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Optimization-Based Guidance For Satellite Relative Motion

Andrew C. Rogers

(ABSTRACT)

Spacecraft relative motion modeling and control promises to enable or augment a wide range
of missions for scientific research, military applications, and space situational awareness.
This dissertation focuses on the development of novel, optimization-based, control design
for some representative relative-motion-enabled missions. Spacecraft relative motion refers
to two (or more) satellites in nearly identical orbits. We examine control design for relative
configurations on the scale of meters (for the purposes of proximity operations) as well as on
the scale of tens of kilometers (representative of science gathering missions). Realistic control
design for satellites is limited by accurate modeling of the relative orbital perturbations as
well as the highly constrained nature of most space systems. We present solutions to several
types of optimal orbital maneuvers using a variety of different, realistic assumptions based
on the maneuver objectives.

Initially, we assume a perfectly circular orbit with a perfectly spherical Earth and analytically
solve the under-actuated, minimum-energy, optimal transfer using techniques from optimal
control and linear operator theory. The resulting open-loop control law is guaranteed to
be a global optimum. Then, recognizing that very few, if any, orbits are truly circular, the
optimal transfer problem is generalized to the elliptical linear and nonlinear systems which
describe the relative motion. Solution of the minimum energy transfer for both the linear
and nonlinear systems reveals that the resulting trajectories are nearly identical, implying
that the nonlinearity has little effect on the relative motion. A continuous-time, nonlinear,
sliding mode controller which tracks the linear trajectory in the presence of a higher fidelity
orbit model shows that the closed-loop system is both asymptotically stable and robust to
disturbances and un-modeled dynamics.

Next, a novel method of computing discrete-time, multi-revolution, finite-thrust, fuel-optimal,
relative orbit transfers near an elliptical, perturbed orbit is presented. The optimal control
problem is based on the classical, continuous-time, fuel-optimization problem from calculus
of variations, and we present the discrete-time analogue of this problem using a transcription-
based method. The resulting linear program guarantees a global optimum in terms of fuel
consumption, and we validate the results using classical impulsive orbit transfer theory. The
new method is shown to converge to classical impulsive orbit transfer theory in the limit
that the duration of the zero-order hold discretization approaches zero and the time horizon
extends to infinity. Then the fuel/time optimal control problem is solved using a hybrid
approach which uses a linear program to solve the fuel optimization, and a genetic algorithm
to find the minimizing time-of-flight. The method developed in this work allows mission
planners to determine the feasibility for realistic spacecraft and motion models.

Proximity operations for robotic inspection have the potential to aid manned and unmanned
systems in space situational awareness and contingency planning in the event of emergency.



A potential limiting factor is the large number of constraints imposed on the inspector ve-
hicle due to collision avoidance constraints and limited power and computational resources.
We examine this problem and present a solution to the coupled orbit and attitude control
problem using model predictive control. This control technique allows state and control con-
straints to be encoded as a mathematical program which is solved on-line. We present a new
thruster constraint which models the minimum-impulse bit as a semi-continuous variable,
resulting in a mixed-integer program. The new model, while computationally more expen-
sive, is shown to be more fuel-efficient than a sub-optimal approximation. The result is a
fuel efficient, trajectory tracking, model predictive controller with a linear-quadratic attitude
regulator which tracks along a pre-computed “safe” trajectory in the presence of un-modeled
dynamics on a higher fidelity orbital and attitude model.

This research was supported by the Ted and Karyn Hume Center for National Security and
Technology, the Virginia Space Grant Consortium Graduate Fellowship, and the Association
of Old Crows Electronic Warfare Scholarship
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What you need, above all else, is a love for your subject, whatever it is. You’ve got to be so
deeply in love with your subject that when curve balls are thrown, when hurdles are put in

place, you’ve got the energy to overcome them.

- Neil deGrasse Tyson
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Chapter 1

Introduction

1.1 Motivation

This dissertation focuses on developing new, optimization-based controllers for spacecraft
relative motion. The contributions in this work enable both large baseline formation recon-
figuration over several orbits as well as very short baseline, rapid response maneuvers. Space-
craft relative motion modeling, control, and estimation is a major area of research in modern
astrodynamics and control theory and have been studied for a wide variety of missions. Ad-
ditionally, relative motion control and estimation have been successfully implemented on
missions that have flown or are currently active. There are two primary motivations for
building satellite missions around relative motion and multi-vehicle architectures:

1. Distribution of mission objectives among several dedicated agents (e.g. interferometric,
in situ measurement, and sparse-aperture missions)

2. On-orbit servicing (OOS), robotic inspection, autonomous rendezvous and docking
(AR&D)

Several relative motion missions have actually been executed or are still in progress. In the
following sections, some example missions enabled by relative motion modeling and control
will be briefly described.

1
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1.1.1 Notable Science Missions and Concepts

The Gravity Recovery and Climate Experiment (GRACE) [3, 6] uses two satellites in a
leader-follower formation (see Figure 1.1) to accomplish the following scientific objectives
[69]:

1. Obtain accurate global mean and time-varying models of the Earth’s gravity field (a
new model every thirty days for five years)

2. Enable a better understanding of ocean surface currents and heat transport

3. Measure changes in sea-floor pressure and ocean mass changes

4. Measure mass balances on ice sheets and glaciers

Figure 1.1: Artist’s conception of the GRACE formation, credit: NASA

GRACE is still an active mission, and has provided a wealth of scientific data. It is in a
naturally decaying orbit and is expected to fully degrade sometime in 2016.

Following the Ariane-5 ’s failed launch of the Cluster-I formation of satellites in 1996 [40],
Cluster-II was deployed in a series of launches between July and August 2000. Cluster-II
comprises a tetrahedral formation that studies the evolution of the magnetosphere over a
complete solar cycle (see Figure 1.2). Cluster-II celebrated 10 years of scientific achievement
in February 2011, and continues to operate today [44, 45, 47, 126, 46, 115]. In fact, to date
there have been over 2700 referreed papers, proceedings and theses published based on the
science and engineering results from the Cluster-II mission [5]. Cluster-II uses a fairly coarse
control method to maintain the formation geometry based on relative orbital elements; for
this type of mission this approach is accurate enough to accomplish its science objectives.
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Figure 1.2: Artist’s depiction of Cluster-II formation, credit: ESA

The Cluster-II mission’s success demonstrates the potential for tremendous science return
from distributed systems. Another well-known mission that proposed satellite formation
flying was the Air Force’s TechSat-21 concept [92, 29, 38, 93] which was envisioned using
a cluster of small, agile satellites to adapt to new mission parameters or constraints on
demand. This project was cancelled in 2003, however elements of the missions concept-of-
operations (CONOPS) were incorporated into numerous follow-on studies such as DARPA’s
F6 (Future, Fast, Flexible, Free-Flying, Fractionated Spacecraft united by Information
eXchange) [27] mission concept (artist’s depicition seen in Figure 1.3). In this concept, a
cluster of small satellites fly in rough formation, and each satellite would be designed to
perform a specific subsystem task. The TechSat-21 and F6 concepts effectively replace a
single monolithic satellite bus with a swarm of smaller, specialized spacecraft. In the event
of a subsystem failure, a new component could be launched at an opportune time while
minimizing the down time of the rest of the components.

NASA’s Magnetospheric MultiScale mission (MMS) [122, 90], which launched on 13 March
2015, involves four satellites flying in a tetrahedral formation [22] in highly elliptical orbits
to study magnetic reconnection in the magnetosphere. The mission is intended to build on
the successes of the Cluster-II mission but with improved spatio-temporal resolution. Each
of the four satellites employ 25 different science instruments that provide unprecedented in
situ measurements. The MMS satellites required significant improvements to the state of
the art for both relative navigation and control to achieve their specific science objective.
The satellites have a perigee of about 1.2 Earth radii, and (during Phase 1) an apogee of
12 Earth radii and baselines of 10 km. During Phase 2, their apogee radius will increase to
25 Earth radii. The high eccentricity and relatively long baselines require novel guidance,
navigation, and control algorithms to maintain formation and maximize science return.
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Figure 1.3: F6 constellation concept, credit: DARPA

1.1.2 Proximity Maneuvering and Control

Proximity operations and relative motion modeling have gone hand-in-hand since the Soviets’
first attempts (and failures) of rendezvous between two satellites, Vostok 3-4 in 1962 and
Vostok 5-6 in 1963. The Soviets learned the hard way that simply launching two satellites
into nearly identical orbits is not nearly sufficient to achieve rendezvous. The initial 5-
6 kilometer separation soon grew to thousands of kilometers as perturbations and non-
commensurate energy levels dramatically affected the relative motion of the satellites.

The United States also got a chance to see first hand how a poor understanding of relative
orbital mechanics could affect rendezvous. In 1965, Jim McDivitt’s attempt at executing
rendezvous between Gemini 4 and the Titan upper stage ended rather anti-climactically
when he pointed the capsule directly at the target stage and thrusted forward. For reasons
previously unconsidered to NASA (and described quite thoroughly in succeeding chapters of
this dissertation), this did not work. It was later realized that thrusting forward increases
orbital velocity, and by Kepler’s Third Law, changes the orbital period. Following the
maneuver, McDivitt’s capsule was both above and behind the target stage. This occurred
despite Buzz Aldrin’s rather thorough analysis in his 1963 dissertation on the subject of
guidance for rendezvous between two satellites [7] and Clohessy and Wiltshire’s well-known,
1960 paper on terminal guidance for spacecraft rendezvous [35].

The first successful rendezvous happened later in 1965 when Wally Schirra maneuvered
Gemini 6 to within one foot of Gemini 7 and performed stationkeeping. Proximity opera-
tions, and in particular rendezvous have existed almost as long as spaceflight. More recently,
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however, more elaborate concepts for proximity operations have emerged.

Rendezvous and docking regularly occurs during unmanned spaceflight. For instance, each
resupply mission to the International Space Station requires extremely precise guidance,
navigation, and control to ensure safe, reliable operation. Additionally, the AR&D problem
has been treated extensively in the spacecraft literature using myriad techniques. A more
exotic and less-studied problem is that of circumnavigation for robotic inspection.

The Air Force Research Laboratory’s Space Vehicles Directorate commissioned the eXperimental
Small Satellite 10 (XSS-10) program to test proximity guidance and control. AFRL defined
the following mission objectives [12]:

• Execute free flight of closed-loop system for a 20 kg micro-satellite

• Closed-loop tracking of space object at less than 500 m

• Perform 270 degree fly-around maneuver based on visual guidance

• Demonstrate stationkeeping and inertial hold near resident space object

• Demonstrate ability to resolve space object at 100 m

• Perform real-time, two-way communications

• Demonstrate life extension mode for micro-satellite

• Record performance parameters and maneuver execution sequences on orbit

The XSS-10 was launched in 2003 on a Delta-II rocket as an auxiliary payload and success-
fully performed proximity maneuvering and imaging of the upper stage, seen in Figure 1.4.

Figure 1.4: Image of Delta-II upper stage taken by XSS-10, credit AFRL



Andrew C. Rogers Chapter 1. 6

One of the most well-known examples of a free-flying satellite performing autonomous inspec-
tion and servicing was DARPA’s Orbital Express mission [88, 132, 49, 100], seen in Figure
1.5. The mission’s goals, which were successfully executed, were to demonstrate on-orbit
servicing, autonomous rendezvous, docking, and capture, fluid transfer (hydrazine fuel) and
a battery transfer. The mission was launched in March 2007, and decomissioned in July
2007. The satellites were left to decay naturally.

Figure 1.5: Orbital Express ASTRO and NEXTSat, credit: DARPA

Swedish Space Corporation’s Prisma project [41, 42, 37] was developed and flew successfully
for the purpose of performing autonomous guidance and control of a small satellite near
another non-cooperating object (see Figure 1.6). Prisma consists of two satellites, MAIN
and TARGET (or the more popular monnikers Mango and Tango). Mango was designed for
full 6DOF control authority and is able to perform maneuvers around Tango.

Robotic inspection and servicing were given poignant motivation after damage occurred to
two manned spacecraft: the Mir space station and the Columbia orbiter. Mir nearly suffered
a disaster when the Progress M-34 unmanned cargo spacecraft glancingly struck the Spektr
module on the station (on 24 June 1997) [60]. The resulting hull breach caused a loss of
pressure and damaged a solar panel; the damaged module was permanently sealed off and
the station was powered down for several weeks while repairs were made. A picture of the
external damage can be seen in Figure 1.7.

Fortunately, no crew members were harmed during this event, but it highlighted how even
a glancing blow could seriously damage a spacecraft. This was further seen during the
Columbia tragedy; a piece of foam broke off of the external fuel tank during launch and
struck the leading edge of the left wing. The resulting crack in the heat shield caused
enough damage that the orbiter disintegrated during re-entry, resulting in the loss of the
crew. It was noted that on earlier flights STS-27, STS-45, and STS-87 similar strikes by
ice debris and foam had damaged the orbiter, but without hull loss. This event made it
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Figure 1.6: Artist’s depiction of MAIN and TARGET, credit: ESA

painfully clear that without an effective method of evaluating the damage of the foam strike,
seemingly innocuous events could cause severe damage.

A compelling case for robotic inspection and servicing was presented in the Columbia Ac-
cident Investigation Board’s (CAIB) findings [54]. It was determined that on-orbit repair
by the astronauts was possible, but considered “high risk” due to the uncertainty over the
quality of the repair and the added risk of added damage to the Columbia. Furthermore,
Columbia was not equipped with Canadarm, so an unusual, emergency EVA would be re-
quired. Further complicating an emergency EVA was the fact that there was no astronaut
EVA training for maneuvering to the wing, however the report indicated that an astronaut
could have reached the left wing for inspection or repair. Robotic inspection can allow for
faster response times and doesn’t expose astronauts to potentially hazardous environments.

Since the Columbia tragedy, there has been a significant emphasis on robotic servicing and
inspection. The Spacecraft for the Universal Modification of Orbits (SUMO) [20] was a
program proposed in 2004 by the Naval Research Laboratory to demonstrate the successful
execution of machine vision, autonomous guidance, and robotic manipulation of a derelict
spacecraft. The program was intended as a risk reduction program that would allow for
autonomous servicing and inspection of a non-cooperating satellite.

Another inspection demonstrator, which actually flew before the Columbia tragedy on STS-
87 in 19971, was the Autonomous Extravehicular Activity Robotic Camera Sprint (AER-
Cam Sprint) [34]. AERCam was a 16 kg, 0.36 m spherical spacecraft which used 12 nitrogen

1Columbia was actually the orbiter that flew on STS-87
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Figure 1.7: Damage to Mir seen from Atlantis during STS-86, credit: NASA

cold-gas thrusters for attitude and trajectory control, see Figure 1.8. The craft was remotely
piloted, however it was able to freely maneuver around the cargo bay of Columbia for about
30 minutes. The intent of the AERCam program was to demonstrate the ability of a free-
flying satellite to inspect the ISS. NASA developed an autonomous follow-on project called
Mini-AERCam, however it never flew.

In the same vein as AERCam, MIT’s Synchronized Position Hold Engage and Reorient
Experimental Satellite (SPHERES) testbed has performed numerous demonstrations of au-
tonomous proximity operations [83, 23]. Each SPHERES satellite has a mass of 4.1 kg and
can freely move about in the ISS. The spacecraft are strictly for demonstration purposes and
are not qualified to fly outside the ISS.

1.2 Literature Survey

1.2.1 Minimum-energy, Under-actuated Maneuvers

Minimum energy transfers near circular orbits, and more generally, Keplerian orbits have
been studied quite extensively in the literature. Notable works include Carter and Humi [32],
Carter [31], Guelman and Aleshin [57], Pearson [103] and Zanetti [139] . For rendezvous or
formation reconfiguration over very small relative distances (when compared with the chief
orbit), the Hill-Clohessy-Wiltshire model [35] is typically used because it is a linear, time-
invariant approximation of the relative motion, enabling the use of a wide range of tools
for analysis and control design. This model assumes a perturbation-free, circular orbit as
its reference orbit. In this chapter, we adopt the HCW model assuming that the formation
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Figure 1.8: AERCam free-flying satellite, credit NASA

reconfiguration takes place quickly, so that the circular orbit approximation is reasonable.

Earlier analyses have assumed that thrust is available in all three directions (radial, in-track
and cross-track), in which case the system is completely controllable.The system is also
controllable, however, in the case that thrust is available only in the in-track and cross-track
directions. McVittie et al. [97] used this fact in their work on formation keeping. The under-
actuated controllability of the HCW model (and of the general spacecraft relative motion
model [111]) is useful property for two reasons. The first is concerned with the mechanical
complexity of a satellite; fewer required thrusters means fewer parts that could fail. The
second is system robustness; if a single thruster fails for a fully-actuated spacecraft, the
system may remain controllable with a reduced number of thrusters. The only requirement
is that control authority be maintained in the in-track and cross-track directions.

Independently of the developments in Chapter 3, Huang et al. used the Pontryagin Prin-
ciple to derive optimal controllers for under-actuated rendezvous and reconfiguration [68].
The work in this dissertation differs from their approach in the following ways: 1) explicit
analytical expressions for the control laws over any time-of-flight are provided, both in their
full form and for certain specific maneuvers where the expressions for the controllers are sig-
nificantly simplified, 2) we provide necessary and sufficient conditions for global optimality
of the under-actuated control laws using results from calculus of variations as well as linear
operator theory, and 3) we derive an explicit controllability Gramian, which is also valid over
any time-of-flight.
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1.2.2 Sliding Mode Tracking Control

Short-time-scale maneuvers for proximity operations were investigated in [79] using the Hill-
Clohessy-Wiltshire equations (HCW) which are a linear, time-invariant approximation of the
formation flying equations. The authors assume a perfectly circular orbit, and they did not
investigate the nonlinear optimal control solution, nor did they consider the linear open loop
optimal solution which is also presented here. In contrast, we consider the full nonlinear
system, and show the close similarity between the nonlinear optimal transfer and linear
optimal transfer. In [59], a nonlinear optimal control solution and neighboring optimal
solution were presented for formation flying, however this analysis was done on the scale
of a full orbit and using Gauss’ Variational Equations (GVE). The GVE are a different
parameterization of orbital motion based on variations in the orbital elements. We do not
use this approach because the structure of the GVE is not easily amenable to the structural
requirements for sliding mode control design (SMC). In [139], the minimum energy transfer
problem was solved analytically using the glideslope [103] reference frame, however this
solution was valid only for the HCW equations.

Sliding mode control and its myriad variants have been simulated successfully for formation
flying. Massey et al. [95] studied traditional sliding mode control and “super-twisting”
sliding mode control for the HCW equations and treated all nonlinearities as exogenous
disturbances. A similar approach was used by Yeh et al. [138], however they did include
some nonlinear dynamics. Our work differs from theirs in that our controller doesn’t just
maintain a desired formation, rather we track an optimal maneuver using SMC. Hui and Li
[71] used terminal sliding mode control to perform formation reconfigurations on the scale
of an orbit or longer. Additionally, the controller we develop is valid for any arbitrarily
elliptical orbit, rather than assuming a purely circular orbit.

1.2.3 Trajectory Optimization Near a Perturbed, Elliptical Orbit

Using a standard linear program to minimize the consumed fuel has been explored previously
by Richards et al [109] where the Hill-Clohessy-Wiltshire equations served as the motion
model in optimizing trajectories for robotic inspection. In fact, this work used mixed-integer
linear programming to account for plume impingement and collision avoidance, which we do
not consider here. Tillerson et al. [127] applied linear programming to the formation flying
problem with avoidance constraints where a specified formation was maintained in an elliptic
orbit, but they didn’t consider the effect of J2. Mueller et al. [99] considered a very similar
problem as Tillerson et al., but also without the contribution of J2. Furthermore these three
works all assumed fixed time-of-flight for their maneuvers. These earlier papers also did not
consider an under-actuated system. The ability to maneuver relative to another spacecraft
using only two lines of thrust provides flexibility in case of a thruster failure or, alternatively,
enables a designer to reduce the weight and complexity by eliminating unneeded actuators.
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Yan and Alfriend [136] explored an approximate solution to the minimum energy transfer
using the Gim-Alfriend STM, and used a pseudospectral collocation to approximate the in-
tegrals in the minimum energy theorem. This work assumed a fully-actuated system and
imposed no constraints on the input forces. Yan and Gong [137] used a finite-horizon,
linear-quadratic controller to perform long-term formation maintenance in conjunction with
the GA-STM, however this again involved no constraints on the controller. Also, the LQ
controller fires continuously whereas the controllers presented in this paper do not, because
of the bang-off-bang profile from minimum fuel optimal control. Roscoe et al. [113] used the
differential orbital element representation of the GA-STM in conjunction with the Maximum
Principle and Lawden’s primer vector theory, however their analysis explicitly assumed ma-
neuvers were impulsive whereas we assume finite thrust. Gaias et al. [52, 50] were able to
geometrically derive ∆v lower bounds for differential orbital elements, and we use some of
their results as a comparison for the proposed method.

The genetic algorithm and other heuristic search algorithms have been used numerous times
in previous contributions both to minimize the ∆v for a maneuver or to minimize some
objective function relating to the quality of a formation of satellites. Kim and Spencer
[77] used a binary genetic algorithm to find optimal two- and three-impulse maneuvers for
satellite rendezvous. This particular application focused on the solution of the Lambert
targeting problem, and did not involve the formation flying assumptions. They were able to
get a close agreement with the classical Hohmann and bi-elliptic transfer results, but they
do not consider the J2 perturbation. Sabatini et al. [116] applied a genetic algorithm to
the problem of finding a set of initial conditions that yield a natural, periodic orbit under
the presence of J2. In addition to the well-known J2-invariant results (namely, the critical
inclination of i = 63.4◦) they also found two additional drift-free inclinations using the
genetic algorithm, corresponding to i = 49◦ and i = 131◦. In [1], Abdelkhalik and Mortari
used the genetic algorithm again to improve upon some of the results obtained by Kim and
Spencer, but this was limited to perturbation-free, low-Earth orbit (LEO) to geostationary
Earth orbit (GEO) maneuvers. Luo et al. [91] used a hybrid genetic algorithm with simplex
method to minimize time-of-flight of rendezvous for the HCW equations, but again, they
only consider a circular, unperturbed orbit and do not examine the fuel/time balance that
this paper examines. Pontani used a hybrid approach of particle swarm/ indirect method to
compute fuel-optimal relative maneuvers using the HCW equations [105]. The contribution
of this paper is the use of the GA-STM in the under-actuated, minimum fuel/time optimal
control problem. For a given balance between the time-of-flight and the amount of fuel used,
we present globally optimal solutions which agree closely with the ∆v requirements predicted
by impulsive orbit theory.

1.2.4 Constrained Tracking Control

Six degree-of-freedom control studies have been carried out for satellite relative motion, pri-
marily for dynamic synchronization between the relative orbit and relative attitude of two
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or more satellites [82, 80, 81]. While those analyses incorporated the effects of various per-
turbations on the orbit and attitude as a whole, the effect of non-collinear thrusters was not
included, nor was the effect of attitude error on thruster alignment. If it is assumed that a
thrust system can take any value between [−umax, umax] then this assumption can be relaxed
since the thrust could be remapped among the thrusters to account for attitude error. If
the thrusters are binary, nearly binary or have a relatively large minimum impulse bit, then
the thrusters cannot necessarily be remapped. Furthermore, small satellite design is often
severely constrained by their payloads, and so the thrusters may not actually be aligned pre-
cisely with the center of mass or each other. This assumption is very important for spacecraft
proximity operations where small attitude errors can minimize mission performance.

Model predictive control for spacecraft relative motion control has been studied numerous
times in the literature for applications ranging from large-scale formation keeping to space-
craft rendezvous and capture [24, 63, 101, 108, 104, 131]. Breger and How [24, 22] use the
time-varying Gauss’ Variational Equations (GVE) to perform long term formation main-
tenance for a group of satellites in a highly elliptic orbit. Park et al. [101] use model
predictive control to approach a moving base platform in a planar setting. Hartley et al.
[63] develop an entire MPC-based approach and capture system for the Mars Sample Return
mission. The MPC formulations vary with respect to the type of cost function used and
the constraints imposed. The two most frequently used cost functions in MPC for satellite
applications are fuel optimization (see [24, 108, 63]) or quadratic costs similar to LQR (as in
[63, 101, 104, 131]). Our work differs from previous studies in that we formulate the MPC
problem as a trajectory tracking problem; a fuel-optimal reference trajectory is designed a
priori and the controller’s job is to track along this trajectory in the presence of orbital
disturbances and intitial condition error. This is a more general treatment of the problem
and allows for an immediate comparison of the performance of the feedback maneuver with
the optimal maneuver. Further, we use a 1-norm cost function in addition to the quadratic
cost function in the minimization. We find that the 1-norm formulation uses less fuel and
provides sparser control activity than the quadratic cost.

Treating the minimum impulse bit of a thruster as a constraint in MPC has been investigated
previously as well. The minimum impulse bit (MIB) is the smallest allowable, non-zero thrust
provided by a thruster. For small, cold gas thrusters, it’s assumed that the MIB is very close
to the maximum thrust of the system. This is because the cold gas system typically does
not have much throttling capability, so it is essentially a binary thruster. Larsson et al. [85]
suggested that a semi-continuous variable could be used to encode the MIB into an MPC
problem, however they did not implement this strategy since the complexity of mixed-integer
programs grows combinatorially with the number of binary constraints. Hartley et al. [62]
considered other alternatives to using a mixed-integer program and implemented `asso MPC
[53] to implement sparsity in the signals:

1. Use continuous thrust (and ignore the problem)

2. Solve the optimization problem and round down any signals below the MIB
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3. Use two thrusters with different thrust levels to yield a lower value (differential thrust-
ing)

4. Buffer the low thrusts to a suitable accumulation and execute that signal

The first option is undesirable because it allows any signal in the set [−umax, umax] to be
applied which is not necessarily a good assumption. The second approach would prevent
small signals from being applied, but is sub-optimal in the sense that the signal which is
applied to the system may not be the solution to the optimization. Further, it is noted
that this can result in the trajectory error states converging to a limit cycle rather than the
desired state. This is not necessarily undesirable depending on the mission metrics. The
third and fourth options require more modeling to accurately capture the correct signal, and
may not be appropriate for thrust systems that are binary or near-binary. In this work,
we implement a thrust constraint model similar to the one proposed by Larsson et al. and
compare it with the second option listed above.
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1.3 Summary of Contributions

Chapter 3

The derivation of a closed-form, completely analytical solution to the minimum-energy op-
timal transfer problem for the HCW equations using only in-track and cross-track thrust is
presented. This work was performed independently of [68], however they published a sim-
ilar solution a few months ahead of this work. The work in this dissertation extends their
analysis by accomplishing the following:

1. Explicit, analytical control laws for any arbitrary tf > 0 and any boundary conditions
x0 and xf are presented.

2. An explicit Gramian matrix is derived and verified that it is invertible for any tf > 0,
which is necessary and sufficient for controllability. The control law derived with the
Gramian is precisely the same as that derived from the Pontryagin Principle, and
minimizes the same cost function (the L2 energy).

3. A proof is presented that the analytical control law is a strong local minimum using
calculus of variations and then it is proven that the control law is a global optimum
by using the controllability Gramian.

4. Derivation of significantly simplified control laws for certain specific maneuvers in
closed-form.

Then the under-actuated maneuver is compared to the fully-actuated maneuver and it is
shown that, while slightly more expensive in terms of control energy, the under-actuated
maneuver is of the same order of magnitude in terms of cost as the fully-actuated maneuver.

Chapter 4

The circular orbit assumption from Chapter 3 is relaxed and it is assumed that the system
is fully-actuated. Chapter 4 contains the following contributions

1. Using the controllability Gramian, a (numerically) computed solution to the fully-
actuated, linear optimal rendezvous is presented, and verified by numerically solving
the nonlinear optimal transfer problem using the nonlinear equations of motion.

2. A nonlinear, sliding mode, tracking controller is designed to be robust to disturbances
of magnitude no larger than that of J2. Analysis shows that the sliding mode controller
is asymptotically stabilizing in the presence of these un-modeled disturbances as well
as initial condition error.

3. The controllers in this chapter, both optimal and sub-optimal, work on any relative
Keplerian orbit with e ∈ [0, 1), which allows for a very flexible control design process.
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Chapter 5

The focus changes from control design in continuous-time to discrete-time with the goal of
developing more realistic control designs. Chapter 5 presented the following contributions

1. The use of the Gim-Alfriend state transition matrix (GA-STM) as the relative motion
model for a trajectory optimization problem

2. Using the GA-STM, a method by which to compute fuel-optimal, multi-revolution,
finite-thrust, relative orbital transfers near a J2-perturbed, eccentric orbit using convex
programming is developed

3. A demonstration that in the limit the time-discretization approaches zero and the
transfer time approaches infinity, the finite-thrust method converges to familiar results
from impulsive orbit transfer theory when perturbations are not present

4. A proof that the relative motion model using radial/in-track/cross-track as well as only
in-track/cross-track inputs is completely controllable

5. A hybrid technique of convex programming/genetic algorithm to solve the multi-
objective fuel/time optimal control problem

The technique used in this chapter allows for the benefit of added modeling fidelity (through
the use of relative orbital elements), but with the simplicity of the Cartesian distances and
velocities (through the direct linear mapping of orbital elements to Cartesian variables).
Moreover, by using the convex programming approach, we guarantee global optimality of
the solutions, which is more difficult to do with continuous-time, indirect methods. I also
demonstrated that for certain special maneuvers, such as a pure inclination change, the con-
vex program always chooses the nodal crossing to perform a thrust which agrees very closely
with results from impulsive transfer theory. This is a very interesting result because no prior
structure was imposed on the burns, simply that they minimize the overall cost function.

Chapter 6

The focus shifts from trajectory optimization to discrete-time, model predictive control
(MPC) for the application of spacecraft proximity operations. Chapter 6 contains the fol-
lowing novel contributions:

1. A novel coupled orbit and attitude model which is ideal for a small satellite in low-Earth
orbit (LEO). This model couples the orbit and attitude together through the thruster
input channels. Any attitude error results in the thrust vectors being misaligned with
the orbiting axes, and the thrust will in general push the satellite in the wrong direction.
Additionally, the model accounts for the potential misalignment of the thrusters with
1) each other and 2) the center of mass; each thrust induces a torque about the center
of mass and can cause further attitude error.
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2. A reformulation of the classical MPC problem as a trajectory tracing problem. We use
a mixed-integer linear program to solve the minimum fuel optimal control problem with
collision avoidance constraints. The resulting state and control history is previewed in
the prediction.

3. A new method of modeling the minimum impulse bit (MIB) in the trajectory tracking
problem. We implemented the MIB as a combinatorial constraint. This results in
increased computational effort, but we show that when compared to a sub-optimal
approximation of the MIB, the proposed method results in sparser control action, and
thus less fuel use. This is compared to another technique which rounds control signals
below the minimum bit to zero. It is shown that the new method is able to run faster
than real-time for both 1-norm and 2-norm formulations of the problem.

While computationally more expensive, the methods proposed in this chapter can enable
small inspector satellites to safely fly around a complex shape (such as the Space Shuttle
orbiter or the ISS) while also using sparse control activity.

Following Chapter 6, Chapter 7 contains conclusions of the research are presented as well as
recommendations for future work.

1.4 Notation

In this dissertation, significant effort has been made to keep the notation consistent, and in
this section the essential mathematical notation is presented.

An n-dimensional Euclidean space is defined as Rn. A real-valued scalar will be denoted by
x ∈ R, whereas a real-valued, n-dimensional vector will be denoted as x ∈ Rn, and a
real-valued matrix in n-by-m dimensional space is given by X ∈ Rn×m.

This work primarily deals with the control of dynamical systems, and frequently we make
use of systems of the form ẋ = f(x,u). The quantity ˙(·) denotes a derivative with respect
to time, and (·)′ denotes a derivative with respect to a different variable, which will be made
clear in the appropriate context. The Jacobian of the vector field f(x) ∈ Rn is given by

J(x) =
∂f(x)

∂x
=


∂f1
∂x1

. . . ∂f1
∂xn

...
. . .

...
∂fn
∂x1

. . . ∂fn
∂xn


State transition matrices are written as Φ(t1, t0) : x(t0) 7→ x(t1). Gramian matrices, such
as the controllability Gramian are given by W (t0, t1) : Rn 7→ Rn.

In the trajectory optimization section, we use two different Lagrange multipliers, λk and
νk. For the kth inequality constraint in an optimization problem we use λk and for the kth
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equality constraint we use νk. For a set U ⊆ Rn, we denote the convex hull of that set as
conv(U) ⊆ Rn.

An identity matrix spanning Rn is In×n, and a matrix of zeros is given by 0n×n. The transpose
of a matrix A ∈ Rn×m is given by (·)T : Rn×m 7→ Rm×n. The inverse of a square matrix
A ∈ Rn×n is given by A−1. The p-norm of a vector is denoted by || · ||p, and when the p is
omitted, the reader may assume that the Euclidean norm p = 2 is used. For a time-varying
vector field f(x, t), its Jacobian will be denoted as A(t), and if elements of the Jacobian are
parameterized by a quantity, this will be denoted by A(t; e) where e is the parameter that
must be accounted for.

An orthonormal reference frame will be referred to as {a} and the basis vectors spanning
{a} will be denoted

[
â1 â2 â3

]
. The rotation from frame {a} to frame {b} is Ra

b .



Chapter 2

Mechanics and Control Preliminaries

In this chapter, the requisite astrodynamics, rigid body dynamics, and control system theory
are presented. In particular, the nonlinear and linear relative orbit models, rigid body motion
relative to the orbiting frame, and optimal control formulations that we use in later chapters
are presented.

2.1 Astrodynamics

2.1.1 Two-Body Problem

Consider the motion of a satellite in orbit around a massive central body. The equations of
motion that describe this motion are given by

r̈c = − µ

||rc||3
rc + ad(rc, ṙc, t) (2.1)

where rc ∈ R3 defines the position vector from the center of mass of the central body to the
center of mass of the orbiting body, µ is the standard gravitational parameter, and ad(·, ·, ·)
defines a vector of (possibly time-varying) position and velocity dependent perturbations.

Eq. 2.1 represents a system of three coupled, nonlinear ordinary differential equations which
describe the satellite’s position and velocity relative to an inertially fixed frame at the center
of the central body. The state vector for the equations of motion under the Cartesian
parameterization is [

rTc ṙTc
]T

=
[
X Y Z Ẋ Ẏ Ż

]T
(2.2)

Another popular parameterization is the classical orbital elements given by

e =
[
a e i Ω ω f

]T
(2.3)

18
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where a is the semi-major axis, e is the eccentricity, i is the inclination, Ω is the right-
ascension, ω is the argument of periapsis and f is the true anomaly.

Suppose ad(·, ·, ·) = 0, an assumption which can be reasonable for relatively short time-
scales. Under this assumption, the angular momentum of the orbit is a constant of motion.

Remark 1. There are ten classical integrals of motion for the two-body problem; three com-
ponents of the orbital angular momentum vector, three components of the eccentricity vector,
the Hamiltonian, the trajectory equation, the mean motion, and the time or periapsis pas-
sage [13]. More recently, an eleventh constant of motion was derived by Sinclair and Hurtado
[124]. They noted that the two-body problem can be split into mass-center and relative motion
subsystems, and the eleventh constant of motion relates the behavior of the two subsystems.

We can express the equations of motion in Eq. 2.1 in a different form, namely we use polar
coordinates and treat the problem as planar. The equations of motion in this context take
the form

r̈c = rcθ̇
2 − µ

r2
c

θ̈ = −2ṙcθ̇

rc

(2.4)

where θ = ω + f is called the argument of latitude. This system of equations can explicitly
be solved:

rc(θ) =
a(1− e2)

1 + e cos θ
θ̇(θ) =

eµ sin θ√
µa(1− e2)

ṙc(θ) =

√
µa(1− e2) (1 + e cos θ)2

a2(1− e2)2
θ̈(θ) =

2µe(1 + e cos θ)3 sin θ

a3(1− e2)3

(2.5)

Eq. 2.5 will be used extensively for the time-varying coefficients in the formation flying
equations.

2.1.2 Nonlinear Relative Motion

Consider the relative geometry in Figure 2.1.

Let the inertial frame, which is attached to the center of the central body be given by

{n̂} =
[
X̂ Ŷ Ẑ

]T
. Similarly, let {ô} be a non-inertial frame attached to the chief satellite

be given by {ô} =
[
ôr ôθ ôh

]T
where ôr points in the radial direction away from the central

body, ôh points in the direction of the orbital angular momentum and ôθ completes the
right-handed triad. This is often called the Local-Vertical, Local-Horizontal reference frame

(LVLH). The frame {b̂} =
[
b̂1 b̂2 b̂3

]T
is a body-fixed frame attached to the deputy, which

is ignored during the derivation of the trajectory equations. The transformation between
{n̂} and {ô} is given by

Ro
n =

[
rc

||rc||
hc × rc

||hc × rc||
hc

||hc||

]
(2.6)
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Figure 2.1: Relative orbit geometry

where hc = rc × ṙc is the specific orbital angular momentum. Now let us consider relative
motion in the orbiting frame. The position vector for the deputy in the orbiting frame is

rd = rc + ρ =
[
rc + x y z

]T
(2.7)

The angular velocity of the LVLH frame with respect to the inertial frame is ωon =
[
0 0 θ̇

]T
with which we write the deputy’s velocity with respect to the inertial frame is

(ṙd)n = (ṙc + ρ̇)o + S(ωon)(rc + ρ)o (2.8)

where S(·) is the skew-symmetric, cross product operator satisfying S(a)b = a × b for
a, b ∈ R3. The deputy’s acceleration is

(r̈d)n = (r̈c + ρ̈)o + 2S(ωon)(ṙc + ρ̇)o + S(ω̇on)(rc + ρ)o + S(ωon) [S(ωon)(rc + ρ)o] (2.9)

Using Eq. (2.9) with Eq. (2.1) for the deputy, the equations of motion are

(r̈c + ρ̈)o+2S(ωon)(ṙc+ρ̇)o+S(ω̇on)(rc+ρ)o+S(ωon) [S(ωon)(rc + ρ)o] = − µ(rc + ρ)

||rc + ρ||3
(2.10)

Component-wise, the nonlinear equations of the relative motion (NERM) in terms of the
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relative separation are

ẍ =2θ̇ẏ + θ̈y + θ̇2x+
µ

r2
c

− µ(x+ rc)

[(rc + x)2 + y2 + z2]3/2

ÿ =− 2θ̇ẋ− θ̈x+ θ̇2y − µy

[(rc + x)2 + y2 + z2]3/2

z̈ =− µz

[(rc + x)2 + y2 + z2]3/2

(2.11)

where rc, ṙc, θ̇ and θ̈ satisfy Eq. (2.5). Eq. (2.11) is a nonlinear, time-varying system of
equations which (to our knowledge) possesses no analytical solution. The relative motion is
parameterized by the eccentricity of the chief’s orbit. The effect that the eccentricity has on
the relative orbit can be seen in Figure 2.2.
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2.1.3 Linearized Relative Motion

Since a nonlinear system is, in general, much more difficult to work with, we seek a linearized
approximation of the nonlinear system which could be beneficial from the standpoint of
analysis and control design. Following [10], we can approximate the position of the deputy
as

rd =
√

(rc + x)2 + y2 + z2 ≈ rc

√
1 + 2

x

rc

which neglects the contribution in the in-track (y) and cross-track (z) directions to the
potential energy. The acceleration due to the conservative force field is the negative gradient
of the potential, using the binomial theorem [10, 123]:

ad,linear = − µ
r3

c

[
rc − 2x y z

]T
Now, the linear equations of relative motion (LERM) have the form

ẍ = 2θ̇ẏ +

(
θ̇2 + 2

µ

r3
c

)
x+ θ̈y

ÿ = −2θ̇ẋ− θ̈x+

(
θ̇2 − µ

r3
c

)
y

z̈ = − µ
r3

c

z

(2.12)

and in state space we have


ẋ
ẏ
ż
ẍ
ÿ
z̈

 =



0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1(

θ̇2 + 2
µ

r3
c

)
θ̈ 0 0 2θ̇ 0

−θ̈
(
θ̇2 − µ

r3
c

)
0 −2θ̇ 0 0

0 0 − µ
r3
c

0 0 0


︸ ︷︷ ︸

=A(t;e)


x
y
z
ẋ
ẏ
ż



For the LERM, it has been shown that bounded relative orbits exist when the initial state
for the deputy in the relative frame satisfies

ẏ0

x0

= − n(2 + e)

(1 + e)
1
2 (1− e) 3

2

(2.13)

where e is the orbital eccentricity. This is a very important result; if this initial condition
requirement is not met, the linear system exhibits a secular drift in the in-track direction.
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In the orbiting frame, this takes the form of the deputy satellite moving forward relative
to the chief or backward depending on what the ratio between the initial radial position
and in-track velocity is. From this point forward, this condition will be referred to as the
commensurabilty condition.

It is natural to inquire about the quality of the approximation of the LERM: if the NERM
are considered (for the time being) to be the “truth,” how do the LERM compare? It turns
out that the LERM are an excellent approximation of the NERM in the limit that the local
space around the chief’s orbit can be modeled by Euclidean space. The comparison of the
LERM and NERM can be seen in Figure 2.3.
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Figure 2.3: For baselines on the order of up to a few kilometers, the difference between the
LERM and NERM is nearly indistinguishable

The conclusion we can glean from the comparison shown in Figure 2.3 is that for short
baseline maneuvers and/or time-scales, the LERM are the preferred model to work with.
Analytically, a linear, time-varying system is easier to work with than a nonlinear system.
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Furthermore, for the purposes of optimal control design, using a linear model provides certain
guarantees with respect to controllability, optimality etc.

Now we consider the case of vanishing eccentricity. In reality, it is extraordinarily unlikely
that the reference orbit will be perfectly circular, particularly when any perturbations are
considered, however for nearly-circular orbits (such as the orbits that the Space Shuttle and
other LEO objects orbit in or GEO objects) this is a reasonable modeling assumption. In
the limit that e→ 0, we find that θ̇ → n and θ̈ → 0, which makes Eq. (2.12) take the form
of the famous Hill-Clohessy-Wiltshire (HCW) equations

ẍ = 3n2x+ 2nẏ

ÿ = −2nẋ

z̈ = −n2z

(2.14)

In state space, the HCW equations are
ẋ
ẏ
ż
ẍ
ÿ
z̈

 =


0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

3n2 0 0 0 2n 0
0 0 0 −2n 0 0
0 0 −n2 0 0 0




x
y
z
ẋ
ẏ
ż

 (2.15)

Remark 2. Note that the state matrix in Eq. (2.15) contains a one-dimensional null-space
corresponding to the in-track position y. This physically represents an in-track invariance to
initial conditions; the shape of the relative trajectory is not affected by a deputy starting, for
example, 200m in front of the chief, or 200m behind the chief. The relative trajectory is just
translated forward or backward based on y0. This ends up being a property of the LERM as
well, however it is not immediately apparent upon inspection of the system.

The commensurability condition becomes

ẏ0

x0

= −2n (2.16)

The HCW equations are a linear, time-invariant approximation of the motion for which an
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analytical solution is readily available

x(t) = Φ(t, 0)x0

=



4− 3 cosnt 0 0
sinnt

n

2

n
− 2 cosnt

n
0

−6nt+ 6 sinnt 1 0 − 2

n
+

2 cosnt

n

4 sinnt

n
− 3t 0

0 0 cosnt 0 0
sinnt

n
3n sinnt 0 0 cosnt 2 sinnt 0

−6n+ 6n cosnt 0 0 −2 sinnt −3 + 4 cosnt 0
0 0 −n sinnt 0 0 cosnt




x0

y0

z0

ẋ0

ẏ0

ż0


(2.17)

where Φ(t, 0) is the matrix exponential for the HCW equations. Analytical solutions to the
LERM exist in both the time-domain [26] and the anomaly-domain [135]. The state transi-
tion matrices represented in [26] and [135] were not used in the analyses in this dissertation,
so they are not included here.

Remark 3. The state transition matrix in Eq. (2.17) forms the basis for the discrete-time
relative motion model in Chapter 6.

2.1.4 Gim-Alfriend Relative Motion Theory

The HCW, LERM and NERM models are generally viewed as good models to use when first
studying spacecraft relative motion. The assumptions inherent in their derivation depend
entirely on the Keplerian orbit assumption, which, as previously mentioned, is adequate for
short time-scale or length-scale maneuvers or missions. For longer maneuver durations, or
larger baselines, a more accurate model could be necessary. To this end, we review the
essential theory behind the Gim-Alfriend state transition matrix (GA-STM).

The orbiting frame {ô} was previously defined as a Euclidean reference frame which is
tangent to the orbit at the point of the chief. This results in linearization error even when
the NERM are used [120, 84]. Using a curvilinear reference frame centered at the chief
satellite can help mitigate some of the approximation error that accrues from assuming that
the space around the chief is Euclidean [10]. Physically, the coordinates (x, y, z) represent
the difference in orbital radii, the in-track, arc-length displacement and the cross-track,
arc-length displacement respectively. The curvilinear geometry may be seen in Figure 2.4

In reality, the relative motion of the deputy is the result of slight differences in the orbital
elements between the chief and deputy. Orbital elements are implicitly expressed in this
curvilinear reference frame, and since the deviations are small, linearizing around the small
deviations in orbital elements will in general incur a smaller linearization error [9] than using
the LVLH reference frame.
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Figure 2.4: The curvilinear reference frame

In the curvilinear reference frame, we now consider the addition of the J2 perturbation.
Previously, we had defined the orbital elements in Eq. (2.3). In the derivation of the GA-
STM, the following nonsingular element set is used

e =
[
a θ i q1 q2 Ω

]T
(2.18)

where a, θ, i, and Ω were previously defined and q1 = e cosω and q2 = e sinω. This set is
used because the true anomaly and argument of periapsis are undefined for a circular orbit,
and the numerical conditioning of the transformation between mean and osculating orbits is
poor for small eccentricities. Denote the difference between the chief and deputy osculating
elements as

δe = ed − ec

=
[
δa δθ δi δq1 δq2 δΩ

]T (2.19)

and the relative position and velocity expressed in the curvilinear frame is given by the state
vector [55]

x =
[
x ẋ y ẏ z ż

]T
(2.20)

The geometric transformation between the J2-perturbed differential orbital elements and the
curvilinear vector x(t) is given by

x(t) = [M(t) + γN (t)] δe(t) (2.21)

where γ = 3J2R
2
eq, J2 = 1082.63(10−6) and Req = 6378.137 km is the equatorial radius of

the Earth. The matrix M(t) maps the unperturbed elements into the state vector x(t) and
the matrix N (t) contains the elements which are perturbed by J2. For brevity, we define
the matrix

Σ(t) = [M (t) + γN (t)] (2.22)
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The time evolution of the mean orbital elements, δē, due to the J2 perturbation is given by

δē(t) = φ̄ē(t, t0)δē(t0) (2.23)

where φ̄ē(t, t0) is the state transition matrix for the mean orbital elements. The differential
osculating orbital elements, δe can be obtained from the mean elements by computing a
matrix D(t) which is given by

D(t) =
∂e

∂ē
= I6×6 − J2R

2
eq

[
D(lp)(t) +D(sp)1(t) +D(sp)2(t)

]
where (lp) and (sp)1,2 refer to long- and short- periodic variations in the elements due to
the perturbation. The short-periodic variations occur on the scale of the orbit period. The
long-periodic effects are typically manifested over a period of 20-60 days in LEO [128], so
for maneuvers on the scale of about 12 hours, such as some of the examples presented
in this paper, the long-periodic contribution will be negligible. The mean-to-osculating
transformation is given by

δe(t) = D(t)δē

= D(t)φ̄ē(t, t0)δē(t0)

= D(t)φ̄ē(t, t0)D−1(t0)δe(t0)

(2.24)

Using this expression, the state transition matrix for the curvilinear coordinates x(t) under
the influence of J2 is given by

x(t) = Σ(t)D(t)φ̄ē(t, t0)D−1(t0)Σ−1(t0)x(t0)

= ΦJ2(t, t0)x(t0)
(2.25)

where ΦJ2(t, t0) is the GA-STM. The elements of the GA-STM are quite long and complex,
and the reader is encouraged to refer to [55] or [10] for the complete form1. The GA-STM
is a closed-form, analytical approximation for the evolution of the deputy satellite relative
to the chief under the first-order influence of J2. In [55], Gim and Alfriend showed that this
state transition matrix was valid for all eccentricities and inclinations with the exception of
the critical inclination 5 cos2 i = 1. The results in [55] indicate that when compared to a
nonlinear, numerical simulation of the basic orbit problem with the addition of the J2-J6

perturbations, the GA-STM experiences errors on the order of meters over the course of one
day in LEO, where J2 has the strongest effect. From this it may be concluded that this
approach would be a useful model for trajectory optimization over long baselines or multiple
orbits. Importantly, this model is a linear theory which allows for certain guarantees in the
control design, e.g. global optimality etc.

1A complete Matlab implementation can be found at Github or by cloning the repository with the shell
command git clone git@github.com:acrAstro/satelliteCodes.git. A companion python implemen-
tation is under development in git@github.com:acrAstro/pysatellite.git.
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Another interesting aspect of the GA-STM is that it is numerically equivalent to the state
transition matrix for the unperturbed linear equations of relative motion (LERM) if J2 = 0.

In a later chapter the GA-STM is used to generate fuel-optimal trajectories which take
several orbits to complete. Over several orbits, the differential effect of J2 becomes non-
negligible, and we illustrate this in Figure 2.5. Figure 2.5 shows the GA-STM and LERM
with the initial condition constraint used in Eq. (2.13), and these two solutions are compared
with the orbit equation and J2-J6 perturbations included, expressed in the curvilinear frame.
The GA-STM is nearly identical to the nonlinear orbit. Conversely, the LERM present a
dramatically different solution, and this motivates the use of the GA-STM for trajectory
optimization. Initial conditions for J2-invariant orbits exist which could be used with the
GA-STM to ensure that no in-track drift occurs, however this was not used in this analysis.
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2.1.5 Alternative Motion Models

Since the focus of this dissertation is on control design, only a few of the very many relative
motion models are used, however, a few other popular models are mentioned here for further
reading.

One very popular model is the Tschauner-Hempel model [135]. A change of basis is applied
to the LERM which transforms the independent variable from time to true anomaly.

x′′ =
3

1 + e cos f
x+ 2y′

y′′ = −2x′

z′′ = −z

(2.26)

The benefit of this approach is a simpler state transition matrix than the one provided in
[26]. The only downside to using this motion model is that the change of variables must
be carefully accounted for when doing control design and analysis because the distances are
rescaled by the similarity transformation.

Another model which can be used is the Kechichian system [75]. This model is an exact,
nonlinear, time-varying system of differential equations which models relative motion near a
dragging and precessing orbiting reference frame. It accounts for the effect of J2 in terms of
the osculating elements, so the resulting motion is more precise, however the highly complex
nature of the system can make control design quite difficult.

Gaias et al. recently presented a state transition matrix for J2-perturbed, near-circular
relative motion with time-varying differential drag [51]. When used with a mapping from
relative orbital elements to Cartesian variables, this model could be used for optimal control
design or discrete-time feedback control similarly to the analysis presented on the Gim-
Alfriend matrix in Chapter 5.
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2.2 Gauss’ Variational Equations

Gauss’ Variational Equations (GVE) [24, 118, 117] are an exact system of differential equa-
tions subject to any number of orbital perturbations:

ȧ =
2a2

h

(
e sin far +

p

r
aθ

)
ė =

1

h
(p sin far + ((p+ r) cos f + re) aθ)

˙(i) =
r cos θ

h
ah

Ω̇ =
r sin θ

h sin i
ah

ω̇ =
1

he
(−p cos far + (p+ r) sin faθ)−

r sin θ cos i

h sin i
ah

Ṁ = n+
b

ahe
((p cos f − 2re) ar − (p+ r) sin faθ)

(2.27)

where Kepler’s equation provides the relationship between mean anomaly, M , eccentric
anomaly, E, and time

M = n(t− t0) = E − e sinE (2.28)

and the eccentric anomaly is related to true anomaly through

tan

(
f

2

)
=

√
1 + e

1− e
tan

(
E

2

)
(2.29)

where Eq. 2.27 allows the effect of any arbitrary perturbation on the orbital elements to be
studied.

Remark 4. For the GVE, the orbit cannot be perfectly circular; the Keplerian elements have
singularities for circular orbits since argument of periapsis has little meaning when each point
is simultaneously periapsis and apoapsis. Alternative forms of the GVE exist for nonsingular
elements, equinoctial elements etc., and the reader may refer to [67, 130, 129].

Two perturbations we consider, particularly in Chapter 6 are the J2 perturbation and at-
mospheric drag. The caveat to using the GVE to predict the effect of a perturbation on the
orbital elements is that the perturbation must be expressed in the LVLH reference frame.
Consider J2, which has the form [119]

aJ2 = −3

2
J2

( µ
R2

)(Req

R

)2



(
1− 5

(
Z

R

)2
)
X

R(
1− 5

(
Z

R

)2
)
Y

R(
3− 5

(
Z

R

)2
)
Z

R


(2.30)
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where R =
√
X2 + Y 2 + Z2.

Remark 5. Simulation of the J2 perturbation with the GVE requires that 1) at each time
step the orbital elements are converted to positions and velocities in the inertial frame (see,
for instance Vallado [128]) and 2) the mapping Rn

o be applied to the vector aJ2.

Another perturbation that can have a substantial impact on orbital motion is atmospheric
drag. The atmospheric drag acceleration can be written

adrag = −
(
A

m

)
CDρ

V 2

2
ôv (2.31)

where V =
√
Ẋ2 + Ẏ 2 + Ż2, CD is the drag coefficient, A is the surface area in the velocity

direction, m is the mass of the satellite, and ôv is the orbital velocity vector expressed in the
orbiting frame. The density, ρ can be computed in a number of ways; often an exponential
model is used as a first attempt

ρ(R) = ρ0e
−

(R−R0)

H (2.32)

where ρ0 and R0 are the reference density and orbit radius (typically chosen to be radius
and density at periapsis) and H is the atmospheric density scale height.

Remark 6. Note that in general ôv 6= ôθ; these vectors are only equal when the orbit is
circular.

The following transformation may be adopted to ensure that the drag perturbation is ex-
pressed in the appropriate frame [119][

ôr
ôθ

]
=

1√
1 + e2 + 2e cos f

[
1 + e cos f e sin f
−e sin f 1 + e cos f

] [
ôn
ôv

]
(2.33)

and its inverse [
ôn
ôv

]
=

1√
1 + e2 + 2e cos f

[
1 + e cos f −e sin f
e sin f 1 + e cos f

] [
ôr
ôθ

]
(2.34)

In Chapter 6, the GVE with these perturbations will be used to simulate the controllers on a
more realistic orbital model. In theory, any number of perturbations could be included, but
for the mission profiles considered in this work, J2 and atmospheric drag are by far the largest
exogenous forces. In fact J2 is three orders of magnitude larger than the J3 perturbation.
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2.3 Rigid Body Mechanics

Now, consider the motion of a rigid spacecraft in a circular orbit near the orbiting reference
frame, seen in Figure 6.1. The rotation between the principal axes of the spacecraft and
the orbiting reference frame, Rb

o for some arbitrary orientation can be parameterized by the
3-2-1 Euler angle sequence, where ψ is the yaw angle around the radial unit vector, θ is the
pitch angle around the cross-track unit vector, and φ is the roll angle about the in-track
unit vector, seen in Figure 2.6. The angular velocity of the body with respect to the inertial
frame is

ωbn = ωbo +Rb
oω

o
n =⇒ ω̇bn = ω̇bo + Ṙb

oω
o
n (2.35)

where ωon =
[
0 0 −n

]T
is the constant angular velocity of the orbiting frame with respect

to the inertial frame (because we assume the motion is in a circular orbit), and ωbn is the
body angular velocity with respect to the orbiting frame. The time-derivative of Rb

o is

Ṙb
o = −S(ωbo)R

b
o (2.36)

The angular rates in terms of the 3-2-1 Euler angles isψ̇φ̇
θ̇

 =
1

cosφ

 0 sin θ cos θ
0 cosφ cos θ − cosφ sin θ

cosφ sinφ sin θ sinφ cos θ

ωbo (2.37)

The angular displacement of the body axes with respect to the orbiting frame can also be

parameterized by the quaternions q̄ =
[
q0 qT

]T
, and the rotation matrix of the body axes

with respect to orbiting axes is

Rb
o =

q2
0 + q2

1 − q2
2 − q2

3 2(q1q2 + q0q3) 2(q1q3 − q0q2)
2(q1q2 − q0q3) q2

0 − q2
1 + q2

2 − q2
3 2(q2q3 + q0q1)

2(q1q3 + q0q2) 2(q2q3 − q0q1) q2
0 − q2

1 − q2
2 + q2

3

 (2.38)

which can be written more elegantly using the Rodrigues formula

Rb
o(q̄) = I3×3 + 2q0S(q) + 2S2(q) (2.39)

The kinematic equations in terms of quaternions are[
q̇0

q̇

]
=

1

2

[
−qT

[q0I3×3 + S(q)]

]
ωbo (2.40)

and the kinematic relationships between the 3-2-1 Euler sequence and kinematics, the map-
ping between the angular velocities, and associated Euler angle rates are provided in [119,
70, 133]. The dynamic equations including the gravity gradient torque are

ω̇bo = I−1
(
−S(ωbn)Iωbn + 3n2S(r1(q̄))Ir1(q̄) + τ

)
+ S(ωbo)R

b
o(q̄)ωon (2.41)
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where I is the inertia matrix of the satellite, τ is the control torque and r1(q̄) is the first
column of the matrix Rb

o(q̄) [133]. Eq (2.41) can be linearized around the equilibrium[
q̄T (ωbo)

T
]T

=
[
1 01×6

]T
to yield the state matrix

Ar =



0 0 0 0 0 0 0
0 0 0 0 1/2 0 0
0 0 0 0 0 1/2 0
0 0 0 0 0 0 1/2

0 2n2 (I2−I3)
I1

0 0 0 n (I1−I2+I3)
I1

0

0 0 8n2 (I1−I3)
I2

0 −n (I2−I1+I3)
I2

0 0

0 0 0 6n2 (I1−I2)
I3

0 0 0


(2.42)

and the input matrix

Br =
[
03×4 I−1

]T
(2.43)

and Ii are the principal moments of inertia. The superscript r indicates the the system
describes the rotational dynamics.

Remark 7. Inspection of Eq. (2.42) reveals that the linear state matrix is rank-deficient.
Furthermore the pair (Ar,Br) is linearly uncontrollable; however it is stabilizable. This is a
result of the quaternion constraint q̄T q̄ = 1. The redundancy of the quaternion parameteriza-
tion leads to a one-dimensional, uncontrollable subspace. A different parameterization such
as Euler angles or modified Rodrigues parameters can circumvent this, however for model
predictive control, this does not significantly affect the control design.
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Figure 2.6: Spacecraft body axes relative to orbiting axes
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2.4 Optimal Control

In this section, we discuss the Pontryagin Maximum Principle (PMP), and talk briefly about
the differences between direct and indirect methods in optimal control.

2.4.1 The Pontryagin Principle

Suppose a system with n states and m control inputs is described by the differential equation
[28]

ẋ(t) = f(x(t),u(t), t) (2.44)

where f : Rn × Rm 7→ Rn and t ∈ R+. Define the set of admissible control signals by
Ω ⊆ Rm. Given an initial set X0 and target set Xf , the optimal controller is a piecewise
continuous signal u(t) ∈ Ω ⊆ Rm, e.f. which steersX0 7→Xf and minimizes the functional
J = Rn × Rm × R 7→ R

J =

∫ tf

t0

`(x(τ),u(τ), τ)) d τ + Ψ(x(tf )) (2.45)

and maximizes the Hamiltonian

Ĥ(x̂∗(t), η̂∗(t)),u∗(t)) = arg max
u∈Ω

Ĥ(x̂∗(t), η̂∗(t)),u(t))

= arg max
u∈Ω

η` `(x(t),u(t), t)) + ηT (t) [f(x(t),u(t), t)]
(2.46)

where (·)∗ denotes an optimal value. Furthermore, there exists a non-trivial solution to the
augmented state and adjoint equations[

ẋ`(t)
ẋ(t)

]
=

[
`(x(t),u(t), t)
f(x(t),u(t), t)

]
˙̂η = −

[
0 0n×n

∇x`(x̂∗(t),u∗(t), t) [Jxf(x̂∗(t),u∗(t), t)]T

]T
η̂

(2.47)

where η̂(t) ,
[
η`(t) ηT (t)

]T
and x̂(t) ,

[
x`(t) xT (t)

]T
with the terminal condition

Ψ(x(tf )) + Ĥ(x(tf ),η
∗(tf ),u(tf )) = 0 (2.48)

If Xf is not fixed, then

η(tf ) =
∂Ψ(x(tf ))

∂x

∣∣∣∣
x(t)=x(tf )

(2.49)

If X0,f are fixed, the initial and final values of the optimal co-states may be selected to
satisfy the transversality conditions

η∗(t0) ⊥ T0 η∗(tf ) ⊥ Tf (2.50)
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where T0,f are the spaces tangent to the boundary conditionsX0,f , respectively. The optimal
control problems in this paper are point-to-point problems, which implies that T0,f = 0 and
are always satisfied; the transversality conditions provide no further information for solving
the boundary value problem, however this was not detrimental to the solutions in this work.
Furthermore, for fixed tf , it is necessary for the Hamiltonian evaluated at the optimal states,
co-states and controls to be constant:

Ĥ(x∗(t),η∗(t),u∗(t)) = C∗ (2.51)

where C∗ is an arbitrary constant. Additionally, since η` 6= 0, it is very common to define
the Lagrange multiplier λ = η/η`. This definition is used in Chapter 4.

The above developments comprise Pontryagin’s Maximum Principle (PMP), which is a nec-
essary condition for the minimization of a functional. The dynamic optimization problem is
constrained by the adjoint equations (also called co-states) which are time-varying Lagrange
multipliers. If Ψ(x(tf )) = 0 and the problem contains only the running cost (the integral
term) then the functional is called a Lagrangian functional; if only the terminal condition is
present, then the functional is called a Mayer function. If both terms are present then the
functional is called a Bolza functional.

2.4.2 Indirect vs Direct Methods

The PMP is a powerful, general tool for solving optimal control problems, but frequently
results in 2n-dimensional boundary value problems which are not always easily solved. The
PMP is known as an indirect method wherein the necessary conditions are applied and
candidate extrema are identified. Further analysis is typically required to determine whether
an extremum is a weak local extremal, strong local extremal etc. [17].

Another approach entirely is to discretize and transcribe the infinite dimensional functional
optimization problem into a finite dimensional parameter optimization problem (where the
parameters are the states and controls). This is the method applied by software such as
GPOPS-II [102]. GPOPS-II uses an hp-adaptive, Legendre-Gauss-Radau quadrature, or-
thogonal collocation method that transcribes the continuous-time optimal control problem
to a sparse, nonlinear programming problem (NLP). After the NLP has been solved, the
necessary conditions may then be applied to the resulting solution to verify optimality [106].

If the cost function has certain structure (e.g. convexity) and the dynamics/ constraints are
linear, then it would make sense to exploit this structure during transcription. Discretizing
a linear problem using a zero-order-hold (ZOH) can result in a convex optimization prob-
lem (e.g. linear program (LP) or quadratic program (QP) [125, 2] or second-order cone
program (SOCP) [18]), which can be solved very efficiently using well-known techniques
such as interior point methods etc. [21]. This type of transcription, as well as combinato-
rial programming extensions (e.g. mixed-integer linear programming or MILP) will be used
exclusively in Chapters 5 and 6.
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The advantage to transcribing a problem to a convex program is that, despite putting some
restrictions on the type of problem one can solve (e.g. nonlinear dynamics can’t be used),
the resulting optimization problem is guaranteed to be globally optimal due to convexity.
As a result, the necessary conditions no longer need to be applied to verify the optimality
as they would in a technique such as pseudo-spectral collocation. On the other hand, the
optimality of the solution to the convex program only holds in the limit that the linear
problem accurately captures the system’s behavior. The global optimum of the convex
program is not necessarily the optimum of the true nonlinear system.

2.4.3 Controllability and the Minimum Energy Transfer

Some optimal control problems can be solved purely by using the structural properties of
linear systems. Consider a linear, time-varying system of the form

ẋ = A(t)x+B(t)u, x(t0) = x0 (2.52)

The system is controllable if there exists a piecewise continuous control signal on the interval
t ∈ [t0, tf ] which drives the system from an initial state x(t0) to a terminal state x(tf ). The
solution to the general linear time-varying system is given by the variation of constants
formula

x(tf ) = Φ(tf , t0)x0 +

∫ tf

t0

Φ(tf , τ)B(τ)u(τ) d τ (2.53)

where Φ(tf , t) is the state transition matrix. To find the input signal u(t) which would
drive the system to x(tf ), we use the properties of the linear, time-varying system. First,
we pre-multiply both sides of Eq. (2.53) by Φ(t0, tf ) and solve for the initial state

x0 = −
∫ tf

t0

Φ(t0, τ)B(τ)u(τ) d τ

This defines a linear operator L(u(t)) : Cm[t0, tf ] → Rn [25]. The range-space of this
operator defines the set of initial conditions, x(t0), for which a control signal u ∈ Cm[t0, tf ]
can drive the state to another state, x(tf ), in a finite time, tf . Now, the adjoint of the linear
operator L(·) is L∗(u(t)) : Rn → Cm[t0, tf ] and is defined by requiring that

〈L(u),x〉Rn = 〈u, L∗(x)〉Cm (2.54)

where 〈·, ·〉 denotes the inner product. By definition, the range of L(·) is in Rn, and the
range of L(·) composed with its adjoint, R(L ◦ L∗), is also in Rn, so we can say R(L) =
R(L ◦ L∗) ∈ Rn. For the left-hand side of Eq. 2.54, we can use the standard inner product
on Rn to write

〈L(u),x〉Rn =

(
−
∫ tf

t0

Φ(t0, τ)B(τ)u(τ) d τ

)T
x

= −
∫ tf

t0

uT (τ)BT (τ)ΦT (t0, τ)x d τ
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For the right-hand side, the inner product on Cm[t0, tf ] is

〈u, L∗(x)〉Cm = −
∫ tf

t0

uT (τ)BT (τ)ΦT (t0, τ)x d τ

The adjoint operator of L(·) is then

L∗(x) = −BT (t)ΦT (t0, t)x

The composition of the linear operator L and its adjoint L∗ is

L(L∗(x)) = L
(
−BT (t)ΦT (t0, t)

)
=

(∫ tf

t0

Φ(t0, τ)B(τ)BT (τ)ΦT (t0, τ) d τ

)
x

= Wc(t0, tf )x

The matrix Wc(t0, tf ) is the controllability Gramian which defines the operator L ◦ L∗ :
Rn → Rn. We require that R(L ◦ L∗) = Rn which can only be the case if the Gramian is
invertible (i.e. has full rank). One controller that drives x(t0) = x0 to x(tf ) = xf is given
by

u∗(t) = −BT (t)ΦT (t0, t)W
−1
c (t0, tf ) (x0 −Φ(t0, tf )xf ) (2.55)

where Wc(t0, tf ) is the controllability Gramian. This controller also minimizes the L2 energy
of the cost function [28] where L2 is the set of square-integrable functions. In terms of the
operators we used to define it, the control law is

u∗(t) = L∗ ◦ (L ◦ L∗)−1 (x0 −Φ(t0, tf )xf ) (2.56)

The form L∗ ◦(L ◦ L∗)−1 provides the least-square solution to the under-determined problem
of finding a control history that drives the system from x0 to xf .

Remark 8. This is analogous to manner in which the Moore-Penrose pseudoinverse of
a non-square matrix gives a least-square solution to an underdetermined system of linear
equations [25]. Note that since this is a least-squares problem constrained by linear dynamics,
u∗(t) is actually a global optimum by convexity [36].



Chapter 3

Analytical Control Law for
Under-actuated, Low-Thrust
Formation Reconfiguration

3.1 Introduction

In this chapter, an analytical control law for input-energy-optimal, under-actuated spacecraft
relative reconfiguration is derived using the Pontryagin Principle and then verified using
the controllability Gramian. Over short time scales, the linearized equations of motion
for spacecraft relative motion closely agree with the nonlinear model [112], which makes
trajectory optimization using linear techniques useful. The Pontryagin Principle provides
only a necessary condition for optimality, however the controllability Gramian provides a
necessary and sufficient condition for optimality. The control law that results from using the
Gramian is identical to the control law derived using the Pontryagin Principle for the linear
system.

Minimum energy transfers near circular orbits, and more generally, Keplerian orbits have
been studied quite extensively in the literature. Notable works include Carter and Humi [32],
Carter [31], Guelman and Aleshin [57], Pearson [103] and Zanetti [139] . For rendezvous or
formation reconfiguration over very small relative distances (when compared with the chief
orbit), the Hill-Clohessy-Wiltshire model [35] is typically used because it is a linear, time-
invariant approximation of the relative motion, enabling the use of a wide range of tools
for analysis and control design. This model assumes a perturbation-free, circular orbit as
its reference orbit. In this note, we adopt the HCW model assuming that the formation
reconfiguration takes place quickly, so that the circular orbit approximation is reasonable.

Earlier analyses have assumed that thrust is available in all three directions (radial, in-track
and cross-track), in which case the system is completely controllable.The system is also

39
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controllable, however, in the case that thrust is available only in the in-track and cross-track
directions. McVittie et al. [97] used this fact in their work on formation keeping. The under-
actuated controllability of the HCW model (and of the general spacecraft relative motion
model [111]) is useful property for two reasons. The first is concerned with the mechanical
complexity of a satellite; fewer required thrusters means fewer parts that could fail. The
second is system robustness; if a single thruster fails for a fully-actuated spacecraft, the
system may remain controllable with a reduced number of thrusters. The only requirement
is that control authority be maintained in the in-track and cross-track directions.

Independently of the developments in this Chapter, Huang et al. used the Pontryagin Prin-
ciple to derive optimal controllers for under-actuated rendezvous and reconfiguration [68].
This work differs from their approach in the following ways: 1) we give explicit analytical
expressions for the control laws over any time-of-flight, both in their full form and for cer-
tain specific maneuvers where they are significantly simplified, 2) we provide necessary and
sufficient conditions for global optimality of the under-actuated control laws using results
from calculus of variations as well as linear operator theory, and 3) we derive an explicit
controllability Gramian, which is also valid over any time-of-flight.

The contribution of this chapter is an analytical control law for linearized, under-actuated
satellite rendezvous which is guaranteed to minimize the control energy for any time-of-flight
tf > 0. The control law is computed first using the Pontryagin Principle, and then verified
using the controllability Gramian. The Pontryagin Principle provides necessary conditions
for a strong local optimum. Derivation of the controllability Gramian simultaneously pro-
vides neccesary and sufficient conditions for controllability as well as a sufficient condition for
globally optimal control. We derive the control law and Gramian explicitly for any arbitrary
time-of-flight.

3.2 HCW Model

The HCW equations are a widely known model for satellite relative motion near a circular
orbit, and are often used in the study of formation flying. Recalling Eq. (2.14) the HCW
equations with control forces are:

ẍ = 3n2x+ 2nẏ + ux

ÿ = −2nẋ+ uy

z̈ = −n2z + uz

(3.1)

where n =
√
µ/a3 is the mean angular velocity of the chief orbit (µ is the gravitational

parameter and a is the orbit semi-major axis). It is easiest to work with the dynamics in
normalized form; we scale the distances by the semi-major axis a and set µ = 1, which yields
an angular velocity of n = 1. We focus on the case when ux = 0; the system is controllable
with uy and uz only. The state space form form of the HCW equations with only in-track



Andrew C. Rogers Chapter 3. 41

and cross-track thrust is

ẋ =


0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
3 0 0 0 2 0
0 0 0 −2 0 0
0 0 −1 0 0 0




x
y
z
ẋ
ẏ
ż

+


0 0
0 0
0 0
0 0
1 0
0 1


[
uy
uz

]
(3.2)

It can be shown that a periodic, closed, relative orbit exists for any initial conditions which
satisfy the constraint

ẏ0 + 2x0 = 0 (3.3)

which will be referred to as the commensurability conditions. This condition can be under-
stood in the context of the mechanical energy of two separate, circular orbits. Given two
orbits with specific energy

H1,2 = − µ

2a1,2

(3.4)

the orbits will not drift apart (under the restricted, two-body approximation) provided that
H1 = H2, which requires that the semi-major axes must be the same [10, 74].

3.3 Optimal Control

The HCW equations are controllable when three inputs (radial, in-track, and cross-track),
but this system is also controllable when only in-track and cross-track inputs are used. This
property is used to find a minimum energy controller which transfers the spacecraft in the
relative frame from some initial state x0 to a final state xf . The control energy is

J(u(t), t) =
1

2

∫ tf

t0

uT (τ)u(τ) d τ (3.5)

The Pontryagin Principle can be used to find a control law which minimizes Eq. (3.5). Define
an augmented Hamiltonian

Ĥ =
1

2
uT (t)u(t) + λT (t)(Ax(t) +Bu(t)) (3.6)

where λ(t) is a vector of Lagrange multipliers which constrain the optimization. A necessary
condition for a weak local minimum is the stationarity condition [72]

∂Ĥ
∂u(t)

∣∣∣∣∣
u(t)=u∗(t)

= 0 (3.7)
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The optimal control has the following form[
u∗y(t)
u∗z(t)

]
= −

[
λ∗5(t)
λ∗6(t)

]
(3.8)

where λ∗5,6(t) are non-trivial solutions to the adjoint equation

λ̇ = −ATλ(t), λ(t0) = λ0 (3.9)

Now, it is required to solve the adjoint equation, but the initial value λ0 is unknown. Assum-
ing that x0 and xf are known, the resulting boundary value problem may be analytically
solved. The Hamiltonian boundary value problem is written in state space in the following
form [

ẋ(t)

λ̇(t)

]
=

[
A −BBT

06×6 −AT

]
︸ ︷︷ ︸

=Â

[
x(t)
λ(t)

]
(3.10)

where Â is the Hamiltonian matrix and the matrix BBT is all zeros except the (5, 5) and
(6, 6) position which are -1. Since Â is time-invariant, the matrix exponential may be used
again to determine the evolution of the states and adjoints. Choosing a time-of-flight at
which x(t) = x(tf ), the solution is partitioned into blocks[

x(tf )
λ(tf )

]
=

[
Φxx(tf , 0) Φxλ(tf , 0)
Φλx(tf , 0) Φλλ(tf , 0)

] [
x(t0)
λ(t0)

]
(3.11)

Note that Φλx(tf , 0) = 06×6. Now, the initial values for the adjoint equations may be
computed. From Eq. (3.11), it is straightforward to write

x(tf ) = Φxx(tf , 0)x(t0) + Φxλ(tf , 0)λ(t0) (3.12)

This can be rearranged to solve for λ(t0)

λ(t0) = Φ−1
xλ(tf , 0) [x(tf )−Φxx(tf , 0)x(t0)] (3.13)

The initial conditions on the adjoint variables may be used to compute the adjoint solution
at tf . Recalling the definition of the optimal control from Eq. (3.8), the optimal control in
the in-track direction is

uy(t; tf ) =
8∑
i=1

qi (3.14)

where the terms q1−4 depend on the initial and final positions and the terms q5−8 depend on
the initial and final velocities, seen in Eq. (3.16) and (3.17). The expressions are lengthy,
and the following substitutions are made to condense the equations

St = sin t Ct = cos t

Stf = sin tf Ctf = cos tf
(3.15)
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The terms q1−4 are

q1 = x0

(
−
(
−384t2fStCtf + 96Ctt

2
fStf + 1744StCtf + 128CtStf

+144CtfStf + 144Ctt
3
f + t252t2fCtf − 628Cttf + 680CttfCtf

−544tfCtf − 1158tCtf + 36t4fSt + t27t3fStf − 36t3fStStf − 492t2fSt

−75t2fStf − t1254tfStf + 1928tfStStf − 102Stf − t27t4f − 117t3f

+t315t2f + 502tf + 90 sin (t− 2tf )− 54t cos (2tf )− 1834St + 1212t
))

q2 = 2xf
(
64StCtf − 52CtStf + 32Cttf − 16tfCtf − 42tCtf + 12t2fSt

−t12tfStf + 42Stf − t9t2f − 26tf + 20tf cos (t− tf )− 64St + 42t
)

q3 = 4y0

(
(31Ct − 25)

(
Ctf − 1

)
+ 37StStf

)
+

3

2
y0 (16Ct − 13) t2f

+ t

(
24y0tf

(
Ctf + 3

)
− 96y0Stf −

9

2
y0t

3
f

)
+ 6y0t

3
fSt

− 4y0tf
(
8Stf + 10 sin (t− tf ) + 27St

)
q4 = −1

2
yf
(
48Ctt

2
f + t48tfCtf + 248CtCtf − 200Ctf − 248Ct + 12t3fSt

−216tfSt − 64tfStf − 192tStf + 296StStf − t9t3f − 39t2f + t144tf

−80tf sin (t− tf ) + 200)

(3.16)
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and the terms q5−8 are

q5 = ẋ0

(
−160tfStCtf − 208CttfStf − 36tCtfStf + 60StCtfStf

−t9t3fCtf − 48Ctt
2
f − 39t2fCtf + t114tfCtf − 528CtCtf + 426Ctf

+30Ct cos (2tf ) + 498Ct + t36t2fStf + 116tfSt + 168tfStf + 6tStf

−16StStf − 24t3fSt sin2

(
tf
2

)
+ t9t3f + 39t2f − t84tf

+48t2f cos (tf + t)− 24 cos (2tf )− 402
)

q6 = t
(
30ẋfStf − 6tf ẋf

(
2Ctf + 3

))
− 2 (16Ct − 13) ẋf

(
Ctf − 1

)
− 44ẋfStStf + 4tf ẋf

(
4Stf + 5 sin (t− tf ) + 6St

)
q7 = −1

2
ẏ0

(
−432t2fStCtf + 48Ctt

2
fStf + 2024StCtf + 408CtStf

+192CtfStf + 144Ctt
3
f + t288t2fCtf − 728Cttf + 552CttfCtfCtf

−440tf − 1344tCtf + 36t4fSt + t36t3fStf − 48t3fStStf − 492t2fSt

−36t2fStf − t1416tfStf + 2168tfStStf − 328Stf − t27t4f − 117t3f

+t315t2f + 582tf + 120 sin (t− 2tf )− 72t cos (2tf )− 2144St + 1416t
)

q8 = −1

2
ẏf
(
216StCtf − 168CtStf + 96Cttf − 64tfCtf − 144tCtf

+36t2fSt − t48tfStf + 136Stf − t27t2f − 78tf + 80tf cos (t− tf )
−216St + 144t)

(3.17)

The cross-track control is

uz(t; tf ) =
4∑
i=1

qi (3.18)

where

q1 =
1

2
z0

(
Stf sin (t− tf )− tfSt

)
q2 = −1

2
zf
(
StStf − tf sin (t− tf )

)
q3 =

1

2
ż0

(
Cttf + Stf cos (t− tf )

)
q4 = −1

2
żf
(
CtStf + tf cos (t− tf )

)
(3.19)

The in-track and cross-track control expressions are valid for any initial or final condition
for which the HCW model still appropriately models the relative dynamics, and any time-
of-flight tf > 0.

Now, we show that the optimal control is a strong local minimum by applying the Weierstrass
and Legendre-Clebsch necessary conditions. The Weierstrass condition requires that the
minimizing controller u∗(t) make the Hamiltonian an absolute minimum at each point on



Andrew C. Rogers Chapter 3. 45

the minimal path x∗(t). Consider the comparison controller ū(t) 6= u∗(t). If the Hamiltonian
is evaluated at the comparison control, it must be larger than the Hamiltonian evaluated at
the optimal controller. Taking the difference of the Hamiltonian evaluated at the comparison
control and the Hamiltonian evaluated at the minimizing control (and noting that λ5 = −u∗y
and λ6 = −u∗z) we get that

Ĥ(ū)− Ĥ(u∗) =
1

2
ūT ū− 1

2
(u∗)Tu∗ + λT (Ax−Ax) + λT (Bū−Bu∗)

=
1

2

(
ū2
y + ū2

z − (u∗y)
2 − (u∗z)

2
)

+ λ5(ūy − u∗y) + λ6(ūz − u∗z)

=
1

2

[(
ūy − u∗y

)2
+ (ūz − u∗z)

2
]
≥ 0

(3.20)

which holds ∀ūy 6= u∗y, ūz 6= u∗z. The Legendre-Clebsch condition requires that the second
partial derivative of the Hamiltonian with respect to each of the controls be a positive semi-
definite matrix. Taking these derivatives we get that

∂

∂u

(
∂Ĥ
∂u

)
= I2×2 > 02×2 (3.21)

Satisfaction of the Weierstrass condition guarantees satisfaction of the Legendre-Clebsch
condition [72]. These two conditions are necessary for a strong local minimum. We can
prove the candidate is a global minimum by verifying the control law using the Gramian.
The linear, time-invariant system

ẋ(t) = Ax(t) +Bu(t), x(t0) = x0 (3.22)

where
B =

[
02×4 I2×2

]T
(3.23)

is controllable on t ∈ [t0, tf ] iff the matrix

W (t0, tf ) =

∫ tf

t0

Φ(τ, t0)BBTΦT (τ, t0) d τ (3.24)

is nonsingular [25]. Eq. (3.24) is the controllability Gramian matrix, and Φ(t, t0) is the
state transition matrix for the unforced HCW equations. If Eq. (3.24) is invertible then the
controllability matrix

C(A,B) =
[
B AB A2B · · · An−1B

]
(3.25)

has full row rank. Since the HCW equations are time-invariant, Φ(t, t0) is computed using
the matrix exponential. Moreover, if Eq. (3.24) is non-singular, then it is guaranteed that
a controller exists that minimizes the L2 input energy in Eq. (3.5). Since Eq. (3.2) is



Andrew C. Rogers Chapter 3. 46

time-invariant, t0 may be set to zero without a loss of generality. Recalling Section 2.4.3,
the controller which minimizes Eq. (3.5) is

u?(t) = −BTΦT (0, t)W−1(0, tf )(x0 −Φ(0, tf )xf ) (3.26)

where Φ(0, t) = Φ−1(t, 0) and the vectors x0 and xf are boundary conditions for the point-
to-point maneuver. The columns wi of the controllability Gramian for the under-actuated
HCW equations for some arbitrary tf are

w1 =


6tf + sin 2tf

6tf sin tf + 2(cos 2tf − cos tf )− 3t2f
0

3− 4 cos tf + cos 2tf
2(7 sin tf − sin 2tf − 5tf )

0

 (3.27)

w2 =


6tf sin tf + 2(cos 2tf − cos tf )− 3t2f

8(tf + 3tf cos tf − (3 + cos tf ) sin tf ) + 3t3f
0

2(2tf + 3tf cos tf − (3 + 2 cos tf ) sin tf )
1
2

(
8 + 9t2f − 8 cos 2tf − 24tf sin tf

)
0

 (3.28)

w3 =


0
0

1
2
(tf − cos tf sin tf )

0
0

1
4
(1− cos 2tf )

 (3.29)

w4 =


3− 4 cos tf + cos 2tf

2(2tf + 3tf cos tf − (3 + 2 cos tf ) sin tf )
0

2tf − sin 2tf
2(3 cos tf − cos 2tf − 2)

0

 (3.30)

w5 =


2(7 sin tf − sin 2tf − 5tf )

1
2

(
8 + 9t2f − 8 cos 2tf − 24tf sin tf

)
0

2(3 cos tf − cos 2tf − 2)
17tf + 8(cos tf − 3) sin tf

0

 (3.31)
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w6 =


0
0

1
4
(1− cos 2tf )

0
0

1
2
(tf + cos tf sin tf )

 (3.32)

This Gramian is non-singular for any tf > 0, and when tf = 0, it can be readily seen that
the Gramian is a matrix of zeros, the inverse of which is singular. This results in an infinitely
large control signal.

The control signal is defined on the set of square-integrable signals, which is infinite dimen-
sional. If there exists a control u(t) : x0 7→ xf , then there exist infinitely many control
signals which will accomplish the same transfer. The choice of control which minimizes Eq.
(3.5) is the minimum-norm solution to the least squares controllability optimization, analo-
gous to the Moore-Penrose pseudo-inverse. The controllability Gramian provides a necessary
and sufficient condition for both the controllability of the system as well as the optimality
of the choice of u∗(t).

When the complete expressions for B, Φ(t, 0), W (0, tf ), x0, and xf are combined, we find
that the control law is the exact same as that derived using the Pontryagin Principle. We
have now guaranteed that the under-actuated control law is a global minimum with respect
to the L2 energy.

In the next section, the under-actuated controller is compared with a fully-actuated optimal
controller where

B =
[
03×3 I3×3

]T
(3.33)

and ux = −λ4 6= 0.

We note that this control law could be hard-coded into a satellite computer and be used
in a receding horizon fashion. As derived in this section, the control law only requires the
current measurement x0 and the final state xf as well as a desired time-of-flight. Since
the control law is explicitly derived, it requires no matrix inversions, and since it is derived
assuming a circular orbit, Kepler’s equation does not need to be solved. As a result the most
computationally difficult part of using this control law would be to accurately compute the
sin(·) and cos(·) functions. We conclude that this control law could be easy to implement
on a system in real time.
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3.4 Simulations

In this section we simulate the control law developed in the previous section. In addition,
the fully-actuated optimal controller (radial, in-track, and cross-track) is also simulated as
a comparison. It is expected that, even with the addition of an extra control signal, the
fully-actuated system will yield a lower overall energy. Our simulations show this is true,
however the control energy for the under-actuated system is of the same order of magnitude
which implies that the radial control signal only contributes a small fraction of the overall
effort.

In deriving the optimal control law, the HCW equations were normalized so that µ = 1,
a = 1 so that n = 1. As a result, distances are scaled by 1/a and velocities are scaled by
1/na. The boundary conditions are presented in physical units, and the figures reflect this,
however the actual simulation uses the normalized quantities.

3.4.1 Radial Maneuver

In the first simulation, the deputy starts at the origin and deploys up to a commensurate
relative orbit 400 m above the chief. The maneuver takes place over 1 orbit (tf = 2π). The
boundary conditions are

x0 =
[
0 0 0 0 0 0

]T
xf =

[
400 0 0 0 ẏf 0

]T (3.34)

Noting that for the 12 boundary conditions only xf 6= 0 and we impose the constraint
ẏf = −2xf so that the terminal set results in a bounded relative orbit. The optimal control
in the in-track direction (in normalized units) is significantly simplified:

u∗y(t) = −2xf
[
52tf − 93t+ t2f (18t)− 64tf cos t− 50tf cos (t− tf ) + 93t cos tf

+40tf cos tf + 140 sin t− 24t2f sin t− 140 cos tf sin t

+(tf30t− 89 + 110 cos t) sin tf ]

u∗z(t) = 0

(3.35)

The above expression is valid for any tf > 0, however if tf is chosen to be 2π, the control
law is further simplified

u∗y(t) = −8πxf (46 + 18πt− 57 cos t− 24π sin t)

u∗z(t) = 0
(3.36)

The radial maneuver can be seen in Figure 3.1, and the control history can be seen in Figure
3.2. The under-actuated maneuver closely resembles the fully-actuated maneuver; both the
shape of the trajectory and the optimal histories. The primary difference, as expected, is
that there is radial control action. The cost for the two maneuvers is very close however,
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and of the same order of magnitude. In Figure 3.5, we see that the condition in Eq. (2.51)
holds for the duration of the orbit.
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Figure 3.1: Planar trajectory for the reconfiguration maneuver

3.4.2 Leader-Follower Reconfiguration

This simulation demonstrates the planar reconfiguration for a leader-follower formation
where the deputy (follower) maneuvers to become the leader. The boundary conditions
for the problem are

x0 =
[
0 −200 0 0 0 ẏ0 0

]T
xf =

[
0 200 0 0 0 ẏf 0

]T (3.37)
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Figure 3.2: Control signals for the reconfiguration maneuver
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Again, we have imposed the constraints y0 = −2x0 = 0 and yf = −2xf = 0. Substitution
of the initial and terminal relative in-track boundary conditions into the formula for u∗y(t),
we get that

u∗y(t) = −1

2
(y0 − yf )

[
tf9t(t

2
f − 16)− 200 + 39t2f + 8 cos tf (25− tf610tf sin t)

+64(3t+ tf ) sin tf − 4 sin t(3tf (t
2
f − 18) + 74 sin tf )

−8 cos t(6t2f + 31(cos tf − 1) + 10tf sin tf )
]

u∗z(t) = 0

(3.38)

which is again valid for any tf > 0. Choosing tf = 2π, we get a simpler formula for the
optimal control

u∗y(t) = 2π(y0 − yf )
[
96t− 3π(13 + 6πt) + 48π cos t+ 4(6π2 − 37) sin t

]
y∗z(t) = 0

(3.39)

The relative trajectory can be seen in Figure 3.3. As in the previous simulation, the relative
trajectory from the under-actuated and fully-actuated systems closely resemble each other,
and while the control energy for the fully-actuated system is lower, we can see that the under-
actuated maneuver control energy is still of the same order of magnitude. Furthermore,
inspection of Figure 3.6 shows that the condition in Eq. (2.51) holds since the Hamiltonian
is constant when evaluated at the optimal states, co-states and control.

This maneuver and the previous maneuver demonstrate the relative motion anomaly ex-
perienced by the Gemini astronauts. For two satellites in a circular orbit, such as the
leader-follower configuration, if the follower is commanded to rendezvous with the leader,
then thrusting forward is counter-productive. Forward thrust increases the velocity, and by
Kepler’s Third Law, this results in an increase in the orbital altitude, which then actually
slows the follower down relative to the leader. Similarly, for the radial deployment maneuver,
the satellite was first required to slow down slightly so that the deputy orbit would drop,
and then speed up again to meet the commensurate orbit. The rather simple orbit and
control approach provided in this chapter locally demonstrate some of the unique properties
of Keplerian orbits.
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3.5 Conclusion

This chapter describes the derivation of the necessary and sufficient conditions for a mini-
mum input energy, under-actuated formation reconfiguration problem. The HCW equations
are shown to be controllable with only in-track and cross-track thrust. The control laws
for both approaches are equivalent, and minimize the L2 input energy globally. The result-
ing analytical control laws were applied to several formation reconfiguration examples and
demonstrated local manifestations of macroscopic properties of orbits.



Chapter 4

Nonlinear Tracking of Relative
Maneuvers in Spacecraft Formations

4.1 Introduction

The problem of spacecraft formation flying has in recent years become increasingly more
prevalent in astrodynamics research as an enabling methodology for advanced mission de-
sign. Formation flying refers to a broad class of problems. One of the major technological
challenges mission designers face is the power-limited nature of most satellites; satellites
generally must operate subject to stringent electrical and thrust constraints. We examine a
class of minimum energy transfers in perturbed formation flying.

The primary objective we address in this paper is rapid reconfiguration of a two satellite
formation in an arbitrarily eccentric orbit. It is important to note that we are only performing
control on one of the satellites. We include the effect of J2 as a bounded, finite approximation
of the maximum disturbance that a two satellite formation would experience in a short time-
scale maneuver, meaning one that occurs in less than one orbit. The short time-scale serves
as our justification for not using a high-fidelity orbital model.

This chapter is structured as follows. In Section 4.2, we present the orbital model used for
this analysis. In Section 4.3.2 we study the optimal trajectory generation for this system.
Section 4.3.1 presents the nonlinear, time-varying boundary value problem that arises in
the elliptical orbit transfer problem. Section 4.3.2 presents a different approach in which a
simplified gravitational field model yields a linear, time-varying system, but we minimize the
same cost function. We find that the two approaches agree nearly exactly. In Section 4.4,
we use the linear optimal trajectory presented from Section 4.3.2 as a reference trajectory
and present a sliding mode tracking controller to track this trajectory in the presence of
orbital disturbances on the order of the J2 perturbation or less. In Section 4.5, we present
comparative results that demonstrate the performance of the nonlinear and linear optimal

55
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controllers, and find that the sliding mode tracking controller accomplishes the desired trans-
fer with thrust performance on the same order of magnitude as the optimal controllers.

4.2 System Model

Consider the relative geometry in Figure 2.1. Using Eq. (2.11), the nonlinear equations are

ẍ =2θ̇ẏ + θ̈y + θ̇2x+
µ

r2
c

− µ(x+ rc)

[(rc + x)2 + y2 + z2]3/2
+ fr

ÿ =− 2θ̇ẋ− θ̈x+ θ̇2y − µy

[(rc + x)2 + y2 + z2]3/2
+ fθ

z̈ =− µz

[(rc + x)2 + y2 + z2]3/2
+ fh

(4.1)

where fi are the components of the exogenous disturbances, fe, mapped into the relative
frame, and rc, ṙc, θ̇ and θ̈ are given in Eq. (2.5).

In this work, we are assuming that the maneuvers happen on a time scale that is much less
than that of the orbital motion. The natural frequency of the orbit is n =

√
µ/a3 where a is

the semi-major axis. Thus, the orbital period is equal to P = 2π/n. It is widely known that
the J2 disturbance is several orders of magnitude larger than any other orbital perturbation
[119, 13, 128, 134]. Over the short time-scales considered in this work it is reasonable to
neglect all perturbations other than J2. The J2 acceleration on the chief is given by [13]

aJ2 = −3

2
J2

( µ
R2

)(Req

R

)2



(
1− 5

(
Z

R

)2
)
X

R(
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(
Z

R

)2
)
Y

R(
3− 5

(
Z

R

)2
)
Z

R


(4.2)

where J2 = 1082.63× 10−6. This expresses the acceleration in the inertial frame. A similar
model can easily be written by using the definition for the deputy’s position vector in the
{n}-frame. The formation flying equations in Eq. (2.11) are expressed in the orbiting frame,
and the difference between the disturbance on the chief and deputy will be used as the
disturbance in the orbiting frame. Let

d = Ro
n(fd

e − f c
e ) (4.3)

where fd
e refers to the exogenous forcing function on the deputy and f c

e refers to the forces
on the chief. The components of d are incorporated into Eq. (2.11) and provide a level of
uncertainty in the model which we hope to attenuate with a robust controller.
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We can make an approximation to the nonlinear system that yields a linear system with
time-varying coefficients. Following [10], we can approximate the position of the deputy as

rd =
√

(rc + x)2 + y2 + z2 ≈ rc

√
1 + 2

x

rc

which neglects the contribution in the in-track (y) and cross-track (z) directions to the
potential energy. The acceleration due to the conservative force field is the negative gradient
of the potential, using the binomial theorem [10, 123]:

ad = − µ
r3

c

[
rc − 2x y z

]T
Now, the linear equations of relative motion (LERM) have the form of Eq. (2.12)

ẍ = 2θ̇ẏ +

(
θ̇2 + 2

µ

r3
c

)
x+ θ̈y

ÿ = −2θ̇ẋ− θ̈x+

(
θ̇2 − µ

r3
c

)
y

z̈ = − µ
r3

c

z

(4.4)

Recall that rc and θ are taken to be known functions of time satisfying Eq. (2.5) for the
chief. For the LERM, it has been shown that bounded relative orbits exist when the initial
state for the deputy in the relative frame satisfies

ẏ0

x0

= − n(2 + e)

(1 + e)
1
2 (1− e) 3

2

(4.5)

where e is the orbital eccentricity. This is a very important result; if this initial condition
requirement is not met, the linear system exhibits a secular drift in the in-track direction.
In the orbiting frame, this takes the form of the deputy satellite moving forward relative
to the chief or backward depending on what the ratio between the initial radial position
and in-track velocity is. From this point forward, condition (4.5) will be referred to as the
commensurabilty condition.

4.3 Optimal Transfer Trajectory

We now address the problem of computing the optimal transfer trajectory which will serve
as the reference trajectory in a later section of this paper. We present two solutions to
a minimum-energy, continuous-thrust, point-to-point optimal control problem. The first
approach is to use the Pontryagin Maximum Principle to minimize the control energy us-
ing the nonlinear system model in Eq. (2.11). The second approach minimizes the same
control energy but subject to the LERM. This approach relies on linear operator theory.
For this section we deal with the restricted, idealized case in which there are no exogenous
disturbances.
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4.3.1 Nonlinear Optimal Transfer

In the context of proximity operations and rendezvous for spacecraft formation flying, it can
be advantageous to manipulate the relative orbit using minimum control which corresponds
to minimum energy expenditure [103],[139]. Let the performance objective be

min
u∈Ω

J(u(·)) =
1

2

∫ tf

t0

uTu d τ (4.6)

subject to the dynamic constraint of Eq. (2.11).

We can define the initial and target sets to be X0 = {x(t0)} and Xf = {x(tf )} respectively,
and assume that tf <∞. Furthermore, let the set of admissible controllers be

u ∈ Θ ⊆ Cm[t0, tf ] (4.7)

where Cm[t0, tf ] is the set of control signals which are continuous on the interval [t0, tf ]. For
this problem, the augmented Hamiltonian is

Ĥ =
1

2
η0u

Tu+ ηTf(x,u, t) (4.8)

The necessary condition for a local extremal requires that

∂Ĥ
∂u

= 0 (4.9)

Carrying out this derivative, we see that the optimal control for the NERM is given by

u∗ =
[
u∗x u∗y u∗z

]T
=
[
−η4
η0
−η5
η0
−η6
η0

]T
(4.10)

where η0 and η4,5,6 satisfy the following adjoint equation:

˙̂η = −
[
Â
]T
η̂ (4.11)

where η̂ =
[
η0 ηT

]T
and

[Â]T =

[
0 0n×n

∇x`(x̂∗,u∗) [Jxf(x̂∗,u∗)]T

]
(4.12)

For this problem, with this particular cost function, the Lagrange multiplier η0 which is
associated with the Lagrangian can be divided through since it will actually be an arbitrary,
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nonzero constant. Let λ = η
η0

. Now, the adjoint equations have the following form

λ̇1 =− 3λ6µ(r + x)z

γ5
− λ4

(
3µ(r + x)2

γ5
− µ

γ3
+ θ̇2

)
−λ5

(
3µ(r + x)y

γ5
− θ̈
)

λ̇2 =− 3λ6µyz

γ5
− λ5

(
3µy2

γ5
− µ

γ3
+ θ̇2

)
−λ4

(
3µ(r + x)y

γ5
+ θ̈

)
λ̇3 =− 3λ4µ(r + x)z

γ5
− λ6

(
3µz2

γ5
− µ

γ3

)
− 3λ5µzy

γ5

λ̇4 =2λ5θ̇ − λ1

λ̇5 =−
(
λ2 + 2λ4θ̇

)
λ̇6 =− λ3

(4.13)

where
γ =

[
(rc + x)2 + y2 + z2

]1/2
(4.14)

and rc, θ̇ and θ̈ = −2ṙcθ̇
rc

are taken to be known functions of time, from Eq. (2.5). The
optimal control vector is thus:

u∗ =
[
−λ4 −λ5 −λ6

]T
(4.15)

We have identified the initial and target sets for the state variables, but we need to define the
initial or target values for the adjoint states. In general, the transversality conditions at the
boundaries of the problem can be used to find the tangent space normal to the vector field
given by Eq. (2.11) and this can provide boundary conditions for the adjoint vector field. For
this problem, since this problem is formulated as point-to-point, the transversality conditions
provide no extra information about the problem. We are thus left with a nonlinear, two-point
boundary value problem defined by the state and adjoint vector fields and will need to solve
it numerically to compute the optimal trajectory.

In numerical simulations, an initial guess of λ = 0 for the boundary value problem solver
bvp4c in Matlab was provided and an optimal solution was found. We also used GPOPS-II
[102] which is faster and easier to use than Matlab’s boundary value problem solver. In
general, a poor initial guess can dramatically change the outcome of the optimization, but
for this particular formulation, no issues were found with this guess. In the succeeding
section we present a linear controller which minimizes the same cost function given in Eq.
(4.6). This approach requires 1) the solution to initial or final value problems and 2) the
invertibility of the controllability Gramian.
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The approximation that leads to the LERM is very good, and in numerical analysis we find
that the linear and nonlinear optimal solutions agree nearly exactly. The trajectories used
for the robust tracking controller presented later are all computed using the linear optimal
solution.

4.3.2 Linear Optimal Transfer

Consider a linear, time-varying system of the form

ẋ = A(t)x+B(t)u, x(t0) = x0 (4.16)

The system is controllable if there exists a piecewise continuous control signal on the interval
t ∈ [t0, tf ] which drives the system from an initial state x(t0) to a terminal state x(tf ). The
solution to the general linear time-varying system is given by the variation of constants
formula

x(tf ) = Φ(tf , t0)x0 +

∫ tf

t0

Φ(tf , τ)B(τ)u(τ) d τ (4.17)

where Φ(tf , t) is the state transition matrix. To find the input signal u(t) which would
drive the system to x(tf ), we use the properties of the linear, time-varying system. First,
we pre-multiply both sides of Eq. (4.17) by Φ(t0, tf ) and solve for the initial state

x0 = −
∫ tf

t0

Φ(t0, τ)B(τ)u(τ) d τ

This defines a linear operator L(u(t)) : Cm[t0, tf ] → Rn [25]. The range-space of this
operator defines the set of initial conditions, x(t0), for which a control signal u ∈ Cm[t0, tf ]
can drive the state to another state, x(tf ), in a finite time, tf . Now, the adjoint of the linear
operator L(·) is L∗(u(t)) : Rn → Cm[t0, tf ] and is defined by requiring that

〈L(u),x〉Rn = 〈u, L∗(x)〉Cm (4.18)

where 〈·, ·〉 denotes the inner product. By definition, the range of L(·) is in Rn, and the
range of L(·) composed with its adjoint, R(L ◦ L∗), is also in Rn, so we can say R(L) =
R(L ◦ L∗) ∈ Rn. For the left-hand side of Eq. 4.18, we can use the standard inner product
on Rn to write

〈L(u),x〉Rn =

(
−
∫ tf

t0

Φ(t0, τ)B(τ)u(τ) d τ

)T
x

= −
∫ tf

t0

uT (τ)BT (τ)ΦT (t0, τ)x d τ

For the right-hand side, the inner product on Cm[t0, tf ] is

〈u, L∗(x)〉Cm = −
∫ tf

t0

uT (τ)BT (τ)ΦT (t0, τ)x d τ
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The adjoint operator of L(·) is then

L∗(x) = −BT (t)ΦT (t0, t)x

The composition of the linear operator L and its adjoint L∗ is

L(L∗(x)) = L
(
−BT (t)ΦT (t0, t)

)
=

(∫ tf

t0

Φ(t0, τ)B(τ)BT (τ)ΦT (t0, τ) d τ

)
x

= Wc(t0, tf )x

The matrix Wc(t0, tf ) is the controllability Gramian which defines the operator L ◦ L∗ :
Rn → Rn. We require that R(L ◦ L∗) = Rn which can only be the case if the Gramian is
invertible (i.e. has full rank). One controller that drives x(t0) = x0 to x(tf ) = xf is given
by

u∗(t) = −BT (t)ΦT (t0, t)W
−1
c (t0, tf ) (x0 −Φ(t0, tf )xf ) (4.19)

where Wc(t0, tf ) is the controllability Gramian. This controller also minimizes the L2 energy
of the cost function [28] where L2 is the set of square-integrable functions. Another important
property of this particular control law is that we can express it in terms of the operators we
used to define it:

u∗(t) = L∗ ◦ (L ◦ L∗)−1 (x0 −Φ(t0, tf )xf ) (4.20)

This form L∗◦(L ◦ L∗)−1 provides the least-square solution to the under-determined problem
of finding a control history that drives the system from x0 to xf . This is analogous to
manner in which the Moore-Penrose pseudoinverse of a non-square matrix gives a least-
square solution to a system of linear equations which lacks a unique solution [25].

The Gramian is numerically computed as the solution to the following final value problem

Ẇ (t, tf ) = A(t)W (t, tf ) +W (t, tf )A
T (t)−B(t)BT (t), W (tf , tf ) = 0 (4.21)

Furthermore the state transition matrix for a given time is the solution to the initial value
problem

Φ̇(t, t0) = A(t)Φ(t, t0), Φ(t0, t0) = I (4.22)

Remark 9. We note that it is important to check the Gramian for the following properties
since the Gramian is being computed numerically:

• Symmetry (Wc(t0, tf ) = W T
c (t0, tf ))

• Positive-definiteness (λi > 0) for each λi of Wc(t0, tf )

It is also advantageous, particularly for very short time-horizons, to examine the condition
number of the Gramian; an ill-conditioned Gramian matrix could result in near-singular
inverses. This is a result of the numerical analysis and can be manipulated by increasing the
relative and absolute tolerances in the numerical integration of the system.
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4.4 Sliding Mode Tracking Control

We return to our original nonlinear system in Eq. (2.11) and include the disturbance vector,
d, resulting from J2 in the dynamics. Define the change of variables

η = x− xd (4.23)

where xd is the desired trajectory computed from the optimal control solution. Furthermore,
define

ξ = η̇ = ẋ− ẋd (4.24)

We can express the system in Eq. (2.11) in the following form:

η̇ =fa(η, ξ)

ξ̇ =fb(η, ξ) +Gu+ d− ẍd
(4.25)

where we let
fb(η, ξ) = A

[
xT ẋT

]T
+N (4.26)

and A is

A =

 θ̇2 θ̈ 0 0 2θ̇ 0

−θ̈ θ̇2 0 −2θ̇ 0 0
0 0 0 0 0 0

 (4.27)

and N is

N =


µ
r2c
− µ(rc+x)

((rc+x)2+y2+z2)3/2

− µy
((rc+x)2+y2+z2)3/2

− µz
((rc+x)2+y2+z2)3/2

 (4.28)

Following the approach in Khalil [76], the first step in SMC design is to treat the velocities
as virtual control inputs and choose a function φ(η) such that the kinematic subsystem is
asymptotically stable. Choosing

fa(η, ξ) = φ(η) = −Kη (4.29)

We define the sliding manifold to be

z = ξ − φ(η) = ξ +Kη (4.30)

where K is positive definite. Taking the derivative of z we find that

ż = A
[
x
ẋ

]
+N +Gu+ d− ẍd − ∂φ

∂η
fa(η, ξ) (4.31)
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At this point we partition the controller into two terms: one part of the controller, ueq

cancels out the nominal dynamics and the other part of the controller, ṽ, will be designed
to attenuate the uncertainty from d. The controller is

u =G−1

(
−fb(η, ξ) +

∂φ

∂η
fa(η, ξ) + ṽ

)
=−

(
A
[
x
ẋ

]
+N − ẍd

)
+
∂φ

∂η
ξ + ṽ

(4.32)

This makes the dynamics along the sliding manifold

ż = ṽ + ∆ (4.33)

For the disturbance vector, we assume that the magnitude of the disturbance is bounded
and satisfies the inequality

||∆|| ≤ a||d||+ k||ṽ|| (4.34)

Now, choose the following Lyapunov function for each component of the sliding mode [76]

Vi =
1

2
z2
i , i = 1, 2, 3 (4.35)

Its Lyapunov rate is
V̇i = ziżi = ziṽi + zi∆i (4.36)

This yields the following inequality [76]

ziṽi + zi∆i ≤ ziṽi + |zi| (a||d||+ k||ṽ||∞) (4.37)

Let

ṽi = −β(x) sgn(zi), β(x) ≥ a||d||
1− k

+ b0, ∀x ∈ D, b0 > 0 (4.38)

where a > 0, b0 > 0 and k > 0 and D is a neighborhood about the origin. This makes the
Lyapunov rate

V̇i ≤ (−β(x) + a||d||+ kβ(x)) |zi|
≤ (−a||d|| − (1− k)b0 + a||d||) |zi|

(4.39)

Now, we have
V̇i ≤ −b0(1− k)|zi| (4.40)

which guarantees that any trajectory which is not on the manifold z = 0 will reach it in
finite time. This also guarantees that trajectories already on the manifold z = 0 will not
leave it. The final form for the controller that accomplishes this transfer is

u = − (fb(η, ξ)) +
∂φ

∂η
ξ − 1

1− k
(a||d||+ b0) sgn(z) (4.41)
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A common issue with the bang-bang structure of the sliding mode control due to the signum
function, seen in Figure 4.1, is that the system cannot be locally Lipschitz continuous. Op-
erationally, this also results in the system “chattering” back and forth around the sliding
manifold, seen in Figure 4.2. For a physical system, this could result in 1) excessive control
activity which can wear out the actuators and 2) the system can stabilize to a limit cycle
around the equilibrium point (rather than the equilibrium point itself). We make a con-
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Figure 4.1: Signum function
Figure 4.2: Chattering around sliding mode
in the z phase space

tinuous approximation of the signum function with a saturation function which is defined
as

sgn(x) ≈ sat(x; ε) =

{
x
ε

if |x| ≤ |ε|
sgnx if |x| > ε

With this approximation we get a similar form for the control law

u = − (fb(η, ξ)) +
∂φ

∂η
ξ − 1

1− k
(a||d||+ b0) sat(z; ε) (4.42)

The saturation function, seen in Figure 4.3, results in a “boundary layer” around the sliding
manifold, seen in Figure 4.4. For the “true” bang-bang control law, once the system reaches
the sliding manifold, it stays there for all time. In the saturation relaxation, one the system
enters the boundary layer, it remains in the boundary layer for all time. Once there, the
system may oscillate around the manifold, and this oscillation can be tuned specifically to
suit the needs of the objective.

The vector d for this problem represents a bounded disturbance on the order of the J2

perturbation. It is well-known [138, 95, 134] that the J2 perturbation is the most dominant
perturbation. We can take the disturbance to be bounded by di ≤ 10−4 m/s2 to account for
the worst-case exogenous forcing on the system.
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Figure 4.3: Saturation function
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4.5 Numerical Analysis

To simulate the controllers that we have designed, we chose a rendezvous maneuver. We
assume that the deputy satellite has a mass of 100 kg with a fuel-mass fraction of 0.06. The
initial orbit for the chief is:

X0
c =

[
9000 0 0 0 8.93 0

]T
(4.43)

where units are in kilometers and kilometers/ sec. This corresponds to a semi-major axis of
45000 km, an eccentricity of e = 0.8, and i = Ω = ω = f0 = 0 where these parameters are
respectively the inclination, right-ascension, argument of periapsis and true anomaly of the
chief. The deputy’s initial position and velocity are:

X0
d =

[
1000 −1000 1000 0 ẏ0

d 0
]

(4.44)

where ẏ0
d is the initial in-track velocity given by the commensurability conditions in Eq. (4.5)

and the units are in meters and meters/ sec. The target set for the deputy is a point one
meter directly behind the chief at zero relative velocity:

Xf
d =

[
0 −1 0 0 0 0

]
(4.45)

We wish to accomplish the transfer in 1200 seconds which is a fairly aggressive maneuver;
numerous other contributors achieve maneuvers typically on the order of one orbit. For our
first simulation we compare the nonlinear and linear optimal solutions. Figure 4.5 shows
the relative, optimal position history of the maneuver, as can be seen, the nonlinear and
linear solutions agree nearly exactly. Investigation of Figure 4.6 and 4.7 shows that the
position histories and control histories match almost perfectly as well. This further reinforces
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our claim that the LERM provide a sufficiently accurate model compared to the nonlinear
“truth.”

Next we use the linear optimal solution we computed to serve as a reference trajectory in the
presence of the nonlinear, perturbed dynamics. Furthermore, we give the deputy a 5% error
in the initial conditions. We tune the sliding mode controller with the following parameters:

K = 0.067I, k = 0.99, a = 1, b0 = 1e− 4, ε = 0.01 (4.46)

In Figure 4.8, we can see that even with a 5% error in the initial conditions, the SMC
tracking controller can drive the satellite onto the reference trajectory. In Figure 4.9, we see
the relative position error. As we can see, the controller certainly drives the relative position
error to zero and tracks the reference trajectory almost exactly. In Figure 4.12, we can see
the optimal thrust magnitude and tracking thrust magnitude plotted with each other. The
controller initially applies a larger thrust than the optimal controller, and we can see that
the thrust magnitude increases when the sliding manifold is reached.

4.6 Conclusions

We have shown that the minimum energy transfer problem from linear optimal control theory
compares almost exactly with the solution to the nonlinear boundary value problem that
arises from the Maximum Principle. The close agreement between the two solutions leads
us to believe that this method of trajectory generation provides a new and useful approach
to the problem of spacecraft formation reconfiguration. We also presented a sliding mode
controller that worked on very highly eccentric orbits and was able to track an aggressive,
short-time-scale maneuver.
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Chapter 5

Fuel/Time Optimal Relative
Trajectories for a Satellite Near a
Perturbed, Elliptical Orbit

5.1 Introduction

Modeling and control of the relative motion between two or more satellites has been exten-
sively studied for numerous applications in recent years. Effective relative motion modeling
and control can enable a wide variety of missions. Potential applications examined have in-
cluded small length/time scale missions such as proximity operations and rendezvous as well
as large-scale, widely dispersed formations for sparse aperture imaging systems and other
distributed data collection systems [43].

One compelling application for satellite formation flying implementation is ionospheric mea-
surement and mapping. The ionosphere plays an important role in atmospheric electricity
and has a pronounced effect on the propagation of radio waves. The ionosphere is vitally im-
portant for radio communications, yet certain aspects of it are not well understood. Plasma
irregularities spanning multiple length scales are prevalent throughout the ionosphere and
give rise to many interesting phenomena. The spatially and temporally varying structures
arising from persistent instabilities can make communication difficult. These plasma irreg-
ularities produce scintillation which in turn affects radio signals. This makes it difficult or
impossible to communicate through auroras or through the equatorial-spread-F [110]. The
Air Force Research Lab launched the Communications/ Navigation Outage Forecasting
System satellite in 2008 to study some of these effects, but since it was a single, mono-
lithic system, it lacked the capability to simultaneously measure different sections of the
plasma instabilities. Large-scale, distributed, remote sensing systems such as the Super
Dual Aurora Radar Network (SuperDARN) [33] can measure huge scale traveling iono-

75
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spheric disturbances (TIDs), but can have difficulty with measurements on the scale of 1
km- 10 km. In this context, a distributed system of small satellites can be deployed to take
measurements and loosely keep formation while transmitting data to a central node which
would communicate with the ground. The distributed architecture would give improved
flexibility and resolution.

Trajectory planning and optimization is an important part of mission design for space vehi-
cles. It plays a particularly important role in small satellite mission design due to the limited
control authority that is generally available. A higher fidelity relative motion model used
in the optimization of a spacecraft trajectory could reduce the amount of feedback required
to stay on course since more external perturbations would be accounted for explicitly in the
optimization.

This chapter focuses on the development and analysis of a method of trajectory planning
which solves the fuel/time optimal control problem . The results in this paper are broad and
could be applied to many different relative motion problems, however in our simulations we
assume that the satellite is “small” (15 kg) and base the optimization on a thruster whose
design constraints are not easily incorporated into more traditional impulsive analyses.

The contributions of this chapter are twofold. First, the Gim-Alfriend state transition matrix
(GA-STM) is used as the relative motion model for control design as discussed in Chapter
2. The GA-STM is a powerful tool which provides greater orbit prediction accuracy over the
classical linear equations of relative motion (LERM) given by Lawden [55, 8]. The GA-STM
also does not require the integration of any differential equations. This is advantageous
since modeling the differential J2 perturbation and higher order gravitational perturbations
for relative motion can be very difficult, and the effects of inaccurate modeling can become
amplified during numerical integration and long-term propagation. The GA-STM is an exact,
analytical, linear relative motion model that is valid at any eccentricity or inclination except
the critical inclination given by 5 cos2 i = 1. The critical inclination, which is approximately
i = 63.4◦, is the angle at which the mean argument of perigee will not change, a well-known
result from Lagrange’s Planetary Equations [128].

The GA-STM provides a trajectory planner with a higher fidelity model, but since the
model is linear, the theory of linear, time-varying systems can be used to study its structural
characteristics. Furthermore, from the standpoint of optimal control, since the dynamics are
linear, convex optimization may be used to develop optimal control strategies. By convexity,
any feasible solution to a convex program is guaranteed to be the global optimum, and the
solution time for a given problem scales slowly with respect to the number of optimization
variables [21]. Using the GA-STM in conjunction with a convex program to compute the
control laws yields more realistic trajectories, which is especially advantageous over long
maneuver times or for long baselines, where the effects of differential J2 become much more
pronounced.

The second contribution in this chapter is an analysis of the family of trajectories that arise
from solving the minimum fuel/time optimal control problem. In this chapter, the satellite
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is assumed to be under-actuated, thrusting only in the velocity and orbit-normal directions
(in- and cross-track). The fuel use is optimized via a standard linear program and then
the fuel/time cost function is analyzed via a genetic algorithm. This global optimization
technique is used because, for a desired balance between the time-of-flight and fuel use, the
structure of the cost function is highly multi-modal for longer maneuver horizons, and there
exist numerous local minima. The existence of these minima implies that for a given initial
and target set in the relative frame, there exist multiple sub-optimal maneuvers that will be
the minimum fuel transfer for a particular time-of-flight, even if the maneuver isn’t globally
optimal with respect to the fuel/time optimization. The numerous possible minima allow for
a large design space for trajectory planners to explore, and thus a flexible framework which
can be applied to a wide variety of maneuvers.

In this chapter, we expand on previous contributors’ work by using the GA-STM in con-
junction with a linear program to develop under-actuated, optimal trajectories for satellites
with realistic hardware constraints in the presence of an eccentric, J2-perturbed orbit. We
also minimize a cost function which reflects the balance between the time-of-flight and the
amount of fuel used with a genetic algorithm and show that we are able to obtain globally
optimal solutions. These globally optimal solutions result in ∆v expenditures that closely
resemble results of impulsive orbit theory. Additionally, even though we present analysis
of specific maneuvers, the method in this paper can be used in any arbitrary formation
reconfiguration problem for which the GA-STM is a suitable relative motion model.

The remainder of the chapter is organized as follows. First, the essential theory behind the
GA-STM theory is presented. It should be noted that the actual form for the elements of this
state transition matrix are extremely long and complex, and so they have not been included
in this paper (see [55] or [10]). The general structure of a fuel/time optimal control problem
is presented using the Maximum Principle (MP), which provides insight into the structure
of the optimal control policy. Then, the minimum fuel optimal control problem is cast as a
standard linear program, and solved for a fixed time-of-flight. Following this development,
the fuel/time optimal control problem is solved with a hybrid method: a linear program
finds the minimum fuel control history and a genetic algorithm minimizes the time-of-flight
for a given fuel/time penalty parameter. The control approach is applied to two separate
mission profiles: 1) a trajectory plan to change the relative inclination only (cross-track only
maneuver) and 2) a trajectory plan to change the relative semi-major axis only (in-track/
radial motion only). These two plans are considered because the results can be validated
using fundamental results from orbital mechanics, namely the plane change and differential
semi-major axis change. Our results match the required ∆v well, and the discrepancies
between the two results can easily be accounted for based upon the assumptions made for
the maneuvers. The results presented also reflect the ease with which the GA-STM can be
used to plan fuel/time optimal controllers compute optimal controllers.
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Figure 5.1: The curvilinear reference frame

5.2 Gim-Alfriend Relative Motion Theory

In this section, the necessary background on the Gim-Alfriend relative motion theory [55],[10]
from Chapter 2.1.4, is presented.

Consider the J2-perturbed, elliptic orbit of a satellite whose state is parameterized by the
nonsingular element set e = (a, θ, i, q1, q2,Ω)T where a is the semi-major axis, θ = ω + f
is the argument of latitude, ω is the argument of periapsis and f is the true anomaly, i is
the inclination, q1 = e cosω, q2 = e sinω, e is the eccentricity of the chief orbit and Ω is
the right ascension. Denoting the chief satellite’s element set as ec and the deputy’s as ed,
the differential orbital elements describing their separation is δe = ed − ec, consistent with
the notation in [55]. The relative state in the local-vertical, local-horizontal reference frame
(LVLH) is given by the vector x(t) = (x, ẋ, y, ẏ, z, ż)T . The geometry of the LVLH frame
can be seen in Figure 5.1. Note that the LVLH frame is curvilinear; x denotes the difference
in the orbital radii of the deputy and chief, and y and z denote curvilinear distances along
imaginary circular orbits along the direction of motion and perpendicular to the orbital
motion of the chief, respectively (see Figure 5.1). The curvilinear approximation has the
advantage that it can reduce the linearization error for the formation flying problem. The
geometric transformation between the J2-perturbed differential orbital elements and the
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curvilinear vector x(t) is given by

x(t) = [M(t) + γN (t)] δe(t) (5.1)

where γ = 3J2R
2
eq, J2 = 1082.63 × 10−6 and Req = 6378.137 km is the equatorial radius of

the Earth. The matrix M(t) maps the unperturbed elements into the state vector x(t) and
the matrix N (t) contains the elements which are perturbed by J2. For brevity, the matrix
[M(t) + γN (t)] will be denoted by Σ(t).

The time evolution of the mean orbital elements, δē, due to the J2 perturbation is

δē(t) = φ̄ē(t, t0)δē(t0) (5.2)

where φ̄ē(t, t0) is the state transition matrix for the mean orbital elements. The differential
osculating orbital elements, δe can be obtained from the mean elements by computing a
matrix

D(t) =
∂e

∂ē
= I6×6 − J2R

2
eq

[
D(lp)(t) +D(sp)1(t) +D(sp)2(t)

]
(5.3)

where (lp) and (sp)1,2 refer to long- and short-periodic variations in the elements due to
the perturbation. The short-periodic variations occur on the scale of the orbit period. The
long-periodic effects are typically manifested over a period of 20-60 days in LEO [128], so for
maneuvers on the scale of about 12 hours the long-periodic contribution will be negligible.
The mean-to-osculating transformation is

δe(t) = D(t)δē = D(t)φ̄ē(t, t0)δē(t0) = D(t)φ̄ē(t, t0)D−1(t0)δe(t0) (5.4)

Using this expression, the state transition matrix for the curvilinear coordinates x(t) under
the influence of J2 is

x(t) = Σ(t)D(t)φ̄ē(t, t0)D−1(t0)Σ−1(t0)x(t0)

= ΦJ2(t, t0)x(t0)
(5.5)

The elements of the matrices in Eq. (5.5) are quite long and complex; the interested reader
may refer to [55] or [10] for the complete form. The GA-STM is a closed-form, analytical
approximation for the evolution of the deputy satellite relative to the chief under the influence
of J2. In [55], Gim and Alfriend showed that this state transition matrix is valid for all
eccentricities and inclinations with the exception of the critical inclination. The results in
[55] indicate that when compared to a nonlinear, numerical simulation of the basic orbit
problem with the addition of the J2-J5 perturbations, the GA-STM experiences errors on
the order of meters over the course of one day in LEO, where J2 has the strongest effect.
From the results in [55] it may be concluded that this approach can be a useful model for
trajectory optimization over long baselines or multiple orbits. Importantly, this model is a
linear theory which allows for certain guarantees in the control design, e.g. global optimality
etc.
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The GA-STM is a unique approach to modeling the relative motion because it requires
no integration of differential equations. Indeed, in the succeeding sections of this paper,
we compute the control law and then simulate the system by solving a series of difference
equations formulated using the GA-STM.

5.3 Trajectory Optimization

In this section, the general theory of minimum fuel and time/fuel optimal control is presented
in the context of the Maximum Principle. We then show how the continuous-time optimal
control problem is turned into a discrete-time, convex programming problem.

5.3.1 Minimum Fuel and Time/Fuel Optimization

Consider the general, point-to-point optimal control problem

min
ui(t)∈U

∫ tf

t0

m∑
i=1

|ui(τ)| d τ

subject to: ẋ(t) = A(t)x(t) +B(t)u(t)

x(t0) = x0 x(tf ) = xf

U = [−umax, umax]

(5.6)

where t0 and tf are fixed and U is the set of admissible controllers, umin = −umax. Using
Pontryagin’s Maximum Principle [28],[78], the Hamiltonian is

H(x(t),λ(t),u(t), t) =
m∑
i=1

|ui(t)|+ λT (t) [A(t)x(t) +B(t)u(t)] (5.7)

where λ is the vector of co-state (or adjoint) variables. The optimal control is the value of
ui(t) for which the Hamiltonian takes its maximum value:

u∗i (t) = arg max
ui(t)∈U

H(x∗(t),λ∗(t),u∗(t), t)

= − dez (bij(t)λ
∗
i (t))

(5.8)

where (·)∗ denotes an optimal value, and dez(·) is the deadzone function defined by

u∗i (t) =


umax if bijλ

∗
i > 1

−umax if bijλ
∗
i < −1

0 if |bijλ∗i | ≤ 1
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The general structure of the minimum fuel optimal control is a bang-off-bang profile where
the controller takes on either the maximum input or no input. The adjoint variables satisfy
the following equation

λ̇(t) = −AT (t)λ(t) =⇒ λ∗(t) = ΦT
A(t)(t0, t)λ

∗(t0) (5.9)

where ΦA(t)(t, t0) is the transition matrix associated with the dynamics given by ẋ. While
it would seem that the optimal control problem has been solved, the initial values of the
costates still have not been determined. Since this is a point-to-point problem, transversality
conditions will not give any extra information about the problem at the boundaries, and so
for this particular approach the problem must be solved using a numerical technique such
as shooting or collocation.

The minimum time/fuel optimal control problem is formulated exactly as in Eq. 6.26,
however the running cost is now given by

min
u(t)∈U

∫ tf

t0

1 + α
m∑
i=1

|ui(τ)| d τ (5.10)

with tf being a free variable, and the additional boundary constraintH(tf ) = 0. The optimal
control profile will remain a bang-off-bang signal, however in this problem, the parameter α
serves to also establish the relative importance of the maneuver time relative to the control
signal.

5.3.2 Linear Programming Solution

Rather than use numerical techniques such as shooting or collocation, one may convert
the problem to a linear program, a method for which there exist well-established, reliable
techniques for finding a global minimum. The solution to a general linear time-varying
system is the variation of constants formula

x(t) = Φ(t, t0)x(t0) +

∫ tf

t0

Φ(t, τ)B(τ)u(τ) d τ (5.11)

Imposing a zero-order-hold (ZOH) with sample time Ts on the input, the discrete form of
the variation of constants formula for the (k + 1)th time-step given the state and input at
the kth time-step is

xk+1 = Φ((k + 1)Ts, kTs)xk +

∫ (k+1)Ts

kTs

Φ((k + 1)Ts, τ)B(τ) d τ uk (5.12)

Define the matrices [114]:

Ak = Φ((k + 1)Ts, kTs)

Bk =

∫ (k+1)Ts

kTs

Φ((k + 1)Ts, τ)B(τ) d τ
(5.13)
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A recursion model is built up over N − 1 samples

x1 = A0x0 +B0u0

x2 = A1x0 +B1u1

= A1A0x0 +A1B0u0 +B1u0

...

xN = AN−1AN−2 · · ·A1A0x0 +AN−1AN−2 · · ·A1B0u0 + · · ·
AN−1BN−2uN−2 +BN−1uN−1

(5.14)

Let xN = xf , which is the terminal boundary condition, the product AN−1 · · ·A0 gives the
unforced response of the system to the initial state x0 at the final time step k = N . Define
a new vector, which is the terminal equality constraint

beq = xN −AN−1 · · ·A0x0 (5.15)

The products AN−1 · · ·A0B0 and so on may be thought of as the convolution between the
free response and the control input at each sampling instant; as time progresses the current
state is a product of the input at the current time plus all of the control inputs leading up
to that point.

In order to put the problem in the form of a standard linear program, we define a new
pair of input vectors u+

k and u−k , since the standard form of a linear program requires that
the decision variables be greater than or equal to zero. Each component of u+

k and u−k is
non-negative and bounded above by umax. At the end of the optimization, the positive and
negative control signals are recombined by[125]

uk = u+
k − u

−
k (5.16)

Now, a new matrix B̄k can be defined to incorporate both the positive and negative variables
into the convolution history

B̄k =
[
Bk −Bk

]
(5.17)

A convolution matrix can be computed

Aeq =
[
AN−1 · · ·A1B̄0 · · · AN−1B̄N−2 B̄N−1

]
(5.18)

and the vector of decision variables is

Ũ =
[
(u+

0 )T (u−0 )T (u+
1 )T (u−1 )T · · · (u+

N−1)T (u−N−1)T
]T

(5.19)

The standard linear program can be written as

min
u+
k ,u

−
k

N−1∑
k=0

[
u+
k + u−k

]
subject to AeqŨ = beq

u+
k ≥ 0m×1, u+

k ≤ umax1m×1

u−k ≥ 0m×1, u−k ≤ umax1m×1

(5.20)
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where 0m×1 defines a vector of zeros and 1m×1 defines a vector of ones and m is the number
of input channels in each direction. The control constraint set defines the vertices of a convex
polytope. By convexity, if a minimum for Eq. 5.20 exists, it will be a global minimum. For
this paper, Matlab’s primal-dual interior point algorithm was used.

The method presented for Eq. 5.20 assumes a fixed final time, the minimum value of which
will not generally be the same for the minimum fuel/time problem. The minimum fuel/time
cost function in Eq. 5.10 is a functional mapping J : R×Rm → R. In the linear programming
context, the cost functional takes the form

JLP (||u(tf )||1, tf ;α) = tf + α

N−1∑
k=0

[
u+
k + u−k

]
︸ ︷︷ ︸

=||u(tf )||1

(5.21)

In proximity operation scenarios with a sufficiently short time horizon, the cost function in
Eq. (5.21) has a unique minimum. One approach to determining the time which minimizes
Eq. 5.21 is to use a golden section algorithm [125] or similar single dimensional search in
conjunction with the linear programming output to determine the minimum time-of-flight.
Generally this will only work if it is known that there exists only one minimum. This
approach allows a trade space analysis of the weighted fuel/time optimal control problem
while using the convexity guarantees of the linear program.

For longer maneuver horizons involving multiple orbits, such as large-scale reconfiguration
maneuvers, the functional in Eq. 5.21 becomes multi-modal with numerous local minima for
a given values of α. In this instance, a golden section search is not guaranteed to converge to
the global minimum. Two approaches can be used here: 1) an iterative search to find several
candidate minima, at which point the golden section search could be used or 2) a global
optimization technique such as a continuous genetic algorithm [64]. The latter approach is
employed in this paper.

The structure of the cost functional, namely the locations of the minima, can be difficult
to determine for a given value of α. This serves as the justification for using the genetic
algorithm; given a sufficiently large solution space and a diverse initial population, the
algorithm will tend to converge to the global minimum. The trajectory planner is only
required to provide an upper and lower bound on the time-of-flight.

While providing a minimum which is possibly global, the genetic algorithm does have some
limitations. The limitations of the genetic algorithm lie primarily in the stochastic nature of
the evolution of the population. Provided enough diversity exists in the first generation of the
algorithm, i.e. there exists a wide enough spread in the decision variables, the algorithm can
converge to a global minimum. It is important to note, however, that there does not currently
exist a formal proof of convergence for the genetic algorithm, nor does there even exist a lower
bound on the number of function evaluations needed for convergence. A hybrid approach
could be used where the genetic algorithm is used to get “close” to a global minimum at
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which point a local minimum search algorithm with a guarantee of convergence could be
used, however this approach was not employed here.

5.4 Trajectory Design using the GA-STM

In this section, we apply the method outlined in the previous section to the problem of de-
ploying a large-baseline formation of satellites with realistic thruster constraints incorporated
into the optimization.

5.4.1 Thruster Allocation and Reachability

Recall that the ordering of the variables in the state vector used by the GA-STM is given
by x = (x, ẋ, y, ẏ, z, ż)T . If the satellite is fully actuated, the input matrix is

B(t) =
1

md

0 0 0 0 0 1
0 0 0 1 0 0
0 1 0 0 0 0

T (5.22)

Yan and Alfriend [136] showed the controllability of the fully-actuated GA-STM model by
computing a minimum-energy controller. Furthermore, the authors of the current work
showed in [111] that the general time-varying form of the formation flying problem is com-
pletely controllable using only two control inputs, one in the in-track, y, direction and one
in the cross-track, z, direction. The under-actuated control input matrix is

B(t) =
1

md

[
0 0 0 0 0 1
0 0 0 1 0 0

]T
(5.23)

Due to the complexity of the GA-STM and the presence of transcendental terms relating
time, true anomaly and mean anomaly (through Kepler’s equation), a closed-form reacha-
bility Gramian is difficult if not impossible to compute. However, a numerical investigation
over a wide range of eccentricities, inclinations and time spans reveals that the Gramian
matrix given by [114]

WJ2(k0, kf ) =

kf−1∑
j=k0

ΦJ2(kf , j + 1)B(j)BT (j)ΦT
J2

(kf , j + 1) (5.24)

is nonsingular for both the B(t) in Eq. (5.22) and Eq. (5.23). It follows that the system is
completely reachable using thrust in the radial, in-track and cross-track directions, or just
in-track and cross-track. The only inclination(s) for which this condition does not hold is
near the critical inclination, given by the roots of 5 cos2 i = 1 where the denominators in
the GA-STM which contain this expression become singular.
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The positive-definiteness of the reachability Gramian guarantees the existence of a non-
unique control law which will accomplish a desired transfer from x0 → xN . The under-
actuated reachability property physically means that the radial and in-track positions and
velocities may be reached using only in-track thrust, and the cross-track position and velocity
may be controlled using the cross-track thrust. This property reflects results from classical
orbital maneuver theory. For example, planar maneuvers such as the Hohmann transfer,
bi-elliptic transfer and one-tangent burn maneuvers require thrusts purely in the velocity
direction; no radial thrust is required to accomplish the maneuver.

5.4.2 Validation

Before using the proposed linear programming solution to develop fuel/time optimal tra-
jectories around a perturbed, elliptical orbit, we compare the linear programming solution
for the GA-STM with J2 = 0 and e = 0 to two well-known results from impulsive orbit
transfer theory. We note that the fuel usage (∆v with units of m/s) should be no less than
that predicted by impulsive orbit transfer theory because we assume a finite-time maneuver
which, in general, is not as efficient as an impulsive maneuver. On the other hand, analyzing
the maneuvers with finite thrust allows for comparison of a realistic, flight proven thruster
with the impulsive maneuver.

Differential Inclination Change

Impulsive maneuvers can be derived geometrically [52, 50] or from Gauss’ Variational Equa-
tions [117]. The ∆v required to perform a pure relative inclination change in terms of orbital
elements is

∆vδi =
hδi

r cos θc
= naδi (5.25)

where (for a pure inclination change) θc is the argument of latitude at the node crossing.
Table 5.1 contains the model data for a sample inclination change. The deputy starts at the
origin of the LVLH frame and performs a pure cross-track maneuver. The satellite thruster
parameters are based on the Aerojet MR-103M Minimum Impulse Thruster rocket (P/N
34211-301) [4]. The MR-103M provides 0.22 N of thrust and has a specific impulse of 206
seconds. The mass of the rocket is 0.16 kg, so the total mass for four thrusters (mounted
in the ± in-track and ± cross-track directions) would be about 0.64 kg. The satellite is
assumed to have a mass of 15 kg, and for this analysis, the change in mass (which is used to
calculate ∆v) is less than 1% of the original mass, so we assume it is negligible.

The minimum predicted ∆v required for the pure relative inclination change is 26.97 m/s. In
Figure 5.2, the ∆v as a function of the time-of-flight is shown. As expected the finite thrust
approach does not quite match the ∆v of the pure impulsive maneuver, seen in Figure 5.2.
The reason for this stems from the assumptions on the two models. The finite thrust time
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Table 5.1: Parameters for circular, unperturbed relative inclination change

Parameter Value
Chief init. state, (a, θ, i, q1, q2,Ω) (6678 km, 0 deg, 28 deg, 0, 0, 45 deg)
Deputy init. state, (x, ẋ, y, ẏ, z, ż) (0 m, 0 m/s, 0 m, 0 m/s, 0 m, 0 m/s)

Deputy final state, (δa, δθ, δi, δq1, δq2, δΩ) (0 m, 0 deg, 0.2 deg, 0, 0, 0 deg)
Max thrust, umax 0.22 N

Specific impulse, Isp 206 s
Deputy mass, md 15 kg

means that the maneuver cannot be performed as an exact impulse at the node crossing; the
thruster fires slightly before and after the node crossing, resulting in a slight drop in efficiency
of the maneuver. The thrust duration in this model is bounded from below by the zero-order
hold discretization. As the discretization becomes smaller, the finite thrust and impulsive
maneuver solutions will converge, but this comes at the expense of more computation when
building the equality constraint matrices. For this scenario, the sampling time was taken to
be Ts = 5 s and the minimum ∆v obtained with this model was 27.24 m/s.

In Figure 5.3, a sample relative trajectory over 5 orbits is shown. This is a pure cross-track
maneuver, and in the absence of J2 and eccentricity, the radial and in-track histories are
numerically zero. The initial and final points for the trajectory are identical, however the
cross-track velocity has changed; this is consistent with what one would expect from classical
orbital mechanics. The control history for the maneuver is seen in Figure 5.4. The thrusts
are periodic, and in fact the beginning and end of each thrust are symmetric about the node
crossing. Again, this is consistent with what is expected of this maneuver.

Differential Semi-major Axis Change

Next, we consider the differential change of the semi-major axis. The semi-major axis change
for an arbitrary elliptical orbit can be accomplished by two impulsive burns, one at periapsis
and one at apoapsis [117]:

∆vp =
naη

4

[
δa

a
+

δe

1 + e

]
∆va =

naη

4

[
δa

a
− δe

1− e

] (5.26)

where η =
√

1− e2 and e, δe = 0. Similarly to the previous case, it is required that a tangen-
tial thrust (aligned with the velocity vector) occur at two very specific points in the orbit,
periapsis and apoapsis, for the highest efficiency. The ∆v predicted for the differential semi-
major axis change based on the relative orbital elements is ∆v = 5.7845 m/s. Interestingly,
this yields exactly the same ∆v lower bound predicted by Ichikawa et al. [73] despite using
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an entirely different formulation (relative orbital elements in [117] vs the HCW equations in
[73]). The parameters for the relative semi-major axis change are given in Table 5.2. Again,
the deputy begins from the origin and performs thrusts to move straight up.

Table 5.2: Parameters for circular, unperturbed relative semi-major axis change

Parameter Value
Chief init. state, (a, θ, i, q1, q2,Ω) (6678 km, 0 deg, 28 deg, 0, 0, 45 deg)
Deputy init. state, (x, ẋ, y, ẏ, z, ż) (0 m, 0 m/s, 0 m, 0 m/s, 0 m, 0 m/s)

Deputy final state, (δa, δθ, δi, δq1, δq2, δΩ) (10 km, 0 deg, 0 deg, 0, 0, 0 deg)
Max thrust, umax 0.22 N

Specific impulse, Isp 206 s
Deputy mass, md 15 kg

The required ∆v for this maneuver as a function of the time-of-flight is shown in Figure 5.5.
Similarly to the previous case, the finite thrust is not quite as efficient as a purely impulsive
burn. This is again due to the finite thrust case not being able to command the requisite
∆v instantaneously. The relative trajectory for the semi-major axis change over 5 orbits is
shown in Figure 5.6. The motion for the circular, unperturbed case is a pure radial/in-track
trajectory, and from Figure 5.7, we can see that the maneuver requires three finite thrusts,
but they occur at approximately integer values of θ = κπ, κ ∈ N apart from each other, and
these thrusts are not necessarily on consecutive orbits. This is similar to the result predicted
by Gaias et al. [52, 50] for purely impulsive, planar maneuvers, and this further validates
that the linear programming approach provides finite thrusts which are consistent with what
would be expected for these orbital maneuvers.

5.4.3 Trajectory Optimization for Perturbed Eccentric Orbits

Now, the J2 perturbation and eccentricity are incorporated into the model and we show that
while the addition of J2 and eccentricity affects the fuel usage for the inclination change
because of the precession of the ascending (and descending) node, the ∆v required for the
semi-major axis change is very nearly the same.

Differential Inclination Change

The addition of J2 and eccentricity will affect not only the motion of the satellite over
x0 7→ xN but also the points in the orbit where the burn occurs, as well as the duration
of the burn. The simulation parameters for this maneuver are given in Table 5.3 and the
parameters for the genetic algorithm are given in Table 5.4.
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Figure 5.5: ∆v vs time-of-flight

Table 5.3: Parameters for eccentric, perturbed relative inclination change

Parameter Value
Chief init. state, (a, θ, i, q1, q2,Ω) (6678 km, 0 deg, 28 deg, 0.01, 0, 45 deg)
Deputy init. state, (x, ẋ, y, ẏ, z, ż) (0 m, 0 m/s, 0 m, 0 m/s, 0 m, 0 m/s)

Deputy final state, (δa, δθ, δi, δq1, δq2, δΩ) (0 m, 0 deg, 0.2 deg, 0, 0, 0 deg)
Max thrust, umax 0.22 N

Specific impulse, Isp 206 s
Deputy mass, md 15 kg
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Table 5.4: Genetic algorithm for relative inclination change

Parameter Value
No. Opt. Vars, (tf ) 1

Min. time, tlower 0.75 Orbit period
Max. time, tupper 6 Orbit period

Max. No. Generations, genmax 20
No. chromosomes, nξ 20

Mutation index, - 0.2
Selection index, - 0.5
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The effect that J2 and eccentricity have on the shape of the maneuver and the structure of
the thrust history become apparent upon inspecting Figure 5.8, 5.10, and 5.11. In Figure 5.8,
the ∆v required to accomplish the maneuver versus the time-of-flight is shown. The ideal
∆v remains the same since the impulsive maneuver happens at the node crossing, however
the linear programming solution requires about 1 m/s more ∆v to accomplish the maneuver.

In the circular unperturbed case (see Figure 5.4), the cross track thrusts occurs at the node
crossing, and the thrust duration is symmetric about the node resulting in a pure cross
track maneuver. When eccentricity and J2 are included, the motion is no longer purely cross
track, and some planar thrusting must occur at periapsis and apoapis to satisfy the boundary
conditions of the optimization. The cross-track thrusts are no longer symmetric about the
node crossing. As seen in Figure 5.11, the thrusts actually become a little bit longer in the
vicinity of the node crossing, which is a result of the differential precession of the chief and
deputy nodes.

The fuel/time optimal control problem is solved using the LP with the genetic algorithm.
As can be seen in Figure 5.9, the cost function becomes multi-modal for a given α. The cost
function in Eq. (5.21) is fairly insensitive to small changes in α for this particular problem;
since the LP cost typically takes values O(101), and time-of-flight is typically > O(103), for
α < O(103), the time-of-flight dominates the cost function.

Differential Semi-major Axis Change

The semi-major axis change with the addition of eccentricity and J2 is similar to the circular,
unperturbed solution. Recalling Eq. (5.26) and the fact that the quantity δe = 0, it is readily
apparent that the only change in the ∆v at periapsis and apoapsis will be due to η in Eq.
(5.26). For the maneuver we consider, e = 0.01 from which it follows that η ≈ 0.99995, so
the total fuel use is ∆v = 5.78425 m/s, very nearly the same as the circular, unperturbed
solution (∆v = 5.7845 m/s). The parameters for the maneuver are given in Table 5.5 and
the genetic algorithm parameters are given in Table 5.6.

Table 5.5: Parameters for eccentric, perturbed relative semi-major axis change

Parameter Value
Chief init. state, (a, θ, i, q1, q2,Ω) (6678 km, 0 deg, 28 deg, 0.01, 0, 45 deg)
Deputy init. state, (x, ẋ, y, ẏ, z, ż) (0 m, 0 m/s, 0 m, 0 m/s, 0 m, 0 m/s)

Deputy final state, (δa, δθ, δi, δq1, δq2, δΩ) (10 km, 0 deg, 0 deg, 0, 0, 0 deg)
Max thrust, umax 0.22 N

Specific impulse, Isp 206 s
Deputy mass, md 15 kg

As before, the genetic algorithm is able to find the minimum of the multi-modal cost func-
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Figure 5.8: ∆v vs time-of-flight for the perturbed, eccentric maneuver

Table 5.6: Genetic algorithm for relative semi-major axis change

Parameter Value Unit
No. Opt. Vars, (tf ) 1 -

Min. time, tlower 0.75 Orbit period
Max. time, tupper 6 Orbit period

Max. No. Generations, genmax 20 -
No. chromosomes, nξ 20 -

Mutation index, - 0.2 -
Selection index, - 0.5 -
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tion. An interesting feature appears in this optimization however; the fuel use levels out at
∆v = 5.949 m/s, which is actually lower than the solution for the circular, unperturbed
validation result. The minimum fuel/time solution for both α = 10000 and α = 100000 is
very similar, as seen in Figure 5.13.

This result is actually expected. This particular orbit has e = 0.01, and the lower fuel use
required for this transfer highlights an important feature concerning elliptic orbits. The
most effective point in an elliptic orbit to perform an altitude adjustment is at apoapsis; the
satellite’s velocity is lowest at this point so a given change in velocity has a larger effect.
While the theoretical lower bound on the ∆v required to perform altitude adjustments is
very similar between the circular and slightly elliptical orbits, we find that the LP method
proposed here exploits the eccentricity of the reference orbit and performs a burn at apoapsis
which reduces the ∆v required to accomplish the maneuver. This can be seen in Figure 5.15;
the second burn in the in-track direction occurs at apoapsis. For shorter maneuver horizons,
the thrust still occurs at periapsis and apoapsis, but the efficiency is reduced since the
thruster is active for longer periods of time on either side of periapsis or apoapsis.

In the circular, unperturbed case, the semi-major axis change is a pure planar maneuver
but eccentricity and J2 change this. The cross-track motion created by eccentricity and J2

are corrected in each of our simulations by a single cross-track maneuver to counteract the
out-of-plane motion.

5.4.4 On Real-Time Implementation

The hybrid method of linear programming with a genetic algorithm can be used for the
trajectory planning a priori. If a maneuver is selected beforehand, however, the LP method
with the GA-STM could be implemented to compute optimal controllers in a receding horizon
fashion.

The most computationally intensive parts of this method are 1) the root finding operations
used when solving Kepler’s equation and 2) building the equality constraint matrices for the
linear program. Beyond that, since there are no integer decision variables or combinatorial
constraints, the optimal control problem is a standard linear program, and highly efficient,
custom-generated LP solvers can be designed to compute solutions in significantly less time
than the sampling time.

5.5 Conclusions

This chapter has presented a novel method for computing fuel/time optimal maneuvers in
an elliptic, J2-perturbed relative orbit. The Gim-Alfriend relative motion model was used in
conjunction with a linear program to compute a minimum-fuel transfer between two points
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in a relative orbit. In addition, a genetic algorithm was used to find the minimizing time-of-
flight. Using a realistic hardware limit based on a commercially available mono-propellant
rocket, we used this method to compute several fuel/time optimal transfers which are pa-
rameterized by the fuel penalty parameter α. Two well-known solutions to fundamental,
impulsive orbit transfers were used to validate the results of the optimization, and it was
found that the results agree with the idealized model. We conclude from this study that the
proposed method can be used by trajectory planners to easily analyze the balance of time-of-
flight and fuel budget for deployment of large formations. Furthermore, the results obtained
here could potentially be used to generate an initial guess for a higher-fidelity optimization
routine.



Chapter 6

Constrained Control of a Small
Satellite for Robotic Inspection

6.1 Introduction

This paper investigates a new formulation of model predictive control (MPC) applied to
spacecraft proximity operations, particularly the coupled orbit and attitude control of a
“small,” resource-constrained, inspector satellite.

The space-based, autonomous, inspector problem has gained considerable attention in recent
years both as a control theoretic problem and as a practical engineering solution for future
manned or high-value space missions. The concept of autonomous inspection is rather sim-
ple: a small, free-flying satellite is deployed from a main satellite equipped with thrusters/
attitude control system (ACS) and some type of imaging equipment and performs inspection
on a region of interest on the host body. The inspector could be deployed on a routine basis
for periodic inspection of elements like solar panels etc. or deployed in the event of a damage
event of similar emergency [66]. The benefits of this concept of operations are three-fold:

1. Free-flying agents can reduce or eliminate blind spots on the larger system

2. They can provide near-real-time information to the main vehicle or ground control to
improve response time in the event of emergency

3. For manned systems, an astronaut would not need to venture into a possibly hazardous
environment

Autonomous inspection presents a number of technological challenges which must be over-
come such as relative navigation, miniaturization of imaging equipment and control design,
which is the focus of this paper. The small size and limited resources of the inspector satellite

105
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present a unique challenge for control design. Possibly the most well-known system which
has actually flown is the Orbital Express [88] which focused on relative navigation and the
demonstration of on-orbit transfer of fuel and a spare computer.

The Naval Research Lab’s Low-design Impact Inspection Vehicle (LIIVe) is a program to
develop techniques and algorithms for autonomous inspection at very close range (on the
order of meters) of legacy systems and its concept of operations serves as a basis for our
analysis. LIIVe is a 5-15 kg inspection vehicle which, when commanded, would detach
from the host vehicle, and use a series of open-loop thrusts to circumnavigate the host.
After the circumnavigation has been completed, the ground controllers can analyze the
collected imagery and decide whether to 1) perform the circumnavigation again, 2) re-dock
the inspector, or 3) command the inspector to dispose of itself (use the remaining propellant
to push itself into a de-orbit phase) [66]. The control design in this paper is based on a
system such as LIIVe.

This chapter includes two contributions. First, we present a coupled, nonlinear orbit/ atti-
tude model which assumes that the thrusters are rigidly attached to the body and cannot
vector their thrust. This means that any attitude error will affect the tracking ability of
the trajectory controller. The model also accounts for the potential misalignment of the
thrusters with the satellite’s center of mass and with other thrusters which will induce a
torque on the satellite each time the thruster turns on, thus causing more attitude error.
The system is specialized to a 6U CubeSat in LEO, but can be applied to any spacecraft
geometry in any elliptical orbit. Under the LEO assumption, the system can be linearized
to yield a linear, time-invariant model which is ideal for linear control design. The second
contribution is a formulation of trajectory tracking model predictive control which encodes
the minimum impulse bit of a thruster as a semi-continuous variable and also includes colli-
sion constraints. This is a flexible model which results in a mixed-integer linear or quadratic
program. The model allows the thruster to either take values in [umin, umax] where umin > 0
or be turned off altogether.

The remainder of the chapter is structured as follows. First, the nonlinear orbit and attitude
model is developed from first principles, and then we show how the two subsystems couple
together through the thruster inputs. Then this model is linearized and specialized to a 6U
CubeSat platform. Next the fuel-optimal and fuel/time optimal control solutions are pre-
sented using a mixed-integer linear program and golden section search, which are developed
to serve as a baseline for the trajectory tracking maneuver. Additionally we discuss the
construction of a constrained linear-quadratic attitude regulator to help the satellite recover
from the thruster disturbances. Throughout our study, commercially available, flight proven
hardware has been incorporated into our models to reflect realistic flight conditions. We
find that the controllers proposed in this paper are feasible for currently available thruster
and ACS systems. Finally, we present numerical results for both nominal and perturbed
initial conditions. We show that the controllers developed in this study are able to stabilize
the attitude and track the trajectory, and we find that using the mixed-integer approach to
modeling the MIB yields favorable results compared to rounding down small signals to zero.
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6.2 System Model

In this section, the general coupled orbit/attitude model is derived and then specialized to
a 6U CubeSat. The result is a linear, time-invariant model that is ideally suited to linear
control design.

6.2.1 Trajectory Model

For two satellites in close relative orbits, denote the chief as the satellite about which the
deputy will maneuver, seen in Figure 6.1. We make the assumption that the relative sepa-
ration of the chief and deputy is several orders of magnitude smaller than the radius of the

chief. Let rc =
[
X Y Z

]T
be the position vector of the chief in the Earth-centered-inertial

(ECI) frame, which will be referred to as {n̂}. Similarly, we let rd be the inertial position of
the deputy. In the inertial frame, the equation of motion that describes the chief’s trajectory
is

r̈i = − µ

||ri||3
ri, i = c, d (6.1)

where µ is the gravitational parameter. It is convenient to describe the relative dynamics of

Figure 6.1: Relative trajectory geometry

the chief and deputy in a reference frame that is attached to the orbit of the chief, the orbiting
or Local-Vertical, Local-Horizontal (LVLH) frame. In the LVLH frame, the separation is

given by ρ =
[
x y z

]T
. The orbital angular momentum of the chief is hc = rc × ṙc. The
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transformation from the inertial frame to the orbiting frame, {ô} is

Ro
n =

[
rc

||rc||
hc × rc

||hc × rc||
hc

||hc||

]
(6.2)

The basis vectors for {o} are ôr in the radial direction, ôh in the cross-track direction and
ôθ in the in-track direction. The position vector for the deputy in the orbiting frame is

rd = rc + ρ =
[
rc + x y z

]T
(6.3)

The angular velocity of the LVLH frame with respect to the inertial frame is ωon =
[
0 0 θ̇

]T
.

The deputy’s velocity with respect to the inertial frame is

(ṙd)n = (ṙc + ρ̇)o + S(ωon)(rc + ρ)o (6.4)

where S(·) is the skew-symmetric cross product operator satisfying S(a)b = a × b for
a, b ∈ R3. The deputy’s acceleration is

(r̈d)n = (r̈c + ρ̈)o + 2S(ωon)(ṙc + ρ̇)o + S(ω̇on)(rc + ρ)o + S(ωon) [S(ωon)(rc + ρ)o] (6.5)

Using Eq. (6.5) with Eq. (6.1) for i = d, the equations of motion are

(r̈c + ρ̈)o+2S(ωon)(ṙc + ρ̇)o+S(ω̇on)(rc +ρ)o+S(ωon) [S(ωon)(rc + ρ)o] = − µ(rc + ρ)

||rc + ρ||3
(6.6)

Recalling Section 2.1.2, the nonlinear equations of the relative motion (NERM) in terms of
the relative separation are

ẍ =2θ̇ẏ + θ̈y + θ̇2x+
µ

r2
c

− µ(x+ rc)

[(rc + x)2 + y2 + z2]3/2

ÿ =− 2θ̇ẋ− θ̈x+ θ̇2y − µy

[(rc + x)2 + y2 + z2]3/2

z̈ =− µz

[(rc + x)2 + y2 + z2]3/2

(6.7)

that define a nonlinear, time-varying system. The time-varying coefficients rc, ṙc, θ̇ and θ̈
satisfy the differential equations [13]

r̈c = rcθ̇
2 − µ

r2
c

, θ̈ = −2ṙcθ̇

rc

(6.8)

and θ = ω + f , where ω is the argument of periapsis and f is the true anomaly. Assuming
that the orbit is approximately circular (so that ω̇on = 0 and the angular rate θ̇ = n is the
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mean motion), the NERM become

ẍ =2nẏ + n2x+
µ

a2
− µ(x+ a)

[(rc + x)2 + y2 + z2]3/2

ÿ =− 2nẋ+ n2y − µy

[a+ x)2 + y2 + z2]3/2

z̈ =− µz

[(a+ x)2 + y2 + z2]3/2

(6.9)

that define a nonlinear, time-invariant system. For proximity operations, it is reasonable to
assume that the motion takes place in the approximately linear subspace about the chief.
Linearizing about the origin and adding control forces in each direction, the well-known
Hill-Clohessy-Wiltshire equations are obtained:

ẍ = 3n2x+ 2nẏ +
ux
md

ÿ = −2nẋ+
uy
md

z̈ = −n2z +
uz
md

(6.10)

where ui are the control forces in the radial, in-track and cross-track directions, ôi. It
can be shown that bounded, closed, relative orbits exist for initial conditions satisfying the
constraint

ẏ0 = −2nx0 (6.11)

The state matrix is

At =


0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

3n2 0 0 0 2n 0
0 0 0 −2n 0 0
0 0 −n2 0 0 0

 (6.12)

and the linearized input matrix is

Bt =
1

md

[
03×3

I3×3

]T
(6.13)

where the superscript t indicates that the system describes the translational dynamics.

6.2.2 Attitude Model

Now, consider the motion of a rigid spacecraft in a circular orbit near the orbiting reference
frame. The linear transformation between the principal axes of the spacecraft and the
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orbiting reference frame for some arbitrary orientation can be parameterized by the 3-2-1
Euler angle sequence, where ψ is the yaw angle around the radial unit vector, θ is the pitch
angle around the cross-track unit vector, and φ is the roll angle about the in-track unit
vector, seen in Figure 6.2. The angular velocity of the body with respect to the inertial
frame is

ωbn = ωbo +Rb
oω

o
n =⇒ ω̇bn = ω̇bo + Ṙb

oω
o
n (6.14)

where ωon =
[
0 0 −n

]T
is the constant angular velocity of the orbiting frame with respect

to the inertial frame (because we assume the motion is in a circular orbit), and ωbn is the
body angular velocity with respect to the orbiting frame. The time-derivative of Rb

o is

Ṙb
o = −S(ωbo)R

b
o (6.15)

The angular displacement of the body axes with respect to the orbiting frame can be param-

eterized by the quaternions q̄ =
[
q0 qT

]T
, and the rotation matrix of the body axes with

respect to orbiting axes is

Rb
o(q̄) = I3×3 + 2q0S(q) + 2S2(q) (6.16)

Figure 6.2: Spacecraft body axes relative to orbiting axes

The kinematic equations in terms of quaternions are[
q̇0

q̇

]
=

1

2

[
−qT

[q0I3×3 + S(q)]

]
ωbo (6.17)
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and the kinematic relationships between the 3-2-1 Euler sequence and kinematics, the map-
ping between the angular velocities, and associated Euler angle rates are provided in [119,
70, 133]. The dynamic equations including the gravity gradient torque are

ω̇bo = I−1
(
−S(ωbn)Iωbn + 3n2S(r1(q̄))Ir1(q̄) + τ

)
+ S(ωbo)R

b
o(q̄)ωon (6.18)

where I is the inertia matrix of the satellite, τ is the control torque and r1(q̄) is the first
column of the matrix Rb

o(q̄) [133]. Eq (6.18) can be linearized around the equilibrium[
q̄T (ωbo)

T
]T

=
[
1 01×6

]T
to yield the state matrix

Ar =



0 0 0 0 0 0 0
0 0 0 0 1/2 0 0
0 0 0 0 0 1/2 0
0 0 0 0 0 0 1/2

0 2n2 (I2−I3)
I1

0 0 0 n (I1−I2+I3)
I1

0

0 0 8n2 (I1−I3)
I2

0 −n (I2−I1+I3)
I2

0 0

0 0 0 6n2 (I1−I2)
I3

0 0 0


(6.19)

and the input matrix

Br =
[
03×4 I−1

]T
(6.20)

and Ii are the principal moments of inertia. The superscript r indicates the the systems
describes the rotational dynamics.

6.2.3 Coupled Motion

As they stand, Eq (6.10), (6.17), and (6.18) have no natural coupling; in the absence of
disturbances such as atmospheric drag the satellite translational motion and the rotational
motion have no effect on each other. The gravity gradient torque couples the orbit and
attitude motion together, but this is independent of the relative motion. For a small, rigid
satellite in close proximity (on the order of meters) to another body, neglecting the effect of
attitude error on thrust alignment can be an oversimplification of the problem. Even small
alignment errors for the thrust vector can cause significant changes to the effect the thrusters
have on the motion.

In reality, rotation and translation are coupled through the translational control inputs. The
propulsion force applied by the thrusters depends on the spacecraft attitude:

ur = Rb
o(q̄)ut (6.21)

The result is that any attitude error will cause the thrusters to be misaligned with the LVLH
axes as defined in the previous sections, and the satellite would conceivably move in the
wrong direction. Note that when the coupled system is linearized around the equilibrium,
the rotation matrix is Rb

o(q̄) = I3×3 and this coupling vanishes in the linear model.
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Another source of orbit/attitude coupling comes from non-collinearity of the thrusters with
a) each other and b) the center of mass. The design constraints on small satellites are such
that it might not be possible to mount a thruster to be perfectly aligned with the center of
mass. Each time a thruster fires, this will induce a torque on the body of the spacecraft.
This will, in turn, create more attitude error by Eq. (6.21). The torque induced by a thruster
in the body frame around the center of mass is

N = S(%)ur (6.22)

where % is the moment arm. The complete, nonlinear, coupled dynamic model near circular
orbit with k thrusters is[

q̇0

q̇

]
=

1

2

[
−qT

[q0I3×3 + S(q)]

]
ωbo

ω̇bo = I−1

(
−S(ωbn)Iωbn + 3n2S(r1(q̄))Ir1(q̄) +

k∑
i=1

S(%i)ur,i + τ

)
+ S(ωbo)R

b
o(q̄)ωon

ρ̈ = −2S(ωon)(ṙc + ρ̇)o − S(ωon) [S(ωon)(rc + ρ)o]−
µ(rc + ρ)o
||(rc + ρ)o||3

− r̈c +
ur
md

(6.23)
This model contains thirteen states and completely describes the coupled motion of a rigid
body flying in close proximity to a nearly circular orbit. In theory, the model could be used
on any spacecraft shape, however in this paper, the focus is on CubeSat-class spacecraft. In
particular, a 6U CubeSat is used; each face of the satellite has a thruster mounted on it,
and all six of the thrusters are assumed to have equal thrust capability. This doubles the
dimension of the thrust input vector

ur = Rb
o(q̄)

(
u+
t − u−t

)
(6.24)

where the positive and negative quantities refer to the thruster pointed in the positive or
negative LVLH directions. The 6U satellite can be seen in Fig. 6.3 and we adopt the following
convention for the thruster misalignment torques. Side 1 is in the ram direction, and side 6
opposes side 1 in the anti-ram direction. Side 3 is the zenith-facing direction and is opposed
by side 4 in the nadir-facing direction. Finally, side 5 faces the angular momentum vector
and is opposed by side 2. This convention is arbitrary, it is only required to describe the
moment arm vectors for the thruster misalignment. The thruster misalignment moment
arms are given in the body axes by (units in cm):

%1 =
[
1 0 1

]T
%6 =

[
0.9 0 0.2

]T
%2 =

[
−1 2 0

]T
%5 =

[
1 −0.2 0

]T
%3 =

[
0 −1 −1

]T
%4 =

[
0 2 2

]T (6.25)

In practice, any spacecraft geometry could be used the orbit and attitude model used in this
paper. The thruster misalignment would primarily be caused by the design constraints on
the satellite body.
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Figure 6.3: Side numbering convention for the thruster misalignment torques

6.3 Control Design

This section details the planning of a fuel optimal trajectory, followed by a novel formulation
of mixed-integer model predictive control for trajectory tracking and a constrained linear-
quadratic attitude regulator.

6.3.1 Minimum Fuel Trajectory Planning

Consider the continuous-time optimal control problem

min
u
J(u(t), t) =

∫ tf

t0

m∑
i=1

ci|ui(τ)| d τ

subject to:

ẋ(t) = A(t)x(t) +B(t)u(t)

x(t0), x(tf ) specified

Collision avoidance constraints

ui ∈ [−umax, umax] ⊆ Rm

(6.26)

where ci are real coefficients, ui are the control signals and the closed interval [−umax, umax]
contains all feasible control signals. The solution to this problem results in a minimum
fuel transfer [78]. The optimal control sequence results in a bang-off-bang signal as seen
in Figure 6.4. The discrete-time formulation of this problem was addressed in [109] where
the minimum-fuel problem with collision avoidance constraints was constructed as a mixed-
integer linear program (MILP). Suppose that an inspector vehicle is deployed from a chief
satellite, and that the shape of the chief can be approximated to lie strictly within the
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Figure 6.4: Bang-off-bang control profile

intersection of i polytopes Pi. Each polytope is defined by the points

ρmin =
[
xmin ymin zmin

]T
Pi

ρmax =
[
xmax ymax zmax

]T
Pi

(6.27)

The minimum-fuel optimal control problem in discrete time is

min
{u(k)}N−1

k=0

J(u(k), k) =
N−1∑
k=0

cTθ(k)

subject to:

x(k + 1) = At
kx(k) +Bt

ku(k)

x(0) = x0 and x(N) = xf[
u(k)
−u(k)

]
≤
[
θ(k)
θ(k)

]
, 0 ≤ θ(k) ≤ umax1[

ρo(k)
−ρo(k)

]
≤
[
ρmin

−ρmax

]
Pi

+ Mo(k)

o(k) ∈
{
R6×1| oi(k) ∈ {0, 1} , ∀ i = 1, . . . , 6

}
6∑
i=1

oi(k) ≤ 5 for each Pi

(6.28)

where ρo =
[
x y z

]T
is the position component of x(k), M is a diagonal matrix of arbitrar-

ily large positive numbers and oj(k) ∈ {0, 1} are integer constraints. When oj(k) = 0, the
constraint is enforced, and if oj(k) = 1 then the constraint is relaxed and the multiplication
by the component mjj moves the upper bound outside of the solution space. In order to
guarantee that at least one of the constraints is active at each time step, the final constraint
in Eq. (6.28) must always be less than the number of integer collision constraints.
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In the original optimal control problem in Eq. (6.26), the terms |ui(t)| are piecewise linear,
convex functions. Introduction of the slack variable θ(k) changes the cost function from a
sum of piecewise linear, convex functions to a single strictly convex, linear function [15].

Eq. (6.28) provides a feasible solution for a fixed time-of-flight. It is intuitive to expect that
shorter times-of-flight would yield a larger ∆v (measure of fuel use), and longer times-of-
flight yield a ∆v that asymptotically approaches a finite lower bound (determined by the
minimum input energy required by the maneuver). This suggests that for different emphases
on time-of-flight vs fuel consumed, a trade study can be performed. Let ||u(tf )||1 be the
optimal solution of Eq. (6.28) for a prescribed time-of-flight. Define an augmented cost
function

J (||u(tf )||1;α) = tf + α||u(tf )||1 (6.29)

where α > 0 is a fuel penalty parameter; a larger value of α places heavier emphasis minimiz-
ing fuel use. In the limit that α approaches 0, the problem tends toward the minimum-time
solution, and as α increases the problem tends toward a minimum-fuel solution. Planning
an optimal maneuver with collision avoidance constraints results in an NP-complete mixed-
integer program, so an exhaustive search of the solution space may be undesirable from a
computation standpoint, particularly for longer times of flight. The cost function Eq. (6.29)
is a unimodal function of the time-of-flight, so a line search technique such as golden section
can be used. The golden section search allows for a “black box” optimization of Eq. (6.29).
The mission planner can further classify maneuvers as “lazy,” “moderate,” or “aggressive”
depending on how much fuel is available and how critical it is for the inspector to arrive at
its target state.

A more aggressive trajectory has the benefit that it takes less time to accomplish a maneuver,
but this comes at the expense of 1) increased fuel usage and 2) it can be potentially more
difficult to track along the trajectory in the presence of disturbances and initial condition
error. Conversely, a more relaxed maneuver may use less fuel and be easier to track but at
the added expense of increased time of flight. The bounds on this time of flight are simply
the minimum time of flight for a feasible solution to Eq. (6.28) and the maximum time of
flight deemed acceptable for the mission at hand.

In a manner somewhat reminiscent of motion-primitive-based planning used often in robotics,
a library of possible, safe maneuvers around the main vehicle can be defined a priori, and
subsequently concatenated online [86, 56, 11].

6.3.2 Feedback Control Design

In this section, a trajectory tracking controller and constrained attitude regulator are pre-
sented to keep the satellite body axes aligned with the orbiting axes and subsequently track
the fuel/time optimal trajectory. The trajectory and attitude controllers are designed sepa-
rately under ideal assumptions, but will be simulated together in the complete system.
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Mixed-Integer Model Predictive Control

Given a state vector x(k) and reference trajectory r(k), the tracking error is defined as

e(k) , x(k)− r(k) (6.30)

and the deviation of the control signal from the desired control signal is

ũ(k) = u(k)− ur(k) (6.31)

where ur(k) is the desired control signal from trajectory optimization. Initially, it is assumed
that each thruster can produce any signal belonging to the convex set [0, umax]. recalling
that u(k) = u+(k) − u−(k) the aggregate control signal is u(k) ∈ [−umax, umax]. The
model predictive controller is the solution to Problem MPC.

Problem MPC:

min
{u(k))}Nk=0

J(x(k), r(k),u(k), k)`p = ||Pee(N)||`p +
N−1∑
k=0

[
||Qee(k)||`p + ||Ruũ(k)||`p

]
x(k + 1) = At

kx(k) +Bt
ku(k)

e(k) = x(k)− r(k), r(k) given a priori

ũ(k) = u(k)− ur(k), ur(k) given a priori

−umax1 ≤ u(k) ≤ umax1[
ρo(k)
−ρo(k)

]
≤
[
ρmin

−ρmax

]
Pi

+ Mo(k)

o(k) ∈
{
R6×1| oi(k) ∈ {0, 1} ,∀ i = 1, . . . , 6

}
6∑
i=1

oi(k) ≤ 5 for each Pi

(6.32)

where N is the prediction horizon, `p denotes the `p-norm, and collision avoidance constraint
is the same as in the trajectory optimization problem. The matrices Qe and Ru are state
and control penalty matrices (identical in function to those from LQR theory), and Pe is
the solution to the discrete Riccati equation, which aids in the stability of the closed-loop
system [121, 96, 87]. Rather than consider only a quadratic cost function as in the classic
formulation of MPC, the 1-norm is also examined to evaluate its performance relative to
the quadratic formulation. It is worth noting that an ∞-norm formulation was studied,
however it was difficult to tune and yielded significantly higher fuel usage than the 1-norm
and quadratic formulations. This is expected because the ∞-norm minimizes the largest
component of the vector and has no effect on the rest of the values.

Now, the method by which the prediction model and cost function are built into a linear or
quadratic program are briefly presented, see [30, 19, 107] for a more in-depth presentation.
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Using a zero-order hold on the input, the linearized dynamics are sampled at Ts which
yields the discrete transition and convolution matrices Ak and Bk respectively [114], and
the tracking error dynamics are predicted over N samples in the following manner

e(0) = e(0)

e(1) = Ake(0) +Bkũ(0)

e(2) = Ake(1) +Bkũ(1)

= A2
ke(0) +AkBkũ(0) +Bkũ(1)

...

e(N) = AN
k e(0) +AN−1

k Bkũ(0) +AN−2
k Bkũ(1) + · · ·+Bkũ(N − 1)

(6.33)

This can be more compactly written in matrix form

e(0)
e(1)
e(2)
e(3)

...
e(N)


=



I
Ak

A2
k

A3
k

...
AN
k


e(0) +



0 0 0 · · ·
Bk 0 0 · · ·
AkBk Bk 0 · · ·
A2
kB AkBk Bk · · ·
...

...
... · · ·

AN−1
k Bk AN−2

k Bk AN−3
k Bk · · ·





ũ(0)
ũ(1)
ũ(2)
ũ(3)

...
ũ(N − 1)


(6.34)

which can then be written in the succinct form

E = Ae0 + BŨ (6.35)

The trajectory tracking problem and point regulation control design can be accomplished by
the same controller since point regulation is a special case of trajectory tracking.

First the quadratic program is considered since it is the more commonly encountered formu-
lation. Define the augmented penalty matrices

Q̄ = blkdiag(Qe,Qe, . . . ,Pe), Qe,Pe � 0, Q̄ = Q̄T

R̄ = blkdiag(Ru,Ru, . . . ,Ru), Ru � 0, R̄ = R̄T
(6.36)

Using the definition for the predicted error states, the cost function for Problem MPC may
be rewritten. The cost function is now given by

J = ET Q̄E + ŨT R̄Ũ

=
[
Ax0 + BŨ

]T
Q̄
[
Ax0 + BŨ

]
+ ŨT R̄Ũ

= ŨT
[
BT Q̄B + R̄

]
Ũ + 2

[
eT0AT Q̄B

]
Ũ+eT0AT Q̄Ae0

= ŨTHŨ + 2fT Ũ + d

(6.37)

Note that the intermediate states e(k) are eliminated from the problem, and then optimiza-
tion problem is parameterized by the initial sample e(0) and the reference trajectory. Some
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additional algebra yields the standard form for the constraints on the control signals and
the state constraints (which are now functions of ũ(k) parameterized by e(0)), yielding a
standard quadratic program in the absence of integer constraints.

The linear programming approach is somewhat more involved. In a similar fashion to the
formulation of the trajectory planning program in Eq. (6.28), the sum of absolute values is
replaced by a single strictly convex, linear function

J =
N−1∑
k=0

γe(k) + γu(k) (6.38)

where γe(k) and γu(k) are slack functions which form the upper bound on J . At each time
step, the following constraints are introduced [19]

−γe(k)1 ≤ ±Qe

(
Ake(0) +

k−1∑
j=0

AjBũ(k − j − 1)

)

−γe(N)1 ≤ ±Pe

(
ANe(0) +

N−1∑
j=0

AjBũ(N − j − 1)

)
−γu(k)1 ≤ ±Ruũ(k)

(6.39)

which yields a standard linear program when no integer constraints are present.

If the collision avoidance constraints are neglected, the optimization problem is strictly
convex for `p = 1, 2,∞, and the problem can be solved efficiently [21]. The addition of
the collision avoidance constraints makes this a mixed-integer linear or quadratic program.
For the proximity operations considered in this paper, it is important to include these non-
convex constraints to prevent the inspector satellite from colliding with the main vehicle if
the tracking error grows too large.

The assumption that u(k) can take any value in the set [−umax, umax] is rather optimistic;
real spacecraft thrusters cannot necessarily achieve this. Particularly for cold gas thruster
systems, the thrust profiles can resemble a nearly bang-off-bang or binary actuator. To
this end, it would be advantageous to model the thruster in such a way that the minimum
impulse bit is encoded in the optimization problem. We use the following semi-continuous
control signal:

u(k) ∈ {0, 1}
⋃

[umin, umax] , ∆(u) = umax − umin (6.40)

where umin is the MIB and ∆(u) can be thought of as the throttle range of the thruster. An
example thruster constraint set for u(k) = [u1(k), u2(k)] can be seen in Figure 6.5. When
used in the context of an optimal control problem, Eq. (6.40) results in a combinatorial
optimization problem [14]. This is similar to a formulation briefly proposed by Larsson et
al. [85] however they did not use this formulation due to computational burden.
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Figure 6.5: Thruster constraint modeled as a semi-continuous variable
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The mixed-integer model predictive control problem is

Problem MI-MPC:

min
{u(k))}Nk=0

J(x(k), r(k),u(k), k)`p = ||Pee(N)||`p +
N−1∑
k=0

[
||Qee(k)||`p + ||Ruũ(k)||`p

]
x(k + 1) = At

kx(k) +Bt
ku(k)

e(k) = x(k)− r(k), r(k) given a priori

ũ(k) = u(k)− ur(k), ur(k) given a priori

uminb(k) ≤ u(k) ≤ umaxb(k)[
ρo(k)
−ρo(k)

]
≤
[
ρmin

−ρmax

]
Pi

+ Mo(k)

o(k) ∈
{
R6×1| oi(k) ∈ {0, 1} ,∀ i = 1, . . . , 6

}
b(k) ∈

{
R6×1| bi(k) ∈ {0, 1} ,∀ i = 1, . . . , 6

}
6∑
i=1

oi(k) ≤ 5 for each Pi

(6.41)

which now has integer constraints on both the states and control signals. The resulting
mixed-integer linear or quadratic control problem can now be solved using well-known tech-
niques such as branch-and-bound. This transforms the problem into a hybrid system. There
have been significant advances in embedded control optimization for hybrid systems [48]
which suggest that real time solution of these mixed-integer programs are feasible.

In the simulations section, we compare Problem MI-MPC with a problem we call the convex-
modulated approach (CM-MPC) to Problem MPC; the control signal is allowed to take any
value in the convex control constraint set, and then values below umin are rounded to zero,
which is identical to the second approach mentioned in [62]. The problem is convex with
respect to the control constraint set; if the state constraints are neglected then this problem
can also be solved in polynomial time with respect to the size of the optimization. This
approach is sub-optimal in that the signal is modified as a post-processing step.

Problem CM-MPC and MI-MPC are formulated as trajectory tracking problems where the
fuel-optimal trajectory is previewed as part of the prediction model. This has the desirable
characteristic that the fuel-optimal trajectory defines the nominal state history, and can
be used as a baseline in a more realistic simulation. This also helps alleviate some of the
difficulty of using linear programming-based MPC; MPC with linear cost functions (1-norm
or ∞-norm) can exhibit a phenomenon called dead-beat behavior [39]. MPC is typically
formulated as a point-stabilization problem and, particularly for linear cost functions, the
controller can tend toward solutions that result in minimum-time behavior. Alternatively, if
the controller tuning is relaxed so as to prevent the minimum-time behavior, the optimization
routine may determine that the optimal sequence of moves is to do nothing, resulting in idle
control. Some of this behavior can be alleviated by using variable control horizons (as in
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Richards and How [108]), however with the approach presented in that work, there was no
baseline for the optimal maneuver in terms of fuel consumed. The formulation presented in
this paper allows for easier tuning of the controller for both Problem CM-MPC and MI-MPC
as well as a basis for comparison with the optimal fuel consumption.

It is worth noting that since all of the trajectory feedback controllers presented in this
section are NP-complete, it is natural to inquire about the possibility of the integer program
solution time and whether the system can run faster than real time. While it is difficult to
guarantee that a feasible solution to Problem CM-MPC or MI-MPC will be found in less
than the sample time, Ts, the simulations in this paper adopt a standard approach to dealing
with this. The integer programs are solved using branch-and-bound, and if the solution time
exceeds the sampling time, then the branch-and-bound is terminated and the second solution
from the previous time step is used [61]. While generally sub-optimal, it is reasonable to
assume that the optimal solutions from one time step will be similar to the optimal solutions
for the next time step, particularly for fast sampling time (Ts = 1 s for this paper). This
will be discussed in the numerical results section.

Constrained Linear-Quadratic Attitude Regulator

The objective of the attitude controller is to stabilize the body axes to track the orbiting
axes and reject the disturbance torques from the environment and thruster misalignments.
It is assumed that the attitude and attitude rate deviations from the orbiting axes are small
enough to be linear, motivating the use of the constrained linear quadratic regulator.

The state linearization in Eq. (6.19) is uncontrollable since the matrixAr has a 1-dimensional
null space corresponding to the scalar component of the quaternion. This is a result of
the redundancy of the quaternion parameterization. The attitude is found to be linearly
stabilizable by enforcing the constraint q̄T q̄ = 1. Linear MPC only requires that a system
be stabilizable, meaning that all of the uncontrollable modes are stable. For the purposes
of control design, we introduce a truncated state vector containing the vector part of the
quaternion and the angular velocity:

w(k) =
[
qT (k) (ωbo(k))T

]T
(6.42)

and then perform control design using the partitions of Ar and Br which correspond to
the controllable states. For the trajectory design, a convex control constraint set such as
[−umax, umax] was an insufficient assumption. For attitude control, where the actuation
can be performed by reaction wheels, magnetorquers etc. and provide very fine attitude
resolution, this assumption is more realistic.

The construction of the quadratic program for the attitude controller is similar to the method
by which the quadratic trajectory tracking controller was formed in the previous section,
however the reference is R = 0 in this case. The constrained linear-quadratic regulator
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problem is

Problem MPC-Att:

min
{τ (k)}Nk=0

J(τ (k), k) = wT (N)Pww(N) +
N−1∑
k=0

wT (k)Qww(k) + τ T (k)Rττ (k)

w(k + 1) = Ar
kw(k) +Br

kτ (k)

−τmax1 ≤ τ (k) ≤ τmax1

(6.43)

where τmax is the maximum torque output provided by the attitude control system (ACS) and
Pw is the solution to the discrete Riccati equation which aids in the stabilizing properties of
the controller. The thrusters could be used to provide the attitude control in conjunction with
the ACS or as a standalone ACS (see [65] for example), however the thruster misalignment
torques are treated as a disturbance torque.

6.4 Numerical Results

In this section, a sample deployment and inspection mission is detailed. First the fuel/time
optimization is studied and an optimal deployment maneuver is selected. Once an optimal
maneuver is computed, the feedback controller is demonstrated in the presence of a higher-
fidelity orbit and attitude model as well as initial condition error. Noting that the initial
condition error will affect the performance of the system more than the orbital perturbations,
a Monte Carlo run is presented to show the system’s robustness to initial conditions and
the resulting fuel-use trends from the four controllers studied. All of the simulations were
modeled in Matlab using Yalmip to construct the problems [89] and Gurobi’s branch-and-
bound algorithm was used to solve the mixed-integer programs [58].

6.4.1 Fuel/Time Optimization

Trajectory planning typically takes place a priori ; developing an entire trajectory in real
time can take a prohibitively long time or require too much computational power. The
fuel/time optimal control problem provides the mission planner with a wide search space in
which to explore different trajectories’ fuel consumption. The mission parameters are given
in Table 6.1, and the polytopic approximation of the shuttle’s shape can be seen in Fig. 6.6.

While an exhaustive search of the solution space for a general optimal control problem with
non-convex collision constraints can be impractical, certain maneuvers may be easily and
quickly solved, so an extensive search is feasible, and is used for the purposes of validation.
The maneuver considered here begins at the edge of the egress bay of the space shuttle with
a small amount of velocity along the nadir vector, and ends at the leading edge of the left
wing. The thruster model used is the MOOG 58E143 cold gas thruster [98] which has a
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Figure 6.6: Approximation of Shuttle geometry

thrust output of 16 mN and Isp = 65 s. A family of curves corresponding to the fuel/ time
functional is seen in Fig. 6.7. For increasingly large values of α, the minimum of Eq. (6.29)
shifts to the right.

Inspection of the curves in Fig. 6.7 shows that they are clearly unimodal, so the golden
section search method is a reliable way to compute a solution. A similar approach is used in
[18], however Blackmore et al. optimized a different cost function in their work. Using the
golden section search for α = 800, the minimum was found at tf = 333 s, which corresponds
to ∆v = 0.22744 m/s. The trajectory can be seen in Figure 6.8, and the control history and
change in spacecraft mass can be seen in Figures 6.9 and 6.10, respectively.

The optimal control signals for the minimum fuel problem tend to take the form of bang-
off-bang control as in Figure 6.4. The inspector’s thrusters are off for the majority of the
maneuver, and the integer constraints on the states are not violated. An additional safety
margin of 1 meter was added to the polytopes representing the shuttle to allow for extra
conservatism in the collision avoidance constraints. This trajectory now will serve as pre-
specified “safe” trajectory for the deployment of the inspector.
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Table 6.1: Trajectory planning parameters

Parameter Value Unit
Semi-major axis, a 6678 km
Spacecraft mass, m 9.167 kg
Max thrust, umax 0.016 N

Specific impulse, Isp 65 s
Deputy initial state, x0 [7, 0.5,−0.5,−0.05, 0, 0]T m, m/s
Deputy final state, xf [3, 7,−10, 0, 0, 0]T m, m/s

Safety margin 1 m

Time-of-Flight, tf , s
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6.4.2 Deployment Solution- No Initial Condition Error

The optimal trajectory from the preceding section represents an idealized solution which
does not account for perturbations or initial condition error. The simulation consists of two
stages: 1) the 333 second optimal maneuver is tracked in the presence of disturbances then
2) the inspected satellite holds its final position for 900 seconds. These times are flexible
and could be easily manipulated for different mission requirements.

The HCW model and linearized attitude model are used for the control design because they
are low complexity and time-invariant. In the actual implementation, a myriad disturbances
would be present, and while small, could add up over time. The trajectory is simulated
on the Gauss Variational Equations (GVE) which are a nonlinear, time-varying system
that describes how an arbitrary perturbation affects the orbital elements [13]. The orbital
model contains the J2 perturbation and an exponential atmospheric model, which are the
two largest perturbations in LEO, and these are coupled to the nonlinear attitude model.
The relationship between the differential orbital elements for the chief and deputy and the
Cartesian variables in the HCW model is given by the first-order linear mapping in [119].
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Simulation Algorithm:

1. Initialize chief and deputy orbital elements and deputy at-
titude

2. While t ≤ tf

(a) Use mapping between orbital elements and Cartesian
variables for deputy to compute relative state and er-

ror state,
[
eT (k) ėT (k) q̄T (k)

(
ωbo(k)

)T]T
(b) Drop scalar component of q̄T (k), compute controller

i. Solve Problem MPC-Att

ii. Solve Problem MI-MPC or CM-MPC

A. If solution time exceeds Ts, terminate integer
program

B. Use feasible solution with smallest branch gap

(c) Compute relative orbital elements using inverse linear
mapping

(d) Simulate coupled GVE/ nonlinear attitude over Ts

(e) Convert relative orbital elements back to Cartesian,
re-normalize q̄T (k)

(f) Return

The simulation algorithm is shown in Figure 6.11.

This simulation implements the controllers on a more realistic, higher fidelity model, which
is more representative of what the inspector satellite would experience in orbit. The satellite
is assumed to have the MOOG cold gas thrusters from the previous section, as well as the
MAI-400 attitude determination and control system [94], upon which the control constraints
are modeled. As mentioned before, the control algorithm requires that the mixed-integer
program be solved in at least real-time, however faster-than-real-time would be most desir-
able. The standard approach when implementing these mixed-integer programs is to set the
algorithm to terminate when the processor time exceeds the sampling time and use the best
feasible solution. The parameters for the solutions presented in this section are provided in
Table 6.2.

It was found during simulations that the 1-norm MI-MPC, as well as the 1- and 2-norm
CM-MPC formulations did not experience this, and were able to be solved faster than real
time. The 2-norm MI-MPC solution was terminated early less than 0.01% of the time.
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Table 6.2: Trajectory tracking parameters

Parameter Value Unit
Chief orbit, (a, e, i,Ω, ω,M0) (6678, 0.01, 28.5, 30, 30, 0)T (km,-,deg,deg,deg,deg)

Spacecraft mass, m 9.167 kg
Principal MOI, Ii (0.140998, 0.10559, 0.05417)T kg · m2

Max thrust, umax 0.016 N
Min thrust, umin 0.015984 N

Specific impulse, Isp 65 s
Max torque τmax 0.635 mN·m

Deputy initial state, x0 [7, 0.5,−0.5,−0.05, 0, 0]T m, m/s
Deputy final state, xf [3, 7,−10, 0, 0, 0]T m, m/s

Deputy initial YPR/ rates [0, 0, 0, 0, 0, 0] deg, deg/s
Prediction horizon, N , 25 s

Loiter time, tloiter 900 s
Qe,Ru I, 1e3I -
Qw,Rτ I, 1e4I -

In Figures 6.12 and 6.14, the tracking error can be seen and the Euler angle histories can be
seen in 6.13 and 6.15. The thruster histories and torque histories can be seen in 6.16, 6.17,
6.18, and 6.19, respectively. Finally, the mass histories of the spacecraft with each of the
controllers are seen in Figures 6.20 and 6.21.

Without initial condition error, the attitude is still disturbed by the thrusters firing, but
quickly recovered. The 1-norm MI-MPC solution requires 28% less fuel (∆v = 0.26955 m/s
vs ∆v = 0.37691 m/s) than the 1-norm CM-MPC solution, but at the expense of slightly
more tracking error. On the other hand the 2-norm MI-MPC and CM-MPC solutions use
very similar amounts of fuel, with ∆v = 0.26193 m/s and ∆v = 0.28651 m/s, respectively).
The MI-MPC formulation has the advantage that the thruster activity is sparser, particularly
for the 1-norm solution. This is expected from the heuristic that the 1-norm optimization
should provide more sparsity since it has the fuel minimization directly encoded in the cost
function. Furthermore, the thrusters and ACS never violate their constraints. Under nominal
initial conditions, the two controllers are similar enough in terms of fuel usage that it might
not be worth the extra computational burden to solve MI-MPC. In the presence of initial
condition error, we find that the differences between the two formulations become more
pronounced, and the MI-MPC formulation shows a marked improvement over CM-MPC.



Andrew C. Rogers Chapter 6. 131

0 200 400 600 800 1000 1200

R
a
d
ia
l,
m

-0.05

0

0.05

Tracking Error, xk − rk, 1-Norm
xMI(t)
xMod(t)

0 200 400 600 800 1000 1200

In
-t
ra
ck
,
m

0

0.02

0.04

0.06

Time, t, s
0 200 400 600 800 1000 1200

C
ro
ss
-t
ra
ck
,
m

-0.04

0

Figure 6.12: Tracking error for the 1-norm
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MPC formulation
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Figure 6.14: Tracking error for the 2-norm
MPC formulation
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Figure 6.15: Euler angles for the 2-norm
MPC formulation
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Figure 6.16: Thruster for the 1-norm MPC
formulation
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Figure 6.17: Torque history for the 1-norm
MPC formulation
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Figure 6.18: Thruster history for the 2-norm
MPC formulation
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Figure 6.19: Torque history for the 2-norm
MPC formulation
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Figure 6.20: Mass history for the 1-norm
MPC formulation
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Figure 6.21: Mass history for the 2-norm
MPC formulation

6.4.3 Deployment Solution- With Initial Condition Error

In this section we add initial condition error to the simulations to show that the controllers
can recover successfully from an event like deployment error. Orbital eccentricity, J2 and
atmospheric drag are the factors that have the largest effects in most formation flying appli-
cations, however, over the short timescales (relative to the orbital period) and length scales
considered in this paper, these effects will have little effect on the relative motion. For length
scales on the order of meters, deploying the satellite accurately and with as little initial ve-
locity as possible is crucial. If the velocities are too large, nonlinear effects can start to
appear in the response of the system and can be difficult to control with a linear controller.

The nominal initial conditions for the satellite were perturbed with 20% error for the tra-
jectory, and between 10◦ and 20◦ of yaw, pitch and roll error. Again, the controller is able
to recover from the initial condition error and track the optimal maneuver. Figures 6.22,
6.23, 6.26 and 6.27 show the system histories for the 1-norm formulation of the problem, and
Figures 6.24, 6.25, 6.28 and 6.29 show the systems histories for the 2-norm solution. The
MI-MPC method presents a sparser solution and results in lower overall ∆v for both the
1-norm and 2-norm formulations.

In the final set of simulations, 100 Monte Carlo runs with randomly generated initial condi-
tions were performed. In each of the simulations, all of the controllers are able to stabilize
the system to track their respective references, see Figures 6.32, 6.33, 6.36, 6.34, 6.35 and
6.37, however the MI-MPC formulation generally yields a lower ∆v, seen in Figure 6.38.
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Figure 6.22: Tracking error for the 1-norm
MPC formulation
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Figure 6.23: Euler angles for the 1-norm
MPC formulation
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Figure 6.24: Tracking error for the 2-norm
MPC formulation
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Figure 6.25: Euler angles for the 2-norm
MPC formulation
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Figure 6.26: Thruster for the 1-norm MPC
formulation
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Figure 6.27: Torque history for the 1-norm
MPC formulation

200 400 600 800 1000 1200

R
ad

ia
l,
N

-0.02

0

0.02

Thruster History, 2-Norm
uMI (t)
uMod(t)
Optimal u(t)
umax

200 400 600 800 1000 1200

In
-t
ra
ck
,
N

-0.02

0

0.02

Time, t, s
200 400 600 800 1000 1200

C
ro
ss
-t
ra
ck
,
N

-0.02

0

0.02

Figure 6.28: Thruster history for the 1-norm
MPC formulation
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Figure 6.29: Torque history for the 1-norm
MPC formulation
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Figure 6.30: Mass history for the 1-norm
MPC formulation
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Figure 6.31: Mass history for the 2-norm
MPC formulation
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Figure 6.32: Tracking error for the 1-norm
MPC formulation
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Figure 6.33: Tracking error for the 1-norm
MPC formulation
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Figure 6.34: Tracking error for the 2-norm
MPC formulation
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Figure 6.35: Tracking error for the 2-norm
MPC formulation
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Figure 6.36: Tracking error for the 1-norm
MPC formulation
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Figure 6.37: Tracking error for the 2-norm
MPC formulation
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6.5 Conclusions

In this chapter, a coupled orbit and attitude model is derived which includes the effect of
the thrusters on the attitude, and the subsequent manner in which the attitude affects the
thruster alignment. The model was specialized for a 6U Cubesat which could be launched
to carry out inspection missions.

Next a mixed-integer linear program was used with a golden section search was used to find
the minimum cost for the fuel/time optimal control problem which provides a safe reference
trajectory between two points near the chief’s body. Having found the reference trajectory,
four different mixed-integer based model predictive tracking controllers are used to track
the reference trajectory, and a constrained linear quadratic regulator is used to stabilize the
body axes of the satellite. We make note of the following:

1. The torques induced on the attitude by the thruster activity present a noticeable effect,
but can be easily corrected using the constrained LQR attitude controller presented.
This keeps the attitude error from growing too large and affecting the direction of the
thrusters.

2. For similar tunings, the MI-MPC and CM-MPC solutions exhibit sparse control activ-
ity. The sparse activity in MI-MPC is a result of the control signals being either off
(u = 0) or on but above the minimum impulse bit 0 < umin ≤ umax whereas the sparsity
in CM-MPC results from rounding down signals lower than the minimum impulse bit
to 0.

3. The MI-MPC solution tends to have lower fuel consumption than CM-MPC in terms
of ∆v, and the 1-norm solution tends to have lower fuel consumption than the 2-norm
solution. The only instance in which this is not the case was for the nominal initial
conditions where the 2-norm MI-MPC yielded a slightly smaller ∆v than the 1-norm
MI-MPC.

4. While the MI-MPC formulation yields favorable ∆v performance over the CM-MPC
formulation, it comes at the added computational expense of having more binary vari-
ables per time step. As noted before, if one were to remove the collision avoidance
constraints, Problem CM-MPC would result in a strictly convex program whereas MI-
MPC still would result in a mixed-integer program.



Chapter 7

Conclusions

Modeling and control for spacecraft relative motion has numerous applications, both imple-
mented and proposed. These applications range from science gathering missions to military
applications to spacecraft servicing and inspection. While attractive in terms of the capabil-
ities it affords to mission designers, there are still many challenges that need to be addressed
to continue to advance the state of the art for effective implementation. The control design
in this dissertation helps address some of these challenges, and they are summarized below,
followed by recommendations for future research directions.

7.1 Summary of Contributions

The work encompassed in this dissertation ranges from primarily analytical with restrictive,
idealized assumptions on the models to primarily computational with many of the assump-
tions relaxed to produce more realistic models.

In Chapter 3, the Hill-Clohessy-Wiltshire model served as the model for an analytical trajec-
tory optimization study. The result of this analysis is a completely analytical, closed-form,
explicit solution to the minimum-energy, under-actuated, optimal transfer problem using
purely in-track and cross-track thrust. This analysis proved the necessary and sufficient
conditions for the optimality of the candidate controller using the Pontryagin Principle as
well as elements of linear operator theory: the controller is a guaranteed global minimum
and simultaneously proves the controllability of the under-actuated system. The controller
is parameterized by the time-of-flight as well as the boundary conditions of the maneuver,
and we showed simplified forms for the controller for specific maneuvers. Comparison of the
under-actuated maneuver with a fully-actuated maneuver developed using the same tech-
nique used for the under-actuated maneuver shows that the total cost, given by the L2

energy, is of the same order of magnitude, however the fully-actuated maneuver is slightly
less expensive overall. This implies that the radial component of the maneuver does help
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lower the overall cost, but the in-track component contributes most of the effort for the ma-
neuver. This matches intuition about orbital maneuvers, namely, in-track thrusts are more
efficient than radial thrusts.

In Chapter 4, the more general, elliptical LERM were used to compute a minimum-energy
transfer and then verified by using the Pontryagin Principle on the NERM. The linear
transfer was solved by numerically computing a Gramian for the transfer, and building the
minimum energy transfer using the form provided in Chapter 2. The NERM transfer was
formulated as a nonlinear, two-point boundary value problem, and solved numerically using
Matlab’s bvp4c solver as well as the GPOPS2 tool. Comparison of the linear and nonlinear
maneuvers shows that the two solutions are nearly identical. From this we concluded that, for
the class of maneuvers considered in this work, accurate trajectories can be generated using
the LERM and the nonlinearities are of little consequence. Additionally better guarantees
of optimality are available for linear systems than nonlinear systems. After generating the
linear optimal controller, we developed a sliding mode tracking controller which tracked
the (linear) optimal trajectory in the presence of orbital disturbances and nonlinearity. We
showed that the sliding mode controller, which used the saturation function relaxation of the
signum function is 1) asymptotically stabilizing, 2) robust to the un-modeled disturbances,
and 3) forces the system to reach the boundary layer of the sliding manifold in finite time,
from which it does not leave. The controllers presented in this chapter are flexible and can
handle any arbitrarily elliptical orbit.

Chapter 5 extended elements of chapters 3 and 4 with the intent of developing more real-
istic trajectory optimization solutions. The Gim-Alfriend state transition matrix was used
as the relative motion model, which models the J2 perturbation on the relative motion to
first order for any arbitrarily elliptical reference orbit. The GA-STM was then discretized
using a zero-order hold on the input, and the controllability Gramian was numerically shown
to be non-singular for both the fully-actuated and under-actuated cases, which guarantees
controllability of the system. The system was transcribed to a linear program to solve a
minimum fuel optimal control problem. Validation cases for circular, unperturbed orbits
were shown to converge to classical results from impulsive orbit transfer theory. This con-
vergence occurs in the limit that the discretization approaches zero, and the time-of-flight
approaches infinity. Then, the elliptical, perturbed solutions were computed, showing simi-
lar convergence. Finally, the fuel/time optimal control problem was solved using the linear
programming approach in conjunction with a genetic algorithm to find the optimal time-of-
flight. This analysis showed that globally optimal solutions can be found using our method,
which computes solutions for multi-revolution, finite thrust, fuel-optimal, relative transfers
near perturbed, elliptical orbits.

In Chapter 6, the focus shifted from very large formation reconfiguration to very short
baseline, short time-scale proximity operations problems. The primary application in this
chapter was robotic inspection. A coupled orbit and attitude model was developed for this
type of mission. The new model captures the coupling of the orbit and attitude through the
trajectory input channels; attitude error results in the trajectory inputs firing in the wrong
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direction, and thruster non-collinearities with the center of mass and each other can result
in further attitude errors. To wit, the control design consisted of 1) an a priori trajectory
planning phase where a fuel-optimal, “safe” deployment trajectory was obtained using a
mixed-integer linear program and 2) a trajectory tracking phase where the attitude is stabi-
lized to track the orbiting axes and the trajectory tracks along a the pre-planned route. Both
the trajectory control and attitude control are formulated as model predictive controllers in
order to encode state and control constraints into the optimization problem. The trajec-
tory tracking controller used thrust constraints formulated as semi-continuous variables in
order to capture the nearly binary nature of the thruster. This was compared with another
common approach which rounds signals below the minimum-impulse bit down to zero. We
showed that the semi-continuous variable approach saved more fuel and resulted in sparser
control activity than the sub-optimal approach for both 1-norm and 2-norm formulations of
the MPC algorithm when simulated on a more realistic orbit model.

7.2 Recommendations for Future Work

The primary direction for future work is continued analysis of the control design for proximity
operations. There are four areas where improvements might be made: 1) using different
models for the trajectory and attitude, 2) exploration of convexification techniques to make
the proximity operations controllers more efficient, 3) alternative formulations of model
predictive control, and 3) adding in state estimation to the proximity operations problem.

The proximity operations scenario modeled in this dissertation used the HCW equations for
the trajectory which we assumed was a “good enough” model due to the short time-scales and
baselines of the maneuvers. Analysis of other motion models, such as the model proposed by
Gaias et al. [51] which incorporates J2 and differential drag or the small eccentricity theory
proposed by Yan and Alfriend [8] which is an approximation of the GA-STM, may reveal
that further fuel savings are obtained on the realistic orbit simulation.

The novel method of encoding the minimum-impulse bit into a mixed-integer program may
not be the most ideal way to deal with the problem. We compared the method with one
of the methods presented by Hartley et al. [62] which most closely matched our control
design objectives and assumptions. We showed that it provides some fuel savings, however
the savings come at the expense of added computational complexity and branching behavior
in the mixed-integer program solution. While there has been some excellent progress in the
field of real-time optimization for mixed logical systems, we did not explore that in this
work. The control constraint set could be convexified to improve the solution time for the
optimization (the optimization already runs faster than real time, but still requires early
termination occasionally, as noted in chapter 6). The convexification, even if it is not a
lossless convexification, could significantly improve the performance of the proposed system.

Closely related to the previous paragraph are improvements to the model predictive control
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design. Future work could include either explicit model predictive control based on dynamic
programming, or gain-scheduled model predictive control. Explicit model predictive control
was originally considered for part of this dissertation, however the explicit MPC algorithm
was based on dynamic programming, and suffered from the curse of dimensionality. Explicit
MPC results in a multi-parametric program and a piecewise affine system; the controller is
computed a priori for all possible combinations of states and controls over a set of polyhedra,
and then the controller is converted to a look-up table. The a priori computational effort can
be extremely large for longer time horizons, but the controller implementation is very fast
online. This could be used to significantly speed up the real-time capability of the proposed
method. Then, it would be an interesting problem to implement some of these controllers
in a bench simulation on more realistic flight computers to verify their efficacy.

Gain-scheduled model predictive control is recommended to handle the nonlinearity arising
from the changing mass of the system; as fuel is depleted, the mass of the satellite as well
as its inertia tensor will accordingly change. Gain-scheduling could address this through
treating the system as a linear, parameter-varying system where the scheduling variables
are the inertia properties of the system. There has been some excellent work on explicit
MPC for LPV systems by Löfberg et al. [16]. This could help relax the assumption that the
mass and inertia tensor stay constant throughout the maneuver, which is inherently untrue
though it can be an appropriate assumption.

Finally, incorporating state estimation for both the attitude and trajectory could help im-
prove the realism of the system proposed in Chapter 6. In reality, all spacecraft control
problems are output feedback, where the output contains some estimate of the state subject
to noisy measurements. This was not considered in this dissertation since the focus was on
state feedback. Additionally, 6U CubeSats were considered as the basis model for proximity
operations, but different spacecraft form factors and control allocation could certainly be
analyzed.
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