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h
How would your students make sense of 
the fraction 5/7? Would they interpret 
it as 5 parts out of 7 equal parts? Could 
they also understand it as a piece that 
is 5 times as large as 1/7? The former 
interpretation aligns with part-whole 
conceptions, whereas the latter aligns 
with partitive conceptions. Steffe and 
Olive (2010) have made such distinc-
tions in students’ fractional knowledge 
to explain why students experience dif-
fi culties with fractions and to help stu-
dents overcome those diffi culties. (For 
summaries of this work, see Norton and 
McCloskey 2008 and 2009.) 

Anderson Norton, Jesse L. M. Wilkins, 
Michael A. Evans, Kirby Deater-Deckard, 

Osman Balci, and Mido Chang

We introduce an educational video 
game (application, or app) designed 
to promote students’ development of 
partitive understanding while demon-
strating the critical need to promote 
that development. The app includes 
essential game features of immediate 
feedback, incentives, and summary 
information for refl ection and discus-
sion (Evans et al. 2013). 

liMitations oF 
PaRt-Whole concePts
Part-whole concepts give students 
an early foundation in understanding 

Explore a new app that allows students 
to develop a more sophisticated 

understanding of fractions. 

Helps Students Transcend 
       Part-Whole Concepts
Helps Students Transcend 
       Part-Whole Concepts

Technology
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fractions. However, this foundation 
remains insufficient for mastering 
fraction concepts that students will 
see in the K-grade 12 curriculum. In 
particular, part-whole analyses are 
meaningless when improper fractions, 
such as 7/5, are discussed. After all, 
how can a student make sense of  
7 out of 5?

To work with the limitation, stu-
dents might convert improper fractions 
to mixed numbers (e.g., 1 and 2/5), but 
they should also develop understand-
ings that enable them to consider frac-
tions as “numbers in their own right” 
(Hackenberg 2007, p. 27). Moreover, 
fraction operations, such as multiplica-
tion and division, can be cumbersome 
or even unintelligible unless students 
progress beyond part-whole concepts. 
For this reason, the Common Core 
State Standards for Mathematics 
(CCSSM) calls on teachers to support 
student development beyond part-
whole conceptions, even as early as the 
third grade (CCSSI 2010). Studies of 
students’ fractions knowledge indicate 
that such comprehensions are uncom-
mon, even among middle school  
students (Hackenberg 2007; Norton 
and Wilkins 2010; Olive and  
Vomvoridi 2006; Steffe and Olive 
2010).

PARTITIONING AND ITERATING 
Partitioning and iterating are funda-
mental mental actions, or operations, 
that underlie fractions concepts. The 
limitation of part-whole concepts 
stems from a reliance on partition-
ing alone. Partitive thinking, on the 
other hand, relies on both partition-
ing and iterating. Of course, it is 
important that students are able to 
partition a continuous whole into a 
specified number of equal parts, as 
in sharing a candy bar among five 
friends. However, students should 
also understand that any one of those 
parts could be iterated, or multiplied, 
to produce other fractional parts. For 

example, 3/5 can be generated with 
three iterations of 1/5. In a compara-
tive analysis of international texts, 
Watanabe (2009) found that U.S. 
textbooks focus almost exclusively on 
part-whole tasks.

In contrast, tasks in Chinese and 
Japanese textbooks often refer to non-
unit proper fractions as multiples of 
unit fractions; for example, 3/4 is re-
ferred to as three times 1/4. Although 
numerous differences are found in 
culture and education that contribute 
to stronger mathematics performance 
among students in China and Japan, it 
is important to consider textbooks as a 
contributing factor, especially because 
“in every country, mathematics text-
books exert a considerable influence 
on the teaching and learning of math-
ematics” (Howson 1995, pp. 5−6). 

ASSESSING STUDENTS’ 
PARTITIVE CONCEPTIONS
Students’ development of partitive 
conceptions traces a learning trajec-
tory outlined by Steffe and Olive 
(2010). Students begin by develop-

ing partitive understandings for unit 
fractions, meaning that they can think 
about unit fractions as sizes relative to 
a specified whole. For example, stu-
dents might begin to understand 1/5 
as a length that, when iterated (copied 
or multiplied) five times, reproduces 
the whole. Later on, students begin to 
generalize that knowledge and extend 
it to nonunit proper fractions so that, 
for instance, they can understand 3/5 
as a length that results from three iter-
ations of 1/5. Conceiving of improper 
fractions as multiples of unit fractions 
requires further development. 

Figure 1 shows two sample tasks 
that we have used in assessing stu-
dents’ partitive knowledge of unit 
fractions. The responses are from 
two seventh-grade students. In a 
recent study in a small, rural school, 
we found that about 40 percent of 
seventh-grade students still struggle 
with such tasks (Norton and Wilkins 
2010). Further, we have found that 
students who have constructed 
partitive conceptions of fractions are 
poised to construct more advanced 

What fraction is the smaller pie piece out of the whole pie?

(a) 

What fraction is the smaller stick out of the longer stick?

(b) 

Fig. 1 These tasks, which assess partitive conceptions of unit fractions, require students 
to iterate a unit fractional part within the given whole.
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ideas about fractions. These findings, 
which demonstrate that we cannot 
take partitive knowledge for granted, 
underscore the need for teachers to 
support this development. 

Each task in figure 1 requires stu-
dents to iterate a unit fractional part 
within the given whole to determine 
its unit-fractional size relative to that 
whole. The response associated with 
the task in figure 1a indicates that the 
student could name the unit fractional 
part based on the number of iterations 
within the whole. This is the essence 
of partitive reasoning, so we can infer 
that the student had at least begun to 
develop partitive conceptions for unit 
fractions. 

The response associated with 
the task in figure 1b indicates that 
the student had not begun that 
same development with unit frac-
tions. Instead, the response suggests 
a trial-and-error process of dividing 
the whole into parts that coincide 
with those on the smaller piece and 
then using a part-whole scheme to 
determine the fraction associated with 
the smaller piece—the number of 
parts out of the whole taken up by the 
smaller piece. In either case, the stu-
dents’ teachers should consider ways 
to further support that development.

PROMOTING PARTITIVE 
UNDERSTANDING
Fortunately, research tells us how we 
can support students’ development 

of partitive understanding. From his 
research with a pair of fourth-grade 
students named Jason and Laura, 
Steffe (2001) found that he could sup-
port their developing knowledge base 
by engaging them in tasks involving 
the production of connected multiples 
from a given unit. For example, the 
task in figure 2a requires students to 
iterate, or make connected copies of, 
the given length to form new lengths.

Steffe concluded that such tasks 
create a bridge between students’ use 
of iterating in discrete, whole-number 
contexts to their use of iteration in 
continuous, fractional contexts. Olive 
and Vomvoridi (2006) achieved simi-
lar results with a sixth-grade student 
named Tim by engaging him in tasks 
involving the production of a whole 
from a given unit fractional part. For 
example, the task in figure 2b requires 
students to iterate the given 1/7 stick 
seven times to produce the whole 
from which it came. 

In general, tasks intended to sup-
port conceptual learning should elicit 
students’ available ways of operating 
(such as partitioning and iterating) 
and challenge them to coordinate 
those mental actions in new ways 
(Olive 2000). Furthermore, students 
should have opportunities to assess 
the success of those new ways of op-
erating and to reflect on them (Simon 
and Tzur 2004). The educational 
game we present here was designed 
with those principles in mind. 

USING THE CANDYFACTORY APP
With funding from the National Sci-
ence Foundation, the Learning Trans-
formation Research Group at Virginia 
Tech has designed an app to promote 
an understanding of partitive concepts 
through game play. This free app, 
CandyFactory Educational Game, is 
available for the iPad® on the iTunes® 
store. An older version of the app 
(under the same name) is also free and 

Make a stick that is two times as big as this stick . . . three times . . . four times. . . . 

(a)

If this stick is 1/7 of a whole stick, can you show me how big the whole stick is?

(b)

Fig. 2 These research examples demonstrate students’ constructions of partitive 
schemes.

Fig. 3 This frame introduces students to 
the CandyFactory Educational Game. 

(a) 

(b) 

Fig. 4 CandyFactory’s different fraction 
activities allow students to become  
familiar with different representations.
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works on the iPhone and iPod touch®, 
as well. For the newer version, look for 
an icon showing company president, 
Carmello, as pictured in figure 3. Here, 
we describe CandyFactory’s first three 
levels and how they support students’ 
development toward partitive concep-
tions of fractions.

The goal of the game is to satisfy 
customer orders for candy bars of 
specified lengths. Students do this by 
“slicing” (partitioning) a whole candy 
bar into some number of pieces and 
“copying” (iterating) one of those 
pieces some number of times. At  
level 1, partitioning marks in the cus-
tomer order and the whole bar are vis-
ible so that students can rely on their 
part-whole conceptions of fractions to 
become familiar with the game.

For example, given the situation 
illustrated in figure 4a, a student can 
see that the customer order (located 
at the bottom of the screen) is 6 parts 
out of 8 equal parts in the whole. The 
actions of slicing the whole into  
8 parts and copying one of those parts 
6 times can form a bridge in cross-
ing over from a part-whole view to a 
partitive view. Note that the student 
could also satisfy the customer order 
by producing 4 slices and copying one 
of them 3 times. In terms of game 
design, this approach aligns with the 
basic principle of providing easily 
achievable challenges early on to in-
still a sense of success, thus leading to 
engagement, while introducing game 
mechanics and the operation of the 
interface (Schell 2008).

Figure 4a also illustrates several 
game and interface design decisions 
made to enhance engagement while 
scaffolding learning so that the 
participant can focus on the underly-
ing mathematical principles being 
conveyed. In terms of game play, the 
right-hand column contains ele-
ments that contribute to the narrative 
and plot of CandyFactory. From top 
to bottom, the player sees the shift 

clock that registers allowable time to 
complete orders, a customer satisfac-
tion meter that measures speed and 
accuracy, a bonus meter that figures 
additional points gained from suc-
cessfully fulfilling more challenging 
orders, and a queue of orders at the 
bottom yet to be filled.

All these features are meant to 
enhance challenge in the game  
(Vorderer, Hartmann, and Klimmt 
2003). In terms of the interface and 
interaction, CandyFactory presents a 
color palette and a look and a feel that 
the target audience found enjoyable. 
The interface and interaction also 
leverage touch, swipe, tap, and other 
gestural movements that prior work 
has found to be beneficial for investi-
gating mathematical concepts (Evans 
et al. 2013) 

At level 2, partitioning marks are 
no longer visible, but the customer 
orders are always unit fractions of the 
whole. Students must determine the 
number of slices needed so that each 
slice is the same length as the cus-
tomer order. Students produce slices 
by swiping their finger from top to 
bottom across the bar, an action that 
Apple software developers refer to as 
a “finger swipe.” The main idea for 
students to learn at this level is the in-
verse (reciprocal) relationship between 
the number of slices and the size of 
each slice. For example,  
figure 4b illustrates a task in which 
the customer order is 1/3 of the 
whole. Students can determine this 
relationship by iterating the length 
of the customer order within the 
whole. Then they can produce the 
customer order from the whole by 
dividing (with finger swipes) the 
whole into three parts. Students 
begin to learn that when the customer 
order is smaller, it fits into the whole 
more times and, thus, more slices are 
needed. 

Level 3 resembles level 2, ex-
cept that it includes nonunit proper 

(a) 

(b) 

(c) 

(d) 

Fig. 5 By level 3, students face both 
improper fractions and fractions with no 
partition marks.
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fractions, meaning that the student 
must anticipate the coordination of 
partitioning and iterating (slicing and 
copying) to produce the customer 
order. For example, consider the order 
shown in fi gure 5a. A student might 
estimate that the order is two itera-
tions of a 1/5 piece and, thus, slice the 
whole into fi ve pieces (see fi g. 5b) and 
then drag two copies (see fi g. 5c) to 
make 2/5. Although measuring reveals 
that this is not the correct order (see 
fi g. 5d), the student can go back to 
adjust slicing and copying and, in the 
process, begin to understand fractions 
like 2/5 as sizes relative to the whole. 

Note that the sequence of actions 
outlined above fi ts with research previ-
ously described (e.g., Steffe 2001) on 
how students develop an understand-
ing of the partitive process. Students 
have to address the size of the given 
fractional piece relative to the given 
whole. Whereas at level 2, students 
can produce the desired piece by imag-
ining how many times it fi ts into (or 
iterates within) the whole, at level 3, 
students have to anticipate and coordi-
nate partitioning/iterating actions.

On the “Measure” screen, students 
can refl ect on the results of their activ-
ity (Simon and Tzur 2004); a ruler is 
provided to aid a more precise com-
parison between the produced length 
and the desired length. This allows 
students to make adjustments in their 
coordination of partitioning (slicing) 
and iterating (copying) actions. We do 
not expect students (or even experts) 

to produce the correct fraction on 
their fi rst try. However, the ways that 
students adjust their activity are criti-
cal to their development of partitive 
conceptions because they can experi-
ence, and begin to anticipate, the size 
effects of using more or fewer parti-
tions in conjunction with using more 
or fewer iterations.

classRooM iMPleMentation
The Learning Transformation 
Research Group has begun working 
with teachers in fi ve middle schools to 
test the educational value of Candy-
Factory. Students in those schools 
played CandyFactory for about twenty 
minutes, twice per week, for about ten 
weeks. Pretests and posttests, as well 
as observations of game play, were 
used to evaluate gains. Early results 
indicate that the app can effectively 
increase student engagement (Evans 
et al. 2013) and promote an under-
standing of this partitive view of 
fractions (Norton, Wilkins, and Boyce 
2012). 

Teachers in the fi ve schools have 
used variations of the game to support 
additional concepts. For example, 
these teachers have asked students to 
guess (before slicing or copying) the 
fractional size of the customer order. 
Students write down this fraction and 
then produce it though slicing and 
copying. Then the students evaluate 
whether their guess was too large or 
too small, thus encouraging fraction 
comparison. If students work with 

partners, the partner can then try a 
second guess, going back and forth 
with a string of ordered fractions until 
the customer order is satisfi ed. Teach-
ers can also challenge students to pro-
duce the customer order in multiple 
ways, supporting their conceptions of 
equivalent fractions. 

The Learning Transformation Re-
search Group is continuing to test and 
improve CandyFactory while design-
ing additional apps to support middle 
school mathematics. For example, we 
are in the process of adding a “training 
mode” to each level, so that students 
can investigate and refl ect on activities 
at each level without any time pres-
sure, before entering the “evaluation 
mode” necessary for promotion. We 
invite readers to visit the project web-
site at http://ltrg.centers.vt.edu/ to get 
more information about our apps and 
to send us feedback, which is critical 
to our efforts to improve the apps.

acKno WledgMent
This work is supported by the Na-
tional Science Foundation (NSF) 
under Grant No. DRL-1118571, the 
Institute for Society, Culture and En-
vironment (ISCE) at Virginia Tech, 
Blacksburg, Virginia, and the Institute 
for Creativity, Arts, and Technol-
ogy (ICAT) at Virginia Tech. Any 
opinions, fi ndings, and conclusions 
or recommendations expressed in this 
material are those of the authors and 
do not necessarily refl ect the views of 
NSF, ISCE, or ICAT.

Early results indicate that the app can
effectively increase student engagement

and promote an understanding
of this partitive view of fractions. 
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