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(ABSTRACT) 

 

 Knowledge of species occurrence is a prerequisite for efficient and effective conservation 

and management.  Unfortunately, knowledge of species occurrence is usually insufficient, so 

models that use environmental predictors and species occurrence records are used to predict 

species occurrence.  Predicting the occurrence of stream fishes is often difficult because sampling 

data insufficiently describe species occurrence and important environmental conditions and 

predictive models insufficiently describe relations between species and environmental conditions.  

This dissertation 1) examines the sufficiency of fish species occurrence records at four spatial 

extents in Virginia, 2) compares modeling methods for predicting stream fish occurrence, and 3) 

assesses relations between species traits and model prediction characteristics.   

 The sufficiency of sampling is infrequently addressed at the large spatial extents at which 

many management and conservation actions take place.  In the first chapter of this dissertation I 

examine factors that determine the sufficiency of sampling to describe stream fish species 

richness at four spatial extents across Virginia using sampling simulations.  Few regions of 

Virginia are sufficiently sampled, portending difficulty in accurately predicting fish species 

occurrence in most regions.  The sufficient number of samples is often large and varies among 

regions and spatial scales, but it can be substantially reduced by reducing errors of sampling 

omission and increasing the spatial coverage of samples.   

 Many methods are used to predict species occurrence.  In the second chapter of this 

dissertation I compare the accuracy of the predictions of occurrence of seven species in each of 

three regions using linear discriminant function, generalized linear, classification tree, and 

artificial neural network statistical models.  I also assess the efficacy of stream classification 

methods for predicting species occurrence.  No modeling method proved distinctly superior.  

Species occurrence data and predictor data quality and quantity limited the success of predictions 

of stream fish occurrence for all methods.  How predictive models are built and applied may be 

more important than the statistical method used.  



iii 

 

 The accuracy, generality (transferability), and resolution of predictions of species 

occurrence vary among species.  The ability to anticipate and understand variation in prediction 

characteristics among species can facilitate the proper application of predictions of species 

occurrence.  In the third chapter of this dissertation I describe some conservation implications of 

relations between predicted occurrence characteristics and species traits for fishes in the upper 

Tennessee River drainage.  Usually weak relations and variation in the strength and direction of 

relations among families precludes the accurate prediction of predicted occurrence characteristics.  

Most predictions of species occurrence have insufficient accuracy and resolution to guide 

conservation decisions at fine spatial grains.  Comparison of my results with alternative model 

predictions and the results of many models described in peer-reviewed journals suggests that this 

is a common problem.  Predictions of species occurrence should be rigorously assessed and 

cautiously applied to conservation problems.  Collectively, the three chapters of this dissertation 

demonstrate some important limitations of models that are used to predict species occurrence.  

Model predictions of species occurrence are often used in lieu of sufficient species occurrence 

data.  However, regardless of the method used to predict species occurrence most predictions 

have relatively low accuracy, generality and resolution.  Model predictions of species occurrence 

can facilitate management and conservation, but they should be rigorously assessed and applied 

cautiously.   
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General Introduction 

 

Effective and efficient management and conservation requires knowledge of species 

locations of occurrence (i.e., presence and absence).  Conducting thorough censuses is rarely 

possible, especially for rare or cryptic species that occur discontinuously (Angermeier et al. 2002) 

across large spatial extents, necessitating sampling and the use of models that predict their 

occurrence.  Predictions of species occurrence can be used to prioritize sampling and to identify 

gaps in species protection (e.g., gap analysis, Scott et al. 1993).  Limited resources and 

knowledge of species occurrence make predicting species occurrence at large spatial extents and 

fine spatial grains desirable.  Models that predict species occurrence are often built using survey 

data.  Inadequate survey data can preclude the building of models that accurately predict species 

occurrence.  Unfortunately, protocols for assessing sampling sufficiency that can be used to direct 

surveys are poorly developed and infrequently applied.  The need to make predictions for large 

extents at fine grains also limits the quantity and quality of data commonly available for use in 

prediction exercises.  Many methods are used to predict species occurrence (Scott et al. 2002), but 

few comparisons of model predictions are available to direct the selection of appropriate methods 

(Guisan and Zimmerman 2000) or their appropriate application.  Further, the characteristics of 

model predictions might vary due to species traits, such as their prevalence and size.  Managers 

need protocols to assess sampling sufficiency and to make the best use of survey data.  My goals 

for this work are to 1) develop methods for assessing the sufficiency of sampling at large spatial 

extents, 2) provide guidance, based on rigorous model assessments, that facilitates the selection of 

appropriate methods for predicting species occurrence, and 3) and describe relations between 

species traits and prediction characteristics that facilitate the appropriate application of 

predictions of occurrence.   

Insufficient sampling effort and subsequent species occurrence data contributes to poor 

performance of predictive models (Fausch et al. 1988, Cao et al. 2002).  Sampling simulations 

have a long history of use in ecology (Gleason 1922, Fisher et al. 1943, Preston 1962), but 

assessments of sampling sufficiency are infrequently conducted at the large spatial extents at 

which many management and conservation decisions are made.  For example, as part of its 

“Freshwater Initiative” The Nature Conservancy has described the conservation priority of 

freshwater systems at several spatial extents in much of North America.  However, because 

available species occurrence data are assumed to insufficiently describe assemblage composition 

their conservation priorities are usually based on the uniqueness and diversity of environmental 
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conditions rather than knowledge of species occurrences.  I conducted sampling simulations to 

assess the sufficiency of sampling to describe stream fish species richness at four spatial extents 

across Virginia.  Additional simulations were conducted using predicted species occurrences to 

describe the relative importance of the spatial allocation of samples on sampling efficiency.  The 

results of this work demonstrate the need for additional stream fish surveys in many regions of 

Virginia and can be used to develop efficient surveys at large spatial extents.   

Descriptions of species occurrence from surveys are rarely sufficient to efficiently direct 

conservation and management actions, especially at large spatial extents and fine spatial grains.  

Models are frequently used to predict species occurrence (Scott et al. 2002) and those predictions 

are used to direct management and conservation actions.  For example, in the state of Washington 

the predicted upstream extent of fish presence is used as a boundary, above which stream buffer 

width requirements are reduced.  Poor prediction accuracy can inordinately constrain forest 

management or insufficiently protect fish and streams with fish present.  Poor model performance 

(i.e., low prediction accuracy) has led to the use of alternative methods for predicting occurrence 

(e.g., artificial neural networks [Olden and Jackson 2001]).  However, few comparisons of model 

performance are available to facilitate the selection of the most appropriate prediction method 

(Guisan and Zimmerman 2000).  I compare the predictions of occurrence of five prediction 

methods for seven species in each of three regions of Virginia to facilitate the selection of 

appropriate prediction methods.   

Characteristics of predictions of species occurrence vary among species and the 

application of model predictions should account for this variability.  The characteristics of 

predictions of species occurrence (e.g., accuracy, generality and resolution) are expected to vary 

among species due to differences in their prevalence and other traits.  For example, models that 

predict the occurrence of species that build nests might be expected to be more accurate and 

general than those for other species because such species may be less susceptible to disturbance 

or may recover more quickly to disturbance.  Assessments of models that predict the occurrence 

of nest builders might thus have relatively few errors of omission due to absence in suitable 

habitats due to past disturbances.  I describe relations between species traits and predicted 

occurrence characteristics for several species in the upper Tennessee River basin.  I carefully 

selected the most accurate predictive models and rigorously assessed their accuracy, generality 

and resolution.  Weak and variable relations between species traits and prediction characteristics 

suggest that my models perform poorly and should be applied cautiously.  Comparison of my 

results with alternative models based on the opinions of experts and model assessments described 
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in peer-reviewed literature suggests that poor prediction accuracy and perhaps poor resolution are 

common issues.   

 Inaccurate and low resolution predictions of species occurrence should guide the 

appropriate application of predictions of species occurrence.  Few predictions of species 

occurrence are rigorously assessed (Guisan and Zimmerman 2000, Scott et al. 2002) and those 

that are often appear to predict with similar accuracy.  The resolution of predictions of species 

occurrence is rarely assessed.  Inaccurate and coarse predictions of species occurrence should be 

expected, especially at large spatial extents.  Collecting additional data may facilitate the 

prediction of occurrence for infrequently sampled species, but is unlikely to substantially improve 

the accuracy and resolution of most predictions.  Alternative prediction methods usually provide 

similar predictions.  My predictions of species occurrence provide the best information available 

to guide management and conservation, but they should be applied conservatively and cautiously.  

For example, if model predictions of species presence are used to select conservation areas, 

several areas should be selected to minimize the effect of errors of commission.  Further, if model 

predictions of absence are used to justify management actions that could harm the species if it is 

present, those actions should occur only in areas of very high probabilities of absence and 

additional sampling to detect species presence may be warranted.  Despite their limitations, these 

models provide the best information available describing the probability of occurrence of many 

freshwater fish species and they can be used to make sound management and conservation 

decisions.  
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Chapter 1.  Estimating sufficient sampling effort for large-scale stream fish surveys 

 

INTRODUCTION 

Sampling sufficiency is an important concern for understanding species-habitat relations, 

predicting species occurrence, directing management actions, and biological monitoring of 

environmental quality.  Insufficient sampling effort and inadequate coverage of environmental 

conditions contribute to failures to detect species-habitat relations and to poor performance of 

predictive models (Fausch et al. 1988, Leftwich et al. 1997).  Inadequate species occurrence 

information precludes precise management and obscures the detection of changes in species 

occurrence.  Sampling effort exceeding that necessary to meet study objectives may divert funds 

and efforts from other worthy projects.  Sampling that is sufficient describes a region’s species 

richness with desired accuracy and confidence.  Unfortunately, protocols for assessing sampling 

sufficiency and predicting sufficient sampling effort are poorly developed and infrequently 

applied.   

As knowledge of stream fish movement and resource use increases (Gowan et al. 1994, 

Fausch and Young 1995, Albanese et al. 2004) researchers are increasingly aware of the need to 

scale survey efforts to the ecological and anthropogenic processes that determine local 

assemblage composition (McIntyre and Hobbs 1999).  As the spatial extent, cost, and 

conservation importance of surveys increase, so does the importance of sampling sufficiency and 

efficiency.  While questions regarding the sufficiency of stream fish samples have been studied in 

many locations (e.g., Lyons 1992, Angermeier and Smogor 1995, Paller 1995, Simonson and 

Lyons 1995, Patton et al. 2000), these analyses have been limited to the local (stream reach) 

scale.  Spatial variability of habitat, fish movement, and population fluctuations may render the 

reach insufficient as a sampling unit for many studies (Ibbotson et al. 1994, Schlosser 1995, 

Herger et al. 1996, Dolloff et al. 1997).  Discontinuity of stream fish distributions may require 

many samples to sufficiently describe spatial patterns of assemblages across large regions 

(Angermeier et al. 2002).   

Sampling simulations have a long history of use in ecology (Gleason 1922, Fisher et al. 

1943, Preston 1962) to estimate species richness (SR; Connor and McCoy 1979, Coleman 1981, 

Miller and Wiegert 1989, Mingoti and Meeden 1992) and species diversity (Flather 1996, Ney-

Nifle and Mangel 1999), but they are infrequently used to assess the sufficiency of sampling to 

address specific research questions (but see Cao et al. 2002 and Cook at al. 2004) or to plan 

surveys.  Several researchers have provided guidance for the proper use of sampling simulations.  

In particular, extensive extrapolation has been cautioned against (Smith and van Belle 1984, 
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Palmer 1990, Bunge and Fitzpatrick 1993, Hellman and Fowler 1999) and comparing alternative 

functions to fit simulation results has been recommended (Flather 1996).  However, little work 

has been done to assess the sufficiency of sampling of a given taxonomic group, including stream 

fishes, in large regions.   

Sampling sufficiency assessments for stream fishes have primarily estimated the optimal 

length of a stream reach to sample (e.g., Lyons 1992, Angermeier and Smogor 1995, Paller 1995, 

Simonson and Lyons 1995, Patton et al. 2000).  The results of such studies guide many surveys.  

For example, the Oregon Department of Fish and Wildlife used ≥ 20 stream widths per site to 

sample fishes for the Oregon Coastal Coho Assessment (http://nrimp.dfw.state.or.us/OregonPlan, 

Stevens 2002), the US Environmental Protection Agency (EPA) has suggested a minimum of 40 

stream widths for sampling stream habitat and fishes for their Environmental Monitoring and 

Assessment Program (EMAP; http://www.epa.gov/emap/html/docs.html), and the Virginia 

Department of Game and Inland Fisheries (VDGIF) used a minimum of 20 stream widths to 

sample fishes and habitat for their Statewide Stream Survey (J. Copeland, VDGIF, personal 

communication).  Researchers are increasingly acknowledging the need to survey and manage 

streams and fish assemblages at large spatial extents (Palmer and Poff 1997, Fausch et al. 2002, 

Ward et al. 2002, Wiens 2002), but little guidance is available regarding the effort necessary to 

sufficiently sample stream fishes at large scales.   

Survey planning and prioritization would benefit from accurate a priori estimates of 

sufficient sampling effort.  The commonly observed positive correlations between area sampled, 

environmental heterogeneity, and species richness (e.g., Kerr and Packer 1997, MacNally and 

Watson 1997, Fraser 1998, Guegan and Oberdorff 1998, Matthews and Robinson 1998) may 

allow prediction of sufficient sampling effort.  Precise and consistent correlations between survey 

area, environmental heterogeneity, and sufficient sampling effort will allow prediction of 

sufficient sampling effort that will facilitate survey planning and prioritization if species 

occurrence data are not available.    

Available resources often limit sampling effort, making improvement in survey 

efficiency (i.e., the rate of species accrual) a priority.  Survey efficiency varies among survey 

strategies (e.g., spatially balanced random sampling; Stevens and Olsen 2004), providing similar 

information at different sampling efforts.  Sampling simulations can be used to assess the efficacy 

of different sampling designs (Dale et al. 1991, Hirzel and Guisan 2002).  Using realistic species 

distributions in simulations can provide realistic results of different sampling strategies that allow 

researchers to design, compare, and implement efficient surveys.  Unfortunately, managers must 

http://nrimp.dfw.state.or.us/OregonPlan
http://www.epa.gov/emap/html/docs.html
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often use “found” data that are collected for many reasons to estimate species distributions and 

assess sampling sufficiency.   

Virginia provides excellent opportunities to refine methods of assessing sampling 

sufficiency.  The nearly 200 species of native freshwater fishes vary widely in prevalence 

(frequency of occurrence) and occur in a range of assemblages that enable informative 

comparisons of the effects of assemblage attributes on sufficient sampling effort.  The exceptional 

diversity of stream fishes in Virginia is largely due to the 11 major drainages and 5 physiographic 

provinces represented in the state (Jenkins and Burkhead 1993, Figure 1.1).  These geographic 

units provide easily identified, ecologically meaningful survey regions.  Subsections 

(constituents) of these units also provide meaningful survey and management units (Angermeier 

and Winston 1999).  Comparisons of sampling-sufficiency simulation results among regions and 

spatial scales enhance the generality of my work.  Virginia’s stream fishes are extensively 

sampled and the VDGIF maintains the Virginia Fish and Wildlife Information Service database 

(VAFWIS; http://128.173.240.58/build02/fwis/default.asp), which provides access to many fish 

sample data, thereby allowing sampling sufficiency assessments for several large regions.  The 

high species richness (SR), frequent imperilment, and intensive management of stream fishes in 

Virginia require large-scale surveys to provide information necessary for precise management.  

Limited resources promote the development of protocols for assessing the sufficiency and 

improving the efficiency of large-scale stream fish surveys.   

This work was initiated to answer questions the VDGIF posed regarding the sampling 

sufficiency and efficiency of stream fish surveys.  My goal is to use multipurpose stream fish 

occurrence samples (found data), environmental attributes, and sampling simulations to assess 

sampling sufficiency and to identify ways to improve survey efficiency.  Specific objectives 

include 1) assessing the usefulness of existing multipurpose data and providing advice on its 

proper collection and storage, 2) estimating sufficient sampling effort using multipurpose data 

and sampling simulations, 3) assessing the efficacy of predicting sufficient sampling effort using 

correlations between survey region environmental conditions and estimates of sufficient sampling 

effort, and 4) using sampling simulations and spatially realistic simulated assemblages to 

demonstrate the effect of different survey strategies on achieving sufficient sampling effort.   

 

METHODS 

Study Regions and Environmental Attributes 

I conducted sampling sufficiency analyses for regions defined by their hydrography and 

physiography at four spatial scales to enhance the generality of the results (Figure 1.1).  Drainage 

http://128.173.240.58/build02/fwis/default.asp
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regions (D) are 6-digit United States Geological Survey (USGS) hydrologic units (Seaber et al. 

1987), drainage-physiography regions (D-P) are intersections of D with physiographic provinces 

defined by Jenkins and Burkhead (1993).  Subdrainage regions (SD) are 8-digit USGS hydrologic 

units (Seaber et al. 1987) and subdrainage-physiography regions (SD-P) are intersections of SD 

with physiographic provinces.  Very small SD-P were concatenated into their larger conterminous 

SD-P.  There are 10 D, 5 physiographic provinces, 22 D-P, 40 SD, and 53 SD-P in VA.  These 

regions are useful survey units because they have ecologically meaningful boundaries (Holling 

1992), distinct fish assemblages (Jenkins and Burkhead 1993, Angermeier and Winston 1999), 

and different factors regulate species distributions (Angermeier and Winston 1998, 1999, Jackson 

at al. 2001).   

The USGS National Hydrography Dataset (NHD; USGS 2000) 1:100,000-scale stream 

reach files were used to define streams.  Reaches were identified using the unique codes assigned 

by the NHD. The NHD defined reaches based on the location of confluences, major changes in 

stream gradient, and changes in channel type (e.g., natural or channelized).  Reach and watershed 

attributes were calculated to describe environmental heterogeneity and to assess sample coverage 

of environmental conditions.  These data were used to assess the efficacy of predicting sufficient 

sampling effort using regional environmental conditions.  The National Elevation Dataset (NED; 

USGS 2000 http://gisdata.usgs.gov/ned/default.asp) was used to delineate the contributing 

watershed for each reach, and to calculate elevation and slope variables.  Mean reach elevation, 

reach slope, watershed aspect, and stream order (Strahler 1957) were calculated to describe 

reaches.  Calculations were made using Arc/Info 8.0.2 and ArcGIS 9.1 (Environmental Systems 

Research Institute, Inc., http://www.esri.com).  The number of reach types in each region was 

correlated with the estimate of sufficient sampling effort to assess the efficacy of predicting 

sampling sufficiency using environmental conditions. 

To assess sample coverage of environmental conditions, each stream reach was assigned 

a reach type based on three classes each of reach elevation and reach slope, four classes of 

watershed aspect and six stream orders.  Elevation and slope categories were defined using 33- 

and 66-percentiles of the values for all reaches in Virginia.  Aspect classes were constructed to 

identify north (N), south (S), east (E) and west (W) flowing watersheds.  Strahler orders 1 

through 6 were used.  The percent of reach types sampled in a region was used to assess coverage 

of environmental variability.  Additionally, the number of reach types in a region (reach diversity; 

RD) was used to index environmental heterogeneity.  The percent of reach types sampled in each 

region was correlated with the estimate of sampling sufficiency to assess the effect of sample 

coverage on estimates of sampling sufficiency.   

http://gisdata.usgs.gov/ned/default.asp
http://www.esri.com/
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Data Collection  

Species occurrence records were procured from the VAFWIS, which includes 

georeferenced species occurrence records from collection permit reports, scientific reports, and 

citizen reports.  The > 20,000 spatially and temporally extensive collection records in the 

VAFWIS provide exceptional opportunities to explore patterns of species occurrence and the 

effects of sampling effort.  The VAFWIS includes most of the scientific collection records for one 

of the most species rich and well-studied fish assemblages in North America (Jenkins and 

Burkhead 1993).  Sample location errors are likely in these data because standard mapping 

methods and maps are not required.  Errors of sampling omission (i.e., false absence) are likely in 

these data and may be due to failure to sample the appropriate spatial or temporal strata, 

inadequate sampling effort, or ineffective or inappropriate methods (Angermeier et al. 2002).  

Errors of sampling commission (false presence) are less likely, but may occur due to species 

misidentification.  Poor sample coverage of the range of environmental variability and repeated 

samples of the same reaches are also likely in these data because few were collected as part of 

systematic surveys.   

The results of sampling simulations to predict sufficient sampling effort are affected by 

the quality of the data used in the simulations.  Conducting sampling simulations with samples 

that are not representative of a region’s assemblage biases results.  Omitting samples with many 

sampling omission errors minimized the effect of sampling errors on sufficiency assessments and 

improved the accuracy of subsequent analyses.  This was accomplished by using only samples 

that appeared relatively complete (hereafter, assemblage samples).  Assemblage samples were 

used to realistically simulate surveys.  Samples that recorded  3 species, including ≥ 1 non-game 

species, and had reliable location information (i.e., plotted within 50 m of a stream reach) were 

defined as assemblage samples and assumed to have few omission errors.  When possible, the 

sample collector and collection methods were identified to ensure adequate sampling.  When 

multiple samples of a reach were available the most recent sample was used.  Samples were 

collected from 1965 to 1998. Samples were attributed to individual stream reaches using a 50-m 

buffer on each side of the reach in a GIS.  Samples were omitted from analyses if they could not 

be confidently attributed to a reach.  When identifiable, samples from non-wadeable rivers were 

omitted from analyses because they were not comparable due to expected differences in species 

catchability and the gear used (Hubert 1996).  These criteria removed many samples with many 

likely errors of omission, but also may have removed samples that accurately described 

depauperate assemblages.  Despite errors, these databases contain the most comprehensive 

information available describing fish distributions in Virginia.   
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Sampling Simulations  

I simulated sampling by bootstrap sampling without replacement (Efron and Tibshirani 

1994, Manley 1997) at a range of sampling efforts.  Bootstrapping randomized samples and 

smoothed the resulting species accumulation curves.  Species accumulation curves estimate SR in 

each region and the rate of information accrual (via the slope parameter “b”), which assess 

sampling efficiency.  Although other simulation methods are available to estimate species 

richness and to assess sampling sufficiency (Hellman and Fowler 1999), I used bootstrapping 

because it allows simple calculation of confidence bounds that aid in interpretation of results and 

because bootstrapping tools are readily available (Gotelli and Colwell 2001).  In each region 

sampling simulations were conducted for 11 to 15 sample sizes, including one sample and the 

total number of samples available for the region.  Consistent simulation results were obtained 

with 10,000 bootstrap iterations at each sample size.   

A minimum number of assemblage samples are required for meaningful sampling 

simulations, but sample size criteria have not been established.  Sampling simulations have been 

used to assess sampling sufficiency using relatively small datasets.  Each sampling simulation 

used ≥ 30 samples to minimize extrapolation of SR beyond that observed.  Thirty samples 

included a mean of 78.4% (s.d. = 6.50) of species known present in the largest, most species-rich 

regions (i.e., the 10 D), exceeding the 63% to 69% threshold under which Hellman and Fowler 

(1999) found bootstrapping underestimated SR and the approximately 50% threshold suggested 

by Smith and van Belle (1984).   

Predicting SR from sampling simulations and comparing predictions among regions 

required fitting a mathematical function to disparate simulation results.  Simulation results from 

every region were fit with a Weibull function: 
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and a negative exponential function: 

N = a(1- e 
–bx

), 

where N is the number of species, a is the asymptote, b is the slope (rate of species accumulation 

or information accrual), x is accumulated samples, c is a scaling factor that determines the x-

intercept, and d is a shape parameter (Flather 1996).  Akaike’s information criteria (AIC; Akaike 

1974, Burnham and Anderson 2002), coefficient of determination (R
2
), and plots of residuals for 

all regions were used to assess the goodness-of-fit of the functions.  Solving for a estimated SR.  

Estimator bias was assessed for D by comparing estimates of SR with known SR from Jenkins 

and Burkhead (1993).     



10 

 

Many statistics can be used to assess sampling sufficiency, but few are recommended for 

large-scale surveys.  For example, Moreno and Halffter (2000) suggest collecting a mean of 90% 

of the species in a region and Angermeier and Smogor (1995) suggest collecting 90% of the 

species in a reach, whereas Cao et al. (2001) suggest using a sample similarity statistic that is 

calculated with sampling simulations.  I used the number of samples required to collect a mean of 

95% of the species estimated to be present in the region (N95) as a measure of sampling 

sufficiency because it is simple to interpret, particularly with reference to rare species, and 

because it encourages the collection of many relatively rare species.   

Sampling Sufficiency Assessment  

Sampling simulations were conducted for all regions with ≥ 30 assemblage samples.  

Sampling sufficiency was assessed by comparing N95 with the number of assemblage samples 

available for each region and by visual assessment of bootstrap confidence bounds.  Sampling 

was considered sufficient if the number of available samples was ≥ N95.  Bootstrap confidence 

bounds described likely sampling omissions.  The slope of the sampling simulation curve (b) was 

used to index the rate of information accrual, that is, the rate at which additional species were 

added to a region’s list with additional samples.   

Predicting Sufficient Sampling Effort 

Strong and consistent relationships between area (ha), RD, proportion of reach types 

sampled (%RD), SR, and the proportion of species that are rare (%Rare; species present in ≤ 5% 

of samples) and N95 may allow prediction of N95 and better understanding of differences in 

sufficient sampling effort among regions and scales.  The strength and consistency of the 

correlations between area, RD and N95 were assessed with Spearman correlations for all regions 

and scales with sufficient samples to calculate N95.  Tests of correlation significance were 

bootstrap-adjusted for multiple comparisons.  Sampling simulation results and charts of species 

prevalence for the Buffalo, Rivanna, Chickahominy, and Appomattox subdrainages of the James 

River drainage are contrasted to describe variation in the effects of SR, prevalence, and the 

distribution of species among samples on N95 and b.  These SD provide interesting contrasts 

because they demonstrate the range of results for N95 and b that are possible for regions with 

similar SR, number of samples, and species prevalence.      

Assessing Sampling Strategies 

Comparing sampling strategies requires fish distribution data for entire assemblages.  

Realistic distribution data can provide realistic simulations and comparisons.  Complete censuses 

of stream fish distributions in large regions are rarely possible, but predicted occurrences may 

approximate real distributions.  I used a spatially realistic, simulated stream fish assemblage of 
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the upper Tennessee River basin (UTRB, Figure 1.2) to assess the effect of four survey strategies 

on N95.  The simulated fish assemblage of the UTRB was used because it includes one of the most 

species-rich and frequently sampled SD in VA.  The boundary of the UTRB is also more 

ecologically meaningful than the VA state boundary, making models more likely to predict 

accurately.  Furthermore, predictions of stream fish occurrence in the UTRB were available from 

a concurrent gap analysis.   

The simulated assemblage was constructed by predicting the occurrence of stream fishes 

in all reaches of the UTRB based on logistic regression models.  Assemblage data were procured 

from existing databases from Virginia, Tennessee, and North Carolina.  Assemblage samples 

were selected identically to those used for the VA sampling sufficiency assessments.  Predictor 

variables included Strahler (1957) stream order, reach length, downstream link (Osborne and 

Wiley 1992, Smith and Kraft 2005), mean reach elevation, reach gradient, physiography, reach 

sinuosity (Gordon et al. 1992), state, and path type (i.e., natural or altered via USGS NHD).  

Dummy variables for state and physiography (Dunham and Vinyard 1997) accounted for 

differences in sampling methods and intensity.  Model predictions were assessed using cross-

validation values for correct presence (sensitivity, SE), correct absence (specificity, SP), and total 

correct (CC) predictions, Kappa statistics (Cohen 1960, Guggenmoos-Holzmann 1996), Akaike’s 

information criteria (AIC; Akaike 1974), and the area under the receiver-operator-characteristic 

curve (AUC).  AUC measures a model’s ability to discriminate between correct presence and 

absence predictions across the range of possible critical values.  Model building, application, and 

assessment details are included in Chapter 3.  Species prevalence is often correlated with statistics 

describing prediction accuracy without accounting for individual occurrences (Hosmer and 

Lemeshow 2000, Manel et al. 2001).  For example, the intercept of logistic regression models 

partly accounts for species prevalence in the data used to fit the model.  I plotted predicted 

occurrences for the simulated assemblage using species’ prevalence as critical values to account 

for the effect of prevalence on prediction accuracy.   

When planning surveys, scientists select a sampling strategy that they believe will 

effectively and efficiently collect information (e.g., species occurrences and SR).  Most sampling 

strategies differ in how they distribute samples in space.  Sampling strategies vary in efficiency 

(the rate of information accrual) depending on where samples are located and how species are 

distributed.  Selecting an efficient sampling strategy may reduce the effort required to sufficiently 

sample large regions.  Sampling strategies compared included 1) sampling the original data to use 

as a baseline for comparisons, 2) sampling predicted occurrences at the original sample locations 

to simulate the effect of decreased sampling errors, 3) randomly sampling predicted occurrences, 
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and 4) spatially balanced random sampling of predicted occurrences.  Many of the samples in the 

original data were likely located for convenience (e.g., easy access from roads).  Such non-

random sampling does not provide an unbiased description of the region’s assemblage.  Random 

sampling provides an unbiased description of the regions assemblage, but it may be difficult to 

access some sites and simple random sampling does not ensure the even spatial distribution of 

samples.  Spatially balanced random sampling provides an unbiased description of the regions 

assemblage and facilitates the even spatial distribution of samples.  Ten trials were run for 

random sampling and spatially balanced random sampling and their mean results were compared.  

Simulations used 524 samples to facilitate comparisons of N95.  Comparison of b and N95 from 

different sampling strategies can demonstrate the limitations of using found data and the relative 

importance of reducing errors of sampling omission and using well-designed surveys.  All GIS 

analyses were completed in Arc/Info and ArcGIS 9.1 (Environmental Systems Research Institute, 

www.esri.com) and all statistical analyses were completed in SAS 9.1 (www.sas.com).   

 

RESULTS 

Study Regions and Environmental Attributes 

 The number of reach types and the percent of reach types sampled varied among regions 

within scales and both tended to decline at smaller scales (Table 1.1).  The James D is the largest 

of the 11 D in Virginia, crosses all five PP, and had the largest number of reach types (225) of 

which 44% were sampled.  The Big Sandy D had the lowest number of reach types (16), but the 

highest percent of reach types sampled (75%).  The mean number of reach types was 104 for 

drainages, 74 for drainage-physiographic provinces, 69 for subdrainages, and 62 for subdrainage-

physiographic provinces.  The mean percent of reach types sampled was 41 for drainages, 34 for 

drainage-physiographic provinces, 30 for subdrainages, and 30 for subdrainage-physiographic 

provinces.  At all scales large regions and those in the Piedmont and Ridge and Valley 

physiographic provinces tended to have more reach types (Tables 1.1 and 1.2).   

Data Collection  

Only 2,966 of > 20,000 samples in the VAFWIS database were retained for sampling 

simulations.  Inaccurate location data and/or likely sampling errors rendered most samples 

inappropriate for sampling sufficiency simulations.  Imprecise sample coordinates, recording 

errors, and differences in the location of streams between map and GIS data accounted for about 

15% of the omissions.   Approximately 80% of omitted samples did not meet the assemblage 

criteria of having ≥ 3 species, including  1 non-game species.  Many samples list only game 

species (e.g., Micropterous salmoides) or only species of concern that are often found in species-

http://www.esri.com/
http://www.sas.com/
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rich sites (e.g., Percina rex).  Few species were present in only those samples not meeting the 

assemblage sample criteria or were found only in large streams.  Commission errors were rarely 

identified and were likely due to misidentification of species.  Commission errors were usually 

for species with congeners of similar appearance.  About 3% of omitted samples were repeat 

samples of the same stream reach.  Metadata describing sampling goals and effort, collection 

methods, and number of individuals collected were rarely available.  Visual assessment of the 

locations of the remaining 2,966 samples suggests nonrandom distribution of samples at the state 

extent (Figure 1.3).  Many samples were on 3-rd and 4-th order streams, near road crossings and 

spatially clustered near the cities of Roanoke and Richmond, VA.   

Sampling Simulations 

A minimum sampling effort is required to accurately estimate SR and N95.  Using similar 

methods Smith and Van Bell (1984) found that accurately estimating SR required sampling to 

collect  50% of the species in a region.  Approximately 25 samples were needed to collected  

50% of the species known to be present in each region.  I used a conservative minimum sample 

size of 30 to ensure sufficient data for each simulation.  Sampling simulations were conducted for 

10 of 10 D, 20 of 27 D-P, 26 of 49 SD and 28 of 73 SD-P (Table 1.1).  The Weibull and negative 

exponential functions fit simulation results well (R
2
 > 0.95) for all regions and no significant 

difference was found between AIC values for paired comparisons between the two functions 

(paired t = -0.511, df = 83, P = 0.6131).  Examination of residuals indicated minor additional 

nonrandom variability in many regions, particularly for the negative exponential function.  The 

Weibull function appeared to better fit the tail of the species accumulation function than the 

negative exponential function for several regions.  Hereafter, results based on the Wiebull 

function are discussed, but conclusions would be similar for analyses based on either function.  

Sampling simulations consistently underestimated SR within 3% of known SR for each D (Table 

1.1).   

Sampling Sufficiency Assessment  

Few regions of VA are sufficiently sampled but the frequency of sufficient sampling 

increases with the spatial extent of sampling units (Table 1.1).  The number of samples available 

was > N95 for 10 of 10 D, 13 of 20 D-P, 15 of 26 SD, and 11 of 28 SD-P.  Estimates of N95 are 

large for most regions, vary among regions, and decrease at smaller spatial extents (Table 1.1).  

Mean N95 is 150.1 (standard deviation = 70.3) for D, 116.2 (standard deviation  = 63.7) for D-P, 

106.2 (standard deviation = 81.3) for SD, and 84.3 (standard deviation = 45.2) for SD-P.  

Bootstrap confidence bounds are generally large and variable and decrease with sample size.  The 

rates of information accrual (b) are generally low but increase at smaller spatial extents.  Mean b 
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is 0.09 (standard deviation = 0.03) for D, 0.12 (standard deviation = 0.05) for D-P, 0.15 (standard 

deviation = 0.07) for SD and 0.16 (standard deviation = 0.10) for SD-P.   

Predicting Sufficient Sampling Effort 

Relationships between environmental attributes, assemblage attributes, and N95 are 

generally weak (Spearman < 0.6) and vary among regions and spatial extents (Table 1.2).  Area 

and N95 are positively correlated at all spatial extents, but the strength of the correlation decreases 

at smaller extents (Table 1.2).  Reach diversity and N95 are strongly positively correlated at only 

the D scale.  Interestingly, N95 is not strongly correlated with the percent of reach types sampled 

at any scale.  Percent of species that are rare and SR are correlated with N95 at all scales and area 

and reach diversity are correlated at all scales.   

The rates at which species accrued with sample size varied widely among subdrainages.  

The Buffalo and Rivanna subdrainages have identical SR and number of samples, but N95 and b 

differ substantially between them (Table 1.1, Figures 1.4 and 1.5), likely because the proportion 

of rare species was higher in the Buffalo SD (27%) than in the Rivanna SD (15%).  The 

Chickahominy SD has been sampled frequently, but the very low proportion of common species 

and high proportion of rare species result in a slow rate of information accrual (b) and a very 

large N95 (Table 1.1, Figures 1.4 and 1.5).  In contrast, the Appomattox SD has been sampled less 

frequently and has a higher SR and proportion of rare species than the Chickahominy SD, but the 

Appomattox SD has a relatively high rate of information accrual and small N95.   

Assessing Sampling Strategies  

The UTRB is insufficiently sampled with the available 524 assemblage samples.  N95 

(880) is > the number of available samples (524), sampling simulation results are not asymptotic, 

and bootstrap confidence bounds are large (Figure 1.6).  These data were used to predict the 

occurrence of 120 fish species that were present in ≥ 5 assemblage samples.  Prediction accuracy 

was generally low and affected by species prevalence (Chapter 3).  Mean SE was 27.3, mean SP 

was 91.2, mean CC was 90.0 and mean Kappa was 0.22 for all 120 species.  Most fishes were 

rare (mean prevalence = 13.3, range = 0.4 to 88.4).  Species prevalence was negatively correlated 

with SE and positively correlated with SP.     

Effects of reducing sampling errors in b and N95 were assessed by comparing sampling 

simulation results for empirical occurrences with predicted occurrences from the same locations.  

Reducing sampling errors increased the rate of information accrual (Figure 1.6).  The rate of 

information accrual was relatively low for the UTRB empirical data (b = 0.0281).  Sampling the 

same locations with predicted occurrences increased the rate of information accrual (b = 0.0936), 

but N95 remained large (815).  Effects of alternative sampling designs (i.e., different sample 
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locations) on N95 were assessed by comparing sampling simulation results for predicted 

occurrences at empirical sample locations with those from random locations.  Random sampling 

increased the rate of information accrual (b = 0.1018) and greatly reduced N95 to 142 samples.  

Random spatially balanced sampling slightly increased the initial rate of information accrual (b = 

0.1049) from that of simple random sampling, but N95 remained similar (138) to that of simple 

random sampling.  Apparently, carefully distributing samples in space can improve sampling 

efficiency more than reducing errors of sampling omission at individual sample sites.   

 

DISCUSSION 

Survey data are used to describe species-habitat relationships (Poff and Allen 1995), to 

predict species occurrence (Scott et al. 2002), to direct management actions, and to monitor 

environmental quality (Norris 1995).  Insufficient sampling can fail to identify ecological patterns 

(Cao et al. 2002), limit prediction accuracy (Leftwich et al. 1997), misdirect management efforts, 

and fail to detect environmental changes (Edwards 1998).  Sampling sufficiency is increasingly 

important as the spatial extent of surveys and the application of survey results increase.  The 

importance of estimating sampling efficiency also increases as the scale and associated costs of 

sampling sufficiently increase.  The stream fish assemblages of most regions of VA are 

insufficiently sampled by the available data.  Reliance on found data that were not collected using 

efficient sampling strategies reduces the rates of information accrual and increases the number of 

samples required to sufficiently sample the fish assemblages of large regions.  Differences in 

assemblage structure among regions preclude the accurate prediction of sufficient sampling 

effort.     

Data Attributes 

Sufficient sampling effort can be estimated by using found data to help plan regional 

surveys.  The process of selecting found data highlights many of their shortcomings (Cairns and 

Pratt 1986, Bonar and Hubert 2002, Hayes et al. 2003).  Sample location uncertainty and 

sampling errors rendered many found samples unsuitable for estimating sufficient sampling 

effort.  Samples located far from streams or outside of the survey region (e.g., samples located 

outside VA) are easily identified as erroneous, but it is difficult to identify erroneous samples 

located near several streams.  Many sample location errors are due to faulty map reading, data 

recording, or data management.  Careful collection and recording of location data, including map 

projections and coordinate systems, can prevent many location errors.  Collecting, recording and 

storing redundant location data from maps, global positioning systems (GPS), and geographic 

information systems (GIS) will reduce the frequency of location errors and should be encouraged.   
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Researchers should remember that maps and GIS layers are models that have errors that 

can make data appear erroneously located.  Many samples were located far from mapped streams.  

Some of these errors may be due to faulty stream delineation.  I attributed samples to stream 

reaches defined in the NHD using a GIS and a 50-m buffer on each side of stream reach 

centerlines.  This was problematic when samples were located near stream confluences or in 

densely drained regions where a narrow buffer could not distinguish among multiple reaches.  

Accurately collecting and recording the locations of the start and end of sampling can remedy this 

problem.  Samples should be plotted as lines that coincide with stream reaches rather than points 

that can be plotted on several stream reaches.  Recording the stream name and/or reach code with 

collection data is also helpful.  Efforts to improve the accuracy and completeness of hydrographic 

data should also be encouraged.   

Sampling omission and commission errors should be minimized because they bias 

estimates of sufficient sampling effort (Patton et al. 2000) and stymie analyses (Cao et al. 2002).  

Likely errors of sampling omission were the most frequent reason that samples were not used for 

sampling simulations.  Sufficiency of individual samples can be assessed with metadata 

describing sampling effort and methods (Lyons 1992, Angermeier and Smogor 1995, Paller 1995, 

Peterson and Rabeni 1995, Simonson and Lyons 1995, Patton et al. 2000), but such metadata 

were rare.  My criteria defining assemblage samples removed many samples with likely omission 

errors, but the criteria were liberal, likely retaining many samples with omission errors that inflate 

estimates of N95.  However, some species-poor samples warrant inclusion in analyses because 

they record the presence of rare species.  Additionally, some omitted samples may accurately 

describe species depauperate assemblages.  Their removal would erroneously increase sampling 

sufficiency estimates.  Sampling commission errors were infrequently detected and likely due to 

species misidentification.   

Metadata describing sampling methods, equipment, and effort are vital to assessing the 

sufficiency of individual samples and may prove more useful than standardized sampling.  

Sampling using standard methods and equipment can provide commensurate data across large 

spatial extents (Bonar and Hubert 2002, Hayes et al. 2003), simplifying analyses and ensuring the 

usefulness of samples.  However, a standard method may not be optimal for all species or sample 

locations (Peterson et al. 2004, Rosenberger and Dunham 2005) and is not necessary for survey 

planning or assessments of sampling sufficiency.  Varying methods and equipment among 

locations may improve survey efficiency (Longino and Colwell 1997).  For example, seining may 

be preferable to electrofishing if species of concern are likely present (Hubert 1996) or where 

conductivity is low, but electrofishing may prove preferable in other locations.  Additionally, 



17 

 

sufficient sampling effort varies among sample locations (Angermeier and Smogor 1995, Patton 

et al. 2000) depending on local environmental conditions (Cam et al. 2002, Peterson et al. 2004, 

Rosenberger and Dunham 2005) and assemblage attributes such as species prevalence and 

detectability (Boulinier et al. 1998).  Selecting the most appropriate sampling and analytical 

method(s) remain important topics for further research.  Regardless of sampling method, 

metadata should be recorded to assist in estimation of the likelihood of errors of sampling 

omission.   

Sampling Simulations 

Sampling simulations can be used to assess sampling sufficiency but the results are 

limited by the attributes of the data used.  Although sampling simulations make no SR or 

distribution assumptions (Hellman and Fowler 1999), care should be taken to ensure that 

sufficient data are available to provide reliable results (Smith and van Belle 1984, Keating et al. 

1998, Bunge and Fitzpatrick 1993).  The minimum sample size of 30 that I used is specific to 

these assemblages and data.  For example, Moreno and Halffter (2000) used 14 samples to assess 

the completeness of bat (Order Chiroptera) inventories, de Solla et al. (2005) used 50 samples to 

calculate sufficient sampling effort for frogs (Order Anura), Angermeier and Smogor (1995) used 

a minimum of 17 contiguous mesohabitat units to estimate sufficient sampling effort to describe 

local stream fish assemblages, and Patton et al. (2000) used 16 contiguous samples for similar 

analyses of stream fish assemblages.  Many small regions lack sufficient data to conduct reliable 

or informative sampling simulations.  The sufficiency of the data for these analyses should be 

assessed prior to using the simulation results to direct sampling or to assess sampling sufficiency.  

Comparing the similarity of sampling simulation results for several analyses that exclude portions 

of the available data can provide a simple assessment of data sufficiency.  If omission of a small 

portion of the data from an analysis has a large effect on the results, the data are likely 

insufficient for reliable sampling simulations.   

The mathematical function and statistic(s) used in simulations should be selected to meet 

study objectives.  Poor fitting functions bias results (Flather 1996, Diaz-Frances and Soberon 

2005) and impede comparisons.  Adequately fitting a single function to several distributions is 

challenging (Flather 1996, Thompson et al. 2003), but necessary for comparisons.  With 

appropriate data, the slope (b) of the simulation results indexes species discontinuity (Flather 

1996).  When calculating and comparing b among studies the negative binomial function (Efron 

and Thisted 1976) may be preferred because it is more commonly used.  The data used for these 

analyses were not appropriate for comparisons of b as a measure of species discontinuity (Flather 
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1996, Angermeier et al. 2002) because samples were not random.  However, b can be used to 

compare the rates of information accrual (Table 1.1, Figure 1.6).   

The sampling sufficiency statistic should also be selected to meet study objectives.  The 

statistic N95 is the mean number of samples required to collect 95% of the species estimated to be 

collected in the region with a very large number of additional samples collected using the same 

methods, equipment, and sampling strategy.  The definition of the statistic varies if the sample 

attributes differ from those described.  If samples are randomly distributed and the sampling 

method is unbiased among species (always an invalid assumption), N95 describes the mean 

number of samples required to collect 95% of the species present in the region.  My selection of 

N95 was somewhat arbitrary and alternative statistics can be selected if lower or higher accuracy 

is desired.  Moreno and Halffter (2000) used N90 to assess sampling sufficiency for relatively 

common bats, whereas Cao et al. (2001) recommend further development of sample similarity 

statistics.  Measures of sample similarity may prove less useful for large-scale surveys where 

species discontinuity is expected to be common (Angermeier et al. 2002).   

Acceptable survey variability should be considered when selecting a sampling sufficiency 

statistic.  Bootstrap confidence bounds describe the expected variability in the proportion of SR 

sampled at particular sampling efforts (Figure 1.4).  Statistics such as N90 may prescribe smaller 

recommended sample sizes on average than N95, but may have greater variability. A stringent 

statistic and small bootstrap confidence bounds should be selected when accurate description of 

species richness (reliable collection of rare species) is desired.  Alternatively, if the intended uses 

of survey results are multivariate analyses that ignore or discount rare species (Gauch 1982), less 

stringent statistics that require fewer samples may be preferred.   

Sampling Sufficiency Assessment 

Additional sampling is needed to adequately describe stream fish assemblages in most 

large regions of VA.  Many fishes are likely present in regions where they have not been recorded 

and the fish assemblage has not been described at all in many environmental configurations (e.g., 

stream reach types).  This paucity of information obscures ecological patterns, thwarts accurate 

prediction of occurrence, and precludes management certainty.  Sufficient sampling at very large 

spatial extents (e.g., D and D-P in this study) is common (Conner and McCoy 1979, Palmer 

1990), but does not ensure sufficient sampling at smaller extents where most management and 

conservation efforts occur.  Sampling sufficiency must be addressed for the region(s) and scales 

of interest because species-habitat relationships, the relative importance of environmental 

predictors of species occurrence (Leftwich et al. 1997, Guisan and Zimmerman 2000), and the 

distribution and abundance species (Murray et al. 1999) all vary among regions and scales (Weins 
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1989, 2002, Figure 1.6).  For most regions, additional sampling will likely collect species not 

currently known to be present (Keating et al 1998).  This tendency is exacerbated by 

introductions and invasions of new species.  In particular, additional samples will likely collect 

additional species in most SD and SD-P.  For example, the Buffalo SD of the James D is 

insufficiently sampled and the bootstrap confidence bounds are large (Figure 1.4), indicating that 

additional samples will likely collect additional species and improve confidence in the sufficiency 

of sampling effort.  Additionally, insufficient sampling exacerbates the problem of confidently 

asserting species absence.  Species richness estimates vary even with large sample sizes, 

demonstrating that sampling frequently fails to collect species where they are present.  

Confidently asserting species absence might require additional sampling beyond that sufficient to 

describe SR. 

Prohibitively large N95 may necessitate survey prioritization and coordination at 

appropriate spatial scales.  It is not necessary to sufficiently sample all constituent sub-regions to 

sufficiently sample the composite region they form.  Prioritization of surveys of constituent sub-

regions can be coordinated with a survey of the composite region to ensure sufficient sampling of 

the regions and scales where survey data are most needed.  For example, it may be necessary to 

sufficiently sample those relatively small regions (e.g., SD) where human impacts and associated 

changes in local assemblage composition are most likely and sufficiently sample the composite 

region (e.g., D) that provides a context for assessing changes in local assemblages.   

Predicting Sufficient Sampling Effort 

Survey planning and prioritization would be facilitated by accurate prediction of N95 

based on environmental conditions.  However, the effects of environmental conditions on N95 are 

complex and vary among scales, precluding the accurate prediction of N95.  Regional and local 

processes regulate SR (Ricklefs 1987, Ricklefs and Schluter 1993, Angermeier and Winston 

1998).  Large-scale processes such as speciation and dispersal provide the regional species pool 

from which local assemblages are derived.  Within regions most species occur along limited 

portions of environmental gradients (Schlosser 1982, Moyle and Vondracek 1985).  Local habitat 

conditions, disturbance regimes, and species interactions control the distribution of individual 

species and determine the local species assemblage (Angermeier and Schlosser 1989, Schlosser 

1991).  The low proportion of variance in N95 explained by RD precludes precise prediction of 

N95, especially at small spatial extents.  However, the effects of assemblage structure on N95 may 

provide guidance for improving sampling efficiency.   

Regions with high SR can have many unique local assemblages and require more effort 

to sample sufficiently than depauperate assemblages simply because more local assemblage 
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compositions are possible.  For example, the higher SR of the Appomattox SD (SR = 75) relative 

to that of the Buffalo SD (SR = 62) may account for some of the difference in N95 between the 

two regions (Figures 1.4 and 1.5).  However, variation in SR is not necessary for differences in 

sample composition to affect N95.  The Buffalo SD and Rivanna SD have identical observed SR, 

but the relatively small proportion of common species in the Buffalo SD relative to the Rivanna 

SD (Table 1.1, Figure 1.6) requires twice the effort to sufficiently sample the Buffalo SD (Table 

1.1, Figures 1.4).    

The effect of SR on N95 is usually dominated by species prevalence (i.e., rarity, Table 

1.2).  If individual samples sufficiently describe the local assemblage, discontinuously distributed 

species and unique local assemblage compositions will not substantially affect N95 because most 

samples have a similar species composition, unless many species are rare.  For example, although 

the Chickahominy SD and Appomattox SD have similar SR, the low mean prevalence and high 

proportion of rare species of the Chickahominy, (mean prevalence = 0.11 and 43% rare) 

compared to the Appomattox SD (mean prevalence = 0.20 and 25% rare) require much larger N95 

(Table 1.2, Figure 1.6).  Additionally, the strength of the correlations between environmental and 

assemblage attributes are expected to vary with the scale of analysis (Levin 1992).  The complex 

interactions between environmental conditions and species distributions make accurate prediction 

of N95 unlikely.   

Prediction of N95 is further complicated by variability in estimates of N95 due to non-

standardized sampling.  Sampling efficiency varies among sites with different assemblages and 

environmental conditions (Angermeier and Smogor 1995, Peterson et al. 2004, Rosenberger and 

Dunham 2005) and when different methods and equipment are used (Hubert 1996).  Among 

regions, differences in environmental conditions that affect sampling efficiency can require 

different sampling effort, even when the assemblages are similar.  Furthermore, N95 estimates are 

also affected by the spatial distribution of samples.  Nonrandom and non-standardized sampling 

likely increase the variability of estimates of N95 by underestimating N95 in regions where some 

rare species are not sampled and overestimating N95 in regions where rare species are frequently 

sampled.  For example, while the Buffalo SD, Rivanna SD, Chickahominy SD, and Appomattox 

SD have similar SR and assemblage compositions (Figure 1.6) they have substantially different 

N95.  Differences in N95 may be due to sampling errors, how the species are distributed in space, 

and/or how samples are distributed in space, but the available data do not allow examination of 

the relative importance of these effects. 

Finally, variation among regions in the ecological significance of the attributes used to 

describe environmental conditions can confound prediction of sampling sufficiency.  
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Classification systems can be useful for describing the environmental heterogeneity of aquatic 

systems (Rosgen 1994, Montgomery and Buffington 1998, Higgins et al. 2005).  However, 

because the classes are based on subjective criteria, many classes may be ecologically 

meaningless (Goodwin 1999, Poole et al. 1997) to one or more of the species in the assemblage.  

Using ecologically meaningless reach types weakens correlations between environmental 

heterogeneity and N95.  Well-designed large-scale surveys and careful selection of predictors may 

improve estimates of N95, but estimation of N95 using sampling simulations concurrently with 

sampling are necessary to accurately assess sampling sufficiency.   

Assessing Sampling Strategies 

The locations of samples in space and omission errors dramatically affect N95.  Their 

relative importance for improving sampling efficiency should be explored further.  Sampling 

simulations can identify sampling strategies that improve sampling efficiency without the cost of 

collecting additional field data (Dale et al. 1991, Hirzel and Guisan 2002).  Spatially realistic 

simulations should provide useful results because sampling simulations are not immune to 

outliers (Smith 1998) or biased data.  Spatially proximate locations usually have similar 

assemblages within a region (Angermeier and Winston 1999, Angermeier et al. 2002).  That is, 

assemblage composition is usually spatially autocorrelated (Legendre 1993).  Thus, spatially 

clustered samples inefficiently sample assemblages in large region by collecting many similar 

samples and a few rare species, thereby inflating estimates of N95.  Sampling strategies that more 

evenly distribute samples in space increase the rate of information accrual and reduce N95.  

Researchers should be encouraged to coordinate sampling efforts to improve the distribution of 

samples in space and maximize the usefulness of all data.  Survey planning tools that promote 

efficient representative sampling are available (Stevens and Olsen 2004) and their use should be 

encouraged.  Spatially representative sampling would dramatically reduce the sampling effort 

required to describe the fish assemblage for most regions of VA.  However, thorough samples 

with few errors of omission are necessary.   

Omission errors also inflate estimates of N95.  The length of stream to sample to reduce 

errors of omission has been studied in several locations (e.g., Lyons 1992, Angermeier and 

Smogor 1995, Paller 1995, Simonson and Lyons 1995, Patton et al. 2000).  More extensive 

samples typically have fewer omission errors, but collecting extensive samples may reduce the 

number of samples that can be collected.  The relative importance of reducing errors of omission 

versus increasing sample size will vary with the study objectives.  However, local sampling 

sufficiency should be encouraged to reduce omission errors.  Metadata describing sampling effort 
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should also be collected to allow subsequent assessment of local sampling sufficiency and 

omission errors to facilitate survey planning (Peterson and Dunham 2002).   

 

CONCLUSIONS 

Survey data are vital to management and research.  Insufficient sampling is common and 

provides weak inferences and predictions, whereas excessive sampling diverts resources from 

other worthy projects.  The development and application of methods to predict sufficient 

sampling effort and to assess the sufficiency of sampling are increasingly important as the scale 

of survey efforts and the importance of results increase.  Sampling simulations using found data 

are useful for assessing sampling sufficiency and estimating required sampling effort.  However, 

inappropriate sampling methods and failure to accurately report data and metadata limit the 

usefulness of most found samples.  These shortcomings are easily rectified in future surveys, but 

common reporting standards are necessary.   

The effort required to sufficiently sample a region varies with the survey objectives and 

analytical methods used, but generally acceptable and easily interpretable descriptive statistics 

can be used to guide survey efforts.  The stream fish assemblages of most large regions of VA 

have not been sufficiently sampled.  Many samples have been collected in most regions, but 

additional samples will likely produce additional species.  Estimates of sufficient sample effort 

are large for most regions at all spatial extents of analysis.  However, using found data likely 

overestimates sufficient sampling effort due to errors of sampling omission and spatially clustered 

samples.  Reducing errors of sampling omission and improving sample coverage of the range of 

environmental variability can reduce the number of samples required to sufficiently sample large 

regions.   

Required sampling effort usually increases with a region’s spatial extent and 

environmental heterogeneity.  However, precise estimation of required sampling effort using 

environmental descriptors is precluded by variability in the relationships between environmental 

attributes and required sampling effort among spatial extents and regions.  Surveys should be 

designed and sampling sufficiency should be assessed at spatial extents that are ecologically 

meaningful and relevant to management and conservation.  Hydrologic unit and physiographic 

boundaries can be used to identify such regions, among which important assemblage attributes 

such as species occurrence patterns and prevalence differ.  The proportion of species that are rare 

primarily drives the required sampling effort.  However, the prevalence of most species varies 

among regions and scales. Many species that are rare in some regions are common in others.  

Additionally, because many samples are not representative, it is difficult to determine whether 
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rare species preferentially use rare environmental conditions.  Prediction of sampling errors will 

likely remain elusive, but well planned and coordinated sampling can improve survey efficiency.   

Limited resources typically necessitate survey prioritization.  Prioritization can be 

facilitated by using estimates of sufficient sampling calculated from found data and modeled 

assemblages.  Representative sampling and reduced errors of sampling omission can improve 

survey efficiency, but it is not possible to attribute the additional needed effort to each type of 

error.   
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  Table 1.1. Survey region name, USGS hydrologic unit code (HUC), available number of samples (N), estimated sufficient sample size (N95), 

slope of the results of sampling simulations (b), observed species richness (SR obs.), estimated species richness (SR est.), percent of species that 

are rare (%Rare; species in ≤ 5% of samples), reach diversity (RD; number of reach types), and percent of reach types sampled (%RD) for 84 

regions at four spatial scales in Virginia where sampling sufficiency assessments were performed.   

                    

Survey Region Name  HUC  N  N95  b  SR obs.  SR est.  %Rare  RD  %RD  

                    

Drainage 

Potomac  020700  282  160  0.071  79  80  41  151  34  

Rappahannock  020801  184  95  0.107  72  71  32  102  29  

York  020801  150  75  0.130  66  65  29  74  22  

James  020802  820  225  0.080  99  97  36  225  44  

Roanoke  030101  580  275  0.044  91  90  51  183  42  

Chowan  030102  303  124  0.095  85  83  34  100  35  

New  050500  177  165  0.089  69  68  35  74  35  

Big Sandy  050702  68  48  0.139  42  43  24  16  75  

Holston  060101  176  131  0.079  82  83  44  50  42  

Clinch  060102  226  203  0.070  91  89  37  66  52  

                    

Drainage-Physiography 

Potomac-Piedmont  020700  131  105  0.117  63  62  33  96  34  

Potomac-Ridge and Valley  020700  101  102  0.130  57  59  33  78  24  

Rappahannock-Coastal Plain  020801  79  69  0.099  49  49  33  43  16  

Rappahannock-Piedmont  020801  94  70  0.141  60  60  32  87  30  

York-Coastal Plain  020801  80  91  0.093  52  50  35  48  17  

York-Piedmont  020801  70  56  0.171  59  58  19  63  21  

James-Coastal Plain  020802  218  248  0.080  67  66  39  57  25  

James-Piedmont  020802  383  227  0.091  88  85  36  134  40  

James-Blue Ridge  020802  29  29  0.291  46  45  9  83  17  
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  Table 1.1. Continued.                      

                    

Survey Region Name  HUC  N  N95  b  SR obs.  SR est.  %Rare  RD  %RD  

                    

Drainage-Physiography 

James-Ridge and Valley  020802  190  105  0.120  62  62  31  104  37  

Roanoke-Piedmont  030101  397  245  0.052  87  85  48  163  41  

Roanoke-Blue Ridge  030101  94  85  0.138  58  57  31  79  37  

Roanoke-Ridge and Valley  030101  89  96  0.139  52  53  29  61  38  

Chowan-Coastal Plain  030102  158  146  0.071  75  73  41  55  29  

Chowan-Piedmont  030103  145  136  0.104  75  74  33  86  28  

New-Blue Ridge  050500  70  58  0.209  52  51  21  49  18  

New-Ridge and Valley  050500  107  171  0.102  62  60  31  70  33  

Big Sandy-Cumberland Plateau  050702  65  48  0.140  42  43  24  16  75  

Clinch-Ridge and Valley  060102  154  135  0.080  87  86  37  57  53  

Clinch-Cumberland Plateau  060102  72  101  0.121  76  73  28  48  60  

                    

Subdrainage 

South Fork Shenandoah  02070005  64  59  0.186  50  50  28  8  25  

North Fork Shenandoah  02070006  30  19  0.165  38  50  0  54  22  

Middle Potomac-Catoctin  02070008  54  43  0.356  45  45  16  100  26  

Middle Potomac-Anacostia-Occoquan  02070010  79  84  0.158  52  51  27  75  32  

Rapidan-Upper Rappahannock  02080103  83  43  0.221  49  48  18  88  28  

Lower Rappahannock  02080104  101  138  0.072  66  64  39  45  24  

Mattoponi  02080105  56  56  0.164  57  55  21  55  13  

Pamunkey  02080106  89  57  0.145  64  63  22  67  21  

Cowpasture  02080201  190  97  0.132  62  61  26  106  38  

Buffalo  02080203  90  107  0.124  62  61  27  114  23  
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  Table 1.1. Continued.                      

                    

Survey Region Name  HUC  N  N95  b  SR obs.  SR est.  %Rare  RD  %RD  

                    

Subdrainage 

Rivanna  02080204  90  53  0.268  62  62  15  76  22  

Tuckahoe  02080205  53  133  0.182  63  59  22  65  15  

Chickahominy  02080206  291  406  0.064  70  68  43  47  43  

Appomattox  02080207  122  95  0.142  75  74  25  87  38  

Upper Roanoke  03010101  313  230  0.066  69  69  45  118  44  

Upper Dan  03010103  142  224  0.074  58  56  41  93  42  

Lower Dan  03010104  34  33  0.182  57  56  5  78  22  

Nottoway  03010201  125  92  0.096  77  75  30  83  27  

Blackwater  03010202  81  104  0.097  53  54  30  36  25  

Meherrin  03010204  81  65  0.165  69  69  28  71  27  

Upper New  05050001  113  84  0.150  60  58  25  63  32  

Middle New  05050002  64  119  0.140  54  52  26  58  26  

North Fork Holston  06010101  94  118  0.158  67  66  27  45  36  

South Fork Holston  06010102  82  81  0.108  65  65  32  41  39  

Upper Clinch  06010205  194  179  0.069  91  90  40  59  51  

Powell  06010206  32  43  0.246  61  59  13  50  54  

                    

Subdrainage-Physiography 

South Fork Shenandoah-Ridge and Valley  02070005  51  66  0.205  48  47  23  6  33  

North Fork Shenandoah-Ridge and Valley  02070006  30  18  0.560  38  38  0  54  22  

Middle Potomac-Catoctin-Piedmont  02070008  48  39  0.293  45  44  16  86  27  

Middle Potomac-Anacostia-Occoquan-Piedmont  02070010  65  77  0.190  44  43  23  74  31  

Rapidan-Upper Rappahannock-Piedmont  02080103  72  41  0.252  49  48  16  81  27  
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  Table 1.1. Continued.                      

                    

Survey Region Name  HUC  N  N95  b  SR obs.  SR est.  %Rare  RD  %RD  

                    

Subdrainage-Physiography 

Mattoponi-Coastal Plain  02080105  35  46  0.105  44  44  11  43  5  

Pamunkey-Coastal Plain  02080106  40  50  0.101  45  45  33  35  14  

Pamunkey-Piedmont  02080106  49  45  0.206  55  54  18  59  20  

Cowpasture-Ridge and Valley  02080201  174  95  0.123  62  61  29  92  39  

Buffalo-Piedmont  02080203  85  116  0.130  62  60  29  96  24  

Rivana-Piedmont  02080204  48  48  0.082  61  60  13  68  25  

Tuckahoe-Piedmont  02080205  53  133  0.180  63  60  22  65  15  

Chickahominy-Coastal Plain  02080206  212  190  0.087  65  64  37  43  33  

Chickahominy-Piedmont  02080206  80  111  0.082  51  51  41  30  37  

Appamattox-Piedmont  02080207  117  89  0.150  72  71  26  85  39  

Upper Roanoke-Piedmont  03010101  138  135  0.069  59  59  42  95  36  

Upper Roanoke-Blue Ridge  03010101  86  73  0.151  56  56  21  77  38  

Middle Roanoke-Piedmont  03010102  57  57  0.147  72  71  26  95  23  

Lower Rappahannock-Piedmont  03010103  134  194  0.078  57  55  40  89  43  

Lower Dan-Piedmont  03010104  34  31  0.182  57  56  5  78  22  

Nottoway-Coastal Plain  03010201  51  67  0.124  66  64  21  46  20  

Blackwater-Piedmont  03010201  74  98  0.109  68  66  31  71  20  

Meherrin-Piedmont  3010204  71  71  0.152  65  66  28  64  30  

Upper New-Ridge and Valley  05050001  43  68  0.173  50  48  24  54  28  

Middle New-Ridge and Valley  05050002  64  102  0.140  54  52  26  58  26  

Upper Levisa-Cumberland Plateau  05070202  60  54  0.139  41  41  24  16  75  

Upper Clinch-Ridge and Valley  06010205  138  155  0.078  87  86  38  49  59  

Upper Clinch-Cumberland Plateau  06010205  56  91  0.135  74  71  31  42  38  
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  Table 1.2.  Spearman correlation coefficients and p-values that are bootstrap-adjusted for multiple comparisons between mean number of samples 

needed to collect 95% of estimated species richness (N95), area, number of reach types (RD), percent of RD sampled (%RD), observed species 

richness (SR), and percent of species that are rare (% Rare) in 10 drainages (D), 20 drainage-physiographies (D-P), 26 subdrainages (SD) and 28 

subdrainage-physiographies (SD-P) in Virginia.   

  N95  Area  RD  % RD  SR  N95  Area  RD  % RD  SR 

                     
D  SD 

                     
Area  0.842          0.328         

  0.002          0.101         

                     
RD  0.608  0.681        0.049  0.422       

  0.062  0.030        0.814  0.032       

                     
% RD  0.321  0.321  -0.261      0.339  0.151  0.080     

  0.366  0.366  0.466      0.089  0.460  0.698     

                     
SR  0.821  0.736  0.549  0.334    0.510  0.284  0.048  0.387   

  0.004  0.015  0.100  0.345    0.008  0.159  0.816  0.051   

                     
% Rare  0.733  0.624  0.340  0.188  0.681  0.775  0.344  -0.115  0.486  0.514 

  0.016  0.054  0.336  0.603  0.030  <0.001  0.086  0.575  0.012  0.007 

                     
D-P  SD-P 

Area  0.631          0.267         

  0.003          0.169         

                     
RD  0.381  0.525        0.110  0.569       

  0.098  0.017        0.576  0.002       

                     
% RD  0.317  0.066  0.175      0.446  0.062  0.026     

  0.174  0.782  0.462      0.017  0.754  0.893     

                     
SR  0.820  0.538  0.436  0.470    0.517  0.348  0.256  0.141   

  <0.001  0.014  0.055  0.036    0.005  0.069  0.188  0.475   

                     
% Rare  0.781  0.482  0.213  0.104  0.625  0.802  0.178  -0.005  0.491  0.438 

  <0.001  0.031  0.368  0.663  0.003  <0.001  0.365  0.981  0.008  0.020 
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  Figure 1.1.  Major drainages (USGS 6-digit hydrologic units, bold outline) and subdrainages  

(USGS 8-digit hydrologic units) in Virginia (A).  Intersections of major drainages with the 

physiographic provinces in Virginia (B).    
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  Figure 1.2.  Location of the upper Tennessee River basin in the United States and the 5 major 

tributaries and 3 physiographic provinces of the upper Tennessee River basin.   
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  Figure 1.3.  Locations of the 2,966 stream fish assemblage samples used in sampling simulations 

relative to drainages, subdrainages, and physiographic provinces in Virginia.       
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  Figure 1.4.  Sampling simulation results for four subdrainages of the James River drainage in 

Virginia.  Values of the ordinate are the mean proportion of the estimated species richness 

collected in 10,000 sample iterations at the sample size on the abscissa.  Error bars are 95% 

bootstrap confidence bounds.  The number of samples, observed species richness, slope of the 

simulation results (b) and N95 are provided for comparison.  The dashed line is at N95.   

0.0

0.2

0.4

0.6

0.8

1.0

0 50 100 150 200 250 300

P
ro

p
o
rt

io
n

 o
f 

S
p

e
c
ie

s

0.0

0.2

0.4

0.6

0.8

1.0

0 50 100 150 200 250 300

P
ro

p
o
rt

io
n

 o
f 

S
p

e
c
ie

s

0.0

0.2

0.4

0.6

0.8

1.0

0 50 100 150 200 250 300

P
ro

p
o
rt

io
n

 o
f 

S
p

e
c
ie

s

0.0

0.2

0.4

0.6

0.8

1.0

0 50 100 150 200 250 300

P
ro

p
o
rt

io
n

 o
f 

S
p

e
c
ie

s
James drainage 

Buffalo 

HUC 02080203 

90 samples, 62 species 

b = 0.124, N95 = 107 

James drainage 

Rivanna 

HUC 02080204 

90 samples, 62 species 

b = 0.268, N95 = 53 

James drainage 

Chickahominy 

HUC 02080206 

291 samples, 70 species 

b = 0.064, N95 = 406 

James drainage 

Appomattox 

HUC 02080207 

122 samples, 75 species 

b = 0.142, N95 = 95 

 

Cumulative Samples 



 38 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

B

H

C

M

A

M

R

D

B

T

O

S

C

O

S

J

O

D

F

A

D

F

A

F

S

M

B

R

Y

D

B

L

G

R

F

S

S

N

S

N

H

S

L

G

D

W

H

S

B

U

C

M

R

D

C

E

S

S

W

S

B

K

D

C

R

C

B

L

J

R

O

D

L

F

D

L

M

B

R

O

B

M

T

S

S

B

D

P

R

P

P

K

S

R

Y

S

C

Y

S

L

O

G

S

I

D

Y

E

B

G

O

R

G

S

F

C

H

P

S

P

S

C

C

S

C

R

S

R

R

C

S

H

R

G

L

D

C

A

P

M

O

F

B

L

M

B

R

T

C

U

M

M

M

S

Q

U

B

T

P

M

W

A

M

B

R

B

C

C

F

F

C

F

G

O

S

S

P

B

T

E

D

W

C

F

S
p
e
c
ie

s 
P

re
v
a
le

n
c
e

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

M

A

M

S

N

S

R

D

B

B

H

C

C

O

S

J

O

D

B

L

G

F

A

D

F

A

F

S

W

S

T

O

S

W

H

S

S

M

B

G

L

D

N

H

S

R

F

S

L

M

B

R

Y

S

S

P

S

S

B

D

R

O

B

L

G

D

P

K

S

C

Y

S

B

K

D

G

S

F

R

O

D

R

Y

D

B

U

C

Y

E

B

B

L

C

B

L

J

R

R

C

B

L

M

C

U

M

R

D

E

C

C

F

G

O

R

L

F

D

M

R

D

C

H

P

C

R

C

P

R

P

S

I

D

C

E

S

L

O

G

C

C

S

S

H

R

T

L

S

W

A

M

W

H

C

W

C

F

B

K

T

B

L

S

B

R

B

E

S

M

G

O

S

M

T

S

Q

U

B

S

P

B

S

E

L

S

B

D

S
p

ec
ie

s 
P

re
v

al
en

ce

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

B

L

G

P

K

S

P

R

P

C

C

S

L

M

B

G

O

S

T

E

D

C

H

P

C

C

F

Y

E

B

E

A

M

G

Z

S

W

H

P

W

A

M

B

L

S

R

D

B

S

P

S

Y

E

P

B

R

B

M

O

F

W

C

F

F

L

R

B

L

C

R

D

E

C

A

P

C

R

C

B

O

W

T

P

M

L

B

L

M

A

M

M

U

S

S

N

S

T

H

S

B

C

F

B

H

C

B

K

D

E

S

M

S

W

D

F

A

F

R

C

S

S

W

S

L

O

G

R

Y

D

C

Y

S

J

O

D

R

F

P

S

W

F

B

U

C

S

B

D

S

P

B

B

D

S

M

R

D

W

H

S

A

B

L

B

R

S

C

O

S

F

A

D

G

O

F

G

O

R

L

G

D

Q

U

B

R

Y

S

S

I

D

B

R

S

F

A

D

G

O

F

L

G

D

N

H

S

Q

U

B

R

Y

S

S
p

ec
ie

s 
P

re
v

al
en

ce

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

B

H

C

J

O

D

B

L

G

P

R

P

R

D

B

M

A

M

F

A

D

W

H

S

F

A

F

P

K

S

R

Y

D

T

O

S

C

R

C

S

N

S

M

R

D

C

O

S

S

W

S

W

T

S

R

F

S

S

B

D

B

K

D

C

C

S

C

H

P

C

E

S

G

L

D

W

A

M

E

S

M

N

H

S

L

M

B

Y

E

B

B

R

B

G

O

S

R

D

E

T

E

D

B

L

C

S

I

D

B

L

S

C

R

S

C

U

M

S

T

B

E

A

M

S

M

B

S

P

B

L

F

D

C

Y

S

G

Z

S

L

G

D

F

L

R

R

R

C

R

E

S

Y

E

P

M

O

F

W

H

P

C

A

P

F

H

M

C

C

F

S

P

S

W

C

F

S

W

D

G

S

F

B

L

H

L

O

G

M

U

S

B

C

F

B

L

B

B

U

C

L

B

L

R

Y

S

B

O

W

B

R

S

S

H

R

W

H

C

Q

U

B

T

H

S

T

P

M

S
p
e
c
ie

s 
P

re
v
a
le

n
c
e

 
 

 

 

 

 

  Figure 1.5.  Relative prevalence of fish species collected in four subdrainages in the James River 

drainage in Virginia.  Sample sizes, species richness, slope of the sampling simulation curve (b) 

and estimate of the number of samples required to collect 95% of the species are provided for 

comparison.  Three letter codes based on species common names are provided.   

 

James drainage 

Buffalo River 

HUC 02080203 

90 samples, 62 species 

b = 0.124, N95 = 107 

James drainage 

Appomattox River 

HUC 02080207 

122 samples, 75 species 

b = 0.142, N95 = 95 

James drainage 

Chickahominy River 

HUC 02080203 

291 samples, 70 species 

b = 0.064, N95 = 406 

James drainage 

Rivanna River 

HUC 02080204 

90 samples, 62 species 

b = 0.268, N95 = 53 
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  Figure 1.6.  Sampling simulation results for A) empirical sample locations and empirical 

occurrence data (N95 = 880), B) empirical sample locations and predicted occurrence data (N95 = 

815), C) random samples and predicted occurrence data (N95 = 142), and D) random balanced 

samples and predicted occurrence data (N95 = 138), for ≤ 524 samples from the upper Tennessee 

River basin.  One trial was conducted for simulations A and B.  Ten trials were conducted for 

simulations C and D and the mean results are shown.  For all simulations 95% bootstrap 

confidence bounds were calculated using 10,000 sampling iterations at each sample size.  The 

confidence bounds overlap for all simulations at all sample sizes.  For clarity only confidence 

bounds for simulation A are shown.  Dashed line is at 95% of known species richness and can be 

used to estimate N95.   
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Chapter 2.  Using remotely sensed data to predict occurrence of fish species in stream 

reaches of Virginia: a comparison of modeling methods.   

 

INTRODUCTION 

Effective management and conservation of biota is often constrained by inadequate 

knowledge of species locations.  Conducting complete censuses to describe species locations is 

rarely possible, particularly for rare or cryptic species that occur over a large spatial extent, which 

necessitates sampling and using models that predict their occurrence.  Limited knowledge of 

species distributions and the need to make management and conservation decisions at fine spatial 

grains and across large spatial extents make predicting species occurrence at fine spatial grains 

and large spatial extents desirable.  Predictions of stream fish occurrence can be used to identify 

sites to study species’ habitats (e.g., instream flow incremental methodology, Bovee 1982), 

prioritize sampling, and identify spatial gaps in species protection (e.g., gap analyses, Scott et al. 

1993).  Unfortunately, protocols for predicting the occurrence of stream fish are poorly developed 

and comparisons of the results of alternative methods are infrequently described, especially at the 

large spatial extents and fine spatial grains that facilitate management and conservation.   

To be useful for guiding other work, comparison of modeling methods should provide 

information that describes the effects of common challenges to predicting species occurrence and 

suggest means of addressing those challenges.  Common challenges include the need to make 

predictions at large spatial extents and fine spatial grains to make the predictions useful for 

management and conservation, and the subsequent necessities of using remotely sensed data to 

predict species occurrence because they are often the only data available that describe 

environmental conditions across large spatial extents, and using multipurpose species occurrence 

data (i.e., found data, Cairns and Pratt 1986) because sampling across large spatial extents is often 

logistically infeasible.  Also, many projects need to predict the occurrence of several species that 

have different prevalence in the region.  Predicting the occurrence of many species in several 

regions can be logistically taxing and scientists need to account for the effect of species 

prevalence when predicting species occurrence (Manel et al. 2001).   

The spatial extent and grain at which predictions of species occurrences are made affect 

the usefulness of the predictions.  Predictions of species occurrence should be made at 

ecologically meaningful spatial extents and grains.  Prediction extent may coincide with 

ecological boundaries [e.g., ecoregions (Omernik 1987) or drainages (Angermeier and Winston 

1999)] that affect species occurrence patterns.  Fortunately, ecologically meaningful spatial 

extents for predicting fish occurrence are identifiable.  Angermeier and Winston (1999) found 
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statistically significant differences in fish community composition and the identity of 

environmental factors that regulate stream fish occurrence among major river drainages and 

regions defined by the intersection of a drainage and a physiographic province (D-P) in Virginia.  

Leftwich et al. (1997) and Rosenberger (2002) found that the identity of significant predictors of 

fish occurrence did not transfer across such regional boundaries and Osborne and Suarez-Seoane 

(2002) found that geographic partitioning of modeling efforts produced better predictions than 

global models.  Such findings indicate that the spatial extent of predictions of occurrence should 

be limited to regions that share structure and function.  That is, model predictions are most 

accurate where the correlation matrix of predictors and species occurrence is homogeneous, and 

D-P provide useful, easily identifiable approximations of such regions. 

Predictions of species occurrence should also be made at a spatial grain that allows 

meaningful interpretation of differences in predicted probability of occurrence among prediction 

units.  Prediction grain is frequently based on the grain of sampling of prediction data or chosen 

arbitrarily.  For example, remotely sensed data are often available at large extents and fine grains 

(e.g., 10-m elevation pixels) allowing precise predictions of plant occurrence (Miller 1986).  

However, it is unlikely that fishes respond to many predictors described at such fine grains.  For 

example, while it is possible to predict occurrence based on the elevation of a 10-m-long portion 

of stream, it is likely that other habitat conditions at that location (e.g., whether it is a pool or 

riffle) are more important than elevation relative to the surrounding 10-m sections of stream.   

Many stream fish modeling efforts predict occurrence at the spatial grain of stream 

reaches and watersheds.  These are the two largest units described by Frissell et al. (1986), who 

refer to them as stream segments and basins, respectively.  A reach (10
1
 to 10

3
 m) is a contiguous 

array of mesohabitat units (e.g., pools and riffles) bounded by geomorphic or hydrologic 

discontinuities.  A watershed (10
6
 to 10

8
 m

2
) is a network of reaches including the contributing 

land with a single outflow (Angermeier et al. 2002).  Fish species occurrence is commonly 

predicted at the reach and watershed grains using descriptors of these geomorphic units (e.g., 

Reiman and McIntyre 1995, Kruse et al. 1997, Mastririllo et al. 1997, Reyjol et al. 2001, Porter et 

al. 2000).  Many stream fishes also complete much of their life cycles within a single reach or 

watershed, making them meaningful units for prediction.   

The need to make predictions for large extents at fine grains limits the quantity and 

quality of data commonly available for use in prediction exercises.  Managers need protocols to 

make the best use of such data and examples of prediction performance to guide expectations.  

Predictor variables (i.e., independent variables) are commonly limited to those that can be 

procured via remote sensing or derived from maps.  Such predictors allow prediction in regions 
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and at sites where little or no sampling has been conducted.  However, remotely sensed data are 

currently limited primarily to geological, geomorphological, and land cover descriptors that are 

frequently correlated because of functional interactions and shared descriptive units (Legendre 

1993).  For example, watershed shape, drainage density and stream size are commonly used to 

describe streams, and all can be estimated using watershed area (Knighton 1993).  Another 

common predictor variable, land cover, can be estimated from measures of slope, elevation and 

geology (Newson 1992).  Multipurpose species occurrence data (Cairns and Pratt 1986, see 

Ponder et al. 2001) are often the only occurrence data available for model building and 

evaluation.  Because such data are collected for a variety of reasons, samples may cover only a 

portion of the range of environmental variability of the region and be non-randomly distributed 

through space.  Furthermore, not all samples may have the same probability of collecting all 

species in the sampled region due to differences in sampling effort (Angermeier and Smogor 

1995) or sampling efficiency (Peterson and Rabeni 1995, Bayley and Peterson 2001).  Greater 

confidence should be given to records of presence than to absences (Angermeier et al. 2002).  I 

describe variation in the performance of prediction procedures due to the limitations of available 

data.   

Many non-statistical and statistical methods are used to predict species occurrence (see 

Scott et al. 2002 for examples).  Each procedure has assumptions and attributes that affect its 

suitability for a specific project, given the qualities of the available data.  Unfortunately, protocols 

for predicting occurrence are poorly developed and few comparisons of the utility of available 

procedures are available (Guisan and Zimmerman 2000).  I compare the utility of some 

commonly used approaches, each with different assumptions and limitations, among regions and 

species with different data qualities, to help elucidate effective protocols for predicting species 

occurrence.   

In lieu of statistical procedures, descriptions of environmental conditions at sites of 

known species presence are often used to predict occurrence.  Stream classification procedures 

(SC) are non-statistical abstract summary representations (Goodwin 1999) that are an alternative 

to statistical prediction methods when species are rare or sampling is inadequate.  Descriptors 

(i.e., predictors) are binned and combinations of descriptors are used to produce stream reach 

classes.  The presence of a species in a reach class is used to predict its occurrence in other 

locations of that reach class.  For example, the South Dakota aquatic gap analysis 

(http://wfs.sdstate.edu/sdgap/aquaticgap.htm) uses SC to predict fish occurrences in 11-digit 

United States Geological Survey (USGS) Hydrologic Units (HU, http://nhd.usgs.gov) and 

individual reaches at the state extent.  Stream classification can describe stream reaches using 

http://wfs.sdstate.edu/sdgap/aquaticgap.htm
http://nhd.usgs.gov/
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remotely sensed data and taxonomic reference books (e.g., Freshwater Fishes of Virginia, Jenkins 

and Burkhead 1993) often provide predictor information.  Stream classifications are free of 

statistical assumptions, but they can be especially sensitive to the interaction of sampling 

sufficiency and classification complexity.  Also, the necessarily arbitrary construction of SC 

makes assessing their prediction accuracy difficult and potentially tautological.  Therefore, SC are 

incommensurate with the other procedures, but are discussed below because they are commonly 

used.   

The failure of data to meet the statistical assumptions of prediction methods is often 

referenced as a cause of poor model performance and is an impetus for the development of 

alternative methods for prediction.  Many (parametric) methods used to predict species 

occurrence assume identical and independently distributed errors and linear relationships between 

the predictors and the dependent variable.  For example some models based on linear 

discriminant function analysis (DFA) have these assumptions.  Linear discriminant analyses are 

also constrained to using continuous predictors.  Generalized linear models (GLM, e.g., logistic 

regression) can use continuous or categorical predictors, but are susceptible to overfitting (see 

below).  Methods less constrained by such assumptions, such as classification trees (TRE, 

Breiman et al. 1984) and artificial neural networks (ANN, Lek and Guegan 1999), appear to be 

very promising alternatives to parametric approaches and have been used to predict fish 

occurrence in rivers (Mastririllo et al. 1997, Reyjol et al. 2001) and lakes (Brosse et al. 1999, 

Olden and Jackson 2001).   Classification trees and ANN compare favorably to parametric 

methods in the few comparisons that have been conducted (e.g., Mannel et al. 1999a, 1999b, 

Olden and Jackson 2002a).  However, these methods may have attributes that limit their utility in 

some instances and further comparisons are warranted.   

How a prediction method is built and applied can affect prediction performance.  The 

prediction performance of some methods, such as GLM, can be affected by using critical values 

that account for species prevalence.  Also, relations between species occurrence and habitat 

descriptions (i.e., independent variables) can be complex (Jackson et al. 2001).  Poor model 

performance often promotes the use of additional predictors to better describe the suitability of 

habitat.  Few assessments of the effects of using alternative critical values or increasing model 

complexity on prediction performance are available.   

The high rates of imperilment of aquatic species, including fishes (Etnier 1997), have 

prompted efforts to predict fish occurrence (e.g., aquatic gap analyses), and provide incentive to 

establish protocols that will promote efficiency, accuracy and communication of results.  

Predicting fish occurrence provides an excellent opportunity to compare predictive methods and 
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develop such protocols because stream fish sampling methods are well-developed (Angermeier 

and Smogor 1995, Peterson and Rabeni 1995) promoting confidence in the data used to build and 

assess models.  Additionally, understanding the sources and severity of sampling errors allows 

better interpretation and implementation of model results.   

Virginia provides exceptional opportunities to compare methods of predicting species 

occurrence.  With nearly 200 species of native freshwater fishes (Jenkins and Burkhead 1993) 

there is ample opportunity to compare procedures among species with a variety of ecological 

attributes and distribution patterns.  The exceptional diversity of stream fishes in Virginia is 

largely due to the existence of 11 major drainages and 5 physiographic provinces within the state 

(Figure 2.1).  These geographic units provide easily identified, ecologically meaningful prediction 

extents that provide a basis for comparing modeling procedure prediction accuracy through space.  

Virginia’s stream fishes have been extensively sampled and the Virginia Department of Game 

and Inland Fisheries maintains an online database, the Virginia Fish and Wildlife Information 

Service (VAFWIS, http://128.173.240.58/build02/fwis/default.asp), providing access to many 

georeferenced fish samples so that sample size alone should not limit the predictive utility of 

procedures.  High species richness and high environmental heterogeneity likely requires the 

building of many models to predict the occurrence of all stream fishes throughout the state, 

promoting the elucidation of protocols for efficiently and accurately predicting fish occurrence.   

My goal is to compare the utility of 5 methods of predicting stream fish occurrence at 

large spatial extents and fine spatial grains using remotely sensed predictors describing streams 

and their watersheds and multipurpose species occurrence data.  Specific objectives include 1) 

comparing the effort (time) required to build predictive models, 2) assessing the effect of sample 

location on the usefulness of stream classification models 3) assessing the effect of critical value 

selection on prediction accuracy, 4) comparing the accuracy of the statistical prediction methods, 

and 5) assessing the effect of model complexity on prediction accuracy.     

 Comparison of methods for predicting species occurrence for a number of disparate 

species, in environmentally distinct regions, using data of varying qualities should provide a 

robust comparison.  Previous comparisons, while laudable, may be of limited generality due to 

the use of a single prediction region or species.  Comparisons among multiple species and regions 

should make these analyses useful to those working on a range of prediction problems.  

Additionally, the comparison of methods for predicting stream fish occurrence at a fine spatial 

grain allows investigation of the constraints of model complexity and arbitrary critical value 

selection on prediction success and model resolution.  These issues are commonly confronted in 

http://128.173.240.58/build02/fwis/default.asp
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prediction problems, but they are infrequently investigated or discussed.  Doing so will aid in the 

development of generally applicable protocols for predicting species occurrence.   

   

METHODS 

Region and Species Selection 

To promote the generality of results, 7 species from each of 3 drainage-physiography 

combinations in Virginia were selected as focal species.  Eighteen species were selected from 10 

genera in 5 families to ensure coverage of a range of ecological attributes and prevalence (i.e., 

percent of samples in which a species occurs).  Drainages are 6-digit USGS hydrologic units 

(Seaber et al. 1987) and physiographic provinces follow those of Jenkins and Burkhead (1993) 

and are similar to the ecoregions of Omernik (1987, Figure 2.1).  Drainage-physiography 

combinations were selected as regions of analysis because community composition and factors 

regulating species distributions vary among them (Angermeier and Winston 1998, 1999) and 

model accuracy can be improved by building unique models for a species among regions with 

different characteristics (Osborne and Suarez-Seoane 2002, Stockwell and Peterson 2002).  The 

Holston-Ridge and Valley (HN-RV), Roanoke-Piedmont (RN-PD) and James-Coastal Plain (JM-

CP) were selected because they differ in species composition and habitat types, and each region 

has many usable assemblage samples (N = 138, 262 and 80 respectively).    

Species occurrence records were procured from the VAFWIS.  This database includes 

georeferenced collection records and species occurrence records from collection permit reports, 

scientific reports, and citizen reports.  Errors of sampling omission (i.e., false absence) are likely 

in these data and may be due to failure to sample the appropriate spatial or temporal strata, 

inadequate sampling effort, or ineffective or inappropriate methods (Angermeier et al. 2002).  

Errors of sampling commission (false presence) are less likely, but may occur due to species 

misidentification.  Measures of prediction performance include proportion of correct occurrence 

predictions [sensitivity (SE)], proportion of correct absence predictions [specificity (SP)], and 

proportion of total correct classifications (CC).  Errors of sampling omission affect model 

performance by erroneously deflating SE and inflating SP.  The effect of sampling omission 

errors is most pronounced for rare species (low prevalence).   

Omitting from model building those samples that likely had high rates of sampling 

omission minimized the effect of sampling errors on model performance.  This was accomplished 

by selecting samples that appeared to provide relatively complete species lists of the local 

assemblage.  Such assemblage samples were selected for these analyses because building DFA, 

GLM, TRE and ANN require information on both presence and absence of species.  Samples 
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were included if they recorded > 2 species, recorded ≥ 1 non-game species, and had reliable 

location information (i.e., plotted within 50 m of a stream reach).  When possible, the sample 

collector and collection methods used were identified to ensure adequate sampling.  When 

multiple samples of a reach were available the most recent sample was used.  Samples were 

collected from 1965 to 1998.  

The USGS National Hydrology Dataset (NHD, USGS 2000) 1:100,000-scale stream 

reach files were used to define streams.  Reaches were identified using the unique code assigned 

by the NHD. The NHD defined reaches based on the location of confluences, major changes in 

stream gradient and changes in channel type (e.g., natural or channelized).   When identifiable, 

samples from non-wadeable rivers were omitted from analyses because they were not comparable 

due to expected differences in species catchability and the sampling gear used (Hubert 1996).   

Variable Selection 

Easily procurable data and easily calculable predictors were selected to promote 

generality of model predictions.  Elevation data from the National Elevation Dataset (NED, 

USGS 2000) were used to delineate the contributing watershed for each reach, and to calculate 

elevation and slope variables.  Median watershed aspect, mean watershed elevation, drainage 

area, drainage density (cumulative stream length / watershed area), mean stream slope, and shape 

parameter (elongation ratio, Schumm 1956) were calculated to describe the contributing 

watershed for each reach.  Strahler stream order (Strahler 1957), mean elevation, and stream 

slope were used to describe reaches.  Calculations were made using ARC/INFO 8.0.2 

(Environmental Systems Research Institute, Inc.).   

Because species samples were collected over a long time period (33 y), temporally 

variable predictors (e.g., land cover) may have changed between the time of species sampling and 

the time of predictor measurement, confounding prediction.  Use of temporally stable predictors 

may promote accurate prediction and limit unwarranted inferences.  Predictor data from each of 

the 3 aforementioned regions were assessed for outliers, collinearity, and normality.  Because 

remotely sensed predictors were used, data for the entire region, including sites with and without 

fish samples were assessed.  Predictor characteristics and interactions were assessed with 

scatterplots, Spearman correlation matrices, and principal components analysis.  These analyses 

were used to determine which variable(s) should be removed to reduce multicollinearity for DFA.  

Outliers were identified and suitable transformations were applied to reduce heteroscedasticity 

and improve normality for DFA and GLM.   
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Modeling Methods 

Five methods were selected for comparison; stream classification (SC), linear 

discriminant function analysis (DFA), generalized linear model (i.e, logistic regression, GLM), 

classification tree (TRE), and artificial neural network (ANN).  Stream classification was selected 

because it is analogous to the methods commonly used for terrestrial gap analyses (Scott et al. 

1993).  The SC was developed by using combinations of 3 classes each of reach elevation and 

reach slope, 4 classes of watershed aspect, and 7 Strahler stream orders.  Elevation and slope 

categories were defined using 33- and 66-percentiles of the values for all reaches in Virginia.  

This provided high (H), medium (M) and low (L) classes for these variables.  Aspect classes 

reflected north (N), south (S), east (E) and west (W) flowing watersheds.  Reaches of Strahler 

orders 1 through 7 were used, although predictions were made only for stream order < 6 (i.e., 

wadeable streams).   

Discriminant function analysis, GLM, and TRE were selected because they are 

commonly used to predict species occurrence (Manel et al. 1999a, 1999b, Olden and Jackson 

2002a).  Artificial neural networks were selected because they are capable of modeling complex 

nonlinear interactions that may be present (Judd 1990).  The DFA models were built using Proc 

Discrim with the cross-validate option in SAS 8.0.2 (SAS Institute).  The GLM and ANN were 

built using NevProp 4.0, an unsupported freeware version of a feed-forward back-propagation 

algorithm capable of multiple architectures.  Model structure varied substantially among 

modeling methods.  GLM were built with no hidden layers and no interaction or nonlinear terms.  

GLM were also built with SAS 8.0.2 and compared to those trained using NevProp 4.0 to ensure 

results similar to those obtained with common statistical packages.  The two forms of GLM 

produced nearly identical results.   

Artificial neural networks are statistical methods of exploring a response (error) surface, 

patterned after biological neural networks.  The architecture of ANN commonly includes 3 layers, 

an input layer of predictor nodes, a layer of hidden nodes that are activated or inactivated 

depending on the weight they acquire during training, and an output layer of predictions (Figure 

2.2).  In feed-forward networks the signal is transmitted only from the input layer, through the 

hidden layer to the output layer.  Back-propagation is an algorithm used to train the model by 

iteratively, through a number of training epochs, identifying gradients along the error surface.  

The error surface is explored by the ANN in a series of steps, the size of which are referred to as 

the learning rate.  The optimal number of hidden nodes, learning rate, and number of epochs were 

determined empirically as the values that maximize prediction accuracy with minimal 

complexity.   
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ANN were built with a fully connected single hidden layer.  I compared models built with 

1 to 9 hidden nodes to determine empirically the optimal number of nodes in the hidden layer 

(i.e., the number after which additional nodes do not improve prediction performance).  A 

maximum of 5000 and a minimum of 100 training epochs were used to train each model.  

Bootstrapping with a 50% holdout was used to promote generality of the final model and guard 

against overfitting (Caruana et al. 2000).  Learning rate was adjusted and early stopping based on 

preliminary cross-validation was used to minimize overtraining (Caruana et al. 2000).  Detailed 

descriptions of feed-forward single-hidden-layer ANN in similar applications are provided in 

Mastrorillo et al. (1997), Brosse et al. (1999), Lek and Guegan (1999), Manel et al. (1999b), 

Reyjol et al. (2001), and Olden and Jackson (2002b).   

Models were built following standard heuristic model building practices, including 

building and comparing multiple models where necessary and appropriate.  Initially, a complex 

model was built using all possible predictors.  The statistical significance of individual predictors 

was assessed.  Statistically significant predictors were used to build parsimonious models and 

their predictions were compared to the complex models.  The ability of each method to accurately 

predict the presence of rare species was a primary concern for this comparison.  Therefore, 

critical values for classification of predicted occurrence were set at the species’ prevalence to 

weight results and reduce errors of omission.  Confusion matrices represents instances in a 

predicted class by columns and instances in the actual class by rows, allowing the easy 

identification of misclassification (Fielding and Bell 1997).  I created confusion matrices for each 

model and used them to select the final model for each method, species, and region for further 

comparisons among methods.  Final models were the complex or parsimonious model that best 

predicted occurrence for each method, species and region.  Model predictions were mapped using 

a geographic information system (GIS, ArcView 8.0, Environmental Systems Research Institute, 

Inc.), and visually compared to available records of species’ presence.   

Model Evaluation 

Modeling Effort 

Model building effort was measured by the cumulative processing time required to 

determine and fit the final model used for prediction.  Because building multiple models was 

frequently required prior to the final model fitting, presented results may be overestimates, but the 

relative effort required by each method is informative.  Effort required by the model building 

process to create 105 final models (5 model types for each of 7 species in each of 3 regions) was 

compared.   
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Sample Location  

Stream classification accuracy was assessed using proportion of stream classes sampled 

by the available species occurrence data and predictive omission error rate.  The proportions of 

stream classes sampled in each region were recorded.  A low proportion of stream classes 

sampled indicates insufficient sampling and/or an overly complex classification system.  The 

presence of many unsampled stream classes also promotes the use of methods to extrapolate 

predictions of occurrence among unsampled classes.  SC assumes that classes occupied by a 

species describe the species’ habitat and that other sampled instances of those classes should 

include the species.  Creating a confusion matrix for a SC is problematic because the relative 

value of presence and absence information is uncertain.  Sampled classes where a species is not 

found may be assumed to predict absence, but not all classes may have been sampled and 

extrapolation of SC results to unsampled classes is not reliable.  Therefore, the utility of SC was 

assessed using the total predictive omission error for all stream classes occupied by a species.  

The spatial allocation of samples was also visually assessed by plotting them in a GIS (ArcView 

8.0, Environmental Systems Research Institute, Inc.). 

Critical Value Selection 

Statistical models used to predict species occurrence often provide a predicted probability 

of occurrence.  Predicted probabilities of occurrence > 0.5 usually indicate presence, whereas 

those < 0.5 usually indicate absence.  The value used, commonly 0.5, is referred to as a critical 

value.  Because SE, SP and CC are systematically affected by species prevalence (Guisan and 

Zimmermann 2000, Manel et al. 2001, Olden et al. 2002), an alternative (to 0.5) critical value for 

indicating presence is needed to allow for meaningful model comparison.   I used the prevalence 

of each species in the collection data for a region as the critical value, assigning presence when 

the model predicted the probability of presence ≥ the species prevalence in the region.  The effect 

of using prevalence as the critical value on prediction performance was examined using linear 

regression and plots of SE, SP and CC at observed values of prevalence for each modeling 

method.    

Prediction Performance 

Olden et al. (2002) recommend using cross-validation methods to assess model 

performance.  Cross-validation was used to calculate SE, SP, and CC for DFA, GLM, TRE, and 

ANN models.  Prediction performance of model types was assessed using the Kappa statistic 

(Abramowitz and Stegun 1972, Titus et al. 1984).  The number and identity of species for which a 

method produced statistically significant predictions were recorded.  Within each region 

differences among statistical methods in prediction performance measured by SE, SP, and CC 



 50 

were assessed using analysis of variance (ANOVA).  When appropriate, a leave-one-out 

bootstrap test was used to adjust critical values for multiple ANOVA tests.  The effect of species 

prevalence on prediction performance was assessed using linear regression.  Predicted patterns of 

species presence were also assessed by comparing them to known presences that were not used to 

build models.  Species samples used for this assessment were not suitable for model building 

because they likely had many errors of sampling omission.  However, the additional information 

they provide on species presence warrants their use.   

Model Complexity  

Model overfitting occurs when predictors included in a model are allowed to fit (account 

for) statistical noise in the dependent variable; in other words, too many predictor variables are 

used.  The effects of overfitting are infrequently explored, but potentially important.  Model 

overfitting can inflate measures of prediction performance unless prediction performance is 

evaluated with an independent dataset.  Model overtraining with ANN is similar to overfitting in 

that extraneous interaction and nonlinearity terms are allowed to fit statistical noise in the 

dependent variable.  Hereafter overfitting and overtraining are referred to as overfitting.  Model 

overfitting is assumed not to be a problem with DFA or TRE, but it is commonly avoided when 

using GLM (e.g., Burnham and Anderson 1998).  Overfitting is infrequently considered a 

problem with ANN because measures are commonly taken to prevent it (e.g., early stopping, 

adjusting learning rates, and/or bootstrapping or cross-validation, Bishop 1995), thereby ensuring 

statistically valid models.  The effect of model overfitting was assessed by building 

“parsimonious” DFA, GLM, TRE and ANN using only predictors found to be significant (odds 

ratio > 1.0) in “complex” models based on either GLM or ANN.  Prediction performance was 

compared between complex and parsimonious models for 7 species in the JM-CP by comparing 

mean SE, SP, and CC values.   

 

RESULTS 

Variable Selection 

As expected, all predictor variables were substantially correlated with at least one other 

predictor, portending difficulties with collinearity (Table 2.1).  The strength of correlations varied 

among regions.  In the HN-RV and JM-CP Strahler stream order is strongly positively correlated 

with watershed area.  In the RN-PD and JM-CP reach elevation was strongly positively correlated 

with reach slope, mean watershed elevation and mean watershed slope; mean watershed elevation 

was strongly positively correlated with mean watershed slope.  In the RN-PD mean watershed 
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area was strongly negatively correlated with drainage density.  The HN-RV had fewer 

correlations with absolute values > 0.7 than the RN-PD and JM-CP.   

PCA was used to identify sources of variation among stream reaches and regions.  PCA 

results show differences in the correlative structure of predictors among regions (Table 2.2).  

PCA axes 1, 2 and 3 had eigenvalues > 1 for the HN-RV and RN-PD, whereas only PCA axes 1 

and 2 were important in describing the JM-CP.  The proportion of variability explained by PCA 

axes and the identity of important components (i.e., predictors) varied among regions (Table 2.2), 

indicating that the usefulness of predictors may vary among regions.  In the HN-RV the first 

principal component primarily describes reach elevation, watershed area and watershed shape.  In 

the RN-PD the first principal component describes reach elevation, watershed elevation and 

watershed slope.  In the JM-CP, Strahler stream order, watershed elevation, watershed area and 

watershed slope dominate the first principal component (Table 2.2).  These descriptions of the 

correlation of predictors were used to interpret the results of model predictions.  Predictors were 

not removed from further analyses because there was no information that described which 

predictors would prove most useful for predicting species occurrence.   

Model Evaluation and Comparison 

Modeling Effort   

There were substantial differences in the required processing time among methods.  

Processing time was trivial for individual SC, DFA, GLM and TRE.  All four methods took only 

seconds of processing time.  Mean processing time for ANN was 18.5 h (range 1.5 – 42.0 h), 

substantially longer than any other method.  Building multiple models for each species and region 

was required as part of the modeling process for each method.  Cumulative processing time to 

produce final models was also similar among most methods.  Multiple models were not built 

using SC, because little a priori habitat preference information was available for the modeled 

species.  Adjusting SC to minimize error for each species would have been more time consuming 

than any other method.  Cumulative processing time was relatively short for DFA and TRE, 

rarely requiring more than 4 models to identify a best model for a species.   Cumulative 

processing time was relatively high for GLM, frequently requiring building and comparison of 

more than 6 models to identify a best model.  Cumulative processing time was considerably 

higher for ANN than for any other method, always requiring more than 10 models to select a best 

model.   

Sample Location   

SC was inadequate for most species and regions due to inadequate sampling and 

uninformative classes.  Only, 28 of 50, 67 of 163 and 48 of 57 stream classes were sampled in the 
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HN-RV, RN-PD and JM-CP, respectively.  The mean percentage of stream classes sampled was 

low (mean 55.8; standard deviation 24.6) but higher than the average for 11 similar regions in 

Virginia (mean 38.0; standard deviation 15.3), indicating that additional samples will frequently 

be required to produce a useful SC.  Omission error of SC, the percentage of sampled classes in 

which a species was predicted to be present but was not found, was high and variable (mean 51.7 

%; standard deviation 24.2) for the 3 regions.  Omission error also varied among regions.  Mean 

omission error was 64.2% (standard deviation 20.8) for the HN-RV, 63.0% (standard deviation 

63.0) for the RN-PD, and 27.8% (standard deviation 11.9) for the JM-CP.   

Critical Value Selection   

Species’ prevalence (the percent of samples in which the species was present) ranged 

from 2.3 to 76.7 (mean = 22.9, standard deviation = 20.3, Table 2.3).  Therefore, selection of 

critical values had a large effect on measures of model accuracy.  Use of 0.5 as a critical value 

frequently produced SE values of zero for rare species for all but the ANN results.  The use of 

prevalence as critical values allowed comparison of SE, SP and CC, primarily by increasing SE at 

the expense of a small decrease in CC.  For example, longhead darter (Percina macrocephala) 

occurred in only 2.2% of samples from the HN-RV.  Use of 0.5 as a critical value resulted in SE 

of 0.0, 3.3, 0.0 and 3.3 and SP of 88.4, 91.5, 100.0, and 100.0 for DFA, GLM, TRE and ANN, 

respectively.  Use of its prevalence (0.02) as a critical value changed SE to 66.7, 100.0, 0.0, and 

100.0, while changing SP to 82.2, 88.1, 68.5, 97.8 and 98.5 (Table 2.3).   

Adjustment of critical values did not remove all effects of prevalence on prediction 

performance.  Linear regressions of prediction performance versus prevalence indicate 

differences in the effect of prevalence among methods and regions (Table 2.4).  Regression 

analyses within regions found 7 significant negative relations and 1 significant positive relation 

between prediction performance and prevalence.  Only TRE had a significant positive relation 

between SE and prevalence.  Across all regions CC was significantly negatively related to 

prevalence for all methods, but significant relations between SE (positive) and SP (negative) with 

prevalence were found only for TRE.  A positive relation between prediction performance and 

prevalence indicates that higher prevalence improves prediction accuracy measured by the 

statistic.  The effect of prevalence on prediction performance, while frequently statistically 

significant, was usually small subsequent to adjustment of critical values.  The exception to this 

pattern was for TRE, because TRE had difficulty predicting the occurrence of most rare species 

(Table 2.3).  The use of prevalence as critical values allowed for the prediction of presence of rare 

species.  However, the presence and absence of common species was still predicted more 

accurately than that of rare species for all methods (Table 2.3).   
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Prediction Performance   

Prediction performance was relatively high for all methods (Table 2.5).  All methods 

(DFA, GLM, TRE and ANN) correctly predicted occurrence greater than expected by chance 

(Kappa p < 0.10) for most species (Table 2.3).  Calculation of Kappa for TRE models was not 

possible for 11 of 21 species-region combinations because the models did not correctly predict 

any presences.  A pattern of prediction error was common among regions for all measures (Table 

2.5).  Although statistical significance varied among regions, SE was always lowest for TRE, 

followed by DFA, GLM and ANN.  Similarly, SP and CC were always lowest for DFA followed 

by GLM, TRE and ANN.  Additionally, the accuracy of presence predictions was also assessed 

using ancillary presence data.  Species presence data were from single-species collections (e.g., 

museum collections, Shaffer et al. 1998 and Ponder et al. 2001) not suitable for model fitting.  

Species presence locations were plotted on maps and compared with predictions.  Similarly, SE 

of the best model for each species was further assessed by using such collections for the modeled 

species.  Overall, 78.4% of presences were correctly predicted.  Additionally, presence of rare 

species, herein those in < 10% of samples, were correctly predicted in 63.4% of samples.   

Model Complexity   

Many models were likely overfit.  However, paired t-tests of the difference in prediction 

accuracy between complex and parsimonious models for the JM-CP indicate that the complex 

GLM and ANN models provide significantly higher mean SE, SP and CC than the respective 

parsimonious models (Figure 2.3).  The only exception to this pattern was for TRE models, where 

parsimonious models produced higher SP than complex models, at the cost of greatly reduced SE.  

This consistent pattern of tradeoff between error types suggests that relations between prediction 

accuracy and model complexity may be due to differences in prediction resolution (how well the 

model can differentiate among prediction units) of model methods and the resulting differences in 

how the methods allocate errors.  For example, methods might differ in how well they can 

differentiate among prediction units (e.g., stream reaches) that have many similar attributes.  A 

method that has low resolution will predict similar probabilities of occurrence for reaches that 

have several similar attributes (predictors), but that may differ in one or more attributes that affect 

a species occurrence.   

Because predictors are spatially correlated, predictions may also be spatially correlated 

and fail to differentiate among spatially proximate reaches.  That is, prediction resolution may 

vary among modeling methods and this may affect prediction accuracy.  To assess this variation, 

maps were generated in ArcView 8.0 using results from each modeling method.  Examining the 

discontinuity of presence predictions visually assessed prediction resolution.  That is, the lengths 
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of contiguous reaches with predictions of species presence were visually assessed.  Increasing 

model complexity usually increased prediction resolution for all methods, but often did not 

substantially improve prediction accuracy.   

 

DISCUSSION 

The management of species and assemblages requires dependable knowledge of their 

locations, and large-scale surveys can rarely provide sufficient sampling to delimit species’ 

occurrences. The effect of insufficient sampling is particularly problematic when species 

occurrence is discontinuous, because managers may need to delimit presence and absence rather 

than only the extent of occurrence (Angermeier et al. 2002).  Fortunately, sample sizes required to 

build accurate models can be surprisingly small (Stockwell and Peterson 2002) and dependable 

knowledge of species locations can be obtained from predictive models that can be built with 

multipurpose data (e.g., Bozek and Hubert 1992, Mastrorillo et al. 1997, Rahel and Nibbelink 

1999, Filipe et al. 2002).  A scientific and management conundrum is the need to predict the 

occurrence of rare species (Rabinowitz 1981, Bevill and Louda 1999), whose low prevalence 

make model building and model assessment difficult (Karl et al. 2000).  Protocols for selecting 

modeling methods and applying modeling results are not well developed, especially for rare 

species.   

Variable Selection and Assessment 

Data quality (e.g., location and abundance of samples and number and quality of 

predictors) can constrain the utility of prediction methods and the predictions themselves 

(Peterson and Cohoon 1999).  Using multipurpose species occurrence data (Cairns and Pratt 

1986, Ponder et al. 2001) is often a prerequisite for obtaining the required spatial coverage of 

predictor variables for studies conducted at large spatial extents, which makes data quality 

problematic.  My data are from large heterogeneous regions with recognized boundaries, distinct 

faunas (Angermeier and Winston 1999), and substantial differences in prevalence of shared 

species.  These circumstances suggest model interpretation will likely prove unfruitful and model 

transfer ineffective.  Individual models need to be built for each species in each region to 

accurately predict occurrence.  This is a likely scenario for most large-scale studies where 

biologically meaningful boundaries are crossed (Allen et al. 1984, Wiens et al. 1985, Kotlier and 

Wiens 1990, Townsend 1996).  At large spatial extents only indirect distal gradients (Austin 

2002), with remote linkages to the mechanisms affecting occurrence, are available as predictor 

variables (Naiman et al. 1992).  Interpretations of predictor variable importance should be made 

cautiously and expectations for prediction performance should be reasonable.  Fortunately, such 
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predictors often prove adequate (Bozek and Hubert 1992, Rahel and Nibbelink 1999, Filipe et al. 

2002) for building static models of species occurrence (Guisan and Zimmermann 2000).  Higher 

resolution predictor variable with more-direct linkages to the mechanisms affecting occurrence 

might improve prediction performance, but should not be assumed.   

Model Evaluation and Comparison 

Modeling Effort 

The effort (time) required to build a model becomes increasingly important as the number 

of models to be built mounts.  For example, more than 4,000 models are required to predict the 

occurrence of each native stream fish species in each region (i.e., drainage-physiography 

combination) in which it is known to occur in Virginia.  Building more models may be required 

since the modeling process often includes building and evaluating several models prior to 

selecting a final model (Loehle 1983, Hilborn and Mangel 1997, and Starfield 1997, Anderson et 

al. 2000).  SC, DFA, GLM, and TRE required very little computing time (< 10 min), whereas 

ANN required a mean of approximately 18.5 h of computing time.  The apparently excessive time 

required to build ANN may preclude their frequent use in favor of faster methods.  The use of 

bootstrapping to estimate variable importance in the ANN (Olden and Jackson 2001, 2002b) is 

optional and its omission can substantially reduce computing time, but at the cost of reduced 

interpretability.  Selecting among DFA, GLM, and TRE as a preferred prediction method is best 

accomplished by comparing prediction performance rather than modeling effort.   

Sample Location 

Sample coverage of the full range of environmental variability is desirable for all 

modeling methods (Nicholls 1989, Leftwich et al. 1997) and is particularly important for SC.  

The only data quality assumptions of SC are correct occurrence data (common to all methods) 

and sufficient sampling to cover the range of important (i.e., useful) variable combinations.  The 

low proportions of stream classes sampled in the data used here indicate that SC is unsuitable for 

predicting fish occurrence.  Although frequently applied in terrestrial studies (Scott et al. 1993), 

SC does not allow prediction of occurrence in unsampled classes.  Given the number and location 

of samples, greater sample coverage of classes may be obtained by decreasing the number of 

stream classes, which decreases prediction resolution and increases trite predictions (Scott et al 

1996, Karl et al. 2000, Stockwell and Perterson 2002).  For example, given that all examples of a 

suitable class within a region will probably not be occupied, it is more informative if a species is 

sampled in 3 of 30 classes than if that species is found in 1 of 10 classes.  Although the 

proportion of classes occupied is identical in both classification schemes, the prediction 

resolution and the ability to differentiate among reaches is greater in the former, which allows 
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inferences regarding the importance of individual variables, and a more precise view of the 

species’ habitat and predicted distribution.   

Frequent omission errors confirm the poor performance of SC.  While there are many 

uses for SC systems (Naiman, et al. 1992, Goodwin 1999, Smith et al. 2002), methods that 

convert continuous data to categorical data to predict species occurrence share the problem of 

limited prediction and they should be used only when better options are not tractable.   

Critical Value Selection 

Low species prevalence is common (Gaston 1994, Gotelli and Graves 1996, Karl et al. 

2000) and methods of making better predictions of occurrence for rare species are needed.  

Among Virginia drainage-physiography regions a mean of 31.1% (range 8.7 – 48.3%) of native 

stream fishes are in ≤ 5% of samples.  Such a high proportion of species at low prevalence 

portend difficulty in accurate prediction of occurrence (Stockwell and Peterson 2002) and 

meaningful assessment of results.  Rare species are often excluded from analyses (e.g., Gauch 

1982, Karl et al. 2000, Oberdorff et al. 2000, Porter et al. 2000).  Exclusion is not an option for 

conservation-oriented studies where rare species are the focus (see Boone and Krohn 2000 and 

citations therein).  Varying the prediction critical value (i.e., cutoff value or decision threshold) 

from the standard 0.5 (e.g., Carroll et al. 1999, Porter et al. 2000, Olden and Jackson 2001) can 

adjust for the effect of prevalence on prediction accuracy by increasing sensitivity and decreasing 

specificity, thereby allowing comparison of results.  Because many of the species modeled here 

had low prevalence and sampling errors of omission were probably frequent, I used the species’ 

sample prevalence in the region as the critical value.  This adequately adjusted sensitivity, 

specificity and correct classification rates to allow comparison of methods (Fielding and Bell 

1997, Filipe et al. 2002).   

Adjustment of critical values for specific applications should be encouraged to enhance 

model utility.  For example, if a model is being applied to predict the occurrence of a common 

species, the locations of absence may be more interesting than the locations of presence.  A large 

critical value will decrease SE and increase SP, allowing more confident prediction of absence.  

Alternatively, misclassifying even a few presences may be a critical error in the management of 

rare species.  Using a small critical value to predict the occurrence of a rare species will increase 

SE at the cost of lower SP, which allows more confident identification of presence.  Critical 

values should be selected to make the best use of model predictions.   

Prediction Performance   

Empirical assessments (e.g., Lek  et al. 1996) are adding to our understanding of model 

performance, given data of various qualities, but results are variable and additional assessments 
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are warranted (Guisan and Zimmerman 2000).  Greater robustness to departures from 

assumptions and greater flexibility commonly allow ANN and TRE to outperform GLM and 

GLM to outperform DFA (Prager and Fabrizio 1990).  Generally, TRE perform better than GLM 

and DFA for common species, but TRE perform poorly for rare species.  For example, Olden and 

Jackson (2002a) found that TRE and ANN outperformed GLM and DFA at predicting fish 

species occurrence in lakes.  Similarly, Oakes et al. (2005) found that ANN generally performed 

better than TRE and DFA at predicting stream fish occurrence and Mastrorillo et al. (1997) found 

that ANN outperformed DFA in cases with nonlinearly related variables.  However, Manel et al. 

(1999a and 1999b) found conflicting results from similar comparisons and Moisen and Frescino 

(2002) found only small improvement over simple linear models by using complex, nonlinear 

models for predicting forest characteristics.  Multicollinearity and nonlinear predictor effects may 

be responsible for some of the reported differences in prediction accuracy among methods 

(Carroll et al. 1999), but how methods are applied and assessed may be as important as which 

method is used.     

Differences in findings among such comparisons may be due, in part, to differences in 

species prevalence and how it is addressed during model building and assessment.  Methods for 

assessing prediction performance should be improved, particularly for models that predict the 

occurrence of rare species.  Assessment of model prediction performance can be improved by 

using presence data not used (or suitable) for modeling to assess the accuracy of predictions of 

presence (i.e., SE), which is the most variable component of prediction error and arguably the 

most important accuracy metric for rare species.  Overall, my models correctly predicted 78.4% 

of presences from data not used for building these models.  Additionally, presence of rare species, 

herein those in < 10% of samples, were correctly predicted in 63.4% of samples.  For 

comparison, Olden and Jackson (2002) report mean cross-validation errors of SE = 63.5, SP = 

56.6, and CC = 63.4 for predicting fish occurrence in lakes, suggesting that my models performed 

similarly to other models and that ancillary data can be used to assess model predictions.   

Model Complexity   

Most of my models are likely overfit.  Overfitting is problematic when inferences are 

made regarding variable importance and the model is used in a region where it was not fit (i.e., 

transferred).  However, overfit models might provide useful predictions in the region for which it 

was fit.  Model parsimony is promoted to ease interpretation and enhance generality (i.e., transfer 

to other regions).  Interpretation of model parameters and model transfer are frequently 

unsuccessful and are not goals of this work, which reduces the imperative for parsimony.  

Overfitting may also hinder model comparisons by inflating measures of SE, SP and CC, but not 
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all methods are equally susceptible to overfitting.  Because discriminating between presence and 

absence sites was the use for these models, all predictors were used in all methods.  However, 

unusually high SE, SP, and CC values for GLM and ANN call into question comparisons of 

results.  This is a problem not directly addressed in other studies, where well fit models were 

assumed and possible due to high species prevalence and relatively large sample sizes (e.g., 

Manel et al. 1999a, 1999b).  Olden and Jackson (2002b) recognized similar issues of prevalence, 

but did not address them in detail.   

Effects of model overfitting are usually minimized by variable elimination.  My analysis 

of the effect of model complexity usually found 3 or fewer statistically significant predictors 

(odds ratio > 1.0) in the GLM and ANN models and 4 or fewer variables in the TRE models.  The 

identity of useful predictors varies among region and among species, inhibiting a priori predictor 

selection.  This is a common phenomenon and likely results from statistical artifacts related to 

insufficient sampling and species prevalence, multicollinearity of predictors, as well as from real 

differences in predictor importance among regions and species.  Exploratory analyses of the 

effects of model simplification to include only significant predictors indicate that simplification 

can substantially reduce SE, SP and CC (Figure 2.3).  Additionally, the prediction resolution is 

reduced.  That is, the less complex models do not differentiate among reaches that are 

environmentally similar and often spatially proximate because predictors are spatially 

autocorrelated and imprecise.  Statistically sound (i.e., well-fit) models may allow for simple 

assessment, but the utility of the model should not be sacrificed (Hakanson 1995).  Model 

complexity is not best chosen based only on currently measurable model performance (Dunbar 

1980, but see Anderson et al. 2000).  Rather, parsimony should be balanced with the ability of the 

model to differentiate among sites at the desired resolution.   

These analyses suggest that it may be useful to apply reasonably overfit models and 

adjusted critical values to specific prediction problems to make more useful predictions.  Overfit 

models may be able to differentiate among sites more readily than simple, statistically valid 

models.  Adjusted critical values can then be used to classify occurrence with the desired level of 

SE or SP.  However, care should be taken to avoid unwarranted inference from such statistically 

unsupported models.  I suggest that this is the default approach for rare species when non-

statistical models such as SC are used.  Managers and scientists often record copious information 

on the environmental attributes where rare species are present and then predict that similar habitat 

elsewhere may be suitable for the species, although such a complex model is not statistically 

supported.  Ensuring model utility at the expense of parsimony may be a preferred strategy 
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regardless of the method of prediction.  How the model is built and its predictions are applied 

may be more important to model utility than the selection of the method used.   

 

CONCLUSIONS 

This study was initiated to compare 5 common methods of predicting species occurrence.  

The purpose of the comparison was to select an efficient method of predicting stream fish 

occurrence using multipurpose species collections and easily procured, temporally stable stream 

descriptors.  Comparisons were based on the importance of the time required to build the models 

and model prediction accuracy.  Particular consideration was given to the ability of the methods 

to predict the occurrence of rare species, an often-avoided issue.  Predicting the occurrence of 

rare species is important because rarity is a common species attribute and models that predict the 

occurrence of rare species may be particularly valuable, but difficult to construct.   

Stream classification methods made poor use of available data and required excessively 

large numbers of samples to make predictions at a useful resolution.  Simplifying the SC by using 

fewer predictors or classes of predictors could reduce the sampling required, but the resulting SC 

might provide little discrimination ability and high prediction error rates.  Linear discriminant 

function analyses, generalized linear models, classification trees and artificial neural networks all 

provide useful predictions of occurrence and DFA, GLM and TRE required relatively little time 

to build compared to SC and ANN.  However, shortcomings were identified for each method.  

Linear discriminant function analyses cannot make use of all available (i.e., categorical) 

predictors and generally performed poorly compared to the other methods.  Generalized linear 

models performed well, but require sufficient sampling to avoid partial separation of species 

occurrences among predictors and were prone to overfitting.  Classification trees provided some 

accurate predictions, but were unable to predict presence accurately for rare species.  Excessive 

computing time, high sample size requirements, and the high degree of technical knowledge 

required makes the frequent use of ANN unlikely at present.  While rare or ubiquitous species are 

extremely susceptible to chance predictions (Olden and Jackson 2002a), my results indicate that it 

is possible to accurately predict the occurrence of rare species by using easily procured predictors 

in DFA, GLM and ANN models.   

Failure to find substantial and consistent differences in prediction success among 

methods using limited predictor data (i.e., simple models) suggests that species occurrence data 

and predictor data quantity and quality, rather than the statistical method used are the factors most 

responsible for the limited success of predicting species occurrence.  Differences in prediction 

success among methods with complex models suggest that it is possible to improve prediction 
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success with complex modeling methods if sufficient data are available.  However, the quantity 

and quality of data likely to be available may preclude the building of complex models, without 

encountering statistical difficulties such as overfitting.  Since effort may be negligible for many 

methods or situations, it is feasible to try different methods and use the one most effective in a 

given situation.   

While improper use of statistical methods is abhorrent in most situations, prediction at a 

useful spatial resolution may necessitate overfitting models and adjusting critical values to 

maximize sensitivity for rare species.  Model evaluation may also prove difficult due to low 

species prevalence.  The dearth of occurrence data for many species will likely be the limiting 

factor in predicting their occurrence.  Assessment of model predictions is problematic for many 

species, but better use can be made of available technology and data by invoking a little 

creativity.  When necessary, statistical assumptions and standard methodologies may be 

cautiously set aside in favor of greater utility, provided the model is not misapplied and 

interpretations of findings are cautious.  When species are rare or the study spatial extent is large, 

model complexity and concomitant overfitting may be a preferred alternative to statistically 

correct but uninformative models. Selection of critical values should be based on the desired 

balance of sensitivity versus specificity with the species’ prevalence and the model application in 

mind.  Predictions from complex models that make predictions at a fine grain with high resolution 

can be adjusted by altering critical values to more accurately depict what is known about species 

occurrence patterns.  The resulting predictions can be very useful and may serve as the basis for 

more accurate and statistically sound future models or for interim management actions.  

 

ACKNOWLEDGMENTS 

This work greatly benefited from the assistance of many people.  In particular I thank 

Laura Delarche Roghair and Scott Klopfer of the Conservation Management Institute at Virginia 

Tech for outstanding GIS assistance and James Peterson, Julian Olden, and Eric Smith for helpful 

statistical advice.  The Virginia Department of Game and Inland Fisheries funded this work.   

 

 



 61 

LITERATURE CITED 

 

Abramowitz, M. and I. A. Stegun.  1972.  Handbook of mathematical functions.  Dover 

Publications, Inc. New York. 

Allen, T. F. H., R. V. O'Neill, and T. W. Hoekstra.  1984.  Interlevel relations in ecological 

research and management: some working principles from hierarchy theory.  USDA Forest 

Service General Technical Report RM-110. 

Anderson, D. A., K. P. Burnham, W. L. Thompson.  2000.  Null hypothesis testing: problems, 

prevalence, and an alternative.  Journal of Wildlife Management  64(4): 912-923. 

Angermeier, P. L., K. L. Krueger, and C. A. Dolloff.  2002.  Discontinuity in stream-fish 

distributions: implications for assessing and predicting species occurrence.  Pages 519-527 in 

J. M. Scott et al., editors.  Predicting species occurrences: issues of accuracy and scale.  

Island Press, Washington D.C.   

Angermeier, P. L., and M. R. Winston.  1998.  Local vs. regional influences on local diversity in 

stream fish communities of Virginia.  Ecology  79: 911-927. 

Angermeier, P. L., and M. R. Winston.  1999.  Characterizing fish community diversity across 

Virginia landscapes: prerequisite for conservation.  Ecological Applications  9: 335-349. 

Angermeier, P. L., and R. A. Smogor.  1995.  Estimating number of species and relative 

abundances in stream-fish communities: effects of sampling effort and discontinuous spatial 

distributions.  Canadian Journal of Fisheries and Aquatic Sciences  52: 936-949. 

Austin, M. P.  2002.  Spatial prediction of species distribution: an interface between ecological 

theory and statistical modelling.  Ecological Modelling 157: 101-118. 

Bayley, P. B., and J. T. Peterson.  2001.  An approach to estimating probability of presence and 

richness of fish species.  Transactions of the American Fisheries Society  130: 620-633.  

Bevill R. L., and S. M. Louda.  1999.  Comparison of related rare and common species in the 

study of rare plants.  Conservation Biology  13(3): 493-498.   

Bishop, C. M.  1995.  Neural networks for pattern recognition.  Oxford University Press, Oxford.   

Boone, R. B. and W. B. Krohn.  2000.  Predicting broad-scale occurrences of vertebrates in 

patchy landscapes.  Landscape Ecology  15: 63-74.   

Bovee, K. D. 1982.  A guide to stream habitat analysis using the instream flow incremental 

methodology.  U.S. Fish and Wildlife Service, Instream Flow Information Paper 12 

FWS/OBS/82/86, Washington, D.C.  

Bozek, M. A., and W. A. Hubert.  1992.  Segregation of resident trout in streams as predicted by 

three habitat dimensions.  Canadian Journal of Zoology  70: 886-890. 

Breiman, L., J. H. Freidman, R. A. Olshen, and C. J. Stone.  1984.  Classification and regression 

trees. Wadsworth, Belmont, California, USA.   

Brosse, S., J. Guegan, J. Tourenq, and S. Lek.  1999.  The use of artificial neural networks to 

assess fish abundance and spatial occupancy in the littoral zone of a mesotrophic lake.  

Ecological Modelling  120: 299-311. 

Burnham, K. P., and D. R. Anderson.  1998. Model selection and inference: a practical 

information-theoretic approach.  Springer-Verlag, New York. 353 p. 

Cairns, J., Jr., and J. R. Pratt.  1986.  Developing a sampling strategy.  American Society for 

Testing and Materials 894: 168-186.   

Carroll, C., W. J. Zielinski, and R. F. Noss.  1999.  Using presence-absence data to build and test 

habitat models for the fisher in the Klamath region, U.S.A.  Conservation Biology  13: 1344-

1359. 

Caruana, R., S. Lawrence, and L. Giles.  2000.  Overfitting in neural nets: backpropagation, 

conjugate gradient, and early stopping.  Neural Information Processing Systems, Denver, 

Colorado.   



 62 

Dunbar, M. J.  1980.  The blunting of Occam's razor, or to hell with parsimony.  Canadian 

Journal of Zoology  58: 123-128. 

Etnier, D. A.  1997.  Jeapordized southeastern freshwater fishes: a search for causes.  In G. W. 

Benz and D. E. Collins, editors.  Aquatic fauna in peril: the southeastern perspective.  Special 

Publication 1, Southeastern Aquatic Research Institute, Lenz Design & Communications, 

Decatur, Georgia.   

Fielding, A. H. and J. F. Bell.  1997.  A review of methods for the assessment of prediction errors 

in conservation presence/absence models.  Environmental Conservation  24: 38-49. 

Filipe, A. F., I. G. Cowx, and M. J. Collares-Pereira.  2002.  Spatial modeling of freshwater fish 

in semi-arid river systems: a tool for conservation.  River Research and Applications 18: 123-

136. 

Frissell, C. A., W. J. Liss, C. E. Warren, and M. D. Hurley.  1986.  A hierarchical framework for 

stream habitat classification: viewing streams in a watershed context.  Environmental 

Management 10: 199-214.    

Gaston, K. J.  1994.  Rarity.  Chapman and Hall, London, U.K.   

Gauch, H. G.  1982.  Multivariate analysis in community ecology.  Cambridge University Press, 

Cambridge.   

Goodwin, C. N.  1999.  Fluvial classification: Neanderthal necessity or needless normalcy.  

Wildland Hydrology 229-236.   

Gotelli, N. J., and G. R. Graves.  1996.  Null models in ecology.  Smithsonian Institute Press, 

Washington, D.C.   

Guisan, A., and N. E. Zimmerman.  2000.  Predictive habitat distribution models in ecology.  

Ecological Modelling  135: 147-186. 

Hakanson, L.  1995.  Optimal size of predictive models.  Ecological Modelling  78(1995): 195-

204.   

Hilborn, R. and M. Mangel.  1997.  The ecological detective: confronting models with data.  

Princeton University Press, Princeton, New Jersy.     

Hubert, W. A.  1996.  Passive capture techniques.  Pages 157-192 in B. R. Murphy and D. W. 

Willis, editors.  Fisheries techniques, 2nd edition.  American Fisheries Society, Bethesda, 

Maryland.   

Jenkins, R. E., and N. M. Burkhead.  1993.  Freshwater fishes of Virginia.  American Fisheries 

Society, Bethesda, Maryland.   

Judd, S. J.  1990.  Neural network design and the complexity of learning.  MIT Press, Cambridge, 

Massachusetts. 

Karl, J. W., P. J. Heglund, E. O. Garton, J. M. Scott, N. M. Wright, and R. L. Hutto.  2000.  

Sensitivity of species-habitat relationship model performance to factors of scale.  Ecological 

Applications  10(6): 1690-1705. 

Knighton, D. 1993.  Fluvial forms and processes.  Routeledge, Chapman and Hall, New York. 

Kotlier, N. B., and J. A. Wiens.  1990.  Multiple scales of patchiness and patch structure: a 

hierarchical framework for the study of heterogeneity.  Oikos  59: 253-260. 

Kruse, C. G., W. A. Hubert, and F. J. Rahel.  1997.  Geomorphic influences on the distribution of 

Yellowstone cutthroat trout in Absaroka Mountains, Wyoming.  Transactions of the 

American Fisheries Society  126: 418-427.   

Leftwich, K. N., P. L. Angermeier, and C. A. Dolloff.  1997.  Factors influencing behavior and 

transferability of habitat models for a benthic stream fish.  Transactions of the American 

Fisheries Society 126: 725-734.  

Legendre, P.  1993.  Spatial autocorrelation: troubel or a new paradigm?  Ecology  74: 1659-

1673. 

 



 63 

Lek, S., and J. F. Guegan.  1999.  Artificial neural networks as a tool in ecological modeling, an 

introduction.  Ecological Modelling  120: 65-73. 

Lek, S., M. Delacoste, P. Baran, I. Dimopoulos, J. Lauga, S. Aulagnier.  1996.  Application of 

neural networks to modeling nonlinear relationships in ecology.  Ecological Modelling  90: 

39-52. 

Loehle, C.  1983.  Evaluation of theories and calculation tools in ecology.  Ecological Modelling  

19: 239-247.   

Manel, S., H. C. Williams, and S. J. Ormerod.  2001.  Evaluating presence-absence models in 

ecology: the need to account for prevalence.  Journal of Applied Ecology  38: 921-931. 

Manel, S., J. M. Dias, S. T. Buckson, and S. J. Ormerod.  1999b.  Alternative methods for 

predicting species distribution: an illustration with Himalayan river birds.  Journal of Applied 

Ecology  36: 734-747. 

Manel, S., J-M. Dias, and S. J. Omerod.  1999a.  Comparing discriminant analysis, neural 

networks and logistic regression for predicting species distributions: a case study with a 

Himalayan river bird.  Ecological Modeling 120: 337-347. 

Mastrorillo, S., S. Lek, F. Dauba, and A. Belaud.  1997.  The use of artificial neural networks to 

predict the presence of small-bodied fish in a river.  Freshwater Biology  38: 237-246. 

Miller, R. I.  1986.  Predicting rare plant distribution patterns in the southern Appalachians of the 

south-eastern U.S.A.  Journal of Biogeography  13: 293-311. 

Moisen, G. G., and T. S. Frescino.  2002.  Comparing five modeling techniques for predicting 

forest characteristics.  Ecological Modelling  157: 209-225.   

Naiman, R. J., D. G. Lonzarich, T. J. Beechie, and S. C. Ralph.  1992.  General principles of 

classification and the assessment of conservation potential of rivers.  Pages 93-123 in P. J. 

Boon, P. Calow, and G. E. Petts, editors.  River Conservation and Management, John Wiley 

and Sons Ltd. 

Newson, M. D.  1992.  Land, water, and development: river basin systems and their sustainable 

management.  Routeledge, Chapman and Hall, New York.    

Nicholls, A. O.  1989.  How to make biological surveys go further with generalised linear 

models.  Biological Conservation  50: 51-75. 

Oberdorff, T., D. Pont, B. Hugueny, and D. Chessel.  2001.  A probabilistic model characterizing 

fish assemblages of French rivers: a framework for environmental assessment.  Freshwater 

Biology  46: 399-417. 

Olden, J. D., and D. A. Jackson.  2001.  Fish-habitat relationships in lakes: gaining predictive and 

explanatory insight using artificial neural networks.  Transactions of the American Fisheries 

Society  130: 878-897. 

Olden, J. D., and D. A. Jackson.  2002a.  A comparison of statistical approaches for modelling 

fish species distributions.  Freshwater Biology  47: 1976-1995. 

Olden, J. D., and D. A. Jackson.  2002b.  Illuminating the "black box": a randomization approach 

for understanding variable contributions in artificial neural networks.  Ecological Modelling  

154: 135-150. 

Olden, J. D., D. A. Jackson, and P. R. Peres-Neto.  2002.  Predictive models of fish species 

distributions: a note on proper validation and chance predictions.  Transactions of the 

American Fisheries Society  131: 329-336. 

Omernik, J. M. 1987.  Ecoregions of the conterminous United States.  Annals of the Association 

of American Geographers  77: 118-125. 

Osborne, P. E., and S. Suarez-Seoane.  2002.  Should data be partitioned spatially before building 

large-scale distribution models.  Ecological Modelling  157: 249-259. 

Peterson, A. T., and K. P. Cohoon.  1999.  Sensitivity of distributional prediction algorithms to 

geographic data completeness.  Ecological Modelling  117(1999): 159-164.   

 



 64 

Peterson, J. T., and C. F. Rabeni.  1995.  Optimizing sampling effort for sampling warmwater 

stream fish communities.  North American Journal of Fisheries Management  15: 528-541. 

Ponder, W. F., G. A. Carter, P. Flemons, and R. R. Chapman.  2001.  Evaluation of museum 

collections data for use in biodiversity assessment.  Conservation Biology  15(3): 648-657. 

Porter, M. S., J. Rosenfeld, and E. A. Parkinson.  2000.  Predictive models of fish species 

distribution in the Blackwater drainage, British Columbia.  North American Journal of 

Fisheries Management  20: 349-359.   

Prager, M. H., and M. C. Fabrizio.  1990.  Comparison of logistic regression and discriminant 

analysis for stock identification of anadromous fish, with applications to striped bass and 

American shad.  Canadian Journal of Fisheries and Aquatic Sciences  47: 1570-1577. 

Rabinowitz, D.  1981.  Seven forms of rarity.  Pages 205-217 in H. Synge, editor.  The Biological 

Aspects of Rare Plant Conservation.  John Wiley & Sons.  New York.    

Rahel, F. J., and N. P. Nibbelink.  1999.  Spatial patterns in relations among brown trout (Salmo 

trutta) distribution, summer air temperature, and stream size in Rocky Mountain streams.  

Canadian Journal of Fisheries and Aquatic Science 56(Supplement 1): 43-51. 

Reiman, B. E., and J. D. McIntyre.  1995.  Occurrence of bull trout in naturally fragmented 

habitat patches of varied size.  Transactions of the American Fisheries Society  124: 285-297. 

Resetarits, W. J., Jr., and J. Bernardo.  (editors) 1998.  Experimental ecology: issues and 

perspectives.  Oxford University Press, Inc.  New York. 

Reyjol, Y., P. Lim, A. Belaud, and S. Lek.  2001.  Modelling of microhabitat used by fish in 

natural and regulated flows in the river Garonne (France).  Ecological Modelling  146: 131-

142. 

Rosenberger, A.  2002.  Multi-scale patterns of habitat use by Roanoke logperch (Percina rex) in 

Virginia rivers: a comparison among populations and life stages.  PhD dissertation.  Virginia 

Tech.   

Schumm, S. A.  1956.  Evolution of drainage systems and slopes in badlands at Perth Amboy, 

New Jersey.  Geological Society of America Bulletin  67: 597-646. 

Scott, J. M., P. J. Heglund, M. J. Morrison, J. B. Haufler, M. G. Raphael, W. A. Wall, and F. B. 

Samson, Editors.  2002.  Predicting species occurrences: issues of scale and accuracy.  Island 

Press, Washington, D. C.  

Scott, J. M., and eleven co-authors.  1993.  Gap analysis: a geographic approach to protection of 

biological diversity.  Wildlife Monographs  123: 1-41. 

Scott, J. M., M. Jennings, R. G. Wright, and B. Csuti.  1996.  Landscape approaches to mapping 

biodiversity.  BioScience  46: 77-78. 

Seaber, P.R., Kapinos, F.P., and Knapp, G.L. 1987.  Hydrologic unit maps: U.S. Geological 

Survey water-supply paper 2294. 

Shaffer, H. B., R. N. Fisher, and C. Davidson.  1998.  The role of natural history collection in 

documenting species declines.  Trends in Ecology and Evolution  13: 27-30. 

Smith, R. K., P. L. Freeman, J. V. Higgins, K. S. Wheaton, T. W. FitzHugh, A. A. Das, and K. J. 

Ernstrom.  2002.  Priority areas for freshwater conservation action: a biodiversity assessment 

of the southeastern United States.  The Nature Conservancy. 

Starfield, A. M.  1997.  A pragmatic approach to modeling for wildlife management.  Journal of 

Wildlife Management 61: 261-270. 

Stockwel, D. R. B., and A. T. Peterson.  2002.  Effects of sample size on accuracy of species 

distribution models.  Ecological Modelling  148(2002): 1-13. 

Strahler, A. N.  1957.  Quantitative analysis of watershed geomorphology.  Transactions of the 

American Geographical Union  38: 913-920. 

Titus, K., J. A. Mosher, and B. K. Williams.  1984.  Chance-corrected classification for use in 

discriminant analysis.  American Midland Naturalist  136: 345-375. 



 65 

Townsend, C. R.  1996.  Concepts in river ecology: pattern and process in a river hierarchy.  

Archiv fur Hydrobiologie  Supplement 113: 3-21 

Wiens, J. A., C. A. Crawford, and J. R. Gosz.  1985.  Boundary dynamics: a conceptual 

framework for studying landscape ecosystems.  Oikos  45: 421-427. 

 



 66 

  Table 2.1.  Spearman’s rho coefficients describing correlation between watershed and stream-

reach descriptors used to predict fish occurrence in the Holston-Ridge and Valley (N=972 

reaches), Roanoke-Piedmont (N=1471 reaches) and James-Coastal Plain (N=614 reaches) regions 

in Virginia.  Descriptors include stream order (Strahler), mean reach elevation (relev), reach slope 

(rslope), median watershed aspect (wasp), mean watershed elevation (welev), watershed area 

(area), watershed shape parameter (shape), drainage density (dens), and average watershed slope 

(wslope).  All correlations are significant (< 0.05) due to large sample sizes. 

 

Holston-Ridge and Valley 

  Strahler  relev  rslope  wasp  welev  area  shape  dens 

relev  -0.313               

rslope  -0.487  0.138             

wasp  0.108  0.327  -0.054           

welev  0.281  0.689  -0.086  0.348         

area  0.882  -0.287  -0.480  0.134  0.273       

shape  -0.516  0.309  0.125  -0.025  -0.077  -0.441     

dens  -0.214  -0.079  0.223  -0.163  -0.192  -0.514  -0.308   

wslope  -0.081  -0.095  0.443  -0.095  0.147  -0.112  -0.040  0.102 

                 

Roanoke-Piedmont 

  Strahler  relev  rslope  wasp  welev  area  shape  dens 

relev  -0.194               

rslope  -0.254  0.818             

wasp  -0.061  0.065  0.080           

welev  -0.200  0.996  0.824  0.066         

area  0.037  0.039  -0.075  0.053  0.052       

shape  0.027  -0.227  -0.240  0.087  -0.211  0.196     

dens  -0.056  0.096  0.196  -0.087  0.075  -0.812  -0.673   

wslope  -0.241  0.881  0.891  0.077  0.901  0.040  -0.207  0.086 

                 

James-Coastal Plain 

  Strahler  relev  rslope  wasp  welev  area  shape  dens 

relev  -0.224               

rslope  -0.412  0.748             

wasp  0.026  0.408  0.302           

welev  0.035  0.926  0.646  0.440         

area  0.858  -0.211  -0.390  0.021  0.046       

shape  -0.415  -0.036  0.042  -0.105  -0.199  -0.295     

dens  -0.242  0.198  0.245  0.094  0.117  -0.558  -0.374   

wslope  0.024  0.847  0.669  0.435  0.929  0.032  -0.185  0.127 
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  Table 2.2. Principal component analysis (PCA) eigenvalue, proportion of variance explained, 

cumulative variance explained, and factor loading for the first 3 principal components calculated 

for stream reaches in the Holston-Ridge and Valley, Roanoke-Piedmont, and James-Coastal Plain 

regions in Virginia.  Predictors include stream order (Strahler), mean reach elevation (relev), 

reach slope (rslope), median watershed aspect (wasp), mean watershed elevation (welev), 

watershed area (area), watershed shape parameter (shape), drainage density (dens), and average 

watershed slope (wslope).  Important axes for each PCA and important predictors for each axis 

are in bold.   

 

  Holston-Ridge and Valley  Roanoke-Piedmont  James-Coastal Plain 

Variable  PC1  PC2  PC3  PC1  PC2  PC3  PC1  PC2  PC3 

                   

Eigenvalue  2.728  2.193  1.480  3.098  1.848  1.534  5.472  1.576  0.881 

Proportion  0.303  0.244  0.164  0.344  0.205  0.170  0.608  0.175  0.098 

Cumulative  0.303  0.547  0.711  0.344  0.550  0.720  0.608  0.783  0.881 

                   

Strahler  0.336  -0.480  -0.033  -0.129  0.611  -0.179  -0.401  -0.019  -0.142 

relev  -0.541  -0.178  0.019  0.522  0.004  0.052  0.271  -0.343  0.430 

rslope  -0.122  0.225  0.579  0.394  -0.096  0.216  0.247  0.001  0.703 

wasp  -0.225  -0.411  -0.065  -0.067  0.303  0.626  -0.347  -0.083  0.409 

welev  -0.310  -0.504  0.260  0.526  0.214  -0.073  -0.388  -0.300  0.090 

area  0.458  -0.268  0.140  -0.103  0.465  -0.265  -0.390  -0.275  0.038 

shape  -0.464  0.125  -0.096  0.044  -0.402  0.150  0.270  -0.516  -0.303 

dens  0.070  0.411  0.179  -0.094  0.232  0.652  -0.238  0.598  0.149 

wslope   0.051  -0.085  0.729  0.502  0.218  -0.055  -0.389  -0.293  0.099 
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  Table 2.3. Classification performance of linear discriminant functions, generalized linear 

models, classification trees, and artificial neural networks built for 7 stream fish species in each 

of 3 drainage-physiographic regions of Virginia [Holston-Ridge and Valley (N=138), Roanoke-

Piedmont (N=262), and James-Coastal Plain (N=80).  Common and scientific name, prevalence 

(Prev.), sensitivity (SE), specificity (SP) and correct classification (CC) are given for cross-

validation errors.  Kappa Z-statistic and associated p-values are provided to indicate whether 

classification success was greater than random.  Kappa statistic was not applicable (n/a) when 

presence was not predicted.    
  

Common name  Scientific name  Prev  SE  SP  CC  Kappa  P-value  

                

Linear Discriminant Function 

Holston-Ridge and Valley 

Longhead darter        Percina macrocephala  2.2  66.7  82.2  81.9  3.916     <0.001 

Margined madtom        Noturus insignis  10.1  85.7  75.0  76.1  5.557     <0.001 

Mimic shiner           Notropis volucellus  3.6  0.0  65.4  63.0  1.374      0.085 

Northern hog sucker     Hypentelium nigricans  73.9  66.7  75.0  56.5  5.054     <0.001 

Logperch      Percina caprodes  6.5  22.2  82.2  78.3  2.107  0.018 

Rosyface shiner        Notropis rubellus  25.4  71.4  84.5  81.2  6.897     <0.001 

Spotted bass           Micropterus punctulatus  3.6  20.0  69.9  68.1  3.695     <0.001 

Roanoke-Piedmont 

Margined madtom        Noturus insignis  64.8  66.7  42.0  51.2  3.458     <0.001 

Roanoke hog sucker      Hypentelium roanokense  30.3  47.1  69.8  65.0  4.039     <0.001 

Roanoke logperch       Percina rex  4.2  79.3  56.9  65.0  4.231     <0.001 

Roanoke darter         Percina roanoka  28.7  33.3  71.6  68.7  1.375  0.085 

Smallmouth bass        Micropterus dolomieu  7.3  67.9  84.6  78.7  6.266     <0.001 

Spottail shiner        Notropis hudsonius  5.4  0.0  71.1  67.5  1.034  0.051 

White shiner  Luxilus albeolus  27.3  50.0  68.0  61.2  2.462  0.007 

James-Coastal Plain 

Creek chubsucker       Erimyzon oblongus  37.5  62.1  63.0  62.5  4.248     <0.001 

Flier                  Centrarchus macropterus  21.3  81.8  74.8  75.1  4.902     <0.001 

Golden shiner          Notemigonus crysoleucas  36.3  54.4  58.2  57.1  3.410     <0.001 

Margined madtom        Noturus insignis  7.5  72.0  73.7  73.2  7.389     <0.001 

Spottail shiner        Notropis hudsonius  35.0  78.9  81.8  81.6  6.749     <0.001 

Swamp darter           Etheostoma fusiforme  5.0  35.7  88.3  85.4  5.525     <0.001 

Tessellated darter      Etheostoma olmstedi  37.5  66.2  67.4  67.0  5.909     <0.001 

               

Generalized Linear Model 

Holston-Ridge and Valley 

Longhead darter        Percina macrocephala  2.2  100.0  88.1  88.4  4.383  <0.001 

Margined madtom        Noturus insignis  10.1  100.0  91.1  92.0  8.392  <0.001 

Mimic shiner           Notropis volucellus  3.6  100.0   63.9  65.2  2.885  <0.001 

Northern hog sucker     Hypentelium nigricans  73.9  71.6  77.8  73.2  5.170  <0.001 

Logperch      Percina caprodes  6.5  100.0  72.9  74.6  4.535  <0.001 

Rosyface shiner        Notropis rubellus  25.4  80.0  80.6  80.4  6.501  <0.001 

Spotted bass           Micropterus punctulatus  3.6  80.0  76.7  76.8  2.860  <0.001 
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  Table 2.3.-Continued.   

               

Common name  Scientific name  Prev  SE  SP  CC  Kappa  P-value 

               

Generalized Linear Model 

Roanoke-Piedmont 

Margined madtom        Noturus insignis  64.8  61.5  68.5  64.0  4.634  <0.001 

Roanoke hog sucker      Hypentelium roanokense  30.3  62.0  60.4  60.9  3.340  <0.001 

Roanoke logperch       Percina rex  4.2  90.9  73.6  74.3  4.609  <0.001 

Roanoke darter         Percina roanoka  28.7  74.7  75.3  75.1  7.482  <0.001 

Smallmouth bass        Micropterus dolomieu  7.3  89.5  81.4  82.0  6.990  <0.001 

Spottail shiner        Notropis hudsonius  5.4  92.9  78.9  79.7  1.351  0.088 

White shiner  Luxilus albeolus  27.2  70.4  69.5  69.7  5.824  <0.001 

James-Coastal Plain 

Creek chubsucker       Erimyzon oblongus  37.5  83.3  74.0  77.5  4.971  <0.001 

Flier                  Centrarchus macropterus  21.3  94.1  76.2  80.0  5.280  <0.001 

Golden shiner          Notemigonus crysoleucas  36.3  80.0  89.6  66.7  4.857  <0.001 

Margined madtom        Noturus insignis  7.5  16.7  98.6  92.5  2.311  0.010 

Spottail shiner        Notropis hudsonius  35.0  85.7  84.6  85.0  6.124  <0.001 

Swamp darter           Etheostoma fusiforme  5.0  75.0  77.6  77.5  2.370  <0.001 

Tessellated darter      Etheostoma olmstedi  37.5  63.3  68.0  66.3  2.735  <0.001 

 

Classification Tree 

Holston-Ridge and Valley 

Longhead darter        Percina macrocephala  2.2  0.0  97.8  97.8  0.000  n/a 

Margined madtom        Noturus insignis  10.1  80.0  95.3  94.2  0.636  <0.001 

Mimic shiner           Notropis volucellus  3.6  80.0  95.3  94.2  0.636  <0.001 

Northern hog sucker     Hypentelium nigricans  73.9  81.0  76.5  80.4  0.417  <0.001 

Logperch      Percina caprodes  6.5  0.0  93.5  93.5  0.000  n/a 

Rosyface shiner        Notropis rubellus  25.4  81.8  85.3  84.8  0.666  <0.001 

Spotted bass           Micropterus punctulatus  3.6  0.0  96.4  96.4  0.000  n/a 

Roanoke-Piedmont 

Margined madtom        Noturus insignis  64.8  70.5  57.4  67.8  0.322  <0.001 

Roanoke hog sucker      Hypentelium roanokense  30.3  0.0  95.8  95.8  0.000  n/a 

Roanoke logperch       Percina rex  4.2  0.0  69.7  69.7  0.000  n/a 

Roanoke darter         Percina roanoka  28.7  60.3  84.7  77.4  0.585  <0.001 

Smallmouth bass        Micropterus dolomieu  7.3  0.0  92.7  92.7  0.000  n/a 

Spottail shiner        Notropis hudsonius  5.4  0.0  94.6  94.6  0.000  n/a 

White shiner  Luxilus albeolus  27.2  62.8  79.8  77.0  0.422  <0.001 

James-Coastal Plain 

Creek chubsucker       Erimyzon oblongus  37.5  67.6  84.8  77.5  0.920  <0.001 

Flier                  Centrarchus macropterus  21.3  0.0  78.8  78.8  0.000  n/a 

Golden shiner          Notemigonus crysoleucas  36.3  0.0  63.8  63.8  0.000  n/a 

Margined madtom        Noturus insignis  7.5  0.0  92.5  92.5  0.000  n/a 

Spottail shiner        Notropis hudsonius  35.0  63.6  85.1  76.3  0.719  0.001 

Swamp darter           Etheostoma fusiforme  5.0  0.0  95.0  95.0  0.000  n/a 

Tessellated darter      Etheostoma olmstedi  37.5  81.8  69.6  71.3  0.298  <0.001 
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  Table 2.3. -Continued.   

       

Common name  Scientific name  Prev  SE  SP  CC  Kappa  P-value 

               

Artificial Neural Network 

Holston-Ridge and Valley 

Longhead darter        Percina macrocephala  2.2  100.0  98.5  98.6  9.032  <0.001 

Margined madtom        Noturus insignis  10.1  92.8  99.2  98.6  15.414  <0.001 

Mimic shiner           Notropis volucellus  3.6  100.0  98.5  98.6  9.853  <0.001 

Northern hog sucker     Hypentelium nigricans  73.9  87.2  87.3  87.2  90.600  <0.001 

Logperch      Percina caprodes  6.5  66.7  99.2  97.1  9.622  <0.001 

Rosyface shiner        Notropis rubellus  25.4  100.0  95.1  96.4  10.718  <0.001 

Spotted bass           Micropterus punctulatus  3.6  100.0  97.7  97.8  9.182  <0.001 

Roanoke-Piedmont 

Margined madtom        Noturus insignis  64.8  94.7  100.0  96.6  15.003  <0.001 

Roanoke hog sucker      Hypentelium roanokense  30.3  100.0  91.2  93.6  14.548  <0.001 

Roanoke logperch       Percina rex  4.2  100.0  98.4  98.5  13.724  <0.001 

Roanoke darter         Percina roanoka  28.7  98.7  97.3  97.7  15.273  <0.001 

Smallmouth bass        Micropterus dolomieu  7.3  94.7  100.0  99.6  14.562  <0.001 

Spottail shiner        Notropis hudsonius  5.4  100.0  98.4  98.5  14.132  <0.001 

White shiner  Luxilus albeolus  27.2  95.8  93.7  94.2  13.950  <0.001 

James-Coastal Plain 

Creek chubsucker       Erimyzon oblongus  37.5  100.0  96.0  97.5  8.844  <0.001 

Flier                  Centrarchus macropterus  21.3  100.0  95.2  96.2  8.749  <0.001 

Golden shiner          Notemigonus crysoleucas  36.3  96.6  98.0  97.5  8.479  <0.001 

Margined madtom        Noturus insignis  7.5  100.0  100.0  100.0  12.649  <0.001 

Spottail shiner        Notropis hudsonius  35.0  100.0  94.2  96.3  8.252  <0.001 

Swamp darter           Etheostoma fusiforme  5.0  100.0  100.0  100.0  8.944  <0.001 

Tessellated darter      Etheostoma olmstedi  37.5  93.3  100.0  97.5  8.467  <0.001 
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  Table 2.4.  Slope estimate (b), F-statistic, p-value, and R
2
 for linear regressions of the effect of 

prevalence on prediction sensitivity (SE), specificity (SP), and correct classification (CC) cross-

validation error rates for discriminant function analysis (DFA), generalized linear model (GLM), 

classification tree (TRE) and artificial neural network (ANN) for 7 fish species in each of 3 

regions in Virginia.   

                                                  

  SE  SP  CC 

Method  b  F  p  R
2 

 b  F  p  R
2 

 b  F  p  R
2 

Holston-Ridge and Valley 

DFA  0.49  0.97  0.370  0.16  0.03  0.06  0.818  0.01  -0.20  2.16  0.202  0.30 

GLM  -0.35  6.59  0.050  0.57  0.01  0.00  0.960  0.00  -0.07  0.19  0.681  0.04 

TRE  0.80  1.65  0.256  0.25  -0.28  83.42  <0.001  0.94  -0.23  31.50  0.003  0.86 

ANN  -0.08  0.15  0.714  0.03  -0.16  94.46  <0.001  0.95  -0.15  98.87  <0.001  0.95 

                         

Roanoke-Piedmont 

DFA  0.21  0.14  0.719  0.03  -0.40  3.45  0.123  0.41  -0.29  6.53  0.051  0.57 

GLM  -0.54  13.63  0.014  0.73  -0.17  1.79  0.238  0.26  -0.25  4.34  0.092  0.46 

TRE  1.32  10.81  0.021  0.68  -0.40  2.78  0.156  0.36  -0.28  1.73  0.246  0.26 

ANN  -0.05  1.36  0.296  0.21  -0.01  0.00  0.950  0.00  -0.05  1.26  0.313  0.20 

                         

James-Coastal Plain 

DFA  0.23  0.20  0.674  0.04  -0.56  5.49  0.066  0.52  -0.53  4.99  0.076  0.50 

GLM  0.74  0.87  0.393  0.15  -0.24  0.53  0.498  0.10  -0.40  2.46  0.177  0.33 

TRE  1.98  4.69  0.083  0.48  -0.60  5.04  0.075  0.50  -0.72  17.44  0.009  0.78 

ANN   -0.10   1.83   0.234   0.27   -0.06   0.66   0.454   0.12   -0.07   3.02   0.143   0.38 

 

All Regions 

DFA  4.16  2.28  0.147  0.11  -0.22  3.93  0.062  0.17  -0.28  10.92  0.004  0.36 

GLM  -0.29  2.08  0.165  0.10  -0.10  1.00  0.330  0.05  -0.19  4.44  0.049  0.19 

TRE  1.03  8.51  0.009  0.31  -0.40  16.29  <0.001  0.46  -0.35  13.06  0.002  0.41 

ANN  -0.04  0.25  0.624  0.01  -0.09  3.93  0.062  0.17  -0.10  22.07  <0.001  0.54 
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  Table 2.5. A. Mean and standard deviation (in parentheses) cross-validation sensitivity (SE), specificity (SP) and correct classification (CC) of 

discriminant function (DFA), generalized linear model (GLM), classification tree (TRE), and artificial neural network models that predict the 

occurrence of 7 fish species in each of 3 regions in Virginia.  B. Bootstrap-adjusted ANOVA p-values describing significance of differences in SE, 

SP, and CC among DFA, GLM, TRE, and ANN in each of 3 regions in Virginia.  

                             

Holston-Ridge and Valley  Roanoke-Piedmont  James-Coastal Plain 

A.                             

  DFA  GLM  TRE  ANN    DFA  GLM  TRE  ANN    DFA  GLM  TRE  ANN 

SE  47.53  90.23  46.11  92.39  SE  49.19  77.41  27.66  97.70  SE  64.44  71.16  30.43  98.56 

  (32.71)  (12.50)  (43.14)  (12.37)    (26.58)  (13.63)  (34.63)  (2.53)    (15.83)  (25.84)  (38.35)  (2.64) 

SP  76.31  78.73  91.44  96.50  SP  66.29  72.51  82.10  97.00  SP  72.46  81.23  81.37  98.89 

  (7.07)  (9.16)  (7.75)  (4.29)    (13.42)  (7.08)  (14.33)  (3.33)    (10.52)  (10.40)  (11.47)  (2.20) 

CC  72.16  78.66  91.61  96.33  CC  65.33  72.24  82.14  96.96  CC  71.70  77.93  79.31  98.76 

  (9.79)  (9.19)  (6.46)  (4.11)    (8.28)  (7.81)  (11.99)  (2.28)    (10.16)  (9.38)  (11.09)  (1.60) 

                             

                             

B.    DFA  GLM  TRE      DFA  GLM  TRE      DFA  GLM  TRE 

GLM  SE  0.9910      GLM  SE  0.9924      GLM  SE  0.9997     

  SP  0.0005        SP  0.0017        SP  0.0530     

  CC  0.0003        CC  <0.0001        CC  0.0143     

TRE  SE  0.0124  0.9909    TRE  SE  <0.0001  0.0462    TRE  SE  0.0015  0.0107   

  SP  0.9999  1.0000      SP  0.8731  0.9901      SP  0.1522  0.8837   

  CC  1.0000  0.9636      CC  0.7017  0.9841      CC  0.1072  0.4967   

ANN  SE  0.9151  0.0338  0.4491  ANN  SE  0.9994  0.0144  0.0121  ANN  SE  0.4816  0.3619  0.0173 

  SP  0.5446  0.7056  0.0142    SP  0.8035  1.0000  0.3157    SP  0.9127  0.9538  0.9977 

  CC  0.1102  0.9672  0.0068    CC  0.4574  0.9999  0.0849    CC  0.9956  0.9979  0.9980 
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  Figure 2.1. Major drainages (i.e., USGS 6-digit hydrologic units; bold outline) and their 

intersection with 5 physiographic provinces (italics) in Virginia.  Study regions are labeled in 

bold.  The York and Rappahannock are considered separately to maintain consistency with 

Jenkins and Burkhead (1993).   
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  Figure 2.2. A diagrammatic model of a one-hidden-layer, feed-forward artificial neural network 

design (following Olden and Jackson 2001).  Predictor variables are depicted as large filled disks 

and are listed in Table 2.2.  Number of connections and connection weights varies among models.  

Number of hidden nodes is determined empirically.  Bias nodes act as threshold functions for 

hidden nodes.  Output is the predicted probability of occurrence.   
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  Figure 2.3.  Mean model sensitivity (squares), specificity (circles), and total correct prediction 

(diamonds) of complex models (filled) built with 9 predictors and parsimonious models (unfilled) 

built with only statistically significant predictors based on leave-one-out cross-validation for 7 

fish species in the James-Coastal Plain region, Virginia.  Model types include linear discriminant 

function (DFA), generalized linear model (GLM), classification tree (TRE), and artificial neural 

network (ANN).  Bars are one standard deviation.   
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Chapter 3.  Conservation implications of relations among the accuracy, generality and 

resolution of predictions of occurrence and species traits for fishes in the upper Tennessee 

River drainage. 

 

INTRODUCTION 

Limited resources for conservation require efficient conservation – directing actions to 

where they are most needed and most likely to succeed.  Knowledge of species occurrence 

(presence and absence), including their spatial patterns, at spatial extents and grains that are 

ecologically meaningful and relevant to conservation is a prerequisite for efficient conservation.  

Unfortunately, insufficient knowledge of species occurrence is a pervasive constraint on efficient 

conservation of stream fishes.  We know little about the spatial distribution of most stream fishes, 

especially at the large spatial extents and fine grains at which many conservation decisions are 

made.  In particular, we have few descriptions of the patterns of discontinuity of occurrence of 

most stream fishes.  To facilitate conservation, models are often used to predict species 

occurrence in lieu of empirical observations (Scott et al. 1993, 2002, Sowa 1998, McCleary and 

Hassan 2008).  Predictions of species occurrence are mapped and conservation efforts are 

directed by assuming that the predictions of occurrence have sufficient accuracy and resolution to 

improve conservation decisions.  However, predictions of species occurrence are often incorrect 

and may have insufficient resolution to direct some conservation decisions.  Prediction accuracy 

and resolution differ among species, possibly due to differences in their ecological traits, but little 

information describing the likely accuracy and resolution of predictions is available.  The ability 

to anticipate prediction error rates and the size of patches of predicted presence will facilitate the 

appropriate application of model predictions to conservation decisions.   

Accurate high-resolution descriptions of occurrence that facilitate the conservation of 

stream fishes are needed.  Anthropogenic degradation of aquatic ecosystems has contributed to 

pervasive imperilment and extinction of stream fish (Williams et al. 1989, Etnier 1997).  At least 

19% of the approximately 490 freshwater fish species that are native to the southeastern United 

States are imperiled (Etnier 1997).  Limited resources and frequent imperilment make their 

efficient conservation imperative.  This work was initiated to provide information that supports 

the appropriate application of predictions of species occurrence in aquatic gap analyses.   

Models that predict fish occurrence with high accuracy and resolution are necessary to 

direct conservation efforts and provide meaningful descriptions of prediction characteristics to 

identify their relations with species traits.  Predicting the occurrence of stream fishes is a 

challenging conservation imperative.  The physical mechanisms that define lotic system structure 
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and generate patterns of habitat and species occurrence are vectors of water, sediment, energy and 

nutrients that form stream networks (Schumm 1977, Vannote et al. 1980, Leopold 1994).  These 

vectors produce spatial and temporal autocorrelation of environmental attributes and species 

occurrence along a continuum of environmental gradients within the stream network (Vannote et 

al. 1980).  While breaks in the continuum (a component of structure) are identifiable as part of a 

spatial hierarchy (Frissell et al. 1988), species do not necessarily perceive these discontinuities as 

boundaries (sensu Holling 1992) that define suitable habitat (Campbell et al. 2007).  However, 

ecologists’ perceptions of how a population or assemblage is structured are influenced by the 

spatial and temporal scales at which samples are collected and models are built (Allen et al. 1984, 

Rahel et al. 1984).  The apparent structure of stream fish populations typically reflects the fact 

that many of the habitat units that species respond to are spatially discrete (e.g., Frissell et al. 

1988, Pringle et al. 1988, Hawkins et al. 1993).  Because the dearth of knowledge of the life 

history and traits of most stream fishes precludes the precise description of their habitat, the 

delineation of suitable habitat may be best accomplished with less subjective methods that use 

empirical data.  Empirical methods that delineate suitable habitat might describe ecologically 

meaningful characteristics of species occurrence that have conservation implications.  For 

example, the predicted mean length and total length of patches of predicted species presence can 

be used to select the number, locations, and sizes of monitoring or conservation sites.   

Complex models may be necessary to predict the occurrence of stream fish with 

sufficient accuracy and resolution to facilitate conservation decisions.  Empirical relations 

between habitat descriptions and species occurrence are complex (Jackson et al. 2001), and may 

include measuring several environmental attributes at several spatiotemporal scales (Holling 

1992, Karl et al. 2000).  Fish ecologists often resort to calculating attributes at one or more scales 

that are functionally related to climate, geology, elevation, and/or landscape gradient that describe 

spatial position and using them to predict species occurrence (e.g., Gorman and Karr 1978, Kruse 

et al. 1997, Porter et al. 2000, Filipe et al. 2002).  Poor model performance encourages the use of 

more complex models (as measured by the number of predictors incorporated) or alternative 

methods, but comparisons of different methods often produce equivocal results (Manel et al. 

1999a, 1999b, Olden and Jackson 2002, Chapter 2).  Models that predict species occurrence are 

often built with great concern for statistical validity and the avoidance of overfitting (Burnham 

and Anderson 2002).  The naïve use of predictor selection methods (Olden and Jackson 2000) or 

model selection methods (Burnham and Anderson 2002) can provide overly optimistic 

assessments of prediction performance.  Methods for building models and assessing their 

accuracy are well developed (Fielding and Bell 1997, Guisan and Zimmerman 2000, Scott et al. 
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2002), but few rigorous assessments of the effect of model complexity on prediction performance 

(including accuracy, generality, and resolution) are available to guide model building and 

application, especially for stream fishes.  Prediction resolution, the ability of models to 

distinguish among neighboring prediction units, is infrequently assessed, but important when 

conservation and management decisions are made at fine grains.  Models can accurately predict 

probabilities of species occurrence without sufficient resolution to distinguish among most 

prediction units.  This is especially problematic for very rare and common species, for which 

prediction accuracy can be high for uninformative models that predicting similar probabilities of 

occurrence for most prediction units.   

Species traits (e.g., maximum length) are expected to affect species’ patterns of 

occurrence (Holling 1992, Poff 1997, Goldstein and Meador 2004) and vulnerability to 

anthropogenic extinction (e.g., Angermeier 1995). Thus, if models predict occurrence with 

sufficient accuracy and resolution, the accuracy and resolution of model predictions are expected 

to vary among species due to differences in their traits (Boone and Krohn 1999, Manel et al. 

2001, Seoane et al. 2005).  If relations between prediction characteristics and species traits can be 

described, model prediction characteristics might be anticipated and used to better guide 

conservation decisions (McPherson et al. 2006).  For example, if species with similar traits have 

similar predicted patch sizes and observed frequency of absence from patches of suitable habitat, 

that information can be used to direct monitoring and to set habitat conservation goals.  My goal 

is to describe characteristics of predictions of fish occurrence, and relations between those 

characteristics and species traits to facilitate the appropriate application of species occurrence 

predictions to conservation.   

At large spatial extents and fine spatial grains, patterns of stream fish occurrence are 

poorly described and discontinuities in suitable habitat are difficult to discern.  Therefore, I 

predict fish occurrence among stream reaches using statistical models.  I used stream reaches as 

prediction units because they are hydrologically meaningful, easily identified, and temporally 

stable spatial units.  Describing relations between characteristics of predicted fish occurrence and 

species traits requires accurate, high-resolution predictions of occurrence.  Although fish 

occurrence is usually adequately described with few parameters (Hubert and Chamberlain 1996, 

Angermeier and Winston 1999), increasing model complexity (the number of predictors used) 

might improve prediction accuracy (Peterson and Cohoon 1999, Porter et al. 2000) and 

resolution, but might also reduce model generality.  I assess the effects of model complexity on 

prediction accuracy, generality, and resolution by comparing the predictions of models built with 

1 to 6 predictors.  I then use the most accurate, parsimonious models to predict fish occurrence 
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and to describe the characteristics of those predictions.  I expect prediction accuracy and 

resolution to increase and generality to decrease with increasingly complex models.  I also expect 

the effect of increasing model complexity on prediction accuracy, generality, and resolution to be 

greater for common species than for rare species, because more presence data are available for 

common species.  Predicted species occurrence (i.e., patches of predicted suitable habitat) is 

expected to be discontinuous for all species, and I expect mean patch lengths and total patch 

lengths to be negatively related to model complexity.   

Characteristics of predicted fish occurrence might vary among species due to differences 

in their prevalence (Manel et al. 2001) and ecological traits (Boone and Krohn 1999, Seoane et al. 

2005).  I describe relations of species prevalence, maximum recorded body length, and nesting 

behavior with predicted mean patch length (MPL; mean length of contiguous reaches in which a 

species is predicted present) and total patch length (TPL; the sum of the lengths of all reaches in 

which the species is predicted present) for species in the upper Tennessee River basin (UTRB) for 

which accurate prediction of occurrence is possible and for which species trait information is 

available.  Because species traits are constrained by phylogeny, I describe relations of species 

traits with predicted patterns of occurrence among and within taxonomic families.   

Species prevalence is often positively related to the extent of geographic distribution 

(Brown 1995) and model prediction accuracy (Manel et al. 2001).  Gaston and Blackburn (1996) 

describe several mechanisms that have been postulated to explain the relationship.  These 

mechanisms can be used to predict relations among characteristics of prediction accuracy and 

species traits.  The positive relation between prevalence and prediction accuracy may be due to 

ecological mechanisms or a statistical artifact of greater predicted MPL and TPL for common 

species.  I predict that species prevalence is positively related to prediction accuracy, MPL and 

TPL.  Pyron (1999) found that large-bodied suckers and sunfishes had larger geographic ranges.  

Fishes that grow larger are expected to have larger MPL and TPL because they might require 

larger patches of habitat, have greater breadth of suitable habitat, and have larger geographic 

ranges.  Alternatively, larger size might be positively related to MPL and TPL because larger fish 

are more likely to be sampled if they are present at a location (Reynolds 1996), reducing 

sampling omission errors that bias predictions of species occurrence (McKenzie 2005, Royle et 

al. 2005).  I predict that species that attain larger sizes will have larger MPL and TPL.  Ensign et 

al. (1997) found that fishes that invested more in care of offspring re-colonized a disturbed reach 

more quickly than those that invested less care.  Species that re-colonize quickly might occupy a 

greater proportion of suitable habitat and/or have fewer incidence omission errors (i.e., absence in 

suitable habitat) that bias predictions of occurrence than species that re-colonize slowly.  I predict 
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that investment in care of offspring (e.g., nest building versus egg scattering) is positively related 

to prediction accuracy, MPL, and TPL.   

Regardless of whether the mechanisms affecting predicted occurrence characteristics are 

ecological effects or statistical artifacts, describing occurrence characteristics and their relations 

to species traits will facilitate better application of predictions of species occurrence to 

conservation.  For example, if the lengths of patches of predicted occurrence vary with species 

length, the length of conservation and monitoring units might be adjusted.  I use the conclusions 

of the previous analyses to guide the building, assessment and application of models that predict 

fish occurrence in the UTRB.  I compare the characteristics of these predictions with results from 

the peer reviewed literature and models built using habitat descriptions in reference books (e.g., 

Jenkins and Burkhead 1993) to assess the relative usefulness of my models for conservation.   

 

METHODS 

Study Area 

Exceptional fish species richness, abundance of streams, and frequency and severity of 

threats to species persistence make predicting the occurrence of fishes in the upper Tennessee 

River basin a management and conservation priority.  The UTRB is a 6
th
 – order (Strahler 1952) 

watershed of approximately 4,474,000 ha that includes portions of Virginia, Tennessee, North 

Carolina, and Georgia (Figure 3.1).  The UTRB also includes portions of the Ridge and Valley, 

Blue Ridge, and Appalachian Plateau physiographic provinces (Jenkins and Burkhead 1993, 

Fenneman and Johnson 1946) and comprises 5 subbasins: the Holston, Clinch, French Broad, 

Hiwassee, and Little Tennessee rivers.  High environmental heterogeneity, abundance of stream 

habitat and absence of glaciations contribute to the high fish species richness of the UTRB.  

Although forests remain the dominant land cover, the UTRB is substantially altered by human 

activities.  Agriculture and urbanization are important land uses and dams fragment many of the 

UTRB rivers and streams.   

Predicting Fish Occurrence 

Fish Occurrence Data  

Species occurrence records (samples) were procured from public databases (e.g., the 

Virginia Fish and Wildlife Information Service http://128.173.240.58/build02/fwis/default.asp) 

from the states of Virginia, Tennessee, and North Carolina.  Most occurrence records were from 

collection permit and scientific reports.  Errors of sampling omission (i.e., false absence) are 

likely and may be due to failure to sample the appropriate spatial or temporal strata, inadequate 

sampling effort, or ineffective or inappropriate methods (Angermeier et al. 2002).  Additionally, 

http://128.173.240.58/build02/fwis/default.asp
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the objectives of the samplers may not have included capturing all of the species present.  Errors 

of sampling commission (i.e., false presence) are less likely, but may occur due to species 

misidentification or errors in data transcription.  Despite errors, these databases contain the most 

comprehensive information available describing fish distributions in the UTRB.   

Predicting species occurrence using samples that are not representative of the region’s 

assemblage biases results.  I minimized the effect of sampling errors on predictions of occurrence 

by excluding samples with many likely sampling omission errors.  This was accomplished by 

using only samples that appeared relatively complete (hereafter assemblage samples).  Samples 

that recorded > 2 species, including ≥ 1 non-game species, and had reliable location information 

(i.e., could be plotted within 50 m of a stream reach) were defined as “assemblage samples” and 

assumed to have few omission errors.  When multiple samples were available for a reach, the lists 

of species were combined and used as a single sample for that reach.   

Fish Occurrence Predictors  

I used the United States Geological Survey (USGS) National Hydrography Dataset 

(NHD, USGS 2000 http://nhd.usgs.gov) 1:100,000-scale stream-reach files to define streams.  I 

identified reaches with the unique codes assigned in the NHD. The NHD defines reaches based 

on the location of confluences, major changes in stream gradient and changes in channel type 

(e.g., natural or channelized).  Data from the National Elevation Dataset (NED, USGS 2000 

http://gisdata.usgs.gov/ned/default.asp) were used to delineate the contributing watershed for each 

reach, and to calculate elevation and slope variables.  Delineating watersheds for each reach 

described the contributing watershed of each reach that allowed me to avoid the need to define 

watersheds as prediction units (e.g., Dunham et al. 1999, 2002, Wall et al. 2004) and allowed the 

predictions of species occurrence to cross hydrologic unit boundaries.  That is, this approach 

allows the data to define the predicted patches of occurrence without being constrained within 

pre-defined boundaries.   

I calculated 9 environmental attributes to use as predictors of stream fish occurrence.  

State and physiographic province describe the geographic location of reaches and may account 

for differences in zoogeography.  Strahler (1952) stream order and reach length index reach size.  

Downstream link magnitude (Osborne and Wiley 1992, Smith and Kraft 2005) measures 

proximity to larger streams, which is often correlated with fish species richness (Gorman 1986).  

Mean reach elevation and gradient are used because they are often correlates of fish species 

occurrence (Rahel and Hubert 1991, Reyes-Gavilan et al. 1996, Kruse et al. 1997).  Reach length 

and sinuosity (Gordon et al. 1992) describe reach morphology and relative location of reaches in 

http://nhd.usgs.gov/
http://gisdata.usgs.gov/ned/default.asp
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the stream landscape (Fausche et al. 2002, Tockner et al. 2002).  One predictor (F-type) describes 

human modification of reaches as natural or altered by humans.   

I restricted my analyses to temporally stable predictors to accommodate the temporal 

extent of species occurrence sampling.  Using predictors that have changed values subsequent to 

fish collections would confound predictions of fish occurrence.  Predictors were assessed for 

outliers and collinearity by visual assessment of plots of data and Pearson correlations, 

respectively.  Because remotely sensed predictors were used, data for the entire UTRB, including 

sites with and without fish samples were assessed.  These analyses were used to identify outliers 

so they could be corrected, to assess the likely usefulness of predictors, and to interpret the results 

of model selection.   

Model Complexity and Selection 

To identify the appropriately complex models to use in subsequent analyses I assessed 

the effects of model complexity on prediction accuracy, generality, and resolution using a subset 

of the UTRB occurrence data.  The Clinch River subbasin and Holston River subbasin provide an 

excellent opportunity to assess the effect of model complexity on model generality because both 

subbasins have many assemblage samples, share many species, and have similar environmental 

conditions because both occur mostly in the Ridge and Valley physiographic province.  Models 

were built for 59 species present in 133 samples from the Clinch subbasin.  Multiple logistic 

regression (MLR) is used to predict species occurrence because it is commonly used, relatively 

well developed and understood, and allows the use of both categorical and continuous predictor 

variables (Hosmer and Lemeshow 2000).   

Manly et al. (2002), Burnham and Anderson (2002), and Hosmer and Lemeshow (2000) 

recommend careful selection of predictor variables prior to model building, assessment, and 

selection.  However, little is known about the ecological traits and habitat preferences of most 

aquatic species and therefore the identity of the most useful predictor variables.  Further, most 

available predictors of occurrence are indirect, distal gradients (Austin 2002) that preclude a 

priori model specification.  Therefore, I assessed prediction accuracy for all possible 

combinations of predictor variables, excluding state, physiographic province, and F-type.  

Interaction terms were not considered due to the lack of information promoting their use and the 

desire for model parsimony.  Transformation of continuous predictor variables was not necessary 

for model building since generalized linear models, like logistic regression, are not constrained by 

assumptions of the distribution of errors (McCullagh and Nelder 1989).  However, categorical 

variables were converted to numeric values.  For example, physiographic provinces were coded 

as Ridge and Valley = 1, Blue Ridge = 2 and Appalachian Plateau = 3.     
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I compared the prediction accuracy, generality, and resolution of logistic regression 

models that used from 1 to 6 predictors of occurrence.  Akaike’s Information Criteria (AIC; 

Akaike 1974) and the area under the receiver-operator characteristic curve (AUC) were used to 

rank candidate models and select a best model for each species at each level of complexity.  AIC 

weights, the difference between the smallest AIC score and each candidate model score divided 

by the sum of the differences (Burnham and Anderson 2002), were used to select a best model(s) 

at each level of complexity.  Burnham and Anderson (2002) advise caution in using the best 

model when its relative weight is less than 0.9.  When AIC weights did not clearly identify a 

superior model (i.e., AIC weight < 0.9) for the candidate models for each species at each level of 

complexity, models were ranked by AIC and the “best” model was selected as the one with the 

largest AUC among the 10% with the smallest AIC.  AUC measures a model’s ability to 

discriminate between correct presence and absence predictions across the range of possible 

critical values.  Criteria for assessing the usefulness of a model via AUC remain poorly 

developed, but AUC allows comparison of models without selection of critical values.  

Comparison of all possible models is not recommended as a model selection method (Burnham 

and Anderson 2002, Olden et al. 2004), but it can be a useful approach for assessing differences 

among models when meaningful a priori model selection is not possible due to insufficient 

knowledge of species occurrence-habitat relationships (Fleishman et al. 2001).  Comparison of all 

possible models ensured that no alternative model predicted occurrence more accurately than the 

model selected for use in subsequent analyses.   

Model Complexity and Occurrence Characteristics 

The effect of model complexity on prediction accuracy was assessed by comparing mean 

cross-validation sensitivity (SE; percent of correct presence predictions), specificity (SP; percent 

of correct absence predictions), correct classification (CC; percent of correct occurrence 

predictions), Kappa statistic (Cohen 1960, Guggenmoos-Holzmann 1996), and AUC values for 

the best models for each of the 59 species at each level of complexity.  The effect of model 

complexity on prediction generality (transferability) was assessed by comparing models built 

with 133 samples from the Clinch subbasin to predict the occurrence of species in 154 samples 

from the Holston subbasin using the same statistics.  All species were present in > 4 samples from 

the Clinch and Holston subbasins.  The effect of model complexity on prediction resolution was 

assessed by comparing mean patch length (MPL) and total patch length (TPL) of the best model 

for each species at each complexity.  The effect of model complexity on accuracy, generality, and 

resolution were assessed for rare species (present in ≤ 10% of samples from the Clinch subbasin) 

and common species (present in ≥ 40% of samples from the Clinch subbasin).  Presence and 
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absence predictions were assigned using species prevalence as the critical value (Hosmer and 

Lemeshow 2000, Liu et al. 2005).   

Relations Between Prediction Characteristics and Species Traits  

The characteristics of predictions of species occurrence are expected to differ among 

species due to differences in their prevalence (Manel et al. 2001) and ecological traits (Boone and 

Krohn 1999, Seoane et al. 2005).  I assess the relation between species prevalence and prediction 

accuracy, generality, and resolution of the best model for each species using linear regression.  I 

use cross-validation AUC to characterize accuracy and AUC of models built with 133 samples 

from the Clinch subbasin to predict the occurrence of species in 154 samples from the Holston 

subbasin to characterize generality, and MPL and TPL to characterize resolution.  These analyses 

are conducted for all species for which significant (cross-validation likelihood ratio and Kappa p-

values < 0.05) models could be built, because including insignificant models would lead to 

spurious results.   

I assess the relations between species prevalence, maximum recorded body length, and 

nesting behavior and MPL and TPL using Kendall’s τ c coefficient of rank correlation.  I use 

Kendall’s coefficient because it is a non-parametric statistic that is easily interpreted (Sokal and 

Rohlf 1995).  Specifically, Kendall’s τ c coefficient is the difference between the probabilities 

that the observed data are in the same order and in different orders for two variables, adjusted for 

ties.  Species prevalence was calculated for the Clinch subbasin.  Numerical codes assigned to 

nesting behaviors are other = 1, egg scatterer = 2, cavity or crevice spawner = 3, and manipulator 

= 4 (following Angermeier 1995).  These analyses are conducted for all species for which 

significant (cross-validation likelihood ratio and Kappa p-values < 0.05) models could be built, 

and for which trait information were available.  The results of these analyses guided the building, 

assessment, and application of models to predict the occurrence of stream fishes throughout the 

UTRB.   

System-wide Predictions and Assessment   

Standard criteria for assessing the sufficiency of model prediction accuracy and 

resolution for conservation applications have not yet been developed.  While developing such 

criteria is beyond the scope of my work, comparison of the accuracy and resolution of my models 

with alternatives derived from habitat descriptions in reference books and others reported in peer-

reviewed literature will facilitate assessment of their relative value and provide examples of the 

results that are likely in other studies.  I built MLR models that predict the occurrence of stream 

fishes with > 4 presence records in the UTRB.  Models were built using all possible combinations 

of 1 to 9 predictors.  The best model for each species was selected based on the significance of 
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the model fit, AIC, and AUC.  Significance of model fit was assessed using the likelihood ratio 

statistic (p < 0.05).  Among significant models, the model with the smallest AIC was selected as 

the best model.  If AIC weights differed by < 0.9, the model with the largest cross-validation 

AUC was selected from the 10% of the models with the smallest AIC values as the best model.  If 

no model for a species had a significant likelihood ratio test, the model with the smallest AIC and 

largest cross-validation AUC was selected as the best model.  Cross-validation SE, SP, CC, 

Kappa, and AUC were used to assess model prediction accuracy and MPL and TPL were used to 

assess model resolution.  I calculated several accuracy statistics to allow comparison of the 

accuracy of my models with “reference book models” for the same species and other model 

predictions described in peer-reviewed literature.   

“Reference book models” were built by converting habitat preference descriptions in 

reference books to remotely sensed predictors and using them to predict fish occurrence in the 

UTRB.  Reference book models were built for all species that had the necessary habitat 

preference descriptions.  Habitat preference descriptions were obtained from Jenkins and 

Burkhead (1993) and Etnier and Starnes (1993).  Predictors included stream size converted to a 

range of Strahler (1952) orders, and the subbasins and physiographic provinces with known 

presence.  Applying reference book models does not require critical values, so AUC is not an 

appropriate assessment statistic.  The prediction accuracy of these models was assessed using the 

SE, SP, CC, and Kappa statistics for occurrence data for the UTRB.  The difference between the 

mean accuracy of MLR models and reference book models for species modeled by both methods 

was compared using paired t-tests.  Prediction accuracy statistics were recorded from 14 peer-

reviewed publications and compared with the accuracy of my prediction.  Values of SE, SP, CC, 

Kappa, and AUC were recorded by species when possible.  Means of accuracy statistics were 

used when statistics for individual species were not provided.  Differences in the mean accuracy 

of MLR models, reference book models and those found in peer-reviewed publications were 

compared using graphical analyses.  All statistical analyses were performed using SAS 9.0 and 

9.1 (SAS Institute Inc., Cary, NC).  All GIS analyses were performed using ARC/INFO 8.0.2 and 

ARC GIS 9.1  (Environmental Systems Research Institute, Inc. http://www.esri.com).    

 

RESULTS 

Model Complexity and Selection 

Fifty-nine species were sufficiently prevalent in the Clinch and Holston subbasins to 

build models to assess the prediction accuracy, generality, and resolution of multiple logistic 

regression models that used from 1 to 6 predictors.  Species prevalence varied but many of these 

http://www.esri.com/
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species were relatively common (mean prevalence = 31% in the Clinch and 25% in the Holston, 

respectively).  Correlations between predictor variables were weak (Pearson correlation < 0.60) 

except between Strahler order and downstream link in the Appalachian Plateau (Table 3.1).  All 

correlations were significant (p < 0.01) due to the large number of reaches (N = 18,487).  Models 

were built from all possible combinations of 6 predictors (1,236 models) using 133 samples from 

the Clinch subbasin.  For most species many (> 50) models had significant likelihood ratio 

statistics.  For most species cross-validation AIC and AUC varied substantially among all 

possible models, but for most species many (> 50) models had similar (< 5% difference) AIC and 

AUC values.   

Model Complexity and Occurrence Characteristics 

For most species, cross-validation SE, SP, and CC increased with increasing model 

complexity (Figure 3.2).  However, 95% confidence intervals for these statistics overlapped 

among most levels of complexity, which reflect the large inter-specific variation in model 

response to increasing complexity.  Kappa increased with increasing complexity, especially for 

common species.  Mean prediction accuracy was relatively high, but varied among species (mean 

AUC = 0.82, range = 0.66 to 0.98 for the most complex models).  Accuracy (AUC) of the best 

model was generally high, varied among species, and slightly increased with each increase in 

complexity (mean change in AUC = 0.02), but > 3 predictors usually improved accuracy little 

(Figure 3.2).   

Prediction generality was assessed using 154 species occurrence samples from the 

Holston subbasin and the best model built to predict fish occurrence in the Clinch subbasin.  

Generality as measured by SE, SP, and CC usually increased slightly with increasing complexity 

(mean change in AUC = 0.01), but 95% confidence intervals indicate few significant increases in 

generality with increasing model complexity.  Sensitivity was low for rare species and high for 

common species, but varied little with increasing model complexity.  Specificity was high for rare 

species and relatively low for common species, but increased with increasing model complexity 

for common species.  Correct classification was high for rare species and low for common species 

and varied little with increasing model complexity.  Models with > 3 predictors had similar SE, 

SP, CC, and AUC (Figure 3.2).  Kappa was low and variable and did not increase with model 

complexity for rare species, but did increase with increasing model complexity for common 

species.  Mean prediction generality was relatively low and varied among species (mean AUC = 

0.67, range = 0.23 to 0.87 for the most complex models).  All statistics describing model 

generality were lower than those describing cross-validation accuracy, but prediction generality 
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was similar to prediction accuracy and changes in accuracy and generality with increasing 

complexity were similar.   

The resolution of predictive models usually increases with increasing model complexity, 

especially for common species (Figure 3.3).  Mean patch length averaged 1126 km for all species 

at all levels of complexity and decreased with increasing species prevalence.  Mean patch length 

was only 23 km (SD = 5) for common species (present in > 40% of samples), but was 3712 km 

(SD = 2267) for rare species (present in < 10% of samples).  The greatest decrease in mean patch 

length occurred when model complexity increased from 1 to 2 predictors for common species 

(Figure 3.3).  However, mean patch length usually decreases as model complexity increases.  

Total patch length (the sum of the length of all reaches where a species is predicted to be present) 

decreases slightly for rare species and increases markedly for common species (Figure 3.3) as 

model complexity increases.   

Relations Between Prediction Accuracy, Generality, and Resolution and Species Traits  

Although some accuracy statistics (i.e., SE, SP, and Kappa) are affected by species 

prevalence, prediction accuracy and generality as measured by AUC were not strongly affected 

by species prevalence.  Prediction accuracy and generality moderately decreased as species 

prevalence increased, but the relations between accuracy and generality with prevalence are 

weak, in part due to large variation in AUC at low prevalence (Figure 3.4).  Cross-validation 

AUC is significantly negatively correlated with species prevalence (p < 0.01), but little variability 

in AUC is explained by prevalence (R
2
 = 0.12).  Generality is not correlated with species 

prevalence (p < 0.18) and little variability in AUC is explained by prevalence (R
2
 = 0.01).  

However, the removal of two outlier species results in a significant relationship (p = 0.01), but 

little variability in AUC is explained by prevalence (R
2
 = 0.11).  The outlier species (Clinostomus 

funduloides and Etheostoma swannanoa) were rare in the Clinch and Holston subbasins.  

Prevalence was 5% and 3% for C. funduloides and 8% and 4% for E. swannanoa for the Clinch 

and Holston subbasins, respectively.   

Descriptions of maximum length and nesting behavior were available for 48 species for 

which I predicted occurrence and assessed prediction accuracy, generality, and resolution in the 

Holston and Clinch subbasins (Table 3.2).  Comparison among families was possible for 5 

families with > 2 species.  Six species from 4 families were analyzed together.  Assessing 

relations between occurrence characteristics and nesting behavior were not possible for catfishes 

and darters because their behaviors did not vary sufficiently among species.   

Relations between mean patch length and total patch length and species traits were weak 

(Kendall’s τ < 0.6) and insignificant for most comparisons (Table 3.2).  A strong relation between 
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prevalence and MPL was found only for catfishes and sunfishes, but the relation was negative for 

catfishes, positive for sunfishes, and significant for only sunfishes.  Prevalence was also strongly 

and significantly related to TPL for sunfishes, and significantly, but weakly related for minnows 

and all species.  Maximum recorded length was negatively related to MPL for only “other 

species”, but the relation was marginally significant.  Maximum recorded length was positively 

related to TPL for only catfishes, but the relation was not significant.  Nesting behavior was not 

related to MPL or TPL for any family.  The small number of species and low variation in traits 

within families may have hindered comparisons (Table 3.2).   

System-wide Prediction and Assessment 

At least 187 fish species are known to be present in the UTRB, but only 129 (69%) 

species were recorded in 524 occurrence samples and only 120 (64%) species were sufficiently 

prevalent (present in > 4 samples) to attempt statistical prediction of occurrences.  Most of these 

120 species are relatively rare (mean prevalence = 13.7), with only 9 (7.5%) species in ≥ 50% of 

the samples and 111 (92.5%) species in < 50% of the samples.   

Statistically significant (p < 0.05) logistic regression models were built for 111 of 120 

(92.5%) species (Appendix A).  Sensitivity was generally low, but varied among species (mean = 

27.3, standard deviation = 31.0).  Specificity and CC were high and less variable among species 

(mean = 91.2 and 90.0, standard deviation = 20.6 and 12.0, respectively).  Kappa statistics were 

generally low, but varied among species (mean = 0.22, standard deviation = 0.23; Figure 3.4).  

Kappa statistics indicate that only 70 (58.3 %) models predicted occurrence more accurately than 

random.  Cross-validation AUC statistics indicate that most models accurately predicted 

occurrence (mean = 0.85, standard deviation = 0.10).  Cross-validation AUC and Kappa statistics 

were significantly correlated, but varied substantially (Pearson correlation = 0.271, p = 0.003).  

Sensitivity, SP, CC, and Kappa are affected by species prevalence (Figure 3.5).   

Models built based on habitat descriptions gleaned from reference books performed 

poorly (Figure 3.6).  Although SE was high (mean = 61.4, standard deviation = 26.8), SP and CC 

were low (mean = 4.8, standard deviation = 13.2 for specificity and mean = 66.3, standard 

deviation = 28.0 for correct classification).  Logistic regression models had significantly lower 

sensitivity (t = -8.94, p < 0.001), and significantly higher specificity (t = 37.99, p < 0.001) and 

correct classification (t = 7.83, p < .0001) than reference book models for 110 species modeled 

using both methods.  The accuracy of reference book models is not affected by species 

prevalence, except at very low prevalence where all accuracy statistics vary among species 

(Figure 3.6).  Models built based on habitat descriptions gleaned from reference books often had 

higher SE, but much lower SP and CC and lower Kappa than MLR models (Figures 3.5 and 3.6).  
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These differences are due to the low resolution of the reference book models that predict presence 

in most locations for most species regardless of their prevalence in sample data.   

I located 13 studies in the peer-reviewed literature that provide model prediction accuracy 

statistics (Appendix B).  Species occurrence was predicted for molluscs (1 study), birds (4 

studies), fishes (3 studies), reptiles (1 study), plants (4 studies), mammals (1 study), and insects (1 

study).  Predictions were made based on MLR (10 studies), generalized regression analyses and 

spatial prediction (GRASP; 1 study), multivariate discriminant analysis (MDA; 1 study), artificial 

neural networks (ANNs; 2 studies), a classification tree (TRE; 1 study), multivariate adaptive 

regression splines (MARS; 1 study), a Bayesian MLR approach (BYS; 1 study), and a rule-based 

model (RB; 1 study).  Accuracy was assessed using a variety of data, including validation 

(generality assessment; 8 studies), cross-validation (accuracy assessment; 5 studies) and 

resubstitution (6 studies).  Resubstitution assesses a model’s fit to the data used to build the 

model.  Several studies used > 1 modeling method, assessment dataset, and/or assessment 

statistic, and few described species prevalence or how critical values were selected.  Several 

studies provided only averages of assessment statistics for > 1 species.  

Combined, these studies predicted the occurrence of > 140 species.  The literature models 

had high SE (mean = 65.4, standard deviation = 5.3), but low SP (mean = 68.2, standard deviation 

= 5.6) and CC (mean = 73.9, standard deviation = 3.0).  Kappa and AUC statistics were high and 

variable (mean = 95.0, standard deviation = 29.2 for Kappa and mean = 85.0, standard deviation 

= 2.4 for AUC).  Most models described in the literature had higher SE, lower SP and CC, and 

much higher Kappa than my MLR models (Figure 3.7).  Models described in the literature and 

my MLR models had similar AUC, suggesting that the models predict with similar accuracy, but 

that many models described in the literature predict absence poorly compared to my MLR 

models.  Descriptions of the spatial resolution were not provided in any peer-reviewed model, 

preventing assessment of how the predictions of occurrence vary spatially.   

 

DISCUSSION 

Knowledge of species occurrence is a prerequisite for efficient conservation, allowing 

conservation efforts to be directed to where they will be effective and away from where they will 

be ineffective.  Predictions of occurrence are often used in lieu of survey information describing 

species occurrence.  Unfortunately, prediction accuracy, generality and resolution are often low 

and may lead to poor conservation decisions, promoting the development of models that better 

predict species occurrence and the ability to predict the characteristics of model predictions.  

Increasing the complexity of the models does not often substantially improve prediction 
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performance.  Most models that predict species occurrence are not rigorously assessed, but many 

likely predict with low accuracy, generality, and resolution.  Prediction accuracy, generality, and 

resolution differ among species, due to differences in their detectability, prevalence, and other 

traits, suggesting that models that perform differently be applied differently.  Improving the 

accuracy, generality, and resolution of predictions of species occurrence is a worthy endeavor, but 

scientists should also facilitate the appropriate applications of available predictions.  Although the 

accuracy, generality and resolution of my models are limited, they provide the best descriptions 

of the likely occurrence of many species and they can provide useful information for management 

and conservation.   

Model Complexity and Selection 

I assessed the effect of model complexity on prediction accuracy to ensure that I used the 

most accurate, parsimonious models to assess relations between prediction characteristics and 

species traits.  Unfortunately, sufficient occurrence data were not available to predict the 

occurrence of most species among stream reaches within specific sub-drainages where they were 

present.  The paucity of species occurrence data for specific regions likely constrains the 

prediction of occurrence for most species to large spatial extents using predictors available at 

those extents, which likely decreased prediction accuracy (Osborne and Suares-Seaone 2002, 

Zhang et al. 2008).  Selecting a best model from among all possible models is not recommended 

as a model selection method (Burnham and Anderson 2002, Olden et al. 2004), but it did ensure 

that the most accurate candidate model was used to assess the effect of model complexity on 

prediction accuracy, generality, and resolution and relations between model characteristics and 

species traits.  Comparing all possible models also demonstrated that for many species many 

statistically significant and similarly accurate models could be built.  Interpretation of predictors 

and extrapolation of results should be done cautiously, but using integrative, remotely sensed 

predictors may reduce the importance of which predictors are used in predictive models.  This 

information may benefit conservation efforts that need to predict the occurrence of many species 

for which little information describing their habitat preferences is available.  A small number of 

integrative predictors can provide relatively accurate predictions of occurrence from many 

species.   

Model Complexity and Prediction Accuracy and Resolution 

Increasing model complexity beyond 2 or 3 predictors did not substantially improve 

prediction accuracy for most of my study species and I suggest that a similar pattern holds for 

most fish species.  Although some scientists have moderately improved prediction accuracy by 

using more complex methods or by using additional predictors (e.g., Olden and Jackson 2002, 
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Segurado and Araujo 2004, Oakes et al. 2005), the results are often equivocal (Manel et al. 

1999b, Peterson and Cohoon 1999, Porter et al. 2000, Chapter 2).  Similar to the results of Beard 

et al. (1999) and Porter et al. (2000), I found that increasing model complexity beyond 2 or 3 

predictors improved mean prediction accuracy little, regardless of species prevalence.  

Interestingly, Hakanson (1995) also found that regression models are usually optimally accurate 

when they use a small number of predictors, suggesting that the effect of model complexity is 

limited by the data and statistical tools used (Hastie and Tibsharini 1990) and how they are 

applied.   

Using different predictors is also unlikely to substantially improve prediction accuracy.  

Porter et al. (2000) suggest that using predictors that describe habitat at fine grains (i.e., 

microhabitat predictors) can improve the accuracy of predictions of stream fish occurrence.  

However, collecting field data to predict species occurrence at fine grains and large extents is 

infrequently a viable option.  Furthermore, the accuracy improvements reported by Porter et al. 

(2000) were similar to those I found by using more complex models that include only remotely 

sensed predictors.  That is, using additional remotely sensed predictors or microhabitat predictors 

provide similar accuracy improvements.  Several of the predictors I used describe factors that 

affect stream structure and function (Vannote et al. 1980, Leupold 1994) and are integrative, 

describing habitat at the spatial scale of dominant controlling processes (Strayer et al. 2006).  

Finding accurate predictors that describe watersheds and stream reaches, but that are not strongly 

correlated with one or more of the predictors I used seems unlikely.   

The usefulness of fine-grain data to predict species occurrence is limited by their 

availability and temporal variability.  Data that describe stream habitat at mesohabitat grains (e.g., 

individual pools), such as the existence of barriers to movement, water temperature, and dominant 

substrate (Schlosser 1991,Torgerson et al. 1999, Fausch et al. 2002, Gresswell et al. 2006) can 

predict fish occurrence or explain unexpected occurrences.  For example, the presence of barriers 

might explain unexpected absences (Neves and Angermeier 1990, Winston and Taylor 1991, 

Quinn and Kwak 2003) and guide conservation efforts (Dunham et al. 2002).  Methods for 

collecting such data at large extents are being developed (Torgerson et al. 1999, 2001, Fausch et 

al. 2002, Betts et al. 2006, Lorang et al. 2005), but are infrequently used.  Using predictors 

collected at fine spatial grains does not guarantee accurate and high-resolution predictions.  As 

the grain of habitat descriptors decreases (resolution increases) their measured temporal 

variability usually increases (Leopold and Langbein 1962, Leopold 1994).  For example, reach-

scale stream gradient changes over geological time scales, stream confluence locations and reach-

scale meander patterns are relatively stable for decades, but pool depths and temperature can vary 
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seasonally and mesohabitat and microhabitat changing flows may occur with short recurrence 

intervals (Leopold 1994).  Using highly temporally variable habitat data for large spatial extents 

may require frequent data and model updates.  The temporally stable predictors that I used affect 

stream system structure and function (Leupold 1994, Knighton 1984) and provide coarse 

predictions that are appropriate for use with occurrence data collected over decades, but they may 

not facilitate predictions of occurrence at the fine spatiotemporal grains at which most individual 

stream fish likely perceive their environment (Holland et al. 2004, Olden et al. 2004).  

Importantly, the short-term dynamics of species occurrence are not of particular interest in 

conservation; which focuses on long-term persistence of populations, often at large spatial 

extents.  Whether the coarse predictors I used facilitate predictions of occurrence for biotic units 

at higher levels of organization (e.g., demes, populations, or assemblages) is not known.   

The contention that higher resolution predictors might improve model predictions made 

by Fransen et al. (2006) is supported by temporally stable upstream extents of fish occurrence 

through their 2-year study (Cole et al. 2006, Fransen et al. 2006).  However, discontinuous fish 

occurrence at fine grains and within large regions may be less temporally stable due to changes in 

habitat conditions and fish movement (Gowan et al. 1994, Fausch and Young 1995, Albanese et 

al. 2004, Taylor et al. 2006).  Predictions of occurrence from coarse, temporally stable predictors 

might best be considered likely occurrences over the temporal extent of change of the predictors 

or zones of intermittent use due to disturbance and species interactions (Angermeier et al. 2002, 

Faush et al. 2002) or changes in habitat conditions and fish movement (Fransen et al. 2006).  

Given the likely temporal variability in species occurrence, the application of static models of 

species occurrence should be tempered with rigorous assessments of prediction accuracy over 

time.   

The temporal extent over which occurrence data were collected affects prediction 

accuracy and resolution.  Using occurrence data that were collected over a long temporal extent 

likely increased SE, but reduced SP, CC, Kappa and prediction resolution for most species in the 

UTRB.  Adding presence detections to assemblage samples when > 1 sample was collected from 

a reach increased the spatial extent and number of predicted presences.  For example, if the 

spatial extent or frequency of detection of a species changes through time, the models will 

overestimate presence because all presence detections are used as a presence for building models 

regardless of the number of samples collected or the habitat conditions at the sample location.  

Overestimation of the extent of species occurrence due to temporally extensive sampling might 

be more likely for rare species because abundance strongly affects observed geographic extent 
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and frequency of detection.  Such errors should be considered when assessing and applying 

predictions of occurrence (Cardillo et al. 1999).   

The delineation of patches of species’ habitats is a prerequisite for efficient conservation 

(Flebbe 1994) because most species are discontinuously distributed at some spatiotemporal scale 

(Weins 1989, Angermeier et al. 2002), possibly due to the spatial distribution of suitable habitat 

and temporal changes in the suitability of habitat (Brown 1984, Angermeier and Schlosser 1989, 

Kolasa 1989).  The usefulness of patch-based models to stream fish conservation depends on how 

well patches can be identified (Dunham et al. 2002) and managed for conservation objectives.  

My models predicted discontinuous distributions for most species.  Greater model complexity 

moderately improved model resolution, but the effect of model complexity on resolution was 

relatively small for many species.  The ability to directly observe environmental attributes that 

species perceive as habitat often allows scientists to identify habitat patches of terrestrial animals 

(Boone and Krohn 2000, Holland et al. 2004), but a priori delineation of patches often imposes an 

anthropogenic scale of analysis that can bias results (Weins 1989).  In some studies scientists 

could identify patches of stream fish habitat a priori (e.g., Rieman and McIntyre 1995, Dunham 

and Rieman 1999, Isaak and Thurow 2006), but identifying patches of stream fish habitat is often 

tenuous due to the absence of knowledge of habitat preferences and information describing 

habitat attributes that affect fish occurrence (e.g., temperature or water chemistry).  My 

predictions of occurrence delineate patches of habitat that are defined by the data and can be used 

to guide research and conservation efforts.  How well the patches of habitat are defined varies 

with model complexity and among species.   

Greater model complexity increased the resolution of fish occurrence predictions, but 

mean patch lengths were long for most species and the effect of model complexity on resolution 

decreased with increasing species prevalence.  I expected that increasing model complexity 

would better delineate the concurrence of environmental discontinuities and fish occurrence, 

reducing mean patch length (MPL) and the total length of stream in which species are predicted 

present (TPL).  For common species, greater model complexity reduced MPL little, whereas TPL 

increased because more predictions of presence were made.  More complex models allowed for a 

greater range of conditions with predictions of presence.  Using only 2 or 3 predictors to predict 

the occurrence of common species may underestimate their range, possibly because they are able 

to use alternative habitat as defined by the more complex models.  Greater model complexity 

reduced MPL and TPL of rare species, but their MPL and TPL are large compared to those of 

common species.  Low resolution in models for rare species may often be due to failure of the 

predictors to describe important but unknown environmental gradients.  However, a more 
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parsimonious explanation for the effect of prevalence on MPL and TPL is that low resolution is a 

statistical artifact of the small number of presence records for rare species in the data used to 

build the models and the critical values used to assign presence and absence predictions.   

Complex models can improve prediction resolution, but they require sufficient presence 

and absence data to do so and effect of species prevalence should be accounted for in the 

application of model predictions.  Although prediction accuracy may be similar for rare and 

common species for some statistics (e.g., AUC), low resolution for rare species may limit the 

usefulness of model predictions and should affect how predictions of occurrence of species that 

differ in prevalence are applied.  Precise predictions of occurrence for rare species should not be 

expected without sufficient presence data, regardless of prediction accuracy.  Model predictions 

for rare species should be interpreted and applied with greater caution than those for common 

species.  Models that predict the presence of rare species might be accurately describing suitable 

habitat, but the presence of suitable habitat does not ensure the presence of the species.  Managers 

should include additional and/or larger locations where rare species are predicted to be present in 

conservation and monitoring plans.   

Reliance on accuracy statistics provided overly optimistic assessments of the usefulness 

of predictive models for many species.  Assessing model resolution provided additional 

information that can be used to direct the appropriate application of model predictions.  Predicted 

discontinuities of fish presence can be used to direct conservation actions.  Further investigation 

of discontinuities in fish species occurrence and cautious application of the predictions to guide 

conservation efforts are warranted.  Although consideration of the spatial pattern and relative 

spatial position of habitat patches is a frequent consideration for terrestrial conservation, the 

vector nature of lotic systems and difficulty in delimiting fish habitat, especially at large spatial 

extents, complicate their use for stream fish conservation (but see Isaak and Thurow 2006).  The 

predicted occurrences of several species (e.g., Cyprinella monacha, Cottus carolinae and 

Etheostoma zonale) indicate that they are present in relatively large patches (contiguous reaches) 

of headwater stream (sensu Gomi et al. 2002) that are separated by patches with low predicted 

probability of presence.  Other species (e.g., Ambloplites rupestris) occur in patches of large 

streams with discontinuities among and within large streams.  Most predicted occurrences are 

discontinuous, but patch sizes are large for most species, indicating that the models do not 

differentiate among most adjacent reaches or that the species do not discriminate among many 

contiguous reaches.  The coarseness of predictions of occurrence limits their use to relatively 

large spatial extents.  It is unlikely that differences in predicted probabilities of occurrence among 

most adjacent reaches are large or ecologically significant.  Despite small differences in predicted 
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probabilities of occurrence, observed occurrence is often discontinuous for rare species 

(Angermeier et al. 2002), supporting the notion that habitat is often not limiting the occurrence of 

rare species.   

Concern for parsimony may be exaggerated for relatively simple pragmatic models 

(Loehle 1983, Starfield 1997) like those I built.  For these data the cautious use of moderately 

overfit models is warranted due to increased prediction accuracy, generality, and resolution.  

Contrary to expectation (Levins 1966) and similar to the results found by Porter et al. (2000), 

increasing model complexity usually slightly improved model generality.  Greater generality may 

be the result of including predictors that are important in the assessment region (Leftwich et al. 

1997).  Relatively low generality compared to accuracy suggests that, when possible, models 

should be built using data from the region in which they will be applied.  However, prediction 

accuracy and generality varied among rare and common species more than among models of 

different complexity for those species (Figure 3.2), suggesting that additional occurrence data, 

especially presence data, might improve model performance more than increasing model 

complexity.  Concern for model parsimony may be exaggerated, but the improvement in 

prediction accuracy, generality, and resolution achievable via increasing model complexity, is 

limited.   

Relations Between Prediction Accuracy, Generality and Resolution and Species Traits 

Scientists should expect the accuracy, generality and resolution of predictions of species 

occurrence to be related to species traits.  The mechanisms that define lotic system and generate 

patterns of habitat that affect species occurrence produce a spatial and temporal continuum of 

environmental gradients within the stream network (Vannote et al. 1980).  Discontinuities in the 

continuum are identifiable as parts of a spatial hierarchy (Frissell et al. 1988) and fish might 

perceive these discontinuities as boundaries (Holling 1992) that delineate populations or 

population segments.  The apparent structure of stream fish populations typically reflects the fact 

that many of the habitat units that species respond to are spatially discrete (e.g., Frissell et al. 

1988, Pringle et al. 1988, Hawkins et al. 1993).  Observed prediction accuracy, generality and 

resolution can reflect real species occurrence and how scientists observe or perceive the system.   

Because I define habitat patches based on environmental attributes and species 

occurrence data, I expect characteristics of suitable patches to be related to species traits that 

affect the species’ spatial distribution and persistence in suitable habitat (Boone and Krohn 1999, 

Goldstein and Meador 2004, Seoane et al. 2005).  That is, rather than impose an anthropocentric 

hierarchy of spatial units on streams (e.g., Frissell et al. 1986, Townsend and Hildrew 1994) that 

may affect perceived patterns of occurrence, I used empirical data and models to predict 
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occurrence along a continuum (e.g., Vannote et al. 1980, Wiens 1989), and looked for emergent 

patterns (i.e., patches and discontinuities).  Effective use of occurrence predictions for 

conservation requires knowledge of species interactions with patches of habitat and the matrix in 

which the patches are present (Pringle et al. 1988, Gotelli and Taylor 1999).  The concept of 

landscape filters suggests that environmental attributes “filter” or exclude certain species traits 

(and species with those traits) at a range of spatiotemporal scales and thus affect species 

occurrence patterns (Poff 1997).  Lamouroux et al. (2002) found that traits of stream fish 

communities were related to characteristics of reach- and microhabitat-scale environmental 

gradients.  Thus, the accuracy, generality and resolution of the predictions of occurrence might be 

due to relations between the environmental attributes used as predictors and species traits.  Strong 

relations between prediction accuracy, generality and resolution and species traits would support 

the contention that predicted patches of occurrence delineate ecologically meaningful spatial units 

and boundaries that are perceived by species (at some spatiotemporal scale) and affect their 

occurrence.  Strong relations between occurrence characteristics and species traits would also 

support the use of the patches as conservation and monitoring units and might facilitate the 

prediction of occurrence characteristics of different species.    

The prediction of occurrence characteristics is precluded by the generally weak and 

inconsistent relations between predicted occurrence characteristics (MPL and TPL) and species 

prevalence, maximum recorded length, and nesting behavior among and across families (Table 

3.2).  A parsimonious explanation for the failure to find consistent relations between occurrence 

characteristics and species traits is that the models did not predict fish occurrence with sufficient 

accuracy and/or resolution to define ecologically meaningful patches.  Inadequate or incorrect 

predictor variables, fish occurrence sampling errors, and/or improper model specification are 

possible causes of inaccurate and low-resolution model predictions.  Accurate, high resolution 

prediction of patches is a prerequisite for assessing relations between prediction characteristics 

and species traits.  Collecting species occurrence data that facilitate accurate prediction of 

occurrence, including spatial and temporal variability in occurrence and detectability, is a logical 

first step for additional research.  Alternatively, the species traits I examined may not be 

important factors in determining occurrence of many species among reaches in the UTRB.  Also, 

the statistics I used to describe prediction characteristics (i.e., MPL and TL) may not provide 

meaningful descriptions of prediction characteristics at the spatial extent of the UTRB (Goldstein 

and Meador 2004).  Given accurate high-resolution predictions of species occurrence, hypotheses 

about how traits affect occurrence characteristics can be developed and tested using a variety of 

statistics. 



97 

 

Predictions of fish occurrence are made at many grains and the grain of prediction and 

how critical values are applied to define patches constrains prediction characteristics.  For 

example, Mastrorillo et al. (1997) predicted the occurrence of 3 fish species within microhabitats, 

Porter et al. (2000) predicted the occurrence of 14 fishes among stream reaches, Wall et al. (2004) 

predicted the occurrence of Topeka shiner (Notropis topeka) in valley segments (several 

contiguous stream reaches), Dunham et al. (2002) predicted the occurrence of bull trout 

(Salvelinus confluentus) among watersheds, and Fransen et al. (2007) predicted the upstream 

extent of any fish species at 10-m increments.  Using reaches as prediction units constrained the 

minimum grain of predictions for my models, likely to patches that are larger than the scale of an 

individual fish’s perception of habitat (Holland et al. 2004).  That is, while stream fish movement 

is increasingly acknowledged (Gowan et al. 1994, Fausch and Young 1995, Albanese et al. 2004) 

it is unlikely that most individuals of any given species respond to the overall conditions of these 

patches of habitat, complicating the detection of relations between prediction characteristics and 

species traits.  The detection of relations between traits and occurrence characteristics might 

usefully be investigated by examining the responses of individuals as well as demes or 

populations.  Because prediction models were built using occurrence data that were collected over 

a long temporal extent, the patches may be scaled to the response of populations or demes.  

Furthermore, because the characteristics of patches can vary substantially with the (often 

arbitrary) selection of critical values, relations between prediction characteristics and species 

traits may be obscured by the selection of critical values.  If patch-based models are to be useful 

for stream fish conservation, the delineation of patches will necessarily be coarse until such 

conjectures can be evaluated.   

Absence of strong relations between occurrence characteristics and species traits is not 

convincing evidence that such relations do not exist.  However, regardless of the explanation, 

failure to detect the expected patterns emphasizes the need to rigorously assess the accuracy and 

resolution of predictions of occurrence and to cautiously apply the predictions to conservation 

decisions.  Differences in the directions of relations between prediction characteristic and species 

traits suggest that how ecological attributes affect occurrence characteristics differs among fish 

families.  More importantly, variation in prediction characteristics among species suggests that 

the value of predictions of occurrence vary with their accuracy and resolution.  Whatever the 

reason for the weak and variable relations I observed, these models provide the best available 

descriptions of species occurrence and can inform some conservation decisions.   
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System-wide Prediction and Assessment 

Confidence in a model encourages its use, whereas rigorous model assessment 

encourages its appropriate use.  The accuracy and generality of model predictions and the realism 

of model structure promote confidence in a model, but it is unlikely that all of these attributes can 

be simultaneously satisfactorily met (Levins 1966).  Although methods for assessing models are 

well developed (Fielding and Bell 1997), the results of rigorous model assessments are 

infrequently reported, objective criteria for assessing model accuracy are not well developed and 

expectations for prediction accuracy and resolution are infrequently stated.  Comparing the 

accuracy of statistical models built to predict fish occurrence in the UTRB with the accuracy of 

alternative models for the same species and with results from studies described in peer-reviewed 

literature substantiates the usefulness of statistical models for making some conservation 

decisions, identifies some common limitations, and demonstrates the need for the rigorous 

assessment and cautious and flexible application of statistical model predictions of occurrence to 

conservation problems.   

Insufficient occurrence data was a problem for my work and likely for many other 

projects.  Insufficient occurrence data precluded the prediction of occurrence of several species 

and limited the prediction accuracy (Stockwell and Peterson 2002) and resolution for some rare 

species.  Although mean prediction accuracy was similar for common and rare species for which 

significant models could be built, prediction accuracy varied substantially among rare species and 

prediction assessments may be questionable for them.  However, it is unlikely that additional 

occurrence data would substantially improve the accuracy of the predictions of occurrence for 

most species.  Nevertheless, collecting additional occurrence data, especially presence data, could 

increase the number of species for which models can be built and might improve the accuracy of 

models for some rare species.   

Low species prevalence is likely a common problem because most species are relatively 

uncommon throughout most of their range (Gaston 1994) and few regions are likely to be 

sufficiently sampled.  Although my sample size was large (N = 524), most species were rare 

(Figure 3.8).  Low prevalence will make predicting occurrence difficult until a minimum number 

of presence detections are attained (Karl et al. 2000).  This may require a very large number of 

samples and/or reducing the frequency of sampling omission errors.  Methods to ensure sufficient 

sampling at samples sites and across the extent of prediction are available (Angermeier and 

Smogor 1995, Chapter 1), but the sufficiency of sampling is infrequently addressed.  The results 

of a sampling simulation in which increasing numbers of samples were randomly collected from 

the 524 assemblage samples from the UTRB demonstrate that > 650 samples are necessary to 
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collect ≥ 95% of the fish species likely present in the UTRB, given the sampling methods 

employed to collect the data used in this study (Figure 3.9).  The fish assemblage in the UTRB is 

insufficiently sampled, precluding the prediction of occurrence for several rare species.  Sampling 

omission errors also likely limit prediction accuracy (Thuiller et al. 2004).  The large number of 

samples I used may have increased the likelihood of including uncommon or erroneous 

observations and decreased prediction accuracy (Clarkson and Wilson 1995).  Methods are 

available to account for imperfect presence detection (Bayley and Peterson 2001, Peterson and 

Dunham 2003, McKenzie 2005, Royle et al. 2005), but the necessary repeated sampling data are 

not available for the UTRB.   

In lieu of sufficient occurrence data, the opinions of experts are sometimes used to 

predict species occurrence (Pearce et al. 2001, Petit et al. 2003, Berg et al. 2004).  Comparing the 

accuracy of models based on the opinions of experts to the accuracy of statistical models can 

improve the rigor of model assessment by providing objective assessment criteria.  Models based 

on habitat descriptions from reference books performed very poorly compared to statistical 

models, supporting the use of statistical models.  Expert opinion can improve prediction 

performance (Martin et al. 2005), but it does not ensure accurate predictions (Seoane et al. 2005).  

The paucity of quantitative data describing stream fish habitat at the scale of stream reaches and 

watersheds available in reference books precluded accurate prediction of occurrence.  Most of the 

descriptions of habitat preference provided in reference books described habitat at grains too fine 

to allow prediction at large spatial extents.  Assessments of micro- and meso-habitat (Frissell et 

al. 1988) do not adequately describe the habitat or predict the occurrence of many fishes 

(Richards et al. 1996, Schlosser 1991, 1995, Grossman et al. 1995).  The description of 

quantitative habitat descriptors that are amenable to remote sensing should be promoted to 

enhance the value of reference books and to promote better understanding of the factors affecting 

fish occurrence.   

The similarity of my results, especially for common species, to results reported in the 

peer-reviewed literature for a range of species and prediction methods suggests a common 

limitation to prediction accuracy.  Although methods for building, assessing, and applying models 

are well developed (Fielding and Bell 1997, Guisan and Zimmermann 2000), the dearth of 

rigorous model assessments, especially assessments of prediction resolution, precludes 

conclusions regarding the usefulness of many predictions of species occurrence.  However, the 

available accuracy assessment results demonstrate surprising similarities.  The overall accuracy of 

most models that predict species occurrence is similar among models, regardless of species, data, 

or modeling method used.  Most models predict occurrence correctly about 70 to 90% of the time 
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(i.e., range of CC is about 0.70 to 0.90 and AUC is usually about 0.80).  Most variation in model 

accuracy appears to be due to the interaction of species prevalence, the critical value selected, and 

the statistic used to describe accuracy.   

Unfortunately, few studies rigorously assess model predictions or describe how their 

predictions should be applied to conservation problems.  Specifically, how critical values for 

presence and absence are selected given consideration of model resolution, species prevalence, 

likely sampling errors, and the application of the predictions, are infrequently described.  

Applying different critical values can produce substantially different depictions of a species likely 

geographic distribution and habitat use.  For example, using the same model to predict the 

occurrence of snubnose darter (Etheostoma simoterum) in the UTRB, a critical value of 0.5 

predicts their presence in 8,012 km whereas a critical value of 0.6 predicts their presence in 3,726 

km.  Using the larger critical value also results in a larger number of smaller patches of predicted 

presence.  Rigorous assessment of model predictions, including the assessment of model 

accuracy, generality, and resolution of many alternative models for rare and common species 

provided insights into how model predictions can be appropriately assessed and applied.  Several 

statistics were necessary to adequately describe prediction accuracy.  SE, SP, and CC were 

informative, but are sensitive to species prevalence and the critical value used.  Manel et al. 

(2001) recommend using Kappa to assess model predictions, but Kappa is also affected by 

prevalence and requires selection of a critical value (Byrt, et al. 1993, Guggenmoos-Holzmann 

1996, Fielding and Bell 1997).  Testing the significance of Kappa complemented other accuracy 

statistics by demonstrating that significant model fit (i.e., likelihood ratio < 0.05) and high 

accuracy (e.g., CC and AUC > 0.90) do not ensure that a model predicts better than random.  

However, the results of this test can change if a different critical value is used.  The AUC was a 

useful model assessment statistic because it is less affected by prevalence and does not require the 

selection of a critical value (Fielding and Bell 1997), but it is insensitive to relatively small 

differences in prediction accuracy and does not describe the type of error encountered when the 

model is applied.  Rigorous assessment of model predictions should guide their appropriate 

application.     

Critical values can be adjusted to optimize the usefulness of predictions (Guisan and 

Zimmerman 2000, Hosmer and Lemeshow 2000).  I adjusted critical values to increase sensitivity 

and to account for the effect of (usually low) prevalence on predictions from logistic regression.  I 

used prevalence as a critical value to allow meaningful assessment of prediction accuracy and 

comparisons of prediction accuracy among species, but it did not fully account for the effect of 

prevalence on prediction accuracy.  For conservation applications, critical values can be adjusted 
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to increase SE and increase the likelihood that the species entire habitat is delineated.  This can 

inform conservation decisions if anthropogenic impacts are planned in locations of predicted 

presence.  Alternatively, predicted probabilities of species occurrence can be mapped to provide 

additional information to those making conservation decisions (Elith et al. 2002, Miller et al. 

2004).  Although predicted probabilities of occurrence are not proportional to the probability of 

use by a species (Keating and Cherry 2004), they do provide information describing the locations 

of likely suitable habitat and differences in the probability of occurrence among locations, which 

can inform conservation decisions.  Although the prediction accuracy, generality and resolution 

of many of my models were limited, they provide the best descriptions available of the likely 

occurrence of many species.  While not perfect, such models are useful for management and 

conservation because they describe likely species occurrence that should be used to inform 

decisions, such as if species-specific conservation practices are warranted for a construction 

project.   

  

CONCLUSIONS 

Static statistical models that use temporally stable remotely sensed predictors can predict 

fish occurrence among stream reaches with sufficient accuracy to facilitate many conservation 

decisions.  However, low prediction accuracy and resolution, especially for rare species, limits 

their utility for making conservation decisions at fine spatial grains.  Improving the accuracy, 

generality, and resolution of model predictions is a valuable goal.  Additional occurrence data 

(especially presence detections) may improve the accuracy and resolution of models that predict 

the occurrence of rare species, but increasing model complexity is unlikely to substantially 

improve model prediction accuracy or resolution for most species.  Substantial improvement of 

accuracy and resolution may not be possible, suggesting that protocols that facilitate the 

appropriate application of model predictions are needed.   

Prediction accuracy and resolution vary among species, suggesting that prediction 

characteristics may be related to species ecological traits, and that anticipation of prediction 

characteristics is possible.  However, I found little evidence of relations between prediction 

characteristics and species traits, which stymied efforts to anticipate prediction characteristics.  

Only species prevalence is strongly related to prediction characteristics, suggesting that prediction 

characteristics are statistical artifacts, at least for many species.  Variation in prediction 

characteristics among species and the inability to anticipate prediction characteristics portend the 

need to rigorously assess model predictions to ensure their appropriate application to conservation 

problems.   
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The low accuracy and resolution of most models suggest that conservation of stream 

fishes must consider both the observed discontinuity of occurrences as well as the observed 

continuity of their habitat.  Conservation actions may have to occur at large spatial extents and in 

several locations because we cannot accurately predict the occurrence of most species with high 

resolution.   
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  Table 3.1.  Pearson correlations among Strahler stream order, downstream link magnitude, mean 

reach elevation, mean reach gradient, reach length and reach sinuosity for 18,487 reaches in 3 

physiographic provinces and all physiographic provinces of the upper Tennessee River basin.  All 

correlations were significant (p < 0.01).   

 
           

  Order  Link  Elevation  Gradient  Length 
           

  Appalachian Plateau  (N = 1,216) 

Link   0.64         

Elevation  -0.39  -0.42       

Gradient  -0.12  -0.01   0.14     

Length  -0.31  -0.11   0.17   0.13   

Sinuosity   0.07   0.02  -0.03  -0.08   0.35 
           

  Blue Ridge  (N = 8,790) 

Link   0.58         

Elevation  -0.36  -0.40       

Gradient  -0.47  -0.26   0.34     

Length  -0.34  -0.08   0.14   0.22   

Sinuosity   0.14   0.13  -0.13  -0.02   0.36 

           

  Ridge and Valley  (N = 8,085) 

Link   0.45         

Elevation  -0.18  -0.27       

Gradient  -0.38  -0.19   0.44     

Length   0.01   0.05   0.02   0.03   

Sinuosity   0.13   0.07  -0.08  -0.05   0.19 
           

  All Physiographic Provinces Combined  (N = 18,487) 

Link   0.50         

Elevation  -0.23  -0.31       

Gradient  -0.39  -0.22   0.45     

Length  -0.11   0.02   0.01   0.07   

Sinuosity   0.13   0.09  -0.13  -0.06   0.24 
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  Table 3.2.  Kendall’s τ c rank correlations and probabilities between species prevalence (Prev), 

maximum recorded length of species (Max), and nesting behavior (Nes), and total length of 

predicted presence (TPL) and mean length of predicted patches of presence (MPL).  Number of 

species compared are in parentheses and significant correlations (p ≤ 0.05) are in bold font.  

Identical nesting behaviors within groups precluded some comparisons.   

 

  Prev  Max  Nes  Prev  Max  Nes  Prev  Max  Nes  
                    

  Catfishes (3)
 

 Darters (8)
 

 Minnows (17)
 

 

TPL  0.33  1.0    -0.36  0.26    -0.41  -0.30  -0.23  

  0.60  0.12    0.22  0.37    0.02  0.09  0.25  
                    

MPL  -1.0  -0.33    -0.29  0.42    -0.28  -0.27  0.02  

  0.12  0.60    0.32  0.16    0.12  0.14  0.92  
                    

  Suckers (7)
 

 Sunfishes (7)
 

 Other Species (6)
 

 

TPL  -0.05  -0.19  -.036  0.62  0.33    -0.20  0.07  -0.39  

  0.88  0.54  0.32  0.05  0.29    0.57  0.85  0.30  
                    

MPL  -0.05  -0.19  -0.36  0.62  -0.05    -0.07  -0.60  -0.54  

  0.88  0.54  0.32  0.05  0.88    0.85  0.09  0.15  
                    

  All Species (48)              

TPL  -0.22  0.02  -0.18              

  0.03  0.79  0.12              
                    

MPL  -0.17  -0.07  -0.02              

  0.08  0.49  0.85              
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  Figure 3.1.  Location of the upper Tennessee River basin and its 5 major sub-basins and 3 

physiographic provinces.   
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  Figure 3.2. Mean and 95% confidence intervals for sensitivity (SE), specificity (SP), total 

correct classification (CC), Kappa statistic and area under the receiver operator characteristic 

curve (AUC) for logistic regression models built with 1 to 6 predictors to predict the occurrence 

of 59 stream fish in the upper Tennessee River basin.  Statistics describing the prediction 

accuracy (unfilled) are cross-validation results for models built in the Clinch subbasin whereas 

those describing generality (filled) are the same models applied to the Holston subbasin.  

Statistics are calculated for rare (prevalence ≤ 10%) and common (prevalence > 40%) species.  
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  Figure 3.3.  Relationships between model complexity (number of predictors), mean length of 

patches (filled symbols; contiguous reaches with predicted presence), and total length of patches 

(unfilled symbols) for 59 species, 13 rare (< 10% prevalence) species and 11 common (> 40% 

prevalence) species of stream fish for which predictions of occurrence were made in the Clinch 

subbasin.   
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  Figure 3.4.  The relations between species prevalence in the Clinch subbasin and prediction 

accuracy (A; cross-validation AUC), species prevalence in the Holston subbasin and model 

generality (B; AUC for models built for the Clinch and applied in the Holston), and the relation 

between species prevalence in the upper Tennessee River basin and mean patch length (C).  

Dashed lines are the regression lines for the Clinch accuracy assessment and the Holston 

generality assessment.  The model with the largest AUC for each species is used.     
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  Figure 3.5.  Relationships between species prevalence and sensitivity, specificity, correct 

classification, Kappa, and area under the receiver operating characteristic (AUC) prediction 

accuracy statistics for 120 logistic regression models that predict the occurrence of stream fishes 

in the upper Tennessee River basin.   

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

Prevalence

S
en

si
ti

v
it

y

0
10
20

30
40
50
60
70

80
90

100

0 10 20 30 40 50 60 70 80 90 100

Prevalence

C
o

rr
e
c
t 

C
la

s
s
if

ic
a
ti

o
n

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

Prevalence

S
p

e
c
if

ic
it

y

0.5

0.6

0.7

0.8

0.9

1.0

0 10 20 30 40 50 60 70 80 90 100

Prevalence

A
U

C

0.0

0.2

0.4

0.6

0.8

1.0

0 10 20 30 40 50 60 70 80 90 100

Prevalence

K
a

p
p

a



117 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  Figure 3.6.  Relationships between species prevalence and sensitivity, specificity, correct 

classification, and Kappa prediction accuracy statistics for 104 reference book models that predict 

the occurrence of stream fishes in the upper Tennessee River basin.   
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  Figure 3.7.  Mean and 95% confidence intervals for sensitivity (SE), specificity (SP), total 

correct classification (CC), Kappa statistic, and area under the receiver-operator characteristic 

curve (AUC) for models that predict species occurrence.  Multiple logistic regression models 

(diamonds) and models based on the opinions of experts (circles) predict the occurrence of 120 

fish species in the upper Tennessee River drainage.  A variety of methods were used in 14 peer 

reviewed publications (squares) to predict the occurrence of >140 species.   
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  Figure 3.8.  Prevalence of 120 fish species in the upper Tennessee River basin.  Bars represent 

individual species.  The height of each bar is the percent of 524 samples in which a species was 

present.  Filled bars (N = 59) represent species used to assess the effect of model complexity on 

prediction accuracy, resolution and generality.   
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  Figure 3.9.  Sampling simulation results for 524 fish occurrence samples from the upper 

Tennessee River basin.  Values of the ordinate are the mean proportion of the estimated species 

richness collected in 10,000 sample iterations at the sample size on the abscissa.  Error bars are 

95% bootstrap confidence bounds.  The dashed line represents 95% of the estimate of species 

richness (N = 136) that was calculated from the asymptote of the sampling simulation results.   
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  Appendix A.  Number of predictors (d.f.), likelihood ratio (l.r.) and probability, area under the 

receiver-operator characteristic curve (AUC), cross-validation sensitivity (SE), Specificity (SP) 

and total correct classification (CC), Kappa and p-value for logistic regression models that predict 

the occurrence of fish in the upper Tennessee River basin.  For each species the model with the 

smallest AIC score and /or largest AUC among all models compared is described.  Superscripts 

correspond to analytical groups in Table 3.2. 

 

Species  d.f.  l.r.  p-value  AUC  SE  SP  CC  Kappa  p-value 
                   

Ambloplites rupestris  3  66.46  <0.001  0.71  85.97  38.62  68.89  0.27  <0.001 

Ameiurus melas  2  8.06  0.005  0.80  0.00  100.00  99.62  0.00  0.500 

Ameiurus natalis  2  41.22  <0.001  0.73  1.61  100.00  88.36  0.03  0.031 

Ameiurus nebulosus  2  2.40  0.301  0.91  0.00  100.00  99.81  0.00  0.500 

Ammocrypta clara  6  26.13  <0.001  1.00  33.33  99.81  99.43  0.40  <0.001 

Aplodinotus grunniens  4  71.47  <0.001  0.93  21.74  98.80  95.42  0.27  <0.001 

Campostoma anomalum  4  26.39  <0.001  0.67  99.78  0.00  88.17  0.00  0.358 

Carassius auratus  1  4.14  0.126  0.77  0.00  100.00  98.85  0.00  0.500 

Carpiodes cyprinus  4  21.85  <0.001  0.91  0.00  100.00  98.28  0.00  0.500 

Catostomus commersoni  4  22.96  <0.001  0.63  7.41  96.42  64.31  0.05  0.026 

Clinostomus funduloides  3  20.28  <0.001  0.83  0.00  100.00  97.52  0.00  0.500 

Cottus baileyi
6 

 5  65.17  <0.001  0.89  99.39  5.88  93.32  0.09  0.001 

Cottus bairdii
6 

 6  43.89  <0.001  0.76  0.00  99.79  88.74  0.00  0.362 

Cottus carolinae  6  107.70  <0.001  0.73  93.26  40.44  74.81  0.38  <0.001 

Cyprinella galactura
3 

 6  151.32  <0.001  0.80  63.85  79.74  73.28  0.44  <0.001 

Cyprinella monacha  5  35.05  <0.001  0.90  7.69  100.00  97.71  0.14  <0.001 

Cyprinella spiloptera
3 

 6  133.14  <0.001  0.82  37.72  96.83  83.97  0.42  <0.001 

Cyprinus carpio
3 

 5  88.00  <0.001  0.81  22.22  97.79  87.40  0.32  <0.001 

Dorosoma cepedianum
6 

 6  149.74  <0.001  0.91  53.45  97.64  92.75  0.58  <0.001 

Dorosoma petenense  3  10.96  0.012  0.99  0.00  100.00  99.62  0.00  0.500 

Erimystax cahni  1  18.91  <0.001  1.00  0.00  99.81  99.43  0.00  0.475 

Erimystax dissimilis  7  152.58  <0.001  0.91  46.15  96.73  90.46  0.49  <0.001 

Erimystax insignis  3  108.39  <0.001  0.85  32.26  98.70  90.84  0.41  <0.001 

Esox masquinongy  4  15.16  0.002  0.90  100.00  100.00  100.00  0.00  0.500 

Esox niger  4  18.02  0.001  1.00  93.26  40.44  74.81  0.00  0.500 

Etheostoma acuticeps  7  31.97  <0.001  0.96  0.00  100.00  98.85  0.50  <0.001 

Etheostoma blennioides
2 

 4  224.96  <0.001  0.84  73.26  75.56  74.43  0.50  <0.001 

Etheostoma caeruleum  4  17.15     0.0018  0.86  0.00  100.00  98.28  0.50  <0.001 

Etheostoma camurum
2 

 4  91.87  <0.001  0.93  38.71  98.17  94.66  0.43  <0.001 

Etheostoma 

chlorobranchium  4  29.48  <0.001  0.91  8.33  99.80  97.71  0.14  <0.001 

Etheostoma flabellare  6  56.85  <0.001  0.70  19.75  93.73  71.56  0.17  <0.001 

Etheostoma jessiae  4  33.93  <0.001  0.79  0.00  100.00  93.89  0.00  0.500 

Etheostoma kennicotti  3  42.62  <0.001  0.94  0.00  99.80  97.14  0.00  0.500 

Etheostoma percnurum  4  33.93  <0.001  0.95  0.00  100.00  98.28  0.00  0.500 

Etheostoma rufilineatum
2 

 6  183.37  <0.001  0.82  69.13  75.51  72.71  0.45  <0.001 

Etheostoma simoterum  6  82.57  <0.001  0.72  91.60  37.72  74.43  0.33  <0.001 

Etheostoma stigmaeum  4  52.21  <0.001  0.82  0.00  99.80  92.94  0.00  0.393 

Etheostoma swannanoa
2 

 3  31.92  <0.001  0.75  5.00  99.79  92.56  0.08  <0.001 

Etheostoma tippecanoe  6  42.53  <0.001  0.98  25.00  100.00  98.85  0.40  <0.001 

Etheostoma vulneratum
2 

 2  55.53  <0.001  0.83  0.00  100.00  93.32  0.00  0.500 

Etheostoma zonale  4  180.65  <0.001  0.86  48.06  91.65  80.92  0.09  <0.001 
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  Appendix A. Continued.   

                   

Species  d.f.  l.r.  p-value  AUC  SE  SP  CC  Kappa  p-value 
                   

Fundulus catenatus
6 

 3  9.02  0.011  0.61  0.00  100.00  91.60  0.00  0.500 

Gambusia affinis  4  37.14  <0.001  0.91  0.00  100.00  97.33  0.00  0.500 

Hemitremia flammea  6  18.18  0.001  1.00  50.00  100.00  99.81  0.67  <0.001 

Hybopsis amblops  5  166.31  <0.001  0.94  38.18  97.44  91.22  0.43  <0.001 

Hypentelium nigricans  4  71.96  <0.001  0.76  96.84  8.93  78.05  0.08  0.004 

Ichthyomyzon bdellium
6 

 5  96.80  <0.001  0.94  50.00  99.00  96.76  0.57  <0.001 

Ichthyomyzon greeleyi  3  4.85  0.089  0.61  0.00  100.00  98.47  0.00  0.500 

Ictalurus punctatus
1 

 2  134.81  <0.001  0.93  44.68  97.27  92.56  0.48  <0.001 

Ictiobus bubalus  3  16.13     0.0003  0.99  50.00  100.00  99.81  0.67  <0.001 

Ictiobus niger  6  30.39  <0.001  1.00  66.67  100.00  99.81  0.80  <0.001 

Labides thessicculus  2  27.75  <0.001  0.92  0.00  99.81  98.28  0.00  0.450 

Lampetra appendix  3  10.39  0.016  0.80  0.00  100.00  98.09  0.00  0.500 

Lepisosteus osseus  5  125.76  <0.001  0.96  75.00  99.19  97.90  0.78  <0.001 

Lepomis auritus
5 

 6  119.38  <0.001  0.77  52.58  80.30  70.04  0.34  <0.001 

Lepomis cyanellus
5 

 2  26.26  <0.001  0.73  0.00  100.00  92.18  0.00  0.500 

Lepomis gibbosus
5 

 4  10.24  0.006  0.76  0.00  100.00  97.33  0.00  0.500 

Lepomis gulosus  2  27.16  <0.001  0.89  0.00  100.00  97.90  0.00  0.500 

Lepomis macrochirus
5 

 5  96.18  <0.001  0.74  57.42  83.81  73.28  0.42  <0.001 

Lepomis megalotis
5 

 8  122.75  <0.001  0.86  33.78  98.22  89.12  0.42  <0.001 

Lepomis microlophus  3  13.96  <0.001  0.90  0.00  100.00  98.85  0.00  0.500 

Luxilus chrysocephalus  7  81.56  <0.001  0.71  77.42  56.33  67.56  0.34  <0.001 

Luxilus coccogenis  6  147.10  <0.001  0.80  73.26  75.56  74.43  0.49  <0.001 

Luxilus cornutus  3  97.66  <0.001  0.81  0.00  100.00  85.88  0.00  0.500 

Lythrurus ardens  1  8.95  0.030  0.87  0.00  100.00  99.43  0.00  0.500 

Lythrurus lirus  5  43.96  <0.001  0.78  4.44  99.79  91.60  0.07  <0.001 

Micropterus dolomieu
5 

 6  150.58  <0.001  0.81  63.03  81.47  74.05  0.45  <0.001 

Micropterus punctulatus
5 

 4  101.54  <0.001  0.83  28.00  97.55  87.60  0.34  <0.001 

Micropterus salmoides
5 

 5  48.12  <0.001  0.73  6.02  98.64  83.97  0.07  0.003 

Minytrema melanops  2  9.92  0.002  0.97  0.00  100.00  99.62  0.00  0.500 

Morone chrysops  1  22.63  <0.001  0.97  0.00  100.00  99.05  0.00  0.500 

Moxostoma anisurum
4 

 2  28.61  <0.001  0.89  0.00  100.00  97.71  0.00  0.500 

Moxostoma carinatum
4 

 6  105.41  <0.001  0.94  43.33  98.38  95.23  0.49  <0.001 

Moxostoma duquesnei
4 

 5  122.29  <0.001  0.80  38.75  89.84  74.24  0.32  <0.001 

Moxostoma erythrurum
4 

 5  136.93  <0.001  0.83  33.90  9.61  15.08  0.38  <0.001 

Moxostoma 

macrolepidotum
4 

 5  138.08  <0.001  0.94  57.14  97.93  94.66  0.60  <0.001 

Nocomis leptocephalus  1  4.31  0.116  0.88  0.00  100.00  99.62  0.00  0.500 

Nocomis micropogon
3 

 5  112.50  <0.001  0.76  67.87  72.36  70.23  0.40  <0.001 

Notemigonus crysoleucas  3  3.16  0.075  0.62  0.00  100.00  98.47  0.00  0.500 

Notropis amblops  3  262.07  <0.001  0.89  66.45  85.75  80.15  0.52  <0.001 

Notropis ariommus
3 

 6  61.73  <0.001  0.88  11.54  99.80  95.42  0.19  <0.001 

Notropis atherinoides  1  18.41  <0.001  0.99  0.00  100.00  99.43  0.00  0.500 

Notropis buccatus  1  1.60  0.206  0.60  0.00  100.00  99.24  0.00  0.500 

Notropis leuciodus
3 

 7  171.72  <0.001  0.82  64.53  82.55  75.57  0.48  <0.001 

Notropis lutipinnis  3  0.81  0.369  0.80  0.00  100.00  99.24  0.00  0.500 

Notropis photogenis
3 

 6  79.83  <0.001  0.82  4.23  98.45  85.69  0.04  0.062 

Notropis rubellus
3 

 3  163.56  <0.001  0.88  47.92  94.39  85.88  0.47  <0.001 
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  Appendix A. Continued.   

                   

Species  d.f.  l.r.  p-value  AUC  SE  SP  CC  Kappa  p-value 
                   

Notropis rubricroceus
3 

 4  69.97  <0.001  0.77  5.88  96.92  79.20  0.04  0.087 

Notropis spectrunculus
3 

 3  29.89  <0.001  0.85  0.00  100.00  96.76  0.00  0.500 

Notropis stramineus  5  56.80  <0.001  0.93  11.11  99.60  96.56  0.17  <0.001 

Notropis telescopus
3 

 5  147.62  <0.001  0.79  69.33  74.48  72.14  0.44  <0.001 

Notropis volucellus
3 

 7  119.21  <0.001  0.89  39.62  98.30  92.37  0.48  <0.001 

Noturus eleutherus
1 

 3  48.75  <0.001  0.91  0.00  100.00  95.23  0.00  0.500 

Noturus flavipinnis  3  45.28  <0.001  0.95  0.00  99.80  96.18  0.00  0.500 

Noturus insignis  1  32.62  <0.001  0.80  0.00  100.00  97.71  0.00  0.500 

Oncorhynchus mykiss  4  166.94  <0.001  0.83  47.73  96.94  84.54  0.52  <0.001 

Perca flavescens  4  4.25  0.039  0.74  0.00  100.00  99.43  0.00  0.500 

Percina aurantiaca  6  103.92  <0.001  0.92  30.00  98.55  93.32  0.38  <0.001 

Percina burtoni
2 

 4  30.98  <0.001  0.83  0.00  100.00  95.42  0.00  0.500 

Percina caprodes
2 

 4  108.33  <0.001  0.83  32.89  98.21  88.74  0.41  <0.001 

Percina copelandi  4  37.69  <0.001  0.98  33.33  99.81  99.05  0.44  <0.001 

Percina evides
2 

 6  143.46  <0.001  0.91  42.86  97.86  91.98  0.49  <0.001 

Percina macrocephala
2 

 2  23.38  <0.001  0.86  0.00  100.00  97.52  0.00  0.500 

Percina squamata  4  11.75  0.003  1.00  0.00  100.00  99.81  0.00  0.500 

Phenacobius crassilabrum  1  40.75  <0.001  0.91  0.00  99.80  97.33  0.00  0.500 

Phenacobius uranops
3 

 4  187.46  <0.001  0.90  49.46  95.82  87.60  0.52  <0.001 

Phoxinus oreas  4  4.65  0.031  0.85  0.00  100.00  99.24  0.00  0.500 

Phoxinus tennesseensis  3  15.18  0.004  0.77  0.00  100.00  96.95  0.00  0.500 

Pimephales notatus
3 

 3  56.35  <0.001  0.71  15.91  97.19  76.72  0.18  <0.001 

Pimephales promelas  3  6.21  0.102  0.70  0.00  100.00  97.71  0.00  0.500 

Pimephales vigilax  2  19.53  <0.001  0.94  0.00  100.00  99.05  0.00  0.500 

Pomoxis annularis  6  46.82  <0.001  0.98  25.00  100.00  98.85  0.40  <0.001 

Pomoxis nigromaculatus
5 

 6  74.13  <0.001  0.91  14.29  98.79  94.27  0.19  <0.001 

Pylodictis olivaris
1 

 5  66.23  <0.001  0.89  3.70  99.60  94.66  0.06  0.013 

Rhinichthys atratulus  4  133.86  <0.001  0.79  85.03  55.79  74.43  0.42  <0.001 

Rhinichthys cataractae  6  54.34  <0.001  0.88  10.00  98.99  93.89  0.14  <0.001 

Salmo trutta  3  76.42  <0.001  0.82  17.31  98.31  90.27  0.22  <0.001 

Salvelinus fontinalis  4  89.60  <0.001  0.98  52.94  99.01  97.52  0.57  <0.001 

Semotilus atromaculatus
3 

 3  65.96  <0.001  0.72  37.31  83.38  66.41  0.22  <0.001 

Stizostedion vitreum  4  56.98  <0.001  0.93  75.00  100.00  99.62  0.46  <0.001 
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  Appendix B.  Statistics describing the performance of models that predict species occurrence 

gleaned from peer-reviewed publications.  Predictions were made for > 140 species and several 

taxonomic groups.  Some statistics describe mean prediction performance for > 1 species.  N is 

the number of samples reported for that study.  Area under the receiver operator characteristic 

curve (AUC), sensitivity (SE), specificity (SP), correct classification (CC), and Kappa statistics 

for models assessed using resubstitution, cross-validation, and validation on an independent 

dataset are presented.  Model methods include multiple logistic regression (MLR), generalized 

regression analysis and spatial prediction (GRASP), multivariate discriminant analysis (MDA), 

artificial neural networks (ANN), classification tree (TRE), multivariate adaptive regression 

splines (MARS), Bayesian-MLR model (BYS), and rule-based models (RB).  Entries are blank 

where the appropriate statistics were not published.  Authors are identified by superscripts.   

 

Group  N  Method  Assessment  AUC  SE  SP  CC  Kappa 

                 

Molluscs
a 

 545  MLR  resubstitution    43.9  92.4  87.5   

Molluscs
a 

 541  MLR  validation    36.9  89.7  84.8  0.29 
                 

Bird
b 

 1,550  MLR  validation  0.93         

Bird
b  1,550  MLR  validation  0.94         

Bird
b  1,550  MLR  validation  0.57         

Bird
b  1,550  MLR  validation  0.91         

Bird
b  1,550  MLR  validation  0.76         

Bird
b  1,550  MLR  validation  0.79         

Bird
b  1,550  MLR  validation  0.91         

Bird
b  1,550  MLR  validation  0.79         

Bird
b  1,550  MLR  validation  0.91         

Bird
b  1,550  MLR  validation  0.68         

Bird
b  1,550  MLR  validation  0.86         

Bird
b  1,550  MLR  validation  0.78         

Bird
b  1,550  MLR  validation  0.75         

Bird
b  1,550  MLR  validation  0.89         

Bird
b  1,550  MLR  validation  0.81         

Bird
b  1,550  MLR  validation  0.68         

Bird
b  1,550  MLR  validation  0.78         

Bird
b  1,550  MLR  validation  0.84         

Bird
b  1,550  MLR  validation  0.84         

Bird
b  1,550  MLR  validation  0.81         

Bird
b  1,550  MLR  validation  0.83         

Bird
b  1,550  MLR  validation  0.79         

Bird
b  1,550  MLR  validation  0.80         

Bird
b  1,550  MLR  validation  0.90         

Bird
b  1,550  MLR  validation  0.82         

Bird
b  1,550  MLR  validation  0.81         

Bird
b  1,550  MLR  validation  0.81         



125 

 

  Appendix B.  Continued.  
                 

Group  N  Method  Assessment  AUC  SE  SP  CC  Kappa 

                 

Bird
b  1,550  MLR  validation  0.90         

Bird
b  1,550  MLR  validation  0.80         

Bird
b  1,550  MLR  validation  0.85         

                 

Fish
c 

 306  MLR  resubstitution    84.8  72.7  78.2   

Fish
c  306  MLR  resubstitution    63.3  77.8  72.0   

Fish
c  306  MLR  resubstitution    75.9  74.4  75.0   

Fish
c  306  MLR  resubstitution    80.0  84.2  83.3   

Fish
c  306  MLR  resubstitution    84.6  70.0  79.0   

Fish
c  306  MLR  resubstitution    81.7  63.9  75.0   

                 

Reptile
d 

 4,138  MLR  cross-validation  0.75         

Reptile
d 

 4,138  MLR  validation  0.78         
                 

Plant
e 

 19,875  GRASP  cross-validation  0.94         

Plant
e 

 19,875  GRASP  validation  0.94         
                 

Bird
f 

 180  MDA  cross-validation    41.0  84.0  86.0  0.27 

Bird
f  180  MLR  cross-validation    41.0  92.0  82.0  0.36 

Bird
f  180  ANN  cross-validation    31.0  84.0  94.0  0.15 

                 

Plant
g 

 1,285  MLR  cross-validation  0.96         

Plant
g  1,285  TRE  cross-validation  0.97         

Plant
g  1,285  MARS  cross-validation  0.98         

Plant
g  103,181  MLR  cross-validation  0.79         

Plant
g  103,181  TRE  cross-validation  0.98         

Plant
g  103,181  MARS  cross-validation  0.90         

Plant
g  1,285  MLR  validation  0.95         

Plant
g  1,285  TRE  validation  0.91         

Plant
g  1,285  MARS  validation  0.93         

Plant
g  103,181  MLR  validation  0.78         

Plant
g  103,181  TRE  validation  0.95         

Plant
g  103,181  MARS  validation  0.91         

                 

Fish
h 

 128  ANN  cross-validation    41.7  82.5  67.2  2.58 

Fish
h  128  ANN  cross-validation    64.3  68.1  66.4  3.60 

Fish
h  128  ANN  cross-validation    95.2  9.1  65.6  0.46 

Fish
h  128  ANN  cross-validation    35.6  90.7  64.8  1.70 

Fish
h  128  ANN  cross-validation    70.9  78.1  75.0  5.18 
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  Appendix B.  Continued.  
                 

Group  N  Method  Assessment  AUC  SE  SP  CC  Kappa 

                 

Fish
h  128  ANN  cross-validation    58.8  63.3  60.9  2.47 

Fish
h  128  ANN  cross-validation    94.8  29.4  68.8  1.44 

Fish
h  128  ANN  cross-validation    50.0  90.6  80.5  3.62 

Fish
h  128  ANN  cross-validation    93.1  29.3  72.7  2.28 

Fish
h  128  ANN  cross-validation    71.7  54.5  69.1  2.59 

Fish
h  128  ANN  cross-validation    23.3  26.5  6.0  1.31 

Fish
h  32  ANN  validation    90.5  18.2  65.6  0.45 

Fish
h  32  ANN  validation    90.0  86.7  84.5  3.88 

Fish
h  32  ANN  validation    41.7  58.3  78.1  2.58 

Fish
h  32  ANN  validation    88.9  75.0  62.5  0.89 

Fish
h  32  ANN  validation    55.6  64.3  78.1  2.96 

Fish
h  32  ANN  validation    90.5  78.3  71.9  1.57 

Fish
h  32  ANN  validation    53.3  18.2  65.6  0.45 

Fish
h  32  ANN  validation    95.8  88.2  71.9  2.34 

Fish
h  32  ANN  validation    80.4  37.5  81.3  1.53 

Fish
h  32  ANN  validation    18.7  54.4  73.3  1.85 

Fish
h  32  ANN  validation    18.7  25.1  7.7  1.11 

                 

Mammal
i 

 349  MLR  resubstitution        80.1   
                 

Bird
j 

 71  MLR  resubstitution  0.90         

Bird
j  92  MLR  resubstitution  0.93         

Bird
j  92  MLR  resubstitution  0.93         

Bird
j  92  BYS  resubstitution  0.97         

                 

Plant
k 

 31  RB  resubstitution    100.0  97.0  97.0  0.87 

Plant
k  31  RB  resubstitution    50.0  88.0  79.0  0.42 

Plant
k  31  RB  resubstitution    100.0  36.0  58.0  0.28 

Plant
k  31  RB  resubstitution    65.0  69.0  67.0  0.33 

Plant
k  31  RB  resubstitution    67.0  73.0  70.0  0.40 

Plant
k  31  RB  resubstitution    67.0  73.0  70.0  0.40 

Plant
k  31  RB  resubstitution    78.0  40.0  61.0  0.18 

Plant
k  31  RB  resubstitution    84.0  36.0  64.0  0.21 

Plant
k  31  RB  resubstitution    76.0  25.0  58.0  0.01 

Plant
k  31  RB  resubstitution    78.0  30.0  64.0  0.09 

Insect
k 

 85  RB  resubstitution    73.0  81.0  80.0  0.38 

Insect
k  85  RB  resubstitution    39.0  97.0  88.0  0.44 

Insect
k  85  RB  resubstitution    25.0  93.0  74.0  0.22 
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  Appendix B.  Continued.  
                 

Group  N  Method  Assessment  AUC  SE  SP  CC  Kappa 

                 

Insect
k  85  RB  resubstitution    80.0  88.0  86.0  0.67 

Insect
k  85  RB  resubstitution    60.0  82.0  75.0  0.41 

Insect
k  85  RB  resubstitution    69.0  82.0  77.0  0.51 

Insect
k  85  RB  resubstitution    52.0  78.0  65.0  0.30 

Insect
k  83  RB  resubstitution    61.0  94.0  88.0  0.61 

Insect
k  83  RB  resubstitution    50.0  86.0  78.0  0.38 

Insect
k  83  RB  resubstitution    49.0  79.0  67.0  0.29 

Insect
k  83  RB  resubstitution    87.0  54.0  72.0  0.42 

Insect
k  83  RB  resubstitution    87.0  58.0  78.0  0.48 

Insect
k  83  RB  resubstitution    98.0  5.0  80.0  0.05 

Insect
k  83  RB  resubstitution    96.0  7.0  80.0  0.04 

Insect
k  83  RB  resubstitution    91.0  8.0  78.0  0.00 

Bird
k 

 53  RB  resubstitution    8.0  96.0  89.0  0.04 

Bird
k  53  RB  resubstitution    9.0  96.0  92.0  0.05 

Bird
k  53  RB  resubstitution    33.0  92.0  90.0  0.01 

Bird
k  53  RB  resubstitution    22.0  84.0  78.0  0.05 

Bird
k  53  RB  resubstitution    38.0  81.0  76.0  0.12 

Bird
k  53  RB  resubstitution    50.0  64.0  59.0  0.14 

Bird
k  53  RB  resubstitution    54.0  66.0  61.0  0.19 

Bird
k  53  RB  resubstitution    50.0  63.0  59.0  0.12 

Bird
k  53  RB  resubstitution    45.0  64.0  58.0  0.09 

                 

Fish
l 

 48  MLR  resubstitution    72.0  87.0  81.0   

Fish
l  48  MLR  resubstitution    68.0  76.0  73.0   

Fish
l  48  MLR  resubstitution    53.0  86.0  73.0   

Fish
l  48  MLR  resubstitution    79.0  88.0  85.0   

Fish
l  48  MLR  resubstitution    86.0  77.0  81.0   

Fish
l  48  MLR  resubstitution    79.0  94.0  90.0   

Fish
l  48  MLR  resubstitution    63.0  83.0  75.0   

Fish
l  48  MLR  resubstitution    96.0  86.0  92.0   

Fish
l  48  MLR  resubstitution    95.0  93.0  94.0   

Fish
l  48  MLR  resubstitution    85.0  83.0  83.0   

Fish
l  48  MLR  resubstitution    94.0  95.0  94.0   

Fish
l  48  MLR  resubstitution    98.0  43.0  90.0   

Fish
l  48  MLR  resubstitution    86.0  89.0  88.0   

Fish
l  94  MLR  validation        70.0   

Fish
l  94  MLR  validation        73   
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  Appendix B.  Continued.  
                 

Group  N  Method  Assessment  AUC  SE  SP  CC  Kappa 

                 

Fish
l  94  MLR  validation        67   

Fish
l  94  MLR  validation        53.0   

Fish
l  94  MLR  validation        73.0   

Fish
l  94  MLR  validation        65.0   

Fish
l  94  MLR  validation        72.0   

                 

Plants
m 

 14,112  MLR  validation  0.87         

Plants
m  14,112  MLR  validation  0.77         

Plants
m  14,112  MLR  validation  0.67         

Plants
m  14,112  MLR  validation  0.62         

Plants
m  14,112  MLR  validation  0.89         

Plants
m  14,112  MLR  validation  0.94         

Plants
m  14,112  MLR  validation  0.85         

                 

 

Berg and Proschwitz  2004
a
  

Brotons, et al.  2004
b
.   

Filipe, et al. 2002
c
  

Guisan and Hofer 2003
d
  

Lehmann et al. 2002
e
  

Manel et al. 1999a
f
  

Muñoz and Felicísimo 2004
g
  

Olden and Jackson 2002
h
  

Orrock et al. 2000
i
  

Osborne et al. 2001
j
  

Petit et al. 2003
k
  

Porter et al. 2000
l
    

Van den Berg et al. 2003
m
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General Conclusions 

 

Sampling Sufficiency and the Use of Predictions of Species Occurrence for Conservation  

 

Limited resources for conservation require efficient conservation – directing actions to 

where they are most needed and most likely to succeed.  The paucity of knowledge of the 

geographic distribution of stream fish limits the efficiency of their conservation and management.  

I found that insufficient sampling of stream fish assemblages in Virginia is common.  The effort 

required to sufficiently sample a region varies with the survey objectives, analytical methods, 

sampling design, and the sufficiency of individual samples.  The geographic distribution of 

species also affects the number of samples required.  Although many samples have been collected 

in most regions of Virginia, additional sampling will likely collect additional species in many 

regions.  The number of samples required to sufficiently sample most regions is large, but well 

planned and organized sampling and reducing errors of sampling omission could decrease the 

number of samples required to accurately describe the species composition of regions of Virginia.   

 Models are often used to predict the occurrence of species in lieu of sampling data that is 

sufficient to inform conservation and management decisions.  In the absence of data from well-

planned and organized sampling, multipurpose species occurrence data are often used to predict 

species occurrence.  Many methods are used to improve the prediction accuracy, generality, and 

resolution from models that use multipurpose data.  I found that several modeling methods 

provide useful predictions of species occurrence, even for rare species, for which management 

and conservation are most urgent and knowledge of occurrence is least available.  The accuracy 

and resolution of predictions of species occurrence differ among species and are low for most 

species.  Additional occurrence data might improve the accuracy and resolution of models that 

predict the occurrence of rare species, but increasing model complexity is unlikely to 

substantially improve model prediction accuracy or resolution for most species.  Substantial 

improvement of model prediction accuracy and resolution may not be possible, suggesting that 

protocols that facilitate the appropriate application of model predictions are needed.   

   

Management Implications 

 My work suggests that insufficient knowledge of species occurrence is a common 

problem for the conservation and management of stream fish and likely a problem for other 

taxonomic groups.  The large number of historical samples of the stream fish assemblages in 

Virginia does not ensure sufficient sampling to describe species occurrences at the spatial extents 
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at which conservation and management decisions are made.  Given the importance of data that 

describe the geographic distribution of species to conservation and management, implementing 

well-planned and organized surveys across large spatial extents should be a high priority.  Such 

survey data would facilitate more efficient conservation and management and might prove useful 

for improving the accuracy and resolution of model predictions of species occurrence.   

 My work also suggests that many models that predict species occurrence lack sufficient 

prediction accuracy and resolution to inform many conservation and management decisions.  

Improving the accuracy and resolution of model predictions is a worthy goal, but scientists and 

managers must also better understand the limitations of predictive models and learn to apply 

model predictions more appropriately.  Future studies should quantify the limitations of model 

prediction accuracy and resolution and describe specific implications for conservation and 

management.  Exploration of the accuracy and resolution limits of models that use temporally 

stable predictors of species occurrence, based on ecological theory is also warranted.  For 

example, biological interaction and disturbance mechanisms as well as environmental conditions 

affect species occurrence.  Quantifying the relative importance of these mechanisms among 

different assemblages and ecosystems warrants further study because it has profound implications 

for predictive modeling, conservation, and management.   
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