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Efficient Prevalence Estimation for Emerging and
Seasonal Diseases Under Limited Resources

Ngoc Thu Nguyen

(ACADEMIC ABSTRACT)

Estimating the prevalence rate of a disease is crucial for controlling its spread, and for planning of

healthcare services. Due to limited testing budgets and resources, prevalence estimation typically entails

pooled, or group, testing where specimens (e.g., blood, urine, tissue swabs) from a number of subjects are

combined into a testing pool, which is then tested via a single test. Testing outcomes from multiple pools

are analyzed so as to assess the prevalence of the disease. The accuracy of prevalence estimation relies

on the testing pool design, i.e., the number of pools to test and the pool sizes (the number of specimens

to combine in a pool). Determining an optimal pool design for prevalence estimation can be challenging,

as it requires prior information on the current status of the disease, which can be highly unreliable, or

simply unavailable, especially for emerging and/or seasonal diseases. We develop and study frameworks for

prevalence estimation, under highly unreliable prior information on the disease and limited testing budgets.

Embedded into each estimation framework is an optimization model that determines the optimal testing

pool design, considering the trade-off between testing cost and estimation accuracy. We establish important

structural properties of optimal testing pool designs in various settings, and develop efficient and exact

algorithms. Our numerous case studies, ranging from prevalence estimation of the human immunodeficiency

virus (HIV) in various parts of Africa, to prevalence estimation of diseases in plants and insects, including

the Tomato Spotted Wilt virus in thrips and West Nile virus in mosquitoes, indicate that the proposed

estimation methods substantially outperform current approaches developed in the literature, and produce

robust testing pool designs that can hedge against the uncertainty in model inputs. Our research findings

indicate that the proposed prevalence estimation frameworks are capable of producing accurate prevalence

estimates, and are highly desirable, especially for emerging and/or seasonal diseases under limited testing

budgets.



Efficient Prevalence Estimation for Emerging and
Seasonal Diseases Under Limited Resources

Ngoc Thu Nguyen

(GENERAL AUDIENCE ABSTRACT)

Accurately estimating the proportion of a population that has a disease, i.e., the disease prevalence

rate, is crucial for controlling its spread, and for planning of healthcare services, such as disease prevention,

screening, and treatment. Due to limited testing budgets and resources, prevalence estimation typically

entails pooled, or group, testing where biological specimens (e.g., blood, urine, tissue swabs) from a number

of subjects are combined into a testing pool, which is then tested via a single test. Testing results from the

testing pools are analyzed so as to assess the prevalence of the disease. The accuracy of prevalence estimation

relies on the testing pool design, i.e., the number of pools to test and the pool sizes (the number of specimens

to combine in a pool). Determining an optimal pool design for prevalence estimation, e.g., the pool design

that minimizes the estimation error, can be challenging, as it requires information on the current status of the

disease prior to testing, which can be highly unreliable, or simply unavailable, especially for emerging and/or

seasonal diseases. Examples of such diseases include, but are not limited to, Zika virus, West Nile virus,

and Lyme disease. We develop and study frameworks for prevalence estimation, under highly unreliable

prior information on the disease and limited testing budgets. Embedded into each estimation framework is

an optimization model that determines the optimal testing pool design, considering the trade-off between

testing cost and estimation accuracy. We establish important structural properties of optimal testing pool

designs in various settings, and develop efficient and exact optimization algorithms. Our numerous case

studies, ranging from prevalence estimation of the human immunodeficiency virus (HIV) in various parts of

Africa, to prevalence estimation of diseases in plants and insects, including the Tomato Spotted Wilt virus

in thrips and West Nile virus in mosquitoes, indicate that the proposed estimation methods substantially

outperform current approaches developed in the literature, and produce robust testing pool designs that can

hedge against the uncertainty in model input parameters. Our research findings indicate that the proposed

prevalence estimation frameworks are capable of producing accurate prevalence estimates, and are highly

desirable, especially for emerging and/or seasonal diseases under limited testing budgets.
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Chapter 1

Introduction

This chapter is organized as follows. In Section 1.1, we describe the context and motivation for our research

problem and provide a brief overview of current practices for prevalence estimation of diseases. Then, in

Section 1.2, we outline our approaches to testing pool design optimization for prevalence estimation of

emerging and/or seasonal diseases.

1.1 Motivation

Emerging and/or seasonal diseases are becoming more and more common, and are causing great harm

worldwide; examples include Zika virus, West Nile virus, Lyme disease, and Babesiosis. These diseases pose

significant challenges to public health and healthcare system management due to their highly stochastic

nature; and their outbreaks can be extremely costly to the society, leading to poor health outcomes and

economic losses. Consider, for example, the Zika virus outbreak in 2016, affecting Central America, the

Caribbean, and the northern part of South America [87], costing these regions around $3.5 billion in disease

treatment costs and short-term economic losses alone [107]. Yet another costly consequence of emerging

and seasonal diseases is the rising costs of blood transfusion. As there are more transfusion-transmittable

diseases for which donated blood is screened, the cost of blood transfusion has increased substantially, from

around $1,100 in 2012 to around $3,600 in 2017 [61, 62]. Therefore, an efficient and effective surveillance

method for emerging and seasonal diseases is of utmost importance to predict, control, and mitigate their

outbreaks [32,35].

An important input for establishing an efficient and effective surveillance method is the estimated preva-

lence rate of the disease in question. Prevalence estimation typically involves large-scale testing of subjects

(humans, insects, plants) via in-vitro laboratory tests performed on biological specimens, such as blood,

1



urine, or tissue swabs, collected from the subjects, in order to measure a disease-specific bio-marker, which

serves as an indicator for the presence of the virus or bacteria causing the disease. However, the testing

efforts are typically constrained by limited testing budgets and resources, and, as a result, individual testing

of each subject is highly inefficient, or simply infeasible, for large populations, because disease prevalence

rates are often very low [99]. Therefore, prevalence estimation typically entails pooled (group) testing of spec-

imens from multiple subjects, which refers to the practice of combining specimens from multiple subjects in

a testing pool, and measuring the pool’s concentration (load) of a bio-marker. Thus, one test is used on the

multiple specimens in the pool. The inference on the unknown prevalence rate is then made based on an

analysis of the pooled test outcomes. Hence, an important decision in prevalence estimation is the testing

pool design, i.e., how many testing pools to use, and how many specimens to combine in each pool (pool

size).

The testing pool design problem requires prior information on the disease, e.g., an initial estimate of the

current prevalence rate of the disease, the distribution of the bio-marker load in disease-positive subjects.

However, for an emerging or a highly seasonal disease, prior information regarding its characteristics is often

highly unreliable, or even unavailable. As an example, consider the prevalence rates of West Nile virus

in Texas between 2002 and 2016, shown in Figure 1.1. Given the substantial fluctuations in the disease

prevalence rate from year to year, simply using the disease prevalence from a previous year as an input for

testing pool design can lead to highly inefficient testing pools and, hence, to inaccurate prevalence estimates.

Consequently, determining optimal testing designs for prevalence estimation of emerging and/or seasonal

diseases poses significant challenges to public health policy-makers and practitioners.

Given the challenges of the testing pool design problem for prevalence estimation, various methods for

prevalence rate estimation have been developed in the statistics literature, in an effort to overcome the impact

of inefficient pool designs. On the other hand, the number of studies that focus on the pool design aspect of

prevalence estimation is very limited. Further, these studies on pool design are typically restrictive, in that

they assume a fixed number of pools, or tests, they do not explicitly account for limited testing budgets,

and while they require an initial estimate of the unknown prevalence rate, they do not offer a mechanism

to update this estimate as testing proceeds, or a mechanism to hedge against the uncertainty on the initial

prevalence rate estimate. As a result, the resulting pool designs can lead to inaccurate prevalence estimates,

especially for emerging and/or seasonal diseases, for which limited, and highly unreliable, information is

available prior to testing. Motivated by these gaps in the knowledge-base, our research goal is to develop

robust and efficient testing pool designs for prevalence estimation, with a special focus on emerging and

seasonal diseases under limited testing resources.

2



Figure 1.1: Number of reported cases of West Nile virus (WNV) in Texas from 2002 to 2016 (Data Source:
[24])
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1.2 Research Overview

We develop and study various novel frameworks for optimal testing pool design for prevalence estimation,

while relaxing the restrictive assumptions often used in the existing literature. As discussed above, the use

of an exogenously fixed number of pools is a very common practice in prevalence estimation, and is often

assumed in current pool design models. We relax this assumption in all testing pool design models that we

develop, in order to explicitly account for, and to efficiently allocate, the available testing budget. We also

relax other restrictive assumptions in our models to provide guidelines on best practices for optimal pool

design for prevalence estimation.

In particular, in Chapter 2, we study a sequential and adaptive prevalence estimation procedure that

utilizes continuous test outcomes (i.e., the bio-marker concentration), as opposed to the commonly used

binary test outcomes (i.e., the test outcome is positive if the bio-marker concentration is above a pre-set

threshold, and negative otherwise). Relaxing the assumption of binary test outcomes allows us to model and

account for testing errors and the dilution effect of pooling (i.e., the potential reduction in test sensitivity

as pool size increases), so as to accurately estimate an unknown prevalence rate. Specifically, we propose

a two-stage sequential estimation procedure in which the pool design is optimized in every stage, under

testing budget constraints, based on the most recent estimate of the unknown prevalence rate; this estimate

is revised after the first stage of testing, to take into account the new information obtained via the first stage
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of testing. As a result, the prevalence estimate derived from this sequential estimation procedure is highly

accurate, in comparison to estimates derived from other commonly used single-stage estimation procedures

with binary test outcomes.

We complement the findings and analysis of Chapter 2 with a novel methodology for estimating the

sensitivity of pooled testing, based on an integration of a viral load progression model with a probit model

to consider the dilution effect of pooling, presented in Chapter 3. Our viral load progression model accounts

for viral load progression throughout the lifetime of the disease, as opposed to existing models that only

consider the window period of the disease. Our case study, of testing pool design for prevalence estimation

of the human immunodeficiency virus (HIV) infection in various parts of Africa, indicates that the proposed

methodology generates highly accurate sensitivity values for pooled testing, and, as a result, can lead to

efficient pool designs for both prevalence estimation and subject classification.

In Chapter 4, we establish key structural properties of optimal testing pool designs for prevalence estima-

tion of diseases under the commonly used assumption of binary test outcomes. More importantly, we relax

the assumption of an exogenously fixed number of testing pools, and develop a joint optimization model that

determines both the pool size and the number of pools, while explicitly accounting for the testing budget.

Existing studies on pool design for prevalence estimation are mostly numerical in nature, and do not offer any

general insight and guidelines into optimal testing pool design in different settings. As opposed to this, we

establish several analytical properties of the asymptotic variance function and optimal pool designs, which

allow us to provide guidelines for public health practitioners, further contributing to the existing literature.

In Chapter 5, we develop and study robust pool design optimization models that hedge against the

uncertainty in the initial prevalence estimate of the disease. Robust pool design optimization is essential,

because the testing pool design problem for prevalence estimation requires, as an input, an initial estimate

of the unknown prevalence rate, creating significant challenges, especially for emerging and/or highly sea-

sonal diseases, due to a lack of reliable information about the current status of such diseases. While one

can account for such uncertainty via a multi-stage sequential estimation procedure studied in Chapter 2,

such procedures may not be desirable for large-scale testing of subjects, due to operational challenges and

complexity, including the need for additional on-site data collection, and additional operational decisions,

e.g., how to split up the available testing budget among different testing stages. Therefore, in Chapter 5, we

apply robust optimization methodologies and extend upon the pool design optimization models in Chapter

4, in order to hedge against the uncertainty in the initial prevalence estimate of the disease, even within a

single-stage estimation framework. Specifically, we consider a mini-max model and a regret-based model,

both of which require minimal information on the disease prior to testing, i.e., the support of the disease

prevalence rate. We study robust pool designs derived from the proposed models, and compare them with
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pool designs derived from the deterministic model presented in Chapter 4, in both single-stage and sequen-

tial estimation frameworks. Our analysis underscores the value of robust optimization in pool design for

prevalence estimation, and leads to key insights and guidelines for practitioners.

We conclude this dissertation in Chapter 6 with a summary of research findings. To facilitate the

presentation, mathematical derivations, analytical proofs, and some tables are relegated to the Appendix.
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Chapter 2

Sequential Prevalence Estimation

with Pooling and Continuous Test

Outcomes

2.1 Introduction

Surveillance, or prevalence estimation, is an essential component for assessing the current status or dynamics

of an infection, a disease, or a genetic disorder. In the following, we use the term “infection” to refer to

the binary characteristic, the prevalence rate of which we would like to estimate using in vitro laboratory

testing via bio-specimens (e.g., blood, urine, tissue swabs) collected from subjects in a certain population.

As a recent example that highlights the need for efficient and effective surveillance methods, consider the

recent outbreak of the Zika virus infection in central America, the Caribbean, and the northern part of south

America [87], affecting 45 countries and territories across the Americas [78]. Given its association with the

congenital syndrome, Guillain-Barre syndrome, and other neurological disorders, accurately estimating the

prevalence rate of the Zika virus infection becomes crucial in planning for healthcare services. In addition

to emerging infections, prevalence estimation plays an important role in controlling the spread of existing

infections, an example of which is the human immunodeficiency virus (HIV) infection. The requested federal

funding for HIV prevention programs in fiscal year 2017 totaled $27.5 billion in the United States [97]. With

such substantial funding at stake, HIV regional prevalence rate estimates play an important role in the

allocation of funds to the different regions [19]. Accurate prevalence rate estimation is also important for

6



controlling plant, insect, and animal diseases [12,56,81].

As surveillance studies are often constrained by testing budgets, however, individual testing is rendered

inefficient, or simply infeasible (e.g., [99,100]). Therefore, ever since its introduction by Dorfman in 1943 [38],

pooled, or group, testing is considered to be a highly efficient and effective approach to both classification

(i.e., identification of all infected subjects) and estimation problems. Pooled testing for the purpose of

classification is often followed by individual testing to identify the infected subjects. On the other hand, in

the estimation problem, which is the focus of this paper, the identification component is often not necessary,

as the ultimate goal is to derive an accurate estimate of the infection prevalence rate (e.g., [50,56,69,70,72]).

In pooled testing, individual bio-specimens are pooled together, and the pool concentration of a bio-

marker, which serves as an indicator for the presence of the virus causing the infection, is measured. The

bio-marker may, for example, correspond to the antibody or antigen level, which can be measured by serologic

tests, or genetic material from the virus, such as viral RNA or DNA, which can be measured using virologic

testing technology. While these bio-marker measurements are continuous in nature, for both classification

and estimation purposes they are typically compared to pre-set thresholds to produce a binary test outcome:

“positive” if the pooled test’s reading exceeds the threshold, indicating the presence of at least one infected

specimen in the pool, and “negative” otherwise. Several aspects of the estimation problem under binary

test outcomes, and for a fixed number of pools, i.e., with no explicit testing budget limitation, have been

studied in the literature. Several studies investigate the characteristics of the maximum likelihood estimator

(MLE) of the prevalence rate in various settings, including multi-pool configurations, i.e., pools with different

sizes [27], and under relaxation of the commonly used binomial assumption [26], while others develop various

approaches for bias reduction in the MLE (e.g., [54]). Furthermore, since pooling design may impact the

estimation efficiency significantly (see, e.g., [25, 92, 96]), many studies focus on the pool size determination

problem, under perfect tests (e.g., [57,58,89]), and imperfect tests (e.g., [45,69,99,100]). All these studies use

the MLE and assume a homogeneous population. While some recent studies account for the heterogeneity of

the population through Bayesian analyses [40,81,94], or through regression analyses, which allow individual

covariate information to be utilized in the estimation [28, 41, 55, 102, 110], these studies do not consider an

optimal pooling design. The aforementioned studies on the pool size determination problem use binary pooled

test outcomes and assume that pooling does not alter the test’s sensitivity (true positive probability) and

specificity (true negative probability). These assumptions can lead to inaccurate prevalence rate estimates:

It is well-known that the bio-marker concentration of infected specimens may be “diluted” by the uninfected

specimens in the pool, to the point that the pool’s reading may fall below the test’s positivity threshold

(the “dilution effect” of pooling), with the binary test outcome becoming a false negative (e.g., [59, 91]).

Furthermore, valuable information on the pool’s bio-marker concentration is lost when binary test outcomes

7



are used in the estimation (e.g., [111]). Therefore, a more accurate approach to inferring about the unknown

prevalence rate based on pooled testing is to directly utilize the continuous reading of the test, along with a

model that explicitly considers the dilution effect of pooling, as we do in this paper.

In particular, Zenios and Wein [111] develop an estimation procedure that uses continuous test outcomes

from pooled testing and considers the dilution effect of pooling, to estimate the HIV prevalence rate for

a homogeneous population via the Enzyme Linked Immunosorbent Assay (ELISA). They also determine

the optimal pool size to minimize the cost per unit information when the total number of specimens to

be tested is fixed a priori. While their pool size optimization model requires an initial estimate of the

unknown prevalence rate, it does not offer a mechanism to update this estimate as testing proceeds, i.e., it

is a single-stage estimation procedure. McMahan, Tebbs and Bilder [72] extend this single-stage estimation

procedure to a heterogeneous population; while the continuous test outcome distribution is accounted for in

their derivation of the MLE of the prevalence rate, the prevalence rate inference is ultimately made based

on binary test outcomes, i.e., by converting the continuous test outcomes to binary outcomes via a pre-set

threshold, and without consideration of the optimal pool size.

An alternative approach is to use a sequential and adaptive estimation procedure, which allows the

prevalence rate estimate to be revised as testing proceeds, so that the remaining tests can be conducted

with a more effective pooling design that is based on a more accurate prevalence rate estimate. This is the

approach we take in this paper. Of particular relevance to our model are the works by Hughes-Oliver and

Swallow [58], and Hughes-Oliver and Rosenberger [57], both of which utilize binary test outcomes and are

based on the perfect test assumption, i.e., there is no testing error, hence no dilution. Various sequential

estimation-classification procedures have also been proposed for the ultimate goal of classification, i.e., the

first stage typically involves the estimation of the unknown prevalence rate, while the second stage involves

the identification of the infected specimens in the pool; e.g., [15, 46, 51, 95, 103]; thus, these works are not

within the scope of this paper.

Specifically, we study a sequential and adaptive estimation procedure in which the pooling design in each

stage is optimized with respect to a testing budget constraint and is based on the most recent estimate of

the unknown prevalence rate, which changes as testing progresses. Moreover, the estimation is based on

continuous test outcomes, and explicitly considers the dilution effect of pooling. From this perspective, our

estimation procedure can be seen as an integration of the methodologies proposed in Hughes-Oliver and

Swallow [58] and Zenios and Wein [111], with the following enhancements: Our model allows for multiple

pooling configurations in each stage, enhancing the flexibility of testing, and our pooling optimization model

simultaneously determines the number of pools and the pool sizes given a testing budget and based on the

most recent prevalence rate estimate.
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The remainder of this paper is organized as follows. In Section 2.2, we provide details of the proposed esti-

mation procedure; in Section 2.3, we demonstrate its effectiveness through two case studies that respectively

focus on estimating the prevalence rate for HIV via pooled HIV Nucleic Acid Amplification Test (NAT),

Ultrio Plus Assay; and for the Tomato Spotted Wilt Virus (TSWV) in thrips using the pooled ELISA test.

Finally, we conclude in Section 2.4 with a discussion of our findings and suggestions for future research. To

facilitate the presentation, some tables and mathematical derivations are relegated to the Appendix.

2.2 The Proposed Sequential and Adaptive Estimation Procedure

Pooling design, which involves determining a pool size (m) and the number of pools (n), is an important

decision in pooled testing (e.g., [25,71,85,92,96]). Determining an optimal pooling design requires an initial

estimate of the unknown prevalence rate p, which we denote by p0; and inaccurate choices of p0 can lead

to sub-optimal pooling designs, which, in turn, can lower the estimation efficiency of the MLE, resulting

in a higher mean squared error (MSE) and/or a higher bias. Under pooled testing with binary outcomes,

researchers show that the MLE of the prevalence rate is robust to pooling design when the initial estimate,

p0, is close to, or greater than, p; however, this is not necessarily the case when p0 is an underestimate of

p [58, 92, 98]. Meanwhile, it is shown that using continuous test outcomes in pooled testing can improve

the efficiency of estimation, e.g., [104, 111]. However, when using continuous test outcomes, the optimal

pooling design as well as the resulting MLE of the prevalence rate depend not only on p0, but also on the

distribution of the bio-marker concentration in infected subjects, which is rarely known with certainty; and

this dependence has not been well-studied in the literature.

Motivated by these observations, we propose a sequential and adaptive estimation procedure that utilizes

continuous test outcomes, and study its efficiency and robustness, with respect to deviations from the initially

assumed prevalence rate estimate and bio-marker distribution. Specifically, our approach expands upon that

in [58] by accounting for the testing error (i.e., false positive and false negative test outcomes are possible),

continuous test outcomes, and the dilution effect of pooling; and expands upon that in [111] by offering a

mechanism to update the estimate of the unknown prevalence rate for use in the pooling optimization model,

i.e., it is sequential and adaptive; further, the pooling optimization model jointly optimizes for both pool

sizes and the number of pools under a testing budget constraint. However, unlike [111], we consider the

measurement error of the employed testing kit to be negligible, but we still account for the testing error,

i.e., false positives and false negatives, by incorporating, into our estimation model, the dilution effect of

pooling and the “noise” on the pool’s reading contributed by the uninfected specimens in the pool. We also

briefly discuss the impact of the measurement error on our results. Our sequential estimation procedure can
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be easily extended to a multi-stage estimation procedure, with three or more stages, in the same manner as

the procedure proposed by Hughes-Oliver and Swallow [58].

In this section, we outline the various components of the proposed estimation procedure. In particular,

Section 2.2.1 provides an overview of our estimation procedure. Then, Sections 2.2.2 and 2.2.3 respectively

detail the probabilistic model used to represent the continuous test outcomes and the dilution effect of

pooling, and the construction of the MLE based on continuous test outcomes. Then Section 2.2.4 presents

the pooling design optimization model, which is embedded into the sequential estimation procedure.

Throughout, we denote vectors in boldface, random variables in upper-case letters and their realization

in lower-case letters, and use FY (·) and fY (·) to respectively denote the cumulative distribution function

(CDF) and probability density function (pdf) of a random variable Y ; see Appendix A.1 for a summary of

the notation.

The goal is to obtain an accurate estimate of the unknown prevalence rate, p, which we assume to be

homogeneous across the population, using a total testing budget, B, via sequential and adaptive testing.

Towards this end, in each stage of the testing procedure, the decision-maker determines the pooling design

in that stage, based on the most recent estimate of the prevalence rate, i.e., the decision-maker determines

both pool sizes, m = {m1,m2, · · · ,mC}, and the number of pools of each size to test, n = {n1, n2, · · · , nC},

for a given C ∈ N, where C is the number of pooling configurations. Hence, the decision variable in each

stage is the pooling design matrix,

D =

m1 m2 · · · mC

n1 n2 · · · nC

 .
Let us denote the optimal pooling design in stage s, s = 1, 2, by D∗s , which is the solution to an optimization

problem that minimizes the MSE of the prevalence rate estimate (see Section 2.2.4).

2.2.1 Outline of the Sequential and Adaptive Estimation Procedure

The sequential estimation procedure (SE) is outlined below.

Sequential and Adaptive Estimation Procedure with Continuous Test Outcomes (SE):

For a given λ, λ ∈ (0, 1], and a total testing budget, B:

Stage 1:

1. Given p0, an initial estimate on p, determine the optimal pooling design for stage 1 that is feasible
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with respect to a testing budget of B(1) = λB, given by:

D∗1(λ, p0) =

m∗11 m∗12 · · · m∗1C

n∗11 n∗12 · · · n∗1C

 .

2. Obtain the set of continuous test outcomes corresponding to the pooling design, D∗1(λ, p0), and com-

pute the MLE of p in stage 1, p̂
(1)
MLE .

Stage 2:

1. Given p̂
(1)
MLE , the (random) outcome of stage 1, determine the optimal pooling design for stage 2 that

is feasible with respect to a testing budget of B(2) = (1− λ)B, given by1:

D∗2((1− λ), p̂
(1)
MLE) =

m∗21 m∗22 · · · m∗2C

n∗21 n∗22 · · · n∗2C

 .

2. Obtain the set of continuous test outcomes corresponding to the pooling design D∗2
(
(1 − λ), p̂

(1)
MLE

)
,

and use both stage 1 and stage 2 testing outcomes to compute p̂
(2)
MLE , i.e., the final estimate of p.

In our case studies in Section 2.3,we investigate the effectiveness of single- versus dual-configuration

pooling designs, and of single-stage versus sequential estimation procedures under different values of the

budget allocation factor, λ, the testing budget, B, and the initial estimate of p at the beginning of stage 1,

p
(1)
0 ; and under different bio-marker distributions.

2.2.2 Modeling the Pool’s Continuous Test Outcome

To model the continuous test outcome of a pool of size m, we define the following random variables:

Y +: Bio-marker concentration of a random infected subject, with pdf fY +(·)

Y −: Noise level (i.e., contribution to a pool’s concentration) coming from a random uninfected subject, with

pdf fY −(·)

Let Yi denote the bio-marker concentration of subject i, i = 1, · · · ,m, whose specimen is included in a pool

of size m, that is, for all i = 1, · · · ,m,

Yi =


Y +
i , with probability p

Y −i , with probability 1− p
,

1Any unused budget in stage 1 (due to integrality constraints on m and n), is added to B(2).
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and we assume that Yi, i = 1, · · · ,m, are independent, that is, the infection status, hence, bio-marker

concentration, of different subjects are independent.

Similar to [111] and [104], we represent the dilution effect by modeling the pool’s reading as the average

bio-marker concentration of the pool, given by Y (m) =
∑m
i=1 Yi
m , with pdf:

fY (m)(y; p) =

m∑
k=0

Pr[W (m; p) = k] fY (m;k)(y) =

m∑
k=0

(
m

k

)
pk(1− p)(m−k) fY (m;k)(y),

where W (m; p) denotes the number of infected specimens in a pool of size m, i.e., W (m; p) ∼ Binomial

(m, p), and Y (m;k) is the conditional average bio-marker concentration of a pool of size m, given k infected

specimens in the pool, i.e., Y (m;k) = 1
m

(∑k
i=1 Y

+
i +

∑m−k
j=1 Y −j

)
, for k ≤ m, k ∈ N. Let S(m,k) denote the

sum of concentrations of all specimens in a pool of size m, with k infected specimens, i.e., S(m,k) = mY (m,k).

We have the following:

fS(m;k) = f
[k∗]
Y + ∗ f [(m−k)∗]

Y − , k = 0, 1, 2, · · · ,m, (2.1)

where f
[n∗]
Y denotes the n-fold convolution of fY , ∀n ∈ N. Thus, the density function fY (m;k) is given by:

fY (m;k)(y(m,k)) = m · fS(m;k)(m · y(m,k)), k = 0, 1, 2, · · · ,m. (2.2)

2.2.3 Constructing the MLE under Continuous Test Outcomes

Given a pooling design D, the observed test outcome (i.e., the vector of average reading of each pool)

is denoted by y(m,n) =
{
y(m1,n1), · · · ,y(mC ,nC)

}
, with each y(mi,ni) =

(
y

(mi)
j

)
j=1,··· ,ni

, i = 1, · · · , C,

denoting a vector of ni test outcomes, each corresponding to a pool of size mi. Then, the likelihood function

is given by:

L
(
p; y(m,n)

)
=

C∏
i=1

ni∏
j=1

( mi∑
k=0

(
mi

k

)
pk(1− p)(mi−k)fY (mi;k)(y

(mi)
j )

)
.

Then, extending upon the MLE expression in [111], the MLE for p, corresponding to a pooling design D

and test outcome vector y(m,n), follows:

p̂MLE =
1

(
∑C
i=1 nimi)

C∑
i=1

ni∑
j=1

mi∑
k=0

kτ (mi)(k; y
(mi)
j , p̂MLE), (2.3)
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where τ (m)(k; y, p) = Pr
(
W (m; p) = k | Y (m) = y

)
, i.e., the conditional probability of having k infected

specimens in a pool of size m, given the pool’s reading of y and a prevalence rate of p [111]:

τ (m)(k; y, p) =

(
m
k

)
pk(1− p)(m−k)fY (m;k)(y)∑m

j=0

(
m
j

)
pj(1− p)(m−j)fY (m;j)(y)

, for k ≤ m, k ∈ N. (2.4)

From Eqn.(2.3), the MLEs in stages 1 and 2 of the sequential estimation procedure, SE, follow:

p̂
(1)
MLE =

1

(
∑C
i=1 n

∗
1im

∗
1i)

C∑
i=1

n∗1i∑
j=1

m∗1i∑
k=0

kτ (m∗1i)(k; y
(m∗1i)
j , p̂

(1)
MLE), and

p̂
(2)
MLE

(
p̂

(1)
MLE

)
=

1

(
∑2
s=1

∑C
i=1 n

∗
sim
∗
si)

2∑
s=1

C∑
i=1

n∗si∑
j=1

m∗si∑
k=0

kτ (m∗si)(k; y
(m∗si)
j , p̂

(2)
MLE),

(2.5)

where (m∗si, n
∗
si), s = 1, 2, i = 1, · · · , C, is the solution to the pooling design optimization model (see Section

2.2.4). Thus, p̂
(2)
MLE is the final output of SE, i.e., the estimate of p, and the only purpose of deriving p̂

(1)
MLE

is to use it as an input for the pooling optimization model in stage 2. We then solve for p̂
(1)
MLE and p̂

(2)
MLE

numerically, using a tolerance level of 10−7; see Appendix A.2.

The above analysis considers that the test’s outcome for a pool may include some noise originating from

uninfected specimens in the pool due to various reasons (e.g., health conditions or medications unrelated

to the infection in question). If there is a significant amount of measurement error in the test’s outcome

that is independent of the number of uninfected specimens in the pool, then one can explicitly model this

measurement error. If this is the case, then, similar to [111], let X(m) denote the measured bio-marker

concentration of a pool of size m, with an actual (and unobservable) bio-marker concentration of Y (m); and

Eqs. (2.4) and (2.5) continue to hold, with fY (m;k)(·) replaced by fX(m;k)(·), and with the pdf of the random

variable X(m;k) expressed as a function of the pdf of the random variable Y (m;k); see [111] for details, and

see Appendix A.8 for the potential impact of the test’s measurement error on estimation efficiency in our

setting.

2.2.4 Pooling Design Optimization

In this section, we present the optimization model used in SE to determine the optimal pooling design,

(m∗si, n
∗
si), s = 1, 2, i = 1, · · · , C, that minimizes the MSE of the estimator in stage s, where p

(1)
0 = p0 and

p
(2)
0 = p̂

(1)
MLE :
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Pooling Design Optimization Problem for SE (stage s, s = 1,2) :

min
msi,nsi,i=1,··· ,C

MSE(p̂
(s)
MLE ; p

(s)
0 )

subject to: cf (

C∑
i=1

nsi) + cv(

C∑
i=1

nsimsi) ≤ B(s)

msi ≤M, msi, nsi ∈ N, i = 1, 2, · · · , C

(2.6)

where cf is the testing cost per pool, cv is the collection cost per specimen, B(s) is the testing budget

available in stage s, and M is a technological upper bound (if any) on pool sizes. In SE, we split the total

testing budget, B, between the two testing stages using some multiplier λ ∈ (0, 1), so that the budget for

stage 1 is B(1) = λB, and that for stage 2 is B(2) = (1− λ)B; see Section 2.2.1.

We next derive an expression for the MSE in our setting, i.e., for imperfect tests and considering contin-

uous test outcomes and the dilution effect of pooling.

MSE Derivation:

We first consider the case where a single-pool configuration, D = {(m,n)}, is utilized in stage s, s = 1, 2:

MSE
(
p̂

(s)
MLE ; p

(s)
0

)
= V ar(p̂

(s)
MLE ; p

(s)
0 ) +Bias2(p̂

(s)
MLE ; p

(s)
0 ), (2.7)

where:

V ar(p̂
(s)
MLE ; p

(s)
0 ) = V ar

(
1

nm

n∑
j=1

m∑
k=0

kτ (m)(k;Y
(m)
j , p̂

(s)
MLE)

)
=
( 1

nm2

)
V ar

(
E[W (m; p

(s)
0 ) | Y (m)]

)
,

(2.8)

Bias2(p̂
(s)
MLE ; p

(s)
0 ) =

(
E[p̂

(s)
MLE ; p

(s)
0 ]− p0

)2

=

(
1

m
E
(
E[W (m; p

(s)
0 ) | Y (m)]

)
− p(s)

0

)2

. (2.9)

Substituting Eqs. (2.8) and (2.9) into Eqn. (2.7), we obtain:

MSE(p̂
(s)
MLE ; p

(s)
0 ) =

( 1

nm2

)
V ar

(
E[W (m; p

(s)
0 ) | Y (m)]

)
+

(
1

m
E
(
E[W (m; p

(s)
0 ) | Y (m)]

)
− p(s)

0

)2

, (2.10)
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where the first two moments of the random variable E[W (m; p
(s)
0 ) | Y (m)], s = 1, 2, are given by:

E
[
E[W (m; p

(s)
0 ) | Y (m)]

]
= E

[
E[W (m; p

(s)
0 ) | Y (m)] |W (m; p

(s)
0 ) = 0

]
Pr[W (m; p

(s)
0 ) = 0]

+E
[
E[W (m; p

(s)
0 ) | Y (m)] |W (m; p

(s)
0 ) ≥ 1

]
Pr[W (m; p

(s)
0 ) ≥ 1]

= E
[
E[W (m; p

(s)
0 ) | Y (m)] |W (m; p

(s)
0 ) ≥ 1

](
1− (1− p(s)

0 )m
)
,

E
[(
E[W (m; p

(s)
0 ) | Y (m)]

)2]
= E

[(
E[W (m; p

(s)
0 ) | Y (m)]

)2

|W (m; p
(s)
0 ) ≥ 1

](
1− (1− p(s)

0 )m
)
.

(2.11)

Substituting Eqn. (2.11) into Eqn. (2.10), we obtain, s = 1, 2:

MSE(p̂
(s)
MLE ; p

(s)
0 )=

( 1

nm2

)E[(E[W (m; p
(s)
0 ) | Y (m)]

)2]
−

(
E
[
E[W (m; p

(s)
0 ) | Y (m)]

])2


+

{( 1

m

)
E
[
E[W (m; p

(s)
0 ) | Y (m)]

]
− p(s)

0

}2

.

(2.12)

For m = 1, Eqn. (2.12) reduces to: MSE(p̂
(s)
MLE ; p

(s)
0 ) = 1

n p
(s)
0 (1− p(s)

0 ), s = 1, 2.

Similarly, for the multiple pooling configuration case, i.e., C ≥ 2, the MSE in each estimation stage s,

s = 1, 2, given a starting estimate p
(s)
0 , can be expressed as:

MSE(p̂
(s)
MLE ; p

(s)
0 ) =

(
1

(
∑C
i=1 nsimsi)2

){
C∑
i=1

nsiV ar
(
E[W (msi; p

(s)
0 ) | Y (msi)]

)}

+

{(
1∑C

i=1 nsimsi

)
C∑
i=1

nsi E
(
E[W (msi; p

(s)
0 ) | Y (msi)]

)
− p(s)

0

}2

.

(2.13)

The computation of the MSE(p̂
(s)
MLE ; p

(s)
0 ) is also important for approximating a confidence interval for

the unknown prevalence rate, p. For example, for SE, p̂
(2)
MLE is the final estimate of p. Then, from [58, 98],(

p̂
(2)
MLE − p

)
∼ Normal

(
Bias(p̂

(2)
MLE ; p), V ar(p̂

(2)
MLE ; p)

)
, and the confidence interval of p, with a confidence

level of 100(1− α)%, can be approximated by:

[
p̂

(2)
MLE −Bias(p̂

(2)
MLE ; p)

]
± z1−α/2

√
V ar(p̂

(2)
MLE ; p),

where z1−α/2 is the 100(1−α/2) percentile of the standard normal distribution. We propose an approximation

method for Bias(p̂
(2)
MLE ; p) and V ar(p̂

(2)
MLE ; p) based on the continuous test outcomes and p̂

(2)
MLE in Appendix

A.10.

Observe that the expressions of MSE in Eqn. (2.12) and (2.13) rely on the first two moments of the

random variable, E[W (m; p
(s)
0 ) | Y (m)], i.e., the conditional expectation of the number of infected specimens
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in a random pool of size m, given an initial estimate of p
(s)
0 on p, and the pool’s reading Y (m), which is

unknown, and, thus, uncertain at the time the MSE is computed for use in the pooling design optimization

model. Further, p̂
(s)
MLE , for s = 1, 2, is numerically computed, by obtaining a solution to Eqn. (2.5) via an

iterative algorithm (see Appendix A.2); hence, the distribution of the random variable E[W (m; p
(s)
0 ) | Y (m)]

cannot be expressed in closed-form. As a result, deriving an exact expression for MSE(p̂
(s)
MLE ; p

(s)
0 ) is

analytically challenging. Therefore, in the case studies of Section 2.3, we simulate the distribution of the

random variable
[
E[W (m; p

(s)
0 ) | Y (m)] |W (m; p

(s)
0 ) ≥ 1

]
, and approximate its first two moments, which are

then used in Eqs. (2.12) and (2.13) to approximate MSE(p̂
(s)
MLE ; p

(s)
0 ), for m ≥ 2,m ∈ N.

2.3 Case Studies

In this section, we present and discuss two case studies: the HIV prevalence rate estimation via the HIV

NAT Ultrio Plus Assay, which measures the viral RNA concentration, i.e., the viral load, and the TSWV

prevalence rate estimation for thrips via the ELISA test, which measures the antibody concentration. Our

objectives are: (1) to compare the effectiveness of: (i) utilizing continuous versus binary test outcomes (the

latter with and without the numerical corrections proposed in the literature, [54]), (ii) single-stage versus

sequential estimation (i.e., SE) procedures, and (iii) single- versus dual-configuration pooling designs, for

estimating an unknown prevalence rate; (2) to study the robustness of the sequential procedure, SE, to

deviations from the initial prevalence rate estimate, p
(1)
0 , and the assumed distribution and parameters of

bio-marker levels, Y +, and of noise terms, Y −; and (3) to understand the impact of the testing budget, B,

and budget allocation factor, λ, on the efficiency of the estimation.

This section is organized as follows. Section 2.3.1 provides an overview of the numerical study and the

simulation model. Then, Sections 2.3.2 and 2.3.3 respectively discuss the findings from the HIV case study

and the TSWV case study.

2.3.1 Description of the Numerical Study

Both case studies are conducted via Monte–Carlo simulations, considering a wide range of parameter values.

An input to each simulation replication is the optimal pooling design in stage 1, D∗1 = (m∗1i, n
∗
1i)i=1,··· ,C ,

which is a function of the initial prevalence rate estimate, p
(1)
0 , and the assumed distributions and parameters

of Y + and Y −. In what follows, we first describe the implementation of the pooling design optimization

model, and then detail the simulation procedures.

Implementation of the Pooling Design Optimization Model:

We solve the pooling design optimization problem, given in Eqn. (2.6), via an exhaustive search procedure
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that considers the entire feasible region, comprised of all budget-feasible combinations of (m1i, n1i), i =

1, · · · , C, i.e., cf
∑C
i=1 n1i + cv

∑C
i=1 n1im1i ≤ B(1), such that n1i (number of pools) is between 1 and 1,000,

and m1i (pool size) is between 1 and M , i.e., the maximum acceptable pool size for the utilized testing kit,

∀i = 1, · · · , C. We consider that M = 48 in case study 1, and M = 50 in case study 2. The exhaustive

search procedure is implemented in MATLAB, which simply computes the MSE value for each budget-feasible

combination of (m1i, n1i) and returns the combination (m∗1i, n
∗
1i), i = 1, · · · , C, that yields the lowest value

of MSE (i.e., the optimal pooling design). Since we enumerate and examine all budget-feasible combinations

of (m1i, n1i), the optimality of the resulting pooling design, (m∗1i, n
∗
1i), is guaranteed. Both the MATLAB

code and equivalent R code are included in Web Supplementary Materials.

Observe that the objective of the pooling design optimization problem is to minimize the correspond-

ing MSE, MSE(p̂
(s)
MLE ; p

(s)
0 ), s = 1, 2, which relies on the first two moments of the random variable[

E[W (m; p
(s)
0 ) | Y (m)] | W (m; p

(s)
0 ) ≥ 1

]
(see Eqs. (2.12) and (2.13)). As discussed in Section 2.2.3, we

do not have closed-form expressions for the first two moments of this random variable. Therefore, in both

case studies, we first simulate the distribution of
[
E[W (m; p

(s)
0 ) | Y (m)] | W (m; p

(s)
0 ) ≥ 1

]
for various values

of m and p
(s)
0 (this distribution does not depend on the number of pools, n). In particular, for each value

of m and p
(s)
0 , we perform a Monte–Carlo simulation to generate 100,000 pools, each of size m, where each

specimen is infected with probability p
(s)
0 . For each infected specimen, we generate its corresponding bio-

marker concentration from the distribution of Y +, and for each uninfected specimen, we generate its noise

from the distribution of Y −. Then, we determine the pool’s reading, Y (m), and compute:

[
E[W (m; p

(s)
0 ) | Y (m)] |W (m; p

(s)
0 ) ≥ 1

]
=

m∑
k=1

kPr[W (m; p
(s)
0 ) = k | Y (m),W (m; p

(s)
0 ) ≥ 1],

where Pr[W (m; p
(s)
0 ) = k | Y (m),W (m; p

(s)
0 ) ≥ 1] =

(mk )pk(1−p)(m−k)f
Y (m;k) (y)∑m

j=1 (mj )pj(1−p)(m−j)fY (m;j) (y)
for 1 ≤ k ≤ m, k ∈ N.

We then use the ‘allfitdist’ function in MATLAB for each pair of m and p
(s)
0 to fit a distribution to random

variable
[
E[W (m; p

(s)
0 ) | Y (m)] | W (m; p

(s)
0 ) ≥ 1

]
. In both case studies, the fitted distribution of random

variable
[
E[W (m; p

(s)
0 ) | Y (m)] | W (m; p

(s)
0 ) ≥ 1

]
turns out to be log-normal (µ(m, p

(s)
0 ), σ2(m, p

(s)
0 )), where

both parameters are functions of the pool size, m, and the initial estimate p
(s)
0 , s = 1, 2, leading to the

following approximations (see Eqn. (2.11)):

For m ≥ 2,m ∈ N,

E
[
E[W (m; p

(s)
0 ) | Y (m)]

]
≈ exp

[
µ(m, p

(s)
0 ) +

σ2(m, p
(s)
0 )

2

](
1− (1− p(s)

0 )m
)
,

E
[(
E[W (m; p

(s)
0 ) | Y (m)]

)2]
≈ exp

[
2µ(m, p

(s)
0 ) + 2σ2(m, p

(s)
0 )
](

1− (1− p(s)
0 )m

)
.

(2.14)
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The functional forms of the parameters, µ(m, p
(s)
0 ) and σ2(m, p

(s)
0 ), are determined via regression analyses.

Specifically, when we fit a regression function to the data generated by the Monte–Carlo simulation, we

compute the resulting values of σ2(m, p0) using the fitted function so as to ensure that these values are

positive for all values of m (i.e., if this is not the case, then we adjust the regression function such that

the computed σ2(m, p0) value is always positive). Although this process may lead to lower adjusted R2

values, for all values of m considered in case studies 1 and 2, the adjusted R2 value of the fitted function for

σ2(m, p0) is above 0.90; see Appendices E and F for case studies 1 and 2, respectively.

Using the approximations in Eqn. (2.14), the approximation for MSE(p̂
(s)
MLE ; p

(s)
0 ), s = 1, 2, for a single-

configuration pool follows (see Eqn. (2.12)):

MSE(p̂
(s)
MLE ; p

(s)
0 )≈

(
1

nm2

)(
1− (1− p(s)0 )m

)(
exp

[
2µ(m, p

(s)
0 ) + 2σ2(m, p

(s)
0 )
]
− exp

[
2µ(m, p

(s)
0 ) + σ2(m, p

(s)
0 )
](

1− (1− p(s)0 )m
))

+

(
1

m

(
1− (1− p(s)0 )m

)
exp

[
µ(m, p

(s)
0 ) +

σ2(m, p
(s)
0 )

2

]
− p(s)0

)2

, for m ≥ 2,m ∈ N.

(2.15)

We tabulate the MSE values approximated via Eqn. (2.15) for each combination of (m, p
(s)
0 ), and utilize these

values in the pooling design optimization model. The approximation for the multiple-pool configuration case

follows similarly. Our numerical study indicates that this approximation is fairly accurate; see Appendix

A.9 for details.

For the two infections that are considered in the case studies of this section, practitioners interested

in utilizing the proposed estimation procedure can simply utilize the MSE function approximation in Eqn.

(2.15), along with the coefficients given in Tables A.3 – A.6, to determine the optimal pooling design. For

other infections, practitioners will need to derive the corresponding MSE function based, for example, on

simulation studies as we do here.

The Simulation Procedure:

We next describe the simulation procedure. Prior to the simulation of each scenario, we solve the pool-

ing design optimization model, detailed above, to determine the optimal pooling design in stage 1, D∗1 =

(m∗1i, n
∗
1i)i=1,··· ,C , based on p

(1)
0 , and the assumed distributions and parameters of Y + and Y −. Then, in

each simulation replication, we assign an infection status to each specimen using a Bernoulli random number

generator with the “true” prevalence rate of p. For each infected specimen, we generate its bio-marker con-

centration from the “true” distribution of Y +, and for each uninfected specimen, we generate its noise from

the “true” distribution of Y − (the true distributions of Y + and Y − correspond to the assumed distributions

unless otherwise stated; only when we study the robustness to deviations from the assumed distributions,

the true distributions differ from the assumed distributions, and are unknown to the experimenter). The

specimens are then assigned to pools randomly following the optimal pooling design, D∗1. Each pool’s reading
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is computed by averaging out the bio-marker concentrations and noise levels in the pool, and the correspond-

ing MLE, p̂
(1)
MLE , is computed and used to determine the optimal pooling design in stage 2, D∗2, and the

simulation is repeated in the same manner to obtain the final MLE of p, p̂
(2)
MLE , which we simply denote by

p̂MLE . When λ = 1, SE terminates at the end of the first stage (i.e., it is a single-stage procedure), with an

output of p̂MLE .

In the single-stage procedure that utilizes binary test outcomes, we compare the average bio-marker

concentration of each pool to a pre-set threshold: If the average bio-marker concentration exceeds the

threshold, then the pool outcome is “positive;” otherwise, it is “negative.” Based on the number of positive

pools, the estimator, p̂
(B)
MLE , in the binary test outcome case, is then computed as follows [111]:

p̂
(B)
MLE = 1−

(
Se(m,Th)− n+

n

Se(m,Th) + Sp(m,Th)− 1

) 1
m

,

where n+, Se(m,Th), and Sp(m,Th) respectively denote the number of positive pools, and test sensitivity

and specificity given a threshold, Th. Consequently, for the simulation of the binary test outcome case, we

only need to generate the realizations, n+, for each simulation replication.

For the single-stage procedure that utilizes binary test outcomes, we also compute and report the cor-

rected MLE, based on the numerical horizontal and vertical correction procedures in [54]. In general, these

corrections aim to reduce the bias of the MLE obtained from binary outcomes of pooled testing; see Appendix

A.3 for details.

For each estimation procedure that we consider, we compute and report the following performance mea-

sures based on 20,000 simulation replications:

(i) the average value of p̂MLE observed over 20,000 replications, denoted by MLE in the tables - this serves

as an estimate of E[p̂MLE ; p0];

(ii) the average value of (p̂MLE − p)2 observed over 20,000 replications, denoted by MSE in the tables - this

serves as an estimate of MSE(p̂MLE ; p);

(iii) the relative bias (rBias(%) ) of the estimated E[p̂MLE ; p0] (denoted by MLE, see performance measure

(i)):

rBias(%) = 100

∣∣∣∣MLE − p
p

∣∣∣∣.
We also compute and report the sample standard deviation for p̂MLE and (p̂MLE − p)2; see Section 2.3 and

Appendix A.1 for mathematical expressions.
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2.3.2 Case Study 1 – HIV Prevalence Rate Estimation

In the first case study, we investigate the efficiency and robustness of the sequential estimation procedure

for estimating the prevalence rate of HIV in various parts of Africa.

To construct the viral load distribution of an HIV-infected individual at a random post-infection time, we

use published efficacy data for the HIV NAT Ultrio Plus Assay [91,105,106] and the HIV viral load progression

model developed in [4,74], and assume that the time, from exposure, when the infected individual takes the

test follows a uniform distribution 2; see Appendix A.4 for details.

Based on a set of randomly generated viral load realizations from the HIV viral load distribution (Ap-

pendix A.4), we approximate Y + by Gamma(α+, β), with shape parameter α+ = 0.4195 and inverse scale

parameter β = 3.8040 × 10−7 (with Akaike Information Criterion (AIC) score3 of 2.9 × 106). (This corre-

sponds to the “assumed” distribution that the decision-maker uses for pooling design and estimation; we

examine the robustness of the estimation procedures to deviations from the assumed distribution of Y + in

Section 2.3.2). We model the noise level, Y −, coming from an uninfected individual, as Gamma(α−, β),

with shape parameter α− = 10−12, to represent the case where the mean noise is close to zero. Then,

Y (m;k) ∼ Gamma(αk,mβ), with αk = kα+ + (m− k)α−, for k ≤ m, k,m ∈ N; see Eqn. (2.2).

We consider a testing cost per pool, cf , of $31.5 [63] and a collection cost per specimen, cv, of $8 [33].

For the other parameters, we consider a range of values through a number of scenarios, where each scenario

is characterized by the triplet, (p, p
(1)
0 , B), i.e., the true (and unknown) HIV prevalence rate, the initial

prevalence rate estimate, and the total testing budget. Specifically, we consider, p ∈ {0.022, 0.044, 0.071},

which respectively represent the HIV prevalence rate in Western and Central Africa [8], Sub-Saharan Africa

[108], and East and Southern Africa [7]; p
(1)
0 ∈

{
p
2 ,

3
2p
}

, which respectively correspond to scenarios that

initially underestimate and overestimate the actual rate p, and three levels of the testing budget, B ∈

{$3, 345; $4, 460; $5, 575}. In the pooling design optimization model, we consider pool sizes of m ∈ [1, 48],

which is consistent with the literature on the HIV NAT Ultrio Plus Assay (e.g., [82, 86]).

The remainder of this section is organized as follows. Section 2.3.2 studies the impact of utilizing binary

test outcomes versus continuous test outcomes. Section 2.3.2 compares the efficiency of the sequential

estimation procedure, SE, and the single-stage procedure, considering various values of the budget allocation

factor, λ, which determines the split of the testing budget between the two stages of SE. Finally, Section

2.3.2 studies the robustness of SE and of the single-stage procedure (both under continuous test outcomes)

2We consider a uniform distribution between 0 and 100 days post-infection to account for the different phases of the HIV
infection [106].

3AIC score is a relative measure of model fit to a given set of data [2]. The AIC score rewards goodness of fit based on
the likelihood function and penalizes over-fitting based on the number of parameters being fit. The best-fitting model has the
lowest AIC score in comparison to other models.
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to deviations from the assumed distribution of the bio-marker concentration (viral load), i.e., distribution of

Y +.

The optimal pooling designs for each budget level, B, and initial estimate, p
(1)
0 , are summarized in Table

A.7; see Appendix A.7.

Estimation Efficiency for Binary versus Continuous Test Outcomes

We first examine the impact of utilizing continuous test outcomes over binary test outcomes on the MLE

of the prevalence rate and the efficiency of the estimation, measured in terms of MSE and the relative bias

(rBias). It is well-known that the MLE obtained in pooled testing via binary test outcomes is biased [58,100],

and several correction procedures have been developed in the literature to account for the bias. In this

section, we consider a single-stage estimation procedure: for the binary outcome case, we report the MLE

obtained directly from the binary test outcomes, as well as the corrected MLEs under the numerical vertical

and horizontal correction procedures proposed by Hepworth and Watson [54], and compare them with those

obtained under continuous test outcomes; see Tables 2.1 and 2.2 for the corresponding performance measures

respectively corresponding to scenarios with a true prevalence rate, p, of 0.071 and 0.044.

Table 2.1: Case Study 1: Performance measures for the single-stage estimation procedure with binary and
continuous test outcomes, p = 0.0710. MLE and MSE are reported in the form: sample average (± sample
standard deviation).

Binary Binary Binary
(No Correction) (Vertical (Horizontal Continuous

Budget p
(1)
0 Perf. Meas. Correction) Correction)

$5, 575

0.0355
MLE 0.0896 (±0.0335) 0.0913 (±0.0490) 0.0570 (±0.0216) 0.0725 (±0.0152)
MSE (×104) 14.7 (±24.0) 28.1 (±54.5) 6.63 (±5.12) 2.32 (±3.83)
rBias(%) 26.20 28.58 19.62 2.15

0.1065
MLE 0.0740 (±0.0165) 0.0726 (±0.0160) 0.0500 (±0.0108) 0.0716 (±0.0136)
MSE (×104) 2.83 (±4.80) 2.58 (±4.14) 5.55 (±4.32) 1.86 (±2.78)
rBias(%) 4.28 2.31 29.6 0.87

$4, 460

0.0355
MLE 0.0837(±0.0332) 0.0791 (±0.0413) 0.0538 (±0.0204) 0.0726 (±0.0728)
MSE (×104) 12.6 (±31.3) 17.7 (±60.4) 7.09 (±7.40) 2.70 (±2.76)
rBias(%) 17.91 11.34 24.20 2.18

0.1065
MLE 0.0742 (±0.0182) 0.0726 (±0.0176) 0.0502 (±0.0119) 0.0718 (±0.0152)
MSE (×104) 3.42 (±5.75) 3.12 (±5.01) 5.74 (±4.80) 2.31 (±3.46)
rBias(%) 4.45 2.31 29.26 1.11

$3, 345

0.0355
MLE 0.0827 (±0.0345) 0.0775 (±0.0408) 0.0599 (±0.0289) 0.0730 (±0.0188)
MSE (×104) 13.3 (±32.6) 17.0 (±59.2) 9.57 (±28.3) 3.56 (±6.00)
rBias(%) 16.53 9.22 19.62 2.80

0.1065
MLE 0.0744 (±0.0214) 0.0722 (±0.0202) 0.0559 (±0.0155) 0.0719 (±0.0177)
MSE (×104) 4.68 (±8.02) 4.11 (±6.48) 4.70 (±4.90) 3.13 (±4.67)
rBias(%) 4.77 1.72 21.29 1.32
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Table 2.2: Case Study 1: Performance measures for the the single-stage estimation procedure with binary
and continuous test outcomes, p = 0.0440. MLE and MSE are reported in the form: sample average (±
sample standard deviation).

Binary Binary Binary
(No Correction) (Vertical (Horizontal Continuous

Budget p
(1)
0 Perf. Meas. Correction) Correction)

$5, 575

0.0110
MLE 0.0467 (±0.0174) 0.0431 (±0.0176) 0.0347 (±0.0133) 0.0450 (±0.0109)
MSE (×104) 3.08 (±10.10) 3.10 (±17.2) 2.64 (±8.77) 1.20 (±1.98)
rBias(%) 6.12 1.95 21.15 2.20

0.0660
MLE 0.0445 (±0.0119) 0.0436 (±0.0115) 0.0343 (±0.0087) 0.0446 (±0.0103)
MSE (×104) 1.42 (±2.38) 1.33 (±2.10) 1.70 (±1.73) 1.06 (±1.59)
rBias(%) 1.18 0.93 22.10 1.29

$4, 460

0.0110
MLE 0.0477(±0.0205) 0.0434 (±0.0221) 0.0349 (±0.0160) 0.0453 (±0.0124)
MSE (×104) 4.33 (±14.30) 4.88 (±27.0) 3.39 (±12.8) 1.54 (±2.53)
rBias(%) 8.45 1.30 20.76 2.94

0.0660
MLE 0.0446 (±0.0131) 0.0436 (±0.0127) 0.0343 (±0.0096) 0.0445 (±0.0114)
MSE (×104) 1.73 (±2.85) 1.62 (±2.56) 1.87 (±1.95) 1.31 (±1.99)
rBias(%) 1.27 0.89 22.10 1.19

$3, 345

0.0110
MLE 0.0498 (±0.0236) 0.0471 (±0.0286) 0.0356 (±0.0171) 0.0459 (±0.0145)
MSE (×104) 5.89 (±11.6) 8.28 (±19.6) 3.64 (±4.16) 2.14 (±3.72)
rBias(%) 13.18 6.98 19.08 4.38

0.0660
MLE 0.0449 (±0.0156) 0.0434 (±0.0147) 0.0342 (±0.0112) 0.0447 (±0.0135)
MSE (×104) 2.45 (±4.77) 2.22 (±3.77) 4.70 (±2.48) 1.81 (±2.87)
rBias(%) 1.99 1.46 22.32 1.68

Tables 2.1 and 2.2 indicate that using continuous outcomes improves the estimation efficiency, in terms

of both bias and MSE, especially when the unknown p is large (e.g., scenarios with p = 0.071 in Table 2.2).

However, when p is small (e.g., scenarios with p = 0.022; see Tables A.8 and A.9 in Appendix A.7), utilizing

continuous test outcomes introduces more bias into MLE, especially in scenarios where the initial estimate

is an overestimate, i.e., p
(1)
0 > p. In the case of binary outcomes, while the correction procedures reduce

the bias in some cases (e.g., see vertical correction in scenarios with p = 0.022), they have a tendency to

over-adjust the prevalence rate estimate in the presence of testing errors (see horizontal correction in all

scenarios). This effect is especially amplified when p is large, as in the case of p = 0.071. These findings

support the use of continuous test outcomes, especially for estimating the prevalence of emerging infections,

for which initial prevalence estimates may be highly unreliable. Furthermore, when utilizing binary test

outcomes, an appropriate testing threshold needs to be specified, and there are often no clear guidelines on

how this should be done.

The estimation efficiency of the single-stage procedure that utilizes continuous test outcomes can be

further enhanced by relaxing the assumption of a single-configuration pooling design, i.e., C = 1; see the

optimization model in Section 2.2.4. This relaxation expands the feasible region of the optimization problem
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(2.6), and may lead to a better pooling design that further reduces the MSE of the prevalence rate MLE. Our

numerical studies indicate that the estimation efficiency of single- and dual-configuration pooling designs is

quite similar for scenarios where p = 0.046; however, the dual-configuration design improves both the

estimation efficiency and robustness over the single-configuration design in scenarios where p is larger, i.e.,

p = 0.071, and when there is uncertainty regarding the distributions of Y + and Y −. Consequently, in

Sections 2.3.2 and 2.3.2, we utilize a dual-configuration pooling design in SE, i.e., C = 2, together with

continuous test outcomes.

Estimation Efficiency for Single-stage versus Sequential Estimation Procedures

Next, we compare the estimation efficiency of the proposed sequential procedure, SE, and the single-stage

procedure, considering continuous test outcomes. Tables A.10 and A.11 (see Appendix A.7) report the

estimation efficiency, in terms of MSE and relative bias, of the single-stage procedure and SE (with a budget

allocation factor of λ ∈ {0.25, 0.5}) for various scenarios. As these results indicate, SE performs especially

well when p
(1)
0 is an underestimate of p, i.e., p

(1)
0 < p, yielding both lower bias and lower MSE in comparison

to the single-stage procedure. Furthermore, even in cases where p
(1)
0 is an overestimate of p, SE, with an

appropriate choice of λ, is at least as efficient as the single-stage procedure, and in some cases, it produces

a significantly lower bias; see, e.g., scenarios with p = 0.071 and p = 0.044. The choice of λ is especially

important when the budget is tight and p
(1)
0 is an underestimate of p: When p is large, using a large value

of λ, i.e., λ = 0.5, results in both higher MSE and higher bias, due to a higher weight placed on the initial

estimate of p. When p is small, however, using a smaller value of λ, i.e., λ = 0.25, may lead to an insufficient

number of pools in the first stage due to the tight budget, which results in an MLE that can potentially be

lower than the true prevalence rate at the end of the first stage. These findings highlight the importance of

setting the budget allocation parameter, λ, appropriately, depending on the setting.

Robustness: Effect of Incorrect Specification of the Bio-marker Concentration Distribution

Utilizing continuous test outcomes in an estimation procedure requires the experimenter to assume a dis-

tribution for bio-marker concentration in infected individuals (Y +), e.g., the HIV viral load distribution in

this case study. In Section 2.3.2, we approximate the HIV viral load distribution via a Gamma distribution

with parameters α+ and β; see Appendix A.4. Therefore, we now study the robustness of the sequential and

single-stage procedures to departures from the assumed viral load distribution.

Specifically, while implementing the estimation procedures, the experimenter continues to estimate that

Y + is Gamma (α+, β) (see Section 2.3.2); this assumption is used for both designing the testing pools and

for estimating p. However, in the Monte–Carlo simulation, the “true” viral loads of infected individuals
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are generated from a different distribution. In particular, for the true distribution, we generate a random

time t, i.e., the time post-infection when the infected individual is tested, from a Uniform distribution with

support in (0, 100) (see footnote 2 ), and compute the viral load using the analytical viral load model given

in Appendix A.4. Thus, we compare the two settings: (i) when the true distribution of Y + corresponds to

its estimated distribution (i.e., Gamma (α+, β) (labeled as “correct distribution of Y +”), and (ii) when the

true distribution of Y + deviates from its estimated distribution (labeled as “incorrect distribution of Y +”).

From the analysis in Section 2.3.2, scenarios where p
(1)
0 is an underestimate of p result in the least efficient

MLE, with high MSE and bias. Therefore, in this section, we focus on scenarios where p
(1)
0 < p, specifically,

p
(1)
0 = p

2 , for a budget of $4, 460, and for p ∈ {0.022, 0.044, 0.071}. The results are provided in Table 2.3.

Table 2.3: Case Study 1: Performance measures for the single-stage estimation procedure and SE with
continuous outcomes, with correct and incorrect distributions for Y +, B = $4, 460. MLE and MSE are
reported in the form: sample average (± sample standard deviation).

Single-stage
SE

p p
(1)
0 Perf. Measures λ = 0.25 λ = 0.5

C
or

re
ct

D
is

tr
ib

u
ti

o
n

of
Y

+

0.0220 0.0110
MLE 0.0232 (±0.0086) 0.0218(±0.0093) 0.0228 (±0.0081)
MSE (×104) 0.76 (±1.43) 0.86 (±1.39) 0.66 (±1.11)
rBias (%) 5.43 0.95 3.42

0.0440 0.0220
MLE 0.0453 (±0.0124) 0.0447(±0.0121) 0.0447 (±0.0118)
MSE (×104) 1.54 (±2.53) 1.47 (±2.48) 1.40 (±2.26)
rBias (%) 2.94 1.58 1.70

0.0710 0.0355
MLE 0.0726 (±0.0728) 0.0719(±0.0156) 0.0722 (±0.0160)
MSE (×104) 2.70 (±2.76) 2.45 (±3.78) 2.59 (±4.17)
rBias (%) 2.18 1.31 1.71

In
co

rr
ec

t
D

is
tr

ib
u

ti
on

of
Y

+

0.0220 0.0110
MLE 0.0265 (±0.0107) 0.0217(±0.0100) 0.0227 (±0.0081)
MSE (×104) 1.35 (±2.88) 0.99 (±1.72) 0.67 (±1.08)
rBias (%) 20.51 1.55 3.06

0.0440 0.0220
MLE 0.0532 (±0.0164) 0.0446(±0.0123) 0.0447 (±0.0121)
MSE (×104) 3.53 (±6.45) 1.51 (±2.67) 1.47 (±2.53)
rBias (%) 20.84 1.45 1.68

0.0710 0.0335
MLE 0.0876 (±0.0235) 0.0716(±0.0158) 0.0716 (±0.0158)
MSE (×104) 8.25 (±13.2) 2.51 (±3.81) 2.49 (±3.53)
rBias (%) 23.33 0.84 0.91

Table 2.3 demonstrates that using an incorrect viral load distribution can greatly deteriorate the per-

formance of the single-stage estimation procedure, significantly increasing the bias and MSE; this impact is

particularly significant when p is large, i.e., p = 0.071, mainly due to a higher probability of having a pool
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with infected specimens, whose viral load distribution is incorrectly specified. On the other hand, SE is

robust to incorrect choices of the viral load distribution: even though the assumed viral load distribution is

not updated at the end of the first stage of SE, the pooling design is re-optimized based on a revised, and

likely more accurate, estimate of p. This re-optimization of the pooling design seems sufficient when p is

relatively small, and only the assumed distribution of Y + is inaccurate. In this case, using a smaller value

of λ in SE, i.e., λ = 0.25, is especially beneficial, as this places less weight on the first stage, in which a

poor initial estimate may be used, and allows for more flexibility in the second stage, which is based on a

revised pooling design. However, when p is relatively large, and the assumed distributions of both Y + and

Y − are inaccurate, re-optimizing the pooling design based on a revised the estimate of p does not appear to

be sufficient for SE to be robust to these deviations, as demonstrated in Section 2.3.3. Therefore, in these

cases, the distributions of Y + and Y −, as well as the estimate of p, need to be adjusted at the end of stage 1

to improve the robustness of SE. We suggest this as an important future research direction (Section 2.4.3).

2.3.3 Case Study 2 – Tomato Spotted Wilt Virus Prevalence Estimation in

Plants

In our second case study, we apply our methodology to the surveillance of plant diseases. In particular, we

consider the problem of estimating the prevalence rate of the Tomato Spotted Wilt Virus (TSWV) in thrips

via the Double Sandwich ELISA test. Studies have found a significant correlation between the number of

western flower thrips and TSWV disease incidence [30]. Thus, the detection of TSWV in thrips is important

in predicting disease outbreak [29].

The ELISA test, which measures the antibody concentration, is often used to detect infections in plants

[88], including the TSWV in thrips [29]. Thus, the bio-marker in this setting corresponds to the TSWV-

antibody concentration in a thrip, which is measured in terms of the “absorbance readings” (i.e., the A405nm

value) by the ELISA test. In particular, we utilize the absorbance readings data for Frankliniella occidentalis,

published in [29], to construct the bio-marker distribution for TSWV-infected thrips, as well as the noise

distribution coming from uninfected thrips.

TSWV Absorbance Readings Distribution

Based on data on mean and standard deviation of absorbance readings in Frankliniella occidentalis, sum-

marized in Table 2.4, we construct the absorbance readings distribution for TSWV-infected thrips as

log-normal (µ+ = −1.495, σ2
+ = 0.4204), and the noise coming from uninfected thrips as log-normal

(µ− = −4.410, σ2
− = 0.2826); both set of parameters correspond to the average of the data, reported
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in [29] and summarized in Table 2.4.

Table 2.4: Case Study 2: Number of Frankliniella occidentalis adult thrips testing positive for TSWV by
Double Sandwich ELISA and absorbance readings (A405nm) of ELISA-positive thrips [29]

Test Number Plant Status Infected thrips/total tested
A405nm value
(mean ± SD)

3 Infected 10/49 0.23 ± 0.12
3 Healthy 0/32 0.002 ± 0.004
5 Infected 64/104 0.28 ± 0.22
5 Healthy 0/114 0.02 ± 0.01
6 Infected 112/197 0.32 ± 0.26
6 Healthy 0/74 0.02 ± 0.01

We consider a true prevalence rate, p, of 0.12, which corresponds to the prevalence rate of TSWV in

adult thrips reported in [29]. We consider a testing cost per pool of $1.35, a collection cost per specimen of

$0.04 [111], and a testing budget of $52.5, which is sufficient for testing of 30 pools, each with pool size 10.

Similar to case study 1, we consider a range of budget allocation factors, i.e., λ ∈ {0.25, 0.5}. Further, to

model the scenarios of underestimation and overestimation, we consider p0
(1) ∈

{
p
3 ,

p
2 ,

3p
2 ,

5p
3

}
. Thus, in this

case study, a scenario is defined by the parameter, p
(1)
0 .

In order to study the robustness of each estimation procedure to deviations from the assumed distributions

and parameters of the absorbance readings for infected thrips (Y +) and of the noise coming from uninfected

thrips (Y −), we consider that the “true” distributions and parameters are as follows (each case is implemented

independently of other cases): (1) the true distribution of Y + is log-normal, but with parameters (µ+ =

−1.4428, σ2
+ = 0.4869), corresponding to the weighted average of the data in [29], see Table 2.4; (2) the true

distribution of Y + is a multi-modal distribution, which is a combination of three log-normal distributions with

respective parameters (µ+, σ
2
+) = (−1.5901, 0.2408), (−1.5134, 0.4808), (−1.3929, 0.5069), corresponding to

each set of mean and variance pairs reported in Table 2.4, rows 1, 3, and 5; (3) the true distributions

of Y + and Y − are both log-normal, but with respective parameters (µ+ = −1.4428, σ2
+ = 0.4869) and

(µ− = −4.1741, σ2
− = 0.2435), corresponding to the weighted average of the data in Table 2.4; and (4) the

true distributions of Y + and Y − are both multi-modal distributions, with the multi-modal distribution of

Y + modeled as in (2). Similarly, the multi-modal distribution of Y − is a combination of two log-normal

distributions with respective parameters (µ−, σ
2
−) = (−7.0193, 1.6094), (−4.0236, 0.2231), corresponding to

each set of mean and variance pairs reported in Table 2.4, rows 2, 4, and 6 (the mean and variance values

reported in rows 4 and 6 are exactly the same).
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Numerical Results

The optimal pooling design for each combination of p0 and λ is reported in Table A.12; see Appendix A.7.

Table 5.2 reports the performance measures for each scenario under the assumption of correct distributions of

Y + and Y −. Table 5.2 indicates that when the distributions of Y + and Y − are accurately specified, both SE

Table 2.5: Case Study 2: Performance measures of the single-stage estimation procedure and SE with
continuous test outcomes, p = 0.12, B = $52.5. MLE and MSE are reported in the form: sample average
(± sample standard deviation).

Single Stage
SE

p
(1)
0 Perf. Measures λ = 0.25 λ = 0.5

0.04
MLE 0.1199 (±0.0141) 0.1204(±0.0155) 0.1202 (±0.0150)
MSE (×104) 2.00 (±2.86) 2.41 (±3.48) 2.24 (±3.11)
rBias (%) 0.05 0.37 0.16

0.06
MLE 0.1199 (±0.0142) 0.1205(±0.0156) 0.1204 (±0.0151)
MSE (×104) 2.03 (±2.88) 2.43 (±3.48) 2.27 (±3.26)
rBias (%) 0.06 0.43 0.33

0.18
MLE 0.1199 (±0.0170) 0.1205(±0.0160) 0.1204 (±0.0165)
MSE (×104) 2.89 (±4.10) 2.56 (±3.76) 2.71 (±3.79)
rBias (%) 0.05 0.40 0.29

0.20
MLE 0.1199 (±0.0182) 0.1205(±0.0160) 0.1204 (±0.0169)
MSE (×104) 3.30 (±4.71) 2.57 (±3.74) 2.85 (±3.79)
rBias (%) 0.10 0.40 0.35

and the single-stage estimation procedure perform well in terms of MSE and relative bias. Similarly, Table

2.6 reports the performance measures of SE and the single-stage estimation procedure under incorrectly

specified parameters and distributions for Y + or Y −; see Table A.13 in Appendix A.7 for the corresponding

performance measures under incorrectly specified parameters and distributions of Y + only. The results in

Tables A.11 and A.13 indicate, not surprisingly, that the single-stage procedure and SE perform substantially

worse when the parameters and distributions of both Y + and Y − deviate from their assumed distributions,

as opposed to the case where only the distribution of Y + deviates. However, we also see that SE continues

to be robust in the presence of uncertainty on the distributions of Y + and Y −, yielding much lower MSE

and relative bias than the single-stage procedure. In this setting, at the end of the first stage of SE, it is

highly desirable to revise not only the estimate of p, but also the distributions and parameters of Y + and

Y −; this can be conducted, for example, by adapting the estimation procedure to the Bayesian framework,

i.e., utilizing the Bayes estimator of p, in lieu of its MLE, and we discuss this as a future research direction

(Section 2.4.3). Thus, another advantage of a sequential procedure, such as SE, is that it allows for such

revision, while a single-stage procedure does not.
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Table 2.6: Case Study 2: Performance measures for the single-stage estimation procedure and SE with
continuous test outcomes, with incorrect parameters for Y+ and Y −, and incorrect distributions for Y + and
Y −, p = 0.12, B = $52.5. MLE and MSE are reported in the form: sample average (± sample standard
deviation).

Single Stage
SE

p
(1)
0 Perf. Measures λ = 0.25 λ = 0.5

In
co

rr
ec

t
P

a
ra

m
et

er
s

-
Y

+

a
n

d
Y
−

0.18
MLE 0.1508 (±0.0188) 0.1377 (±0.0361) 0.1413 (±0.0265)
MSE (×103) 1.30 (±1.28) 1.62 (±2.90) 1.16 (±1.81)
rBias (%) 25.66 14.74 17.78

0.20
MLE 0.1509 (±0.0197) 0.1374(±0.0386) 0.1407 (±0.0255)
MSE (×103) 1.35 (±1.34) 1.79 (±3.21) 1.07 (±1.71)
rBias (%) 25.78 14.54 17.21

In
co

rr
ec

t
D

is
tr

ib
u

ti
on

s
-
Y

+

an
d
Y
−

0.18
MLE 0.0316 (±0.0185) 0.0692(±0.0492) 0.0845 (±0.0497)
MSE (×103) 8.15 (±3.07) 5.01 (±3.96) 3.73 (±3.10)
rBias (%) 73.64 42.36 29.56

0.20
MLE 0.0335 (±0.0182) 0.0699(±0.0496) 0.0818 (±0.0479)
MSE (×103) 7.82 (±2.98) 4.98 (±4.00) 3.75 (±3.07)
rBias (%) 72.11 41.79 31.82

2.4 Discussion

We study the effectiveness of a sequential and adaptive estimation procedure, SE, to estimate an unknown

prevalence rate using pooled testing. SE utilizes continuous test outcomes, while accounting for the dilution

effect of pooling and testing errors, and allows the prevalence rate estimate to be revised as testing proceeds,

so that the remaining tests can be conducted with a more effective pooling design that is based on a more

accurate prevalence rate estimate. The pooling design optimization model, embedded into SE, simultane-

ously optimizes for both pool sizes and number of testing pools under a testing budget constraint so as to

minimize the MSE of the prevalence rate MLE.

We conclude our study by summarizing our findings and suggestions for future research. In Sections

2.4.1 and 2.4.2, we discuss the effectiveness of utilizing continuous outcomes, and of the proposed sequential

estimation procedure in estimating an unknown prevalence rate in the presence of unreliable and limited

information on the infection’s characteristics, including the bio-marker dynamics in infected subjects. We

then provide insights into the choice of the budget allocation factor, λ, and discuss the trade-offs involved.

Finally, in Section 2.4.3, we suggest potential directions for future research regarding the prevalence rate

estimation problem with pooled testing.

28



2.4.1 On the Use of Continuous Test Outcomes

As discussed in our case studies, continuous test outcomes should be utilized, especially for surveillance of

new or emerging infections. As Tables 2.1 and 2.2 demonstrate, using continuous test outcomes provides a

more robust MLE for the prevalence rate under various assumptions on p
(1)
0 , and various values of p and the

testing budget, B. Therefore, utilizing continuous test outcomes is especially beneficial in studying emerging

infections, as information about those infections is likely to be highly unreliable.

We next discuss the benefit of utilizing the proposed sequential estimation procedure, in conjunction with

continuous test outcomes, to further enhance the estimation efficiency and robustness of the MLE.

2.4.2 On the Proposed Sequential Estimation Procedure

Our numerical study indicates that the proposed sequential and adaptive estimation procedure is especially

beneficial in cases where p
(1)
0 is a poor estimate of p, or the assumed bio-marker distribution or parameters

are inaccurate. This finding is of particular importance for surveillance studies of emerging infections, where

an initial estimate of p may have significant discrepancy in comparison to the true prevalence rate, p, and/or

the bio-marker dynamics may be highly uncertain. In particular, the proposed SE with 0 < λ < 1 leads to a

lower variability in the estimation efficiency, in terms of both MSE and the relative bias, under different values

of p
(1)
0 , i.e., this is independent of whether p

(1)
0 is an underestimate or an overestimate of p. Furthermore, as

shown in Sections 2.3.2 and 2.3.3, the use of SE also reduces the negative impact, on estimation efficiency,

of incorrectly specifying the distributions and parameters of Y +, i.e., the bio-marker concentration of an

infected subject, and Y −, i.e., the noise coming from an uninfected subject. In particular, when only the

distribution of Y + is incorrectly specified, SE, with λ = 0.25, remains robust, yielding comparable estimation

efficiency to that under a correctly specified distribution of Y + (see Section 2.3.2). On the other hand, when

the distributions of both Y + and Y − are incorrectly specified, estimation efficiency of both SE and the

single-stage procedure is negatively impacted. However, it should be noted that SE performs significantly

better, in terms of MSE and the relative bias, even in this setting. Therefore, when limited information is

available about the current status of, or bio-marker dynamics related to, an infection, SE is an attractive

estimation strategy, as SE mitigates the initial bias, whether optimistic or pessimistic, under uncertainty.

Among the variations of SE, the choice of λ, i.e., the budget allocation factor that governs the splitting

of the total testing budget B into a stage 1 budget, B(1) = λB, and a stage 2 budget, B(2) = (1 − λ)B,

proves to be crucial for the quality of the prevalence estimate. This is because λ represents the trade-off

between exploration and exploitation in prevalence rate estimation; a large value of λ places more weight

on the stage 1 testing of SE (exploration), while a small value of λ places more weight on the stage 2
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testing of SE (exploitation). Furthermore, the choice of λ is also highly dependent on the characteristics

of the infection of interest and the available testing budget. More specifically, the choice of λ is especially

important when the budget is tight, as a large value of λ may lead to high bias and MSE, while a small value

may lead to an inadequate number of testing pools, resulting in a firsts-stage MSE value that is lower than

the actual prevalence rate. Therefore, in order to have an optimal allocation of the testing budget, λ needs

to be selected with careful consideration of the testing budget and the characteristics of the infection.

2.4.3 Future Research Directions

The determination of an optimal value of λ, i.e., the budget allocation factor, is one of the potential directions

for future research regarding the prevalence rate estimation problem with pooled testing. Another important

future research direction is to incorporate Bayesian and regression analyses into the estimation procedure to

respectively improve the quality and robustness of the estimate, especially when both the assumed bio-marker

and noise distributions are not reliable, and to account for the potential heterogeneity in the population.

Additionally, it is important to study strategies that integrate the estimation and classification components,

for example, individual follow-up testing for positive-testing pools, performed in practice for diseases such

as the HIV, can be incorporated into the estimation procedure, or the proposed estimation procedure can

be incorporated into a classification scheme so as to improve the classification accuracy.
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Chapter 3

A Methodology for Deriving the

Sensitivity of Pooled Testing, based

on Viral Load Progression and

Pooling Dilution

3.1 Background

Pooled testing, in which biological specimens (e.g., blood, urine, tissue swabs) from multiple subjects are

combined into a testing pool and tested via a single test, can substantially improve the efficiency of public

health screening and population-level surveillance of diseases; and enables the use of expensive testing tech-

nologies, such as the nucleic acid amplification testing (NAT) technology [4]. Ever since its introduction in

the 1940’s [38], pooled testing has been commonly used for both surveillance and screening purposes, in-

cluding donated blood screening for transfusion-transmittable infections, e.g., the human immunodeficiency

virus (HIV), or regional HIV surveillance [3, 23].

In general, biomarker tests have less than perfect sensitivity (true positive probability), mainly because

the progression of the load (concentration) of a disease-related biomarker (e.g., the HIV viral RNA, measured

by the NAT) in the infected host follows various phases post-exposure, with varying growth rates, e.g., pre

ramp-up phase, ramp-up phase with accelerating growth rates, and post ramp-up phase, with the biomarker

load tending to a plateau or significantly diminishing due to a resolved infection (e.g., [42, 80]). A majority
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of false negative testing errors occur during those earlier phases of the infection (pre ramp-up and early

ramp-up phases), also known as the window period, the length of which depends on the specific infection

and the biomarker being measured by the test (e.g., [105]). Pooled testing may further reduce the test’s

sensitivity due to pooling dilution, where the biomarker load of an infected specimen is diluted by infection-

free specimens in the pool so that the infected specimen may no longer be detectable by the pooled test.

Pooled testing sensitivity at various pool sizes is an essential input to key decisions in surveillance and

screening efforts, including testing pool design. However, clinical data on test sensitivity values for different

pool sizes are limited, and the extant literature that analytically derives the sensitivity of a pooled test does

so under restrictive assumptions, including that the test is perfectly reliable outside of the window period,

i.e., all infected specimens that are outside of the window period are detected with probability 1 regardless of

the pool size (e.g., [13,105,106]). There are commonly adopted mathematical models of viral load progression

in infected subjects, but these models consider only the window period (e.g., [17]).

Therefore, our objective in this paper is to develop a generic methodology for analytically deriving the

sensitivity of pooled testing at various pool sizes, based on models that account for viral load progression

and pooling dilution; and by relaxing various restrictive assumptions adopted in the literature. In particular,

our methodology integrates the following components within a probabilistic framework: (1) the “doubling

time” model [17], which we expand to model the host’s viral load progression throughout the infection’s

life-time; and (2) the probit function [105], which we expand to model pooling dilution to consider the

number of infected specimens in a pool. The proposed methodology derives the conditional test sensitivity,

conditioned on the number of infected specimens in a pool; and uses the law of total probability to derive

overall (unconditional) test sensitivity values for a wide range of pool sizes. We validate this methodology

via published test sensitivity data and show that it is highly accurate. This methodology utilizes higher

dimensional integrals, which may be computationally expensive for large pools. As a result, we also propose

an easy-to-compute, and a highly accurate, approximation function that is based on establishing a functional

relationship between the sensitivity of pooled testing and the number of infected specimens in a pool. Our

methodology can be used to provide important inputs for surveillance and screening activities, including

testing pool design, which has received considerable attention in the literature, (e.g., [68,69,75,102,104,111,

112]). Further, our methodology is generic, and can be calibrated for various infections; and we demonstrate

its application for the HIV and HIV ULTRIO Plus NAT Assay. For this purpose, we calibrate model

parameters using published test efficacy data for the HIV ULTRIO Plus Assay [80,91], and clinical data on

viral RNA load progression in HIV-infected patients [17,105]; and use this methodology to derive and validate

the sensitivity of the HIV ULTRIO Plus Assay for various pool sizes. We also demonstrate the value of this

methodology through optimal testing pool design for HIV prevalence estimation in Sub-Saharan Africa. This
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case study indicates that the optimal testing pool design is highly efficient, and outperforms a benchmark

pool design.

The remainder of the paper is organized as follows. In Section 3.2, we present our methodology for

deriving the sensitivity of pooled testing. In Section 3.3, we apply this methodology to testing pool design

for prevalence estimation of HIV in Sub-Saharan Africa. Finally, in Section 3.4, we summarize our findings

and provide a discussion.

3.2 Methods

Our methodology is based on the integration of viral load progression and pooling dilution models. In

Section 3.2.1, we discuss each component, and their calibration, in detail. Then in Section 3.2.2, we provide

an easy-to-compute approximation function for pooled sensitivity estimation. A summary of all the notation

used in our study is provided in the Appendix.

3.2.1 Pooled Sensitivity Estimation Methodology

Viral Load Progression Model

We first describe the viral load progression model, which expands the widely adopted doubling time model

proposed by Busch et al. (2000) [17]. The original doubling time model [17] considers viral load progression

only through the window period of an infection, and we expand it to model the infection’s life-time. This

is needed to relax a common assumption used in test sensitivity calculations, that all infected specimens

outside of their window period are detected with probability 1, regardless of the pool size (e.g., [105, 106]).

According to numerous studies, the viral load in infected subjects progresses through various phases of

growth rates post-exposure: pre ramp-up phase, ramp-up phase with accelerating growth rates, and post

ramp-up phase during which growth rate slows down, eventually reaching a plateau or resolution of the

infection (e.g., [14, 17, 42, 47, 80, 105, 106]). To model this phenomenon, we let tw, tp, and ts respectively

denote the time at which the window period ends, viral load peaks, and viral load reaches steady state; and

let V L(t) denote the infected subject’s viral load at time t post-exposure. Based on clinical data for HIV

and hepatitis B and C infections [14,17,42,47], we model the infected subject’s viral load beyond the window

period and up to the steady state as follows:

For tw ≤ t ≤ ts:

V L(t) = V L(tw) +
Cw
t

exp

(
− (ln(t− tw)− a)2

b

)
,

where Cw, a, and b are infection-specific calibration parameters. In this study, we assume that the viral load
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reaches steady state at time ts, beyond which it remains constant at a level of V L(ts) (i.e., V L(t) = V L(ts),

∀t > ts); this assumption can be easily relaxed. We note that the steady state viral load, denoted by V L(ts),

can equal zero for acute infections, or can remain at some positive level for chronic infections. Consequently,

the complete viral load model follows:

V L(t) =


C02t/λ, if t ≤ tw

V L(tw) + Cw
t exp

(
− (ln(t−tw)−a)2

b

)
, if tw < t ≤ ts

V L(ts), if t > ts,

. (3.1)

where the window period component, C02t/λ, is the doubling time model in Busch et al. [17], with infection-

specific calibration parameters C0 and λ, where λ represents the viral load doubling time within the window

period. For demonstration, Figure 3.1 plots the base 10 logarithm of the HIV viral RNA load, obtained by

Eqn. (3.1), versus post-exposure time in HIV-infected subjects, calibrated as discussed in Section 3.2.1.

Figure 3.1: HIV viral RNA load progression spanning the infection’s life-time, covering the window period,
peak viremia phase, and chronic phase (based on the data in Table 3.1).
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Pooling Dilution Model

Pooled testing may reduce the test’s sensitivity due to pooling dilution, that is, the biomarker load of an

infected specimen is diluted by infection-free specimens in the pool so that the infected specimen may no

longer be detectable by the pooled test [91]. In this section, we model the test sensitivity considering pooling

dilution. For this purpose, we first describe the probit function, proposed in the literature to model pooling

dilution, and discuss how it is expanded to consider the number of infected specimens in a pool.

Towards this end, let τ ∈ <+ denote the life-time of a certain infection, and n ∈ Z+ denote the testing
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pool size. We also let T+(n) denote the event that the test outcome is positive for a pool of size n, indicating

the presence of at least one infected specimen in the pool; and let NI(n) denote the number of infected

specimens in the pool, which is a random variable with possible values {1, · · · , n}. Therefore, the test

sensitivity for pool size n (Sens(n)), that is, the probability that the test outcome is positive given that the

pool contains at least one infected specimen, follows:

Sens(n) = P (T+(n);NI(n) ≥ 1), (3.2)

where the “;” notation denotes probabilistic conditioning. Weusten et al. (2002, 2011) [105, 106] propose

the following probit model to derive the sensitivity of pooled testing, under the assumptions that the test is

perfectly reliable outside of the infection’s window period (i.e., τ = tw), and the pool contains at most one

infected specimen, regardless of the pool size (i.e., NI(n) = 1 with probability 1):

Sens(n) =
1

tw

∫ tw

0

Φ

z log
(
χC02t/λ

nx50

)
log(x95/x50)

 dt, (from [106]) (3.3)

where following [106], Φ(.) is the cumulative distribution function (CDF) of the standard normal distribution;

z is a constant such that Φ(z) = 0.95, i.e., z = 1.6449; χ is the number of nucleic acid copies per viral particle,

and x50 and x95 respectively denote the viral load measurement at which the probability of a pool testing

positive is 50% and 95% [106].

We expand the probit model in Eqn. (3.3) to consider the performance of a pooled test during the

infection’s life-time, and to account for the possibility of multiple infected specimens in a testing pool. In

particular, we first derive the test’s conditional sensitivity for a pool size of n, given that the pool contains

i infected specimens, denoted by Sens(n; i) = P (T+(n);NI(n) = i), ∀i ∈ {1, · · · , n}, n ∈ Z+:

Sens(n; i) = P (T+(n);NI(n) = i) =
1

τ i

∫ τ

0

∫ τ

0

· · ·
∫ τ

0︸ ︷︷ ︸
i-fold

Φ

z log
(
χ
∑i
j=1(V L(tj)

nx50

)
log(x95/x50)

 dt1dt2 · · · dti, (3.4)

where tj denotes the (random) post-exposure time for infected specimen j, j = 1 · · · , i, in the pool, and

V L(tj) can be derived from Eqn. (3.1). Observe that the probit model in Eqn. (3.3) follows as a special

case of Eqn. (3.4), with τ = tw and NI(n) = 1. Then, using the common binomial model for the number of

infected specimens in a pool, and the law of total probability, the overall sensitivity of the pooled test, for

pool size of n and infection prevalence rate of p, follows:
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Sens(n) =

n∑
i=1

Sens(n; i)P (NI(n) = i) =

n∑
i=1

Sens(n; i)

(
n

i

)
pi(1− p)n−i. (3.5)

On the other hand, the test’s specificity (true negative probability), given by:

Spec = 1− P (T+(n);NI(n) = 0), ∀n ∈ Z+,

is independent of the pool size, because in the absence of infected specimens in the pool (NI(n) = 0), pooling

dilution does not apply.

In summary, the proposed sensitivity estimation model in Eqs. (3.4)–(3.5) can be used in conjunction

with Eqn. (3.1) to determine the sensitivity of pooled testing for any pool size.

Calibration and Validation

Calibration: We calibrate the sensitivity estimation model based on Stramer et al. (2013) [91], which

provides the test sensitivity of an infected window period blood specimen diluted 16-fold (i.e., tested within

a pool of size 16) as 88%. Therefore, C0 is calibrated such that Eqn. (3.3) equals 0.88 with n = 16. Further,

according to various studies, the HIV viral RNA load in blood peaks typically around day 17, with an

average load of 6.8 log10 copies/ml, and reaches steady state around day 61, with an average load of 5.1

log10 copies/ml; the HIV doubling time (λ) is 0.85 days, and the number of nucleic acid copies per viral

particle (χ) for HIV is 2 [42,80,106]. Therefore, we calibrate the remaining parameters of our model, namely

Cw, a, and b, in Eqn. (3.1), based on these values; see Table 3.1 for the clinical data used and the calibrated

parameter values. We note that this calibration is for demonstration purposes, and our model parameters

can be calibrated for any given set of data.

Validation: We validate our sensitivity estimation model using the overall (life-time) efficacy data for the

HIV ULTRIO Plus NAT Assay, in terms of the 95% confidence interval (CI), published by the Food and

Drug Administration (FDA); see Table 3.1. We use our model (Eqs. (3.1), (3.4), and (3.5)), with calibrated

parameters reported in Table 3.1, to derive the conditional sensitivity values for the HIV ULTRIO Plus

Assay for various pool sizes; see Table 3.2, which reports the derived conditional test sensitivity values as

a function of the pool size and the number of infected specimens in a pool. According to Table 3.2, both

Sens(n = 1;NI(1) = 1) = 99.98% and Sens(n = 16;NI(16) = 1) = 99.26% values are contained within the

95% confidence intervals reported by the FDA (see Table 3.1).

As discussed above, the overall test sensitivity at any prevalence rate, p, can then be derived from the

conditional sensitivity values in Table 3.2 via the law of total probability; see Eqn. (3.5). As expected,
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Table 3.1: Calibration and validation data for the HIV and HIV ULTRIO Plus NAT Assay.
Calibration Data

HIV Viral RNA Load Data
tw 11 days [80]
tp 17 days [80]
ts 61 days [80]
V L(tp) 6.8 log10 copies/ml [80]
V L(ts) 5.1 log10 copies/ml [80]
λ 0.85 days [42]
χ 2 copies/particle [106]
Test Sensitivity Data
P (T+(16);NI(16) = 1, τ = tw) 0.88 [91]

Calibrated Model Parameters
C0 9.000
Cw 1.096× 108

a 1.980
b 1.730

Validation Data
Sens(n = 1;NI(1) = 1) (99.7%-100%) [43]
Sens(n = 16;NI(16) = 1) (98.2%-99.5%)) [43]

Table 3.2: Derived conditional sensitivity values for the HIV ULTRIO Plus Assay (in %) as a function of the
pool size and the number of infected specimens in a pool (Sens(n; i)) (reported in 9 decimal point accuracy)

1 2 3 4 5 6 7 8

1 99.98 99.93 99.88 99.82 99.76 99.70 99.65 99.59

2 99.9998 99.9995 99.9992 99.9988 99.9983 99.9979 99.9974

3 100.00000 99.99999 99.99999 99.99999 99.99998 99.99998

4 99.9999999 99.9999999 99.9999999 99.9999998 99.9999997

6 99.999999999 99.999999998 99.999999997 99.999999996

7 100.000000000 100.000000000 100.000000000

8 100.000000000 100.000000000N
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s 
(i

)

Pool size (n)

9 10 11 12 13 14 15 16

1 99.54 99.50 99.45 99.41 99.37 99.33 99.29 99.26

2 99.9969 99.9963 99.9958 99.9953 99.9948 99.9942 99.9937 99.9932

3 99.99997 99.99996 99.99996 99.99995 99.99994 99.99994 99.99993 99.99992

4 99.9999997 99.9999996 99.9999995 99.9999994 99.9999993 99.9999991 99.9999990 99.9999989

5 99.999999995 99.999999994 99.999999992 99.999999991 99.999999989 99.999999987 99.999999985 99.999999983

6 100.000000000 100.000000000 100.000000000 100.000000000 100.000000000 100.000000000 100.000000000 100.000000000

7 100.000000000 100.000000000 100.000000000 100.000000000 100.000000000 100.000000000 100.000000000 100.000000000

8 100.000000000 100.000000000 100.000000000 100.000000000 100.000000000 100.000000000 100.000000000 100.000000000

9 100.000000000 100.000000000 100.000000000 100.000000000 100.000000000 100.000000000 100.000000000 100.000000000

10 100.000000000 100.000000000 100.000000000 100.000000000 100.000000000 100.000000000 100.000000000

11 100.000000000 100.000000000 100.000000000 100.000000000 100.000000000 100.000000000

12 100.000000000 100.000000000 100.000000000 100.000000000 100.000000000

13 100.000000000 100.000000000 100.000000000 100.000000000

14 100.000000000 100.000000000 100.000000000

15 100.000000000 100.000000000

16 100.000000000
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Pool size (n)

conditional test sensitivity decreases with pool size, and increases with the number of infected specimens in

a pool. Moreover, we observe that test sensitivity rapidly approaches 1 as NI(n), the number of infected
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specimens in a pool of size n, increases, and for NI(n) ≥ 4, test sensitivity becomes almost perfect.

We also derive P (T+(n);NI(n) = 0) = 0.07% = 1 − Spec, i.e., Spec = 99.93%, which is also consistent

with the efficacy data for the HIV ULTRIO Plus NAT Assay, published by the FDA [43].

3.2.2 An Approximation for Sensitivity Estimation

Our model in Section 3.2.1 derives the conditional test sensitivity values, Sens(n; i), and uses the law of total

probability, along with higher dimensional integrals (up to pool size), to derive the overall (unconditional)

test sensitivity values for a wide range of pool sizes. Thus, it can be computationally expensive, especially

for large pool sizes. Therefore, in this section, we provide an approximation function for computing the

pooled test sensitivity,which does not require higher dimensional integrals. We do this by fitting a function

to the sensitivity data derived in Table 3.2 via linear regression so as to minimize the mean squared error

(MSE) of the proposed approximation.

Consider the following functional form for conditional test sensitivity for pool size n, given i infected

specimens in a pool:

S̃ens(n; i) = 1− βα

(
i

nγ

)
, i ∈ {0, 1, · · · , n}, n ∈ Z+, (3.6)

where α, β, and γ are calibration parameters. In particular, by definition of pooling dilution, the probability

of detection reduces with pool size, implying that γ ≥ 0 and α ∈ [0, 1]; and P (T+(n);NI(n) = 0) = 1−Spec

(see Section 3.2.1), implying that β = Spec. The remaining parameters (i.e., α and γ) are derived so as to

minimize the MSE between the fitted function and the data in Table 3.2, that is:

(α∗, γ∗) = arg min
α,γ

(
16∑
n=1

n∑
i=0

[
Sens(n; i)− S̃ens(n; i)

]2)
,

This minimization problem is a non-convex optimization problem, which we solve numerically in Python for

the HIV ULTRIO Plus Assay, obtaining (α∗ = 0.00033, γ∗ = 0.179). The goodness of fit, measured by the

coefficient of determination (i.e., R2), is equal to 0.9995, suggesting that the fit is highly accurate; see Figure

3.2 for the fitted model versus the data points in Table 3.2.

3.3 Results

We apply our sensitivity estimation models (both exact and approximation models, respectively detailed

in Sections 3.2.1 and 3.2.2) to determine an optimal testing pool design for HIV prevalence estimation in

Sub-Saharan Africa. Specifically, we use the methodologies proposed in Sections 3.2.1 and 3.2.2, along with
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Figure 3.2: Fitted function versus the data points in Table 3.2
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the calibrated parameters in Section 3.2.1, to derive sensitivity estimates for the HIV ULTRIO Plus Assay

for various pool sizes; and use these sensitivity values as inputs to a testing pool design optimization model,

studied in the literature [69,76,100,111].

3.3.1 Testing Pool Design Optimization

The optimization model determines an optimal testing pool design for prevalence estimation, in terms of

the number of testing pools to be utilized, s, and the size of each testing pool, n, under a testing budget

constraint, so as to minimize the asymptotic variance of the maximum likelihood estimator (MLE) of the

unknown prevalence rate [76]:

minimize
n,s

σ2(n, s; p0)

subject to cf s+ cv sn ≤ B

n ≤ N

n, s ∈ Z+,

(3.7)

where σ2(n, s; p0) denotes the asymptotic variance of the MLE for a pool design (n, s), given an initial

estimate of the unknown prevalence rate p, which we denote by p0. The testing cost consists of a fixed

testing cost per pool (e.g., cost of the testing kit), denoted by cf , and a collection cost per specimen (e.g.,

cost of drawing blood), denoted by cv. The tester has a total testing budget of B for prevalence estimation.

Additionally, the maximum pool size that can be used may be restricted due, for example, to technological

constraints, regulations, or other considerations, and we denote the maximum allowable pool size by N .
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The asymptotic variance is a commonly used criterion for optimal testing design in prevalence estimation

and for evaluation of estimators in statistical inference, and is also related to the Fisher’s information

(e.g., [58, 69,98,100,102,111,112]).

In pooled testing, only one test is used on each pool, and the test provides a binary outcome, with

a positive outcome indicating the presence of at least one infected specimen in the pool; and a negative

outcome indicating that all specimens in the pool are infection-free. Using the test outcomes, the tester

derives the MLE of the unknown prevalence rate (p̂). In particular, for a given testing design, (n, s), let

SI(s) denote the number of positive-testing pools among s pools, which is a random variable prior to testing.

Then, after the testing is conducted and a realization of SI(s) = k is observed, the MLE of the prevalence

rate corresponds to the value of p that maximizes the following likelihood function:

L(p;SI(s) = k) =

(
s

k

)[
Sens(n; p)− (1− p)n(Sens(n; p) + Spec− 1)

]k
×
[
1− Sens(n; p) + (1− p)n(Sens(n; p) + Spec− 1)

]s−k

⇒ p̂ ≡ argmax
p∈(0,1)

{
L(p;SI(s) = k)

}
.

(3.8)

The asymptotic variance function, σ2(n, s; p), for a pool design of (n, s), and with respect to the unknown

prevalence rate, p, is then given by (e.g., [69]):

σ2(n, s; p) =
{Sens(n; p)− (1− p)n(Sens(n; p) + Spec− 1)} {1− Sens(n; p) + (1− p)n(Sens(n; p) + Spec− 1)}

sn2(1− p)2(n−1)(Sens(n; p) + Spec− 1)2
.

(3.9)

3.3.2 Study Design and Data

Our goal is in this section is to demonstrate the value of the sensitivity estimation methodologies developed

in this paper through a numerical study. We do this by designing an optimal testing pool, based on the

sensitivity estimates derived for the HIV ULTRIO Plus Assay for various pool sizes using the methodologies

described in Section 3.2; and comparing the efficiency of the optimal testing design with a benchmark design

that does not consider pooling dilution (hence does not need to use our methodology for sensitivity estimation

at various pool sizes). As discussed above, we consider pool design for prevalence estimation of HIV in Sub-

Saharan Africa using the HIV ULTRIO Plus Assay.

Model parameters are as follows. We assume that the actual prevalence rate is p = 0.044 [108], which

is unknown to the tester; this prevalence rate is representative of the HIV prevalence rate in Sub-Saharan

Africa. In the absence of this information, the tester determines an initial estimate of p0 = 0.022, i.e.,
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we consider the case of undershooting. Based on published data, we consider a fixed testing cost per pool

of $31.5 [63], a collection cost per specimen of $8 [33], and a total testing budget of $5,575 [75], which

corresponds to a testing budget of 50 pools, each of size 10. Finally, we consider a maximum allowable pool

size, of N = 48 [86]. These parameter values are for demonstration purposes, and one can conduct similar

analyses with different parameter values.

As sensitivity inputs, we utilize the sensitivity values in Table 3.2, which are derived by the sensitivity

estimation model in Section 3.2.1, in conjunction with the calibration parameters in Section 3.2.1. The

sensitivity values in Table 3.2 correspond to pool sizes of n = {1, 2, · · · , 16}. As discussed above, the

sensitivity estimation model in Section 3.2.1 requires the computation of higher dimensional integrals (up

to pool size), and can be computationally expensive. Therefore, we use the approximation in Section 3.2.2

to derive the sensitivity values for the remaining pool sizes, i.e., n = {17, · · · , 48}. Then, we perform a

two-dimensional search, over all possible values of {(n, s) : n ∈ {1, · · · , 48}, cf s+ cv sn ≤ B}, to determine

the optimal testing pool design, i.e., (n∗, s∗), for the optimization model in Eqn. (3.7) that minimizes the

asymptotic variance. To determine the “best” benchmark design, we repeat the two-dimensional search, but

without considering pooling dilution, that is, by replacing the parameters, Sens(n), ∀n ∈ Z+, with 99.98%,

i.e., the sensitivity of individual testing for the HIV ULTRIO Plus Assay; see Table 3.3 for the resulting

optimal design and the benchmark design. For each of these designs, we perform a Monte Carlo simulation

to derive estimates for the MLE of p, p̂ (see Eqn.(3.8)); mean squared error (MSE); and the relative bias

(rBias (%)), given by:

MSE = (p̂− p)2, and rBias(%) = 100×
∣∣∣∣ p̂− pp

∣∣∣∣. (3.10)

These performance metrics relate to the efficiency of prevalence estimation, and are commonly used in the

literature, e.g., [57, 58,111].

In particular, for each testing design, we perform 10,000 simulation replications. In each replication, we

randomly generate the infection status of each of the n∗ × s∗ specimens, where each specimen carries an

infection with probability p; and is infection-free otherwise; and for each infected specimen, we randomly

generate a post-exposure time from a Uniform distribution with support [0, τ ], and compute the viral load

using Eqn. (3.1) and the parameters of Section 3.2.1. Then, we randomly assign the specimens into s∗ pools,

each of size n∗, and generate the binary test outcomes based on the test sensitivity model given in Eqn.

(3.4). Finally, we compute the MLE, MSE, and rBias for each replication using Eqs. (3.8) and (3.10).
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3.3.3 Numerical Study Results

Table 3.3 reports the average estimation efficiency of the optimal design and the benchmark design, over

10,000 simulation replications. All performance metrics are reported in the form of mean ± half-width of

95% confidence interval (CI).

Table 3.3: Estimation efficiency (mean ± half-width of 95% CI) of the optimal design and the benchmark
design for HIV prevalence estimation (with an actual prevalence rate of p = 0.044).

Performance Metric Optimal Design Benchmark Design
Pool design n∗ = 37, s∗ = 17 n∗ = 17, s∗ = 33
p̂ (MLE) 0.05204 ± 0.00036 0.03041 ± 0.00029
MSE (×104) 3.95 ± 0.11 4.00 ± 0.08
rBias (%) 18.26 ± 0.52 30.88 ± 0.48

As indicated by Table 3.3, the optimal design outperforms the benchmark design, and the differences are

statistically significant. The benchmark design yields especially high bias in comparison to the optimal pool

design, mainly due to the assumption of no pooling dilution, leading to biased estimates of the unknown

prevalence rate.

3.4 Discussion

Pooled testing is commonly used in public health settings, for both screening and surveillance of diseases

and infections. An accurate and tractable method to compute the sensitivity of a pooled test is extremely

important in designing the optimal pooled testing scheme for these efforts. As pooled NAT assays are widely

used to screen for diseases, several approaches are proposed in the literature to compute the sensitivity of

pooled NAT assays. However, these approaches only account for the window period of the infection, and

assume perfect sensitivity past the window period, which is a restrictive assumption, especially as pooling

dilution plays an important role in the sensitivity of pooled tests. Further, these studies compute the

sensitivity of the pooled test based on the assumption of having at most one infected specimen in any testing

pool, when the probability of having multiple infected specimens in a pool is, in fact, a function of both the

pool size and the prevalence of the disease.

In this paper, we relax the restricting assumptions in the aforementioned studies and propose both exact

and approximate models for computing the sensitivity of a pooled test. We expand the doubling time viral

load model [17] to mathematically model the various growth phases of an infection; and propose an exact

method to compute the conditional sensitivity of a pooled test as a function of the number of infected

specimens in the pool and the pool size, by expanding the probit model in [105, 106]. Then, we can use a

binomial model for the number of infected specimens in a pool, along with the law of total probability, to
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calculate the overall sensitivity of the pooled test given the pool size and the prevalence rate of the disease.

We calibrate and validate our exact model using published data on the HIV ULTRIO Plus Assay. Finally,

we propose an alternative approximation model to derive the sensitivity of pooled testing that is highly

accurate and more analytically tractable than the exact method. We demonstrate the value of our exact and

approximate models of pooled testing sensitivity in a case study on HIV prevalence estimation. In particular,

we incorporate the proposed models into our testing pool design procedure for prevalence estimation of HIV

in Sub-Saharan Africa. Our results show that the sensitivity model is very accurate for the HIV ULTRIO

Plus Assay, enabling the design procedure to yield efficient testing pool designs that significantly minimize

the estimation error, in comparison to a pool design procedure that utilizes less accurate sensitivity values

(i.e., assuming no pooling dilution).

In summary, we develop exact and approximate models for computing the sensitivity of a pooled test by

expanding upon the commonly used probit model in [105,106], and relaxing various restricting assumptions,

as we previously discuss. Our methodologies are computationally tractable and highly accurate, and can

significantly improve the efficiency of testing pool design for prevalence estimation, as demonstrated by

our case study, and for public health screening. We further note that the proposed sensitivity estimation

methodology is not infection-specific, and can be calibrated with clinical and published data for any infection

or disease, e.g., hepatitis B and C viruses. In addition to its application in prevalence estimation, this

methodology can be used in conjunction with other optimization models to make optimal decisions for

classification efforts (e.g., [5]), and can also be used for setting a classification threshold, i.e., for classifying

a subject as infected versus infection-free for the disease in question. Further, as the expanded viral load

model considers the life-time of the infection, in regard to the biomarker load in infected subjects, it allows

for more precise sensitivity estimation if information is available about the population of interest, e.g., repeat

blood donors have lower overall HIV prevalence rates, and, due to their donation history, one can infer which

stage of the infection the donor would be in, if infected. Therefore, integrating the sensitivity estimation

methodology proposed in this paper with such optimization models would be worthwhile extensions of this

research.
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Chapter 4

Optimal Pooled Testing Design for

Prevalence Estimation

4.1 Introduction

Surveillance is essential for responding to emerging or seasonal diseases, and for assessing the performance

of preventative measures and healthcare services for infectious diseases in general. Four basic components

of surveillance activities include, collection, analysis, dissemination, and response [35]. Among these com-

ponents, collection and analysis activities are conducted frequently at many levels of the healthcare system,

including local, state, federal, and international levels, by both public and private agencies, with a main goal

of estimating the prevalence rate of the disease in question [35], which is the focus of this paper. An accurate

estimation of the disease prevalence rate is important, as it is a key input to various other surveillance

activities, including outbreak detection, response and prevention evaluation, and prediction of the impact

of various healthcare services (e.g., [35, 39, 104]). For example, in 2016, following the outbreak of Zika, the

Centers for Disease Control and Prevention provided funding to 21 jurisdictions for the surveillance of, and

response to, Zika [21]. In general, the testing budget available for prevalence estimation is very small rel-

ative to the needs [35]. As a result, prevalence estimation via individually testing of each subject is either

infeasible (e.g., [99,100]), or highly inefficient in that it leads to small sample sizes, and hence to potentially

inaccurate estimates [54,99].

A solution to both prevalence estimation and subject identification (i.e., identification of all infected

subjects) under limited resources came from Dorfman in the 1940’s [38]. Dorfman’s idea was to use pooled

testing, by combining specimens (e.g., blood, urine, tissue swabs) from multiple subjects in a single testing
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pool and testing the pool via a single test [38]. Over the years, pooled testing has been extensively studied

and shown to be a highly efficient approach under limited resources for both prevalence estimation and

subject identification problems, and today it is a widely used testing method for both purposes (e.g., [39,56,

85, 95, 104]). When pooled testing is used for the purpose of prevalence estimation, it often involves testing

of the pools only (i.e., without any follow-up testing on individual subjects in positive-testing pools), as the

ultimate goal is to derive an accurate estimate of the disease prevalence rate (e.g., [50, 56, 69, 72]). This

is especially true when the goal is to estimate the prevalence of “souces” of vector-borne viral or bacterial

diseases, e.g., mosquitoes carrying Zika virus or West Nile virus [83], or romaine lettuce carrying E. coli

bacteria [22]. In general, the test measures the pool’s concentration of a certain bio-marker that serves as

an indicator for the presence of the virus or bacteria of interest, and provides a binary outcome: positive,

indicating the presence of at least one infected specimen in the pool, and negative otherwise; and inference

on the unknown prevalence rate is made based on the collected testing data.

The efficiency and effectiveness of the estimation process depends critically on the testing pool design,

which involves determining the number of pools to test, and the pool size (i.e., the number of specimens to

combine in each pool) (e.g., [25,75,92,96]). This is a challenging problem, because there is often limited, and

highly uncertain, information on the status and dynamics of a disease prior to a surveillance study, especially

for emerging or seasonal diseases, but an initial estimate on the disease prevalence rate is an important input

to pool design. Further, research that develops optimal pool designs for prevalence estimation is quite limited.

The majority of the relevant literature focuses on the “estimation” component, i.e., derivation of an efficient

prevalence estimate from testing data, for a given pool design.This stream of research includes studies that

investigate the characteristics of the widely used maximum likelihood estimator (MLE) of the prevalence

rate in various settings (e.g., [26,27,96]), and that develop various approaches for bias reduction in the MLE

(e.g., [16, 44, 54]), as well as studies that investigate alternative methods for deriving an estimator, such as

Bayesian analyses (e.g., [40, 81, 94]), or regression analyses (e.g., [28, 41, 55, 102, 110]). On the other hand,

only a few studies discuss the pool design component, and mainly in the context of pool size determination

for a fixed (exogenous) number of testing pools, under perfect tests (e.g., [57, 58, 89]), and imperfect tests

(e.g., [45, 69, 99, 100, 112]). However, the aforementioned studies on pool size determination are mainly

numerical in nature, and the optimal pool size is not fully characterized in an analytical manner. [69] is a

notable exception, and derives various properties of the asymptotic variance function, which is a commonly

used objective for pool design. In this paper, we expand upon the properties developed in [69], as we

discussed subsequently. It is shown that a pool design that relies highly on an initial point estimate of the

prevalence rate, or that corresponds to an exogenously fixed number of testing pools, can result in highly

inaccurate estimates of the prevalence rate [57,58,75].
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Motivated by these gaps in the literature, in this paper we propose two novel models for testing pool

design under uncertainty and limited resources. Our models are flexible, in that they can incorporate both

a fixed number and a variable number of testing pools into pool design, and they explicitly accounts for the

limited testing budget. Specifically, we study the pool design problem in two settings: the setting where the

number of testing pools is fixed exogenously and cannot be altered (single-variable pool design problem), and

the setting where the tester has control over both the number of pools and the pool size (joint pool design

problem). The first setting applies, for example, when there is a limited number of testing kits, which can be

an important constraint for testing of certain diseases (e.g., [69]), and the tester can only control the pool

size. This first setting is important in its own right, as it provides a contribution to the literature in that

almost all existing studies on pool design for prevalence estimation focus on this first setting, as discussed

above. On the other hand, not surprisingly, our study of the joint pool design problem indicates that a

joint optimization of both the pool size and the number of pools can provide substantial benefit, providing a

more accurate estimate at the same testing budget. We establish important structural properties of optimal

pool designs, which allow us to analytically characterize the form of an optimal pool design and obtain an

optimal pool design in a highly efficient manner in each setting. We complement our analytical results with

a case study on prevalence estimation of West Nile virus in mosquitoes, which illustrates that the use of joint

pool design optimization can overcome the inaccuracies in input parameters, improving estimation accuracy

without requiring an increase in the testing budget.

The remainder of this paper is organized as follows. In Section 4.2, we present the notation and modeling

assumptions, and formulate the pool design optimization models. In Section 4.3, we establish key structural

properties of the objective function in each pool design optimization model, which allow us to analytically

characterize optimal pool designs and efficiently solve the optimization models in Section 4.4. We then

demonstrate the benefits of utilizing the proposed pool design optimization models with a case study of

West Nile virus prevalence estimation in Section 4.5. Finally, we conclude in Section 4.6 with a discussion

of our findings and suggestions for future research. To facilitate the presentation, all mathematical proofs

are relegated to the Appendix.

4.2 Notation, Assumptions, and Models

In Section 4.2.1, we introduce the notation and discuss the modeling assumptions. Then in Section 4.2.2, we

present the pool design models that we develop. A summary of the notation can be found in Appendix C.1.
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4.2.1 Notation and Assumptions

Throughout, we denote random variables in upper–case letters and their realization in lower–case letters.

Consider a disease with an unknown prevalence rate, P , which needs to be estimated. Depending on

the setting of the pool design problem (PD), the tester needs to determine both the pool size, m, and the

number of pools to test, n (joint pool design problem (PD-J)); or only the pool size, m, for a given number

of pools (single-variable pool design problem (PD-S)), under a limited testing budget, so as to obtain an

accurate estimate of the unknown prevalence rate, i.e., to minimize the asymptotic variance of the estimator,

as we discuss below. Testing incurs a fixed testing cost (e.g., cost of the testing kit), of cf per pool,

and a variable cost (e.g., collection cost), of cv per specimen tested, with cf > cv, and the tester has a

testing budget of B. Then, in PD-J, the feasible set for decision variables m and n is given by, F(m,n) ≡

{m,n ∈ Z+ : cfn+ cvmn ≤ B}, while in PD-S, the feasible set for the single decision variable m, for a given

value of n ∈ Z+, is given by, F(m;n) ≡
{
m ∈ Z+ : m ≤MS

(n) ≡
⌊
B−cfn
cvn

⌋}
.

The objective is to design testing pools so as to minimize the asymptotic variance of the estimator, which

is a commonly used objective for pool design (e.g., [58, 69, 98, 100, 102]), and is also commonly used for

assessing the efficiency of an estimator (e.g., [66, 93]). The asymptotic variance, σ2(m,n; p), corresponding

to a true prevalence rate p, represents the limiting behavior of the mean squared error (MSE) (i.e., variance

plus bias square) of an estimator P̂ , MSE(P̂ ,m, n; p), as the number of pools, n, becomes large, and is

commonly used because, in general, the MSE is analytically intractable (e.g., [58,59,69]). More specifically,

it has been shown that limn→∞MSE(P̂ ,m, n; p) → σ2(m,n; p); hence, for a sufficiently large number of

pools, the pool size that minimizes the MSE of the prevalence rate estimator converges to the pool size that

minimizes the asymptotic variance [58]. The asymptotic variance also provides a strong lower bound (i.e.,

through the Cramer-Rao lower bound) on the Fisher’s information obtained from the prevalence estimate

(e.g., [18]), and hence is also utilized in the pool design literature when the objective is to maximize the

Fisher’s information, because obtaining an explicit analytical expression for Fisher’s information often proves

to be intractable (e.g., [57,104]). Following the common terminology, we refer to a pool design as efficient if

it minimizes the asymptotic variance (e.g., [57, 58,104]).

On the testing side, we consider a test that can be applied to pools of specimens collected from subjects

(i.e., m ≥ 2) as well as to individual specimens (i.e., m = 1). We assume that the test is perfectly reliable and

provides a binary outcome, that is, the test has perfect sensitivity (true positive probability) and specificity

(true negative probability), thus providing a positive outcome only if there is at least one true-positive

specimen in the pool, and a negative outcome only if all specimens in the pool are true-negative.

We estimate the unknown prevalence rate via the commonly adopted maximum likelihood estimator
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(MLE) (e.g., [58]), given by:

P̂ = 1−
(

1− T (m,n)

n

) 1
m

, (4.1)

where T (m,n) denotes the random number of positive-testing pools among n pools, each containing m

specimens, that is, for m = 1 (i.e., individual testing), T (1, n) ∼ Binomial(n, p), while for m ≥ 2 (i.e., pooled

testing), T (m,n) ∼ Binomial(n, 1− (1− p)m), where p denotes the (unknown) true prevalence rate, and the

term (1 − (1 − p)m) denotes the probability that a random pool tests positive, i.e., the probability that it

contains at least one true-positive specimen. The asymptotic variance of the MLE then follows (e.g., [58]):

σ2(m,n; p) =
1− (1− p)m

nm2(1− p)m−2
. (4.2)

Note that for the special case of individual testing, we have that σ2(1, n; p) = p(1−p)
n .

4.2.2 Models for Pool Design Optimization

We formulate and study the following optimization models:

PD-J Model: PD-S Model:

minimize
(m,n)∈F(m,n)

σ2(m,n; p0) minimize
m∈F(m;n)

σ2(m;n, p0),

where p0 denotes an initial estimate of P . We use problem indices S and J to respectively refer to the

single-variable pool design problem, PD-S, and the joint pool design problem, PD-J. We refer to the pool

design problem as Problem X, X ∈ {S, J}, when an expression or a result applies to both problems PD-S

and PD-J. We also use the superscript * to denote an optimal solution, e.g., (m∗J , n
∗
J) denotes the optimal

solution of the PD-J Model.

To our knowledge, only the PD-S Model is utilized in the existing literature, i.e., for a given number of

pools, n, under different objective functions, including the minimization of the asymptotic variance [58,69],

maximization of the Fisher’s information via the Cramer-Rao lower bound, which reduces to a function of the

asymptotic variance [57,111], or maximization of the probability of a random pool testing positive [99], but

research that analytically analyzes the model’s structural properties and characterizes its optimal solution

is rather limited, with the notable exception of [69], as we discuss below. Thus, our analysis of the PD-S

Model provides a contribution to the literature in its own right; and the PD-J Model that we study is novel.

In particular, we build upon the properties developed by [69], while considering perfect tests ( [69] considers

imperfect tests.) However, instead of assuming a given number of pools (n), or a given number of specimens

tested (mn), as in [69], i.e., using a single-variable optimization model, we also jointly optimize over both
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the pool size, m, and the number of pools, n, while explicitly accounting for the budget constraint (the PD-J

Model). We fully characterize the optimal solutions to both the PD-S and PD-J Models by expanding upon

the properties developed in [69].

4.3 Properties of the Asymptotic Variance Function

In this section, we establish key properties of the asymptotic variance function, σ2(m,n; p). In particular,

we first study the setting with a fixed (exogenous) n value (Section 4.3.1), and then study the setting where

n is optimally set (endogenous) so as to minimize the asymptotic variance (Section 4.3.2). All mathematical

proofs can be found in Appendix C.2.

4.3.1 Asymptotic Variance Function for an Exogenous Number of Pools

First we consider the single-variable pool design problem, PD-S, i.e., with an exogenous number of pools, n.

This is the setting that has been studied, to some extent, in the literature, as we elaborate below.

Definition 1. (From [69]) For any n,m1,m2 ∈ Z+: m1 < m2, the prevalence threshold, πS0 (m1,m2, n) ∈

(0, 1), is defined as the prevalence rate at which σ2
(
m1, n;πS0 (m1,m2, n)

)
= σ2

(
m2, n;πS0 (m1,m2, n)

)
.

For the exogenous n setting, the literature provides the following proposition on the prevalence threshold,

πS0 (m1,m2, n) (for both perfect and imperfect tests), and studies the behavior of the asymptotic variance

function mainly through numerical studies.

Proposition 1. (From [69]) For any n,m1,m2 ∈ Z+: m1 < m2, there exists a unique πS0 (m1,m2, n) ∈ (0, 1).

Further:

σ2(m1, n; p)


> σ2(m2, n; p), ∀p < πS0 (m1,m2, n)

< σ2(m2, n; p), ∀p > πS0 (m1,m2, n)

.

As discussed in [69], Proposition 1 implies that, for a given n, a smaller pool (of size m1) is more efficient

than a larger pool (of size m2), in terms of minimizing the asymptotic variance, only if the prevalence rate

p is sufficiently high, i.e., p > πS0 (m1,m2, n), and vice versa.

In the following, we establish various other properties of the asymptotic variance function, σ2(m,n; p), and

the prevalence threshold, πS0 (m1,m2, n), for a given n. These properties not only enable us to solve the PD-S

Model to optimality, i.e., with a given number of pools, but also confirm the numerical observations by [69],

further contributing to the literature on the pool size problem for prevalence estimation. In particular, [69]

numerically observe that when n is exogenously fixed, the prevalence rate below which pooled testing (i.e.,
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with m ≥ 2) is more efficient than individual testing (i.e., with a m = 1), i.e., πS0 (1,m, n), decreases in

m [69]. In Lemma 2, we formally establish this result for any m1,m2 ∈ Z+ : m1 < m2, for perfect tests.

We first provide an analytical expression for the prevalence threshold function. Observe that by Defini-

tion 1 and Eqn. (4.2), when n is exogenous, πS0 (m1,m2, n) becomes independent of n, which we represent

simply by πS0 (m1,m2); thus, all subsequent results in this section hold for any n ∈ Z+.

Lemma 1. For any m1,m2 ∈ Z+: m1 < m2, πS0 (m1,m2) is the unique solution to:

(
1

1− πS0 (m1,m2)

)m1

= 1 +

(
m1

m2

)2[(
1

1− πS0 (m1,m2)

)m2

− 1

]
. (4.3)

Lemma 2. πS0 (m1,m2) is decreasing in each of m1 and m2, ∀m1,m2 ∈ Z+ : m1 < m2.

The following corollaries follow as direct consequences of Lemma 2.

Corollary 1. πS0 (m− 1,m) > πS0 (m,m+ 1), ∀m ∈ Z+ : m ≥ 2.

Corollary 2. The prevalence threshold function has the following properties:

1. πS0 (m1,m2) ≤ πS0 (1, 2) = 2
3 , ∀m1,m2 ∈ Z+ : m1 < m2.

2. πS0 (1,m) is decreasing in m, ∀m ∈ Z+ : m ≥ 2.

Remark 1. Proposition 1 and Corollary 2 establish the necessary and sufficient condition for individual

testing to be the most efficient estimation method, that is, individual testing outperforms pooled testing,

with any pool size and for any given number of pools, i.e., σ2(1, n; p) < σ2(m,n; p),∀m ≥ 2, ∀n ∈ Z+, if and

only if p > 2
3 .

Corollary 2 further indicates that as pool size, m, increases, the prevalence rate below which pooled testing

is more efficient than individual testing reduces, that is, larger pools are more efficient than individual testing

at smaller prevalence rates. Corollary 2 also analytically establishes the behavior of πS0 (1,m), numerically

observed in [69], as discussed above. Prevalence rates of almost all diseases are well below the threshold of

2
3 , and pooled testing is a commonly used method for disease surveillance. Thus, Corollary 2 provides an

analytical justification for the widespread utilization of pooled testing for prevalence estimation of diseases.

Next we turn our attention to the asymptotic variance function.

Lemma 3. For any n ∈ Z+, σ2(m,n; p) has the following properties:

1. For m ≥ 2, σ2(m,n; p) is increasing in p.

2. σ2(1, n; p) is increasing in p, ∀p < 1
2 .
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3. σ2(m,n; p) is decreasing in n.

4. σ2(m,n; p) is strictly convex in m.

Our results in this section characterize the structure of the prevalence threshold and asymptotic variance

functions, allowing us to determine an optimal pool size for the PD-S Model in Section 4.4.

4.3.2 Asymptotic Variance Function for an Endogenous Number of Pools

Next we study properties of the asymptotic variance function in the joint pool design problem, PD-J, i.e.,

when the tester can set both n and m optimally. To this end, we first derive an expression on the optimal

number of testing pools, n∗, in PD-J by relaxing the restriction that n is integer, i.e., we consider that n is

continuous. (We discuss how to incorporate the integrality constraint on n in Section 4.5.)

Lemma 4. Consider that n is continuous. Then, without loss of optimality, the feasible region for the PD-J

Model, given by F(m,n), can be replaced by F(m) =
{
m ∈ Z+ : m ≤MJ ≡

⌊
B−cf
cv

⌋}
, with n∗(m) ≡ B

cf+cvm
,

and

σ2(m,n∗(m); p) =

(
cf + cvm

B

)(
1− (1− p)m

m2(1− p)m−2

)
. (4.4)

Thus, the PD-J Model reduces to one with a single decision variable, m, and its asymptotic variance

function reduces to a function of m and p only, i.e., σ2(m,n∗(m); p).

We next show that many of the properties established for the PD-S Model (Section 4.3.1) extend to the

joint PD-J Model. To this end, we first define the prevalence threshold in the joint setting, which, based on

Lemma 4, can be represented as a function of pool sizes only.

Definition 2. For any m1,m2 ∈ Z+ : m1 < m2, the prevalence threshold, πJ0 (m1,m2) ∈ (0, 1), is defined as

the prevalence rate at which σ2
(
m1, n

∗(m1);πJ0 (m1,m2)
)

= σ2
(
m2, n

∗(m2);πJ0 (m1,m2)
)
.

Proposition 2. For any m1,m2 ∈ Z+: m1 < m2, there exists a unique πJ0 (m1,m2) ∈ (0, 1). Further:

σ2(m1, n
∗(m1); p)


> σ2(m2, n

∗(m2); p), ∀p < πJ0 (m1,m2)

< σ2(m2, n
∗(m2); p), ∀p > πJ0 (m1,m2)

.

Lemma 5. For any m1,m2 ∈ Z+ : m1 < m2, πJ0 (m1,m2) is the unique solution to:

(
1

1− πJ0 (m1,m2)

)m1

= 1 +

(
m1

m2

)2(
cf + cvm2

cf + cvm1

)[(
1

1− πJ0 (m1,m2)

)m2

− 1

]
. (4.5)

Lemma 5 leads to the following corollaries.
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Lemma 6. πJ0 (m1,m2) is decreasing in each of m1 and m2, ∀m1,m2 ∈ Z+ : m1 < m2.

Corollary 3. πJ0 (m− 1,m) > πJ0 (m,m+ 1), ∀m ∈ Z+ : m ≥ 2.

Corollary 4. The prevalence threshold function has the following properties:

1. πJ0 (m1,m2) ≤ πJ0 (1, 2) =
2cf

3cf+2cv
, ∀m1,m2 ∈ Z+ : m1 < m2.

2. πJ0 (1,m) is decreasing in m, ∀m ∈ Z+ : m ≥ 2.

The following properties of σ2(m,n∗(m); p) will also be useful in characterizing an optimal pool design

for the PD-J Model.

Lemma 7. σ2(m,n∗(m); p) has the following properties:

1. For m ≥ 2, σ2(m,n∗(m); p) is increasing in p.

2. σ2(1, n; p) is increasing in p, ∀p < 1
2 .

3. σ2(m,n∗(m); p) is strictly convex in m, ∀p < 1
3 .

Our results in this section fully characterize the structure of the prevalence threshold and asymptotic

variance functions for the PD-J Model, allowing us to determine an optimal pool design for the PD-J Model

in Section 4.4.

4.3.3 Comparison of Prevalence Thresholds in PD-S and PD-J Models

Our comparison of the prevalence thresholds for the PD-S and PD-J Models in this section provides important

insight on the impact of joint optimization on pool design. For this purpose, we define γ ≡ cf/cv, and first

study how the prevalence threshold functions change with cost parameters.

Lemma 8. For any m1,m2 ∈ Z+ : m1 < m2, we have that πS0 (m1,m2) is independent of γ, while πJ0 (m1,m2)

is increasing in γ.

Lemma 9. For any m1,m2 ∈ Z+ : m1 < m2, we have that πJ0 (m1,m2) < πS0 (m1,m2).

Corollary 5. πJ0 (1, 2) =
2cf

3cf+2cv
< πS0 (1, 2) = 2

3 .

Thus, for any pair of pool sizes, m1 < m2, a smaller pool size (m1) is more efficient than a larger pool

size (m2) for a wider range of prevalence values in PD-J, compared to PD-S. This in turn allows for a larger

number of pools to be tested in PD-J, increasing the efficiency of the estimation.
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4.4 Pool Design Optimization

With the properties established in Section 4.3, we are ready to characterize the optimal solutions to the pool

design optimization models, PD-S and PD-J. In this section, we limit our analysis to the case where p does

not exceed 1
2 ; this is the most realistic case for disease surveillance studies, as discussed above. Thus, all

results in this section apply to the case where p < 1
2 .

Lemma 10. For any m ∈ Z+: m ≥ 1:

1. When n is exogenously fixed, we have the following properties:

(i) σ2(m,n; p) < σ2(k, n; p), ∀k ∈ Z+ : k 6= m, and ∀n ∈ Z+, if and only if πS0 (m,m + 1) < p <

πS0 (m− 1,m).

(ii) σ2(m,n; p) = σ2(m+ 1, n; p), if and only if p = πS0 (m,m+ 1).

(iii) σ2(m,n; p) = σ2(m− 1, n; p), if and only if p = πS0 (m− 1,m).

2. When n can be optimally set, i.e., n = n∗(m), we have the following properties:

(i) σ2(m,n∗(m); p) < σ2(k, n∗(k); p), ∀k ∈ Z+ : k 6= m, if and only if πJ0 (m,m + 1) < p < πJ0 (m −

1,m).

(ii) σ2(m,n∗(m); p) = σ2(m+ 1, n∗(m+ 1); p), if and only if p = πJ0 (m,m+ 1).

(iii) σ2(m,n∗(m); p) = σ2(m− 1, n∗(m− 1); p), if and only if p = πJ0 (m− 1,m).

Lemma 10 allows us to fully characterize the optimal PD-S and PD-J solutions. Recall that the testing

budget constraint imposes an upper bound on pool size m, i.e., m ≤MS
(n) ≡

⌊
B−cfn
cvn

⌋
for the PD-S Model,

and m ≤ M
J ≡

⌊
B−cf
cv

⌋
for the PD-J Model. In the PD-S Model, since the number of pools, n, is fixed

exogenously, the optimal pool size, m∗S , depends on n only through the upper bound, M
S

(n).

Theorem 1. For a given p0 and an exogenously fixed n, an optimal solution to the PD-S Model follows a

threshold policy:
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m∗S(p0) =



M
S

(n), if p0 ≤ πS0 (M
S

(n)− 1,M
S

(n))

...

m+ 1, if πS0 (m+ 1,m+ 2) ≤ p0 ≤ πS0 (m,m+ 1)

m, if πS0 (m,m+ 1) ≤ p0 ≤ πS0 (m− 1,m)

m− 1, if πS0 (m− 1,m) ≤ p0 ≤ πS0 (m− 2,m− 1)

...

1, if πS0 (1, 2) ≤ p0 < 1,

where πS0 (1, 2) = 2
3 .

Theorem 2. For a given p0, an optimal solution to the PD-J Model follows a threshold policy:

m∗J(p0) =



M
J
, if p0 ≤ πJ0 (M

J − 1,M
J

)

...

m+ 1, if πJ0 (m+ 1,m+ 2) ≤ p0 ≤ πJ0 (m,m+ 1)

m, if πJ0 (m,m+ 1) ≤ p0 ≤ πJ0 (m− 1,m)

m− 1, if πJ0 (m− 1,m) ≤ p0 ≤ πJ0 (m− 2,m− 1)

...

1, if πJ0 (1, 2) ≤ p0 < 1,

where πJ0 (1, 2) =
2cf

3cf+2cv
, and n∗J(p0) can be determined by Lemma 4, that is, n∗J(p0) = B

cf+cvm∗J (p0) .

Thus, the optimal PD-X, X ∈ {S, J}, solution is unique if the tester’s initial point estimate, p0, does

not correspond to a prevalence threshold point (p0 6= πX0 (m,m+ 1), ∀m ∈ Z+); and there are dual optimal

solutions if p0 corresponds to a prevalence threshold point.

Using the convexity of the asymptotic variance function leads to the following alternative characterization

for the optimal solutions to the PD-S and PD-J Models.

Lemma 11. Consider PD-X, X ∈ {S, J}, and let m′ denote the solution to the first-order condition (FOC),

that is,
{
m′ : ∂

∂mσ
2(m,n; p0)

∣∣
m=m′

= 0
}

in PD-S, and
{
m′ : ∂

∂mσ
2(m,n∗(m); p0)

∣∣
m=m′

= 0
}

in PD-J, or

equivalently,
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m′ :


m′ = 2[(1−p0)m

′
−1]

log(1−p0) , for PD-S;

m′ =

(
1+

cf
cf+cvm′

)
[(1−p0)m

′
−1]

log(1−p0) , for PD-J.

Then m∗PD−X ∈
{
m′, dm′e, bm′c,MX

}
.

Theorems 1 and 2, along with Lemmas 3 and 7, lead to the following results.

Corollary 6. For X ∈ {S, J}, PD-X optimal solution, m∗X(p0), is non-increasing in p0, with m∗X(p0) = 1,

∀p0 ≥ πX0 (1, 2).

Thus, testing large pools becomes more efficient as p0 decreases. This property, that pools should get

smaller at larger prevalence rates, is so as to gather some “useful” information from testing. In particular, if

pools are very large when the disease prevalence is large, then it is likely that many pools will test positive

(i.e., contain at least one infected specimen); and similarly, if pools are very small when the disease prevalence

is small, then it is likely that many pools will test negative (i.e., will not contain any infected specimen).

Thus, an optimal pool design balances these risks, and attempts to gather some useful information from

testing. However, when p0 is a poor estimate of the true p value, m∗S(p0) can still be highly inefficient, and,

further, an outcome of all positive-testing pools or all negative-testing pools may occur, as we discuss in

Section 4.5.

Next, we study how the testing cost structure affects the PD-X, X ∈ {S, J}, optimal solution.

Corollary 7. For X ∈ {S, J}, PD-X optimal solution, m∗X , is non-decreasing in γ.

Thus, an increase in the specimen collection cost, cv, for a given value of cf (i.e., a reduction in the value

of γ =
cf
cv

), makes it more efficient to use smaller pool sizes, in turn leading to an increase in the number of

pools tested in PD-J.

4.5 Case Study: Prevalence Estimation of West Nile Virus in

Mosquitoes

Our goal in this section is to gain insights and derive principles on testing pool design for prevalence estima-

tion. For this purpose, we utilize the optimization models, PD-S and PD-J, to design pooled testing schemes

so as to efficiently estimate the prevalence of mosquitoes carrying West Nile virus (WNV), and compare the

outcomes with those of a benchmark design.
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The WNV disease is a vector-borne disease, and the primary source of disease transmission to humans is

a mosquito bite [52]. The mosquito population carrying WNV in any given year depends on various factors,

including the temperature and humidity [39, 52]. As a result, the prevalence rate of WNV in mosquitoes is

highly seasonal, and can fluctuate substantially from year to year [39,52,65].

The WNV disease has become a seasonal endemic in the United States, causing several fatalities from

neuro-invasive diseases [52,65]. Further, as most cases of WNV infections are asymptomatic, WNV infections

in humans are significantly under-reported [109], further contributing to the risk of transfusion-transmitted

infections via blood transfusion or organ transplantation [60,90]. The prevalence rate of WNV in humans has

been shown to be highly correlated with the prevalence rate of WNV in mosquitoes [31,36,64]. Therefore, an

accurate estimation of the prevalence rate of WNV-carrying mosquitoes is essential for outbreak prediction

and prevention of the WNV disease in humans [52,53].

We consider the reverse-transcription polymerase chain reaction (RT-PCR) assay for WNV screening in

mosquitoes [53]. RT-PCR assays employ the nucleic acid amplification technology for detecting the viral

RNA present in the specimens, and are highly sensitive and specific [77]. For illustrative purposes, we assume

a testing budget of B = $8, 160, which is equivalent to a pool design of (m = 50, n = 30), given the testing

cost parameters from [53]; see Table 4.1. This benchmark design is highly relevant in our context, as it utilizes

a pool size commonly used for prevalence estimation of WNV via RT-PCR assays (e.g., [48, 49, 73, 81, 83]).

All data used in our numerical study come from published studies, and we complement these data with

sensitivity analysis; see Table 4.1.

Recall that both PD-S and PD-J Models require an initial estimate of the unknown prevalence rate,

p0, as input, and we study the performance of both models based on various values of p0, which we derive

based on the support of the unknown prevalence rate, P , denoted by [pLB , pUB ]. To construct the support

of P , we use WNV surveillance data from various parts of the Mid-South region of the United States, where

transmission of WNV infection was the most intense during the outbreak from 2002 to 2003 [52]. Since the

prevalence rate of WNV-infected mosquitoes is reported to be as high as 8.76% in Tennessee Valley during

the 2002-2005 period [34], we use an upper bound of pUB = 9%, and use a lower bound of pLB = 0.3% [81] in

our study. In particular, we consider that the distribution of P is P ∼ Uniform (pLB , pUB) (the distribution

information is only needed for the Monte-Carlo simulation, as we discuss subsequently), and study three

scenarios:

1. Scenario 1: p0 = 1
2 (pLB + pUB) = 0.0465, i.e., p0 is set to the true mean of P .

2. Scenario 2: p0 = 1
4 (pLB + pUB) = 0.0233, i.e., p0 is an underestimate of the true mean of P .

3. Scenario 3: p0 = 3
4 (pLB + pUB) = 0.0698, i.e., p0 is an overestimate of the true mean of P .
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Table 4.1: Data and sources for the numerical study.
Cost Parameters (Source)

cf $72 [53]
cv $4 [53]

Model Input (Scenario 1) Sensitivity Analysis (Scenarios 2 and 3)

p0 = 1
2

(
pLB + pUB

)
p0 = 1

4

(
pLB + pUB

)
; p0 = 3

4

(
pLB + pUB

)
Benchmark Design (Source) Benchmark Budget (Source)

(m,n) = (50, 30) B = $8, 160
(e.g., [83]) (e.g., [53,83])

We perform a Monte-Carlo simulation with 20,000 replications for each scenario. Specifically, for each of

the three scenarios, we first determine the optimal pool designs for the PD-S and PD-J Models based on the

inputs provided in Table 4.1. To obtain an optimal integer number of pools in PD-J, we utilize Theorem 2

repeatedly within a branch and bound algorithm in MATLAB [67]. Each simulation replication corresponds

to a randomly generated realization of P from a Uniform (pLB , pUB) distribution, denoted by p. Based on

the generated value of p, we then randomly generate the carrier status of each subject (specimen from a

mosquito) (a total of m∗ × n subjects in the PD-S Model, and m∗ × n∗(m∗) subjects in the PD-J Model),

where each specimen has the WNV infection with probability p, and is infection-free with probability 1− p.

These specimens are then randomly assigned to the testing pools. If a pool contains at least one infected

specimen, then the test outcome for the pool will be positive; and otherwise, the test outcome for the pool will

be negative. Given a set of test outcomes, we then compute the MLE of P using Eqn. (4.1), i.e., p̂. In each

replication, we compute the following performance metrics: the prevalence estimate (p̂), asymptotic variance

(σ2(m∗, n∗; p)) (see Eqn. 4.2), MSE, and percent relative bias of the prevalence estimate (rBias(%)), where:

MSE = (p̂− p)2, and rBias(%) = 100×
∣∣∣∣ p̂− pp

∣∣∣∣.
Tables 4.2 and 4.3 report the average of each performance metric over 20,000 replications. All performance

metrics are reported in the form: average ± half width of the 95% confidence interval (CI). These performance

metrics are commonly used in the statistics literature to evaluate the efficiency of an estimator (e.g., [57,58,

111]).

4.5.1 Pool Design Models versus the Benchmark Design

Table 4.2 reports the results for scenario 1, i.e., p0 = 1
2 (pLB + pUB). Since the number of pools, n, is fixed

exogenously in the PD-S Model, we consider a range of values for n for the PD-S Model; see Table 4.2.

The most important finding from Table 4.2 is that jointly selecting m and n in an optimal manner can

significantly improve performance, while a priori selecting a sub-optimal n value can lead to a rather poor
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Table 4.2: Performance of the benchmark design, and the PD-S and PD-J Models with p0 = 1
2 (pLB + pUB)

(average ± half width of 95% CI.)
n Benchmark Design

30

m 50
p̂ 0.2364 ± 0.00541
σ2(m∗, n; p)[×106] 262 ± 4.30
MSE[×106] 177,000 ± 4,806
rBias(%) 278.70 ± 7.22

n PD-S Model

20

m∗ 33
p̂ 0.1174 ±0.00355
σ2(m∗, n; p)[×106] 240.0± 3.10
MSE[×106] 65, 500± 3, 140
rBias(%) 114.90 ±4.45

30

m∗ 33
p̂ 0.08294 ±0.00257
σ2(m∗, n; p)[×106] 159.0± 2.04
MSE[×106] 32, 600± 2, 254
rBias(%) 64.13 ±3.08

50

m∗ 22
p̂ 0.04780 ±0.00039
σ2(m∗, n; p)[×106] 86.70± 0.09
MSE[×106] 102± 5.56
rBias(%) 17.04 ±0.21

100

m∗ 2
p̂ 0.04675 ±0.00041
σ2(m∗, n; p)[×106] 226.0± 1.93
MSE[×106] 230± 5.45
rBias(%) 31.80 ±0.43

PD-J Model
(m∗, n∗) (19,55)
p̂ 0.04750 ±0.00038
σ2(m∗, n∗; p)[×106] 80.40± 0.81
MSE[×106] 88.20± 2.89
rBias(%) 16.64 ±0.21

performance. Furthermore, the benchmark design (m=50, n=30) performs very poorly compared to all the

PD-S Models (if n is set to 30, a pool size of 50 is not efficient given the support of P , and, thus, it is best not

to use the full budget). We also note that when n = 50 or n = 100, the PD-S Model chooses the maximum

feasible pool size as the optimal pool size, i.e., m∗ = M
S

(n).

4.5.2 Sensitivity Analysis

Next, we compare the performance of the PD-S and PD-J Models in all three scenarios that we consider, i.e.,

p0 = 1
2 (pLB +pUB), p0 = 1

4 (pLB +pUB), and p0 = 3
4 (pLB +pUB); see Table 4.3. In cases where m∗ = M

S
(n)

in the PD-S Model, i.e., when n = 50 or n = 100, the pool size in the PD-S Model does not change with
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p0. Therefore, in Table 4.3, we report the performance of the PD-S Model for the different scenarios only

for the n = 20 and n = 30 cases.

Table 4.3: Performance of the PD-S and PD-J Models with various values of p0 (average ± half width of
95% CI.)

PD-S Model
n p0 = 1

2 (pLB + pUB) p0 = 1
4 (pLB + pUB) p0 = 3

4 (pLB + pUB)

20

m∗ 33 68 22
p̂ 0.1174 ±0.00355 0.4639 ± 0.00672 0.0567 ± 0.00131
σ2(m∗, n; p)[×106] 240.0± 3.10 873.0 ± 17.70 216.0 ± 2.32
MSE[×106] 65, 500± 3, 140 391,000 ± 6,007 7,760 ± 1,098
rBias(%) 114.90 ±4.45 682.68 ± 10.98 37.77 ± 1.51

30

m∗ 33 50 22
p̂ 0.08294 ±0.00257 0.2404 ± 0.00545 0.05012 ± 0.000710
σ2(m∗, n; p)[×106] 159.0± 2.04 265.0 ± 4.35 144.0 ± 1.53
MSE[×106] 32, 600± 2, 254 180,000 ± 4,839 1,820 ± 514
rBias(%) 64.13 ±3.08 283.06 ± 7.24 24.57 ± 0.72

PD-J Model
(m∗, n∗) (19,55) (29,43) (14,63)
p̂ 0.04750 ±0.00038 0.05292 ±0.00105 0.04724 ±0.00038
σ2(m∗, n∗; p)[×106] 80.40± 0.81 104± 1.25 77.90± 0.71
MSE[×106] 88.20± 2.89 4, 740± 860 84.70± 2.52
rBias(%) 16.64 ±0.21 23.94 ±1.13 17.13 ±0.21

Table 4.3 shows that the performance of both PD-S and PD-J Models deteriorates when p0 is an under-

estimate of the true mean of P , i.e., when p0 = 1
4 (pLB +pUB). However, the performance of the PD-J Model

is much more robust, in comparison to that of the PD-S Model, in this case. Therefore, the PD-J Model is

preferable in cases where the true prevalence rate is highly uncertain, and, hence, p0 can be a poor estimate

of the true prevalence rate. Interestingly, we observe that when the true prevalence rate follows a distribution

(such as the setting considered in our Monte-Carlo simulation), using an overestimate of the true mean of P ,

i.e., p0 = 3
4 (pLB + pUB), results in more efficient pool designs in both models over all scenarios considered.

This insight is of particular relevance to prevalence estimation of emerging or seasonal infections such as

WNV. Since the prevalence rates of these infections are highly uncertain, using a conservative estimate of

P , i.e., an overestimate of P , is more beneficial in designing testing pools for prevalence estimation, as also

observed by, e.g., [58, 75].

4.6 Discussion

In this paper, we develop and study two pool design optimization models for prevalence estimation under

limited resources: the single-variable pool design model, PD-S, where the number of pools is fixed exoge-

nously, and the joint pool design model, PD-J, where both the pool size and the number of pools are set

59



optimally. Our models are quite general, and can apply to prevalence estimation of various diseases. Further,

our PD-J Model has an important advantage over the models studied in the literature: since it allows for

both the pool size and the number of pools to be set optimally, the tester does not need to determine the

number of testing pools, or testing kits, in advance. This flexibility of the PD-J Model is especially desirable

for prevalence estimation of emerging or seasonal infections, as our analysis shows that it provides “good”

testing designs even when input parameters are inaccurate. This is not the case for the PD-S Model, which is

often used in the existing literature, since it is highly dependent on an initial point estimate of the prevalence

rate, i.e., it can yield poor solutions if the point estimate is not accurate. From that perspective, the PD-J

Model applies especially well to prevalence estimation of emerging or seasonal diseases, such as Zika or West

Nile virus disease, for which initial information, prior to testing, is often highly unreliable. We develop a

threshold-type policy for determining the optimal testing pool design, or optimal pool size, for each model.

We also establish key structural properties of optimal pool designs and analytically characterize the form of

optimal pool designs in various settings, further contributing to the existing literature of testing pool design

for prevalence estimation.

Our case study, on estimating the prevalence of West Nile virus in mosquitoes, compares our models, both

with the number of pools set exogenously, i.e., PD-S, and jointly optimized with the pool size, i.e., PD-J,

against a benchmark design from the literature. There are several important findings from this study. First,

our designs significantly outperform the benchmark design used in the literature; in fact, our comparison

of the benchmark design with the associated PD-S designs shows that it is not always the best strategy to

maximize the pool size given the remaining budget; sometimes using smaller pools than what the budget

allows is better. Our findings also underscore the importance of jointly optimizing over pool size and number

of pools in order to accurately estimate P . When estimating the prevalence of emerging and/or seasonal

diseases, the distribution and support of P are highly uncertain at the outset, and thus input parameters

are likely to be inaccurate. It is in these realistic cases that the PD-J Model performs significantly better

than the PD-S Model. These findings have important implications for designing surveillance studies.

As immediate, and important, extensions of our study, one can relax some of our modeling assumptions,

including that the screening test is perfectly reliable. In addition, the requirement of an initial point estimate,

i.e., p0, as model input can be removed by applying robust optimization models and methodologies to testing

pool design. Further, as healthcare policy-makers may need to allocate their testing budget to prevalence

estimation activities for a number of diseases, or over various regions, each potentially having a different

prevalence rate of the disease in question, extending our models to study pool design and budget allocation

for prevalence estimation for multiple diseases or multiple regions is also an important direction for future

research.

60



Chapter 5

Robust Pooled Testing Design for

Prevalence Estimation of Emerging

and Seasonal Diseases

5.1 Introduction

Emerging and/or seasonal diseases pose significant challenges to public health policy and health systems

management due to their highly stochastic nature, in terms of disease status and dynamics; and outbreaks

of these diseases are extremely costly to the society. As examples, the 2016 Zika outbreak in the Latin

American and Caribbean region cost approximately $3.5 billion in treatment, prevention, and lost revenues

( [107]); the annual treatment costs alone for the highly seasonal West Nile virus and Lyme disease are

estimated to be around $778 million and $1.3 billion, respectively, in the United States ( [1,9]). An accurate

estimate of the disease prevalence rate is crucial for outbreak detection, disease response and prevention,

and healthcare services management (e.g., [35, 39,104]), and is the problem studied in this paper.

While an effective surveillance of emerging and seasonal diseases is essential for the welfare of the society,

the funds and resources that can be allocated to testing activities needed to estimate the prevalence of the

disease in question are often very small in comparison to the needs ( [35]). As a result, prevalence estimation

via individual testing of each subject is either infeasible, or highly inefficient, leading to a small sample

sizes and to potentially inaccurate estimates ( [54,99,100]). An effective and efficient solution to prevalence

estimation under limited resources comes in the form of pooled testing, i.e., combining specimens (e.g., blood,
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urine, tissue swabs) from multiple subjects in a testing pool and testing the pool via a single test ( [38]).

Since its introduction by Dorfman in the 1940’s ( [38]), pooled testing has been shown to be highly efficient

for both prevalence estimation and subject identification problems (the latter problem seeks to identify all

infected subjects, which is not the focus of this paper), and is now a widely used testing method for both

purposes (e.g., [37, 39, 56, 85, 104]). If used for subject identification, pooled testing is typically followed

by individual testing of the positive-testing pools, but this additional step is typically not conducted for

prevalence estimation, as the ultimate goal is to derive an accurate estimate of the disease prevalence rate

(e.g., [50, 56,69, 70,72]). This is especially true when the goal is to estimate the prevalence of the “sources”

of vector-borne viral or bacterial diseases, e.g., mosquitoes carrying Zika virus or West Nile virus ( [83]),

ticks carrying Lyme disease or Babesiosis ( [20]), romaine lettuce carrying E. coli bacteria ( [22]). Thus,

in prevalence estimation, the test measures the pool’s concentration of a certain bio-marker that serves as

an indicator for the presence of the virus or bacteria of interest, and provides a binary outcome: positive,

indicating the presence of at least one disease-positive specimen in the pool, and negative otherwise; and

inference on the unknown prevalence rate is made based on the collected testing data.

While the accuracy of the prevalence estimate depends highly on the testing pool design, i.e., number

of pools to test and pool size (the number of specimens to combine in each pool) ( [25, 75, 92, 96]), the

pool design problem itself requires some initial estimate of the disease prevalence rate, which is highly

unreliable prior to surveillance, especially for emerging and seasonal diseases. This creates challenges for

obtaining an optimal pool design, and leads to potentially inaccurate estimates. On the other hand, the

literature on prevalence estimation mainly focuses on how to derive an efficient prevalence estimate from the

testing data, for a given pool design, i.e., the “estimation” component of the prevalence estimation problem

(e.g., [26–28, 40, 41, 54, 55, 81, 96, 102, 110]). On the pool design component, there is a limited number of

studies, most of which study only the pool size optimization problem, i.e., for a given number of testing

pools, under perfect tests (e.g., [57,58,89]), and imperfect tests (e.g., [45,69,99,100]). These studies require

an initial point estimate of the unknown prevalence rate for determining the pool size, but they do not

offer a mechanism to hedge against the uncertainty in the initial estimate (e.g., [45,69,99,100,111]), except

for a few studies that use sequential approaches, as we discuss below. However, it has been shown that a

pool design that relies highly on an initial point estimate of the prevalence rate, or that corresponds to an

exogenously fixed number of testing pools, can result in highly inaccurate estimates of the prevalence rate

( [57,58,75,76]). In particular, [76] shows that jointly optimizing both the pool size and the number of pools

can provide substantial benefit, leading to a more accurate estimate at the same testing budget, and this is

the approach we take in this paper.

As mentioned above, one approach to account for uncertainty in the initial estimate of the prevalence
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rate is to use a sequential (multi-stage) estimation procedure, which allows the prevalence rate estimate to

be updated as testing proceeds, based on the testing data collected thus far, so that the remaining tests

can be conducted with a pool design that is based on a more accurate estimate (e.g., [57,58,75]). However,

sequential estimation procedures lead to new operational challenges, including the need to determine the

split of the testing budget among the different testing stages, which have not been addressed adequately in

the literature. This is mainly because the testing outcome at the end of each stage, which is an input to

the subsequent stage, is random, and closed-form analytical expressions are not available for the resulting

estimator and its efficiency. In addition, even within a sequential procedure, one still needs to solve the pool

design problem at the beginning of each testing stage, under uncertainty, and the current research in this

area is limited, as discussed above.

Motivated by these gaps in the literature, in this paper we propose robust optimization approaches to

testing pool design under uncertainty and limited resources. Our novel robust optimization models for

pool design do not require an initial point estimate, and are based solely on the support of the unknown

prevalence rate, which is much easier to estimate accurately than its distribution or moments; and provide

robust solutions that perform well even when the support information is not perfectly accurate. Further, our

models are flexible, in that they can be integrated into both single and multi-stage estimation frameworks.

We establish important structural properties of optimal robust pool designs, and complement our analytical

results with a case study on the prevalence estimation of West Nile virus in mosquitoes, which illustrates

the value of robust pool designs in both single and multi-stage estimation frameworks. Our findings indicate

that using a robust pool design within a single-stage estimation framework can reap almost all benefits of

multi-stage frameworks, which can be very difficult to implement, and this finding continues to hold even

when there is limited information on the current status of the disease prior to testing.

The remainder of this paper is organized as follows. In Section 5.2, we present the notation, modeling

assumptions, single and multi-stage estimation frameworks; and formulate the robust pool design optimiza-

tion models. In Section 5.3, we analytically characterize the optimal robust pool designs, and develop exact

algorithms that can efficiently obtain the optimal pool designs. We then demonstrate the benefits of the

proposed robust pool designs in both single and multi-stage estimation frameworks, through a case study of

West Nile virus prevalence estimation in mosquitoes in Section 5.4. Finally, we conclude in Section 5.5 with a

discussion of our findings and suggestions for future research. To facilitate the presentation, all mathematical

proofs and some tables are relegated to the Appendix.
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5.2 Notation, Assumptions, and Models

This section is organized as follows. In Section 5.2.1, we introduce the notation and discuss the modeling

assumptions. Then in Sections 5.2.2 and 5.2.3, we respectively outline the single and multi-stage estimation

frameworks, and the pool design optimization models.

5.2.1 Notation and Assumptions

Throughout, we denote random variables in upper–case letters, their realization in lower–case letters, and

vectors in bold-face. A summary of the notation can also be found in Appendix D.1.

Our goal is to determine a pool design so as to accurately estimate an unknown prevalence rate, P , of a

disease. Our approach is distribution-free, that is, P is allowed to follow any continuous distribution within

the family of all continuous distributions having support
[
pLB , pUB

]
, where 0 < pLB < pUB < 1. Further,

our approach can be used both within single and multi-stage estimation frameworks. In particular, in each

testing stage s, s = 1, 2, · · · , S, the tester determines the pool design, i.e., pool size, m(s), and number of

pools to test, n(s), under a limited testing budget, B(s), and uses this pool design to test subjects and collect

testing data, which is then used to derive an estimate of the unknown prevalence rate at the conclusion

of all testing. The objective is to determine a pool design that minimizes a function of the asymptotic

variance of the estimator, as we detail below. Testing incurs a fixed cost (e.g., cost of the testing kit), of

cf per testing pool, and a variable cost (e.g., collection cost), of cv per specimen tested, with cf > cv,

and the total testing budget available to the tester is given by B. Then, in the pool design problem in

stage s, s = 1, 2, · · · , S, the feasible set for decision variables m(s) and n(s) is given by, F(m(s), n(s)) ≡{
(m(s), n(s)) ∈ Z+ : cfn

(s) + cvm
(s)n(s) ≤ B(s)

}
, where

∑S
s=1B

(s) = B; and we use the superscript * to

denote an optimal solution in stage s, i.e., (m(s)∗, n(s)∗), with (m∗,n∗) = {(m(s)∗, n(s)∗), s = 1, · · · , S}

denoting an optimal pool design vector. In this paper, we focus on the single-stage, i.e., S = 1, and

two-stage, i.e., S = 2, estimation frameworks; our models readily extend to other multi-stage estimation

frameworks, i.e., with S > 2. Then, for a given budget allocation factor λ, 0 < λ ≤ 1, the total budget B

can be split into B(1) = λB and B(2) = (1− λ)B for S = 2, and for S = 1, λ = 1.

In each stage of the estimation framework, the objective is to minimize a function of the asymptotic

variance of the estimator, denoted by σ2(m(s), n(s); p), which is a commonly used metric for both pool design

and estimation efficiency (e.g., [58, 66, 69, 93, 98, 100, 102]). Specifically, σ2(m(s), n(s); p), corresponding to

a true prevalence rate p, represents the limiting behavior of the mean squared error (MSE) (i.e., variance

plus bias square) of an estimator P̂ as the number of pools, n(s), becomes large. The asymptotic variance

also provides an approximation for the Cramer-Rao lower bound on the Fisher’s information obtained from
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the prevalence estimate (e.g., [18]). Therefore, the asymptotic variance is commonly utilized in the pool

design literature, because, in general, computing the MSE or the Fisher’s information is often intractable

(e.g., [57, 58,104]).

The test can be applied to pools of specimens collected from subjects (i.e., m ≥ 2) as well as to individual

specimens (i.e., m = 1). We assume that the test is perfectly reliable, and provides a binary outcome, that

is, the test has perfect sensitivity (true positive probability) and specificity (true negative probability), thus

providing a positive outcome only if there is at least one true-positive specimen in the pool, and a negative

outcome only if all specimens in the pool are true-negative.

5.2.2 The Sequential Estimation Framework

In what follows, we provide an outline of the two-stage sequential (two-stage) estimation framework, a special

case of which reduces to the single-stage estimation framework ( [57,58,75]). To this end, let T (m(s)∗, n(s)∗)

denote the random number of positive-testing pools among n(s) pools, each containing m(s) specimens, for

s = 1, · · · , S, where S = 1 for the single-stage framework, and S = 2 for the two-stage framework.

Stage s, s = 1, · · · ,S:

1. Determine the optimal pool design, (m(s)∗, n(s)∗) (see Section 5.2.3).

2. Test specimens using the design, (m(s)∗, n(s)∗), and obtain the test outcome, T (m(s)∗, n(s)∗).

3. Compute P̂ (s) via the maximum likelihood estimator (MLE) function, which is the unique solution to

the following equation (e.g., [58]):

s∑
j=1

(m(j)∗)× T (m(j)∗, n(j)∗)

1− (1− P̂ (s))m(j)∗
=

s∑
j=1

m(j)∗ × n(j)∗. (5.1)

4. If s = 1, then update the input for the second stage pool design model based on P̂ (1) (see Section 5.2.3),

and repeat the process for stage s = 2. If s = 2, then terminate the testing, with a final estimate, P̂ (2).

To simplify the notation, we denote the final estimate of the prevalence rate as P̂ , i.e., P̂ = P̂ (1) for

S = 1, and P̂ = P̂ (2) for S = 2.

In the next section, we discuss the pool design optimization models that are to be used within this

estimation framework. All pool design optimization models utilize a function of the asymptotic variance of

the MLE in their objective function. The asymptotic variance of the MLE, corresponding to a pool design
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(m,n) and a true prevalence rate p, follows (e.g., [58]):

σ2(m,n; p) =
1− (1− p)m

nm2(1− p)m−2
. (5.2)

The asymptotic variance of the final MLE, given an optimal pool design vector (m∗,n∗), and a true prevalence

rate p, follows (e.g., [58]):

σ2((m∗,n∗); p) =

[
S∑
s=1

n(s)∗(m(s)∗)2(1− p)m(s)∗−2

1− (1− p)m(s)∗

]−1

, (5.3)

where the case with S = 1 reduces to Eqn. (5.2).

5.2.3 Pool Design Optimization Models

We formulate and study two robust optimization models, which differ in their objective function: the Mini-

max Pool Design Model (MM) and the Regret-based Pool Design Model (RM), both of which require only the

support of P , given by [pLB , pUB ]. In order to quantify the benefit of the robust pool designs, we compare

them with a benchmark model from the literature, referred to as the Deterministic Pool Design Model (DM),

which requires an initial point estimate of P , denoted by p0 ( [76]). In what follows, we use the subscript

M , R, and D to respectively refer to MM, RM, and DM, and the superscript s = 1, 2, to refer to estimation

stage s, e.g., (m
(s)∗
X , n

(s)∗
X ) denotes the optimal pool design for Model X, X ∈ {M,R,D}, in stage s, s = 1, 2.

We drop index s when a model or result applies to all estimation stages.

Mini-max Pool Design Model (MM): Regret-based Pool Design Model (RM):

minimize maxp∈[pLB ,pUB ]

{
σ2(m,n; p)

}
minimize maxp∈[pLB ,pUB ] {Regret(m,n; p)},

subject to cfn+ cvmn ≤ B (C1) subject to (C1) – (C2)

m,n ∈ Z+ (C2)

Benchmark Deterministic Pool Design Model (DM) ( [76])

minimize σ2(m,n; p0)

subject to (C1) – (C2)

The Regret function used in RM is defined similar to the literature (e.g., [10, 39,79]):

Regret(m,n; p) = σ2(m,n; p)− σ2(m∗D(p), n∗D(p); p), ∀p ∈ [pLB , pUB ],∀(m,n) ∈ F(m,n), (5.4)
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that is, for a given prevalence rate p, Regret(m,n; p) represents the “cost” (i.e., increase in the asymptotic

variance) resulting from the use of some pool design (m,n), instead of an optimal design (m∗D(p), n∗D(p))

had the tester known the true p value, i.e., the optimal solution to DM with p0 = p.

Observe that the robust model, MM, is concerned only with the worst-case outcome, i.e., mini-max

{σ2(m,n; p)}. It is well-known that such mini-max type objectives can lead to overly conservative solutions,

especially under an interval uncertainty set (e.g., [6, 11, 39, 79]), which we also utilize, through the use of

the support of P . The regret-based objective in RM provides an alternative approach, and can reduce the

conservativeness of the mini-max solution (e.g., [39,79,84]), and we consider both formulations in our study.

Among the three pool design optimization models that we consider, both robust pool design models, MM

and RM, are novel, while the benchmark model, DM, as well as DM-variations are commonly utilized in the

literature, both for a given number of pools, n, under different objective functions, including the minimization

of the asymptotic variance ( [58, 69]), maximization of the Fisher’s information via the Cramer-Rao lower

bound, which reduces to a function of the asymptotic variance ( [57,111]), or maximization of the probability

of a random pool testing positive ( [99]); and for joint pool design optimization ( [76]).

Each pool design optimization model can be used both within both the single and two-stage estimation

frameworks presented in Section 5.2.2. When used within a two-stage framework, one can use various

approaches for updating the input parameters for each stage’s pool design model; we discuss the approach

we that we use in our case study in Section 5.4.

5.3 Optimal Pool Designs

The optimal solution to Model DM has been fully characterized in [76]. Therefore, in this section, we focus

on characterizing the optimal solutions to the robust models, MM and RM. We use some of the properties

established in [76] on the asymptotic variance function (see Appendix D.2), as well as establish new structural

properties. To this end, we define M(n) ≡
⌊
B−cfn
cvn

⌋
, for n ∈ Z+, i.e., the maximum feasible pool size for

a given a number of pools, n. Observe that, by this definition, M(n) is non-increasing in n. We also

define, similar to [69] and [76], the threshold prevalence rate, π0(m1,m2), ∀m1,m2 ∈ Z+ : m1 < m2, where

σ2(m1, n; p) = σ2(m2, n; p). From [69] and [76], we have that:

σ2(m1, n
∗(m1); p)


> σ2(m2, n; p), ∀p < π0(m1,m2)

< σ2(m2, n; p), ∀p > π0(m1,m2)

,

and π0(m1,m2) is decreasing in each of m1 and m2 (see Appendix D.2).
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In the remainder of the paper, we restrict our analysis to the case where pUB < 1
2 ; this is the most

realistic case for disease surveillance studies, as disease prevalence rates are typically very low.

5.3.1 Characterization of the Optimal Solution to the Mini-max Model

We first characterize the optimal solution to Model MM.

Theorem 3. For any given n ∈ Z+, n ≤
⌊

B
cf+cv

⌋
, Model MM can be equivalently formulated as Model DM

with p0 = pUB . Thus, an optimal MM solution follows a threshold policy:

m∗M (pUB) =



M(n), if pUB ≤ π0(M(n)− 1,M(n))

...

m+ 1, if π0(m+ 1,m+ 2) ≤ pUB ≤ π0(m,m+ 1)

m, if π0(m,m+ 1) ≤ pUB ≤ π0(m− 1,m)

m− 1, if π0(m− 1,m) ≤ pUB ≤ π0(m− 2,m− 1)

...

1, if π0(1, 2) ≤ pUB < 1.

For n >
⌊

B
cf+cv

⌋
, no feasible solution to MM exists.

Therefore, for any given n ∈ Z+, n ≤
⌊

B
cf+cv

⌋
, the optimal MM solution is unique if the upper bound,

pUB , does not correspond to a prevalence threshold point (pUB 6= π0(m,m+ 1), ∀m ∈ Z+). There are dual

optimal solutions if pUB corresponds to a prevalence threshold point. To obtain the optimal number of pools

for MM, we use Theorem 3 repeatedly within a search over n, n ∈ Z+ : n ≤
⌊

B
cf+cv

⌋
. Theorem 3 and Lemma

A1 (see Appendix D.2) lead to the following results.

Corollary 8. The MM optimal solution, m∗M , has the following properties:

1. m∗M is non-increasing in pUB , with m∗M = 1, ∀pUB ≥ π0(1, 2).

2. For a given cv, m
∗
M is non-decreasing in cf .

3. For a given cf , m∗M is non-increasing in cv.

Thus, when the support of the unknown the prevalence rate is expanded to include higher prevalence rate

possibilities, testing more pools of smaller size becomes more efficient, in terms of reducing the asymptotic

variance. The result then follows because this implies a higher likelihood of having a true-positive specimen
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in a testing pool, which, in turn, leads to a higher likelihood of a positive test outcome for any pool. However,

a testing outcome of all positive-testing pools leads to a poor prevalence rate of 1, and pool sizes reduce to

counteract this. Similarly, when the upper bound of the prevalence rate gets smaller (i.e., pUB decreases),

testing fewer pools of larger size becomes more efficient, as this reduces the likelihood of having all negative-

testing pools. With regards to the testing cost structure, as the fixed cost of testing (cf ) increases, testing

fewer pools of larger size becomes more efficient, while, as the variable cost of testing (cv) increases, testing

more pools of smaller size becomes more efficient.

Next, we compare the optimal solutions to DM and MM.

Corollary 9. For any problem instance, the optimal solutions to DM and MM are such that: m∗D(p0) ≥

m∗M (pUB), and n∗D(p0) ≤ n∗M (pUB), ∀p0 ∈ [pLB , pUB ].

Our extensive numerical study indicates that, in general, MM also calls for smaller pool sizes than RM,

i.e., m∗M ≤ m∗R, but a larger number of pools tested, i.e., n∗M ≥ n∗R.

5.3.2 Characterization of the Optimal Solution to the Regret-based Pool Design

Model

We next turn our attention to the Regret-based model, RM. For this purpose, we first characterize the optimal

RM pool size when the number of pools, n, is fixed. We first study the inner maximization problem, i.e.,

max
p∈[pLB ,pUB ]

Regret(m,n; p), for a given (m,n) ∈ F(m,n). To this end, we first derive the first order condition

(FOC):

∂

∂p
Regret(m,n; p) =

1

n

{
1

m2

[ (m− 2)

(1− p)m−1
+ 2(1− p)

]
− 1(

m∗D(n, p)
)2 [

(
m∗D(n, p)− 2

)
(1− p)m∗D(n,p)−1

+ 2(1− p)
]}

= 0, (5.5)

wherem∗D(n, p) is the optimal solution to DM with p0 = p, and for a given n ∈ Z+, n ≤
⌊

B
cf+cv

⌋
. Observe that

any solution to the FOC (see Eqn. (5.5)) is independent of n. We define p̃(m) ≡ arg min
p∈(0,1)

{
∂
∂pRegret(m,n; p) = 0

}
,

∀m,n ∈ Z+ : m ≥ 2, (m,n) ∈ F(m,n). By this definition, if p̃(m) exists, then it is the smallest solution to

the FOC, and, hence, is independent of n. We then have the following result.

Lemma 12. For any given m,n ∈ Z+ : m ≥ 2, (m,n) ∈ F(m,n), Regret(m,n; p) function has the following

properties:

1. Regret(m,n; p) = 0, ∀p ∈
[
π0(m,m+ 1), π0(m− 1,m)

]
.
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2. If p̃(m) exists, then it is unique, belongs to the interval
(
0, π0(m,m+ 1)

)
, and corresponds to a local

maximum.

3. Regret(m,n; p) is strictly increasing in p, ∀p ∈
(
π0(m− 1,m), 1

)
.

As an example, Figure 5.1 demonstrates the behavior of the Regret(m = 4, n = 1; p) function with

respect to p. In this case, p̃(4) exists, and is the unique maximum of the function in the interval
(
0, π0(4, 5)

)
;

further, Regret(m = 4, n = 1; p) function is strictly increasing in p, ∀p ∈
(
π0(3, 4), 1

)
.
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Figure 5.1: Regret(m = 4, n = 1; p) versus p for cf = 5, cv = 1.

Lemma 13. For any given m ∈ Z+ : 2 ≤ m ≤ M(1), the solution to

{
max

p∈[pLB ,pUB ]
{Regret(m,n; p)}

}
is

attained at one of the points, pLB , pUB , or p̃(m), ∀n ∈ Z+, that is:

p∗(m) ≡ arg max
p∈{pLB ,pUB ,p̃(m)}

{Regret(m,n; p)}.

Lemma 13 allows us to compute p∗(m) only once for any m ∈ Z+ : 2 ≤ m ≤ M(1), and to use these

values of p∗(m) in the exhaustive search over n, n ∈ Z+, n ≤
⌊

B
cf+cv

⌋
, in order to find (m∗R, n

∗
R). Thus, we

have the following result.

Theorem 4. For any n, n ∈ Z+, n ≤
⌊

B
cf+cv

⌋
, use Lemma 13 repeatedly for m = 1, · · · ,M(n) to obtain

the corresponding objective function value, i.e., Regret(m,n; p∗(m)), then:

(m∗R, n
∗
R) ≡ arg min

(m,n)∈F(m,n)

{
Regret(m,n; p∗(m))

}
.

Theorem 4 enables us to develop an efficient solution algorithm for determining an optimal RM solution.
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5.4 Case Study: Prevalence Estimation of West Nile Virus in

Mosquitoes

Our goals in this section are: (i) to compare the performance of the robust pool designs obtained by MM and

RM with the benchmark pool design, obtained by DM ( [76]); and (ii) to compare the single with two-stage

estimation frameworks (with various values of λ), with and without robust pool designs, so that we can

provide guidelines to practitioners. For this purpose, we apply the proposed robust pool design optimization

models, embedded into single and two-stage estimation frameworks, to estimate the prevalence of mosquitoes

carrying West Nile virus (WNV).

This section is organized as follows. In Section 5.4.1, we describe the numerical study and data sources.

Then, in Section 5.4.2, we present and discuss the numerical results. Additional numerical results are

provided in Appendix D.4.

5.4.1 Description of the Numerical Study

WNV-related diseases have become a seasonal endemic in the United States, leading to several fatalities

from neuro-invasive diseases ( [52, 65]). The primary source of WNV transmission to humans is a mosquito

bite ( [52]), and, therefore, the prevalence rate of WNV in mosquitoes is shown to be a leading indicator

of the prevalence rate of WNV in humans ( [31, 36, 64]). The WNV disease in humans is significantly

under-reported, because of a lack of specific symptoms, and it can even be asymptomatic ( [109]). This is

problematic because the WNV disease can be transmitted through blood transfusion or organ transplantation

(e.g., [60, 90]). Therefore, an accurate estimation of the prevalence rate of WNV-carrying mosquitoes is

essential for outbreak prediction and disease prevention ( [52, 53]). The WNV disease fits well with our

models, because its prevalence rate in both mosquitoes and humans is highly seasonal, with substantial

fluctuation from year to year, and in different regions ( [39,52,65]).

In our study, we consider the reverse-transcription polymerase chain reaction (RT-PCR) assay for WNV

screening in mosquitoes ( [53]). RT-PCR assay detects the viral RNA present in the specimens using the

nucleic acid amplification technology, and is highly accurate ( [77]). All data used in our numerical study

come from published studies, and we complement these data with various sensitivity analyses; see Table 5.1

for the parameter values used.

In our numerical study, we use three different testing budgets, B = {$8, 160, $16, 320, $65, 280}, which,

given the testing cost parameters from [53], respectively correspond to pool designs that test 30, 60, and

240 pools of mosquito specimens, each of size 50 ( [81, 83]). These pool designs are highly relevant to our
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Table 5.1: Data and sources for the numerical study
Parameters (Source)

cf $72 ( [53])
cv $4 ( [53])
B {$8, 160, $16, 320, $65, 280}

(e.g., [53, 83])
pLB 0.003 ( [81])
pUB 0.09 ( [34])

Simulation Input
Model Input Accurate Input Setting Inaccurate Input Settings

DM: p0 = 1
2

(
pLB + pUB

)
P ∼ Uniform (0.003, 0.09); P ∼ Beta (1.59, 32.56);

= 0.0465 µP = 0.0465; µP = 0.0465; P ∈ (0, 1)
MM, RM: P ∈

[
pLB , pUB

]
P ∈ (0.003, 0.09) P ∼ Beta (3.52, 46.92);

= [0.003, 0.09] µP = 0.0698; P ∈ (0, 1)
P ∼ Beta (3.52, 46.92);
µP = 0.0233; P ∈ (0, 1)

study, as testing pools of size 50 are used commonly in studies that estimate the prevalence rate of WNV in

mosquitoes via RT-PCR assays (e.g., [48, 49,73,81,83]).

We derive the support of the unknown prevalence rate, P , from WNV surveillance data from various

parts of the Mid-South region of the United States, where WNV disease was the most prevalent during the

2002-2003 outbreak ( [52]). As the prevalence rate of WNV-infected mosquitoes can be as high as 8.76%

(Tennessee Valley between 2002 and 2005 ( [34]), we use an upper bound of 9%. We use a lower bound of

0.3%, which has been used in previous WNV prevalence studies in mosquitoes (e.g., [81, 83]). Throughout,

we assume that the tester estimates the support of P as P ∈ [0.003, 0.09] (which is used as an input for MM

and RM), and estimates the mean of P as µP = 0.0465 (which is used as an input for DM, i.e., p0 = µP ).

Observe that the distribution of P is not needed for any of the models, MM, RM, and DM. To determine the

performance of each model, we perform a Monte Carlo simulation, as detailed below, in which we assume

a certain distribution of P ; see Table 5.1. We first study an accurate input setting in which the tester

estimates both the support and the first moment of P accurately (i.e., the setting with simulation inputs

of P ∼ Uniform (0.003, 0.09); see Table 5.1). Then, we study the more realistic, inaccurate input settings,

where the tester does not estimate the support and the first moment of P accurately (i.e., the settings with

simulation inputs of P ∼ Beta (α, β), with various values of α and β; see Table 5.1). For this purpose, we

define a scenario by an information setting (accurate input setting, or one of the inaccurate input settings)

and a testing budget, B (B ∈ {$8, 160, $16, 320, $65, 280}).

We perform a Monte Carlo simulation, with 20,000 replications for each scenario. Specifically, for each

scenario, we first determine the optimal pool designs for the various models based on the model inputs

provided in Table 5.1. Each simulation replication corresponds to a randomly generated realization of P ,

denoted by p, from a specified true distribution of P (see the simulation inputs in Table 5.1). Based on
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the generated value of p, we then randomly generate the carrier status of each subject (specimen) (a total

of m(s)∗ × n(s)∗(m(s)∗) specimens in each stage s = 1, · · · , S, for each estimation framework), where each

specimen has the WNV disease with probability p, and is disease-free with probability 1−p. These specimens

are then randomly assigned to the testing pools. If a pool contains at least one infected specimen, then the

test outcome for the pool will be positive; and otherwise, the test outcome for the pool will be negative.

Given a set of test outcomes, we then compute the MLE of P using Eqn. (5.1), i.e., p̂(1). If λ = 1, i.e., in a

single-stage estimation framework, we stop at this step and compute the performance metrics, as discussed

below. If 0 < λ < 1, i.e., in a two-stage estimation framework, we update the input for the optimization

models according to p̂(1), the outcome of stage 1. In particular, for Model DM, we update p0 to be p̂(1). For

the robust models MM and RM, we estimate the 95% confidence interval of p̂(1) using its asymptotic variance,

i.e., we compute σ2(m(1)∗, n(1)∗; p̂(1)) using Eqn. (5.2). Then, we let [pLB = p̂(1) − 1.96σ(m(1)∗, n(1)∗; p̂(1)),

pUB = p̂(1) + 1.96σ(m(1)∗, n(1)∗; p̂(1))]. We then repeat the pool design optimization and testing steps in

order to compute the final prevalence rate estimate p̂(2) using Eqn. (5.1).

We compute the following performance metrics, which are commonly used in the statistics literature to

evaluate the efficiency of an estimator (e.g., [57, 58,111]):

1. The prevalence estimate, p̂ (see Eqn. (5.1))

2. The final asymptotic variance, σ2((m∗,n∗); p) (see Eqn. (5.3)), where (m∗,n∗) ≡ {(m(1)∗, n(1)∗), (m(2)∗, n(2)∗)}

for two-stage estimation frameworks (0 < λ < 1), and (m∗,n∗) ≡ (m(1)∗, n(1)∗) for single-stage esti-

mation frameworks (λ = 1)

3. The mean squared error of the prevalence estimate: MSE = (p̂− p)2

4. The percent relative bias of the prevalence estimate: rBias(%) = 100×
∣∣∣ p̂−pp ∣∣∣.

In each of the following tables, we report the performance metrics in the form: average ± half width of

95% confidence interval (CI), based on 20,000 replications.

5.4.2 Numerical Results

In our numerical study, we consider both single and two-stage estimation frameworks, i.e., with λ ∈

{0.25, 0.5, 1}, for both the accurate and inaccurate input settings (Table 5.1). In all cases, the tester deter-

mines the “optimal” pool designs based on the assumed support of P , i.e., P ∈ [0.003, 0.09] (for MM and

RM), or based on the assumed point estimate of P , i.e., p0 = 0.0465 (for DM). Then, in the simulation, P

is generated from Uniform (0.003, 0.09) in the accurate input setting, and from Beta(α, β), with support of

[0, 1], and for varying values of α and β, in the inaccurate input settings; see Table 5.1.
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Table 5.2 displays our results for the scenario with B=$8, 160 and accurate input parameters, i.e., P ∼

Uniform (0.003, 0.09), for a single-stage estimation framework, i.e., with λ = 1.

Table 5.2: Comparison of DM, MM and RM for a single-stage estimation framework (λ = 1) withB = $8, 160
and accurate input parameters (average ± half width of 95% CI)

Model DM MM RM
True Distribution (Input Parameters) (p0=0.0465) (P ∈ (0.003, 0.09)) (P ∈ (0.003, 0.09))
and Moments of P

(m∗, n∗) (19,55) (12,68) (13,65)
Uniform ∼ p̂ 0.04750 ±0.00038 0.04706 ±0.00038 0.04693 ±0.00037
(0.003, 0.09) σ2((m∗,n∗); p)[×106] 80.40± 0.81 78.10± 0.69 77.90± 0.70
µP = 0.0465 MSE[×106] 88.20± 2.89 81.70± 2.20 81.30± 2.19
σ2
P = 0.000675 rBias(%) 16.64 ±0.21 17.58 ±0.23 17.33 ±0.22

As observed in Table 5.2, when input parameters are accurate, DM, MM, and RM perform well with

respect to all performance metrics, even at the lowest budget level of B = $8, 160, and even in a single-stage

estimation framework, i.e., λ = 1. However, we note that the robust models MM and RM yield slightly more

efficient pool designs in comparison to DM, with respect to minimizing the estimation error.

In the remainder of this section, we focus on the scenarios with inaccurate input settings, i.e., P ∼ Beta

(α, β), with support of [0, 1], and varying values of α and β (see Table 5.1), in single and two-stage estimation

frameworks, i.e., with λ ∈ {0.25, 0.5, 1}; see Table 5.3. For two-stage frameworks, the pool designs in stage 2

are random. Therefore, in Table 5.3, we only report the optimal pool designs in stage 1, (m(1)∗, n(1)∗). Since

(m(1)∗, n(1)∗) is determined based on the assumed support and first moment of P , the pool designs reported

in Table 5.3 remain the same for each model. To facilitate the presentation, the results for scenarios with

B ∈ {$16, 320, $65, 280} are given in Appendix D.4.

Not surprisingly, when input parameters are not accurate, all models produce worse results; however, RM

and MM designs are much more robust, with MM design having the lowest degradation due to inaccurate

parameters. For instance, when the true distribution of P is Beta ∼ (1.59, 32.56), MM produces, on average,

a better estimate of P compared to DM (0.04739 vs. 0.05152), and reduces the asymptotic variance by

22.93%, MSE by 92.04%, and relative bias by 7.89%. Observe that, in this case, the input parameter for

DM is accurate (p0=µP ), which is not always realistic. The robust models continue to perform better than

the other models (with MM performing the best) when the true mean is higher or lower than the assumed

mean, see Table 5.1 and Appendix D.4.

From Table 5.3, we also see that, while the robustness of Model DM can be significantly improved by

using the model within the two-stage estimation framework, e.g., with DM-S (λ = 0.5), MM-S (λ = 0.5) does

not significantly improve the robustness of Model MM (λ = 1) in all cases of inaccurate input parameters

we study. Further, the estimation errors of DM-S and MM-S, both with λ = 0.5, are also not significantly

lower than those of RM-S (λ = 1). We also note that, while not substantial, MM-S (λ = 0.5) has the best
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performance, in terms of minimizing estimation errors, of all models we consider. However, this difference

diminishes as the budget level, B, increases; see Appendix D.4. With respect to the value of λ, using λ = 0.25

can lead to more efficient pool designs, for both DM-S and MM-S, when B is sufficiently high (see, e.g.,

Table D.2 and D.3), in comparison to λ = 0.5. When B is low, i.e., B = $8, 160, using λ = 0.25 can lead to

inefficient pool designs, as the budget for stage 1 is not sufficient, leading to inaccurate updating of model

inputs for pool design optimization in stage 2; see Table 5.3. Therefore, when using a two-stage estimation

framework, i.e., when λ < 1, λ needs to be set in accordance with the total testing budget, B, which is a

considerable challenge in implementing the two-stage estimation framework.

5.5 Discussion

In this paper, we develop and study robust pool design optimization models for prevalence estimation under

limited resources, within single-stage and two-stage estimation frameworks. Our models are quite general,

and enable us to relax various restrictive assumptions common in the existing literature, including the use of

a fixed number of pools and a point estimate as model inputs. Further, our robust models have an important

advantage over the models studied in the literature, in that they require only the support of the unknown

prevalence rate, which is relatively easy to estimate, in comparison to estimating the distribution or point

estimate of the unknown prevalence rate. More importantly, our analysis shows that the proposed robust

models provide “good” testing designs even when the estimated support is inaccurate. This is not the case

for the pool design models studied in the literature that are highly dependent on an initial point estimate

of the prevalence rate, in that these models can yield poor solutions if the point estimate is not accurate.

From that perspective, our robust models apply especially well to prevalence estimation of emerging or

seasonal diseases, such as Zika or West Nile virus disease, for which initial information, prior to testing, is

often highly unreliable. Further, our numerical study indicates that the robust pool design models perform

well even within a single-stage estimation framework, compared to a two-stage estimation framework with

robust pool designs. We also establish key structural properties of optimal pool designs and completely

characterize optimal pool designs for various problem settings, which impose different objectives on the pool

design problems.

Our case study, on estimating the prevalence of West Nile virus in mosquitoes, compares our robust

models, against the benchmark deterministic model from the literature, within single-stage and two-stage

estimation frameworks. There are several important findings from this study. When estimating the preva-

lence of emerging and seasonal diseases, the distribution and support of P are highly uncertain at the outset,

and thus input parameters are likely to be inaccurate. It is in these realistic cases that both robust models
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(MM and RM) perform significantly better than their deterministic counter-part, with DM having the worst

performance within a single-stage estimation framework. In these cases of inaccurate inputs, DM, when used

within a two-stage estimation framework, i.e., DM-S, with λ = 0.5, has significantly improved performance,

while MM, used within a two-stage estimation framework, i.e., MM-S, with λ < 1, still yields the best perfor-

mance in all cases of inaccurate input parameters and across all budget levels. However, in comparison to the

single-stage robust models (MM-S and RM-S with λ = 1), the improvement in estimation accuracy provided

by the two-stage frameworks (DM-S and MM-S with λ < 1) is not quite as substantial as the improvement

provided by the robust models, in comparison to the deterministic model, within a single-stage framework.

Therefore, given the operational challenges of the two-stage estimation framework discussed in Section 5.1,

the single-stage estimation framework with our robust models, either MM and RM, can be a much more

desirable approach to surveillance studies of emerging and seasonal diseases in large scale. It is important to

note that the robust models, in both single-stage and two-stage frameworks, outperform other deterministic

models, while requiring minimal information prior to testing, and perform consistently well even when this

information is not perfectly accurate. These findings have important implications for designing surveillance

studies.

As immediate, and important, extensions of our study, one can relax some of our modeling assumptions,

including that the screening test is perfectly reliable, and that the subjects are independent. We consider

prevalence estimation for a single disease in a specific region. In practice, healthcare policy-makers may

need to allocate their testing budget among the prevalence estimation activities for a number of diseases

in a specific region, or in various regions, each potentially having a different prevalence rate of the disease

in question. Therefore, extending our models to study pool design optimization and budget allocation for

prevalence estimation for multiple diseases or multiple regions is an important research direction. Addition-

ally, practitioners may need to select a screening test, among a set of commercially available tests, including

combo tests, i.e., tests that can simultaneous detect a number of diseases. Thus, another interesting fu-

ture research direction is to study the models for test selection and pool design optimization for prevalence

estimation of multiple diseases. We believe that such models will further enhance the accuracy of disease

prevalence estimation and lead to efficient budget allocation and utilization for surveillance study of emerging

and seasonal diseases.
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Chapter 6

Conclusions

Prevalence estimation of emerging and seasonal diseases is an important input for various functions of public

health, epidemiology, and healthcare system management. Consequently, designing efficient testing pools for

prevalence estimation is also an important decision for policy-makers and practitioners working in these areas.

The testing pool design problem, studied in this dissertation, requires a highly uncertain input (an initial

estimate of the unknown prevalence rate), and is highly constrained by limited testing budgets and resources.

Despite this, not much emphasis has been placed on addressing these issues in the existing literature. In

our study, we develop and study novel frameworks for optimal pool design for prevalence estimation, with

a focus on emerging and seasonal diseases. We relax several restricting assumptions commonly used in the

relevant literature, in order to establish and provide insight and guidelines into optimal pool designs for

prevalence estimation under limited testing budgets, and uncertain, and potentially inaccurate, model input

parameters.

In particular, we develop a sequential and adaptive estimation procedure that directly utilizes the contin-

uous outcomes of the pooled tests, detailed in Chapter 2. In order to facilitate our analysis of the sequential

estimation procedure, we also develop a novel methodology for estimating the sensitivity of pooled testing,

using viral load progression models and explicitly accounting for the dilution effect of pooling, outlined in

Chapter 3. Our numerical studies on HIV prevalence estimation using the proposed sequential estimation

procedure and the proposed sensitivity estimation methodology indicate that our models can lead to highly

efficient pool designs for prevalence estimation, and, hence, to accurate and robust prevalence estimates even

when model input parameters deviate from the initial assumptions. The proposed sequential estimation pro-

cedure can also be useful in surveillance studies of insect-borne diseases in plants and crops, as demonstrated

in the case study on prevalence estimation of the Tomato Spotted Wilt virus in thrips.
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While the use of continuous test outcomes can improve the accuracy of the prevalence rate estimate, a

common practice in surveillance studies of diseases is to use binary test outcomes to estimate the unknown

prevalence rate. Therefore, in Chapters 4 and 5, we study the testing pool design optimization problem under

binary test outcomes. Specifically, in Chapter 4, we compare two deterministic models for pool design: with

an exogenously fixed number of pools, and with an optimally set number of pools, both under a limited

testing budget. In order to solve these models to optimality, we establish key structural properties of the

asymptotic variance function, and fully characterize the optimal solutions for the two deterministic models.

Our numerical study, on the prevalence estimation of West Nile virus in mosquitoes, indicates that jointly

optimizing over both the pool size and the number of pools leads to highly efficient pool designs, in terms

of minimizing the estimation error, compared to pool designs restricted by a fixed number of pools as well

as other commonly used pool designs.

In Chapter 5, we further extend our study on optimal pool design, and use robust optimization to hedge

against the uncertainty in model input parameters. In particular, we develop a mini-max model and a

regret-based model for pool design optimization, both of which require only the support of the unknown

prevalence rate. It is important to note that both robust models are distribution-free, and as such, they do

not require any distribution or moment information about the unknown prevalence rate, which can be very

difficult to estimate accurately. Our numerical study, on the prevalence estimation of West Nile virus in

mosquitoes, suggests that the robust models substantially outperform their deterministic counterparts, and

continue to yield efficient pool designs (with accurate prevalence estimates) even when their input parameters

are inaccurate. More interestingly, the robust models also generate pool designs that are as efficient, in

terms of minimizing the estimation error, as those obtained from a sequential estimation framework with

a deterministic pool design model. From this perspective, in the context of prevalence estimation, robust

pool design optimization models, within single-stage estimation frameworks, can reap almost all benefits

of sequential frameworks, which are more difficult to implement; and these benefits are realized even when

there is little information on the current status of the disease prior to testing. These findings have important

implications, especially for the prevalence estimation of the sources of emerging and/or seasonal diseases,

e.g., prevalence estimation of West Nile virus in mosquitoes.

In conclusion, our research underscores the value of optimization methodologies for efficient testing pool

design for prevalence estimation. This research also quantifies the value of robust optimization, as well

as sequential and adaptive approaches, in comparison to other commonly used testing practices, especially

for prevalence estimation of emerging and seasonal diseases. In addition, Chapters 2 and 3 show that

using continuous test outcomes, as opposed to binary test outcomes, can lead to substantial improvement

in estimation accuracy. Thus, an immediate and important extension of this research is to develop and
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study robust pool design optimization models considering continuous test outcomes; we believe that this will

further enhance the estimation efficiency of the proposed models. We hope that our novel approaches to

testing pool design for prevalence estimation will lead to further research on the topic, and our insights and

principles on testing pool design will impact the current practices in surveillance studies for emerging and

seasonal diseases.
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Appendix A

Appendix to Chapter 2

A.1 Summary of Notation

See Table A.1.

A.2 The Numerical Procedure for Computing the MLE of the

Prevalence Rate under Continuous Test Outcomes

We use the following algorithm, which expands upon the iterative algorithm proposed by Zenios and Wein

(1998) [111], to solve for p̂MLE in each estimation stage, when a dual-configuration pooling design is utilized.

Let p0 denote the initial estimate of p at the beginning of stage s, and let p̂MLE denote the MLE obtained

at the end of stage s, s = 1, 2. The algorithm that is used to solve for p̂MLE , given p0, follows:

1. Initialize: t = 0; p̂MLE,(t) = p0, i.e., the initial estimate of p.

2. Solve for p̂MLE,(t+1) using the following equation:

p̂MLE,(t+1) =
1

(
∑2
i=1 n

∗
im
∗
i )

2∑
i=1

n∗i∑
j=1

m∗i∑
k=0

kτ (m∗i )(k; y
(m∗i )
j , p̂MLE,(t)).

3. If
∣∣p̂MLE,(t+1) − p̂MLE,(t)

∣∣ ≤ ε, terminate; p̂MLE = p̂MLE,(t+1). Otherwise, increment t (t ← t + 1)

and return to Step 2.

In the estimation procedures implemented in Section 2.3, we use a tolerance level of ε = 10−7.
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Table A.1: Summary of Notation – Chapter 2
Random Variables

Y + Bio-marker concentration of a random infected subject, with pdf fY+ (·)
Y − Noise level coming from a random uninfected subject, with pdf fY− (·)
Yi Bio-marker concentration of subject i, i = 1, · · · ,m, whose specimen is included in a pool of size m

Y (m) Average bio-marker concentration plus noise of a pool of size m, with pdf f
Y (m)

W (m; p) Number of infected specimens in a pool of size m (∼ Binomial (m, p))

S(m;k) Conditional sum of bio-marker concentration plus noise of a pool of size m, given k infected
specimens in the pool, with pdf f

S(m;k) , ∀k ∈ N, k ≤ m
Y (m;k) Conditional average bio-marker concentration plus noise of a pool of size m, given k infected

specimens in the pool, with pdf f
Y (m;k) , ∀k ∈ N, k ≤ m

p̂
(1)
MLE Random outcome (MLE of p) from stage 1 (p

(2)
0 = p̂

(1)
MLE)

N+ Number of pools with a positive test outcome, used in the single-stage estimation procedure with
binary test outcomes

Random Vectors

Y(m,n) =
{
Y(m1,n1), · · · ,Y(mC,nC )

}
Y(mi,ni) =

(
Y

(mi)

j

)
j=1,··· ,ni

, i = 1, · · · , C
Decision Variables

Ds = (msi, nsi), Pooling design (pool size: msi, number of pools of size msi: nsi) for stage s,
s = 1, 2, with C pooling configurations
i = 1, · · · , C

Parameters

p The true prevalence rate, unknown to the decision-maker

p
(1)
0 The initial estimate of p at the beginning of stage 1. For single-stage estimation procedures, p

(1)
0 = p0

C Number of pooling configurations
B Testing budget

B(s) Testing budget available for stage s, s = 1, 2

λ Budget allocation factor, such that B(1) = λB and B(2) = (1− λ)B
cf Per pool testing cost
cv Per specimen collection cost
Th Pre-set threshold used in estimation procedures that utilize binary test outcomes
Se(m,Th) Test sensitivity under binary test outcomes, given a pool of size m and a threshold of Th
Sp(m,Th) Test specificity under binary test outcomes, given a pool of size m and a threshold of Th

Performance Metrics

MLE The average of p̂MLE across all simulation replications, i.e., an estimate of E[p̂MLE ; p0]
MSE The average of (p̂MLE − p)2 across all simulation replications, i.e., an estimate of MSE(p̂MLE ; p)

rBias (%) The relative bias (in percentage) of MLE; i.e., rBias(%) = 100
∣∣∣MLE−pp

∣∣∣

A.3 Numerical Corrections to the MLE for Estimation Proce-

dures with Binary Test Outcomes

The vertically corrected estimate of p, denoted by p̂V , is calculated as, p̂V = E[p̂MLE | p = p̂MLE ], while the

horizontally corrected estimate, p̂H , is calculated as, p̂MLE = E[p̂MLE | p = p̂H ]; see [54] for details. When

testing errors are present, given p̂MLE , the test sensitivity of Se(m,Th) and specificity of Sp(m,Th), the

pooling design of (m,n), and a preset threshold of Th, we have the following expression for p̂V :

p̂V = E[p̂MLE | p = p̂MLE ] =

n∑
n+=0

1−

(
Se(m,Th)− n+

n

Se(m,Th) + Sp(m,Th)− 1

) 1
m


{(

n

n+

)
(f+)n

+

(1− f+)n−n
+

}
,
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where f+ is the probability of a pool being positive, i.e., f+ = (1 − (1 − p̂MLE)m)Se(m,Th) + (1 −

p̂MLE)mSp(m,Th). On the other hand, p̂H is computed by solving the following equation:

p̂MLE = E[p̂MLE | p = p̂H ] =

n∑
n+=0

1−

(
Se(m,Th)− n+

n

Se(m,Th) + Sp(m,Th)− 1

) 1
m


{(

n

n+

)
(f+)n

+

(1− f+)n−n
+

}
,

where f+ = (1 − (1 − p̂H)m)Se(m,Th) + (1 − p̂H)mSp(m,Th). In the case study of Section 2.3.2, the

estimation procedure with binary test outcomes utilizes the following data for the HIV Ultrio Plus Assay:

Th = 1, 700 copies/ml; Sp(m,Th) = 99.5% [101] and Se(m,Th) values are as reported in Table A.2. The

threshold, Th, is calibrated via simulation such that Se(16, Th) = 88% [91] for 100,000 randomly generated

pools, each of size 16. Once Th is determined, it is utilized to compute Se(m,Th) via simulation for various

m values based on 100,000 randomly generated pools.

A.4 HIV Viral Load Model

The HIV viral load in an infected individual goes through various phases of growth rate post-infection:

pre ramp-up phase, ramp-up phase, where the growth rates accelerate, and post ramp-up phase, where

the growth rates decrease to reach a plateau [42, 80, 105, 106]. We extend upon the widely used doubling

time viral load model, proposed by Busch [17], and the probit model, studied by Weusten et al. [105, 106],

to develop a mathematical model that reflects the viral load throughout the lifetime of an HIV-infected

individual post-infection [74]. The model is calibrated such that the test sensitivity for a pool of size 16,

during the window period of an HIV-infected individual (i.e., the period during which the viral load remains

below the pre-set threshold for the HIV Ultrio Plus Assay), is 88% [91]. Further calibration is conducted

such that the HIV viral load level peaks at day 17, with an average viral load level of 6.8 log10 copies/ml,

and reaches steady state at day 61, with an average viral load level of 5.1 log10 copies/ml [80]. Let tw, tp,

and ts respectively denote the time at which the window period ends, the viral load peaks, and the viral

load reaches steady state; similarly, let V Lw, V Lp, and V Ls respectively denote the viral load at the end

of the window period, at peak viremia, and at steady state. Let (V L|T = t) denote the viral load of an

HIV-infected individual, given a random testing time, post-infection, of T , with realization t, i.e., T = t.
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Then, the viral load is modeled by the following equation [74]:

(V L|T = t) =


C02t/γ , if t ≤ tw

V Lw + Cw
t exp

(
− (ln(t−tw)−a)2

b

)
, if tw < t ≤ ts

V Ls, if t > ts

,

where the parameters are calibrated as, a = 1.98, b = 1.73, C0 = 9, γ = 0.85, Cw = 1.096 × 108 [74, 106].

Using this viral load model, we generated 1,000,000 realizations of the viral load. The resulting distribution

of Y + is depicted in Figure A.1.

Figure A.1: HIV viral load (Y +) distribution for a random infected individual, when the testing time is
uniformly distributed between 0 and 100 days
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A.5 Functional Form and Regression Coefficients of µ(m, p
(s)
0 ) and

σ2(m, p
(s)
0 ) in Case Study 1

For case study 1, we have the following functional forms:

µ(m, p
(s)
0 ) = a2p

(s)
0

2
+ a1p

(s)
0 + a0, and

σ2(m, p
(s)
0 ) = a0 + a1p

(s)
0 + a2p

(s)
0

2
+ a3p

(s)
0

3
+ a4p

(s)
0

4
+ a5p

(s)
0

5
+ a6p

(s)
0

6
,

where the values of a0, a1 · · · , a6 are reported in Tables A.3 and A.4.
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A.6 Functional Form and Regression Coefficients of µ(m, p
(s)
0 ) and

σ2(m, p
(s)
0 ) in Case Study 2

For case study 2, we have the following functional forms:

µ(m, p
(s)
0 ) = a0 + a1x+ a2x

2 + a3x
3, and

σ2(m, p
(s)
0 ) = a0 + a1p

(s)
0 + a2p

(s)
0

2
+ a3p

(s)
0

3
+ a4p

(s)
0

4
+ a5p

(s)
0

5
,

where x denotes log
(
p

(s)
0

)
, and the values of a0, a1 · · · , a5 are reported in Tables A.5 and A.6.

A.7 Additional Numerical Results for the Case Studies

The optimal pooling designs in Case Studies 1 and 2 are respectively given in Tables A.7 and A.12. Note

that, for SE (i.e., λ = 0.25 and λ = 0.5), only stage 1 optimal pooling designs are reported, as stage 2

optimal pooling designs are random variables, and rely on the outcome of stage 1, i.e., p̂
(1)
MLE . Tables A.7

and A.12 also illustrate how B and p
(1)
0 impact the optimal pooling design.

For Case Study 1, Tables A.8 and A.9 provide the numerical results for scenarios with p = 0.022, and

Tables A.10 and A.11 provide the results for scenarios with p = 0.071 and p = 0.044.

For Case Study 2, Table A.13 provides the numerical results of SE and the single-stage estimation

procedure under incorrectly specified parameters and distributions of Y +.

A.8 The Impact of the Test’s Measurement Error on Estimation

Efficiency

In this appendix we model the measurement error in the pooled test’s reading as a function that is inde-

pendent of the number of uninfected specimens in the pool (similar to [111]), and study its impact on the

proposed estimation procedure considering the first case study of HIV prevalence estimation. Let X(m) de-

note the measured bio-marker concentration of a pool of size m, with an actual (and unobservable) bio-marker

concentration of Y (m). Then, Eqs. (2.4) and (2.5) continue to hold, with fY (m;k)(·) replaced by fX(m;k)(·),

where fX(m;k)(·) is given by [111], that is:

fX(m;k)(x) =

∫ ∞
0

f
(m;k)
Y (y)f(x | y)dy.
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Next, we consider the first case study under measurement error as modeled here. We keep the optimal

pooling design as obtained in Section 2.3.1, but modify the computation of the MLE as explained above. We

note here that we adapted the measurement error model from [111] and [104] to our HIV Ultrio Plus data.

Following [111] and [104], for the HIV viral load model in the first case study, [X(m) | y(m)] ∼ Normal (y(m),

α(y(m))2), where α is a testing kit specific parameter. Let xq represent the actual viral load for which the

sensitivity of individual testing equals q%, for q ∈ [0, 100], that is, Pr[X(1) > Th | y(1) = xq] = q%. Then, α

is the solution to: α = x50−x95

x95
z0.05, where z0.05 = −1.645, and from [105, 106], x95 = 18.4 log10 copies/ml,

and x50 = 2.7 log10 copies/ml, leading to α = 0.6079.

The simulation for this case study is implemented similarly to that of the original case, outlined in Section

2.3.1, with an additional step to generate the measured viral load: once the pool’s actual viral load, i.e.,

y(m), is computed, the pool’s measured viral load, i.e., X(m), is generated based on [X(m) | y(m)] ∼ Normal

(y(m), α(y(m))2).

Table A.14 reports the performance measures for the single-stage estimation procedure and SE both for

the original model studied in the paper (see Section 2.3.2 and Table 2.3) and in the presence of measurement

error as modeled in this section, for a testing budget of B = $4, 460. Table A.14 indicates that the inclusion

of measurement error changes the MLE only slightly, with minor deviations in the relative bias and MSE for

both the SE and the single-stage estimation procedures. Table A.14 also indicates that the pooling designs

obtained via our original model perform well under measurement error, as long as the expression for the

MLE is adjusted to capture the measurement error. However, the HIV Ultrio Plus Assay considered in case

study 1 is known to be very accurate [91, 105, 106], as it measures the viral load directly rather than the

host’s reaction to the infection (e.g., antibodies), thus, the magnitude of measurement error is expected to

be very small in our setting.

A.9 Accuracy of the MSE Approximation

In this appendix, we study the accuracy of the MSE approximation provided in Eqn. (2.15). In particular, we

compare the MSE estimate, given by the average value of (p̂MLE − p)2 across 20,000 simulation replications,

with the MSE approximation computed via Eqn. (2.15), with p
(s)
0 replaced by the average value of p̂MLE

obtained in the simulation, as this average now serves as the estimate of the unknown p; see Table A.15.

Table A.15 shows that the approximated MSE and the average value of (p̂MLE − p)2 are relatively close,

with the approximated MSE being lower than the average value of (p̂MLE − p)2 in all cases. Table A.15 also

shows that the closer the average value of p̂MLE to p, the more accurate the MSE approximation is. Thus,

the use of SE is especially important in cases where p
(1)
0 significantly deviates from p, e.g., in prevalence
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estimation for emerging infections.

A.10 Confidence Interval Estimation of p

In this appendix, we propose an approach to estimating the confidence interval of p, given the computed

final MLE, p̂
(2)
MLE , and the test continuous outcomes. From Section 2.2.3, we found that:

V ar(p̂
(2)
MLE ; p)=V ar

(
1

nm

n∑
j=1

m∑
k=0

kτ (m)(k; y
(m)
j , p̂

(2)
MLE)

)
=

1

nm2
V ar

[
E
[
W (m; p̂

(2)
MLE) | y(m)

j

]]
, ∀j = 1, · · · , n, and

Bias(p̂
(2)
MLE ; p)= E

(
1

nm

n∑
j=1

m∑
k=0

kτ (m)(k; y
(m)
j , p̂

(2)
MLE)

)
− p =

1

m
E

[
E
[
W (m; p̂

(2)
MLE) | y(m)

j

]]
− p̂(2)

MLE , ∀j = 1, · · · , n.

Note that in the two equations above, p̂
(2)
MLE is replaced by p̂

(1)
MLE for single-stage estimation procedures.

From [58,98],
(
p̂

(2)
MLE − p

)
∼ Normal

(
Bias(p̂

(2)
MLE ; p), V ar(p̂

(2)
MLE ; p)

)
, and the confidence interval of p, with

a confidence level of 100(1− α)%, can be approximated by:

[
p̂

(2)
MLE −Bias(p̂

(2)
MLE ; p)

]
± z1−α/2

√
V ar(p̂

(2)
MLE ; p),

where z1−α/2 is the 100(1 − α/2) percentile of the standard normal distribution. We propose the following

approximations for Bias(p̂
(2)
MLE ; p) and V ar(p̂

(2)
MLE ; p) based on the continuous test outcomes and p̂

(2)
MLE :

First, we note that, for any given y
(m)
j , ∀j = 1, · · · , n, E

[
W (m; p̂

(2)
MLE) | y(m)

j

]
=
∑m
k=0 kτ

(m)(k; y
(m)
j , p̂

(2)
MLE),

where τ (m)(k; y
(m)
j , p̂

(2)
MLE) is given by Eqn. (2.4). Thus, given the test continuous outcomes, y

(m)
j , ∀j =

1, · · · , n, and p̂
(2)
MLE :

E

[
E
[
W (m; p̂

(2)
MLE) | y(m)

j

]]
≈ 1

n

n∑
j=1

E
[
W (m; p̂

(2)
MLE) | y(m)

j

]
= Ē

[
W (m; p̂

(2)
MLE) | y(m)

j

]
;

V ar

[
E
[
W (m; p̂

(2)
MLE) | y(m)

j

]]
≈ 1

n− 1

n∑
j=1

(
E
[
W (m; p̂

(2)
MLE) | y(m)

j

]
− Ē

[
W (m; p̂

(2)
MLE) | y(m)

j

])2

= s2

(
E
[
W (m; p̂

(2)
MLE) | y(m)

j

])
.
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Therefore, we have the following approximations:

V ar(p̂
(2)
MLE ; p) ≈ 1

nm2
s2

(
E
[
W (m; p̂

(2)
MLE) | y(m)

j

])
, and

Bias(p̂
(2)
MLE ; p) ≈ 1

m
Ē
[
W (m; p̂

(2)
MLE) | y(m)

j

]
− p̂(2)

MLE , ∀j = 1, · · · , n.
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Table A.2: Case Study 1 - Estimation Procedure with Binary Test Outcomes: Estimated Sensitivity of the
HIV Ultrio Plus Assay for various pool sizes (m), based on a threshold of Th = 1, 700 copies/ml.

m Se(m,Th) (%)
9 89. 3
10 88.9
11 88.6
12 88.5
13 88.3
18 87.8
20 87.8
26 87.3
28 87.3
45 83.3
46 83.2
48 83.1

Table A.3: Regression Coefficients for µ(m, p0) (Case Study 1)
````````m

Coefficients
a2 a1 a0

2 0 0.508 0
3 0 0.996 0
4 0 1.466 0.000662
5 0 1.926 0.001029
6 0 2.380 0.001504
7 0 2.817 0.002569
8 0 3.243 0.003701
9 -2.565 3.911 0
10 -3.288 4.397 0
11 -3.995 4.873 0
12 -4.759 5.341 0.001282
13 -4.977 5.753 0.002119
14 -5.858 6.212 0.002454
15 -6.666 6.686 0.002183
16 -7.707 7.146 0.002163
17 -9.646 7.700 0.001367
18 -9.198 8.014 0.003523
19 -10.370 8.473 0.003600
20 -12.040 8.972 0.003369
21 -12.540 9.384 0.003754
22 -13.920 9.842 0.004467
23 -15.790 10.350 0.003669
24 -16.550 10.750 0.004632
25 -19.280 11.640 0.004766
26 -17.380 11.150 0.004910
27 -20.980 12.120 0.004565
28 -22.080 12.520 0.005745
29 -23.580 12.960 0.006287
30 -24.600 13.360 0.006710
31 -26.130 13.800 0.006478
32 -27.150 14.190 0.007278
33 -29.830 14.720 0.006857
34 -31.720 15.160 0.007354
35 -32.870 15.540 0.007854
36 -34.770 16.000 0.008277
37 -37.370 16.490 0.007682
38 -38.260 16.840 0.008527
39 -40.220 17.280 0.009125
40 -42.270 17.730 0.009140
41 -44.070 18.120 0.009958
42 -46.010 18.550 0.009897
43 -48.050 18.970 0.010740
44 -49.850 19.370 0.011290
45 -52.380 19.850 0.010410
46 -53.860 20.200 0.011520
47 -56.530 20.670 0.012000
48 -57.800 21.000 0.013190
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Table A.5: Regression Coefficients for µ(m, p0) (Case Study 2)
XXXXXXXXm

Coefficients
a3 a2 a1 a0

2 0.04426 0.7088 4.818 1.717
3 0.03154 0.5346 4.078 2.893
4 0.02102 0.389 3.428 3.206
5 0.01373 0.2785 2.895 3.217
6 0.009524 0.2114 2.543 3.218
7 0.003076 0.1215 2.135 3.056
8 0 0.07441 1.89 2.993
9 0 0.06379 1.782 3.032
10 0 0.0544 1.687 3.055
11 0 0.04868 1.621 3.092
12 0 0.0408 1.546 3.103
13 0 0.03673 1.5 3.138
14 0 0.03319 1.457 3.17
15 0 0.02918 1.415 3.192
16 0 0.02577 1.38 3.221
17 -0.006679 -0.05073 1.103 2.998
18 0 0.02194 1.331 3.284
19 0 0.01914 1.302 3.303
20 0 0.01875 1.29 3.344
21 -0.006337 -0.05473 1.027 3.12
22 0 0.01567 1.255 3.398
23 0 0.01441 1.24 3.425
24 -0.005589 -0.05027 1.009 3.229
25 -0.004957 -0.04458 1.018 3.275
26 0 0.01194 1.206 3.509
27 0 0.01079 1.193 3.529
28 0 0.01046 1.187 3.559
29 -0.004641 -0.04287 0.9981 3.398
30 0 0.009234 1.171 3.611
31 -0.004931 -0.04687 0.9744 3.44
32 -0.0044 -0.04146 0.9866 3.481
33 -0.004594 -0.04444 0.9724 3.498
34 0 0.0074 1.145 3.704
35 0 0.006853 1.139 3.725
36 -0.003991 -0.03803 0.9842
37 -0.004168 -0.04068 0.9704 3.606
38 -0.003815 -0.03663 0.9821 3.646
39 -0.003796 -0.03742 0.9743 3.661
40 -0.003696 -0.03602 0.9765 3.688
41 -0.003485 -0.03386 0.982 3.718
42 -0.00318 -0.03066 0.9893 3.749
43 0 0.005238 1.11 3.896
44 0 0.004779 1.105 3.913
45 0 0.005064 1.105 3.937
46 0 0.004636 1.101 3.953
47 0 0.004675 1.1 3.972
48 -0.003608 -0.03658 0.9565 3.846
49 -0.003097 -0.03059 0.9757 3.886
50 -0.003133 -0.03144 0.9703 3.899

101



Table A.6: Regression Coefficients for σ2(m, p0) (Case Study 2)
XXXXXXXXm

Coefficients
a5 a4 a3 a2 a1 a0

2 0 0 1201 -642.9 112.5 10.16
3 0 -7579 4332 -995.1 93.19 7.61
4 0 -5703 3407 -775.6 60.03 6.203
5 0 -6893 3766 -748.5 45.07 5.158
6 0 -5638 3020 -571.6 27.17 4.48
7 0 -4763 2558 -460.8 16.13 3.951
8 0 -4516 2321 -389.3 9.533 3.483
9 0 -4470 2190 -339.2 4.732 3.131
10 35320 -21290 4877 -486.5 5.697 2.818
11 0 -3016 1412 -190.1 -4.513 2.62
12 0 -2532 1150 -140.6 -7.263 2.419
13 29420 -17010 3623 -308.2 -2.965 2.198
14 28210 -16150 3362 -269.4 -4.761 2.048
15 25760 -14510 2911 -209.2 -7.65 1.944
16 20060 -11610 2398 -173.9 -7.729 1.801
17 0 -1189 429.9 -11.73 -12.62 1.726
18 0 -775 211.9 25.74 -14.49 1.66
19 0 -633.4 169.4 27.22 -13.75 1.553
20 0 0 -96.71 63.15 -15.04 1.486
21 0 0 -120.8 69.74 -15.19 1.422
22 0 0 -111.6 65.77 -14.44 1.345
23 0 0 -131.1 71.61 -14.66 1.298
24 0 0 -123.5 67.62 -13.85 1.225
25 0 0 -132.1 69.68 -13.75 1.18
26 0 334.3 -281.9 91.48 -14.68 1.152
27 0 0 -138.8 70.05 -13.19 1.087
28 0 240 -232.8 81.08 -13.39 1.053
29 0 265.3 -244.1 82.02 -13.18 1.017
30 0 362.5 -281.1 85.78 -13.07 0.9832
31 0 554.6 -365.6 97.35 -13.42 0.9551
32 0 581.8 -379.2 99.03 -13.32 0.9285
33 0 642.4 -401.7 101 -13.18 0.9003
34 0 645.5 -403.5 100.9 -13.01 0.8771
35 0 648.1 -401.9 99.52 -12.71 0.85
36 0 630.4 -390.1 96.31 -12.26 0.8186
37 0 602.4 -378 94.23 -12 0.7956
38 0 659.6 -397.7 95.61 -11.86 0.7753
39 0 695.6 -416.4 98.41 -11.89 0.7584
40 0 608.1 -374.8 91.27 -11.31 0.7325
41 0 691.4 -407.4 94.86 -11.33 0.7184
42 0 682.2 -403.8 94.09 -11.18 0.701
43 0 617.4 -371.9 88.39 -10.7 0.6794
44 0 766.6 -439.4 98.39 -11.17 0.6746
45 0 633.1 -375.9 87.78 -10.41 0.6492
46 0 726.1 -416.6 93.47 -10.64 0.642
47 0 701.4 -402.6 90.51 -10.33 0.6253
48 0 704 -403 90.09 -10.19 0.611
49 0 694.6 -396.3 88.41 -9.984 0.598
50 0 699.9 -395.3 87.34 -9.794 0.5848
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Table A.7: Case Study 1: Stage 1 optimal pooling design for different values of p
(1)
0 , λ, and B. All optimal

pooling designs are reported in the form, (m∗, n∗) for single configurations, and {(m∗1, n∗1), (m∗2, n
∗
2)} for dual

configurations.
Budget p

(1)
0 λ = 1 λ = 0.25 λ = 0.5

$5, 575

0.0110 (45,14) {(39, 2)(40, 2)} {38, 1), (47, 6)}
0.0220 (26,23) {(20, 1), (26, 5)} {(15, 1), (26, 11)}
0.0330 (26,23) {(20, 1), (26, 5)} {(15, 1), (26, 11)}
0.0355 (26,23) {(20, 1), (26, 5)} {(15, 1), (26, 11)}
0.0660 (13,41) {(11, 2), (12, 9)} {(12, 8), (13, 13)}
0.1065 (10,50) {(8, 7), (9, 7)} {(8, 1), (9, 26)}

$4, 460

0.0110 (46,11) {(47, 1), (40, 2)} {(40, 3), (45, 3)}
0.0220 (26,18) {(15, 1), (26, 4)} {(35, 1), (26, 8)}
0.0330 (26,18) {(15, 1), (26, 4)} {(19, 3), (26, 7)}
0.0355 (20,23) {(15, 1), (26, 4)} {(19, 3), (26, 7)}
0.0660 (11,37) {(12, 4), (11, 5)} {(13, 7), (12, 10)}
0.1065 (9,43) {(8, 3), (9, 8)} {(7, 3), (9, 19)}

$3, 345

0.0110 (48,8) (48,2) (48,4)
0.0220 (28,13) {(28, 1), (32, 2)} {(25, 1), (26, 6)}
0.0330 (18,19) {(18, 2), (26, 2)} {(25, 1), (26, 6)}
0.0355 (18,19) {(18, 2), (26, 2)} {(25, 1), (26, 6)}
0.0660 (12,26) {(15, 1), (13, 5)} {(13, 1), (12, 12)}
0.1065 (9,32) {(10, 1), (9, 7)} {(10, 2), (9, 14)}

Table A.8: Case Study 1: Performance measures for the single-stage estimation procedure with binary and
continuous test outcomes, p = 0.0220. MLE and MSE are reported in the form: sample average (± sample
standard deviation).

Binary Binary Binary Continuous
(No Correction) (Vertical Correction) (Horizontal Correction)

Budget p
(1)
0 Perf. Meas.

$5, 575

0.0110
MLE 0.0219 (±0.0105) 0.0198 (±0.0108) 0.0166 (±0.0078) 0.0228 (±0.0075)
MSE (×104) 1.10 (±3.15) 1.21 (±5.24) 0.89 (±2.32) 0.57 (±1.04)
rBias(%) 2.15 10.19 24.37 3.80

0.0330
MLE 0.0212 (±0.0079) 0.0208 (±0.0095) 0.0173 (±0.0074) 0.0224 (±0.0070)
MSE (×104) 0.63 (±1.17) 0.91 (±2.20) 0.76 (±1.15) 0.49 (±0.83)
rBias(%) 3.87 5.33 21.31 1.99

$4, 460

0.0110
MLE 0.0226(±0.0121) 0.0205 (±0.0131) 0.0170 (±0.0092) 0.0232 (±0.0086)
MSE (×104) 1.46 (±3.39) 1.74 (±5.45) 1.11 (±2.79) 0.76 (±1.43)
rBias(%) 2.66 6.79 22.73 5.43

0.0330
MLE 0.0216 (±0.0092) 0.0203 (±0.0082) 0.0167 (±0.0065) 0.0227 (±0.0080)
MSE (×104) 0.85 (±1.56) 0.71 (±1.06) 0.70 (±0.75) 0.65 (±1.07)
rBias(%) 2.02 7.79 24.08 2.99

$3, 345

0.0110
MLE 0.0254 (±0.0208) 0.0219 (±0.0288) 0.0192 (±0.0204) 0.0236 (±0.0104)
MSE (×104) 4.43 (±14.2) 8.28 (±31.2) 4.26 (±14.2) 1.11 (±2.27)
rBias(%) 15.45 0.07 12.73 7.45

0.0330
MLE 0.0218 (±0.0099) 0.0208 (±0.0093) 0.0171 (±0.0072) 0.0226 (±0.0090)
MSE (×104) 0.99 (±1.76) 0.89 (±1.39) 0.76 (±0.87) 0.81 (±1.40)
rBias(%) 1.16 5.49 22.40 2.74
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Table A.9: Case Study 1: Performance measures for the single-stage estimation procedure and SE, with
continuous test outcomes, p = 0.0220. MLE and MSE are reported in the form: sample average (± sample
standard deviation).

Single Stage
SE

Budget p
(1)
0 Perf. Measures λ = 0.25 λ = 0.5

$5, 575

0.0110
MLE 0.0228 (±0.0075) 0.0220(±0.0079) 0.0225 (±0.0072)
MSE (×104) 0.57 (±1.04) 0.62 (±1.09) 0.52 (±0.84)
rBias (%) 3.80 0.16 2.24

0.0330
MLE 0.0224 (±0.0070) 0.0219(±0.0079) 0.0224 (±0.0070)
MSE (×104) 0.49 (±0.83) 0.63 (±1.11) 0.49 (±0.78)
rBias (%) 1.99 0.42 1.79

$4, 460

0.0110
MLE 0.0232 (±0.0086) 0.0218(±0.0093) 0.0228 (±0.0081)
MSE (×104) 0.76 (±1.43) 0.86 (±1.39) 0.66 (±1.11)
rBias (%) 5.43 0.95 3.42

0.0330
MLE 0.0227 (±0.0080) 0.0212(±0.0095) 0.0225 (±0.0078)
MSE (×104) 0.65 (±1.07) 0.91 (±1.47) 0.61 (±0.99)
rBias (%) 2.99 3.61 2.30

$3, 345

0.0110
MLE 0.0236 (±0.0104) 0.0211(±0.0117) 0.0229 (±0.0097)
MSE (×104) 1.11(±2.27) 1.37 (±2.04) 0.95 (±1.68)
rBias (%) 7.45 4.12 4.17

0.0330
MLE 0.0226 (±0.0090) 0.0206(±0.0118) 0.0226 (±0.0094)
MSE (×104) 0.81 (±1.40) 1.40 (±2.04) 0.89 (±1.54)
rBias (%) 2.74 6.39 2.88

Table A.10: Case Study 1: Performance measures for the single-stage estimation procedure and SE, with
continuous test outcomes, p = 0.0710. MLE and MSE are reported in the form: sample average (± sample
standard deviation).

Single Stage
SE

Budget p
(1)
0 Perf. Measures λ = 0.25 λ = 0.5

$5, 575

0.0355
MLE 0.0725 (±0.0152) 0.0719(±0.0140) 0.0719 (±0.0143)
MSE (×104) 2.32 (±3.83) 1.97 (±2.87) 2.07 (±3.20)
rBias (%) 2.15 1.26 1.32

0.1065
MLE 0.0716 (±0.0136) 0.0716(±0.0137) 0.0715 (±0.0136)
MSE (×104) 1.86 (±2.78) 1.88 (±2.81) 1.85 (±2.78)
rBias (%) 0.87 0.80 0.75

$4, 460

0.0355
MLE 0.0726 (±0.0728) 0.0719(±0.0156) 0.0722 (±0.0160)
MSE (×104) 2.70 (±2.76) 2.45 (±3.78) 2.59 (±4.17)
rBias (%) 2.18 1.31 1.71

0.1065
MLE 0.0718 (±0.0152) 0.0718(±0.0720) 0.0716 (±0.0719)
MSE (×104) 2.31 (±3.46) 2.41 (±2.46) 2.34 (±2.39)
rBias (%) 1.11 1.13 0.94

$3, 345

0.0355
MLE 0.0730 (±0.0188) 0.0724(±0.0186) 0.0728 (±0.0189)
MSE (×104) 3.56 (±6.00) 3.48 (±5.67) 3.62 (±6.00)
rBias (%) 2.80 1.91 2.52

0.1065
MLE 0.0719 (±0.0177) 0.0720(±0.0186) 0.0719 (±0.0176)
MSE (×104) 3.13 (±4.67) 3.48 (±6.06) 3.12 (±4.71)
rBias (%) 1.32 1.40 1.28
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Table A.11: Case Study 1: Performance measures for the single-stage estimation procedure and SE, with
continuous test outcomes, p = 0.0440. MLE and MSE are reported in the form: sample average (± sample
standard deviation).

Single Stage
SE

Budget p
(1)
0 Perf. Measures λ = 0.25 λ = 0.5

$5, 575

0.0220
MLE 0.0450 (±0.0109) 0.0444(±0.0105) 0.0448 (±0.0106)
MSE (×104) 1.20 (±1.98) 1.10 (±1.74) 1.14 (±1.75)
rBias (%) 2.20 1.00 1.83

0.0660
MLE 0.0446 (±0.0103) 0.0445(±0.0107) 0.0445 (±0.0104)
MSE (×104) 1.06 (±1.59) 1.16 (±1.93) 1.09 (±1.65)
rBias (%) 1.29 1.13 1.18

$4, 460

0.0220
MLE 0.0453 (±0.0124) 0.0447(±0.0121) 0.0447 (±0.0118)
MSE (×104) 1.54 (±2.53) 1.47 (±2.48) 1.40 (±2.26)
rBias (%) 2.94 1.58 1.70

0.0660
MLE 0.0445 (±0.0114) 0.0444(±0.0123) 0.0447 (±0.0115)
MSE (×104) 1.31 (±1.99) 1.53 (±2.78) 1.33 (±2.07)
rBias (%) 1.19 0.83 1.52

$3, 345

0.0220
MLE 0.0459 (±0.0145) 0.0445(±0.0146) 0.0451 (±0.0138)
MSE (×104) 2.14 (±3.72) 2.14 (±3.70) 1.92 (±3.17)
rBias (%) 4.38 1.22 2.62

0.0660
MLE 0.0447 (±0.0135) 0.0442(±0.0150) 0.0446 (±0.0135)
MSE (×104) 1.81 (±2.87) 2.25 (±3.92) 1.82 (±2.96)
rBias (%) 1.68 0.47 1.39

Table A.12: Case Study 2: Stage 1 optimal pooling design for different values of p
(1)
0 and λ. All optimal

pooling designs are reported in the form, (m∗, n∗) for single configurations, and {(m∗1, n∗1), (m∗2, n
∗
2)} for dual

configurations.
p
(1)
0 λ = 1 λ = 0.25 λ = 0.5

0.04 (42,17) (42, 4) {(40, 1), (39, 8)}
0.06 (38,19) {(31, 1), (32, 4)} {(40, 1), (39, 8)}
0.18 (21, 23) {(20, 1), (21, 5)} {(20, 1), (21, 11)}
0.20 (17,25) {(19, 1), (21, 5)} {(13, 1), (17, 12)}
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Table A.13: Case Study 2: Performance measures for the single-stage estimation procedure and SE with
continuous test outcomes, with incorrect parameters for Y+, and incorrect distributions for Y +, p = 0.12,
B = $52.5. MLE and MSE are reported in the form: sample average (± sample standard deviation).

Single Stage
SE

p
(1)
0 Perf. Measures λ = 0.25 λ = 0.5

In
co

rr
ec

t
P

a
ra

m
et

er
s

-
Y

+

0.18
MLE 0.1239 (±0.0200) 0.119(±0.0365) 0.1263 (±0.0303)
MSE (×103) 0.42 (±0.59) 1.34 (±3.19) 1.03 (±1.64)
rBias (%) 3.22 1.09 5.26

0.20
MLE 0.1241 (±0.0197) 0.119(±0.0373) 0.1220 (±0.0297)
MSE (×103) 0.42 (±0.56) 1.55 (±3.31) 0.97 (±1.77)
rBias (%) 3.44 0.98 1.68

In
co

rr
ec

t
D

is
tr

ib
u

ti
o
n

-
Y

+

0.18
MLE 0.1236 (±0.0195) 0.1193(±0.0374) 0.1242 (±0.0296)
MSE (×103) 0.39 (±0.52) 1.40 (±3.22) 0.89 (±1.60)
rBias (%) 2.99 0.59 3.51

0.20
MLE 0.1234 (±0.0200) 0.1196(±0.0364) 0.1254 (±0.0287)
MSE (×103) 0.41 (±0.57) 1.32 (±3.14) 0.85 (±1.39)
rBias (%) 2.89 0.30 4.49

Table A.14: Case Study 1: Performance measures for the single-stage estimation procedure and SE with
continuous outcomes, with original model, and the model with measurement error (in Appendix A.8), B =
$4, 460. MLE and MSE are reported in the form: sample average (± sample standard deviation).

Single-stage
SE

p p
(1)
0 Perf. Measures λ = 0.25 λ = 0.5

O
ri

g
in

a
l

M
o
d

el

0.0220 0.0110
MLE 0.0232 (±0.0086) 0.0218(±0.0093) 0.0228 (±0.0081)
MSE (×104) 0.76 (±1.43) 0.86 (±1.39) 0.66 (±1.11)
rBias (%) 5.43 0.95 3.42

0.0440 0.0220
MLE 0.0453 (±0.0124) 0.0447(±0.0121) 0.0447 (±0.0118)
MSE (×104) 1.54 (±2.53) 1.47 (±2.48) 1.40 (±2.26)
rBias (%) 2.94 1.58 1.70

0.0710 0.0355
MLE 0.0726 (±0.0728) 0.0719(±0.0156) 0.0722 (±0.0160)
MSE (×104) 2.70 (±2.76) 2.45 (±3.78) 2.59 (±4.17)
rBias (%) 2.18 1.31 1.71

M
o
d

el
w

it
h

M
ea

su
re

m
en

t
E

rr
o
r

0.0220 0.0110
MLE 0.0229 (±0.0085) 0.0216(±0.0093) 0.0226 (±0.0083)
MSE (×104) 0.73 (±1.35) 0.87 (±1.44) 0.68 (±1.23)
rBias (%) 4.27 1.85 2.53

0.0440 0.0220
MLE 0.0448 (±0.0123) 0.0440(±0.0121) 0.0444 (±0.0119)
MSE (×104) 1.51 (±2.55) 1.48 (±2.51) 1.42 (±2.34)
rBias (%) 1.92 0.0028 0.91

0.0710 0.0335
MLE 0.0715 (±0.0159) 0.0709 (±0.0156) 0.0707 (±0.0156)
MSE (×104) 2.53 (±4.14) 2.42 (±3.72) 2.43 (±3.52)
rBias (%) 0.72 0.074 0.44
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Table A.15: Case Study 1: Comparison of the approximated MSE (in Eqn. (2.15)) and the mean value of
(p̂MLE − p)2 (obtained from Monte – Carlo simulation), for single-stage estimation procedures, where the
mean value of (p̂MLE − p)2 is denoted by MSE(s), and the approximated MSE is denoted by MSE(a).

Budget p
(1)
0 Perf. Measures p = 0.071 p = 0.044 p = 0.022

$5, 575

p
2

MLE 0.0725 0.0450 0.0228

MSE(s) (×104) 2.32 1.20 0.57

MSE(a) (×104) 1.70 0.76 0.36

3p
2

MLE 0.0716 0.0446 0.0224

MSE(s) (×104) 1.86 1.06 0.49

MSE(a) (×104) 1.26 0.73 0.32

$4, 460

p
2

MLE 0.0726 0.0453 0.0232

MSE(s) (×104) 2.70 1.54 0.76

MSE(a) (×104) 1.90 0.97 0.42

3p
2

MLE 0.0718 0.0445 0.0227

MSE(s) (×104) 2.31 1.31 0.65

MSE(a) (×104) 1.60 0.95 0.41

$3, 345

p
2

MLE 0.0730 0.0459 0.0236

MSE(s) (×104) 3.56 2.14 1.11

MSE(a) (×104) 2.41 1.44 0.65

3p
2

MLE 0.0719 0.0447 0.0226
MSE (×104) 3.13 1.81 0.81

MSE(a) (×104) 2.16 1.25 0.58
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Appendix B

Appendix to Chapter 3

Table B.1: Summary of Notation – Chapter 3
Notation used in viral load and sensitivity models
V L(t) Viral load of an infected subject at time t post-exposure
tw The time at which the window period ends
tp The time at which the viral load peaks
ts The time at which the viral load reaches steady state
λ Doubling time of the viral load during the window period
τ The life-time of the infection
C0, Cw, a, b Infection-specific calibration parameters
T+(n) The event that the test outcome is positive for pool size n, n ∈ Z+

NI(n) Number of infected specimens in a pool of size n, n ∈ Z+

Spec Specificity of a test (constant for any pool size)
Sens(n) Sensitivity of a pooled test, with pool size n, n ∈ Z+

Sens(n; i) Conditional sensitivity of a pooled test, with pool size n, given that the pool
contains i infected specimens, i ∈ {0, 1, · · · , n}, n ∈ Z+

Φ(.) The cumulative distribution function (CDF) of the standard normal distribution
z A constant such that Φ(z) = 0.95, i.e., z = 1.6449
χ The number of nucleic acid copies per viral particle
x50, x95 Viral load measurement at which the probability of testing positive is 50% and 95%, respectively

S̃ens(n; i) Approximate conditional sensitivity of a pooled test, with pool size n, given that the pool
contains i infected specimens, i ∈ {0, 1, · · · , n}, n ∈ Z+

β, α, γ Calibration parameters for the approximation model
MSE Mean squared error

Notation used in the case study (prevalence estimation)
s Number of testing pools
n Pool size
p0 An initial estimate of p
cf Fixed testing cost per pool
cv Collection cost per specimen
B Total testing budget

N The maximum pool size that can be used
p̂ The maximum likelihood estimator (MLE) of p
σ2(n, s; p) The asymptotic variance of the MLE for a pool design (n, s),

given a prevalence rate of p
SI(s) Number of positive-testing pools among s pools
rBias Relative bias of the MLE with respect to p
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Table B.2: Summary of Abbreviations – Chapter 3
HIV Human immunodeficiency virus
NAT Nucleic acid amplification testing
CDF Cumulative distribution function
FDA Food and Drug Administration
MSE Mean squared error
MLE Maximum likelihood estimator
CI Confidence interval
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Appendix C

Appendix to Chapter 4

C.1 Summary of Notation

Table C.1: Summary of Notation – Chapter 4
Decision Variables

m Pool size, i.e., number of specimens in each pool
n Number of testing pools (parameter in the PD-S Model; decision variable in the PD-J Model)

Random Variables
P True (unknown) prevalence rate of the disease (with realization p)

P̂ Maximum likelihood estimator (MLE) of P (with realization p̂)
T (m,n) Number of positive-testing pools among n pools,

each containing m specimens
Objective Function and Performance Metrics

σ2(m,n; p) Asymptotic variance of P̂ for pool design (m,n), given a true prevalence rate of p

MSE(P̂ ,m, n; p) Mean square error of P̂ for pool design (m,n), given a true prevalence rate of p

rBias(%) = 100
(∣∣∣ p̂−p

p

∣∣∣) Relative bias of p̂ (in percentage), given a true prevalence rate of p

Model Parameters
p0 An initial point estimate of P
cf Fixed testing cost per pool tested
cv Variable testing cost per specimen tested
B Testing budget

γ =
cf
cv

C.2 Proofs

Proof of Lemma 1: To simplify the notation, we represent πS0 (m1,m2) as π0. By Definition 1 and
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Proposition 1, π0 is the unique solution to:

1− (1− π0)m1

nm2
1(1− π0)m1−2

=
1− (1− π0)m2

nm2
2(1− π0)m2−2

⇔

(
1

1− π0

)m1−2

− (1− π0)2 =
(m1

m2

)2
[(

1

1− π0

)m2−2

− (1− π0)2

]

⇔

(
1

1− π0

)m1

= 1 +
(m1

m2

)2
[(

1

1− π0

)m2

− 1

]
.

This completes the proof.

Proof of Lemma 2: To simplify the notation, we represent πS0 (m1,m2) as π0, and let θ(m1,m2) ≡ 1−π0,

for m1,m2 ∈ Z+ : m1 < m2. Then, θ(m1,m2) ∈ (0, 1). First, note that the equation provided in Lemma 1

is equivalent to:

(1− π0)m2 = (1− π0)m2−m1

( m2
2

m2
2 −m2

1

)
−
( m2

1

m2
2 −m2

1

)
. (C.1)

Part 1. Proof that πS
0 (m1,m2) is decreasing in m1:

Taking the derivative of the RHS of Eqn. (C.1) with respect to m1 yields:

∂

∂m1

{
(1− π0)m2−m1

( m2
2

m2
2 −m1

2

)
−
( m1

2

m2
2 −m1

2

)}
=− [θ(m1,m2)]m2−m1 log[θ(m1,m2)]

( m2
2

m2
2 −m2

1

)
+

2m1m2
2

(m2
2 −m2

1)2
[(θ(m1,m2))m1−m2 − 1] > 0,

which follows because θ(m1,m2) < 1 and m1 < m2, and hence, we have that log(θ(m1,m2)) < 0 and

(θ(m1,m2))m1−m2 > 1. Therefore, the RHS of Eqn (C.1) is increasing in m1. Then, the LHS of Eqn. (C.1)

must also increase in m1 to preserve the equality, which in turn implies that θ(m1,m2) is increasing in m1,

and, equivalently, πS0 (m1,m2) is decreasing in m1.

Part 2. Proof that πS
0 (m1,m2) is decreasing in m2:

We prove this result by contradiction. Assume, to the contrary, that πS0 (m− 2,m) > πS0 (m− 2,m− 1) for

some m ∈ Z+ : m > 2. From Part 1, we have that πS0 (m − 1,m) < πS0 (m − 2,m), ∀m ∈ Z+ : m > 2.

Therefore, we have two cases:

Case 1. πS0 (m− 2,m− 1) < πS0 (m− 1,m) < πS0 (m− 2,m):

Consider any p ∈
(
πS0 (m − 1,m), πS0 (m − 2,m)

)
. Since πS0 (m − 2,m − 1) < πS0 (m − 1,m) (by assumption

of this case), p > πS0 (m− 2,m− 1). Therefore, by Proposition 1, σ2(m− 2, n; p) < σ2(m− 1, n; p). Further,

since πS0 (m− 1,m) < p < πS0 (m− 2,m), by Proposition 1, σ2(m− 1, n; p) < σ2(m,n; p), and σ2(m,n; p) <

σ2(m−2, n; p), leading to a contradiction, i.e., σ2(m−2, n; p) < σ2(m,n; p) and σ2(m−2, n; p) > σ2(m,n; p).
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Hence, Case 1 is not possible.

Case 2. πS0 (m− 1,m) < πS0 (m− 2,m− 1) < πS0 (m− 2,m):

Consider any p ∈
(
πS0 (m − 2,m − 1), πS0 (m − 2,m)

)
. Since πS0 (m − 2,m − 1) > πS0 (m − 1,m) (by as-

sumption of this case), p > πS0 (m − 1,m). Therefore, by Proposition 1, σ2(m − 1, n; p) < σ2(m,n; p).

Further, since πS0 (m − 2,m − 1) < p < πS0 (m − 2,m), by Proposition 1, σ2(m − 2, n; p) < σ2(m − 1, n; p),

and σ2(m,n; p) < σ2(m − 2, n; p), leading to a contradiction, i.e., σ2(m − 2, n; p) > σ2(m − 1, n; p), and

σ2(m− 2, n; p) < σ2(m− 1, n; p). Hence, Case 2 is not possible.

From Cases 1 and 2, it follows that πS0 (m − 2,m) < πS0 (m − 2,m − 1), ∀m ∈ Z+ : m > 2, completing the

proof.

Proof of Corollary 1: By Lemma 2, πS0 (m− 1,m) > πS0 (m− 1,m+ 1) > πS0 (m,m+ 1), and the result

follows.

Proof of Corollary 2: The result follows directly from Lemmas 1 and 2.

Proof of Lemma 3: Part 1. From Eqn. (5.2), we can derive:

∂

∂p
σ2(m,n; p) =

1

nm2

[ m− 2

(1− p)m−1
+ 2(1− p)

]
> 0 ∀m ≥ 2 and p < 1,

and the result follows.

Part 2. From the derivation in Part 1, it follows that ∂
∂pσ

2(1, n; p) = 1 − 2p > 0, ∀p < 1
2 , and the result

follows.

Part 3. Since σ2(m,n; p) = 1−(1−p)m
nm2(1−p)m−2 , the result trivially follows.

Part 4. We have the following derivatives:

∂

∂m
σ2(m,n; p) =

−2

m3(1− p)m−2
− log(1− p)
m2(1− p)m−2

+
2(1− p)2

m3
, and

∂2

∂m2
σ2(m,n; p) =

6

m4

{
m− 2

(1− p)m−1
+ 2(1− p)

}
+
m(m− 2) log2(1− p)− 2m log(1− p) + 4(m− 2) log(1− p)− 4

m3(1− p)m−1
.

(C.2)

Consider the following:

∂

∂p

( ∂2

∂m2
σ2(m,n; p)

)
=

6(m− 2) + 12m4(1− p)m +m2(m− 2)[log(1− p)]2 − log(1− p)(8m− 2m2)− 4m

m4(1− p)m−1
. (C.3)
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To find the root of ∂
∂p

(
∂2

∂m2σ
2(m,n; p)

)
, we define x ≡ log(1 − p), and solve the following quadratic

equation:

m2(m− 2)x2 − 2m(4−m)x− 4m+ 6(m− 2) + 12m4(1− p)m = 0,

where ∆ = b2−4ac = m2[48m4(1−p)m(2−m)−4m2+32m−32] < 0, ∀m ∈ R+. Thus, the quadratic equation

has no real root. Further, ∂
∂p

(
∂2

∂m2σ
2(m,n; p)

)∣∣∣
p=0

= 12m4+2m−12
m4 > 0, ∀m ≥ 1. Therefore, ∂2

∂m2σ
2(m,n; p)

starts out as a positive function in p, and is increasing in p, ∀m ≥ 1, p ∈ (0, 1). Hence, ∂2

∂m2σ
2(m,n; p) > 0,

∀m ≥ 1 and p ∈ (0, 1), which implies that σ2(m,n; p) is strictly convex in m, ∀m ≥ 1 and p ∈ (0, 1).

Proof of Proposition 2 For any m1,m2 ∈ Z+ : m1 < m2, we study the ratio σ2(m1,n
∗(m1);p)

σ2(m2,n∗(m2);p) , which,

from Lemma 4, equals:

σ2(m1, n
∗(m1); p)

σ2(m2, n∗(m2); p)
=

(
cf + cvm1

cf + cvm2

)(m2

m1

)2
{

(1− p)m2−2
[
1− (1− p)m1

]
(1− p)m1−2

[
1− (1− p)m2

]} , where

lim
p→0

σ2(m1, n
∗(m1); p)

σ2(m2, n∗(m2); p)
=
cfm2 + cvm1m2

cfm1 + cvm1m2
> 1 (by L’Hospital’s Rule and since m2 > m1 ≥ 1), and

lim
p→1

σ2(m1, n
∗(m1); p)

σ2(m2, n∗(m2); p)
= 0.

Further, from [69], the ratio
(
m2

m1

)2
{

(1−p)m2−2
[
1−(1−p)m1

]
(1−p)m1−2

[
1−(1−p)m2

]} is decreasing in p, ∀m1,m2 ∈ Z+ : m1 < m2.

Thus, Proposition 2 follows.

Proof of Lemma 5: To simplify the notation, we represent πJ0 (m1,m2) as π0. From Definition 2 and

Proposition 2, π0 is the unique solution to:

(
cf + cvm1

B

)(
1− (1− π0)m1

m2
1(1− π0)m1−2

)
=

(
cf + cvm2

B

)(
1− (1− π0)m2

m2
2(1− π0)m2−2

)

⇔

(
1

1− π0

)m1−2

− (1− π0)2 =
(m1

m2

)2(cf + cvm2

cf + cvm1

)[( 1

1− π0

)m2−2

− (1− π0)2

]

⇔

(
1

1− π0

)m1

= 1 +
(m1

m2

)2(cf + cvm2

cf + cvm1

)[( 1

1− π0

)m2

− 1

]
.

This completes the proof.

Proof of Lemma 6: We first show that πJ0 (1,m) is decreasing in m, ∀m ∈ Z+ : m ≥ 2. By Lemma 5,

∀m ∈ Z+ : m ≥ 2, πJ0 (1,m) is the unique solution to:
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πJ0 (1,m) =

(
cf + cvm

cf + cv

){
1−

(
1− πJ0 (1,m)

)m
m2
(
1− πJ0 (1,m)

)m−1

}
. (C.4)

Taking the derivative of the RHS of Eqn. (C.4) with respect to m yields:

∂

∂m
RHS =

(
1

cf + cv

)[(
−2cf − cvm

m3

)(
1(

1− πJ
0 (1,m)

)m−1
−
(
1− πJ

0 (1,m)
))

+

(
cf + cvm

m2

)(
− log

(
1− πJ

0 (1,m)
)(

1− πJ
0 (1,m)

)m−1

)]
> 0,

where the last inequality follows because m ≥ 2, leading to
cf+cvm
m2 ≥ 2cf+cvm

m3 ; and because log
(
1 −

πJ0 (1,m)
)
< −1, ∀πJ0 (1,m) < 2

3 (by Corollary 2), leading to
− log

(
1−πJ0 (1,m)

)(
1−πJ0 (1,m)

)m−1 > 1(
1−πJ0 (1,m)

)m−1 −
(
1 −

πJ0 (1,m)
)
. Thus the RHS of Eqn. (C.4) is increasing in m. Further, the RHS of Eqn. (C.4), which equals

B
cf+cv

σ2(m,n∗(m), πJ0 (1,m)), is also increasing in πJ0 (1,m). Thus, πJ0 (1,m) must decrease as m increases so

as to preserve the equality in Eqn. (C.4).

We are now ready to show that πJ0 (m1,m2) is decreasing in each of m1 and m2, ∀m1,m2 ∈ Z+ : m1 < m2.

Part 1. Proof that πJ
0(m1,m2) is decreasing in m1:

The proof follows by induction and contradiction. To this end, we first show that πJ0 (2,m2) < πJ0 (1,m2),

∀m2 > 2. Suppose, to the contrary, that πJ0 (2,m2) > πJ0 (1,m2). Since πJ0 (1,m2) < πJ0 (1, 2), ∀m2 > 2, there

are two cases:

Case 1. πJ0 (2,m2) > πJ0 (1, 2): By Proposition 2, we have that ∀p ∈
(
πJ0 (1,m2), πJ0 (1, 2)

)
, σ2(1, n∗(1); p) <

σ2(m2, n
∗(m2); p) < σ2(2, n∗(2); p), and σ2(1, n∗(1); p) > σ2(2, n∗(2); p), leading to a contradiction.

Case 2. πJ0 (1,m2) < πJ0 (2,m2) < πJ0 (1, 2): By Proposition 2, we have that ∀p ∈
(
πJ0 (1,m2), πJ0 (2,m2)

)
,

σ2(1, n∗(1); p) < σ2(m2;n∗(m2); p) < σ2(2, n∗(2); p) (since m2 > 2), but since πJ0 (2,m2) < πJ0 (1, 2) (by

assumption of this case), we also have that σ2(2, n∗(2); p) < σ2(1, n∗(1); p) (by Proposition 2), leading to a

contradiction.

Thus, it follows that πJ0 (2,m2) < πJ0 (1,m2). It then follows, by induction, that πJ0 (m2 − 1,m2) < · · · <

πJ0 (2,m2) < πJ0 (1,m2).

Part 2. Proof that πJ
0(m1,m2) is decreasing in m2:
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From Part 1, we have that ∀m2 ∈ Z+, πJ0 (m2 − 1,m2) < πJ0 (m2 − 2,m2). We want to show that

πJ0 (m2− 2,m2− 1) > πJ0 (m2− 2,m2). Suppose, to the contrary, that πJ0 (m2− 2,m2− 1) < πJ0 (m2− 2,m2).

We have the following cases:

Case 1. πJ0 (m2 − 2,m2 − 1) < πJ0 (m2 − 1,m2):

By Proposition 2, ∀p ∈
(
πJ0 (m2 − 1,m2), πJ0 (m2 − 2,m2)

)
, σ2(m2 − 1, n∗(m2 − 1); p) < σ2(m2, n

∗(m2); p) <

σ2(m2−2, n∗(m2−2); p), and σ2(m2−2, n∗(m2−2); p) < σ2(m2−1, n∗(m2−1); p), leading to a contradiction.

Case 2. πJ0 (m2 − 1,m2) < πJ0 (m2 − 2,m2 − 1) < πJ0 (m2 − 2,m2):

By Proposition 2, ∀p ∈
(
πJ0 (m2−2,m2−1), πJ0 (m2−2,m2)

)
, σ2(m2−2, n∗(m2−2); p) < σ2(m2−1, n∗(m2−

1); p) < σ2(m2, n
∗(m2); p), but σ2(m2, n

∗(m2); p) < σ2(m2 − 2, n∗(m2 − 2); p), leading to a contradiction.

Thus, it follows that πJ0 (m2 − 2,m2 − 1) > πJ0 (m2 − 2,m2), completing the proof.

Proof of Corollary 3: By Lemma 6, πJ0 (m− 1,m) > πJ0 (m− 1,m+ 1) > πJ0 (m,m+ 1), and the result

follows.

Proof of Corollary 4: The results follow directly from Lemmas 5 and 6.

Proof of Lemma 7: Parts 1 and 2. Observe that σ2(m,n∗(m); p) =

(
cf+cvm

B

)(
σ2(m,n;p)

n

)
. Then,

the proof follows directly from Lemma 3.

Part 3. σ2(m,n∗(m); p) can be expressed as follows:

σ2(m,n∗(m); p) =
1

B

{
cf

[
1− (1− p)m

m2(1− p)m−2

]
+ cv

[
1− (1− p)m

m(1− p)m−2

]}

=
1

B

[
1

(1− p)m−2
− (1− p)2

](
cf
m2

+
cv
m

)
.

Let g(m; p) ≡ Bσ2(m,n∗(m); p). We have the following:

∂

∂m
g(m; p) =

[
− log(1− p)

(1− p)m−2

](
cf
m2

+
cv
m

)
+

[
1

(1− p)m−2
− (1− p)2

](−2cf
m3

− cv
m2

)
, and

∂2

∂m2
g(m; p) =

[[
log(1− p)

]2
(1− p)m−2

](
cf
m2

+
cv
m

)
+ 2

[
log(1− p)
(1− p)m−2

](
2cf
m3

+
cv
m2

)

+

[
1

(1− p)m−2
− (1− p)2

](
6cf
m4

+
2cv
m3

)
.
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We now show that ∂2

∂m2 g(m; p) > 0, ∀m > 0 and ∀p ∈ (0, 1
3 ). Noting that (1 − p)m−2 > 0, ∀m > 0 and

p ∈ (0, 1
3 ), and multiplying ∂2

∂m2 g(m; p) by
{

(1− p)m−2
}

yields the following :

h(m; p) =
(

log(1− p)
)2
(
cf
m2

+
cv
m

)
+ 2 log(1− p)

(
2cf
m3

+
cv
m2

)
+
[
1− (1− p)m

](6cf
m4

+
2cv
m3

)
.

∂

∂p
h(m; p) =

−2 log(1− p)
1− p

(
cf
m2

+
cv
m

)
− 2

1− p

(
2cf
m3

+
cv
m2

)
+ (1− p)m−1

(
6cf
m3

+
2cv
m2

)
.

Note that the sign of ∂
∂ph(m; p) equals the sign of the following function:

−2 log(1− p)

(
cf
m2

+
cv
m

)
− 2

(
2cf
m3

+
cv
m2

)
+ (1− p)m

(
6cf
m3

+
2cv
m2

)

= −2 log(1− p)cv
m

+
1

m2

(
− 2cf log(1− p)− 2cv + 2cv(1− p)m

)
+

cf
m3

(
− 4 + 6(1− p)m

)
> 0,

where the last inequality follows because cf > cv and log(1 − p) < 0, ∀p ∈
(

0, 1
3

)
. Thus, ∂2

∂m2 g(m; p) is

increasing in p, ∀m > 0 and ∀p ∈
(

0, 1
3

)
. At p = 0, ∂2

∂m2 g(m; p) =
6cf
m4 + 2cv

m3 > 0. Thus, ∂2

∂m2 g(m; p) > 0,

∀m > 0 and ∀p ∈
(

0, 1
3

)
. This completes the proof.

Proof of Lemma 8:

Part 1. The proof follows directly from Lemma 2.

Part 2. From Lemma 5, we have the following:

m2
2(1− πJ0 (m1,m2))m2

[
1− (1− πJ0 (m1,m2))m1

]
m2

1(1− πJ0 (m1,m2))m1
[
1− (1− πJ0 (m1,m2))m2

] =
cf + cvm2

cf + cvm1
=
γ +m2

γ +m1
= 1 +

(m2 −m1)

γ +m1
.

Note that
m2

2(1−πJ0 (m1,m2))m2

[
1−(1−πJ0 (m1,m2))m1

]
m2

1(1−πJ0 (m1,m2))m1

[
1−(1−πJ0 (m1,m2))m2

] is decreasing in πJ0 (m1,m2) (from Liu et al [69]) and is

constant in γ, while 1 + (m2−m1)
γ+m1

is decreasing in γ (since m2 > m1) and is constant in πJ0 (m1,m2). Thus,

as γ increases, πJ0 (m1,m2) also increases. This completes the proof.

Proof of Lemma 9: From Lemmas 1 and 5, we observe that when cv = 0, i.e., when γ → ∞,

πJ0 (m1,m2) → πS0 (m1,m2). Further, from Lemma 8, πJ0 (m1,m2) is increasing in γ. Thus, πJ0 (m1,m2) <

πS0 (m1,m2), completing the proof.

Proof of Lemma 10: By Properties 1 and 2, and Corollaries 1 and 3, we have that πX0 (m,m + 1) ≤

πX0 (m−1,m), ∀m ∈ Z+ : m > 2, X ∈ {S, J}. Then, we have that σ2(m,n; p) < σ2(k, n; p), ∀k ∈ Z+ : k 6= m,

if and only if πX0 (m,m+ 1) < p < πX0 (m− 1,m). If p = πX0 (m,m+ 1), then σ2(m + 1, n; p) = σ2(m,n; p),
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and, if p = πX0 (m− 1,m), then σ2(m,n; p) = σ2(m− 1, n; p). This completes the proof.

of Theorem 1: From Lemma 10, Part 1, we have the following:

· · · πS0 (m+ 1,m+ 2) < p < πS0 (m,m+ 1) πS0 (m,m+ 1) < p < πS0 (m− 1,m) πS0 (m− 1,m) < p < πS0 (m− 2,m− 1) · · ·

σ2(m+ 1, n; p) < σ2(k, n; p), σ2(m,n; p) < σ2(k, n; p), σ2(m− 1, n; p) < σ2(k, n; p),

∀k ∈ Z+ : k 6= m+ 1 ∀k ∈ Z+ : k 6= m ∀k ∈ Z+ : k 6= m− 1.

Then, if πS0 (m,m+1) < p < πS0 (m−1,m), thenm is the unique optimal solution to PD-S. If p = πS0 (m,m+1),

then m and m+ 1 are both optimal, and, if p = πS0 (m−1,m), then m−1 and m are both optimal for PD-S.

This completes the proof.

Proof of Theorem 2: From Lemma 10, Part 2, we have the following:

· · · πJ0 (m+ 1,m+ 2) < p < πJ0 (m,m+ 1) πJ0 (m,m+ 1) < p < πJ0 (m− 1,m) πJ0 (m− 1,m) < p < πJ0 (m− 2,m− 1) · · ·

σ2(m+ 1, n ∗ (m+ 1); p) < σ2(k, n∗(k); p), σ2(m,n∗(m); p) < σ2(k, n∗(k); p), σ2(m− 1, n∗(m− 1); p) < σ2(k, n∗(k); p),

∀k ∈ Z+ : k 6= m+ 1 ∀k ∈ Z+ : k 6= m ∀k ∈ Z+ : k 6= m− 1.

Then, if πJ0 (m,m+1) < p < πJ0 (m−1,m), then m is the unique optimal solution to PD-J. If p = πJ0 (m,m+1),

then m and m+ 1 are both optimal, and, if p = πJ0 (m− 1,m), then m− 1 and m are both optimal for PD-J.

This completes the proof.

Proof of Corollary 8: The result follows from Lemma 10 and Theorems 1 and 2.

Proof of Corollary 7: The result follows from Lemma 8.

Proof of Lemma 11: By Lemmas 3 and 7, m′ is the unique solution to the first-order condition:

−2

(m′)3(1− p0)m
′−2
−

log(1− p0)

(m′)2(1− p0)m
′−2

+
2(1− p0)2

(m′)3
= 0, for PD-S, and(

cf

(m′)2
+
cv

m′

)[
−

log(1− p0)

(1− p0)m′−2

]
−
(

2cf

(m′)3
+

cv

(m′)2

)[
1

(1− p0)m′−2
− (1− p0)2

]
= 0, for PD-J,

which are respectively equivalent to:

m′ =
2[(1− p0)m

′ − 1]

log(1− p0)
, for PD-S, and

m′ =

(
1 +

cf
cf+cvm′

)
[(1− p0)m

′ − 1]

log(1− p0)
, for PD-J.

This completes the proof.
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Appendix D

Appendix to Chapter 5

D.1 Summary of Notation

Table D.1: Summary of Notation – Chapter 5
Decision Variables

m(s) Pool size, i.e., number of specimens in each pool, used in stage s

n(s) Number of testing pools used in stage s
Random Variables

P True (unknown) prevalence rate of the disease (with realization p)
(P follows an arbitrary continuous distribution with support

[
pLB , pUB

]
)

P̂ (s) Maximum likelihood estimator (MLE) of P
obtained in stage s

T (m(s), n(s)) Number of positive-testing pools among n(s) pools,

each containing m(s) specimens
Objective Functions and Performance Metrics

σ2(m,n; p) Asymptotic variance of P̂ for pool design (m,n),
given a true prevalence rate of p

Regret(m,n; p) Regret for pool design (m,n),
given a true prevalence rate of p

MSE(P̂ ,m, n; p) Mean squared error of P̂ for pool design (m,n),
given a true prevalence rate of p

rBias(P̂ ,m, n; p)(%) = 100
(∣∣∣ P̂−p

p

∣∣∣) Relative bias of P̂ (in percentage) for pool design (m,n),

given a true prevalence rate of p
Model Parameters

pLB , pUB Lower and upper bounds of the support of P (input for RM and MM)
p0 An initial point estimate of P (input for DM)
cf Fixed testing cost per pool tested
cv Variable testing cost per specimen tested
B Testing budget
λ Budget allocation factor

D.2 Properties of the Asymptotic Variance Function

In this section, we summarize some key properties of the asymptotic variance function, σ2(m,n; p), estab-

lished in [76].
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In this setting, we first present some relevant properties of the asymptotic variance function, σ2(m,n; p).

Lemma A1. (From [69] and [76]) In general, σ2(m,n; p) has the following properties:

1. For any m,n ∈ Z+, σ2(m,n; p) is increasing in p, ∀p < 1
2 .

2. For a given n ∈ Z+, and for any m1,m2 ∈ Z+ : m1 < m2, the prevalence threshold, π0(m1,m2) ∈ (0, 1),

is defined as the prevalence rate at which σ2
(
m1, n;π0(m1,m2)

)
= σ2

(
m2, n;π0(m1,m2)

)
. Then, for

any m1,m2 ∈ Z+: m1 < m2, there exists a unique π0(m1,m2) ∈ (0, 1). Further:

σ2(m1, n; p)


> σ2(m2, n, ∀p < π0(m1,m2)

< σ2(m2, n, ∀p > π0(m1,m2)

,

and π0(m1,m2) is decreasing in each of m1 and m2, ∀m1,m2 ∈ Z+ : m1 < m2. For a given n ∈ Z+,

π0(m1,m2) is computed using the following equation ( [76]):

(
1

1− π0

)m1

= 1 +
(m1

m2

)2
[(

1

1− π0

)m2

− 1

]
.

Thus, π0(1, 2) = 2
3 , and π0(m1,m2) < 2

3 , ∀m1,m2 ∈ Z+ : m1 < m2. Further, the maximum pool size

feasible, given a testing budget, B, a testing cost, cf , a collection cost, cv, and a fixed n is given by:

M ≡ bB−cfncvn
c.

Further, for any n ∈ Z+, the optimal pool size to DM, m∗D(n, p0), follows a threshold policy, as defined in

Theorem 3, with pUB replaced by p0. Further, m∗D(p0) is decreasing in p0, ∀p0 ≥ π0(1, 2). For a given cv,

m∗D(p0) is non-decreasing in cf ; for a given cf , m∗D(p0) is non-increasing in cv ( [76]).

D.3 Proofs

Proof of Theorem 3: From Lemma A1, it follows that max
P∈[pLB ,pUB ]

σ2(m,n∗(m); p) ≡ σ2(m,n∗(m); pUB),

for any m ∈ Z+ and pUB < 1
2 . Thus, Model MM can be reformulated as Model DM with p0 = pUB .

From [76], it follows that Model MM can be solved using the threshold policy stated in Theorem 3.

Proof of Corollary 8: The proof follows from Lemma A1 with p0 replaced by pUB .

Proof of Corollary 9: The proof follows directly from Corollary 8 because p0 ∈ [pLB , pUB ].

Proof of Lemma 12: We first derive, for a given n ∈ Z+, n ≤
⌊

B
cf+cv

⌋
, ∀m ∈ Z+ : m ≥ 2:

∂

∂p
Regret(m,n; p) =

1

n

{
1

m2

[ (m− 2)

(1− p)m−1
+ 2(1− p)

]
− 1(

m∗(n, p)
)2 [

(
m∗(n, p)− 2

)
(1− p)m∗(n,p)−1

+ 2(1− p)
]}

= 0.
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By the Envelope Theorem, ∂
∂pσ

2(m∗(n, p), n; p) = ∂
∂pσ

2(m,n; p)
∣∣∣
m=m∗(n,p)

. Thus, we can derive:

∂

∂p
Regret(m,n; p) =

1

n

{
∂

∂p
σ2(m,n; p)− ∂

∂p
σ2(m∗(n, p), n; p)

}
=

1

n

{
1

m2

[ (m− 2)

(1− p)m−1
+ 2(1− p)

]
− 1(

m∗(n, p)
)2 [

(
m∗(n, p)− 2

)
(1− p)m∗(n,p)−1

+ 2(1− p)
]}

.

(D.1)

Without loss of generality, in the remainder of this proof, we assume n = 1. To simplify the notation, we

represent m∗D(1, p) as m∗(p), and M(1) as M .

Part 1. From the threshold policy to solve DM, ∀p ∈
(
π0(m,m+ 1), π0(m−1,m)

)
, m∗(p) = m ( [76]). Thus,

it follows that Regret(m,n; p) = σ2(m,n; p)− σ2(m∗(p), n; p) = 0.

Part 2. By Eqn. (D.1), since π0(1, 2) = 2
3 , we have that m∗(1) = 1 and m∗(0) = M , ∀n ∈ Z+, n ≤

⌊
B

cf+cv

⌋
.

Thus, we have the following:

lim
p→0

∂

∂p
Regret(m,n; p) =

1

m
− 1

M
≥ 0, and

lim
p→1

∂

∂p
Regret(m,n; p) = lim

p→1

{
1

m2

[ (m− 2)

(1− p)m−1

]
−
[ −1

(1− p)0

]}
→∞.

To simplify the notation, we represent p̃(m) as p̃. Recall that p̃ is the smallest solution to the FOC,

i.e, p̃ = arg min
{
∂
∂pRegret(m,n; p) = 0

}
. Further, by Part 1, since Regret(m,n; p) ≥ 0, ∀m ∈ Z+,

∂
∂pRegret(m,n; p) = 0, ∀p ∈

(
π0(m,m + 1), π0(m − 1,m)

)
. Then, since limp→0

∂
∂pRegret(m,n; p) ≥ 0,

and limp→1
∂
∂pRegret(m,n; p) > 0, p̃ < π0(m,m + 1), and p̃ must correspond to a local maximum of the

Regret(m,n; p) function with respect to p.

Part 3. From Lemma A1, m∗(p) is decreasing in p, for any 0 < p < 1
2 . Thus, for a given m ≥ 2, m ∈ Z+,

since p̃ < π0(m,m+ 1), there are two cases: 1. m∗(p̃) > m, and 2. m∗(p̃) = m.

Case 1. m∗(p̃) > m: By definition of p̃, p̃ is the solution to the FOC given by:

1

m2

[ m− 2

(1− p̃)m−1

]
+

2(1− p̃)
m2

=
m∗(p̃)− 2

[m∗(p̃)]2(1− p̃)m∗(p̃)−1
+

2(1− p̃)
[m∗(p̃)]2

⇔ (m− 2)[m∗(p̃)]2(1− p̃)m∗(p̃)−1 − [m∗(p̃)− 2]m2(1− p̃)m−1

m2 − [m∗(p̃)]2
= 2(1− p̃)m+m∗(p̃)−1.

(D.2)

We will now show that p̃ is the unique solution to the FOC in the interval
(
0, π0(m,m + 1)

)
, i.e, when

m∗(p̃) > m. Eqn. (D.2) is equivalent to the following:
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(m∗(p̃)− 2)m2(1− p̃)m−1 − (m− 2)[m∗(p̃)]2(1− p̃)m
∗(p̃)−1 = 2

{
[m∗(p̃)]2 −m2

}
(1− p̃)m+m∗(p̃)−1. (D.3)

Taking the derivative of both sides of Eqn. (D.3) with respect to p̃, we have:

∂

∂p̃
LHS = −(m∗(p̃)− 2)(m− 1)m2(1− p̃)m−2 + (m∗(p̃)− 1)[m∗(p̃)]2(m− 2)(1− p̃)m

∗(p̃)−2 +m2(1− p̃)m−1

−
{

(m+ 2)(1− p̃)m
∗(p̃)−1[2m∗(p̃) + log(1− p̃)]

} ∂m∗(p̃)
∂p̃

;

∂

∂p̃
RHS = −2{[m∗(p̃)]2 −m2}(1− p̃)m+m∗(p̃)−2(m+m∗(p̃)− 1)

+

{
2(1− p̃)m+m∗(m̃)−1

{
2m∗(p̃) +

(
[m∗(p̃)]2 −m2

)
log(1− p̃)

}}∂m∗(p̃)
∂p̃

.

Further, since m∗(p) is decreasing in p for any 0 < p < 1
2 ( [76]), ∂m

∗(p̃)
∂p̃ ≤ 0. Furthermore, by the assumption

that m∗(p̃) > m, ∂
∂m∗(p̃)LHS > 0, while ∂

∂p̃RHS < 0, for 0 < p̃ < 1. Therefore, there exists a unique p̃ such

that p̃ < π0(m,m+ 1), i.e., p̃ is the unique solution to the FOC in the interval
(
0, πS0 (m,m+ 1)

)
.

Case 2. m = m∗(p̃): π0(m,m + 1) ≤ p̃ ≤ π0(m − 1,m). This contradicts with the property that

p̃ < π0(m,m+1), and with the property that p̃ corresponds to a local maximum ofRegret(m,n; p). Therefore,

we conclude that there exists a unique p̃ such that p̃ < π0(m,m+ 1), ∀m ≥ 2.

We now show that the FOC of the Regret(m,n; p) function has no solution in the interval
(
π0(m −

1,m), 1
)
. We prove this property by contradiction. Assume that there exists a solution, p̄, to the FOC

of Regret(m,n; p) such that p̄ > π0(m − 1,m), i.e., m∗(p̄) < m, for a given m ≥ 2, m ∈ Z+. Since

m∗(p̄) < m, in order for Eqn. (D.2) to hold, the following needs to hold:

(m− 2)[m∗(p̄)]2(1− p̄)m
∗(p̄)−1 > [m∗(p̄)− 2]m2(1− p̄)m−1

⇔ m− 2

m2

[ 1

(1− p̄)m−1

]
>
m∗(p̄)− 2

[m∗(p̄)]2

[ 1

(1− p̄)m∗(p̄)−1

] (D.4)
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Since m∗(p̄) is the DM optimal solution for p0 = p̄, we have that:

1

[m∗(p̄)]2

[ 1

(1− p̄)m∗(p̄)−2
− (1− p̄)2

]
<

1

m2

[ 1

(1− p̄)m−2
− (1− p̄)2

]
⇔ 1

(1− p̄)m−1
<

1

(1− p̄)m∗(p̄)−1
(since m > m∗(p̄) by assumption).

(D.5)

Further, m−2
m2 is decreasing in m, equivalently, m−2

m2 < m∗(p̄)−2
[m∗(p̄)]2 , ∀m > m∗(p̄). Therefore, Eqs. (D.4) and

(D.5) lead to a contradiction. Thus, we conclude that m < m∗(p̄), i.e., the FOC of the Regret(m,n; p)

function has no solution in the interval
(
π0(m− 1,m), 1

)
. This completes the proof.

Proof of Lemma 13: From Lemma 12, the result follows because Regret(m,n; p) has a unique local

maximum at p̃(m), and p ∈ [pLB , pUB ]. Thus, max
p∈[pLB ,pUB ]

{
Regret(m,n; p)

}
is attained at either p̃(m), pLB

or pUB for any m ∈ Z+ : m ≥ 1.

Proof of Theorem 4:

From Lemma 13, for any n ∈ Z+, n ≤
⌊

B
cf+cv

⌋
, p∗(m) ≡ arg max

p∈{pLB ,pUB ,p̃(m)}
{Regret(m,n; p)}. Thus, the result

follows by definition of RM.

D.4 Additional Numerical Results
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