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With the help of Monte Carlo simulations and a mean-field theory, we investigate the ordered steady-state
structures resulting from the motion of a single vacancy on a periodic lattice which is filled with two species
of oppositely “charged” particles. An external field biases particle-vacancy exchanges according to the par-
ticle’s charge, subject to an excluded volume constraint. The steady state exhibits charge segregation, and the
vacancy is localized at one of the two characteristic interfaces. Charge and hole density profiles, an appropriate
order parameter, and the interfacial regions themselves exhibit characteristic scaling properties with system
size and field strength. The lattice spacing is found to play a significant role within the mean-field theory.

PACS numbe(s): 05.40—a, 68.35.Ct, 82.20.Mj

I. INTRODUCTION name the two species “positive” and “negative,” in anal-
ogy to charged particles in an electric field. The bias clearly
Systems in nonequilibrium steady states have attractebdreaks the Potts symmetry of the stochastic variable by act-
considerable interest in the past decple While presenting ing differently on each species. The only interaction between
a wealth of unexpected, intriguing phenomena, they are stilihe particles is an excluded volume constraint so hatach
quite poorly understood at a fundamental level. It is thereforesite can be occupied by at most one particle @ndoarticle-
natural to investigate simple model systems to identify geparticle (“charge”) exchanges are not allowed. In the ab-
neric behavior, before turning to real systems which are ususence of other interparticle interactions, the temperature de-
ally far more complex. pendence of the system, reflecting a coupling to a heat bath,
A particularly interesting class of model systems is basednay be absorbed into the drive. Hence, the model is a high-
on lattice-gas models, involving one or several species ofield, high-temperature limit of a more complicated interact-
particles whose motion is biased in a specified direction. ling system.
the boundary conditions are open or periodic, the bias can On a fully periodic square lattice, this system undergoes a
drive the system out of a well-known equilibrium state into blocking transition controlled by field strength and particle
novel nonequilibrium steady states which typically carry glo-density, separating a homogeneous phase from a spatially
bal particle currents. Characteristic configurations, particleinhomogeneous onel5]. For small mass density and drive,
particle correlations, and even phase transitions tend to biée steady-state configurations are disordered so that both
profoundly affected by the bias. Equilibrium phases can beparticle densities are homogeneous and a significant charge
suppressed, universality classes may change, and entiretyirrent persists. In contrast, if a threshold mass density is
new transitions can emerge. For example, in a simple driveexceeded, the particles form a single compact strip transverse
Ising lattice gas with periodic boundary conditiof, the  to the field while the rest of the lattice remains essentially
bias suppresses one of the two ground states of the equililempty. The particle-rich region itself consists of two strips,
rium system and fundamentally changes the universal propalso oriented transverse to the field, each dominated by one
erties of the Ising order-disorder transitig8—6]. In the  single species. In this phase, the particles impede one an-
high-temperature phase, it induces generic long-range corr@ther, due to the excluded volume constraint, so that the
lations[7], which characterize all models of this type. Other charge current is much smaller. Other ordered phases, with
anomalies are observed beldw [8]. nonzero winding number around the latticg'barber
If the Ising symmetry is generaliz¢8,10] to include two  poles”), are observed in systems with rectangular aspect ra-
(or more species of particles which respond differently to tios[16]. An analytical solution in the frame of a mean-field
the drive, such systems will generically exhibit blocking theory[15] was presented in Ref17]. With a slight geo-
transitions, similar to traffic jams, in which one species im-metrical modification, the model was also investigated by
pedes the motion of the other. These instabilities are genuingoster and Godahe[18].
nonequilibrium transitions: they do not exist in the equilib- Here, we focus on a novel aspect of the blocking transi-
rium limit and are controlled by particle density and biastion, namely, alocalization phenomenonccurring in sys-
strength, rather than temperature. The ordered phases exhitéims near complete fillinfgl9]. Thus, all lattice sites except
characteristic spatial structures. Related real and model sya-singlevacant one are occupied by particles. For simplicity,
tems include water-in-oil microemulsions in external electricwe consider the symmetric situation, i.e., the particle num-
fields[11,12, gel electrophoresigl3], and traffic flow[14]. bers of each species differ at most by one. Starting from a
In this paper, we focus on a three-state lattice gas consistlisordered initial configuration, particles may exchange only
ing of holes and two distinct species of particles driven by arwith the vacancy. As a result, the hole diffuses through the
external fieldE (the biag in opposite directiong15]. We lattice. However, it doesiot perform a Brownian random
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walk, since the jump rate for a particle-hole exchange deﬂ;y (ny,), taking the value+1 if a positive (negative

pends on the charge and direction of motion of the particlecharge is present at sitex,f/) and zero otherwise. This en-

By virtue of the bias, positive and negative particles areforces the excluded volume constraint. There are no other

transported in opposite directions: The two particle speciegteractions between the particles. Turning to dynamics, par-

eventually segregate, provided the field exceeds a certaiticles may jumponly onto the vacant site. In the absence of

threshold, corresponding to the transition [jd&]. When the  the external field, the vacancy exchanges randomly with any

steady state is reached, two strips have formed, filled byf its four nearest neighbors, independent of their charge and

positive and negative particles, respectively. The hole itselthe direction of the move. This symmetry is broken by the

ends up “trapped” on one of the two interfaces between the‘electric” field E, which is chosen to be uniform in space

two ordered regions. Its location is the remnant of the emptyand time and directed along the positivaxis. For nonzero

region observed at finite hole density. E, jumps transverse to the field are still random; however,
This problem, in both its static and dynamic aspects, is aparallel jumps are now biased: positiyeegativé charges

example of a much wider ranging class of interacting randonjump preferentially alongagainst E. Specifically, the ex-

walk and defect-mediated domain-growth problems. Thechange rate of the hole with a randomly chosen nearest

hole is a random walker whose motion changes its environneighbor is given by the Metropolis rafa4],

ment, but the environment reacts by determining the local

jump rates. The vacancy plays the role of a highly mobile W=min{1,exgqEdy)}, (1)

defect[20], interacting with an otherwise immobile back-

ground. The time evolution of the system, from an initially whereq=+1 (—1) for a positive(negative particle and

disordered particle background to two ordered strips, poses &y=0,+a is the change of thg coordinate of the particle

domain-growth probleni21]. Clearly, a good understanding due to the jump. This choice mimics the local energetics of

of the finalsteady stateand their associated scaling proper- charges in a uniform field. The lattice constantill be set

ties is the first step in the analysis of the ordering processo 1.

This study forms the subject of this paper. We report else- The dynamics of the model can be summarized by a mas-

where on the fulldynamicq 22]. ter equation[25] for the probabilityP(C,t) to find the sys-
The key results of our studj23] can be summarized as tem in the configuratiomiz{n;y,n;y} at timet:

follows. First, we establish and confirm the characteristic

scaling forms of the order parameter and the density profilesy

Further, focusing only on the interfaciéhs opposed to the EP(CJ)ZE {W(C'—=C)P(C",t) —W(C—C")P(C,t)}.

fully ordered regions of the profiles, we find thabthinter- c’ 2

faces are independent of the longitudinal system size and that

their widths are controlled l_Jy the drive alone. These f|r!d|ng ere,W(C—C') is the transition rate fron€ to C', speci-

are reflected.|?_ ourk;ne'c;]n-ﬂeld the(?ryH Ou;]results arg_hm?e ied by Eq.(1). For E<w, P(C,t) approaches a unique

In two ways: first, by the onset of the phase transition Orsteady-state solutioR* (C) in the limit t—c. For closed

s_maII E’.and second, by the breakdown of the naive Con'boundary conditionsP* (C) follows from equilibrium statis-
tinuum limit for largeE.

This paper is oraanized as follows. In Sec. II. we give atical mechanics, being the Boltzmann factor of a system of
pap 9 : L g noninteracting charges in a uniform field. For periodic

precise definition of the microscopic model which underliesbounolar conditions. however. there is no uniquely defined
the Monte Carlo simulations. The relevant control and order y ! ! quely

. . static potential forE#0 so thatP*(C) is not a priori

parameters are defined. To set the scene, we provide a bri : - .

. . . nown. Instead, it has to be found from an explicit solution
summary of earlier work. In particular, we discuss the block- : :
) i . R .~ of Eg. (1). Unfortunately, such solutions are available only
ing transition and its description in terms of a mean-field . .

. . . . or a few, mostly one-dimensional, cases. Here, we only

theory. In Sec. lll, we investigate the scaling properties o

the order parameter and the profiles, based on Monte Cartﬁg}n:vv;:i :Eez gif?l?él:?;r;dtgfnlsysaﬁﬁm ('SC)""?Sa:Ed'g Ziﬂgﬁ;'%;n'
simulations and the exact solution of the mean-field equa- b Y P

. : configuration, i.e.P* 1.
ions. Wi ncl with mmary an m mments. ’ . - .
tions. We conclude with a summary and some comments The control parameters of this model are easily identified.

In addition to the driving fieldE and the system size,

Il. THE MODEL: MICROSCOPICS AND MEAN-FIELD L,XLy, we can adjust the mass density
THEORY
1 ,
In this section, we provide the necessary background. We m=1T > (Nyy+Nyy) )
x=y Xy

begin with the microscopic definition of the model, followed
by a summary of its phenomenology. We then provide a
different perspective, by sketching the mean-field theory and
its main results. We close with some technical details of the 1
simulations. I

Our model is defined on a two-dimensional square lattice P LyLy xzy (Ney ™ My @
of LyXL, sites with fully periodic boundary conditions.
Each site, except one, can be occupied by a positive or neg&ince the particle number of each species is separately con-
tive particle. The remaining site is left empty. The resultingserved, both densities are also conserved. For our case, there
configurations can be described by an occupation variabls always a single hole, so that the particle density

s well as the net charge density of the system:




186 M. THIES AND B. SCHMITTMANN PRE 61

1 L, but only weakly(if at all) onL,. It can be first or second
L (5 order[17,19, in different regions of parameter space. In our
X case, where only a single hole is present, the mass density is

depends on the system size. Since we focus on nearly equlélpity, to excellent accuracy. Therefore, the transition is con-
numbers of positive and negative particles, the net chargiolled by E andL, alone. _
density is zero for systems with an odd number of sites and We now turn to a brief summary of the theoretical analy-
—1/(L,L,) for an even numbetthe hole always takes the sis [15,17] which will be _ess_en_nal for_ the foIIOW|_ng. Even
place of a positive particle In the simulations, this small though the master equation is just a linear equation, in prac-
difference does not appear to lead to observable effects, ufic€ it is not susceptible to theoretical analysis. To proceed, a
like the case op=0(1) [26]. continuum description is |ntrc_)duced, in the form of equations
A brief description of the blocking transition and the as- ©f motion for thecoarse-grainedhole- and charge-density
sociated phases will be helpful. For small values of drive androfiles. Since the latter are both conserved quantities, the
total mass, the system is in the disordered phase, characté@uations of motion take the form of continuity equations.
ized by spatially uniform mass and charge densities. A sig7hey can be derived phenomenologically5] or directly
nificant charge current flows in this phase. Esor m in- fro'm the master quat|o[119]. In the latter case, we first
crease, a transition into an ordered phase, with spatiall¥'ite @ set of equations for the local averages,,) and
inhomogeneous densities, occurs. For systems with aspecx.y), On discrete spacewith lattice constant jland then
ratios near unity, each species of particles forms a compacigkeé a naive continuum limit, e.g., we approximate
stable strip transverse to the electric field. The strip of posi{ 3 ( ¢y 1y~ $x—1y)) by a first derivative with respect te,
tive charges is located directly “upfield” from the negative etc. A mean-field assumption is necessary since two-point
strip, so that the strips block each other, due to the excludedorrelations must be truncated in order to obtain a closed set
volume constraint. The rest of the lattice remains essentiallpf equations. These can easily be written in general dimen-
empty. Clearly, the current is much smaller in this phase. Irsion d:
the following, we will investigate the structure of these trans- R o )
verse strips when the empty region has shrunk to a single ap(r,t)=V-A{Vo+EPyy},
hole. We never observe strips with nonzero winding number: 9)
they appear to be suppressed near complete filling. . . . . R
To distinguish ordered and disordered phases, a suitable ap(r)=V{dVy—yVd—Ed(1-¢)Vy}.
order parameter is needed. It is convenient to introduce the ) )
local hole and chargedensities: Here, the hole density and the cheajge density are func-
tions of thed-dimensional coordinate (with associated gra-
dxy=1—(ngy+tnyy) and ¢y =ny,—n,,. (6)  dientV) and timet. The drive appears in these equations via

) . o its coarse-grained equivalent, théfectivedrive &:
Since our system does not develop inhomogeneities ix the

direction, it is natural to focus on the mass and charge- E(E)=2tanKE/2), (10
densityprofiles

m=1-—

y

pointing along the unit vectoy. A diffusion constant has

been absorbed into the time scale. Derivatives higher than
second order have been neglected, anticipating smoothly
varying solutions. The equations have to be supplemented

1 1
¢<y>=L—X§ #yy and «zf(y):L—Xg Gy (D

Following Ref.[15], we define an order parameter with periodic boundary conditions and the constraints on to-
tal mass and charge. For later reference, we also define the
1 arameter
QLEW< > w<y>12>. ® "
yuy e=EL,, (12)

The angular brackets denote a configurational averag

Svhich will play the role of li iable.
Squaring the charge-density profil@hich can have either Ich WIT pay tne role of a scaing variable

g d llati i th g Time-independent solutions of these equations reflect sta-
sr:gn) pcrjevegts rtjmwante' cance atlr??s 'Q t € SUT v dn tionary phases of the discrete model. The disordered phase
the ordered phaseQ, is O(1), while being only order ., oqh0nds to a homogeneous solution, which is stable with

O(1/(mLy) in the disordered phase. Roughly speakingyegpect to small perturbations providetdoes not exceed a
m L,Q, counts the ordered rows transverse to the eXtem"’l'hreshold valuen, , given by

field. For a perfectly ordered syster®, would be unity.

Clearly, other definitions of an order parameter are possible. my=[1+(27/€)?]/2. (12)

In particular, the amplitude of the lowest Fourier component

of eithery(y) or ¢(y) is a much more sensitive measure for The profiles in this phase are uniform. In our case, where the
a study of the transition ling4,19]. Here, however, our focus lattice is nearly completely filled, i.emm=<1, we neede

is not on the transition but on the structure of ordered statess 2 in order to find a stable homogeneous steady state. For

so thatQ, serves its purpose well. an electric fieldE=1.0, this implies rather small system
Finally, let us add a comment on the transition line. Ear-sizes (,<7).
lier simulation datd 15] show that the threshold mass,, To find a steady-state solution which corresponds to a

depends strongly ot and the longitudinal system length transverse strip, we seek solutions that are inhomogeneous in
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they coordinate only. Equation®) can be integrated once, field. For fixed mass, they depend only on the parameter
with integration constants being the hole and the charge cur=£L, and the variable=y/L,; thus, these functions sat-
rents. The former vanishes by symmetry at zero total chargésfy scaling in these variables. Moreover, the order parameter
The latter, being nonzero in general, will be denotediBy Q, is a function ofe alone, since the spatial variable is

After expressingy in terms of ¢, integrated out. Here, however, we have to be rather more
careful: since our system, irrespective of its size, will always
_ o' (y) 13 contain only a single hole, the mass is inherently size-

vy)= Ep(y)’ (13 dependent. We will return to this issue in the next section.

_ . _ . Since it is cumbersome to work with E(L5) directly, its
and rescaling the spatial variable ze=y/L, we obtain an  approximation fore>1 is very usefu[17]. The sn function
ordinary differential equation for the functiop= 1/¢: can be replaced by a tanh function, and the argument simpli-

X'(2) €= —jx*2)+ x(2)-1. (g S

To satisfy the boundary conditiong, should be periodic

with period 1. Writing y in terms of a potential (&) y” . L . . .
——(d/dx) V(x), a further integration leads toy’ As a result, dweak discontinuity appears in the first deriva-

—eJ2(U—V), where U is another integration constant. tive of y at the symmetry point=1/2. This is unfortunate

Unique solutions exist foj<1/4 and appropriat&). Intro- for our purposes, s?nce= 1./2 is also the' Iocgtion of the
ducing the three rootsy;<y <y, defined via 2U maxm&um Eole densny.Adlffer?nt aphproglfrpatllon, to be pre-

! - ' : ted in the next section, resolves this difficulty. We note in
~V(0)1=(2i/3) (x+ = x)(x~x-)(x~x1), the solution ~>°7 '

- / : P : passing that Eq(20) takes the form of the soliton in the
[17] can be written using Jacobian elliptic functioi&y], Korteweg—de Vries equatioi2s].

. _ _ \/—_ Clearly, one should not expect such a mean-field theory to
XD =X+~ (s~ x-)srlez(i/6) (x- —x2)]. (19 provide a quantitatively correct description of the phase tran-

in the interval Gsz<1/2. The other half of the interval, Sition. However, it gives excellemjualitativeinsight into the
1/2<z<1, is described by symmetry around the point instability and the phase diagrah7]. Moreover, since our
—1/2. Thus, the hole density takes isinimumat ¢(0)  interest here focuses on behawireplyin the ordered phase,
fluctuations do not play a significant role, and a mean-field
theory should be very reliable. In fact, we will see that its
‘main limitations do not arise from the neglect of correlations,
but from taking a naive continuum limit.

X(2)=x+—(x+—x-)tanif(ez/2). (20

=1/y, and its maximum aip(3)=1/x_. The third root,
X1, lies outside the physical domain. It is convenient to de
fine the parameteng andR:

p=(xs—x ) (xs—x1) (16) We conclude this section with a few technical details of
AT oA the simulations. The linear system sizég,andL,, range
R=[4K(p)/€]>. (17) from 16 to 48, withE in the range 0.2—1.2. A characteristic

parameter set is that of our “reference system,” which will
Here,K stands for the complete elliptic integf@7] and isa  appear in all scaling plotsE=0.8 andL,XL,=16X24.
function of p. Quantities of interest, such as the maser  Thus, the mass density differs from unity by at most 0.4%,

currentj, can be expressed in terms pandR: so thatm=1 is often an excellent approximation. The statis-
. tical error of the simulation results is of the order of 5% and
1-4j=R*(1-p+p?), (18)  thus much larger. All initial configurations are random. In

one Monte Carlo stefMCS), a nearest neighbor of the va-
cancy is chosen at random and an exchange is attempted
with the rateq1). Averages are computed from 100 indepen-
dent samples for each choice of parameters. The approach to
whereII(n|p) is the complete elliptic integral of the third steady state is extremely sloM@2] for larger system sizes
kind andn=3pR/(1+R+pR). In principle, Egs(16) and  and sets real-time limits on our simulations. For example, a
(19) can be inverted to give the physical parameta@nde  system with 1624 sites atE=0.8 requires approximately
in terms ofR andp. In practice, it is easier to generate func- 5x 10" MCSs to reach the steady state. If we increbge
tions of interest, e.g.,j(e,m) or the order parameter from 24 to 36, which is a factor of 1.5 in system size, the
Q.(e,m), parametrically inp, which is allowed to range required number of MCSs increases by roughly a factor of
from O to an upper limipy(e) <1 [17]. The upper limitpgis  10.
defined by the vanishing of the currenfe,pg)=0, and While averaging, e.gQ, , is rather simple, by first mea-
plays a particularly important role in the context of this suring Q, for each sample and then averaging these data,
study: According to Eq(19), the mass densityn tends to  some effort is needed to compus@eragedensity profiles
unity asp approaches its upper limfip(€). Thus, only val-  from the configurational data. Due to translational invari-
ues ofp nearpy will be of interest here, since our focus is on ance, strips can be centered at gnynd a careless average
nearly filled systems. This observation is used later for apwould “wash out” any inhomogeneities. To avoid this, we
proximations. first shift the ordered strips in the different samples in such a
The solution fory(z) generates both hole and charge den-way that they match before we average. A natural choice
sities: ¢p=1/x(z) and= x'/(ex). These solutions describe would be to center all strips on, e.¢.=0, by normalizing
the ordered phase, i.e., particle-rich strips transverse to thie phase of the largest wavelength Fourier component of the

Lo [1-R(-p+p?)]M(nip)
M= (1+R+pR K(p)

(19
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FIG. 1. Snapshots of ah, XL, system with
L,=16 andL,=24 atE=0.8, at different num-
bers of MCS:(a) 1, (b) 10%, (c) 10%, (d) 10, (e)

10, (f) 10°. The initially disordered system un-
dergoes a charge segregation. In the ordered
steady-state configuration, the two oppositely
charged particles are separated by two different
interfaces. Minus particles are colored black, plus
white, and the hole is gra field andy direction
point upwards.

(d) (e ()

profile [19]. This is particularly useful when profiles are tem remains disordered for early timgsig. 1(b)]. Eventu-
measured near the phase transition. Here, however, we willly, by allowing positive(negative particles to move pref-
mostly take data deeply in the ordered phase, where the hotgrentially upward¢downwards, the hole begins to segregate
is essentially trapped. Thus, for each sample we keep track a@fie two species. The early stages of this process are discern-
they positi_on of the hole and determine the maximum of thejple in Fig. 1(c), where an interface between regions of op-
hole density after a large number of MCSs. This maximumpgsite charge begins to develop. The position of this inter-
marks the interface between the positively and negativelyace is determined by random fluctuations in the system.
dominated regions, the former located “up-field” from the Clearly, due to the periodic boundary conditions, a second
latter. The charge-density profiles from different samples argnterface must also form. After $OMCSs [Fig. 1(d)], the
now shifted such that these maxima coincide, and averageggregation of charges, and hence the two interfaces, are
can be taken. Clearly, this procedure would run into difficul-quite apparent. Due to the drive, the hole moves rapidly to
ties if the interface were to Wa_nder signif_icantly while the the top(botton in regions of predominantly negatiposi-
data for the hole-density profile are being accumulatediye) charge. Thus, it tends to remain near the interface which
However, for the choices of the control parameters considseparates positive particles on the top from negative ones on
ered here, this does not appear to present major problemge pottom[the lower interface in Figs.(d)—1(f)]. In con-
since fluctuations of the interface position are rather smallyagt, it is rapidly driven away from the opposite interface.
Moreover, they are very slow; thus, the time scales ovefye will refer to the former(latten interface as the “down-
which the interface remains well localized are sufficiently stream” (“upstream”) one. The two interfaces are well
large to determine the maximum of the hole density veryseparated, for this choice of parameters, and exhibit rather
precisely. different morphologies: The downstream interface is quite
sharp, while the upstream interface appears to be much more
diffuse. To increase the degree of order in the system, the
hole has to travel to the upstream interface before it can
As an introduction to the discussion of scaling propertiesmove another charge to a preferred position. Since this re-
we illustrate the process by which the system approaches thlires a series dield-suppressefimps, the approach to the
steady state. A series of snapshots, taken at different M@nal steady state is very slow. As the ordered domain sur-
times, first demonstrates why the dynamics is so slow, andounding the downstream interface grows, the hole becomes
second already suggests one of the key hypotheses of thégrongly localized. A quantitative analysis of this ordering
work, namely, that the steady-state interfaces are well sepgrocess will be provided elsewhe22].
rated from one another. Figure 1 shows this series for our A picture of a typical steady-state configuration is shown
reference system. The negatiygositive particles are col- in Fig. 1(f). To characterize these structures, we investigate
ored black(white) and the empty site is marked gray. A three characteristic quantities: the order parameder,
coordinate system is introduced in the usual way, i.e.xthe which provides a global measure of order, as well as the
direction lies horizontal, the direction vertical, and th&  average hole- and charge-density profiles, which carry more
field points upwards. detailed information about ordered configurations. All three
Starting from a random configuratigfig. 1(a)], the sys-  of them are easily computed within the mean-field theory, as

Ill. SCALING BEHAVIOR IN THE STEADY STATE



PRE 61 FIELD-INDUCED VACANCY LOCALIZATION IN A. .. 189

we shall presently see. Since the spatial inhomogeneities 0s F
form along they direction, the system side, is not expected

to play an important role. Simulations confirm this, provided
the aspect ratid. /L, does not exceed a certain threshold
value, which is at least 6 in our case. For larger aspect ratios,

o
=N
T

o
i
T

order parameter Q.

strip configurations with nonzero winding number may begin f‘l 25%25 X
to form, introducing ar., dependence into the probldit6]. 02 | ¥ 2538 5 4
These, however, are not the subject of the present study. 1(—26/((81]5&3 -------
/ L —
0 L 1 1 1 1
5 10 15 20 25 30
A. The order parameter L
Yy

We begin by calculating the order parame@r in the
mean-field approximation. Starting with the definiti¢8),
we first express it within the continuum theory. Clearly, the
summation over the sites in thedirection should be re-
placed by an integration. Using the rescaled variable
=y/L, and exploiting the symmetry of the profiles around
z=3, we obtain 2[1+R(1-2p)]

YTIR(pEpd)

FIG. 2. Plot of order parameter ws=£L,, for different square
system square sizes (2@ ,=L,=<35) and different electric fields
(0.2<E=<1.0). The upper line shows the result@f from mean-
field theory, the lower line is its approximation-%/e.

(28)

_2 12 B 2 [y’
QL_EIO [l,//(Z)]ZdZ—EfO 7(12- (21)
2[1+R(1+p)]

T1-RE(1-ptpd)

X+ (29

In the last equality, we have recagt in terms of y. To
proceed, we change integration variable, frarto y. The

I|m1|ts_0f the integral are transformed tg(0)= . and Then, we invoke Eq(18) to replace the currentand Eq.
x(z)=x-, where we recall that these are zeros Wf (1) g gliminate the elliptic integral of the third kind. Col-

~V(x). With x'=v(2j€3) (x-—x)(x—x-)(x—x1), lecting, we obtairQ, ,
we find

1 E(p)
Q=1-5={R(p—2)+1+3R— (30)

4j .
2m K(p)

QL:%(Q1+Q2+Q3+Q4): (22

E andK are the complete elliptical integrals of the first and
second kind27]. According to Egs(17) and(19), Q, is a
e x function of p and e only, which can be generated parametri-
Q.= _f “dy, (23) cally in p.
X- X So far, our discussion is valid for arbitrary massLet us
now consider the case of a single vacancy, nanmaey1
Xt —1/(L4Ly), which corresponds to a system near complete
Qo=(x1X-X+) > dy, (29 filling. Considering only the leading terms in an expansion in
X- XX powers ofé=1/(L,L,), the left-hand side of E¢19) is just
5. As a consequence, the factor R?(1—p+p?) on the

where we have introduced

x+ 1 right-hand side i©( ), and so is the curreljt given by Eq.
Qa=(x1tx-+x+)| —dx, (25 (18). Recalling that the upper limijp, of the p range is de-
X=X fined by the conditionj(e,pg(€))=0, we conclude thap

=po+O(6) for our case. Tracking the effect of the finite-
x+ 1 size corrections through our preceding calculations, we find
Qa==(X+Xx-F X+ X1 X-X1) L —dx- (20 thaty,, x., andx_ are all O(LyL,), by virtue of their
- XX common denominator. To leading order, the hole dengity
d=1/)( is thereforeO($) as one might have anticipated. In

The last two integrals are evaluated easily, giving 1/2 an : .
(1—m)/2. The first two integrals can be reduced to completecomraSt’ the qharge densityQ1), due to E_q(13). Smce_&
elliptical integrals of the first, second, and third kind. is very small in our study, all but the leading terms will be

The resulting expressions can be expressed in more con'?—egleCted ir_1 the fqllo_wing. The.rQ,_ becomes a function of
pact form, using the parametems p, andR [see Eqs(16) e alone This prediction is easily checked by Monte Carlo

and (17)]. For that purpose, it is helpful to write the three simulat_ions._ . . . o
roots( i?]terms ob aﬁd Ig: P In this spirit, we invoke Eq(18) for j =0 and rewrite it as

€?=[4K(po)1?(1—po+ p3). Now, e can be computed nu-
[1+R(p-2)] merically for a set of discrete valuesfn the interval0,1].

= , (27) The values ofQ, (e,m=1), derived in this way, are shown
1-R?(1—p+p?) as the solid theoretical curve in Fig. 2.

X1
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For large e>1, the approximationfk=1—4j andp  hole-density profiles retain far more detail, allowing us to
=1 are valid. Within the same approximatigncan be re- distinguish the oppositely charged domains and their inter-
placed byj=exp(—me/2) [17], which is vanishingly small. faces. Based on the mean-field theory, we expect these den-
With m=1, Q, simplifies to sities to satisfy scaling im andz This is borne out by the
simulation results, which are presented in this section.

In order to exhibit the scaling of the densities, four differ-
ent parameter setsE(L,) are simulated, generating 100
samples for each. The system lengthand the electric field
This gives rise to the dashed curve in Fig. 2. Comparing thid are varied in such a way as to keep the parameteon-
approximation to the exact mean-field result, we see thastant at 18.24. To avoid unwanted cancellations, we shift the
both expressions are indistinguishable éo0r18. For smaller maximum of the hole density in each run =0 before
values ofe, the approximation underestimates the order paaveraging. The charge profiles are shifted accordingly. Thus,
rameter slightly. z covers the interval £ 0.5,0.5), and the “downstream” in-

Turning to simulation results, we first test the expectederface is centered at the origin. In addition, we normalize the
scaling ine. Figure 2 shows data for the order parametetole profile in such a way that all profiles enclose the same
Q.. for different square systemsanging from 220 t0  zrea.
35x35) and different electric fieldsE=0.2-1.0, plotted A comment on this normalization is in order. Recalling
versuse. Each data point is an average over 30—50 samplé$he constraint on the total density, we have—rh
The size of the error bars is about 0.05 units. Within the L .
accuracy of our data, all points lie on the same curve, corre- ULyLy) —L(l/Ly)fOV¢(y)dylfor a single hole. Thus, we
sponding to the scaling function. The latter appears to teniave =L,/ Y d(y)dy=L,L[5¢(2)dz so thatl,¢(y) can
towards zero fore<6. This is consistent with the stability be interpreted as thgrobability densityfor finding the hole
limit of the inhomogeneous solutions, EG.2), which im-  in row y. Similarly, L,L,¢(z) is the probability density for
plies that form~1, an inhomogeneous solution can existfinding the hole at positioa. Thus,normalizedplots for the
only if e>2m. Once the transition to the homogeneoushole density show the associated probability density, and the
phase has occurred, the order parameter is of the order afea under each curve is just 1. Moreover, sinbe)
1/L,=0.05. With increasinge, the order parameter ap- =O[1/(L,L,)], according to the finite-size analysis in Sec.
proaches its upper limit, i.e., 1. [l A, the normalizedquantity depends omand e alone. No

It is remarkable, however, that the largeapproximation  sych normalization is required for the charge density, since it
produces a better fit to the simulation data than the exag already ofO(1) in the system size.
mean-field result, especially fer<<10. It is conceivable that To test for the anticipated scaling inandz, Monte Carlo

the intrinsic errors of the mean-field theory approach are pargat, for the(normalized hole density profile are presented in

tlaIIy. Compensated. by the_lgr_gehmlt. F_urther studies are  rig. 3(a), and the charge-density profile is shown in Fig.

f‘ig'riﬁ to_ teTtt_th|s posl?b”lllt)l/'. cmui'ggogn t_rt\e rt()egmnth 3(b). Since all data points collapse onto the same character-
, (€ simuiation resu'ts afl ie about v.12 units above ey, scaling curve for hole and charge profiles, respectively,

theoretical curve. While these deviations are within the error, - . )
the theoretical prediction is clearly confirmed.

bars of the data, they are too systematic to be ignored. Closer Bevond demonstrating scaling. these plots provide a more
scrutiny reveals that the results of the large system sizes tend Y 9 9, P P

to be closer to the theoretical curves than those for Smaﬁ}uantitative characterization of the spatial structures in the
system sizes, which indicates that the differences betweeryStem: Since here is the same as in Figsal-1(f), Fig.
simulation and mean-field results are at least partly due tg(b) Shows the associated steady-state charge-density pro-

finite-size effects. We will return to this question at the endfiles. We can see clearly that the particles are ordered in two
of Sec. Il C. regions, filling the whole system. Each of these regions con-

sists essentially of one species. They are separated by two
interfaces. The maximum of the hole density lies at the cen-
ter (z=0) of the much sharper downstream interface where
While the order parameter carries only global informationthe field tends to localize the hole, while the minimum of the
about spatial inhomogeneities in the system, the charge- arttble density marks the more diffuse upstream interface.

6
Qu=1--. (31)

B. Charge and hole density profiles
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To explore the size and field dependence of our systemsffect ofL, is very simple and can be observed in Figo)4
further, it is interesting to vary the system lengthand the  Outside the interfacial regions, the charge densities saturate
electric field E independentlynot keeping e constant. Of very rapidly at=1, and these saturated regions expand or
course, given the excellent data collapse of Figs. 3 and 4, weontract to accommodate the selected system size.

cannot expect global scaling over the whglenge. We will It is now quite apparent how the profiles should scale if
see, however, that certaiagionsof the profiles, centered on L, remains fixed anét is varied instead. Since the interfacial
the two interfaces, still scale. regions are independent &f , but scale inz and €, they

We first report simulations at constant electric fidf/d must depend og through the combinatiofly. To check this
=0.8 and transverse sitg= 16, increasing the longitudinal conjecture, we fix the system sizelgt< L, = 16x 24, while
system size, from 20 to 32 in steps of 4. Th@mormalized  the electric field increases from 0.4 to 1.2 in steps of 0.2.
hole densities observed in these simulations are summarizdédgure 5a) shows thgnormalized hole-density profile plot-
in Fig. 4(a), plotted versuy rather thare=y/L,, . ted versus the scaling variabf®y. The data collapse in the

We observe that the graphs associated with diffetgnt interfacial region is excellent, except for the smallest field
span different ranges of, but are otherwise essentially in- E=0.4. This value oE, however, is rather close to the tran-
distinguishable in the central region. Thus, the width and thesition line where the mean-field theory is likely to break
maximum of the hole density, and hence the width of thedown. Focusing on the largde’s, it is apparent that the
“downstream” interface, are not affected by changes in thewidth of the downstream interface scales a8. IWurning to
longitudinal system size when plotted versus yheariable.  the charge densities, Egl3) implies that(y) is also a
We conclude therefore that the characteristics of this interfunction of £y near the downstream interface. This is indeed
face are controlled by the electric field alof. the next confirmed by simulations. To illustrate the scaling of the
section). upstreaminterface, we present Fig.(: Here, all profiles

This behavior is also borne out by the charge-density prohave been shifted by, /2 in order to center the upstream
files, Fig. 4b). According to Eg.(13), the steady-state interface at the origin. Clearly, this interface also scales in
charge- and hole-density profiles are related vigy) the variablefy. For completeness, we note that the only
=—¢'(y)I[EP(Y)]. Thus, the charge densities near theprofile that does not reach saturation is the one for the small-
“downstream” interface should also be independent.gf estE, since this value is quite close to the phase transition.
in agreement with Fig. @). On the other hand, the regions  Let us summarize the key findings of the simulations.
of nearly constant charge density must broaden to reflect thEirst, the data for each profile collapse onto a singlebal
increasing system size. Thus, the profiles do not collapse atcaling curve if plotted as a function af=y/L, at constant
the edges of the plot. However, the similarity of their form e. Moreover, focusing only on the interfaci@s opposed to
neary=*L,/2 suggests that thapstreaminterface might the saturationregion, we find thaboth interfaces are inde-
scale also, provided the profiles are shifted appropriatelypendent oL, and that their widths scale as€]fprovided we
This is indeed confirmed by the simulatiohsf. Fig. 5b) are not too close to the transition to the homogeneous phase.
below]. Thus, the slopes and widths of the profiles, rteath  In the next section, we will consider these findings in light of
interfaces, are independent of system size. The remainingur mean-field theory.

' ' g 'B=04 +
03 | i E=06 X -

— XX E=08 © =

& 2% E=10 & Q;,_

S 02f 9 2 Bz 0 2 FIG. 5. Plot of the holéa) and

% § charge(b) densities for a range of

b g ‘% Y E, vs&y. L,=16. Note that in(b)

£ o g £ y=0 corresponds to thminimum
of the hole density (upstream
interface.
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C. Independent interface approximation approximation, as we shall discuss below. The simulation

In the following, we present an analytical description of d2t@ suggest the boundary conditiog=L,/2)=0 and
the interfaces, which is then tested by detailed Monte Carld(=Ly/2)==1. In this approximation, the downstream in-
simulations. We will focus in particular on the charge den-t€rface, corresponding to teaximunof the hole density, is
sity since it directly determines the order parameter. First, wocalized at the origin. Written in terms of the varialyleEq.
invoke the “large e” approximation [17] to describe the (14 for x simplifies to
upstream interface. A complementary approximation, involv- " 2_ _
ing a different version of the largelimit, is then developed X" (Y)1E°=x(y)—1. (34)
to describe the othefdownstream interface. The key as- Thjs is easily solved, subject to the specified boundary con-
sumption here is that the two interfaces ardependendf  jitions:
one another, i.e., they are separated by sufficiently large
“saturation” regions, which are entirely filled by either posi- x(y)=1+ccosh(&y). (35
tive or negative charges, so that =1 there. Such profiles
result providede=18, as demonstrated by Figsbg 4(b), To ensure that the hole density is strictly positive, we de-
and gb). The associated hole densities are approximatelynandc>0. This constant can be determined explicitly from
zero except near the downstream=(0) interface[cf. Figs. the mass constraint, namely=L1, [ EV£2,2¢(y)dy, from
3(a), 4(a), and a)]. Y

Returning to the large limit of our mean-field theory, we which
recall thate>1 is equivalent tgp—1. In this limit, we may L,L 1
replace the Jacobian elliptic function sn by tafiv]. In 2—yarcco£—) =1 (36)
practice, this is already a good approximationder15. It is eVc?i—1 c

easy to check that this results {mean-field profiles with o ) ) )

vanishing hole densities near the upstream interface ani} the largee limit. In our simulations, is at least 16 and
saturated charge densities between the interfacial region§.at most 2, so that>24 follows. Thus, we can expand Eqg.
Thus, this limit is consistent with our assumption of “inde- (36) for largec, resulting in

pendent” interfaces.

To describe the upstream interface, we start from(E0). C= Lily - 37)
for largee: €
x(2)=x1—(x.— x_)tantf(ez/2). (32 In fact, this approximation is already very good for-4.

Next, we compute the charge density,
Note that, due to the symmetry gf this equation holds for
the interval (- 1/2,1/2). Atz=0, y takes its maximum, so sinh(&y)
that this is a good approximation for the upstream interface Py)=
where ¢=1/y is minimal. The largest deviation from the
exact mean-field solution occurs at the boundaries, i.e., negte last approximation is very accurate simce24. Again,
the downstream interface, since this approximation violategye can read off the width of the interfacial regiogy
the periodic boundary conditiong’(—1/2)# x'(1/2). The =1/, Similar to the downstream interface, the width scales
current is exponentially suppressed for large i.e., |  with 1/, in agreement with the data. Intriguingly, however,
=6e M, andy. andy_ can be expressed in termsjof  our approximation is capable of reproducing the observation
namely, x,—x-=3/(2))y1-4] and x,=1/(2)(1 thatthe downstream interfacenarrowerthan the upstream
+2y1—4j) [17]. The hole and charge densities are nowone. Whether the measured widths differ by a simple factor
easily derived. In particular, recalling thgt=L,z, we can of 2, as predicted by our calculation, awaits a more quanti-
already read off the widtlg, of the upstream interfacial re- tative comparison with Monte Carlo data.
gion: £,=2L,/e=2/E, which is consistent with the data. In contrast to the upstream interfagk|s nontrivial here:
More specifically, we can compute the charge density from
Egs.(13) and(32). Neglecting terms oO(j), we find

W:tanhfy). (38

d(y)= (39)

1+ccosh&y) ccoshéy)’
p(y)=—tani(Eyl2). (33
confirming the width of the downstream interfagg= 1/€.

At the boundaries, Eq33) results ing(=L,/2)—+1inthe  Away from the origin, the hole density again decays very
large e limit, which confirms that this approximation violates rapidly, to match with its value near the upstream interface.
the boundary conditions. However, it does describe the inter- Before turning our focus on a comparison of these results
facial region neay=0 very well. Rather than quoting the with computer simulations, a last remark on the approxima-
hole density explicitly, we only note that it is very small near tion of the downstream interface is in order. Imposing brick-
the origin, namelyO(j). wall (i.e., closed rather than periodic boundary conditions,

In order to capture the downstream interface, we introthe approximation taken hergsetting the current to zero
duce another method. Singe=0 to excellent accuracy for becomes exact. Moreover, the brick-wall system iegui-
large € [17], we return to the mean-field equatio(® and librium one. The hole will accumulate positii@egative
integrate them, settingoth integration constants, i.e., hole charged particles at the tdpottom of the system, thus es-
and charge current, to zero. This is actually an equilibriumtablishing our boundary conditiop(+L,/2)— = 1. Clearly,
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FIG. 6. (a) Plot of the hole density+) for L,=16, L,=24, andE=0.8. The dashed line denotes the approximation(B§), for the
downstream interface, far=65.58. Note that the hole density is vanishingly small near the upstream intélfaBéot of the charge density
(+) for Ly=16, Ly=24, andE=0.8. The dashed and solid lines are the two interface approximations(&)sand (38), matched at
y=*4.

only one nontrivial interface remains in this case, namelydown of mean-field theory near the onset of the transition to
the downstream one. In the steady state, the bias traps thiee uniform state. This limits our analysis t&=6, corre-
hole near this interface. This fixes the boundary conditionsponding to, e.g.E=0.25 for a system with.,=24. For
#(+Ly/2)—0. In this sense, our approximation for the |arger values of (but below an upper limit to be discussed
downstream interface is equilibriumlike. shortly), scaling ine andz is observed to hold. In order to
Returning to our model, we have obtained two compachaye well-separated interfaces, we also reqeiel5. Be-
equations(33) and (38) for the charge density. Sinog(y)  yond this threshold, the interfacial regions of the profiles
=*1 between the interfaces, to excellent accuracy, thg.4e very cleanly with &
wholle system can be described in. terms of the two interfacgs, In addition to a lower limit, there is also an upper limit for
provided we match them apprqprlately. As an exampl_e, I:'gour analysis. Recalling Eq(10), the effective drive is
6(b) shows a 1624 system ‘.N'thE:.O'& The data points bounded£<2, due to the tanh function, even for very large
result from a Monte Carlo simulation while the solid and values of the microsconi€. Thus. within our mean-field
dashed lines reflect our two interface approximations, Eqs,[h the interfacial P 'dth ' t b bitraril
(33) and (38), respectively. For the narrower interface eolrly’F e n erIaC|? V\;: S cannod ecome ar |ra:cr|y
(downstream, in the cenferthe match is nearly perfect, small. For example, OrF € narrower ownstream Interface
£4=2 in units of the lattice spacing, anfl( £2)=£0.96,

while for the wider interfacdupstream, at the edges of the g . :
figure) the slope of the tanh function is slightly too small from Eg.(38). Thus, mean-field profiles requie leastfour

compared to the computer simulation. The agreement is neVattice spacings to interpolate between the fully saturated re-
ertheless remarkable. gions. In contrastneasurectharge-density profiles for large

Next, we compare the approximation for the hole densityE (€.9.,E=2.0) jump from—1 to +1 over just two lattice
with MC results. Here, we use E(R9) for the whole system spacings. Such profiles are so sharp that our continuum limit
since the hole density is vanishingly small except in the cenfails to reproduce them: they can hardly be considered
tral region of the downstream interface. Simulation data anégmoothly varying functions. As a result, the mean-field
the analytic approximation fog are presented in Fig.(8&.  theoryunderestimatethe order parameter for large values of
A small quantitative discrepancy is observedyatO, i.e., E, which explains the systematic deviations of the smaller
the center of the downstream interface, whereas all other datystem sizes in Fig. 2. For examples 20 in a 20< 20 sys-
points are remarkably well reproduced by E89). tem corresponds t&=1.2, where this phenomenon is al-

Given the results for the interfaces, we flnally return tOready noticeable. At a pure|y phenomeno|ogica| level, we
the order parametd®, . Here, we will see that the indepen- can extend the validity of our mean-field description if we
dent interface approximation provides us with a very intui-retain theform of our equationg9) but replace the effective
tive picture for the approximate fori81). Since the steady yjve ¢ by the microscopic fielE everywhere. Mathemati-
state exhibits complete order in one region of positive andg)y this requires keepingxplicit track of the lattice con-
another one of negative particles, the deviatiorQoffrom o045 followed by taking thenydrodynamidimit [29], i.e.,
;Jhn'ty orltg'lgatt'es r:ear t?e |nterrf1af:(ets. fWe can ea?n?/ CompUt3—>0 at fixed drive, system size, and mass. Since the lattice

€ contribution .OQL or each Intertace separately, Using ., qtant appears in the rates, HEd), the effective drive
Eq. (21). The wider (upstream interface reduces), by — - )

. . .. takes the formf=2 tanhEgal2). In the original discrete ver-
4/(€L,), while the narrower downstream interface lowers 'tsion of Eq.(9), the lattice constant appears in terms such as
by 2/(€Ly), resulting in a neQ_ =1—6/(£Ly), in agreement ) q-), o PP o _
with Eq. (31). Thus, this form simply tallies up the contribu- &(z(®x+ay— $x—ay))- In the limit of vanishinga, this ex-
tions of two well-separated interfaces, while the fully satu-pression simplifies t€a?d¢/dx. Since the diffusive terms
rated regions give rise to the 1. (e.g.,V2¢) also generate a fact@?, the latter can be ab-

While these data for the scaling of order parameter angorbed into the time scale so that we recover @Y. with £
profiles are very convincing, the question of their range ofreplaced byE. Thus, all of our analytic results carry over,
validity must be raised. First, we should anticipate a breakprovidedE takes the place of everywherg30]. With this
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modification, the agreement of MC data and analytic descrippared to the predictions of a mean-field theory in which the
tion extends to the largest fields studied, namEgly;2.0. drive appears through the effective parameter

To some extent, even the measured profiles do not repre=2 tanhE/2). The agreement is excellent, provided
duce the actual sharpness of the data fully. Since the down=£L,=6 so that we are in the ordered phase, Bel.0 to
stream interface can form at an arbitrary location within themaintain fairly smooth profiles. The transverse system size
lattice, one should allow fononintegershifts, i.e., shifts be- L, plays no role except in finite-size corrections. In particu-
tween 0 and 1¢=1) modulo multiples of the lattice spac- lar, we can describe the charge-density profiles, with remark-
ing, in order to produce accurate averaged data. This subtlegble accuracy, in terms of two noninteracting interfaces,
is not accounted for in our simulations, as seen from theseparated by perfectly ordered regions. The interfaces them-
discussion at the end of Sec. Il. Thus, the actual interface iselves are determined by the drive alone, independent of sys-
slightly smeared out when we average profiles by superpogsem size, and their widths scale with&l/For fields E
ing the maxima of the hole density. Details can be found in>1.0, the data show very steep slopes in the interfacial re-
Ref. [23]. To summarize briefly, our mean-field theory, in gions, which cannot be captured correctly by a naive con-
the form of Egs.(9), gives excellent results provideg=6  tinuum limit. Remarkably, the mismatch between data and
and E<1.0. If a systematic hydrodynamic limit is consid- mean-field theory is significantly reduced if we substitute the

ered, the validity extends further, at leastBe<2.0. microscopicfield E for the effective& in the (mean-field
interface approximations. The emergence of the latter can be
IV. CONCLUSIONS understood in the limit of vanishing lattice constant. We

) ] should caution, however, that this limit must also eventually

In this work, we focused on the scaling behavior of or-preaak down since it does not commute with the lirfit
dered steady states in a simple lattice model. A fully periodic_. .. since the details of the continuum limit appear to play
lattice is filled with eql_JaI numbers of positive and negativey key role here, it would be interesting to analyzedrserete
“charges,” except a single site that remains empty. An eX-precursor of Eq.(9). In this case, the natural parameter
ternal “electric” field, applied along one of the lattice axes, gnou1d bes alone.
biases the motion of the particles. The dynamics is vacancy-  anqther interesting question concerns the character of the
mediated in that only vacancy-charge exchanges are allowegherfaces when a finite density of vacancies is present. In
The_ particles interact only through an excluded volume congig case, the downstream interface “splits” into two halves,
straint. _ , separated by an empty region. Clearly, in additiorEtand

This system develops spatial structuresit, , i.e., the L,, the overall massn now enters the criterion for having
product of drive and system size along the field direction;yjependent interfaces. Provided the appropriate condition is
exceeds a critical value. Then, a charge-segregated strip, ofhiet ‘however, we expect that the interfacial profiles still de-

ented transverse to the field, forms around the hole anfenq only one: local structures appear to be controlled en-
grows until it fills the whole system. The two oppositely tirely by the drive.

charged regions are separated by two interfaces with distinct Finally, our study paves the way for the exploration of
charactenshcs:. One interface, the “downstream™ one, at'dynamic phenomena in driven two-species models. Having
tracts the hole; the othdupstream repels it strongly. This  oqiapiished the scaling properties of fiveal steady states,

asymmetry finds its origin in the charge separation inducegqk is in progress to investigate how thelgvelopfrom
by the external field: while the hole moves rapidipngthe .51 q0m initial condition§22].

field in the negative region, its preferred direction is reversed
in the positive region.
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