4 set to 2.5 

Heavy thinned data fit with B4 set to 3.0 

Heavy thinned data fit with B4 set to 3.5 

Thinned data fit with B4 set to 2.5 

Thinned data fit with B4 set to 3.0 

Thinned data fit with B4 set to 3.5 
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The Reduced Simulator 

The ultimate test of individual model performance is in 

a growth simulator. The simulator used for this analysis was 

a reduced version of PTAEDA2. The majority of the subroutines 

in PTAEDA2 are for user interface or initializing the juvenile 

stand. These include the INPUT, PLANT, JUV, and OUTPUT 

Subroutines, as well as the management subroutines THIN and 

FERT. If external data from existing stands is used, then 

none of these are required for PTAERDA2 to perform its basic 

function of simulating stand development. The only 

Subroutines that were retained from PTAEDA2 were the 

initialization, competition, and growth subroutines (INIT1, 

INIT2, COMP1, and GROW2). Two new subroutines were written, 

SI and STANDARD. 

Site index is a user input to PTAEDA2, and this value for 

each stand is not available in the Coop thinning study data. 

In the subroutine SI, the site index of each stand was 

calculated from the stand age and the average height of 

dominant and codominant trees in the stand. Since there are 

four observations of dominant height in each stand, the 

subroutine was designed to select the dominant height 

associated with the stand age which is closest to the site 

index base age of twenty-five years. 
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The competition subroutine in PTAEDA2 was written to 

process rectangular plots, i.e. the total number of trees must 

have a whole number square root. This condition is inherent 

in the plots generated in the juvenile subroutine in that 

Simulator, but it is not the case for the natural plots used 

as input in the current analysis. Thus, the subroutine 

STANDARD generates dummy trees up to the necessary count, and 

adds these to the existing trees in the stand. These trees 

are entered as dead, so their presence has no impact on 

competition determination or growth prediction of the existing 

trees. 

The reduced simulator was designed to generate outputs of 

predicted growth after three, six, and nine years of 

simulation. These results were then uploaded to SAS and 

compared to the associated observed data at the first, second, 

and third remeasurements. The analysis of model performance 

was based on plots of mean differences between the observed 

and predicted values of height, mean total height, and 

diameter at breast height. Differences equaled observed minus 

predicted values for this analysis. 

Comparison of mortality was done by determining the total 

number of surviving trees for each plot at each remeasurement 

period of the observed data and subtracting the total number 
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of live trees in each plot at each three-year prediction 

output. All of the plots and remeasurements deleted from the 

observed data for the fitting of the PLIVE equations were also 

deleted from the observed data used for the comparison. 

There was some indecision as to whether the mortality 

analysis should be done on the basis of dead trees or 

surviving trees. Since the numbers are much larger for living 

trees, it was decided to base the analysis on the surviving 

trees to avoid any erroneous results from small dead tree 

counts. 

A variety of simulations were run incorporating the newly 

developed models. Some of the simulations involved all of the 

models, while others isolated a particular model while 

retaining the other models in their original PTAEDA2 form. 

The goal was to draw specific conclusions as to the 

performance of each model separately and together as a unit. 

Each simulation discussed is actually a block of three 

Simulations. For each simulator configuration, separate 

simulations were run for each thinning intensity, unthinned, 

light and heavy thinned. The comparisons in SAS were also 

done in these blocks of three. This allowed mean difference 

analysis by thinning intensity as well as by remeasurement 
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period. It also kept the amount of analysis data at 

manageable levels. 

Isolated simulations were done on the MTH model fitted 

with and without the new TRV’s. These were done to determine 

if the TRV’s benefitted the prediction or in fact, were not 

needed. In these simulations, and in all simulations which 

incorporated the new MTH model, the site index model in the 

subroutine SI was also of the new model fit and form, with or 

without the TRV’s. 

Similar, isolated simulations were run on the DIN model 

fitted with and without its TRV. Separate simulations were 

also used to determine the validity of truncating the TRV in 

this model at less than or equal to 1. These comparisons were 

also done for the TRV’s in the MTH model. 

Isolated simulations were run for the PLIVE fits in which 

B, was set to a particular value. These two simulations 

compared the performance of three separate models’ for 

predicting mortality to the original design of two models, one 

for unthinned plots and one for thinned plots. 

No isolated simulations were completed for the new fit of 

the HIN model since the performance of this model in thinned 
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stands is dependent on the thinning response incorporated into 

it via the new MTH model. Thus, analysis of the new HIN fit 

was only accomplished during simulations involving all of the 

new models. 

One simulation was run in which all of the original 

PTAEDA2 models were retained. This simulation provided a 

baseline for comparison. Comparisons were visually drawn 

between each new model simulation and this baseline in order 

to determine if improvement was realized by fitting the models 

to multiple remeasurement data, or by the incorporation of 

thinning response variables. 

The ultimate goal of growth simulation is some form of 

volume prediction. A total volume determination by plot was 

done in the comparison phase in SAS for a_ simulator 

configuration isolating the new MTH model. A similar 

calculation was completed for a simulation incorporating all 

of the new models. The results of these two determinations 

were visually compared. The question here was whether the new 

MTH model, which directly impacts the HIN and DIN predictions 

in the simulator, does a better job of predicting total volume 

working alone than all of the new models working as a unit. 

As discussed in the PLIVE analysis, it is possible that 

multiple TRV’s and model changes may overcompensate for the 
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response to thinning in a stand. 

It would have been highly desirable to analyze volume and 

mortality on a per acre basis. However, this was not possible 

because only interior trees were analyzed in this study. The 

Size of each plot is determined by the maximum X and Y 

coordinates of the trees on that plot. Since only interior 

trees were examined, the analysis plots were smaller than the 

original research plots. The original plot areas were the 

only values available for calculating per-acre volume and 

mortality, thus the expansion of the comparison results toa 

per acre basis would not have been valid. 

Crown ratio is an important component of the HIN, DIN, 

and PLIVE models. Crown ratio is calculated within the 

Simulator from an equation by Dyer and Burkhart (1986). To 

determine if simulator performance could be improved, the 

crown ratio model incorporating the general thinning response 

variable developed in Liu et al. (in press) was included in 

duplications of some of the above described simulations. 

Lastly, a simulation was completed on the forty-four 

plots which now have data available for the fourth 

remeasurement. These simulations were run only on the 

Simulator configuration with all new models. 
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A complete listing of the source code for the reduced 

Simulator is provided in appendix A. 
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Results and Conclusions 

Results 

The F-tests for significant differences in parameter 

estimates between thinning intensities yielded varied results. 

The F value for the DIN model was 36.5. This value clearly 

indicates that the predictive ability of the DIN model should 

benefit from a thinning response variable that can describe 

these differences. The F- tests for the mortality function 

were discussed in the analysis of that model. The three-year 

thinned data fits of the HIN model with several insignificant 

estimates were the only ones available for calculation of the 

F statistic. This brings into question the validity of the F- 

test result for this model. 

The F-test for the HIN model resulted in a negative value 

(-3.03). This occurred because the reduced model had a lower 

sum of squares for error than the full model. Difficulties 

with separate fits to the light thinned and heavy thinned data 

resulted in such poor statistics that the full model had a 

higher sum of squares for error than the reduced model. 

The sum of squares for error for the reduced model must 

be greater than the full model because fewer parameters are 
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being estimated. These results invalidated the F-test for the 

HIN model, and became one more factor in the decision to fit 

the model to data from unthinned plots without a TRV. 

The first simulation was performed on the original 

unaltered PTAEDA2 models. This provided the previously 

discussed baseline for comparison in subsequent analyses. 

Plots of mean differences for the comparison of observed to 

predicted values for the MTH, HIN, DIN, and PLIVE models are 

shown in figure 21. The plots for the HIN, DIN, and PLIVE 

models all indicate a trend towards an increasing 

underprediction over time. The original MTH model starts with 

an overprediction at the first remeasurement, then shows a 

trend similar to the other models that results in a large 

reduction in mean differences by the third remeasurement. 

Several preliminary isolated simulations were completed 

for the MTH and DIN models to determine the validity of 

truncating the TRV’s in these models. These were necessary in 

order to obtain the best simulator configuration for 

subsequent analyses. 

Simulation of the DIN model without its TRV truncated to 

1 resulted in an increase in the trend towards underprediction 

over time. The change was not great, but this indicated that 
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values minus simulator predicted values at the first, second, and third remeasurements.



the unbounded increase in the TRV after K was exceeded was 

detrimental to the prediction. Thus, in application, the 

thinning response variable for the DIN model should be 

truncated to less than or equal to 1. 

There was little difference in the performance of the MTH 

model with or without truncation of TRV1. This TRV is fixed 

at a constant value for each plot, which may be less than or 

greater than 1, depending on the age at thinning of the plot. 

Thus, truncation of this TRV offers no practical gain and 

would probably be detrimental to the model. 

Simulation without the varying TRV (TRV2) truncated in 

the MTH model resulted in a large change in the comparison. 

Figure 22 compares these two simulations. The vertical scale 

of these two plots has been shifted, but the range is 

identical. The comparison for unthinned stands is unchanged. 

However, the comparisons for thinned stands are shifted to an 

underprediction, and they are much more separated without TRV 

truncation, indicating increased bias in the prediction across 

thinning intensities. 

The shift resulted in an improvement for the light 

thinned data comparison in the first three years of 

prediction. However, when this analysis was repeated with the 
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new HIN model in the simulator, the HIN prediction became 

considerably more biased (about one-half foot) towards 

underprediction. Thus, considering the progression of the 

growth simulator from MTH to HIN to DIN, and the apparent 

increase in bias in the MTH comparison without truncation, 

TRV2 was truncated in all subsequent simulations. 

It was expected that since diameter growth is highly 

sensitive to changes in stand density, a large improvement 

would be realized by incorporating a thinning response 

variable. Simulation analysis proved otherwise. The isolated 

Simulations of the diameter increment model fitted with and 

without a TRV showed virtually no difference in the 

performance of the simulator. In addition, this model fit to 

three remeasurement periods and using a TRV performed slightly 

more poorly (0.05 to 0.1 inches) than the original PTAEDA2 DIN 

model which was fit to only one remeasurement period and to 

unthinned data only. 

The new MTH model, the "front end" of the simulator, was 

run with and without its TRV’s. The site index equation in 

the subroutine SI was also fitted and run with and without 

TRV’s coincident with the above two simulations. This 

analysis showed a slight improvement in the comparison plots 

when the TRV’s were included. The decrease in overprediction 
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was 0.05 feet at the first remeasurement for all thinning 

intensities. This simulator configuration also performed 

better than with the original PTEADA2 MTH model, with or 

without TRV’s included in the new model (about 0.2 feet at the 

first remeasurement for all thinning intensities). 

The fits of the PLIVE model in which B, was fixed at a 

particular value were used in a pair of simulations to 

determine if separate models for unthinned and thinned stands 

were sufficient for mortality prediction. The alternative is 

the development of a single function which includes a TRV for 

prediction of mortality across all intensities of thinning. 

One simulation used two mortality functions, one for unthinned 

data and another for thinned data. The second simulation used 

three functions, one for each thinning intensity. 

The comparison of mean differences in surviving tree 

counts on a per plot basis showed that using separate models 

produced a slight improvement in the mortality prediction for 

light thinned plots (less than 0.5 trees per plot). The 

prediction across heavy thinned plots however, suffered a one 

tree loss in the mean difference analysis at all three 

remeasurements (see figure 23). The comparison for unthinned 

plots was unchanged because the same model was used in both 

Simulations. 
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Figure 23. Simulation comparison of the mortality function performance using 
separate models for each thinning intensity or models fit to the unthinned and 

thinned data only. The parameter B4 is set in these model fits. 
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Figure 24. Simulation comparison between the original PTAEDA2 mortality 
function and the final models fit to unthinned and to thinned data. 
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The results of the above PLIVE analysis provided evidence 

that the light thinned plots have a significant impact ona 

model fit across all thinning intensities. The analysis also 

showed that a thinning response variable for this model should 

be investigated. However, the results do not clearly indicate 

an obvious need for a TRV, the goal of this path of analysis. 

Several simulations using all of the new models were 

completed. In these simulations, the PLIVE models were the 

final fit models previously described with four estimated 

parameters. A loss in predictive accuracy (about one-half 

tree per plot) was realized for the mortality configuration 

using two PLIVE models over the original PTAEDA2 model fit to 

one remeasurement of unthinned plot data. This loss was quite 

considerable (better than two trees per plot) for the 

comparison across light thinned plots (see figure 24). 

It is quite possible that the strong bias exhibited by 

the mortality comparison across light thinned plots would not 

be so apparent if mortality prediction were analyzed on a per 

acre basis. The original research plots that were lightly 

thinned are on average twice the size of the unthinned plots, 

thus they include many more trees resulting in larger 

prediction variations. The plots which were heavily thinned 

are Similar in size to the light thinned plots, but more trees 
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were removed from these plots. Examining all thinning 

intensities on a per acre basis could neutralize this 

discrepancy in plot size and provide a more balanced 

comparison. 

The comparison of the DIN performance between a 

Simulation with all new models and one with the original 

PTEADA2 model had varied results. Figure 25 shows a very 

slight loss in performance of the new model on data from light 

thinned plots and a slight loss on unthinned plots (about 0.05 

inches). Performance improved slightly for the heavy thinned 

plot comparison, with the total bias after nine years 

decreased from 0.95 inches with the original model to 0.92 

inches for the new model with a TRV. 

The MTH model had measurable improvement in prediction 

over the original PTAEDA2 model. The overprediction at the 

early remeasurements was noticeably reduced, while the third 

remeasurement was unaffected. The reduction in bias was about 

1.8 feet at the first remeasurement for all three thinning 

intensities using the new model. This comparison is displayed 

in figure 26. Thus, including the TRV’s in the MTH model 

improved the early prediction ability without impacting the 

nine year prediction. 
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Figure 25. Simulation comparison between the original PTAEDA2 diameter 

increment model and the new model with a thinning response variable. 
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Simulation Performance of MTH Model 
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Figure 26. Simulation comparison between the original PTAEDA2 mean total 
height model and the new model with two thinning response variables. 
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This improvement, however, was not reflected in the HIN 

prediction. Mean difference comparison of this model’s 

prediction with the original PTAEDA2 model performance shows 

no change in the bias relationship between thinning 

intensities, but the entire pattern of comparison results was 

shifted upwards to a greater underprediction. Only prediction 

for heavy thinned plots at three years after thinning could be 

Said to have improved (see figure 27). 

Total volume outside bark was determined on a per plot 

basis for four different simulations; the original PTAEDA2 

Simulator configuration, a simulation with the new MTH model 

isolated, a simulation with all new models, and one in which 

the original crown ratio model was replaced by the CR model 

including a TRV developed by Liu et al. 

The comparison of the simulation with the new MTH model 

isolated to that in which all models were new found the former 

to be superior in predictive efficiency. The new MTH model 

working with the other original PTAEDA2 models had better mean 

differences (5 to 10 cubic feet per plot) for unthinned and 

light thinned plots. There was a very little change in volume 

prediction for heavy thinned plots. This comparison is shown 

in figure 28. 
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Figure 27. Simulation comparison between the original PTAEDA2 height 

increment model and the new model fit to unthinned data. 
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Figure 28. Simulation comparison of volume prediction performance between 
a simulator configuration with only the original mean total height model 

replaced by the new MTH model and one with all new models. 
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The above result reinforces the theory discussed in the 

analysis of the PLIVE model that multiple model changes with 

several TRV’s can overcompensate in the explanation of the 

response to thinning, and thus result in a poorer prediction. 

When this isolated MTH simulation was compared to the original 

PTAEDA2 model for predicting MTH, virtually no difference was 

found. That is, no improvement was realized in volume 

prediction by including a thinning response variable in the 

model for predicting mean total height of dominant and 

codominant trees. 

The simulation in which all new models were used was 

repeated with the original CR model replaced by the CR model 

including the TRV developed by Liu et al. All of the models 

which utilize CR in their prediction were slightly improved by 

incorporating the new crown ratio model in the simulation. 

The HIN, DIN, and PLIVE models all performed slightly better. 

The MTH model does not use CR in its prediction and this model 

showed no change with the new CR model compared to the 

original one. Volume prediction also showed a slight 

improvement with the new CR model. All of the above 

improvements seen were for thinned plots. The new CR model 

seemed to have no impact on the unthinned data simulations. 
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The forty-four plots with fourth remeasurement data 

available were used in a pair of simulations including all of 

the new models. One simulation utilized the original PTAEDA2 

CR model while a second used the CR model developed by Liu et 

al. The mean difference comparisons for the MTH, HIN, and DIN 

models, as well as volume determination are shown in figure 

29. Mortality was not analyzed for the REM4 simulations. 

The HIN and DIN model comparisons across’ four 

remeasurements demonstrated the same increasing 

underprediction over time found in the analyses of simulations 

on three remeasurements; however, no sudden increases were 

seen in these trends. The MTH model performed quite 

differently in the fourth three-year prediction period than in 

the first three periods. As was indicated by the original 

analysis of PHIN’s in this fourth period (figure 2), there was 

a large change in bias from the third to the fourth 

remeasurement (about 1 foot). MTH prediction on these forty- 

four plots changed from a consistent overprediction to an 

underprediction at the fourth remeasurement. 

There was also a change in volume prediction during this 

Fourth period. The increasing bias virtually stalled for the 

comparison across light thinned plots and actually reduced for 

the heavy thinned plots. Incorporating the new CR model in 
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the simulation resulted in a very slight improvement in all 

cases with the exception of the MTH model which was unchanged. 

Conclusions 

The mean total height prediction was improved using a 

model which included a thinning response variable over the 

original PTAEDA2 design of this model. This improvement, 

however, did not have a positive impact on the height 

increment prediction. The HIN model performance was 

deteriorated somewhat for all thinning intensities. It is 

apparent that although thinning response was incorporated into 

the HIN prediction, it did not produce the desired reduction 

in bias. Further analysis of the relationship between these 

two models is recommended. 

There was little variation between any of the analyses of 

the DIN model performance. This was true of the isolated 

analyses as well as simulations in which all models were new. 

No model or simulator configuration changes seemed to have any 

great impact on the DIN prediction, except to deteriorate it 

from the original PTAEDA2 model performance. 

Mortality prediction was deteriorated by the refits of 

the PLIVE function. A significant difference does exist 
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between mortality in unthinned and thinned stands; however, 

fitting separate models to these two conditions did not 

improve the prediction. The F statistic comparing estimates 

in fits to light thinned and heavy thinned data was 5.36, and 

differences were seen in simulation comparisons between using 

separate models and one model for thinned stand prediction. 

Thus, there is sufficient evidence to suggest that a thinning 

response variable may benefit the mortality prediction and it 

is recommended that a model incorporating a TRV be 

investigated. 

Total volume prediction on a per plot basis was not 

changed by including a TRV in the MTH model. Total volume 

prediction was deteriorated by changing several models in the 

Simulator. Actual volume prediction should be analyzed ona 

per acre basis to determine if performance can be improved 

using the new MTH model with its TRV’s. 

The analysis indicated that mean total height prediction 

can be improved by including a TRV in a mean total height 

model. Thus, it is recommended that future versions of the 

PTAEDA simulator incorporate this model change. 

Crown ratio is a basic component of the HIN, DIN, and 

PLIVE models. Including the CR model with a TRV developed by 
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Liu et al. improved each of these models over the original 

PTAEDA2 CR model in simulation comparisons. Volume prediction 

also benefitted from this new model. Any new versions of the 

PTAEDA growth simulator should include this new model. 
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Appendix A. Source Code For the Reduced Growth Simulator 
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THIS PROGRAM DOES NINE YEARS OF PREDICTION, USING EXTERNAL DATA 
OBSERVED ON 186 SITES IN THE COASTAL PLAINS AND PIEDMONT AREAS OF THE 
SOUTHEAST. IT GENERATES AN OUTPUT TO AN ASCCI DATASET EVERY THREE YEARS 
FOR EACH PLOT. THE PROGRAM USES EXCERPTS FROM THE GROWTH SIMULATION 
MODEL PTAEDA2. THE PURPOSE OF THIS PROGRAM IS TO DETERMINE THE VALIDITY 
OF THE HEIGHT AND DIAMETER INCREMENT MODELS IN PTAEDA2, AS WELL AS THE 
MORTALITY FUNCTION, BY COMPARING THE PREDICTED OUTPUT TO THE OBSERVED 
DATA OVER THE NINE YEAR PERIOD. THE PROGRAM ALSO HAS MODELS WHICH CAN 
BE SELECTED THAT ARE MODIFIED TO INCLUDE A THINNING RESPONSE VARIABLE 
DESIGNED TO IMPROVE PREDICTION. 

VARIABEES: 

ODEAD 
OALIVE 

1 CODE FOR TREE STATUS OF DEAD 
2 CODE FOR TREE STATUS OF ALIVE 

COMMON BLOCK 1 

X, Y, D, H, CL, CIP, LMORT, KMORT, TAG, LVIGR(MTREES) = 
ARRAYS OF THESE VARIABLES FROM 1 TO MTREES. 

ACRES = PLOT SIZE (from PLOT DATA) 
ID = COMPANY/LOCATION CODE 
PLOT = 1, 2, OR 3. INDICATES NO, LIGHT, OR HEAVY THINNED 

PERCENT = % OF TOTAL BASAL AREA IF QFERT TRUE (from INIT1) 
HD = AVERAGE HEIGHT OF DOMINANT AND CODOMINANT TREES (from PLOT DATA) 
IX = A RANDOM NUMBER (from INIT1) 
N = NROWS*NROWS (from STANDARD) 
K = PRESENT STAND AGE & CURRENT GROWING SEASON (from PLOT DATA) 
M = TREE COUNT FOR EACH PLOT (from PLOT DATA) 
V = 3, 6, OR 9 YEARS OF PREDICTED GROWTH, OR REMEASUREMENT PERIOD 

KTHIN = PLOT AGE AT THINNING (from MAIN PROGRAM) 
LTHIN = INDICATES THINNED (= 1) OR UNTHINNED (= 0) 
NROWS = # OF PLANTED ROWS AND TREES/ROW (from INIT1 or STANDARD) 
RESBA = RESIDUAL BASAL AREA FACTOR (I IN SAS, from PLOT DATA) 
K3, K6, & K9 = AGES AT 1ST, 2ND, AND 3RD REMEASUREMENTS (from PLOT DATA) 
HD3, HD6, & HDS = HD'S AT 1ST, 2ND, AND 3RD REMEASUREMENTS (PLOT DATA) 

COMMON BLOCK 2 

SITE = SITE INDEX (from Sl) 
PX = DISTANCE RATIO BETWEEN TREES (from INIT1) 
PY = DISTANCE RATIO BETWEEN ROWS (from INIT1) 

PLOTX = NROWS*PX (from INIT 2} 
PLOTY = NROWS*PY (from INIT2) 
VARX = % VARIANCE BETWEEN TREES (from INIT1) 
VARY = % VARIANCE BETWEEN TREES (from INIT1) 
NYEARS = # OF GROWING SEASONS TO SIMULATE (from MAIN PROGRAM) 

MAIN PROGRAM 

IMPLICIT INTEGER *4 (I-N) 
INTEGER *4 IX,ID,PLOT,TAG 
INTEGER*4 ODEAD,OALIVE 
INTEGER *4 K3,K6,K9,Z,0,V 
REAL HD3,HD6,HD9 
CHARACTER*80 FILEN 
PARAMETER (MROWS = 20,MTREES =MROWS *MROWS) 
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PARAMETER (ODEAD = 1,0ALIVE = 2) 

PARAMETER (ZERO =0.0) 

COMMON /BLOK1/ X(MTREES), Y(MTREES),D(MTREES),H(MTREES),CL(MTREES), 

1 CIP(MTREES),_LMORT(MTREES), KMORT(MTREES), TAG(MTREES), ACRES, ID, 

2 PLOT,PERCNT,HD,IX,N,K,M,V,NROWS,RESBA,K3,K6,K9,HD3,HD6,HD9, 

3 LVIGR(MTREES),LTHIN, KTHIN 

COMMON /BLOK2/ SITE,PX,PY,PLOTX,PLOTY,VARX,VARY,NYEARS 

c 

CALL HEADER 

Cc 

C GET THE NAME FOR THE OUTPUT FILE. 

Cc 

10 WRITE(*,20) 

20 FORMAT(5(/),31X,’ASCIl Output File’,//, 

1 ' Please enter the file name (or CON or PRN): ') 

READ(*,30) FILEN 

30 FORMAT(A80) 

IF (FILEN.EQ." ') GO TO 10 

Cc 

C RUN ENTIRE PROGRAM ON FIRST ID, THEN LOOP TO START, RESET, AND RUN 

C PROGRAM ON EACH SUCCESSIVE ID UNTIL LAST ID IS REACHED. 

Cc 

OPEN(1,FILE =FILEN,STATUS = 'NEW’') 

OPEN(2,FILE='PLOT2.DAT',STATUS ='OLD') 

OPEN(3,FILE='TREE2.DAT',STATUS ='0OLD') 

Q=1 

DO 180 Z=1,185 

CALL [NIT1 

CALL INIT2 

Cc 

C READ IN PLOT DATA FOR THIS ID. 

Cc 

READ (2,110) ID,PLOT,K,HD,ACRES,RESBA,K3,K6,K9,HD3,HD6,HD9,M 

110 FORMAT(314,F6.1,F8.4,F9.5,314,3F6.1,14) 

KTHIN = K 

CALL Sl 

c 

C READ IN TREE DATA FOR THis ID. 

Cc 

DO 130 t=1,M 

READ (3,120,END = 140) [D,PLOT,TAG(I),X(I),Y(),CL(),D(),H(I), 

1 LMORTi(N 

120 FORMAT(3!4,3F4.0,F5.1,F4.0,14) 

Cc 

C ADD CIB(I) AND F9.5-IF RUNNING PLOTS 101 TO 1109 TO TREE INPUT. 

Cc 

C CONVERT FROM VIGR CODE TO LMORT CODE. VIGR CODES ARE: 1 = ALIVE, 

C 2 = DEAD, AND 3 = THINNED. VIGR VALUES ARE READ IN AS LMORT. 

Cc 

IF (LMORT(I}.EQ.1) THEN 

LMORT(I) = OALIVE 

ELSE 

LMORT(I) = ODEAD 

ENDIF 

N=N+1 

130 CONTINUE 

140 CALL STANDARD 

c 
C ENABLE CALL DATALIST TO DISPLAY A LIST OF THE INITIAL DATA. 
Cc 
C CALL DATALIST 
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KBEGIN = K+1 

Cc 

C CHANGE LENGTH OF GROWTH SIMULATION TO MATCH ACTUAL PLOT SURVIVAL. 

Cc 

IF (HD3.E0.0.0.AND.HD6.EQ.0.0.AND.HD9.EQ.0.0) THEN 

WRITE (*,145) 

145 FORMAT(/,1X,'PLOT DESTROYED PRIOR TO FIRST REMEASUREMENT."} 

Q=Q+1 

GO TO 165 

ELSEIF (HD6.EQ.0.0.AND.HD9.EQ.0.0) THEN 

NYEARS = K+3 

ELSEIF (HD9.EQ.0.0) THEN 

NYEARS = K+6 

ELSE 
NYEARS = K+9 

ENDIF 
Cc 
C COMPUTE COMPETITION INDEX AND GROW TREES. 
Cc 

DO 160 K=KBEGIN,NYEARS 
WRITE(*,150) K 

150 FORMAT(/,20X,'Computing Growth for Growing Season’ ,!4) 

CALL COMP1 
CALL GROW2 

Cc 
C GET OUTPUTS FOR 3,6, AND 9 YEARS OF GROWTH. OUTPUTS ARE ONLY GENERATED 
C IF GROWTH WAS ACTUALLY DONE FOR THAT REMEASUREMENT PERIOD. 
c 

IF (K.EQ.KBEGIN + 2) THEN 
V=3 
CALL TREES 

ELSEIF (K.EQ.KBEGIN +5) THEN 
V=6 
CALL TREES 

ELSEIF (K.EQ.KBEGIN + 8) THEN 
V=9 
CALL TREES 

ELSE 
GO TO 160 

ENDIF 
160 CONTINUE 

K = NYEARS 
Q=Q+1 

165 IF (Q.EQ.186) GO TO 180 
WRITE (*,170) Q 

170 FORMAT(//,24X,' Growing Plot',l4,’ of 185 Plots’) 
180 CONTINUE 

CLOSE(1) 

CLOSE(2) 
CLOSE(3) 
STOP 'END OF PROGRAM' 
END 

c 
SUBROUTINE HEADER 

Cc 
C Write program heading 
Cc 

WRITE(*,20) 
20 FORMAT(10(/),1X,78(°-')./," |',.T79,"|'./," |',5X,4(8(' *'),2X), 

1 7(°*'),3X,8( *"),2K,6(' *"),T79,'|",/," |",5X,** ', 
? 2('* *',5X),'** n* **" 8X,'** e* we **' 8X "**", 
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3 779,'|'./," |", 5X, 80 *'),2(5X,"* *"), 60 *"),2X,6('*"), 

4 2(4X,"* *'),2X, 8 *'),3X,6 *'),779,'|'./,' |, 5X, **,11X, 
5 10% #* ae **" 8xX,2('** ** )**779, 4" I. 

6 5X,"* *',11X,'* * *#* a *,8('*"),2X%,7('*'), 

75 FF FF 8 BC) 79,54" [',779,' |") 

WRITE(*,30) 

30 FORMAT(' |',23X,'COPYRIGHT 1987 VERSION 1.0',T79,'|',/,' |", 

1 7X,'Simulation of Individual Tree Growth and Stand ', 

2 ‘Development in',T79,'|",/," |',9X,'Loblolly Pine Plantations ', 
3 'on Cutover, Site-Prepared Areas',T79,'|',/," |',T79,'|'./, 
4' |',5X,'By K. D. Farrar, R. L. Amateis, H. E. Burkhart, ', 
5 'and R. F. Daniels',T79,'|",/," |',18X, 

6 'School of Forestry and Wildlife Resources',T79,"|',/," |',13X, 

7 ‘Virginia Polytechnic Institute and State University',T79,'|',/, 

8' |',25X,'Blacksburg, Virginia 24061',T79,'|",/," |",T79,"|'./, 
9' |',21X,'Modified by Michael C. Smith, 1993',T79,'|',/," |', 
* 779,"|',4,1X%,78('-")) 

CALL CONT 

RETURN 

END 

Cc 

SUBROUTINE INIT1 

Cc 

C This routine initializes common variables to initial default values 

Cc 

IMPLICIT INTEGER *4 (I-N) 

INTEGER*4 iX,ID,PLOT,TAG 

INTEGER*4 K3,K6,K9 

REAL HD3,HD6,HD9 

PARAMETER {MROWS = 20,MTREES =MROWS *MROWS) 

COMMON /BLOK1/ X(MTREES),Y(MTREES),D(MTREES),H(MTREES),CL(MTREES), 

1 CIP(MTREES),_LMORT(MTREES), KMORT(MTREES), TAG(MTREES), ACRES, ID, 

2 PLOT,PERCNT,HD,IX,N,K,M,V,NROWS,RESBA,K3,K6,K9,HD3,HD6,HD9, 

3 LVIGR(MTREES),LTHIN, KTHIN 

COMMON /BLOK2/ SITE,PX,PY,PLOTX,PLOTY,VARX, VARY,NYEARS 

PERCNT = 0.048 
IX = 68767 
NYEARS = 35 
NROWS = 15 
SITE = 6 
PX = 1.0 
PY = 1.0 
VARX 
VARY 
END 

1 
0 

10.0 
10.0 

oO 

SUBROUTINE INIT2 

Subroutine INIT2 initializes the individual tree data to zero 
before each simulation begins. 

aa
qg

aq
gn

0 

IMPLICIT INTEGER *4 (I-N) 
INTEGER *4 IX,ID,PLOT,TAG 
INTEGER*4 ODEAD,OALIVE 
INTEGER*4 K3,K6,K9 
REAL HD3,HD6,HDO9 
PARAMETER (MROWS = 20,MTREES = MROWS *MROWS) 
PARAMETER (ODEAD = 1,OALIVE = 2) 
PARAMETER (ZERO =0.0) 
COMMON /BLOK1/ X(MTREES), Y(MTREES), D(MTREES), H(MTREES), CL(MTREES), 
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Cc 

oO 
a
q
g
a
q
g
n
0
g
 
n
n
 

1 CIP(MTREES),_LMORT(MTREES), KMORT(MTREES), TAG(MTREES),ACRES, ID, 
2 PLOT,PERCNT,HD,!X,N,K,M,V,NROWS,RESBA,K3,K6,K9,HD3,HD6,HD9, 
3 LVIGR(MTREES),LTHIN, KTHIN 
COMMON /BLOK2/ SITE,PX,PY,PLOTX,PLOTY, VARX,VARY,NYEARS 

DO 10 1=1,MTREES 
X(I) = ZERO 
Y(l) = ZERO 
Dil) = ZERO 
H(l) = ZERO 
CLi(l) = 
CIP(I) = ZERO 
TAG(I) = ZERO 
LVIGR(I) = 1 
LMORT(I) = OALIVE 

10 KMORT(I) = -1 

z
2
z
 

Woy 
it 

F
9
0
0
 

SUBROUTINE SI 

THIS ROUTINE DETERMINES WHICH REMEASUREMENT PERIOD IS CLOSEST TO THE 
SI BASE AGE OF 25, THEN USES THE DOMINANT HEIGHT FROM THAT REMEASUREMENT 
PERIOD TO DETERMINE THE SITE INDEX. PLOT ESTABLISHMENT K AND HD ARE 
RETAINED IN THE MAIN PROGRAM. 

IMPLICIT INTEGER *4 (I-N) 
INTEGER*4 IX,1ID,PLOT,TAG 
INTEGER*4 ODEAD,OALIVE 
INTEGER*4 K3,K6,K9 
REAL HD3,HD6,HD9S 
PARAMETER (MROWS = 20,MTREES =MROWS *MROWS) 
PARAMETER (ODEAD = 1,0ALIVE = 2) 
PARAMETER (ZERO =0.0) 
COMMON /BLOK1/ X(MTREES), Y(MTREES),D(MTREES),H(MTREES),CL(MTREES), 

1 CIP(MTREES), LMORT(MTREES), KMORT(MTREES), TAG(MTREES), ACRES, ID, 
2 PLOT,PERCNT,HD,IX,N,K,M,V,NROWS,RESBA,K3,K6,K9,HD3,HD6,HD9, 
3 LVIGR(MTREES),LTHIN, KTHIN 
COMMON /BLOK2/ SITE,PX,PY,PLOTX,PLOTY,VARX,VARY,NYEARS 

ABS(25 - K) 
ABS(25 - K3) 

A 
B 
C = ABS(25 - K6) 

127



E = ABS(25 - K9) 
IF (HD3.EQ0.0.0.AND.HD6.EQ.0.0.AND.HD9.EQ.0.0) THEN 

TEMP = A 
ELSEIF (HD6.EQ.0.0.AND.HD9.EQ.0.0) THEN 
TEMP = MIN(A,B) 

ELSEIF (HD9.EQ.0.0) THEN 
TEMP = MIN{A,B,C) 

ELSE 
TEMP = MIN(A,B,C,E) 

ENDIF 
IF (TEMP.EQ.A) THEN 
L=K 
DH = HD 

ELSEIF (TEMP.EQ.B) THEN 
L = K3 
DH = HD3 

ELSEIF (TEMP.EQ.C) THEN 
L = K6 
DH = HD6 

ELSE 
L=Kk9 
DH = HD9 

ENDIF 

Equation (Site Index) developed by Michael Smith 

from Amateis and Burkhart (1985) 

Fit without TRV's 

SITE = (1.0/ALOG(DH))*((1 .O/REAL(L)}/(1.0/25)) * *(-0.03754117)* 

1 EXP(-2.61807656*(1.O/REAL(L)-1.0/25)) 

Equation (Site Index} developed by Michael Smith 

from Amateis and Burkhart (1985) 

K = AGE2 (prediction age), KT = elapsed time since thinning 

g
A
a
g
a
g
a
n
n
n
I
n
n
n
a
n
a
n
n
g
 

KT = K-KTHIN 
KT1 = 25-KTHIN 
TRV1 = RESBA* *(-0.68975 758 *(-(KT1 * * 2) + 10.77325694*KT 1)/(25 * * 2)) 
TRV2 = RESBA* *(-0.68975 758*(-(KT**2) + 10.77325694*KT)/(K* *2)) 

IF (TRV2.GT.1.0) THEN 
TRV2 = 1.0 

ELSE 
TRV2 = TRV2 

ENDIF 
SITE = (1.0/ALOG(DH))*((7.O/REAL(L))/(1.0/25)) * *(-0.01600294) * 

1 EXP(-3.02041 884 *(TRV2/REAL(L)-TRV 1/25)) | 

Equation (Site Index) from Amateis and Burkhart (unpublished) 

SITE = (1.0/ALOG(DH))* ((1.0/REAL(L))/(1.0/25.0)) * *(-0.02205) * 
1 EXP(-2.83285 *(1.0/REAL(L)-1.0/25.0)) 
SITE = 1.0/SITE 
SITE = EXP(SITE) 

C WRITE (*,100) SITE,DH,L 

C 100 FORMAT(/,1X,'SITE INDEX = ',F6.1,', FROM HD = ',F6.1, 
C 1°, AND K = ',!4) 

RETURN 
END 

a
n
n
 
0
0
 

SUBROUTINE STANDARD 
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C This routine standardizes a plot to rectangular for input by adding 
C dead trees to make NROWS a whole number. 

c 

Cc 
Cc 
c 

IMPLICIT INTEGER *4 (I-N) 
INTEGER*4 IX,ID,PLOT,TAG,DUMMIES 
INTEGER*4 ODEAD,OALIVE 
INTEGER*4 K3,K6,K9 
REAL HD3,HD6,HD9 

PARAMETER (MROWS = 20,MTREES = MROWS *MROWS) 
PARAMETER (ODEAD =1,0ALIVE = 2) 
PARAMETER (ZERO =0.0) 
COMMON /BLOK1/ X(MTREES), Y(MTREES),D(MTREES),H(MTREES),CL(MTREES), 

1 CIP(MTREES),LMORT(MTREES), KMORT(MTREES), TAG(MTREES), ACRES, ID, 
2 PLOT,PERCNT,HD,|IX,N,K,M,V,NROWS,RESBA,K3,K6,K9,HD3,HD6,HD9, 
3 LVIGR(MTREES),LTHIN,KTHIN 

N2=N 
ROWS = ANINT(SORT(REAL(N)) + 0.499999) 
NROWS = INT(ROWS) 
N = INT(ROWS)*INT(ROWS) 
DUMMIES = N-N2 
IF (DUMMIES.EQ.0) RETURN 
DO 201 = N2+1,N 

X(l) = 0.0 
Y(l) = 0.0 
D(l)} = 0.0 
H(l) = 0.0 
CL(I) = 0.0 
LMORT(I) = ODEAD 
KMORT(I) = K 

20 CONTINUE 
RETURN 
END 

SUBROUTINE DATALIST 

IMPLICIT INTEGER *4 (I-N) 
INTEGER *4 1X,ID,PLOT,TAG 
INTEGER *4 ODEAD,OALIVE 
INTEGER*4 K3,K6,K9,Z,Q 
REAL HD3,HD6,HD9 
CHARACTER*80 FILEN 
PARAMETER (MROWS = 20,MTREES = MROWS *MROWS) 
PARAMETER (ODEAD =1,OALIVE = 2) 
PARAMETER (ZERO =O.0) 
COMMON /BLOK1/ X(MTREES), Y(MTREES),D(MTREES),H(MTREES),CL(MTREES), 

1 CIP(MTREES),LMORT(MTREES), KMORT(MTREES), TAG(MTREES),ACRES,ID, 
2 PLOT,PERCNT,HD,IX,N,K,M,V,NROWS,RESBA,K3,K6,K9,HD3,HD6,HD9Q, 
3 LVIGR(MTREES),LTHIN, KTHIN 

THIS SUBROUTINE HAS NOT BEEN UPDATED FOR CHANGES IN THE INPUT DATASET 

CALL COMP1 
WRITE(*,10) 

10 FORMAT(//1X,, ID PLOT X Y K CL D H_- HD LMORT 
1 ACRES SITE CIP",/,1X,73('-")) 
DO 301 = 1,N 

WRITE (*,20) ID,PLOT,X(I}, Y(l),K,CL(1),D(I), 
1 Hil), HD, LMORT(I), ACRES, SITE, CIP(i) 

20 FORMAT(1X, 214,2F6.1,14,F6.1,F5.1,2F6.1,14,F8.4,F6.1,F8.4) 
30 CONTINUE 
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RETURN 
END 

SUBROUTINE COMP'1 

Subroutine COMP1 calculates a modified Hegyi competition index 

on all live trees in a stand. Competitors are found by sampling 

neighbors based on their size and distance away by essentially 

taking a point sample at each subject tree with a BAF-10 prism. 

IMPLICIT INTEGER *4 (I-N) 
INTEGER*4 1X,ID,PLOT, TAG 
INTEGER*4 ODEAD,OALIVE 
INTEGER*4 K3,K6,K9 
REAL HD3,HD6,HD9 
PARAMETER (MROWS = 20,MTREES =MROWS *MROWS) 
PARAMETER (ODEAD = 1,OALIVE = 2) 
PARAMETER (PLOTR =2.75) 
DIMENSION JDIS(9), MID(MTREES), IDIS(4), DIST(9) 
COMMON /BLOK1/ X(MTREES), Y(MTREES),D(MTREES), H(MTREES),CL{MTREES), 

1 CIP(MTREES),LMORT(MTREES), KMORT(MTREES), TAG(MTREES),ACRES, ID, 
2 PLOT,PERCNT,HD,1X,N,K.M,V,NROWS,RESBA,K3,K6,K9,HD3,HD6,HD9, 
3 LVIGR(MTREES),LTHIN, KTHIN 
COMMON /BLOK2/ SITE,PX,PY,PLOTX,PLOTY,VARX,VARY,NYEARS 
DATA JDIS/1,9,8,7,6,5,4,3,2/ 

Initialize 

DO 5 |=1,MTREES 

5 CIP(l) = 0.0 

IDIS(i) = 1 

Find internal trees 

DMAX = 0.0 

DO 10|=1,N 

10 DMAX = AMAX1(DMAX,D(1)) 
D2 = PLOTR*DMAX 
DISMAX = D2-PX/2.0 
DISMAY = D2-PY/2.0 
DMX = PLOTX-DISMAX 
DMY = PLOTY-DISMAY 
DO 20 !=1,N 
MiD(I) = 2 

20 IF (X(I).GT.DISMAX.AND.X(I).LT.DMX.AND. 
1 Y().GT.DISMAY.AND.Y(I).LT.DMY) MID(I) = 1 

Cc 

C Calculate competition index 

c 
DO 130 1=1,N-1 

IF (LMORT(I).NE.OALIVE) GO TO 130 
DO 120 J=1+1,N 

IF (LMORT(J).NE.OALIVE) GO TO 120 
INTIOR = MID(I) +MID(J) 
XDIST = X(J)-X(I) 
YDIST = Y(J)-Y(I) 
DIST(1} = SQRT(XDIST*XDIST + YDIST *YDIST) 
IF (INTIOR.LT.3) GO TO 100 
IF (XDIST.LT.0.0) GO TO 30 
DIST(5) = SQRT(((XDIST-PLOTX) * * 2) + (YDIST *YDIST)) 
IDIS(2) = 5 
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GO TO 40 

30 DIST(6) = SORT(((XDIST + PLOTX) * *2) +(YDIST*YDIST)) 
IDIS(2) = 6 

40 IF (YDIST.GE.0.0) GO TO 50 
DIST(3) = SORT((XDIST * XDIST) + ((YDIST + PLOTY)* * 2)) 
IDIS(3) = 3 
ICODE = IDIS(2) +!DIS(3)-7 
GO TO (60, 70,100, 100,100,80,90),ICODE 

50 =DIST(8) = SQRT((XDIST* XDIST) + ((YDIST-PLOTY) * * 2)) 
IDIS(3) = 8 
ICODE = IDIS(2) + IDIS(3)-7 
GO TO (60, 70,100, 100, 100,80,90), ICODE 

60 DIST(2) = SQRT(((XDIST-PLOTX)* * 2) + ((YDIST + PLOTY) * *2)) 
IDIS(4) = 2 
GO TO 100 

70 = DIST(4) = SQRT(((XDIST + PLOTX) * * 2) + (YDIST + PLOTY) * * 2)) 
IDIS(4) = 4 
GO TO 100 

80 = DIST(7) = SQRT(((XDIST-PLOTX) * * 2) + ((YDIST-PLOTY) * * 2)) 
IDIS(4) = 7 
GO TO 100 

90 =—DIST(9) = SQRT((XDIST + PLOTX)* *2) + ((YDIST-PLOTY) * * 2)) 
IDIS(4) = 9 

100 -RdI = D(y)/Dil) 
Rid = 1.0/RJI 
DO 110 L=1,4 
Le = IDIS(L) 
Lec = JDIS(LC) 
IF (DIST(LC).LT.D(J)*PLOTR) CIP(I) 
IF (DIST(LC).LT.D(l}*PLOTR) CIP(J) 
IF (INTIOR.LE.3) GO TO 120 

CIP(I) + RJI/DIST(LC) 
CIP(J) + RIU/DIST(LC) 

110 CONTINUE 
120 CONTINUE 
130 CONTINUE 
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Cc 
Cc 
Cc 

RETURN 
END 

SUBROUTINE GROW2 

Subroutine GROW2 does the annual growth of the individual trees 
in the stand. This routine does NOT take into consideration the 

amount of hardwood competition in terms of percent of total basal 

area - it assumes a 4.8% basal area. 

IMPLICIT INTEGER *4 (I-N) 
INTEGER *4 IX,ID,PLOT,TAG 
INTEGER *4 ODEAD,OALIVE 
INTEGER *4 K3,K6,K9 
INTEGER *4 KT,KT1,K1 
REAL HD3,HD6,HD9, TRV1,TRV2,TRVD 
PARAMETER (MROWS = 20,MTREES = MROWS *MROWS) 
PARAMETER (ODEAD =1,OALIVE = 2) 
COMMON /BLOK1/ X(MTREES), Y(MTREES),D(MTREES),H(MTREES),CL(MTREES), 

1 CIP(MTREES),LMORT(MTREES), KMORT(MTREES), TAG(MTREES), ACRES, ID, 
2 PLOT,PERCNT,HD,IX,N,K,M,V,NROWS,RESBA, K3,K6,K9,HD3,HD6,HD9, 
3 LVIGR(MTREES),LTHIN, KTHIN 
COMMON /BLOK2/ SITE,PX,PY,PLOTX,PLOTY, VARX,VARY,NYEARS 

Initialize tree counter 

NTSIM = 0 
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Compute potential height increment for all trees and begin 

individual tree growth 

Equation (Site Index) developed by Michael Smith 

from Amateis and Burkhart (1985) 

Fit without TRV's 

POTH = ALOG(SITE) *((1.0/K)/(1 .0/25)) * *(-0.03754117)* 
1 EXP(-2.61807656 *(1.0/K-1.0/25)}) 

Equation (Site Index) developed by Michael Smith 

from Amateis and Burkhart (1985) 

K = AGE2 (prediction age), KT = ELAPSED TIME SINCE THINNING 

KT = K-KTHIN 
KT1 = 25-KTHIN 

TRV1 = RESBA* *(-0.68975758*(-(KT1 * *2) + 10.77325694* KT 1)/(25 * * 2)) 
TRV2 = RESBA**(-0.68975758*(-(KT * *2) + 10.77325694*KT)/(K* *2)) 

IF (TRV2.GT.1.0) THEN 

1 
it
 

TRV2 = 1.0 
ELSE 
TRV2 = TRV2 

ENDIF 

POTH = ALOG(SITE)*((1.0/K)/(1 .0/25))} * *(-0.01600294) * 
1 EXP(-3.02041 884* (TRV 2/K-TRV1/25)) 

Equation (Site Index) from Amateis and Burkhart (unpublished) 

POTH = ALOG(SITE)*((1.0/K)/(1 .0/25.0)) * *(-0.02205) * 
1 EXP(-2.83285 *(1.0/K-1.0/25.0)) 
POTH = EXP(POTH) 
PHIN = POTH-HD 

DO 101=1,N 
IF (LMORT(I).NE-OALIVE) GO TO 10 
CR = CL(I)/H(1) 

Determine tree mortality 

New fits of PLIVE to each thinning regime with B4 set. Model 

selection is controlled by the plot number. 

IF (PLOT.EQ.3) THEN 
LTHIN = 2 

PLIVE = 1.01194722*CR* *0.02292409*EXP(-0.00097984*CIP(I) * * 
1 3.0) 

ELSEIF (PLOT.EQ.2) THEN 
LTHIN = 1 

PLIVE = 1.00885339*CR**0.01394739*EXP(-0.00384231 *CIP(I) * * 
1 3.5) 

ELSE 
PLIVE = 1.05756047*CR* *0.06222136*EXP(-0.00631 486 * CIP(I) * * 

1 2.5) 
ENDIF 

New fit of PLIVE to unthinned and thinned data. If thinned data 

is input (plots 2 or 3), LTHIN = 1 and the first model is used. 

IF (PLOT.EQ.2.OR.PLOT.EQ.3) THEN 
LTHIN = 1 
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PLIVE = 1.01002349*CR* *0.01862881 *EXP({(-0.00028157 *CIP{I) * * 
1 5.75017158) 

ELSE 
PLIVE = 1.054391 70*CR**0.05821 756 * EXP(-0.00627880*CIP(I) ** 

1 2.49931569) 
ENDIF 

New fit of PLIVE to unthinned and thinned data. If thinned data 
is input (plots 2 or 3), LTHIN = 1 and the first model is used. 
(THESE ARE THE NEW FITS INCORPORATING ALL OF THOSE DELETES) 

IF (PLOT.EQ.2.OR.PLOT.EQ.3) THEN 
LTHIN = 1 

PLIVE = 1.01288380*CR* *0.021 76457 * EXP(-0.00096 1 82 *CIP(I) * * 
1 4.76316297) 

ELSE 
PLIVE = 1.05759255 *CR* *0.06234989* EXP(-0.00616873*CIP({I)* * 

1 2.51834543) 
ENDIF 

Originally fit PLIVE model from PTAEDA2. 

PLIVE = 1.02797295 *CR* *0.03789773*EXP(-0.00230209*CIP(I) * * 
1 2.65206263) 

IF (U(IX).GE.PLIVE} THEN 
NLIVE = NLIVE-1 
LMORT(I) = ODEAD 
KMORT(I) = K 
GO TO 10 

ENDIF 

Compute Height and Diameter increment on all trees 

R = STNORM(IX) 

New fit of HIN model to REM3 data: 

HRED = -0.54747576 + 2.420061 99*CR* *0.20717950*EXP(-0.17120539* 
1 CIP(I)-0.38119877*CR) 

Originally fit HIN model from PTAEDA2: 

HRED = 0.26324665 + 2.11118696*CR* *0.561881 87 * EXP(-0.26375086* 

1 CIP(I)-1.03076126*CR) 
HIN = AMAX1(PHIN *HRED,O.0) 

HINMAX is not actually used 

HINMAX = 0.72785206*PHIN + 0.88373520 
HIN = AMIN1(HIN,HINMAX) 

NTSIM = NTSIM+1 
PDIN = 0.28658336*HIN + 0.2094718 
HIN = AMAX1((HIN +R*0.672290115),0.0) 

New fit of DIN modei to REM3 data without a TRV: 

DRED = 0.81124405*CR**0.79631061 * 
1 EXP(-0.71247612*CIP(I)) 

New fit of DIN model to REM3 data with the TRV: 

TRVD = RESBA* *(8.86635219*{(-(KT* *2}+5.02757251 *KT)/(K* *2)) 
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IF (TRVD.GT.1.0) THEN 
TRVD = 1.0 

ELSE 
TRVD = TRVD 

ENDIF 
DRED = 0.78933211*CR**0.77356231* 

1 EXP(-0.70327755 *CIP(I)* TRVD) 

Originally fit DIN model from PTAEDA2: 

DRED = 0.72511188*CR**0.98014576* 
1 EXP(-0.37397613*CIP(I)) 
DIN = AMAX1((PDIN*DRED + R*0.0897245 78),0.0) 
D{l) = D(l)+DIN 
Hil) = H(I)+HIN 

10 CONTINUE 
HD = POTH 

Cc 
c 
Cc 
Cc 
c 

o
n
 

tt 

Determine crown length: 
Crown ratio equation by Dyer and Burkhart, 1986 
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DO 20 |=1,N 
IF (LMORT(I).NE.OALIVE) GO TO 20 
CR = 1.0-EXP({-1.35243-37.02600/K) *DiI}/Hi{I)) 

Crown ratio equation by Liu, et al., 1994 

Estimates are metric, thus D and H are converted within. 

TRVC = RESBA**(0.13130*(-(KT **2) + 67.042 * KT)AK* * 2)) 

CR = 1.0-TRVC*EXP((-0.14780-4.7233/K) *(2.54* D(I)) (0.3048 *H(I))) 
CL) = AMIN1(AMAX1(0.0,(H(1) *CR)),H(I)) 

20 CONTINUE 
WRITE(*,30) NTSIM 

30 FORMATI(I33,' Trees Simulated’) 
RETURN 
END 
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c 
SUBROUTINE TREES 

Cc 
C_ This subroutine TREES outputs a file containing the individual 

C tree data in ASCII format. 
Cc 

IMPLICIT INTEGER *4 (I-N) 
INTEGER *4 iX,14,ID,PLOT,TAG 
INTEGER *4 ODEAD,OALIVE 
INTEGER *4 K3,K6,K9,V 
REAL HD3,HD6,HD9 
PARAMETER (MROWS = 20,MTREES =MROWS *MROWS) 
PARAMETER (ODEAD = 1,OALIVE = 2) 
COMMON /BLOK1/ X(MTREES), Y(MTREES),D(MTREES),H(MTREES),CL(MTREES)}, 

1 CIP(MTREES),_LMORT(MTREES),KMORT(MTREES), TAG(MTREES), ACRES, ID, 
2 PLOT,PERCNT,HD,1X,N,K,.M,V,NROWS,RESBA,K3,K6,K9,HD3,HD6,HD9, 
3 LVIGR(MTREES),LTHIN, KTHIN 
COMMON /BLOK2/ SITE,PX,PY,PLOTX,PLOTY,VARX,VARY,NYEARS 

Cc 
WRITE (*,10) 

10 FORMAT(/} 
C WRITE(1,20) 
C 20 FORMAT(1X,'ID',2X,'PLOT',1X,"TAG’,3X,'X’,5X,'Y',4X,’DBH',2X, 
C 1 *Height’,3X,'CL',5X,'CIP",2X,'DETHVIGR’,2X,"HD',4X,'V',1X," AGE’) 

DO 301=1,N 
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c 
C CONVERT FROM LMORT CODE TO VIGR CODE FOR USE WITH COOP DATASET. 
c 

IF (TAG(I).EQ.0) RETURN 
IF (LMORT(I).EQ.OALIVE) THEN 
LVIGR(|) = 1 
ELSE 
LVIGR(I) = 2 

ENDIF 
WRITE (1,40) ID,PLOT,TAG(), X(I), Y(), D(I), H(I), SITE, CIP(I), 

1 KMORT(i(),_LVIGRQ),HD,V,K 

30 CONTINUE 

40 FORMAT(314,2F6.1,F6.2,F7.2,F7.1,F8.4,214,F6.1,214) 

RETURN 

END 

Cc 

SUBROUTINE CONT 

Cc 

C_ This subroutine asks the user if he/she wishes to continue 

C running PTAEDA2. If not, the program is halted. 

Cc 

IMPLICIT INTEGER * 4(I-N) 
CHARACTER*1 ANS 

Cc 
WRITE(*,10) 

10 FORMAT(/,' Do you wish to continue? (YES or NQ): ") 
CALL GETYN{ANS) 
IF (ANS.EQ.'N') THEN 
WRITE({*,20) 

20 FORMAT(25(/)) 
STOP ‘Program Terminated By User' 

ENDIF 
RETURN 
END 

SUBROUTINE GETYN(ANS) 

This routine reads in character input for YES/NO questions. 

a
0
0
 

oO 

CHARACTER*1 ANS,TEMP 

Read in string 

a
0
a
0
 

10 READ(*,20) TEMP 

20 FORMAT(A1) 

Cc 

C Convert to upper case 

Cc 

LETTER = ICHAR(TEMP) 

IF (LETTER.GE.97).AND.(LETTER.LE.122}) LETTER = LETTER-32 

TEMP = CHAR(LETTER) 

Cc 

C Check to be sure value is "Y" or "N” 

Cc 

IF ((TEMP.EQ.*Y').OR.(TEMP.EQ.'N')) GO TO 40 

WRITE(* ,30) CHAR(7) 

30 FORMAT(1X,A1,'Please enter YES or NO: ') 

GO TO 10 

Cc 

C End: wrap-up 
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c 
40 ANS = TEMP 
RETURN 
END 

FUNCTION GAMMA(XX) 

Based on program from Scientific Subroutine Package, IBM 
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IMPLICIT INTEGER *4 (I-N) 
IF (XX.LE.10.0) GO TO 20 

10 GX = 0.0 
GO TO 100 

20 X = XX 
ERR = 1.0E-6 
GX = 1.0 
IF (X-2.0) 50,50,40 

30 IF (X.LE.2.0) GO TO 90 
40 X = X-1.0 

GX = GX*X 
GO TO 30 

50 IF (X-1.0) 60,100,90 
c 
C See if X is near negative integer or zerc 
c 

60 IF (X.GT.ERR) GO TO 80 
Y = FLOAT(INT(X))-X 
IF (ABS(Y).LE.ERR) GO TO 10 

c 
C X not near a negative integer or zero 

c 
70 IF (X.GT.1.0) GO TO 30 
80 GX = GX/X 

X = X+1.0 
GO TO 70 

90 Y = X-1.0 
GY = 1.0+Y*(-0.5771017 + ¥*(0.9858540 + ¥ *(-0.8764218 + Y*(0.8328212+ 

1 Y*(-0.5684729 + Y *(0.2548205 + Y *(-0.05149930))))))) 
GX = GX*GY 

100 GAMMA = GX 
RETURN 
END 

oO
 

FUNCTION STNORM(IX) 

Generates a standard Normal random variate 

Based on the routine "GAUSS" in "Scientific Subroutine Package”; 
IBM; 1968; page 77. The algorithm is based on "Numerical Methods 
for Scientists and Engineers"; R. W. Hamming; McGraw-Hill Pub.; 
1962; pages 34 and 389. 

Assumes a standard deviation (S) of 1.0 and a mean (AM) of 0.0 
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IMPLICIT INTEGER *4 (I-N) 
INTEGER *4 IX 
PARAMETER (S =1.0,AM =0.0) 

A = 0.0 
DO 10!=1,12 

10 A =A+U(IX) 
STNORM = (A-6.0)*S+AM 
RETURN 
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END 

FUNCTION TRIANG(IX) 

This routine TRIANG returns a triangular distributed random 
number from -1.0 to 1.0. 

INTEGER*4 IX 
REAL X,Y 

X = U(IX) 
IF (X.GT.0.5) THEN 
Y = 1.0-SQRT(O.5 *(1.0-X)) 

ELSE 
Y = SQRT(0.5*X) 

ENDIF 
This converts the range from (0,1) to (-1,1) 
TRIANG = (2.0*Y)-1.0 
RETURN 
END 

FUNCTION U(ISEED) 

From: ‘Simulation, Statistical Foundations and Methodology’ 
‘Mathematics In Science and Engineering’, Vol. 92 
by G. Arthur Mihram, 1972, Academic Press, NY. 
pages 44-57. 

M = 2**b where b = number of bits in integer 
A =M-3 (actually A = (M-((4*1)-1)), | = 1,2,...) 
C = (M/2)-1 

INTEGER *4 ISEED 
REAL*8 A,C,M 
PARAMETER (M = 2147483648.D0,A =2147483645.D0,C = 1073741 823.D0) 

ISEED = IDINT(DMOD(((A* DBLE(ISEED)) + C),M)) 
U = DBLE(ISEED)/M 
RETURN 
END 
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