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CHAPTER I 

INTRODUCTION 

This dissertation is concerned with a number of out-

standing problems in the analysis of collective decision-

k . 1 ma 1ng. The essential question in this area of study is 

the following: Given a collection of individuals, each of 

whom has a preference ordering on a set of objects or social 

states, is it possible to "aggregate" those preferences to 

produce a "well-behaved" social preference ordering in a 

manner which is acceptable to a majority of the members of 

society? While descriptive, this is obviously an imprecise 

statement of the problem, so we will restate it in a more 

formal terminology in the next chapter. 

The question and its answer are clearly of the utmost 

importance to both economists and political scientists 

since they are basically interested in studying aggregate 

choices and decisions. For example, the majority rule 

decision function has probably been the most widely utilized 

political collective-decision rule in Western civilization 

during the past two centuries. In the economic realm, the 

basis of the market system depends upon the producer's 

ability to interpret and reshape consumer demand, which is 

1 In the economics and political science literature, coll-
ective decision-making is alternately referred to as public 
choice, social choice, voting theory, and collective action. 

1 
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ultimately an aggregate function of rather complex individual 

preference orderings. Strangely enough, while most citizens 

in democratic, capitalistic societies seem to have a reason-

ably accurate intuitive feeling for how these economic and 

political systems function, only a miniscule number of 

political scientists and economists is cognizant of the 

formal foundations of these systems. Furthermore, we con-

jecture that the vast majority of citizens in our society 

has almost unyielding confidence, however misplaced, in the 

internal consistency of the structure of their political and 

economic systems. It is our experience that while most in-

dividuals would readily agree that there are rather serious 

practical problems inherent to functioning as a capitalistic 

democracy, they would just as quickly disagree with the 

assertion that there are logical inconsistencies underpinning 

such a societal structure. Yet, as we shall demonstrate in 

the second chapter, two of the components of the foundation 

of such a political-economic system (in particular, voting 

under majority rule and preference aggregation in a free 

market) have logical inconsistencies which are not easily 

circumvented. 

It is by virtue of the fact that collective decision-

making can be characterized in mathematical terms that the 

area is pregnant with problems of interest to mathemati-

cians. Furthermore, since many models of public choice are 
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stochastic, it is an area ripe with interesting problems for 

theoretical statisticians and probabilists. In addition, 

models of political and economic phenomena must be validated, 

so there is a wealth of interesting and important problems 

related to collective decision-making for applied statisti-

cians and data analysts. 

It is certainly the case that economic and political 

theorists have made, and will continue to make, important 

theoretical and substantive contributions to the understand-

ing of public choice; nevertheless, perusal of the "mathe-

matical quality" of this literature will reveal that, at 

the present stage in the development of models of collective 

choice, cooperative ventures by applied mathematicians in 

consort with economists and political scientists would be 

beneficial to all parties • Such an interaction would open 

. important new areas of application for the mathematicians 

and provide the more mathematically sophisticated economists 

and political scientists with a type of formal guidance 

which would be very useful--and probably most fruitful. 

It is beyond argument that the most critical shortcom-

ing of the current theory of public choice is the fact that 

existing models have not been empirically tested. Until 

recently, this shortcoming was inconsequential, since exist-

ing models were so rudimentary that few theorists would have 

expected them to stand the test of empirical scrutiny. 
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Collective decision-making models, however, are becoming in-

creasingly more refined, and since empirical and mathemati-

cal validations are essential parts of the modeling process, 

it is important that collective-choice models be subjected 

to statistical analyses. While most political theorists 

recognize this problem, few are either interested in making 

or capable by training to make a conscientious effort to 

eliminate it, and few statisticians have become interested 

in such problems. 

In Chapter II of this dissertation, we define the 

essential objective of collective decision-making in a 

mathematically precise manner. Arrow's General Impossibil-

ity Theorem is stated, and its practical ramifications for 

a system of collective action are discussed. A body of 

work--formulated within the context of a spatial theory--

embraces all of the axiomatic structure of the Impossibility 

Theorem except the "Universal Domain" axiom, and one of its 

purposes is to determine conditions under which "well-

behaved" social welfare functions obtain. The spatial 

model is developed in Chapter III, but it is restrictive 

in several important respects. In particular, although a 

provision has been made to allow citizens (consumers) to 

express their preferences over social (commodity) states 

in a completely individual manner, no provision has been 

made for them to express loss individually if they must 
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settle for less than their most preferred outcomes. In 

addition, the model includes the assumption that citizens 

vote (and consumers make purchases) even when they find the 

attainable alternatives extremely distasteful. A general-

ized spatial model in which the first objection is elimin-

ated is developed, and the conclusions under the extended 

model are contrasted with those of the more rudimentary 

spatial formulation. In Chapter IV, we show that the only 

published responses to the second deficiency of the spatial 

model do not generalize the model presented in Chapter III. 

In fact, there are subtle errors in those models which 

supposedly "allow" voters (and consumers) to abstain when 

they are alienated from alternative social (or commodity) 

states. Furthermore, we show that any effort to repair 

these errors leads to a model which is unacceptable because 

.it includes interpersonal comparisons of utility. Conse-

quently, although we have not formulated a model which 

includes abstentions due to alienation, we have shown that 

existing models which purport to do so are not mathemati-

cally sound. We, therefore, reopen an important area of 

study for those interested in spatial formulations of 

political or economic behavior. 

In Chapter V, we compare sets of equilibrium strate-

gies for candidates for office when the candidates are 

attempting to maximize certain objective functions, and, 
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to be specific, we show that the set of equilibria is invar-

iant under seven important objective functions. The proposed 

model, while not restricted to comparing election outcomes 

in a spatial setting, is completely compatible with the 

spatial formulation. Furthermore, the model includes a 

provision to account for the fact that some citizens may 

abstain from voting. 

The final chapter contains concluding remarks, includ-

ing a brief assessment of our opinion regarding the uti~ity 

of _spatial models for the analysis of political and economic 

phenomena. 



CHAPTER II 

BACKGROUND 

The mathematical theory of election by "majority rule" 

has a long, if sporadic, history. In the latter half of the 

eighteenth century, Borda, Condorcet, and Laplace each made 

independent attempts to construct a mathematical model for 

voting in a democracy. In the last decade of that century, 

E. J. Nanson re-examined the results of these mathematicians 

and devised several additional systems for voting under some-

what restrictive conditions. Slightly less than a century 

later, the Rev. C. L. Dodgson (Lewis Carroll) made important 

contributions to the theory and published his results in 

thr.ee pamphlets. In the 1950 1 s, the proof of Arrow's famous 

Impossibility Theorem, the publication of Duncan Black's 

book, The Theory of Committees and Elections, and Anthony 

. Downs' intu~tive attempt to utilize economic models to ex-

plain the structure of party politics in a democratic 

society revitalized interest in and gave new direction to 
1 the problem of election by majority rule. It was Arrow's 

work, however, which inspired the plethora of research 

activity during the past ten years--including much of the 

1Kenneth Arrow, Social Choice and Individual Values, 2nd 
edition, (New York: John Wiley and Sons, 1963); Duncan 
Black, The Theory of Committees and Elections, (Cambridge: 
Cambridge University Press, 1958); Anthony Downs, Economic 
Theory of Democracy, (New York: Harper and Row Publishers, 
1957). 

7 
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analysis contained in this dissertation--directed at deter-

mining how "rational"· social decisions should be made, based 

upon knowledge of individual preference orderings. We will 

set the stage for the remaining chapters of this dissertation 

by .reviewing Arrow's Theorem. 

Section 2.1 The Fundamental Objective 
of Collective Decision-Making 

James Buchanan and Gordon Tullock describe collective 

action as 

the action of individuals when they choose to 

accomplish purposes collectively rather than 

individually, and the government is seen as 

nothing more than the set of processes, the 

machine, which allows such collective action 

2 to take place. 

Kenneth Shepsle, elaborating on the observation of 

Buchanan and Tullock, wrote, 

2 

Theories of collective choice, as I conceive 

them, concern the implementation and conduct 

of decision-making processes by and/or for 

collections of individuals, as well as the 

enforcement and administration of the decisions 

James Buchanan and Gordon Tullock, The Calculus of 
Consent, (Ann Arbor: The University of Michigan Press, 
1967), p. 13. 
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that emerge from these processes. While 

various theories may alternately emphasize 

implementation (a theory of constitutions), 

conduct (a theory of institutions), or en-

forcement and administration (a theory of 

social control), most share the properties 

suggested above, namely: 

(1) they tend to be general theories of 

collectivities, 

(2) they rely on the individualistic 

perspective and the assumption of 

purposeful behavior, and 

(3) they employ some form of the choice 

paradigm to link purpose with behavior. 3 

With no apologies for redundancy, we will restate what 

we believe is the essential objective of collective decision-

making. To wit: given a collection of citizens, each of 

whom has an individual preference ordering on a set of social 

(co mm o di t y) states , is it poss i b 1 e to ·" a g gr e gate" those 

preferences to produce a "well-behaved" social preference 

ordering in a manner which is acceptable to the members of 

society? It should be clear that there are seven concepts 

3Kenneth Shepsle, "Theories of Collective Choice" in 
Cornelius Cotter, et al., eds., Political Science Annual, V: 
Collective Decision-Making, (Indianapolis: Bobbs-Merrill, 
1973), pp. 1-87. 
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{those which have been underscored) i~ thi above sentence 

which require formal definition and explanation. Certain 

of these concepts fall under the rubric of the individual 

voter's choice calculus, so we discuss those ideas first. 

We assume that society is a class of individuals, and 

represent the generic ith voter (citizen) by V .• 4 We will 
]. 

have much to say about the collection of such individuals 

later, but, for the moment, we will concentrate on V 's 
i 

voting calculus. 

First, there is a set n of social states (or commo-

dities) over which V. has differential preference. 
]. 

Although, 

in many situations, the space of social states is a finite 

set, we have no objection to assuming that it contains an 

infinite number of elements. Indeed, in the spatial model 

developed in the next chapter, the commodity space is repre-

·sented as an uncountably infinite subspace of Euclidean 
n n-space E. 

The individuals in this social structure do not choose 

between outcomes directly, because some social states, while 

highly desirable, may be virtually inaccessible. In essence, 

individuals act in a manner which they believe effects var-

ious outcomes, and they choose between actions so that their 

4of course, we could specify that these N individuals are 
"consumers" ·and couch our terminology in the language of 
economists. For the most part, we will describe the models 
in this dissertation from a political perspective. 
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preferred social states eventuate as a result of those 

actions. In short, there is a set A of actions and, for 

h .th t e 1. voter, a function fi: A+ Q which embodies Vi's 

subjective, causal view of the world. If f. is determinis-
l. 

tic, = o 0 means that the i th voter believes 

5 that if he takes action a 0 , the outcome o 0 will ensue. 

The second component of the individual's voting calcu-

lus is his preference ordering on the social states in D. 

In particular, we assume that V. is rational in the sense 
]. 

that he does have a subjective, causal view of the world 

and in the sense that he has a complete, transitive, binary 

preference ordering Rion the elements in Q. Thus, for each 

voter V. there exists an ordering R. (that is, a function l. l. 
from Q x Q into Q) such that 

i) • 

ii) • 

if o 1 , o 2 ED, then either o 1 Rio 2 or o 2 Rio 1 • 

if o 1 , o 2 , o 3ED, and o 1 Rio 2 and o 2 Rio 3 , 

then o 1Rio 3 • 

If o 1 Rio 2 , then we say Vi prefers o 1 at least as much as o2 • 

If o 1 Rio 2 and it is not the case that o 2 Rio 1 , then the ith 

5 f b d . ' . Th . th V Of course, . may not e eterm1.n1.st1.c. e 1. voter . 
may believe th~t if he takes action a 0 , then any one of th~ 
outcomes in Q may eventuate, with ok occurring with proba-
bility pk. In this case, the image under fi of an action a 0 
is a lottery on the outcomes in D, and V. 's preference order-
ing on the set of actions will be definedl.in terms of some-
thing on the order of expected utility. 
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voter strictly prefers o 1 to o 2 , and we represent that with 

the shorthand notation o 1Pio 2 . 

ith voter is indifferent between those two social states, 

and we abbreviate o 1 Iio 2 • 

The individual's causal view of the world f., which 
1 

links his possible actions with the various accessible social 

states, 

states, 

along with his preference ordering R. on those social 
1 

induces a preference ordering R! on the elements in 
1 

A in the following manner: 

Of course, P' and I! can be defined i 1 

on the action space analogously. Even though the spatial 

model to be developed in the next chapter could be formulated 

with fundamental elements taken from the voters' action space 

A, we choose to take the social states in n as the basic 

objects in the model. The principal justification for this 

·choice is the fact that virtually no research has been con-

ducted with regard to the nature of the functions f., so 
1 

considerable uncertainty would be introduced in a model based 

upon the action space A. 
th Given a particular .choice situation, the i voter has 

a choice (or maximal) set Ci (n) = {oj if o'e:n, then oRio'}. 

We assume that the individual makes his choice by selecting 

an element oe:Ci(n). 

Having outlined the basic components of the individual's 

choice calculus, we turn to the fundamental characteristics 
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of a social choice calculus. First, we assume the existence 

of a finite collection V = {v 1 , v2 , •.• , VN} of N voters, 

where N ~ 3. We see no advantage to expanding the collection 

of individuals to an infinite set; however, there are both 

political and economic theorists who maintain that such a 

generalization is desirable. 6 

Now, let R be the collection of all complete, transi-

tive, binary relations on n. The voters' preferences over 

the space of social states is an N-tuple, N 
( R l , R 2 , ••• , RN) e: R , 

and the "aggregation" formula is a function F:RN-+ R. If 

F(R 1 , R2 , •.• , RN) = R, then the social preference ordering 

R represents "society's choice" among the elements of n 

under the system associated with F. Since Re:R, the system 

is "well-behaved" in the sense that it is complete (it 

orders all of the social states in n) and transitive. 

The function F which "aggregates" individual prefer-

ences and generates a social preference ordering is called 

a social decision function or a social welfare function. 

To complete the formalization of the essential objective 

of collective decision-making, it remains to explain what 

"a manner which is acceptable to the members of society" 

6 Richard McKelvey, "Policy Related Voting and Electoral 
Equilibrium," Econometrica, Vol. 43 (1975), pp. 815-843. 
For an interesting criticism of this viewpoint, see Philip 
Miller, "Criticisms of McKelvey 1 s Theory of Policy Related 
Voting," (unpublished manuscript). 
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means. The usual definition of what is socially acceptable 

is the set of normative constraints on F formulated as 

axiomatic conditions for Arrow's theorem. In particular, 

they are 

Condition I 

Condition II 

(Universal Domain): F must be a 

function whose domain is RN. 

(Pareto Principle): If given 

N o 1 , o 2 £n and (R 1 , R2 , ... , RN)£R 

such that o 1 Rio 2 for i = 1, 2, .•• , N 

and i f F ( R l , R 2 , , , . , RN) = R , then 

o 1Ro 2 . 

Condition III (Independence of Irrelevant Alternatives): 

Let c(n) be the choice set of n, 

let o£n - c(n)' and let n' = n - {o}. 

If we are given (R 1 , R2 , ••. , RN)£RN 

and i f ( R { , R 2 , . . . , R~) i s an 

N-tuple of preference orderings 

on n' such that for 01' 02£n with 

7For excellent formal discussions of Arrow's General Im-
possibility Theorem see James Quirk and Rubin Saposnik, 
Introduction to General Equilibrium Theory and Welfare 
Economics, (New York: McGraw Hill, 1968), pp. 103-124 or 
Shepsle's "Theories of Collective Choice." 
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o 1 # o # o 2 , o 1 Rio 2 -> o 1 R~o 2 

for i = 1, 2, ..• , N; then 

cun = c<n'). 8 

(Non-dictatorship): If. 

N ( R l , R 2 , • • • , RN) e: R an d 

F ( R l , R 2 , •.• , RN) = R , then 

there exists no ie:{1, 2, ••• , N} 

such that whenever 01' o2e:n, 

The first condition simply stipulates that, regardless 

of the existing combination of N individual preference 

orderings, the social welfare function must generate a 

social preference ordering. 

If the Pareto Principle holds, then, at least in one 

sense, the social preference ordering cannot be perverse. 

In particular, if every voter in the social order prefers 

the social state o 1 at least as much as the social state o 2 , 

then the social preference ordering must prefer o 1 to o 2 • 

Second, this condition stipulates that the social choice 

cannot be imposed on the electorate from outside the social 

8The social choice set is defined in a manner analogous 
to the definition of the individual's choice set, that is, 
if R is the social preference ordering on the space of social 
states n, then C(S1) = {olif o'e:n, then oRo'}. 
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structure; for if that were possible, then by such an imposi-

tion it may be that o 2 Ro 1 even if for every voter, o 1Rio 2 • 

The Independence of Irrelevant Alternatives is perhaps 

the most controversial of Arrow's conditions. To understand 

it, we assume that o£Q is not in the social choice set C(Q), 

and we assume that the social welfare function F maps the 

individual orderings into a social ordering R such that, 

as far as the social states o 1 and o 2 are concerned, o 1 Ro 2 • 

Now, if, after the irrelevant alternative o is eliminated 

from consideration, each voter ranks o 1 at least as high as 

he did initially relative to o 2 , and if the new social order-

ing is R', then it must follow that o 1 R 1 0 2 • 

The final condition stipulates that there can be no 

individual (dictator) in the social order such that whatever 

that individual's preference ordering on the social states 

is, it necessarily follows that the social preference order-

ing will be identical to it. 

Section 2.2 Arrow's Theorem and Its Importance 

The background material in the previous section, in 

addition to specifying both the individual citizen's voting 

calculus and the societal voting calculus, also sets the 

stage for Arrow's Impossibility Theorem. 



17 

Theorem 2.1 (Arrow): Given a set of social states n 

containing at least three elements, and given an N-tuple 

N (R 1 , R2 , ••• , RN)£R of individual preference orderings on n, 
where N ~ 3, then there exists no social welfare function 

F:RN +R satisfying Conditions I - IV. 

In essence, Arrow's Theorem specifies that if we are 

committed to having a social welfare function generate a 

social preference ordering, then we cannot expect that func-

tion to satisfy the normative constraints set forth by Arrow. 

Conversely, if the normative conditions hold, and if F is 

a function (not a social welfare function) N from R into an 

appropriate range space R', then F(R 1 , R2 , .•. , RN) will not 

in general be a binary ordering--it will either fail to be 

complete or it will not be transitive. 

It is difficult to measure the impact of the General 

Impossibility Theorem on certain segments of the economics 

and political science communities. It simultaneously pro-

vided new insight into and inspired some pessimism about 

the structure of the democratic process since one of the 

cornerstones of that process--namely, voting under majority 

rule--was seen to be simply another normatively defective 

social welfare function. 9 In any event, numerous attempts 

9 An equally severe blow was dealt to preconceptions of the 
economic system since preference aggregation in a free mar-
ket was also seen to have structural deficiencies. 
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were made to rationalize the difficulties made explicit by 

Arrow's paradox. On another plane, efforts to reconcile the 

paradox with the unyielding faith of political theorists in 

the foundation of the democratic process led to many experi-

ments with the formal structure of that process. One such 

experiment attempts to identify the weakest possible con-

straints on the preference orderings of individuals which 

guarantees the existence of an otherwise "well-behaved" 

social welfare function. The spatial formulation developed 

in the next chapter is such a model, that is, one in which 

restrictive assumptions regarding the "Universal Domain" 

condition are specified in order to insure a complete, 

transitive social preference ordering in the range space 

of a social welfare function satisfying Conditions II - IV. 



CHAPTER III 

A SPATIAL MODEL OF VOTING UNDER MAJORITY RULE 

During the score of years since Arrow proved his famous 

Imposs~bility Theorem, political and economic theorists have 

endeavored to understand and explain social structures gen-

erated by aggregating citizens' preference orderings with a 

social welfare function such as majority rule. An explana-

tory model of considerable interest and one demonstrating 

a reasonable degree of mathematical sophistication is a 

spatial formulation of voting under majority rule which was 

conceived by Otto Davis and Melvin Hinich about ten years 

ago and refined by a number of interested parties during the 

past decade. 1 

A model of any political phenomena is, by its very na-

ture, an oversimplification of some condition or process; 

. so it invariably contains descriptive flaws. The most 

apparent shortcomings of the Davis-Hinich model (henceforth 

abbreviated the D-H model) are 

1. no formal provision is made to allow different 

voters to experience different modes or magnitudes 

of "unhappiness" if a less than ideal social 

state is imposed upon them. 

1 otto Davis and Melvin Hinich, "A Mathematical Model of 
Policy Formation in a Democratic Society," in Joseph Bernd 
ed., Mathematical Applications in Political Science II 
(Dallas: Southern Methodist University Press, 1966), 
pp. 175-208. 

19 
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2. no formal provision is made to allow a citizen 

to abstain from voting if he is sufficiently 

unenamored with the social states adopted as 

political platforms by the vying candidates. 

Details of a model more general than the D-H model will 

be put forth in this chapter, and the principal advantage of 

the abstraction is that the new model is a more faithful 

representation of the "real world" in the sense that differ-

ential loss functions are built into its structure. Thus, 

the first deficiency of the D-H model will be eliminated. 

Section 3.1 Preliminaries 

In this particular model we assume that there is a 

collection V = {v 1 , v2 , ••. , VN} of N citizens, none of whom 

may abstain from voting, and a set of p candidates 

{c1 , c2 , .•• , CP} who are contending for a certain office. 

We are able to identify the salient campaign issues and 

describe them in such a way that a voter can indicate his 

most preferred position on a specific issue by reporting 

a value of some numerical index. 2 H h . th ' ence, t e i voters 

2 1 f t . . ' . h b d n ac, we interpret campaign issues in a rat er roa 
sense. For example, one numerical index may be the weight 
(as indicated on a "thermometer scale") which the citizen 
assigns to a specific policy decision - such as the impor-
tance of raising taxes in order to finance a specific social 
welfare program. Another index might be the percentage of 
each tax dollar which the citizen would like to see allo-
cated for defense expenditures. Still another possibly 
relevant numerical index is the voter's evaluation of the 
importance of filling the next vacancy on the Supreme Court 
with a female Justice. 
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preference position on n issues of policy is a vector 

X' ] f in inn-dimensional Euclidean space 

En, where xik is the value assigned by the ith voter to the 

kth issue. Similarly, the jth candidate's political plat-

form can be represented by the vector 8j~ (8. 1 ,8. 2 , •.. ,8. ] ' 
J J Jn 

th Furthermore, the i voter experiences a non-

negative loss with respect to the election of the jth candi-

date defined by the function 

(3.0) L1.(8j) = ij,.[(x. - 8.)'A.(xi - 8.)], 1 1 J 1 J 

where A. is an n x n symmetric, positive definite matrix 
1 

and ij,.[•] is a monotone increasing function. We frequently 
1 

refer to the utility Ui(8j) that the ith voter receives if 

h · th d · d i 1 d i d f h d. t e J can 1 ate s e ecte nstea o t e correspon 1ng 

loss. Presumably V. will receive some maximum utility A. 
1 1 

if the candidate's strategy coincides with his most pre-

ferred point, and his utility will diminish as the candi-

date's platform and his preferred point become more dispar-

ate. A class of utility functions consistent with these 

restrictions is defined by 

( 3. 1) 

where ij,i is the function specified in (3.0). Since, for 

each citizen, A. is a constant, it is a trivial matter to 
1 

3 rt is assumed that the candidate's precise position in En 
is known by all citizens. This is one of those oversimpli-
fications that we are willing to tolerate for the time being. 
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construct functions hi[•] for i = 1, ..• , N such that 

(3. 2) 

where hi is a monotone decreasing function (see Figure 3.1). 

Structurally, each citizen's utility function is a mapping 

from En into £ 1 satisfying the condition that as his loss 

L1 (ej) increases, his utility Ui(8j) decreases. In short, 

we may use loss functions and utility functions inter-

changeably since both are monotone functions of the same 

argument provided that we are careful to recognize that 

their directions of monotonicity differ. 

It is interesting to note how V. 's utility with regard 
l. 

to various social states is related to his preference over 

those social states. That relationship is specified accord-

ing to the following definition. 

Definition 3.1: n th If e 1 , e 2 £ E , then the i voter is 

· said to prefer e1 at least as much as 8 2 , and we write 

8 1 Ri8 2 , if Ui(8 1) ~ 

strictly prefers 81 

u1 (e 1 ) = Ui(8 2 ), we say he is indifferent between e 1 and 8 2 

and abbreviate 81Ii82. 

This definition is slightly misleading since it would 

appear to treat utility as the prior concept when quite the 

opposite is the case, that is, if Vi prefers 8 1 over 8 2 , 

then, if he is rational in a formal sense, it should follow 
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Figure 3.1 

The ith Voter's Utility Defined as a Function 

of the Normed Distance from His Preferred 

Point to the Candidate's Strategy Vector 
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In short, preference is the prior con-

cept, and utilities of social states are ordered--if not 

completely determined--according to the ith citizen's pre-

ference ordering on the space of social states. 

There are two important observations which must be made 

concerning Vi's utility function. First, we note that, al-

though the ith citizen's preference ordering R. is related 
l. 

to his utility function Ui by Definition 3.1, it is not 

essential that we know the function h. (see equation (3.2)) 
l. 

in order to specify Ri. To see this, suppose that 

Ui(B{) > Ui(B 2 ) holds for the ith voter whose loss matrix 

is Ai. By definition, Ui(B 1 ) ~ Ui(B 2 ) is equivalent to 

hi[(xi - B1)'Ai(xi - Bl)]~ hi[(xi - Bz)'Ai(xi - 82)). 

But because of the monotonicity of h., the above inequality 
l. 

In other words, a voter who is attempting to make a choice 

between two candidates c1 and c2 , whose platforms are e1 and 

e2 respectively, based upon a comparison of Ui(B 1 ) and 

Ui(B 2 ) would make precisely the same decision by comparing 

the two normed distances J Jxi - e1 J JA. and I Jxi - B2 J JA., 
l. l. 

where V 's norm is defined by 
i 

( 3. 3) 

While 

2 · n 
llx. -yjJA = (x. -y)'A.(x. -y) forallye:.E. 

l. . l. l. l. 
l. 

our initial inclination is to characterize the 

ith voter by the ordered triple (x., A., h.), where x. is 
l. l. l. l. 

his most preferred point, Ai is his loss matrix, and hi is 
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the monotone decreasing function in (3.2), since we are not 

· d i h ith · · ' · 1 · b 1 intereste n t e citizens uti ity per se, ut on y as 

it relates to hi~ preference ordering R., it will suffice to 
i 

th characterize the i voter by the ordered pair (x., A.), 
i i 

that is, the function h. is excess baggage and may be dis-
i 

carded. This is one of the exciting characteristics of 

both the original D-H model and our more general formulation, 

because it allows the political scientist or economist to 

construct individual preference orderings, aggregate them 

in some manner, and, all the while, avoid making interper-

sonai comparison~ of utility. 4 

In En, the matrix Ai determines n-dimensional ellip-

soids of constant loss which are "centered" at the ith 

voter's most preferred point. 5 Figure 3.2 depicts a two-

dimensional issue space E2 with three voters, v1 , v2 , and 

v3 , whose most preferred points and indifference ellipses 

are indicated and where two candidates' political platforms 

4 rhe ith voter's !reference ordering R. can be defined in 
terms of his norm I• I IA. on the space Bf social states 

i 
in the following manner: if y, zEEn, then the ith voter 
(x., A.) prefers y at least as much as z, and we write 

i i 

yRiz, if and only if I !xi - yj h. ~ I !xi - zl IA.• Of 
course, P. and I. can be similafly defined. i 

i i 

are on the same ellipsoid with 
voter assigns the same loss to 
didate. 
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--.i----------------~ Issue I 

Figure 3.2 

Three Voters' Preferred Points and Indifference 

Ellipses in a Two-Dimensional Issue Space with 

Two Candidates 
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are known to be e1 and e2 • The more salient of the two 

issues for v 1 is Issue 1, while Issue 2 is the more salient 

of the two for v2 . The third voter is more concerned with 

some linear combination (interaction) of the issues than he 

is with either one individually. The first voter is indiff-

erent between c1 and c2 , so he will choose between them by a 

predetermined random process, say by flipping a fair coin. 

Both of the remaining voters prefer c1 to c2 , so, under the 

majority rule decision function, if all citizens vote, the 

first candidate will win the election. 6 

The second important observation regarding voters' 

utility functions concerns the possibility of citizen homo-

geneity in that respect. In particular, if voters are uni-

form with respect to the relative salience that they assign 

to the various election issues, then the same symmetric 

positive definite loss matrix B enters the utility function 

f I h h ·1· i db h .th o eac1 voter. T us t e uti ity exper ence y t e i voter 

if the jth candidate is elected is 

6 consider v3 , for example, whose preferred point is located 
at x 3 • Imagine the class of all ellipsoids concentric to x 3 
and to which the ellipsoid depicted in Figure 3.1 belongs. 
The voter is indifferent between two candidate strategies 
on any specific ellipsoid but he will choose between strate-
gies on two different ellipsoids by asking which ellipsoid 
is contained within the other. Since, in this example, the 
ellipsoid concentric to x 3 and passing through e1 is con-
tained within the one concentric to x 3 and passing through 
e2 , the third voter would experience greater loss if the 
candidate whose platform is at e2 is elected. He will, there-
fore, vote for the first candidate. By a similar argument, 
we can see that the second citizen will also vote for the 
first candidate. 
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(3.4) 

Now it is possible to operate on En with a linear transfor-

mation so that all of the surfaces of constant utility 

determined by the matrix B, instead of being ellipsoids in 

general, are n-dimensional spheres. This situation is illus-

trated in the two-dimensional issue space in Figure 3.3, 

where ellipses define the voters' contours of indifference 

before the linear transformation on the points in the issue 

space and circles define their contours of indifference 

after the transformation on those points. The purpose of 

such a transformation is to simplify the utility functions, 

since the matrix which determines indifference surfaces in 

the transformed space is then x n identity matrix I. 7 

Hence, in the transformed space the utility to the ith 

voter if the jth candidate is elected is 

(3.5) U.(8.) = f.[(x. - 8j)'(x. - 8.)], 
l. J l. l. l. J 

where f.[•], a monotone decreasing function of 
l. 

(xi - 8.)'(x. - 8.), is the function composition of h. and 
J l. J l. 

the linear transformation on En. Since (x. - 8.)'(x. - 8.) 
l. J l. J 

is simply the Euclidean distance between the vectors x. and 
l. 

8j, equation (3.5) indicates that in the transformed space 

the voter's utility is nothing more than a monotone decreas-

7 rt is important to know that if voters have heterogen-
eous loss matrices, then it will be impossible to find a 
transformation which will simplify the issue space in 
this manner. 
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Issue 2 

Figure 3.3 

Three Voters' Preferred Points and Indifference 

Ellipses in a Two-Dimensional Issue Space and 

Their Indifference Circles in a Transformed 

Space 
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ing function of the distance between his most preferred 

point xi and the candidate's platform vector ej. In short, 

if voters share a common loss matrix, then "closeness" or 

distance will be measured in the Euclidean sense, but if 

different voters have different loss matrices, then distance 

will be measured with respect to each particular voter's 

norm 11 • 11 A • In the latter case,· there will be as many 
i 

metersticks as there are voters in society. 

Careful attention should be paid to the fact that the 

three relations on En in Definition 3.1 are specified with 

respect to a particular voter (x., A.). 
l. l. 

It is also note-

worthy that for each i in some index set A, I. is an 
l. 

equivalence relation. It would be desirable if, given all 

of the individual preference orderings R., iEA, we could con-
1. 

struct a social preference ordering R in a manner that 

.would generally be interpreted to be both rational and con-

sistent with majority rule. An ordering R can be defined 

by first constructing a distribution or, more formally, a 

probability measure Pr** on the voter space En x M , where n 
n E represents the space of all potential most preferred 

points and M is the space of all n x n positive definite n 

matrices. Since, for each iEA, Riis a complete transitive 

ordering on En, if (X, A) represents a voter selected at 

random from the support of Pr**, we have the following 
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definition of dominance under majority rule. 8 

Definition 3.2: n If y, zEE, society prefers y at 

least as much as z, and we abbreviate yRz, if and only if 

If society prefers y 

at least as much as z we say y dominates z. If for all 

n ZEE, y dominates z, then y is said to be a dominant 

n point for the distribution Pr** on E x M • n 

By way of example, in a democratic society with a 

finite number N of citizens the relative frequency assign-

ment of probability is usually intuitively acceptable. That 

means that the probability of a point (xi, A.)EEn x M is 
1 n 

simply the number of voters who have preferred point (xi, Ai) 

divided by N. Then yRz will hold if half or more of the 

voters are at least as "close" to y as they are to z. It 

is important to note that in this model citizens vote deter-

ministically provided that the normed distances from their 

preferred points t~ the candidates' platform vectors are 

not equal; i.e., if the candidates' platfor~s are 8 1 and 82 

and I lx 1 - e1 1 IA. < I lxi - e2 1 IA.' then 
1 1 

first candidate with probability 1. If 

I lxi· - e2 1 IA.' then the ith voter will 
1 

V. will vote for 
l. 

I Ix. - 81 I I A. = 
1 

1 
choose between the 

candidates randomly, say by flirping a fair coin. This 

8 The support of a probability measure is the set of all 

the 

two 

points which are assigned positive density by the measure. 
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deterministic interpretation is in contrast to the game 

theoretic approach in which a specific voter can, for ex-

ample, vote for the first candidate with probability 0.2 

and vote for the second with probability 0.8 9 Unfortunately, 

as is implied by Arrow's Theorem, it is frequently true that 

"well-behaved" individual preference orderings do not generate 

a "well-behaved" social preference, so even if all of the 

voters in a democracy have complete transitive preference 

orderings, under certain sets of reasonable assumptions, 

h . h R '11 b . . lO t ere is no guarantee tat wi e transitive. 

We conclude the development of preliminary concepts by 

proving the following useful lemma. 

If (x., A.) represents the ith voter and 
i i 

Lemma 3.1: 

1) 

2) 

3) 

n zsE , then the following are equivalent: 

Proof: That 1 and 2 are equivalent is an obvious con-

sequent of Definition 3.1. To show that 2 and 3 are equiva-

9 For example, see Melvin llinich, John Ledyard, and Peter 
Ordeshook, "A Theory of Electoral Equilibrium: A Spatial 
Analysis Based on the Theory of Games," Journal of Politics, 
Vol. 35, (Feb. 1973), pp, 154-193. 

10 1 . s· For examp e, see R. W. Hoyer and Lawrence . Mayer, 
Social Preference Orderings Under Majority Rule," 
Econometrica, Vol. 43, (July 1975), pp. 803-806. 

"On 
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lent, first note that 

By subtracting and adding z from each vector we get 

Hence 

But this inequality is equivalent to 

- llz-9 2 11!. < 2(9 1 -e 2 )'Ai(xi-z), 
1 

and the desired result follows at once. 

Q. E. D. 

Section 3.2 A Two-Candidate Election 
with Common Indifference Surfaces 

In this section we assume that each citizen in a par-

ticular social structure has a unique most preferred posi-

tion and that all citizens have indifference surfaces of the 

same shape, i.e., they have a common loss matrix B. In 

addition, we suppose that there are two candidates running 

for office and there are no voter abstentions. Since the 

probability measure will have all of its mass concentrated 

at the single matrix B£M , it can actually be considered to n 
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be the distribution of the random variable X which maps 

each voter in the space V of all voters into his most pre-

ferred point in En. In order to distinguish this probability 

function from the one 

by Pr*. Furthermore, 

in Definition 3.2, it will be denoted 

we will let e 1 and e 2 represent the 

platforms of the first and second candidates respectively. 

Definition 3.3: If all voters have a common loss matrix 

B, then a point 8£En satisfying the condition that for any 

z£En, Pr*(J Jx - eJ IB ~ J Jx - zl JB) ~ 1/2 is said to be a 

dominant point. 

The attractiveness of a dominant point to a candidate for 

elective office is obvious. If the first candidate chooses 

a dominant point as his political platform, then the second 

candidate must either lose the election or also choose a 

dominant strategy, in which case the election will be de-

cided by a random mechanism. Unfortunately, there are many 

distributions of the points in En for which no dominant 

point exists, and there are still other distributions in 

which a dominant point exists but is not unique. 

Another political strategy of interest in this spatial 

analysis is one that minimizes the expected loss experienced 

by the voters if the candidate adopting that platform is 

elected. Davis and Hinich maintain that this is the optimal 
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11 strategy for a beneficent dictator. It is optimal in the 

sense that if the beneficent dictator adopts the point of 

minimal societal loss, then the political environment has 

the property that on the average the citizenry will exper-

ience the least amount of loss. Of course, there are other 

rational interpretations of the manifestation of beneficent 

dictatorships; consequently, one shoud not expect the minimal 

societal loss vector to be the only socially (as opposed to 

strategically) desirable point in the spatial model. At any 

rate, we have 

Definition 3.4: n A point 0eE satisfying the condition 

that for any zeEn, E[llx - ellil ~ E[IIX - zllil, where E 

is the expected value with respect to the distribution of 

preferred points, is said to be a point of minimal societal 

loss, 

Fortunately (for society) any realistic distribution of pre-

ferred points will have a point of minimal societal loss; 

however, it is possible to construct a spatial distribution 

of at least a countably infinite number of voters in which 

the expected value E[I Ix - el lil does not exist, Unfor-

tunately (for the candidates) the adoption of the point of 

minimal societal loss as a political strategy will not assure 

victory i~ an election. 

11 navis and Hinich, in Mathematical Applications in 
Political Science, II. 
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Definition 3,5: If all voters have a common loss matrix, 

then the mean preferenceµ is the expected value E[X] of the 

distribution Pr* of preferred points, 

Although the mean preference is not generally a dominant 

strategy, it has received quite a bit of attention, especially 

under the assumptions that all voters have the same loss 

matrix B and the distribution of preferred points is sym-

12 metric, Its importance even then is somewhat inflated 

since it dominates only because it is a special case of a 

special type of median which we define as follows: 

Definition 3.6: A point m£En is a total median if for 

n every ae:E, Pr*(a'(X-m) 2::, O) 2::, 1/2. 

If a, m£En are fixed, then H = {x£Enla'(x - m) = O} is 

a hyperplane in En containing m, 13 Consequently, in the 

.discrete case, m will be a total median of the distribu-

tion Pr* if and only if each hyperplane containing m has 

at least half of the voter's preferred points on both closed 

sides of . 14 it. It is called a total median because it is 

12 otto Davis and Melvin Hinich, "On the Power and Importance 
of the Mean Preference in a Mathematical Model of Democratic 
Choice, 11 Public Choice, Vol. 5 (Fall 1968), pp, 59-72. 

13 A hyperplane in En is an n-1 dimensional space embedded 
in En. For example, in E2 (two-space) a hyperplane is a line; 
in E3 (three-space) a hyperplane is a plane. 

14 By a closed 
the points on 
side of it, 

side of a hyperplane H we mean the union of 
H itself with those that are strictly on one 
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independent of the particular basis ·used to "coordinatize" 

the space of preferred points. 15 On the other hand, if we 

specify a basis for the space of social states and let m* 

be the vector 'of medians of the marginal distributions, then 

we have a basis-dependent median. If the basis is changed 

and the new vector m** of medians of the marginal distribu-

tions is computed, it will probably be the case that 

m* ~ m**· We call such basis-dependent vectors partial 

medians. Under the assumption that there is a specific 

basis used to "coordinatize" the space of preferred points, 

Wendell and Thorson call m* a multidimensional median. 16 

Formally, we have the following definition. 

Definition 3.7: A point m*£En is a E_Ertial median if 

there exists a basis A= {a 1 , ai,•••, an}CEn for the vector 

s p ace En s u ch that f or <~ a ch a£ A , P r * ( a ' ( X - m *) ~ 0 ) ~ 1 / 2 • 

The following theorems and examples will show how the 

five "optimal" strategics defined in this section are related. 

Theorem 3.1 (Davis and Hinich): If all voters have the 

same loss matrix B, then the mean preference µ is the 

15 By an issue basis we mean the basis of a vector space 
which can be used to define the issues. 

16 R. E. Wendell and S. J. Thorson, "Some Generalizations of 
Social Decisions under Majority Rule," paper presented at 
the Annual Meeting of the Midwest Political Science Associa-
tion, 1973. 
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point of minimal societal loss. 17 

Proof: Recall that the point of minimal societal loss 

8 is the point that minimizes expected loss. But 

E[llx-ell!l = E[(x-S)'B(x-8)]. 

= E[(x-µ+µ-S)'B(x-µ+µ-8)]. 

= E[(x-µ)'B(x-µ)] + E[(x-µ)'B(µ-8)] 

+ E((µ-8)'B(x-µ)] + E[(µ-S)'B(µ-8)]. 

Since I jµ-ej I!~ 0 for all 8£E 0 , we minimize the right hand 

side of the equality by choosing 8 = µ. 

Q. E. D. 

If for no other reason, the mean preference is valuable 

because it provides us with a convenient and constructive 

method for computing the point of minimal societal loss. 

Furthermore, if, as Davis and Hinich claim, the beneficent 

dictator should choose the point of minimal societal loss as 

his political strategy, then the function $:En+ E1 defined 

by 

$(y) = (y - µ)'B(y - µ) 

is a measure of the "nonbeneficence" of the candidate whose 

17 several results attributed to other theorists are proven 
in this dissertation, but such proofs are included only when 
existing proofs are either inaccurate or inelegant. 
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platform is represented by y. If the first and second can-

didates have strategies represented by y 1 and y 2 respectively, 

and ~(y 1 ) < ~(y 2 ), then the first office seeker may not win 

the election, but at least he is, in some sense, more posi-

tively disposed toward the "average citizen" than is the 

second candidate. 

Theorem 3.2 (Davis, DeGroot, and Hinich): If all voters 

have a common loss matrix B, then a point 8EEn is dominant 

if and only if 8 is a total median. 

Proof: If m is a total median, then for every 

n aEE, Pr*(a'(X - m) 2:, O) > 1/2. Let a= B'(m - 8 2 ), where 

8 2 represents any strategy the second candidate would like 

to assume. Then Pr*(a'(X-m) ~ O) = Pric((m-8 2 ) 1 B(X-m) 2:, 0)2:,1/2. 

But Pr*((m - 8 2 ) 'B(X - m) ?. 1/2(-118 2 - ml I!)) 
~ Pr*((m - e2 )'B(X - m) 2:, 0) > 1/2. By Definition 3.2 and 

.Lemma 3.1, m is dominant. To show that the condition is 

necessary, suppose e and let aEEn. By Lemma 3.1, for every 

Therefore the statement must hold for z = 8 2 = b, where 

b = (1/p)a for some positive integer p. Thus, 

Pr*(b'B(X - e + b) 2:. 1/21 lbl I~) 2:. 1/2, and 

Pr*(b' (X -· 8 + b'Bb ?. 1/21 lhl I~) ~ 1/2. But b'Bb = I lbl I!• 
Consequently Pr* (a' (X - 8) ?. (2p) -l 11 b 11 !) ~ 1/2. The 

result follows by taking the limit as p ~ 00 • 

Q. E. D. 
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In view of Theorem 3.2, it is apparent that, within the 

framework of this spatial model, and given that all citizens 

have the same loss matrix, the total median is a very desir-

able political platform. Nevertheless, there are many dis-

tributions of preferred points for which a total median, and 

thus a dominant strategy, does not exist. 

Example 3.1: Suppose that fifteen citizens have their 

preferred points distributed on the vertices of an equi-

2 lateral triangle in E , with four voters at one vertex, five 

at another, and six at the third (see Figure 3.4). In addi-

tion, assume that the ellipsoids of constant loss are all 

circles, so that distances are measured in the usual 

Euclidean sense. Then for this distribution, 

i) there is no dominant point; 

ii) there is an infinite set of partial medians. 

To show there is no dominant point, consider the fact that 

2 in E hyperplanes are lines. It is obvious from Figure 3.4 

that there is no point m such that every line through m 

will have at least half the voters on both closed sides of 

it. Consequently, there is no total median for this distri-

bution. 

The candidate for office in a space of voter preferences 

for which no dominant point exists must still choose a 

political strategy, and choosing a reasonable platform in 

the absence of a "best" single point may be a complex task. 
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Figure 3.4 

A Distribution in Which No Point Is Dominant, 

the Set of Partial Medians Is Infinite, and There 

Is a "Large" Intransitive Loop in the Condorcet Set 
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For example, consider some of the options available in the 

distribution depicted in Figure 3.4. Regardless of whether 

a dominant strategy exists, one collection of reasonable 

strategies is the set of partial medians. A partial median 

m* has the positive characteristic that there exists an issue 

basis such that with respect to each individual issue in that 

particular basis, m* is dominant, Notice, by comparing 

Definitions 3.6 and 3.7, that if m is a total median, it 

is also a partial median. Now suppose that m* is a partial 

median and a dominant point m exists. Then there must be 

a basis A for which the components of m* are the medians 

of the marginal distributions. If m and m* are distinct 

points in En, then they must differ in at least one compon-

ent. Suppose, for the sake of argument, that they differ in 

exactly one component, Then the points are identical in 

every dimension but one, and in that dimension m* dominates 

m. Since such a situation is impossible (given that m is 

a dominant point), we must conclude that m = m*, Consequent-

ly, if the distribution of social states is known and we 

know that a dominant point exists, we can find the marginal 

distributions with respect to the coordinates determined by 

some basis A, and the associated partial median is the 

dominant point. The object of this development is to devise 

some constructive procedure for computing a dominant strategy, 

given that one is known to exist. It is important to recog-



43 

nize that, although the analytic and game theoretic spatial 

models of ~ajority rule are replete with "existence" theorems, 

there are very few construction procedures. In Figure 3.4 

the closed curve connecting the points a, b, and c is the 

set of partial medians. 

Other platforms that are desirable in the absence of a 

total median are those in one of the classifications of 

18 Condorcet sets. In particular, the Condorcet set C for 

a distribution of voter preferences in En is the minimal 

(ordered by set inclusion) nonempty set of elements c such 

that if z$C, cPz. In other words, the Condorcet set is the 

smallest set of social states with the property that every 

point in the set is preferred by society to every point not 

in the set. It has been shown that the partial medians are 

19 in the Condorcet set. Furthermore, close analysis of the 

social preference relation R between points in our example 

will reveal that, although by restricting his attention to 

strategies in the Condorcet set the candidate ignores many 

poor strategies, the Condorcet set is too large to be of 

much practical use to the candidate. In addition, it is 

true that any particular point in the Condorcet set, includ-

18 I. J. Good and Lawrence Mayer, "Theorems on Condorcet 
Sets," (unpublished manuscript, 19 72). 

19 R. W. Hoyer and Lawrence Mayer, "Further Results on Con-
dorcet Sets," (unpublished manuscript, 1973). 
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ing a partial median, frequently has the unfortunate property 

of being dominated by up to an uncountably infinite number of 

other points in the preference space. In Figure 3.4 the 

closed curve connecting a, d, and b is a rather large in-

transitive loop properly contained in the Condorcet set. As 

we trace the simple closed curve in the direction of the ar-

rows, say traversing from u to v, then society prefers v 

to u. Under these conditions, it is conceivable that the 

optimal strategy may be that of being the last candidate to 

choose a platform and still have time to inform the electo-

rate accordingly. On the other hand, perhaps the astute 

office-seeker would simply choose the mean preference µ 

and attempt to impress the electorate with his beneficence. 

To complete the analysis of the relationship between 

the five strategies under the assumption of common indiffer-

ence ellipsoids, we will compare the mean preference µ with 

h 1 d . i h e En d K C En • t e tota me ian m. F rst, suppose tat E an 

The set K8 = {28 - xlxEK} is the reflection of the set K 

through the point 8. 

Definition 3.8: A distribution Pr* on En is symmetric 

n c· n about 8EE if for each K E such that 

Pr*(K) > O, Pr*(K) = Pr*(K8). 

Theorem 3.3 (Davis, DeGroot, and Hinich): If all voters 

have a common matrix B and if Pr*, the distribution of the 

random variable X of preferred points, is symmetric about 
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8, then 8 is a total median. 

Proof: If the distribution of X is symmetric with 

respect to 8, then the distribution of X - 8 is symmetric 

about the vector O. n Thus, for every aEE, a'(X - 8) is 

symmetric about the real number O. By Definition 3.8, 

Pr*(a'(X - 8) < O) = Pr*(a'(X - 8) ~ 0) ~ 1/2, and we con-

elude that 8 is a total median. 

As a consequence of Theorem 3.3, we see that if the 

distribution of preferred points is symmetric about the mean 

preference µ, then µ is a dominant point. It is not 

true, however, that symmetry about µ is a necessary con-

dition for µ to be a dominant platform. 

Example 3.2: Suppose, as is illustrated in Figure 3.5, 

the distribution of citizens' preferred points in a one-

dimensional space can be approximated by the density func-

tion f defined by 

1/2 -3/2 ~ X $ -1/2 

(3.6) f (x) = 1/4 

0 otherwise. 

Clearly the distribution is not symmetric about 

in ·E1 the total medians are simply medians, so 

0. However, 

m = µ = o. 
Consequently, f defines a nonsymmetric distribution in 

which the mean preference is dominant. 

The relationship between points discussed in this sec-
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tion (under the assumption of common loss matrices) is illus-
' 

trated in Figure 3.6, where the notation Q a Thm.N 1S means 

that if the point is an a and property Q holds, then the 

point is also a B, and the proof can be found in Theorem N. 

Several of the relationships are not proved as theorems but 

follow as consequences of the rules of mathematical logic. 

For exampl~, dominant points and total medians are equivalent 

concepts; and since every total median is a partial median, 

it follows that every dominant point is a partial median. 

Section 3.3 A Two-Candidate Election 
with Individual Indifference Surfaces 

At this point, it is useful to characterize the under-

lying difference between the Davis-Hinich spatial model and 

our generalized model. 

In essence, we would like to move from the Euclidean 

space En consisting of all potential preferred points to the 

space En x M consisting of ordered pairs where the first n 
component is the voter's preferred point in En and the second 

component is ~he voter's n x n positive definite loss matrix 

in M • n Since our statements will be probabilistic ones, it 

is necessary to define a probability measure Pr** on 

En x M , most desirably in such a manner that the measure n 

Pr* used in the previous sections is similar to Pr** for 

some fixed B£M. n This is done by letting V be the space 

of voters, B' be a a-algebra on V, and Pr' be a probability 
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measure on B'. Then the random variable of interest in the 

generalized model is the function (X, A) which maps the ith 

voter in the space V into the ordered pair 

n (xi, Ai)EE x Mn. We let B be the a-algebra on the space 

En x M induced by the mapping (X, A), and define the pro-n 
bability measure 

for each BEB. 

Pr** on En x M by Pr**(B) = P'((X,A)- 1 (B)) 
n 

In other words, if Pr' is a probability measure on the 

voter space V and the random variable (X, A) tells us pre-

cisely what each voter's most preferred point is, then P' 

induces a probability distribution P** on En x M • 
. . n 

This is 

the probability function in which we are interested. 

Of course, we remain interested in that point 8EEn that 

minimizes the expected loss of the citizen (X, A) given that 

the candidate at 8 wins, and believe that such a vector is 

a reasonable platform for a beneficent dictator. 

Definition 3.9: A point 8EEn satisfying the condition 

that for any zEEn, E[jjx - ell!J:s E[jlx - zll!L where Eis 

the expected value with respect to the random ·,a riab le (X, A) , 

is said to be a point of minimal societal loss. 20 

20 I. J, Good and Lawrence Mayer, "On Surfaces of Constant 
Societal Loss in A Model of Social Choice," Journal of Mathe-
matical Sociology, Vol. 2 (August 1972), pp, 209-220, 
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It is important to note that the difference between 

this definition and Definition 3.4 is the fact that the 

relevant random variable (X, A) is a mapping into the p~oduct 

space En x·M, whereas in the previous consideration the ran-n 
n dam variable was essentially vector-valued in E. 

Definition 3.10: A point meEn is a generalized total 

n median (GTM) of the distribution Pr** if for every aeE , 

Pr**(a'A(X - m) ~ 0) ~ 1/2. 

It may be useful from a conceptual point of view to con-

sider each point aeEn as a map from the space En x M into n 
1 E defined by a(x, A) = a'Ax. Then for a fixed value of 

aeEn, the event {(X,A) la'A(X - m) ~ O} = {(X,A) la'AX ~ a'Am} 

is seen to be a set defined by a relationship between two 

random variables in a one-dimensional space. It will be con-

venient throughout the remainder of this section to adopt the 

notation that E(AX) = AX and E(X) = X = µ. 

Theorem 3.4: In the voter space En x M , n 
M = (A)- 1 (AX) is the point of minimal societal loss. 21 

Proof: We must prove that M is that value of 9 

which minimizes E[I Ix - el I!]. 

21 In proving this theorem we make use of the following re-
sults: 

i) A' = A. 

ii) 

iii) 

If A is. a random variable in Mn' then E(A) 

If AeM, then A is nonsingular. n 
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E[llx - 8ll!J = E[(X - 8)'A(X - 8)]. 

= E[(X - M+M - 8)'A(X - M+M - 8)]. 

+ E[(X - M)'A(M - 8)] + E[(H-8)'A(X - M)]. 

We will prove that the last summand on the right is O, 

and a similar argument will demonstrate that the third term 

is also O. 

E[(M-8)'A(X-M)] = E[((A)- 1 (AX)-8)'A(X-(A)-l(AX))]. 

= E [((A)- 1 (AX) - 8) '(AX -A(A)- 1 (AX))]. 

= ((A)- 1 (AX) - 8) 'E[AX- A(A)+ 1 (AX)], 

since (A)- 1 (AX) - e is a constant. But 

E[AX-A(A)- 1 (AX)] = AX -A(A)- 1 (AX) = O. Therefore 

E [ 11 X - e 11 ! ] = E [ 11 X - MI I!] + E [ 11 M - e 11 ! ] . since 

I IM - el I!~ 0 for all (8, A)£En x Mn, we minimize the ex-

pected value by choosing 8 = M ... (A)- 1 (AX), which is the 

desired result. 

Q. E. D. 

One striking feature of the expression (A)- 1 (AX) is 

that it almost appears to reduce to the mean of the distri-

bution of voter's preferred points. In fact, if the random 

variables A and X are uncorrelated, we have 

M = (Af 1 (AX) = (Af 1 Aµ = µ. Furthermore, if M "' µ, we have 
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Thus (A)- 1 (AX) = µ. Premultiplying 

both sides of the equality by A yields AX= Aµ= AX. 

We have proved the following theorem. 

Theorem 3.5: n In the voter space E x M , the point of n 
minimal societal loss M and the mean preference µ coin-

cide if and only if the random variables X and A are 

uncorrelated. 

We have previously asserted that the importance of the 

mean preference as a rational candidate strategy has been 

somewhat exaggerated. Even under the assumption that all 

voters have common indifference ellipsoids, the mean prefer-

ence will not generally dominate, but, at least in that case, 

µ minimizes the expected societal loss. In view of Theo-

rem 3.5, it is apparent that the importance of µ as an 

"optimal" strategy has been further diminished. Certainly 

it is usually unrealistic to assume that all voters are 

homogenous with respect to the relative importance they 

assign to the individual campaign issues. To make the addi-

tional supposition that the shape of the citizen's indiffer-

ence ellipsoid is not, on the average, a function of the 

location of his most preferred point places unfortunate 

restrictions on the model. To claim that the random var-

ables X and A are uncorrelated means that one should 

expect, for example, to see voters with "moderate" political 

positions have loss ellipsoids that are on the average iden-
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tical to the loss ellipsoids of voters whose most preferred 

points represent a radical fringe. Our own intuitive feel-

ing is that voters whose preferred points are on the fringe 

of the distribution of social states frequently have very 

strong feelings about certain dimensions of the issue space. 

Consequently, it is unlikely that in general the random 

variables X and A are uncorrelated. We would not argue 

that the mean preference is never important; we simply be-

lieve that when it appears to be playing a key role as an 

election strategy, that role can usually be attributed to 

unrealistic assumptions underlying the model. 

The next theorem is the generalized analog of Theo-

rem 3.2, and the proofs of the two theorems are quite simi-

lar. 

Theorem 3.6: A point m£En is dominant if and only if 

m is a generalized total median. 

Proof: Suppose m is a GTM. By letting a= m - e2 

in Definition 3.10, it follows that m is dominant. Con-

n versely, suppose e1 is dominant and let a£E • 

n for every a, e1 , e2 £E , 

By Lemma 3.1, 

In particular, let z = e2 = G1 - b, where b = (1/p)a for 

some positive integer p. Then 

Pr**(b'A(X - e1 + b) 2:. 1/21 lbl I!) ~ 1/2 or equivalently 

P**(b'A(X - 81 ) ~ -1/2b'Ab) 2:. 1/2. Therefore 
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-1 P** (a' A(X - el) ~ -(2p) a' Aa) ~ 1/2. The desired result, 

Pr**(a'A(X - e 1 ) ~ 0) ~ 1/2, follows by taking the limit as 

p ~ co. 

Q. E. D. 

Insofar as the spatial model is concerned, the general-

ized total median is the ultimate in strategies. Of course, 

the voter space illustrated in Figure 3.4 will suffice to 

demonstrate that for certain distributions GTM's may not 

exist. Further, in the generalized model, the search for 

"goo.d" platforms in the absence of a GTM is even more complex 

and inconclusive than was the case when all voters were 

assumed to share a common quadratic loss function. 

Corollary 3.1: If the conditional distribution of pre-

ferred points, given any matrix B, has a total median m 

and m is mathematically independent of B, then m is 

. dominant. 

Despite misgivings about the strategic importance of 

the mean preference µ, the next theorem gives a sufficient 

condition for µ to be a dominant point. 

in the voter space En x M, the ran-n Theorem 3.7: If, 

dom variable Z = A(X - µ) is symmetric about the vector O, 

then µ is a GTM. 

Proof: If Z is symmetric about O, then for every 

n aEE, Pr**(a'Z ~ O) > 1/2. Hence Pr** (a' A(X - µ) ~ O) > 1/2, 

so µ is the generalized total median. 

Q. E. D. 
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It is not surprising that many of the theorems derived 

from the Davis-Hinich assumptions are no longer true in the 

generalized setting. It has already been demonstrated in 

Theorem 3.5 that the mean preference is not necessarily 

the platform of minimal societal loss. In the next example 

it will be apparent that the symmetry of the distribution 

of preferred points must, in fact, be coupled with the homo-

geneity of weights on the campaign issues in order to 

guarantee the existence of certain optimal strategies. 

Example 3.3: In this example we construct a voter 

space in which the preferred points are symmetric about a 

point x 2 but x 2 is neither a dominant point nor a point of 

minimal societal loss. In particular, in E2 x M2 we con-

sider the three voters (xi' Ai) for i = 1, 2, 3 defined by 

First Voter [_: -:J [ 
[ 1 ~] [ Second Voter 0 

[ 5 
:] [ Third Voter 

3 

x. 
1 

-2 

0 

0 

0 

2 
0 

] 
] 
] 

A.x. 
1 1 

[ -1~] 
[ :] 
[ 1~] 

This distribution is illustrated in Figure 3.7 where a 

representative indifference ellipse has been drawn for 

each voter. Of course, the indifference ellipses for the 

second voter are simply circles concentric about the origin. 
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Although the preferred points are symmetrically distributed 

about x 2 , it can readily be seen that if one candidate is 

at x 2 and the second is at z, then the second candidate 

will get two votes and win the election. Therefore x 2 is 

not a dominant point. Furthermore, a simple computation 

- -1 ~ will yield M = (A) (AX) = (0, 12/11]'. Hence, the point 

about which the distribution is symmetric is not the point 

of minimal societal loss M. 

At least one area for concern in attempting to fit a 

mathematical model to a sociopolitical environment and then 

generalizing the model is whether or not you eventually put 

yourself out of business. Certainly our principal interest 

is locating winning political strategies. If, in allowing 

each voter to define his loss in a completely personal man-

ner, we significantly limit the candidate's ability to lo-

cate optimal strategies, then our effort is, for the most 

part, wasted. In this generalized model the precise oppo-

site is the case. Not only is every total median a general-

ized total median, but there are distributions for which a 

GTM exists and a total median does not. 

2 Example 3.4: Consider the voter subspace E x M2 

consisting of five citizens (xi, Ai), i = 1, ••• , 5 defined 

as follows: 
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Ai X, Ai(xi-µ) 
1 

First Voter [: :] [J [J 
Second Voter [: :] [ ::] L::J 
Third Voter [: :J [_:] [ :] 
Fourth Voter [: :] [ :] [ :] 
Fifth Voter [: :] [l:] [J 

The distribution is illustrated in Figure 3.8. It is 

easy to see that there is no point in E2 such that every 

hyperplane (line) through it has three or more points on 

both closed sides of it. Consequently, even if all voters 

had a common quadratic loss function, there is no total 

median. Nevertheless, the distribution of the variable 

Z = A(X - µ) is symmetric about the vector O; so by 

Theorem 3.7 the vectorµ= [2, -2]' is a GTM. It is note-

worthy that in this example the point of minimal societal 

loss is the vector M = [2, -34/13]'. The analytic signi-

ficance, if not the political impact, of this example is 

obvious. First, if all the voters adopt the same loss 

matrix, then every GTM reduces to a total median; so it 
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Median but Does Not Have a Total Median 
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follows that every dominant spatial strategy in the 

Davis-Hinich sense is also a dominant point in the more 

general setting. Furthermore, there are distributions of 

voters in the extended model admitting dominant strategies 

which are GTM's but not Davis-Hinich dominant points. 

Finally, the point which minimizes the expected loss of 

the citizenry M = [2, ~4/13]' is not the mean preference 

µ = [2, -2]'. There is no formal reason, other than that 

the example is contrived, to explain the fact that the GTM 

is the mean preference. 

The relationship between the points discussed in this 

section is illustrated in Figure 3.9, and the notation is 

identical to that used in Figure 3.6. 

We conclude this chapter with several observations 

relative to the transitivity of the image of a social wel-

fare function within the context of the generalized model. 

First, notice that even if all voters have identical 

loss matrices B, a combination of symmetry and the exist-

ence of a dominant point is not sufficient to guarantee a 

transitive social preference ordering R under majority 

rule. 

Example 3.5: In Figure 3.10 it is obvious that the 

distribution of Pr* is symmetric with respect to e. If 

the matrix B is defined such that I I ·I IB is Euclidean 

distance, then by Definition 3.3 we have 8'Px and xR8. 
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Furthermore, e and 8' are medians of Pr*, so they are 

both dominant points and ere'. In summary, 8'Rx, xR8, and 

8R8' all hold. Since society is not indifferent with re-

spect to these pairs, R is not transitive. 

It is natural to seek formal restrictions on the 

voters' preference orderings which insure a transitive 

social preference ordering R. Davis, DeGroot, and Hinich 

have shown that if all voters have identical loss matrices 

B, and if the distribution of preferred points has a domin-

ant strategy and a unique median in all directions, then 

h i 1 f d . i . i 22 t e soc a pre erence or er1ng s transit ve. A unique 

median in all directions is defined as follows: 

Definition 3.11: The distribution Pr* on En has a 

unique median in all directions if there exists a unique 

1 n I bEE , such that for every aEE (a 1 O), Pr*(a'X ~ b) ~ 1 2 

and Pr*(a'X ~ b) ~ 1/2. 

Unfortunately, in the more general setting the exist-

ence of a dominant point and a unique median in all direc-

tions is not sufficient to guarantee that R is transitive. 

Example 3.6: In Figure 3.11, suppose that x, y, and 

z are each the most preferred point for two voters and e1 

22 otto Davis, Morris DeGroot, and Melvin Hinich, "Social 
Preference Orderings and Majority Rule," Econometrica, 
Vol. 40 (January 1972), pp. 147-158. 
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Figure 3.11 

An Intransitive Social Preference Ordering 

Defined on a Distribution with a Dominant Point, 

a Unique Median in All Directions, and Unique 

Conditional Medians (on A) in All Directions 
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is the most preferred point for three voters. Let both 

voters at x have the same matrix with indifference ellipses 

defined as indicated. The same situation holds for the 

voters at y and z; however, the three voters at e1 have 

indifference curves as indicated in the display. It is 

clear that e1 is a dominant point since no matter where 
2 e2 £E is located, e1 will always receive at least five of 

the nine votes in a two-candidate race with e2 • In addi-

tion, the distribution has a unique median in all directions 

since every hyperplane through e1 has at least half the 

voters on both closed sides of it, and any hyperplane not 

through e1 will have less than half of the voters on one 

closed side of it. Consequently, we have the property that 
n 1 for every a£E (a I 0), there exists a unique b£E such that 

Pr(a'X Sb) ~ 1/2 and Pr(a'X ~ b) ~ 1/2. It remains to 

demonstrate that the social preference ordering R is 

intransitive. In comparing x and y, it is clear that 

the two voters at y will choose y, the two voters at z 

will choose y, and one of the three voters at e1 will 

choose Y• Since in that binary comparison y is the 

choice of at least five voters, we have yPx. Similarly, 

it can be shown that xPz and zPy. Thus P, and conse-

quently R, is intransitive. 



CHAPTER IV 

VOTER ABSTENTION DUE TO ALIENATION 
AND INTERPERSONAL COMPARISONS 

The second limitation of the Davis-Hinich rnodel--that 

of not providing for citizen abstention from voting induced 

by alienation--was first treated by Hinich and Ordeshook 

and has recently received rather broad exposure in Riker 

and Ordeshook's An Introduction to Positive Political 
1 Theory. Unfortunately, the Hinich-Ordeshook analysis is 

based upon an ambiguous interpretation of an important 

characteristic of the model, so the problem of how to 

treat abstentions, even when all voters define their losses 

in an identical fashion, remains an outstanding one for 

those int~rested in spatial models. The purpose of this 

chapter is to describe explicitly the errors committed by 

Hinich, Ordeshook, and Riker and make several observations 

about our own efforts to formulate a model which allows 

voter abstentions due to alienation. 

1Melvin Hinich and Peter Ordeshook, "Abstentions and Equi-
librium in the Electoral Process," Public Choice, Vol. 7 
(Fall 1969), pp. 81-106. 

Melvin Hinich and Peter Ordeshook, ''Plurality Maximization 
vs. Vote Maximization: A Spatial Analysis with Variable 
Participation," American Political Science Review, Vol. 64 
(September 1970), pp. 772-791. 

William Riker and Peter Ordeshook, An Introduction to 
Positive Political Theory, (Englewood Cliffs, New Jersey: 
Prentice~Hall, 1973). 
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As was previously noted, a very desirable character-

istic of the D-H model, as well as the generalized model 

presented in the last chapter, is the fact that it allows 

one to take individual preference orderings and aggregate 

them to obtain a social preference ordering without intro-

ducing interpersonal comparisons of utility. This point 

has never been emphasized in .the voluminous literature 

relative to the spatial models of voting theory produced 

by Aranson, Davis, DeGroot, Hinich, Ledyard, and Ordeshook. 

Nevertheless, the idea of aggregating individual preferences 

without admitting interpersonal comparisons is central to 

the development of virtually all of modern economics (in-

cluding welfare economics) and, consequently, is fundamen-

tal to a substantial portion of both voting theory and the 

theory of public choice. 2 In fact, if a political partici-

pation model incorporates the concept of interpersonal com-

parisons of utility, then Arrow's paradox does not apply; 

both the basic definition of his social decision function 

and one of the value judgments underlying Arrow's Theorem 

(the independence of irrelevant alternatives axiom) are 

designed to circumvent analysis based upon such comparisons. 

2we believe that individuals do, in fact, make interper-
sonal comparisons of utility, and we are willing to argue 
that the study of such comparisons constitutes a very impor-
tant research area. Nevertheless, if it is possible to 
analyze a sociopolotical structure without making interper-
sonal comparisons of utility, one is almost invariably on 
more solid terrain for not having made them. 
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Quirk and Saposnik remark that 

Condition 3 [the independence of irrelevant 

alternat~ves] excludes social rankings based 

upon interpersonal comparisons of utility be-

cause intensity of preference is not taken to 

be relevant to the social ranking--it is only 

the position of the ra~kings of individuals 

that counts in the social ranking. Thus 

conditions 1 to 5 [the conditions of Arrow's 

Theorem] exclude both universal social rank-

ings based upon interpersonal comparisons 

of utility and those of a dictatorial 
3 variety. 

Sen reports that 

individual utilities are not found in natural 

cardinal units, and the cardinalization follows 

experimental observations, yielding a set of 

numbers that are unique but for an increasing 

linear transformation. Since the utility 

scale has to be fixed by specifying the 

utility value of two points on it, implicitly 

or explicitly, the other alternatives come 

3 James ·Quirk and Rubin Saposnik, Iptroduct.ion to General· 
Equilibrium Theory and Welfare Economics, (New York: McGraw-
Hill Book Co., 1968), p. 111. 
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into this valuation. In trying to achieve 

an interpersonal correspondence, for the 

sake of social aggregation, this has to be 

done, and then any use of preference inten-

sity violates not only the 'ordering' aspect 

of the condition, but also its 'irrelevance' 
4 aspect. 

To illustrate the manner in which utility specifica-

tion and independence of irrelevant alternatives are related, 

consider the following example, a variation of one initially 
5 profosed by Arrow. Imagine a collective choice circumstance 

where three voters v1 , v2 , and v3 are attempting to choose 

between social states o 1 , o 2 , and o 3 by specifying their 

respective utilities for the three social states and deter-

mining the social choice by comparing the sums of the util-

ities over each social state. Suppose that v1 's preference 

ordering is o 1 R1o 2 R1 o 3 and he assigns utilities of 200, 

110, and 100 "utils" to o 1 , o 2 , and o 3 respectively. As 

was indicated in the quotation attributed to Sen, the 

utility numbers are unique up to a linear transformation, 

so it is common practice to normalize utility specifications 

4Amartya Sen, Collective Choice and Social Welfare, 
(San Francisco: Holden-Day, Inc., 1970), pp. 90-91. Also 
see Riker and Ordeshook, An Introduction to Positive Poli-
tical Theory, pp. 109-115. 

5Arrow, Social Choice and Individual Values, p. 32. 
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between O and 1. In particular, for v 1 the normalized 

utilities assigned to o 1 , o 2 , and o 3 are 1.0, 0.1, and 

0.0 respectively. Now assume that v 2 and v 3 have prefer-

ence orderings o 2 RiolRio 3 and the normalized utilities for 

all voters are those reported below: 

Voters Total 
vl v2 v3 Utility 

3 
ui (ol) 1. 0 0.6 0.6 iflUi(ol) = 2.2 

Normalized 3 
U.(o 2 ) 0.1 1. 0 1. 0 d;;1Ui(o2) = 2.1 Utility . 1 

3 
Ui(o3) 0.0 o.o 0.0 .E 1U.(o 3 ) = o.o 

1= 1 

' 

It is obvious that for this configuration of utility assign-

ments, the social preference is o 1Po 2 Po 3 . Suppose, however, 

that v 2 and v 3 _revise their intensity of feeling with re-

spect to o 3 , a social state which is an irrelevant alterna-

tive in terms of the comparison between o 1 and o 2 , claiming 

that they are now both indifferent between o 1 and o 3 • Con-

sider the revised normalized utilities for the three social 

states: 
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Voters Total 
v1 v2 v3 Utility 

3 , 
Ui(ol) 1. 0 0.0 0.0 i~l ui <0 1) = 1.0 

Normalized 3 

Utility . ui (02) 0.1 1. 0 1. 0 i~lui(o2) = 2.1 

3 

' 
ui (o) o.o o.o 0.0 i~1Ui(o3) = 0.0 

The resultant social preference ordering in the revised set-

The social preference of o 1 over o 2 has 

been reversed by virtue of an alteration in the utilities 

assigned to an irrelevant alternative, o 3 . It is noteworthy 

that in both instances the majority rule preference ordering 

In order to avoid problems similar to the 

one illustrated here, welfare economists and voting theor-

ists have, for the most part, rejected models incorporating 

interpersonal comparisons of utility. 

We reemphasize, then, that one of the very desirable 

features of both the D-H model and our generalized model 

is the fact that they embrace the specification and aggre-

gation of individual preference orderings without requiring 

specification of individual utilities. On the other hand, 

if we are interested in the absolute utility received by 

the ith voter with respect to various n social states in E , 

then it is imperative that he report, not only his most 
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preferred point and his loss matrix (assuming voters are 

not homogeneous in this respect), but also his monotone 

function h.(see equation (3.2)). 
l. 

However, if our analysis 

is dependent upon knowing citizens' utility functions, we 

are at least implicitly making interpersonal comparisons 

of utility. 6 

Section 4.1 Abstentions from Voting 

Although citizens abstain from voting for a wide var-

iety of reasons, formal modelers have classified those 

reasons into two general categories labeled indifference 

and alienation. A voter is indifferent between candidates 

at e1 and e2 if his preferred point is "equidistant" from 

the two. On the other hand, a voter is alienated from the 

candidates if his preferred point is so far from the closest 

candidate's strategy that he gets very little utility from 

the election of that candidate. We would like to incorpor-

ate this latter type of abstention into the model, so we 

6 This follows from the fact that once all h. 'shave been 
reported, we can choose any 8£En and determi~e every citi-
zen's utility if a candidate whose campaign strategy is 8 
is elected. For example, we may discover that the it voter 
gets twice fis much utility from a particular choice than 
does the kt 1 voter. One problem with such comparisons is 
that they could provide voters who are aware of the spatial 
structure with some incentive to misrepresent their "true" 
loss functions in order to gain a strategic advantage for 
the candidate of their choice. The example presented above 
is an obvious illustration of a situation in which two of 
the voters have much to gain by a simple misrepresentation 
of their "true" intensities of feeling with respect to the 
available social states or candidates. 
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assume that 

i) all voters have the same loss matrix B. 

ii) 

iii) 

citizens may abstain from voting. 

each citizen's probability of voting is 

an increasing function of the utility he 

associates with the election of his pre-

ferred candidate. 

It is at this point that Hinich and Ordeshook create a 

problem for themselves that plagues their enterprise from 

its inception. In order to make statements about the citi-

zen's probability of voting, it is imperative that a pro-

bability measure of some sort be defined on the space 

This can be done in a rather large number of 

ways, but until the measure is defined explicitly we have 

no recourse but to guess the meaning of statements like, 

"the probability that the ith citizen votes is 0.7." Un-

fortunately, llinich and Ordeshook make probability state-

ments that, on the one hand, appear to be frequentist 

interpretations of probability and, on the other hand, 

lead us to the conclusion that the individual citizen is 

making a personal calculation either by using a personally 

defined or a globally defined calculus. In any case, they 

do not define their probability measure, and we are prepared 

to show that an~ specification of the probability measures 

in their model leads to a spatial model encumbered by inter-
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personal comparisons. 

Section 4.2 Different Probability Formulations 

Inasmuch as the difficulty with the Hinich-Ordeshook 

formulation (hereafter denoted the H-0 model) lies in the 

apparently inconsistent utilization of different probability 

measures, it seems appropriate at this point to discuss two 

formal approaches to the definition of "probability," a 

subjective (or personal) definition and a relative frequency 

definition. Although there are numerous approaches to de-

fining a probability measure, these two are the ones which 

must be at least intuitively understood in order to recog-

nize 7 the inconsistency in the H-0 model. 

First, in specifying a relative frequency definition 

of probability we invoke the Law of Large Numbers. In 

crude terms, we define an event and replicate an experiment 

--one of whose possible outcomes is the event in question--

many times. Then the probability of the event is approxi-

mated by the proportion (or relative frequency) of those 

replications which actually eventuate in the specified 

event. To define the (frequency) probability of the event 

7 In order to motivate this discussion, we will utilize an 
example from the theory of political participation. Never-
theless, the reader is encouraged to contemplate the differ-
ence between these two formulations of a probability measure 
by ima_gining what the local weatherperson means by, "The 
probability [or chance] of rain in southern Ohio during the 
next twenty-four hours is 80 percent." · 
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we take the limit of these approximations as the number of 

replications increases without bound. 

Now for the candidate who is attempting to determine 

a spatial political platform at which he maximizes the 

probability that a randomly selected citizen will cast a 

vote for him (assuming that all citizens vote), there are 

some obvious shortcomings of such a probability measure. 

One problem is that the candidate cannot actually know the 

probability until the election has taken place. Of course, 

he could employ one of the numerous polling firms to take 

a random sample from the electorate and estimate the pro-

bability, but that would only be an estimate, and it would 

only be relevant for the time at which the population was 

polled. One could possibly obtain a better estimate by 

decreasing the time interval between the polling date and 

the election, but that would make it difficult for the can-

didate to alter his campaign strategy if the probability 

estimate that a randomly chosen citizen would support him 

on election day were unacceptable to him. 

public opinion polls are often expensive. 

Furthermore, 

Second, to determine a subjective (or personal) pro-

bability distribution, we need a "rational" individual whose 

subjective judgment will specify the probability measure. 

In this case, the individual's subjective probability esti-

mate that some well-defined event will occur is the maximum 
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number of dollars, say, that the individual is willing to 

wager that the event will occur divided by the sum of that 

number and the number of dollars that he will lose if the 

event does not eventuate. 

For example, if the "rational" individual is a candi-

date for some political office, then he could compute the 

probability that the generic voter Vi will support him by 

placing an imaginary wager on that event. If he would be 

willing to lose two dollars if V. does not support him, 
J. 

provided he will win five dollars if V. does vote for him, 
J. 

then his probability estimate that V. will vote for him is 
J. 

5/(5 + 2) = 5/7. It is noteworthy that the candidate may 

determine acceptable betting odds after polling the elector-

ate and estimating the relative frequency probability that 

a randomly chosen citizen will support his candidacy, but 

even then there is no reason to believe that the two resul-

tant probabilities will be the same. By way of illustra-

tion, a liberal Democratic candidate's subjective estimate 

that he will win an election in an upper middle class voting 

district may be 0.4, even though a recent poll shows him 

winning one-half of the vote, simply because he believes 

that upper middle class individuals enjoy the appearance of 

being "liberal," but only occasionally vote in a manner 

consistent with their expressed beliefs. 

Still another conceptualizatio~ of probability--the 
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objective definition--specifies that every well-defined 

event has a "true" probability (the true state of nature) 

which is known only by the Diety. Of course, being merely 

mortal, we cannot know with certainty what the so-called 

"true probability" of the event is, so in order to estimate 

it we usually resort to some empirical process such as the 

two previously discussed. In any case, it is important to 

know that, while it is not impossible, it is extremely un-

likely that any given individual would have a subjective 

probability structure over a non-trivial algebra of events 

which is consistent with a relative frequency probability 

structure over those events. The fact that these two pro-

bability structures are most likely to be different has 

important consequences for the H-0 formulation of absten-

tions due to alienation in a model of voting under majority 

rule. 

Section 4.3 Personal Probability Models 

Let us suppose that the probability statements in 

the relevant voting model are made within the framework 

of a personal calculus for each citizen. If, in choosing 

between candidates at e1 and e2 , the ith citizen decides 

to vote, he will vote for the one at e1 only if 
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8 Ui(8 1 ) > Ui(8 2 ). In other words, if voters do not abstain, 

they always vote for the candidate whose election will give 

them the greatest utility. Now voters not only receive 

utility from the election of their favorite candidates, they 

also derive some utility from participating in the act of 

voting itself. 

voter by 

(4.0) 

We define a "composite" utility for the . th 
J. 

where e1 and e2 are the candidates' strategies, Ui is the 

ith voter's deterministic utility function, E. is a random 
J. 

variable with expected value E[E.(w)] = O, and w is in 
J. 

the domain of E .• 
J. 

The essential nature of the stochastic 

term in (4.0) is not specified by Hinich and Ordeshook, so 

in this section we will analyze what appear to be the most 

plausible explanations of E., given that each citizen has 
J. 

a personal voting calculus. 

First, suppose that there is a "global" random variable 

8Actually the citizen may vote for the candidate at e1 even 
when Ui(8 1 ) = Ui(e 2 ). In this case, when the voter is 

indifferent between the two candidates, he will presumably 
resort to a random process to determine the one for whom he 
will cast his vote. Since this exception does not affect 
our analysis, we will ignore it. 
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£ and £.(w) really means £(w), the image under £ of a 
l. 

value w sampled by the ith citizen from the domain of 

the random variable. In this formulation the voter is free 

to determine a realized value £(w) of £ (by reacting to 

weather conditions, the "importance" of the election, 

political polls, etc.), but he is not allowed to specify 

the random variable itself. Quite the contrary, the random 

variable is a function of the make-up of the total elector-

ate. Under this assumption TI. [ ·, •] is structurally differ-1. 

ent from U.[·], because, for each i = 1, •.. , N, it is a 
l. 

i f En En . mapp ng rom x 1.nto a space IT of random variables. 

Since for each i and for each fixed pair of candidate 

a random variable, 

it is possible to determine probability measures on the 

range space of the random variables by simply identifying 

the measures induced by these mappings. In this formula-

tion, voters have different stochastic utility functions 

7ri(8 1 , 82 ); however, these functions differ only in the 

deterministic term U .. 
l. 

Hence, there is only a single 

relevant probability measure Pr for all citizens. 

To complete analysis of this conceptualization of a 

1 1 1 h h . th . i · 11 persona ca cu us, we assume tat t e i cit zen wi vote 

if and only if his utility rri(8 1 , 8 2 ) from voting is posi-

tive. We have 
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Definition 4.1: If the candidates' platforms are 

represented by the vectors e 1 and e 2 , if Tii(8 1 , 82 ) is the 

utility the ith citizen derives from voting for his favor-

ite candidate, and Pr is the probability measure induced 

by the random variable £, then the probability that the 

th i citizen votes is Pr[Tii(8 1 , e2 )(w) > O]. 

In short, a citizen's utility from voting Tii(e 1 , 8 2 ) is the 

sum of a deterministic term U, and a stochastic term £, 
l. 

and he will vote (not abstain) if and only if his composite 

utility for a "sampled" value w of the random variable £ 

is positive. Furthermore, if he does vote, it will be for 

the candidate at e 1 only if either Ui(8 1 ) > Ui(8 2 ) or else 

Ui(8 1 ) = Ui(e 2 ) and his predetermined random selection pro-

cess dictates that he vote for the candidate at e1 . 

Now, with no loss of generality, we assume that the 

ith citizen prefers the candidate at e 1 to the one at e 2 • 

Observe that 

-1 2 
= Pr[fi (-£(w)) < I lxi - 8 1 11 ] , 

where 11 xi - e 1 11 2 = (xi - e 1 ) '(xi - 8 1 ) is the Euclidean 

distance. from the ith voter's preferred vector to his favor-
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ite candidate's platform. Furthermore, for a given citizen 

xi and a given strategy vector e 1 , I !xi - e 1 11 2 is a fixed 

real number. Hence, the probability that the ith citizen 

abstains from voting can be written as a stochastic function 

of the distance from his preferred point to the position e 1 

of his favorite candidate. In particular, we have 

( 4. 1) 

where g [ • ] 
i 

is a monotone decreasing function of the 

Euclidean distance between the voter's preferred point and 

the candidate's strategy. 

It is obvious from the previous discussion that we 

stand accused of being obsessed with subscripts. These sub-

scripts, in addition to emphasizing that the relevant pro-

bability measures are personal ones, also call attention to 

our principal criticism of the H-0 formulation of voting 

where abstentions are allowed. Hinich and Ordeshook have 

previously claimed that 

Pr[TI >OJ= Pr[E > -U(x, 6)]. Assuming that 

the density of £ is independent of x and 

e, this probability is expressed as a func-

tion of ~[(x - e)'(x - 6)], or simply as 

g[(x - 6)'(x - 6)]. Hence 

g[(x - 6)'(x - 8)] = Pr[TI > 0]. 9 

9ninich and Ordeshook, "Abstentions and Equilibrium in the 
Electoral Process," p. 85. 
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Then they use the function g to define the probability 

that a randomly selected citizen whose preferred point is 

X votes for the candidate e1 by 

(4.2) f S f(X)g[(X - e1)'(X - el)]dX, 

where 8 2 is the social state favored by the second candida~~~ 

f is the distribution of voters' preferred points in En, and 

S = {XlcJ>((X - 8 1 )'(X - 8 1 )] < cj>[(X - 8 2 )'(X - 82 )]}. It 

should be clear from (4.1) that V is not well-defined, 

since g, instead of being one specific function, is actually 

one of a class of 'N, possibly distinct, functions. Further-

more, the formulation cannot be repaired by requiring all 

voters to have identical g. 's. To see this, suppose that 
l. 

the ith voter's utility function is of the form 

ni(8 1 , 8 2 ) = Ui(8 1) + E. Then for the ith and kth voters 

with the same preferred point, who both prefer the candi-

date at e1 to the one at e2 we have 

-1 
hk (-E(W)). 

But hi and hk defined in equation (3.2) are one-to-one map-

pings, so hi= hk. Hence the two citizens' utility func-
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tions are identical, and by any definition this constitutes 

an interpersonal comparison of utility. We conclude that 

to interpret £ as a global random variable will lead to 

unfortunate inconsistencies with the assumptions of the 

original Davis-Hinich model. 

On the other hand, instead of assuming that the sto-

chastic term in (4.0) is a global random variable, we can 

investigate the possibility that the ith citizen has his 

own individual random variable £i, As in the previous 

formulation, if we allow each citizen to determine his own 

calculus of voting by choosing his own random error func-

tion£., then there could be up to N distinct stochastic 
1 

utility functions of interest--one for each citizen in the 

social order. In this case, if Pr. is the probability 
1 

measure induced by the random variable£., we would actually 
1 

have N, possibly distinct, measures defined on different 

probability spaces (since the£. themselves may be defined 
1 

on different spaces). Under these conditions it is rather 

difficult to formalize the concept of an interpersonal 

comparison of utility; however, from either a structural 

or substantive perspective, if one citizen's probability of 

voting is of necessity a function of any other citizen's 

probability of voting, that would certainly constitute an 

interpersonal comparison. Now we define 
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Definition 4.2: If the candidates' platforms are 

represented by the vectors 8 1 and 8 2 , if Tii(8 1 , 8 2 ) is the 

ili h i th . . d . f . f h. f ut ty t e citizen erives rom voting or is avor-

ite candidate, and Pr. is the probability measure induced 
i 

by the random variable E., then the probability that the 
i 

ith citizen votes is Pri[Tii(8 1 , 8 2 )(w) > O]. 

Notice that the only difference between Definitions 4,1 

and 4.2 is the fact that there is a single probability 

measure for all voters in the former, while each voter has 

his own individual measure in the latter. As was the case 

in the previous discussion, it is easy to show that for 

i=l, .•• ,N, 

It follows that 

( 4. 3) 

where g.[·] is a monotone decreasing function of the Euclid-
i 

ean distance between the voter's preferred point and the 
10 candidate's strategy. 

Again, there is not a single function g,, but an 
i 

entire family of them--one for each voter in the electorate, 

Hence, even under the assumption that each citizen has his 

lOThe g,'s in (4,1) and (4.3) are actually different func~ 
i 

tions, but we will use the same notation for both in order 
to be· consistent with the H-0 terminology. 
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own personal stochastic term, (4.2) is not well-defined. 

Furthermore, if we require that all voters have the same g 

(in order to make (4.2) well-defined), then for the ith and 

kth voters with identical preferred points and the same 

favorite candidate, say at e1 , we have 

2 
= gk < I I xk - e i I I ) . 

Since the probability that the ith citizen votes is a func-

tion of the probability that the kth citizen votes, an ob-

vious interpersonal comparison of utility ensues when we 

assume that each voter has his own random variable and 

they all have identical gi's. Thus, we conclude that if 

Hinich and Ordeshook intend for (4.0) to determine a citi-

zen's personal calculus of voting, results inconsistent 

with the original Davis-Hinich assumptions obtain. In 

particular, they require interpersonal comparisons of 

utility. 

Finally, we note that Hinich and Ordeshook argue that 

if the candidate wishes to maximize the number of votes he 

receives, he should choose as his political platform the 

vector e1 that maximizes the objective func~ion V(8 1 , e2 ); 

whereas the second candidate with an equivalent goal should 

choose a vector e2 which maximizes the function V(e2 , e1 ). 
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If, on the other hand, the first candidate wishes to maxi-

mize his plurality over his opponent, he should select the 

strategy that maximizes the objective function 

(4.4) 

Inasmuch as V is not well-defined, neither is P. Hence, 

if the relevant probability measures in the H-0 formulation 

of voting--with abstentions--are generated by the individual 

voters' calculi, either interpersonal comparisons of utility 

will be introduced into the model or else the candidates' 

objective functions, as expressed in (4.2) and (4.4), will 

not be well-defined. 

Before examining the final interpretation of their 

voting model, we observe that in certain contexts, when 

discussing the probability that a citizen will abstain from 

voting, Hinich and Ordeshook give the impression that the 

probability measures in their model are personal ones and 

are determined by the individual citizens' personal calculi 

of voting. For example, in their 1970 APSR article 

(Assumption 8) they state that if we confine our attention 

to the citizens who prefer e1 to e2 , then 

any two citizens vote with equal probability 

if their preference vectors (x) are eq~idis-

tant (as measured by the metric 11 x - 811 A) 

from the strategy e1 • We assume, moreover, 
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that citizen i votes with. greater probability 

than citizen j if and only if the distance 

between citizen i's preference vector and e1 

is less than the distance between citizen j's 

preference vector and e1 .... This assumption 

does not imply an interpersonal comparison of 

utility, but simply that if the preference 

vectors of two citizens are equidistant from 

their preferred candidate(s), then the benefits 

and costs of voting, as well as the density of 

E, stand in the same relationship to each other 

f b h . . 11 or ot c1t1zens. 

We have shown that the precise opposite is the case and 

that such a spatial formulation does, in fact, imply an 

interpersonal comparison of utility. 

Section 4.4 Relative Frequency Probability Model 

In this section we will assume that each citizen in a 

particular social order decides whether or not to abstain 

from voting by some personal non-stochastic calculation. 

Furthermore, in order to be consistent with the analysis, 

we suppose that 

11 Hinich and Ordeshook, "Plurality Maximization Vs. Vote 
Maximization: A Spatial Analysis with Variable Participa-
tion," pp. 775-776. 
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(4.5) 

represents the proportion of citizens who are ~ units 

from 8 1 , closer to 8 1 than to 8 2 , and who abstain from 

12 voting. The relevant probability measure, then, will 

simply be the relative frequency defined by (4.5). As in 

the previous discussion, we assume that if the ith citizen 

votes, it will be for the candidate at 8 1 instead of the 

> o. The relative frequency probability Pr* is 

a distribution on the space U of deterministic utility 

functions, and the probability that the ith citizen abstains 

if his favorite candidate is at e1 is 

(4.6) 

Since g is a function of the Euclidean distance from the 

voter's preferred point to his favorite candidate's plat-

form vector (see equation (4.5)), it follows at once that 

if Pr* is defined in terms of relative frequencies, the 

proportion of citizens among the subset of the electorate 

a fixed distance ~ from either 8 1 or e2 who abstain from 

voting is independent of the actual spatial location of e1 

12 I i · h 1 · 1. . t s important to note tat we are no onger ut1 1z1ng 
the personal probability calculus of voting defined in (4.0), 
We are simply attempting to explore any conceivable rational 
interpr~tation of the unspecified portion of the H-0 analy-
sis, In particular, we are attempting to use (4.0) as a 
point of departure. 
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and e2 . This is easy to see by observing that 

where e1 and e2 are any two fixed candidate strategies, xi 

is on a "ring" a fixed radius s from V. 's favorite candi-
i 

date, and y, the proportion of citizens on the ring who 

abstain, is a constant (see Figure 4.1). But in order to 

be consistent with the Hinich-Ordeshook analysis, we must 

define the probability of abstaining as a function of dis-

tance to the closest candidate as in equation (4.6). Thus, 

the probability of abstaining, while a function of the dis-

tance to the closest candidate, is not a function of the 

location of the candidate. 

Now consider the collection of citizens x. such that 
i 

I lxi - 81 11 2 = s ~ I lxi - e 2 11 2 for two fixed candidate 

strategies el and e2. Under this condition the probability 

h h . th . . b . . tat t e i citizen a stains is 

Pr*[f.(llx.- e1 112 ) < O] 
i i 

2 
> 11 xi - e 1 1 I J • 

Hence, 

( 4. 7) = Pr*[f~ 1 (0) > s]. 
i 

Thus, given a particular pair of strategies, e 1 and e 2 , the 

proportion of voters a fixed distance s from e 1 and closer 
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Figure 4.1 

Three Voters in a Two-Dimensional I~sue 

Issue I 

Space with Their Preferred Points Equidistant 

from Their Favorite Candidate's Strategy Vector 
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to e1 than e2 who abstain is the proportion for which 

f:- 1 (0) :::, ~. From (4.6) we see that Pr*[f~ 1 (0) > ~] = g(~) 
i i -

does not depend on the specific locations of either e1 or 

e 2; nor does it depend on the location of x. except insofar 
i 

as X. t S spatial position affects 11 x. - e1112 and 
i i 

11 x. 
2 Pr*[f:- 1(0) ~] - e 2 11 . From ( 4. 7) we see that > is 

i i 

the distribution function of the random variable f:- 1 (0). 13 
i 

-1 Since fi (O) is the precise distance which marks the citi-

zen's threshold of abstaining (or voting), the fact that 

-1 f. (O) is a random variable stochastically independent of 
i 

position means that the distribution of the distortion 

function f. must be independent of the ith citizen's pre-
i 

ferred point X, • 
1 

Hence, we must assume that f. and, there-
i 

fore, U., is independent of x .• 
i i 

The substantive interpretation of this independence is 

obvious. It indicates that the voters' spatial preferences 

and their utility functions must be uncorrelated. For ex-

ample, citizens who are extremists with respect to spatial 

position cannot be extremists with respect to their actual 

utility functions. This means that the distribution of 

voters' utility functions at one social state must be, for 

13 The distribution function of 
-1 is actually Pr*[f. (O) < ~] = 1 
1 

the random variable 

- Pr*[f:- 1 (0) ~ ~]. 
i 

could easily change the sense of our inequalities by dis-
cussing the probability of voting instead of the proba-
bility of abstaining. 
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the most part, similar to the distribution of the voters' 

utility functions at another social state--an obvious inter-

personal comparison of utility. 

The rather extensive amount of groundwork that we were 

required to lay prior to analyzing the probabilities dis-

cussed by Hinich and Ordeshook, as well as the detail of 

our dissertation, bespeak the subtle nature of their 

assumptive omission. Furthermore, we are not surprised 

that their formulation of abstentions due to alienation in 

a spatial model of voting under majority rule was not re-

solved as easily as appeared to be the case in their 1970 

APSR paper. Our own experience with this problem is that 

each time we construct a mathematical model which incor-

porates abstentions due to alienation into the structure, 

we soon discover that we have also introduced interpersonal 

comparisons of utility into the model. We believe that it 

will ultimately be the case that a realistic model of poli-

tical participation allowing abstentions but not admitting 

interpersonal comparisons will be formulated, but the 

mathematical structure necessary for such a formulation 
I 

will be non-trivial. It is our prejudice that the problem 

of modeling optimal candidate strategies when citizens ab-

stain is the outstanding one in spatial models of political 

participation today. 



CHAPTER V 

EQUIVALENCE OF CANDIDATES' OBJECTIVE FUNCTIONS 

In a recent paper, Aranson, Hinich, and Ordeshook 

(henceforth denoted A-H-0) explored the nature of various 

election goals and strategies in a model of the electoral 

1 process. In particular, they gave the usual definition of 

a spatial model, defined a spatial strategy, specified var-

ious candidate objective functions within the model, and 

formulated necessary and sufficient conditions for the ob-

jective functions to be equivalent. "Equivalence" is de-

fined by characterizing an election as an n-person, zero-

sum, non-cooperative, spatial game, and their theorems are 

constructed under certain assumptions about the expected 

proportions of the vote which the vying candidates receive 

under various combinations of spatial strategies and objec-

tive functions. No specific family of distributions on the 

outcomes of the election is assumed. While the A-H-0 

analysis is quite interesting, there is no doubt that the 

assumptions upon which their results are predicated reduce 

the attractiveness of their model, both as a representation 

of a "real-world" electoral process and as a model to be 

1Peter Aranson, Melvin Hinich, and Peter Ordeshook, 
"Election Goals and Strategies: Equivalent and Nonequiva-
lent Candidate Objectives," American Political Science 
Review, Vol. 68 (March 1974), pp. 135-152. 
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taken seriously by candidates for office. To be more 

specific, we list the following set of assumptions, at 

least one of which undergirds each of the five theorems in 

the A-H-0 analysis of equivalent candidate strategies: 

i) if a candidate changes his strategy without 

affecting his expected proportion of the vote, 

then his opponents' expected proportions of 

the vote will remain unchanged. 

ii) at a strategy equilibrium, every candidate's 

expected proportion of the vote is the same. 

iii) "on the average," and prior to the election, 

each candidate is as likely to underestimate 

the magnitude of his vote as he is to over-

estimate it. 

iv) the joint distribution of proportions of the 

vote for the candidates is multivariate normal. 

While these assumptions do not hold in the "real world" 

and therefore seriously limit the usefulness of the 

A-H-0 model, their paper is an important seminal work in 

the area of alternative candidate strategies. 

In this chapter, we intend to address the question of 

equivalent strategies in a different manner. We construct 

a stochastic model which depends upon certain estimates 

made by the candidates and which specifies a joint distri-

bution on the proportions of the vote for each of the can-
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didates. More specifically, we assume that these propor-

tions are Dirichlet random variables, and, thus, the sto-

chastic element in a two-candidate election is completely 

2 characterized by three parameters. We believe that the 

family of Dirichlet distributions is sufficiently versa-

tile to model many natural phenomena; yet it demonstrates 

a degree of simplicity such that a candidate who is reason-

ably adept at estimating probabilities could easily use 

our model to make a fairly accurate estimate of the actual 

joint distribution of proportions of his and his opponents' 

vote for a fixed set of political strategies. Furthermore, 

our model is flexible in that it "allows" representation of 

a wide variety of electoral distributions without necessita-

ting the restrictive assumptions of the A-H-0 approach. 

In the first section of this chapter, we concentrate 

on a two-candidate election and describe the relationship 

between "political platforms" and points in the parameter 

space of the Dirichlet distribution. Ultimately, within 

the context of this model we will prove the equivalence of 

the six candidate objective functions suggested by Aranson, 

et al., as well as a seventh which we append to their list. 

2 The family of Dirichlet distributions has been chosen for 
a variety of reasons to be presented in Section 5.3. An 
excellent discussion of numerous characteristics of these 
distributions may be found in Norman Johnson and Samuel 
Kotz, Distributions in Statistics: Continuous Multivariate 
Distributions, (New York: John Wiley & Sons, 1972), 
PP• 231-235. 
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Section 5.1 Preliminaries 

Although the model we develop is not a spatial model, 

there is a heuristic motivation for considering it from a 

spatial perspective. If the election entails a single race 

involving p candidates, identified as c1 , c2 , ... , CP, 

whose spatial strategies are e 1 , e 2 , ••. , ep respectively, 

then we will call the vector e = [8 1 , e 2 , •.• , SP]' a ballot, 

since it contains characterizations of each candidate's 

political platform and, thus, represents the voter's domain 

of choice for the race, 

The citizen's input into the electoral calculus is his 

choice of one of the candidates. Formally, he selects a 

such that cik is either 0 vector c. 
i 

or 1 and 

c. 2 , ••• , c. ]' i ip 
Th h . th . . I e vector c., t e i citizens vote, 

i 

either contains all zeroes, indicating that he chooses to 

abstain from voting, or else it contains exactly one 1, 

thus specifying the candidate supported by the ith citizen. 

If there are N citizens voting for p candidates, then 

the totality of the vote in any election is an element in 

W, the space of all N x p matrices with entries O or 1 and 

such that each row of the matrix sums to O or 1. 3 

3 th w £ h . th . . The i row in contains the vote o t e i citizen. 
If there are .k races in the election with p/3 candidates 
, h Q th h h i th . , I • • • int e µ race, tent e citizens vote is a point in 
W', an appropriately specified N x (p 1+ p 2+ ... + pk) matrix. 

Since there are N voters, we need N rows in the matrix 
to completely specify the vote. 
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We let¢. denote the jth candidate's objective function, 
J 

an algebraic expression whose substantive interpretation is 

the "payoff" received by the candidate if he adopts acer-

tain strategy in the conduct of his political campaign. For 

example, if the jth candidate adopts the objective of maxi-

mizing the probability that his proportion of the vote is in 

excess of 60 percent of the total vote, and if the ballot is 

~O' then the payoff is represented by ¢j(~ 0 ). Once his ob-

jective function has been determined, the jth candidate may 

make comparative evaluations of accessible platforms simply 

by anticipating his opponents' strategies and contrasting 

the size of the payoff under various ballots. Thus, in this 

d 1 . f h . th d. d d h b. . f . A, mo e , 1 t e J can 1 ate a opts t e o Ject1ve unction ~j' 

he prefers 8 over 8 1 if and only if ¢.(8) > ¢.(8'), and he 
J - J - . 

is indifferent between these ballots if and only if 

¢.(8) = ¢.(8'). 
J - J -

The functions¢. must be "interpreted" rather carefully. 
J 

In particular, the reader should go to some lengths to avoid 

associating the objective functions with utility functions, 

since, in this comprehensive model, any reasonable utility 

function would take into account both the ballot of strate-

gies and the vector of objective functions which the candi-

dates adopt. In other words, the jth candidate's objective 

function is a mapping ¢j :S+ E,where S = {(8 1 , 8 2 , .•. , 8P) l8j 

is the jth candidate's spatial strategy} and E is the set 
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of real numbers; whereas an appropriate utility function 

for the jth candidate would be a mapping U.:OxS ~ E, where 
J 

0 = {(<1>1 ,¢ 2 , •.• ,cj,p)l<t>j is_the jth candidate's objective func-

tion}. Values of the objective functions should be inter-

preted to mean something like "voter support," e.g., the num-

ber of votes for a candidate or the candidate's proportion 

of the total vote. To illustrate further, it could easily 

b h h 1• f h • th d • d I • 1 • et e case tat t e J can 1 ates ut1 ity were ascer-

tainable at all, ¢.(8) > cpj'(8) even though U.(¢.,8)< U.(cp'.,8). 
J- - J J- J J-

If cj), represents the candidate's objective of "maximizing the 
J 

probability that his vote exceeds a particular level" and cp'. 
J 

represents his objective of "maximizing the probability that 

his plurality exceeds some level," then it may be that his 

payoff (the actual probability) is greater for the former 

while his utility is greater for the latter. 

To summarize and consolidate these ideas, we suggest a 

rather rudimentary, formal definition of an election. An 

election involving a single race in which p candidates 

compete with each other for the votes of an electorate con-

sisting of N citizens and in which n "relevant" issues 

can be identified can be thought of as a point in the space 

Oxsxw. 4 In other words, the essential ingredients of any 

4 since many elections entail more than one race, an elec-
tion is actually a point in the space O'xS'xW', where 0' and 
S' are simply O and S expanded to include the objective func-
tions and spatial strategies respectively of all of the 

k sfiPs candidates and W' is defined in footnote 3. 
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election consist of the general goals and orientations of 

the candidates (formalized by their objective functions); 

their announced, or otherwise publicly known, positions on 

the issues of the campaign; and, ultimately, the response 

of the electorate to the candidates for office (as mani-

fested in their votes). 

Now, given a particular ballot e0 , let V.(8 0 ) for 
- J -

j=l,2, ••• ,p be the proportion of the eligible voters who 

t f h . th . d. d voe or t e J can i ate. Since an eligible voter may 

choose to write in the name of an individual who is not on 

the ballot or, perhaps, abstain from voting altogether, it 
p 

follows that .E 1V.(8 0 ) < 1. Notice that each V. is a func-
J::: J - - J 

tion Of the ballot ~Q = [8 1 ,e 2 , ••. ,ep] I, that is, a function 

of all of the candidates' strategies. Furthermore, we 

assume that each V. is a random variable, the "randomness" 
J 

.being a function of the candidate's uncertainty about the 

outcome of the election. If each V. were known, and there-
J 

fore not random, then the election would be completely deter-

mined and the candidate's choice of an objective function 

would be purely academic. 

Although the model could be formulated in a manner that 

requires each candidate to make direct (point) estimates of 

v1 (e),V 2 (8), ••. ,V (8), it is improbable that'he could do so 
- - p -

with any reasonable degree of accuracy, and it follows that 

a model based upon point estimates would probably be mislead-
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ing to a candidate attempting to utilize it to guide his 

choice of a strategy under a particular objective function. 

Consequently, we favor a model which requires the candidate 

to estimate the distributions of the random variables 

.v 1 (~),V 2 (~), .•. ,VP(~) and then treat the payoff under the 

objective function¢. as a function of the joint distribu-
J 

tion of the proportions of the vote each candidate will re-

ceive. Thus, we focus attention on the joint distribution 

The relevant objective functions are displayed in 

Table 5.1, where we use v.(8) to represent the expected 
J -

value E[V.(8)] of V.(8). 
J - J -

Our model assumes that the jth 

candidate, after adopting one of the seven objective func-

tions, say¢., as his modus operandi, attempts to locate a 
J 

spatial strategy 8. for himself and otherwise affect the 
J 

remaining p-1 candidates' choices of platforms ek, k#j, so 

that ¢j(~) is a maximum, where~= [8 1 ,e 2 , ... ,8p]'. In 

order to facilitate reference, we have listed (and numbered) 

the first six objective functions in a manner consistent with 

the ordering in 5 the A-H-0 paper. A rather concise descrip-

tion of each of these functions is included in their paper, 

and they make an effort to contrast the relative merits of 

each. 

5 Aranson, Hinich, and Ordeshook, "Election Goals and 
Strategies: Equivalent and Nonequivalent Candidate Objec-
tives," p. 139. 
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Table 5.1 

The jth Candidate's Objective Functions 6 

Function 

= E[V.(8) - max{Vk(8)}] 
J - klj -

= v.(8) 
J -

Substantive 
Interpretation 

Expected Plurality 

Proportion of the 
Expected Votes 

Expected Vote 

04: cp j = Pr [ V. ( 8) - max { V k ( 8 )·} ;? A j] Probability that Plural-
J - - ity Exceeds Some Level 

p 
0 . cp j = Pr[V.(8)/2: Vk(8) > A.] Probability that Proper-5. 

J - k=l - J tion Exceeds Some Level 

06: cp j = Pr[V.(8) > A.] Probability that Vote 
J - J Exceeds Some Level 

p 
0 7: cp j = E[V.(8)/2: V.(8)] Expected Proportion of 

J - k= 1 J - the Vote 

6 rn "Election Goals and Strategies: Equivalent and Nonequi-
valent Candidate Objectives," Aranson, Hinich, and Ordeshook 
misspecify the first objective function, expected plurality, 
as 

cj>J. = vj (~) - max{vk(~)}. 
k'fj 

The correct formulation for o1 is 

E[Vj(~) - max{Vk(~)}], 
k#j 

and the two are equal only when 

E[max{V 1 (8) }] = 
k# j ( -

max [ E ( Vk ( ~) ) ] • 
k#j 

In addition, several functions must be multiplied by N 
order to make the substantive interpretat~on consistent 
the functional form. For example, the j candidate's 
expected vote is cj>. = NV.(8). 

J J -

in 
with 
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We tend to discount the importance of o2 , since in our 

model it is more difficult for the candidate to estimate it 

than o7 , the expected proportion of the vote. Notice that 

in order for a candidate to estimate o2 , he must estimate 

the expected values of the distributions of every candidate's 

7 proportion of the vote. On the other hand, in order to 

estimate the payoff under o7 , the candidate is only required 

to estimate the expected value of his proportion of the vote. 

It is interesting that the function 
p 

o7 (¢j = E[Vj(~)/k~lVk(~)J) is mathematically less tractable 
p 

than o2 (¢j = E[Vj(~)/k~lE(Vk(~))J) even though it is pro-

bably easier for the candidate to estimate. Furthermore, 

we claim that the distribution of a candidate's proportion 

of the vote is a rather natural distribution for the can-

didate to want to evaluate, and the mean of this distribu-

tion is probably the simplest parameter for him to accurate-

lz estimate. 

7 since o2 is essentially defined by 
p 

¢j~ =E[Vj(f)/k~lE(Vk(~)) ], any candidate attempting to dis-
cern between attainable strategies by estimating the ulti-
mate payoff with respect to each social state would be 
forced to estimate E[Vk(~)] fork= 1,2, .•. ,p. It could be 

argued that if the jth candidate could predict the expected 
proportion of the electorate which will abstain, then the 
denominator of o2 is 1 minus that number. Unfortunately, 

it is doubtful that this estimate could be made without 
first estimating the expected proportions of the citizenry 
who will vote for each of the p candidates. 
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We will use the usual definition of an equilibrium 

ballot, taking into account the fact that candidates may 

differ in terms of both objective and strategy. 

Definition 5.1: The vector 8* = 

an equilibrium ballot with respect to 

[Sf,8~, ••• ,e;]' 
[</>i,<1>2,···,</>p]' 

is 

if 

and only if </>j(Sf,8~, .•• ,e;, ••. ,e;) > </>j(8f,8i,•••,ej, ••• ,e;) 

for all e. and for j = 1,2, .•• ,p. 
J 

Less formally, ~* is an equilibrium point if no candidate 

will find it to his advantage to relocate his strategy pro-

vided none of his opponents simultaneously "move away" from 

their positions. Therefore, if we assume that collusion 

among candidates is not allowed (or is otherwise disadvan-

tageous), equilibrium strategies become very attractive ones 

for the candidates. 8 Another concept which is quite useful 

is that of a weak equilibrium. 

Definition 5.2: A ballot 8 = [8 1 ,e 2 , .•• ,8j, •.. ,ep]' 

is a weak equilibrium point with respect to</>. if and only 
J 

if </>.(e1,e2,•••,e., ..• ,e) > </>.(e1,e2,•••,e., ••. ,e) for 
J J p - J J p 

all ej and for a fixed choice of e1,e2,···,ej-l'ej+l''··,ep. 

" In other words, 8 is a weak equilibrium with respect to ¢j 

if, given the strategy choices of all other candidates, C. 
J 

8 R. Duncan Luce and Howard Raiffa, Games and Decisions, 
(New York: John Wiley and Sons, 1957), pp. 106-107, 170-17_1. 
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cannot improve his position by unilaterally altering his 

strategy. A weak equilibrium for C. is conditioned on the 
J 

political platforms of Cj 's opponents, while a strong equi-

librium is, in that sense, unconditional. If a ballot is 

simultaneously a weak equilibrium for every candidate for 

every possible choice of strategies of the remaining candi-

dates, with [cp1 ,cp2 , ••• ,cppJ' fixed, then that ballot 

strong equilibrium with respect to [<P1 ,cp2 , ••• ,cj>PJ'. 

is a 

We adopt the A-H-0 definition of equivalent objective 

functions. 

Definition 5.3: Two objective functions cj>. and <P~ are 
J J 

equivalent for V. if whenever 8* is an equilibrium with 
J 

respect to [cp1 ,cp2 , ... ,cj> .••. ,cp J', it follows that 8* is an 
J p -

equilibrium with respect to [cp1 ,cp2 , ... ,cpj, ... ,cppJ'. 9 

Assume for the moment that all of the p candidates in a 

particular race have chosen their objective functions and 

that C is a non-empty set of all spatial equilibria with 

respect to [cp1 ,cp2 , ••• ,cj>j, .•. ,cj>p]'. 1 0 Then equivalent objec-

9 rt is also possible to define weak-equivalent objective 
functions by specifying that <P. and¢~ are weak-equivalent 
f h · th d · d · f h J "'e J · k · 1 · b · or t e J can 1 ate 1 w enever _ is a wea equ1 1 r1um 
point with respect to [¢ 1 ,¢ 2 , •.• ,¢j, ••• ,¢PJ', it follows that 

e is a weak equilibrium with respect to [¢1',¢2,·",¢j, .•• ,¢p]'. 

lOit may be that an election has 
i.e., that C is the empty set. 
in such a situation all objective 

no equilibrium strategies, 
It is vacuously true that 
functions are equivalent. 
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tive functions may be understood by imagining an election 

which is identical in all respects to the initial race ex-

.cept that Cj now has $j as his objective function. "Identi-

cal in all respects" means that, in addition to all other 

candidates adopting the same objective functions that they 

employed in the first case and having the same issue space 

from which to choose their strategies, precisely the same 

set C of equilibrium points eventuates. 

It is clear that it would be useful to know whether 

equilibrium strategies are invariant with respect to differ-

ent choices of objective functions in the sense that a can-

didate who is attempting to maximize the objective function 

$. will adopt the same strategy that he would if he were 
J 

attempting to maximize $~, all other things being equal. 
J 

For example, should a candidate whose goal is to maximize 

his vote express commitment to the same political platform 

that he would embrace if he were attempting to maximize his 

plurality? In the next section we present the details of a 

model which we believe allows a reasonably faithful repre-

sentation of the candidate's decision process, and then in 

Section 5.3 we show that in our model the seven objective 

functions listed in Table 5.1 are equivalent. 

Section 5.2 The Model 

In their paper, Aranson,· et al. define the concepts of 

symmetric and strongly symmetric elections, and two of their 
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major results (Theorems 2 and 3) are based upon the assump-

tion that the election in question is one of these two 

11 types. As we have previously indicated, it is not likely 

that models which posit symmetric or strongly symmetric 

elections can represent "real-world" phenomena. Further-

more, one of the A-H-0 results (Theorem 4) is based on the 

assumption that the jth candidate estimates the true propor-

tion of his vote Vj(~) to be vj(~), with the true and esti-

mated proportions related by the additive model 

V,(8) = v.(8) +£.,where, for j = 1,2, .•. ,p, £. is a random-
J - J - J J 

ly distributed prediction error whose distribution is inde-

pendent of e 12 and such that E[£.] = 0. This model is not 
J 

inconsistent with our perception of what a candidate may 

actually do, i.e., he may evaluate the desirability of 

various strategies by e~timating and contrasting his own 

proportion of the vote at each of several platforms, or he 

may estimate both his and his opponents' proportions of the 

vote and compute some function of those estimates. On the 

other hand, we have previously noted that it is probably 

11 Aranson, Hinich, and Ordeshook, "Election Goals and Strat-
egies: Equivalent and Nonequivalent Candidate Objectives," 
PP• 137-138. 

lZ I · h h ' h h. f ' 1 k . tis notewort y tat wit t is airy wea· assumption, 
o1 is equivalent to o4 , o3 is equivalent to 0 6 , and, hence, 

maximizing expected plurality and maximizing the probability 
of winning in a plurality structured election are equivalent. 
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unrealistic to believe that candidates do or could make 

accurate point estimates of these proportions, and it is 

most unlikely that the prediction error is random and inde-

13 pendent of the platforms. Furthermore, the A-H-0 model 

does not provide the candidate with a method for specifying 

the uncertainty associated with his estimate, i.e., he has 

no formal mechanism which enables him to estimate the var-

iance of the error. A more realistic model, and one which 

is widely used in the area of probability estimation, assumes 

that a candidate is capable of estimating the probability 

that his proportion of the vote will fall within certain 

limits, e.g., he may believe that the probability is 0.8 

that his proportion of the vote will be between 0.4 and 0.6. 

Of course, the probability specification in such a statement 

is subjective; nevertheless, with several subjective esti-

mates of this sort, a model based upon the family of beta 

distributions may provide a good approximati~n to the dis-

tributions of the candidates' proportions of the vote, with 

one univariate distribution for each of the p candidates. 

Furthermore, if these distributions are indexed by (or 

functions of) ballots of candidates' platforms, then each 

candidate could make a rational choice among strategies as 

13 Theoretically, it is absurd to assume that the error has 
mean O and is independent of the proportion of the vote, 
since this would allow the possibility of negative estimates. 
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a function of how such a choice would ultimately affect his 

estimated distribution of the proportion of the vote. To be 

more precise, since it is the entire ballot, and not just 

the jth candidate's platform, which determines the propor-

tion of the vote which goes to each candidate, a realistic 

model should include a p-dimensional joint distribution of 

the candidates' proportions of the vote. It would be con-

venient if the marginal distributions of this joint distri-

bution were members of the previously mentioned beta family 

of univariate distributions. In addition, we are concerned 

with more than just the proportions of the vote which go to 

the various candidates; we are actually interested in cer-

tain functions of those proportions. 14 Finally, the model 

should be formulated from the candidate's perspective, since 

it is the candidate who must estimate the parameters of the 

election in order to choose a strategy. 

In reality, we are attempting to model a first-order 

approximation to a candidate's thought process when he 

evaluates accessible social states for the purpose of 

choosing one which is likely to maximize a given objective 

14 By way of example, 
to the p candidates 

ly for a given ballot 
interested in 

if the proportions of the vote going 
are v1 (EJ),V 2 (e), ... ,v (8) respective-

- - th P. -
8, then the j candidate C. may be 

J 
p 

cf> j ( V l ( ~) , V 2 ( ~) , ••• , VP ( ~) ) = E [ V j ( ~) / k ~ l ~, k ( ~) ] , 

his expected proportion of the vote. 
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function. The model which we introduce is fairly sophisti-

cated, yet it leads us to the conclusion that all of the 

objective functions in Table 5.1 are equivalent. This re-

sult is negative in the sense that we do not believe that 

candidates perceive all optimal strategies under one objec-

tive function as necessarily optimal under another. Conse-

quently, we conclude that the subtleties of different elec-

tions, insofar as determining dominant strategies is con-

cerned, may be beyond the scope of any reasonably accurate 

and tractable formal model. 

The ideas presented above are summarized in Figure 5.1, 

where, for the purpose of constructing a display, we confine 

our analysis to a two-candidate election, and, without loss 

of generality, evaluate the situation from the point of 

reference of a first candidate, c1 . We will assume that 

c1 is cognizant of the fact that there is a variety of elec-

tion objectives from which he may choose, and that he has 

decided to attempt to maximize the objective function ~ 1 . 

Having made that decision, he must now select a strategy 

(political platform) from a subspace of the issue space 

which is at least implicitly constrained in two ways. First, 

it is probably the case that his platform must be within 
' 

fairly close proximity to his actual preference on the 
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a, 

Figure 5.1 

Structural Components of 

the Candidate's Decision Mechanism 

"'· (8) 

0 
( PAYOFF SPACE) 
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15 issues. Specification of this subspace is, for the most 

part, a decision which reflects the nature of the candidate's 

political ideology; consequently, the second candidate's 

announced (or otherwise known) position on the issues has 

very little affect on this phase of Ci's choice. Second, 

among the platforms in the previously identified subspace, 

c1 should (if he is rational in a mathematical sense) select 

a position which maximizes his objective function. Since 

c1 's payoff with respect to his objective function is a 

function not only of his own platform, but also of c2 's 

spatial strategy, it follows that his choice should actually 

of ballots. In other words, c1 must have as input for his 

decision an anticipation of C 's behavior. We are not so 
2 

pessimistic that we believe that a candidate would endorse 

any position if he thought that it would maximize his objec-

tive function. On the other hand, we are not so unreal-

istic that we fail to recognize that a candidate's announced 

position on the issues may deviate from that point which 

actually represents his political ideology, that deviation 

being a function of both his estimates of his opponents' 

15 rhis is true for several reasons. First, no one can com-
pletely ignore his preferences. Second, candidates cannot 
suddenly alter their platforms without casting doubt on their 
ideologic stability and leadership ability. Third, an office 
won by effecting political trade-offs inconsistent with one's 
preferences may not be worth the price of victory. 
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platforms and his estimate of the distribution of prefer-

ences and loss functions of the electorate. 

In our model we assume that there is a family of bi-

variate density functions f[•,·l~J defined on the space 

P= { ( V 1 ( ~) , V 2 ( ~) ) I V 1 ( ~) ~ 0, V 2 ( ~) :;: 0 , and V 1 ( ~) + V 2 ( ~) :S 1} 

of proportions of the vote going to each of the two candi-

dates. In the next section we will specify a family of dis-

tributions which can be realistically utilized in this 

analysis, but for the moment we shall ignore such considera-

tions. Notice, however, that each member f[ ·,· J~] of the 

family of distributions is dependent on the ballot 9. 

We imagine that the mechanism with which the first 

candidate selects his platform is the following: 

(1) First, he anticipates c2 's political plat-

form with as much accuracy as possible. 

(2) Then with his estimate of c2 's strategy 

920 in mind, he searches among those 

ballots 9(l) = [91,8201' in sl for the 

one which produces a joint distribution 

f[·,·J~(l)] on P which ultimately has 

the effect of maximizing his objective 

function ~l if, indeed, c2 actually does 

choose 920 • 
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(3) With each consideration of 8 in step (2), 

c1 must estimate the proportion of the 

electorate which will abstain from voting 

if, based upon his and c2 's choices of 

strategies, 8 is the ballot which ulti-

mately eventuates. 

Notice that c1 does not necessarily want that ballot 

e(l) which "produces" the distribution which maximizes his 

proportion of the vote v1 (~(l)) given that c2 chooses e 20 ; 

for such a choice may give c2 a large strategic advantage 

with respect to the objective function which c1 has adopted. 

In short, c1 may not even be interested in his proportion 

of the vote; for example, he may be much more concerned with 

maximizing his expected plurality, E[V 1 (~) - v2 (~)]. That 

is why the mapping from P to the payoff space is an impor-

·tant characteristic of this model (see Figure 5.1). It is 

noteworthy that for a given family of distributions on P 

the first candidate is actually implicitly specifying para-

meters (and, thus, identifying one member of the family of 

distributions) when he estimates his opponent's platform, 

guesses what proportion of the electorate will abstain from 

voting, and then chooses his own strategy. In other words, 

the first candidate defines--at least implicitly--a func-

tion a 1 from a subset s 1 of the ballot space S onto a 

subset A1 of the parameter space A such that 
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In essence, in our model 

c1 is required to estimate various parameters of the elec-

tion, and a 1 is the function which he uses to do so. Fur-

thermore, even in a two-candidate election, c1 may be forced 

to estimate more than two parameters, so a 1 may actually be 

a function onto a range of triples (or, more generally, 

k-tuples) of parameters. The parameter space itself is the 

3 first (positive) octant of E , so the range of A1 of a 1 , 

whether it is a bounded set or not, is a set of triples of 

positive numbers. If A1 (or A2 for that matter) is 

unbounded, we will assume that it is a Cartesian product of 

intervals or rays, for example, 

While the theorems in Section 5.3 are true in a more general 

setting, we see no practical justification for considering 

arbitrary unbounded subsets of the parameter space. 

Since we are basically concerned with the equivalence 

(or nonequivalence) of a candidate's possible objective 

functions, it is important to understand the nature of an 

16 we have taken the liberty of using the same symbol a 1 for 
c1 's decision function and for the first component of tfie 
image of a ballot under that function. 

Estimating the parameters Cail) ,a;l) ,a; 1 )) as a function 

of the ballot relates our model to the spatial model. In 
general, however, our model, while it requires the candidate 
to estimate parameters, does not require him to utilize a 
spatial formulation. 
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equilibrium ballot in this model. The decision mechanism 

has thus far been described from the perspective of the 

first candidate, c1 • Naturally, c2 is making similar 

calculations; he, too, has a function a 2 from s2 (: S onto 

A2C:.. A, and his selection of a ballot e< 2 > = [8 10 ,8 2 ]', 

where e 10 , c2 's estimate of c1 •s platform, is for the pur-

pose of effecting a distribution on P which will maximize 

his objective function ¢ 2 , whatever that function may be. 

If, in making these decisions, c1 's choice of a ballot is 

~(l) = [8 1*,8 20 ]' and c2 's choice of a ballot is 

e< 2 > = ce 10 ,8 2 *l', and if 

ii) ¢1([81*,820]') > ¢1([81,820]') for all el and 

¢ 2 ([8 10 ,8 2 *]') > ¢2 ([8 10 ,8 2 ]') for all e 2 , 

then the ballot~*= [8 1 *,8 2 *]' is an equilibrium. In other 

words, if the two candidates choose ballots in such a manner 

that their estimates of their opponents' platforms actually 

coincide with those platforms and such th~t, once that 

choice is made, neither candidate can increase his payoff 

by unilaterally altering his spatial strategy, then the 

common ballot 8* adopted by the two candidates is an equi-

libiium point. 17 

17 It is a trivial matter to extend the definition of an 
equilibrium strategy to a p-candidate election. 
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We will summarize the structure of our model by con-

trasting it with the A-H-0 model. In "Election Goals and 

Strategies: Equivalent and Nonequivalent Candidate Objec-

tives," Aranson, et al. (implicitly) utilized a function 

which maps ballots 8 into payoffs ~j(~) without specifying 

either the parameter space A or the space P on which the 

family of distributions is defined. Such an analysis ignores 

several important characteristics of the decision-making 

process, and, in particular, it sheds little light on the 

selection mechanism which links a candidate's choice of a 

ballot to his payoff with respect to a given objective func-

tion. Furthermore, since essential features of the decision 

process have been omitted, the assumptions which underlie 

the theorems in the A-H-0 analysis are, for the most part, 

unrealistic. In the next section, we will attempt to sup-

port the formulation of our model by filling in some details 

of the structure outlined in this section. In addition, we 

will show that in our model, no matter which of the seven 

objective functions listed in Table 5.1 is adopted by a can-

didate, the set C ·of equilibria is invariant over elec-

tions, i.e., all of the objective functions are equivalent. 

Again, we feel that this result does not imply that these 

strategies are equivalent in the "real world"; it may indi-

cate that assessing differences between strategies for 

different objective functions is beyond the scope of formal 
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analysis by an actual candidate. In fact, we doubt that a 

realistic formal model can be developed which will guide a 

candidate making a choice between attainable platforms under 

such conditions, and our analysis in the next section pro-

vides a basis for our prejudice. 

Section 5.3 Equivalence of Objective Functions 
in a Two-Candidate Election 

Ideally, one would like to complete the model poposed 

in the last section by assuming that any continuous bivar-

iate distribution defined on P may be used to represent 

the joint distribution of the proportions of the vote as a 

function of the candidates' determination of a ballot. Un-

fortunately, such a formulation would not provide us with 

enough structure to investigate the relevant questions per-

taining to equivalence of objectives, or else it would be 

too poorly defined for an actual candidate for office to use 

in his decision process. The purpose of the distributions 

on P i t h t . "If C d C d s o answer sue ques ions as, 1 an 2 en orse 

platforms e1 and e2 respectively, what is the probability 

that the first candidate's proportion of the vote is between 

forty and sixty percent?" In order to formulate answers for 

questions such as this and have a reasonable degree of con-

fidence in the accuracy of the answer, it is imperative that 

we choose a versatile, yet simple, family of distributions 

defined on the space P such that a specific family member 
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is a function of~= [8 1 ,8 2 ] '. One family of distributions 

with many characteristics which are desirable for this anal-

ysis, a family which is widely used in the analysis of pro-

bability estimation, is the class of Dirichlet distributions 

defined on a two-dimensional space. 

If we let v1 and v2 be abbreviations for the random 

variables v1 (~) and v2 (~), then the density function for a 

two-dimensional Dirichlet distribution with parameters 

r(a 1 + a 2 + a 3 ) 

r(a 1 )r(a 2 )r(a 3 ) 

where vj ~ 0 for j = 1,2 and v 1 + v 2 ~ 1. Among the desir-

able characteristics of a Dirichlet distribution is the fact 

that its marginal distributions belong to the class of beta 

distributions, a family which has considerable versatility 

for fitting univariate data (see Figure 5.2). 18 In particu-

lar, we have: 

18 Norman L. Johnson and Samuel Kotz, Distributions in Statis-
tics: Continuous Univariate Distributions - 2, (New York: 
John Wiley and Sons, 1970), pp. 37-56. 
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It can be shown that the mean and variance of v1 are 

2 
<JV 

1 

Of course, the mean and variance of v2 have similar func-

tional forms. 

The Dirichlet distribution is ideally suited for this 

analysis since the relevant random variables in the voting 

model are proportions of the electorate which support the 

various candidates or else abstain from voting, and the 

Dirichlet distribution is a joint distribution of a random 

pair (V 1 ,v 2 ) such that vj > 0 for j = 1,2 and v 1 + v 2 ~ 1. 

For any v1 and v2 , 1 - v1 - v2 may be interpreted to be the 

proportion of the citizenry which abstains from voting. If 

we define a random variable v3 = 1 - v1 - v2 , then 

Of course, it follows that 

2 
<JV 

3 

and 

It is easy to see why a Dirichlet distribution and its mar-

ginal distributions (the S's) are so useful for modeling 

data related to proportions, thus increasing the possibility 
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that given an election and the associated estimates made by 

one of the candidates, one member of the family of Dirichlet's 

can be found which models the distributions of proportions 

of the vote for the candidates in a fairly accurate manner. 

To illustrate the "maleability" of the Dirichlet distribu-

tions, consider the six distributions in Figure 5.3, where 

the values ~f the parameters a 1 , a 2 , and a 3 which determine 

the distribution are listed above each graph. It should be 

obvious that a fairly large assortment of two-dimensional 

empirical distributions can be "fit" by the members of this 

f '1 19 ami y. 

19 rt is important to note that the model will not be ren-
dered impractical if the candidate is ignorant of the nature 
of joint probability distributions. In fact, in order for 
this structure to be useful, it will suffice that the candi-
date have a reasonable understanding of the relationship be-
tween ballots in S and the (B) marginal distributions of 
the Dirichlet distribution. Furthermore, his view of this 
relationship may be rather rudimentary. For example, can-
didate's conjectures such as, "If I choose this platform and 
my opponent chooses that one, then (1) the probability that 
my proportion of the vote is greater than forty percent is 
0.8, (2) the probability that my opponent's proportion of the 
vote is greater than forty percent is 0.6, and (3) the pro-
bability that less than thirty percent of the electorate ab-
stain is 0.6," will provide sufficient information to con-
struct the Dirichlet distribution and compute the candidate's 
payoff with respect to a specified objective function. Fur-
thermore, even though we indicate that the candidate chooses 
parameters in the space A, if a spatial formulation is em-
ployed, that is not technically correct. In that case, the 
candidate might think only in terms of ballots and payoffs, 
with his "resident theorist" keeping track of the mapping a. 
from S onto A. Hence, our model is more than a mathe- J 
matical generalization of the candidate's decision process; 
if, in a given election, a spatial formulation is at all 
realistic, our model could be employed to assist a candidate 
in locating spatial equilibria. 
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F.t~·~ 

· ans Examplefl of Diriclilet Distributi 
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We will need the following three lemmas in order to 

prove the principal results of this paper: 

Lemma 5.1: If (V1 , v2 ) has a Dirichlet distribution 

with parameters (a 1 , a 2 , a 3 ), then v1 /(V 1 + v2 ) has a beta 

distribution with parameters (a 1 , a 2 ). 

Proof: If (Vl, V2) is Dirichlet with parameters 

(al, a2, a3), then there exist independent chi-square random 

variables Xl, Xz, and x3 with degrees of freedom vl = 2a 1 , 

v 2 = 2a 2 and v 3 = 2a 3 respectively, such that 

v1 = x1 /(X 1 + x2 + x3 ) and v2 = x2 /(x 1 + x2 + x3 ). Since 

V1 /(V 1 + v2 ) = x1 /(x 1 + x2 ) and since the beta distribution 

with parameters (a 1 , a 2 ) can be characterized as the distri-

bution of Y = x1 /(X 1 + x2 ) where x1 and x2 are independent 

chi-square random variables with degrees of freedom equal to 

v1 = 2a 1 and v 2 = 2a 2 , the result follows. 

Q. E. D. 

Lemma 5.2: If V has a beta distribution with para-

meters (a, a'), then FV(A) is a class of decreasing func-

tions in a for any fixed value of a 1 • 20 

Proof: Suppose that V ~ S(a, a'). 

Then there exist independent chi-square random variables 

2 °FV (A) is simply the cumulative distribution function of 
1 

the random variable v1 (which depends on a 1 ). This lemma 

specifies that for any value of A and for fixed a', these-
quence of functions FV (A) is monotone increasing in a 1 • 

1 
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x 1 and x 2 with degrees of fre~dom v 1 = 2a and 

respectively, such that V = x 1 /(X 1 + x 2 ) = (1 + 
-1 Therefore, FV(A) = Pr[v $ A] = Pr[(l + x 2 /x 1 ) 

Let a' and A be fixed. 

The degrees of freedom v 1 of x1 increase without bound as a 

i i h b d F h if X X2 X' X2 ncreases wt out oun. urt ermore, 1~ v , 1 ~ v'' 
1 1 

and v 1 < vi, then Pr[x 1 ~ A] > Pr[Xi ~ A] and 

Pr[l/X 1 ~ A] < Pr[l/Xi ~ A]. Consequently, since a' (and, 

therefore, v 2 ) is fixed, 

Pr((l + x2 /x 1 )-l ~ A] > Pr[(l + x2 /Xi)-l SA]. 

This means that FV(A) is a class of decreasing functions 

of a. 

Q. E. D. 

Lemma 5.3: If (v 1 , v2 ) has a Dirichlet distribution 

with parameters (a 1 , a 2 , a 3 ), then FV -V (A) is a class of 
1 2 

decreasing functions of a 1 for any fixed values of a 2 and a 3 . 

Proof: As in the previous two lemmas, assume that 

(V 1 , v2 ) is Dirichlet and let x1 , x2 , and x 3 be the appro-

priate independent chi-square distributions. 

Therefore, 

As a 1 increases without bound, the degrees of freedom v1 

associated with x1 also increase without bound. 
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Let xl 
2 and X' 2 and let and A be fixed. I\, Xv I\, Xv' ' a.2 ' a. 3' 

1 1 1 

Then a.l < 0, I 
1 
~ vl < v' 1 

=> Pr[X 1 < A] > Pr[Xi ~ A] • 

=9 Pr[l+(X 2+x 3 )/X 1 ~ A] < Pr[l+(X 2+x 3 )/Xi 5 A]. 

=> Pr[(l-X 2 /x 1)/(l+(X 2+x 3 )/X 1 )~A]>Pr[(l-X 2 /Xi)/(l+(X 2+x 3 )/Xi)~A]. 

Consequently, FV -V (A) is a class of decreasing functions of 
1 2 

a.1 for fixed a.2 and a.3 . 

Q. E. D. 

The first theorem simply specifies that if the parameter 

space A is unbounded, then equilibria do not exist. In 

general, equilibria, if they exist at all, will be found on 

the boundary of the parameter space; so if that space is not 

constrained, equilibrium strategies will not obtain. 

Theorem 5.1: If the parameter space A is unbounded 

and if the random pair (V1 , v2 ) has a Dirichlet distribution, 

then no (strong or weak) equilibrium exists for the objec-

tive functions o1 through 0 7 . 21 

Proof: Without loss of generality, we will construct 

the proof from the perspective of the first candidate, c1 • 

We will assume that A is unbounded, that (V 1 , v2 ) is 

21 Recall that the jth candidate has a function a.j:sj~Aj where 

S. CS and A.CA. In effect, when we specify that A is un-
J J 

bounded, we actually mean that the range A. of a.. is unbounded 
for cj, j=l,2, ••• ,p. J J 
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Dirichlet, and show that each objective function is an in-

creasing function of a 1 . 

For o1 (Expected Plurality): 

¢1(~) = E[Vl(~) - ~;~{Vk(~)}]. 

= vl(~) - v2(~). 

For any fixed values of a 2 and a 3 , this is an increasing 

function of a 1 . 

For o2 (Proportion of the Expected Vote): 
p 

cl\(~)= E[V 1 (~)] /k~lE[Vk(~)]. 

For any fixed value of a 2 , this is an increasing function of 

al. 

For o3 (Expected Vote): 

¢2(~) = E[Vl(~)J. 

For fixed values of a 2 and a 3 , this is an increasing func-

tion of a 1 . 

For o4 (Probability that Plurality Exceeds Some Level): 

¢1 (~) = Pr[V 1 (~) - ~#~{Vk(~)} ~ A1 ]. 

= Pr[V 1 (~) - V2 (~) > A1 ]. 
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By Lemma 5.3, for fixed values of a 2 , a 3 , and A1 , this is an 

increasing function of a 1 • 

For o5 (Probability that Proportion Exceeds Some Level): 
p 

cpl(~) = Pr[Vl(~)/k~lvk(~) > Al]. 

= Pr[V 1 (~)/(V 1 (~) + v 2 (~)) ~ A1 ]. 

By Le mm a 5 • 1 , W = V l / ( V 2 + V 3) 'v 6 (al , a 2 ) , so cf> l ( ~) = 1 - F W (Al) • 

By Lemma 5.2, if a 2 and a 1 are fixed, ct,1 (~) is an increasing 

function of a 1 . 

For 0 6 (Probability that Vote Exceeds Some Level): 

ct,1 (8) = Pr[V 1 (~) ~ A1 ]. 

But v 1 (~) is simply a S(a 1 , a)-distributed marginal distri-

bution of the Dirichlet, (V1 , V2 ). 

Therefore, cp1 (~) = i - FV1 (A1 ), and, by Lemma 5.2, ct,1 (~) is 

an increasing function of a 1 for any fixed value of a and 

For o7 (Expected Proportion of the Vote): 
p 

cpl(~) = E[Vl(~)/k~lVk(~)]. 

= E[V 1 (~)/(V 1 (~) + V2 (~))]. 

= al/(al + a2). 

The last equality follows from Lemma 5.1, 

W = v1 /(V 1 + v2 )"' S(a 1 , a 2 ), and the fact that 

E[W] = a 1 /(a 1 + a 2). 

Consequently, for any fixed value of a 2 , ct,1 (~) is an increas-

ing function of a 1 • 
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We have shown that each of the seven objective functions is 

an increasing function of a 1 for any fixed values of a 2 and 

a 3 • Similarly, we can show that $ 2 (~) is an increasing 

function of a 2 for any fixed values of a 1 and a 3 • Therefore, 

if the parameter space A is unbounded, no strong or weak 

equilibrium strategies exist. 

Q. E. D, 

It is noteworthy that in each of the cases in the proof 

of Theorem 5.1 lim $ 1 (8) exists, Despite this fact, in each 
a 1+oo -

instance $ 1 (~) is an increasing function of a 1 • The substan-

tive interpretation of these two facts is that even though 

no equilibrium strategies exist for Cj--and he will always 

have an incentive to unilaterally relocate his spatial plat-

form, essentially by taking successively larger values of 

a.--the marginal payoff for altering his strategy will be-
J 

come increasingly smaller. In fact, in this formulation it 

is possible, given any £ > O, however small, to locate a 

non-equilibrium strategy such that the marginal payoff for 

~ unilateral move by Cj from that strategy will be less 

than £, Consequently, if the model were extended to incor-

porate a cost to C, for relocating his platform, then there 
J 

would be effective--if not formal--equilibria. 

The next theorem shows that under appropriate condi-

tions--including a bound on the parameter space A--

equilibrium strategie~ will obtain, 
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Theorem 5.2: If A is a convex, compact region, then 

there exist both strong and weak equilibria. 22 

Although the proof of this theorem is in the text of 

this dissertation, ·it will be instructive to illustrate it 

first with several examples. In Figure 5.4, the convex, 

compact parameter space is a hemisphere with its face 

Starting at any point 

(a 11 , a 21 , a 30 ) in the space, the first candidate c1 will 

maximize his objective function, subject to c2 choosing a 

strategy associated with a 21 , by "moving" to the weak equili-

b . i ( ) h f f h h · h 23 rium po nt a 12 , a 22 , a 30 on t e sur ace o t e emisp ere. 

At (a 12 , a 22 , a 30 ), c1 cannot unilaterally increase his pay-

off; but c2 can maximize his objective function, subject to 

c1 choosing a strategy associated with a 12 by "moving" to 

the weak equilibrium point (a 13 , a 23 , a 30 ) on the face of 

· the hemisphere. Again, however, c1 will have an incentive 

to choose (a 1*, a 2 *, a 30 ) over (a 13 , a 23 , a 30 ) since that 

Fur-will maximize his payoff, given c2 1 s previous choice. 

thermore, since at (a 1 *, a 2 *, a 30 ) neither candidate can in-

crease his payoff by a unilateral "move" to a new platform, 

22 To be precise, we actually assume that the range A. of the 
function a, is compact (closed and bounded) for each J 
j = 1,2, .• ~,p. 

23 The point (a 12 , a 22 , a 30 ) is a weak equilibrium for c1 , 

given that c2 's choice is a 22 , because, as was shown in 
Theorem 5.1, each of the seven objective functions is maxi-
mized by choosing the largest attainable value of a 1 • 
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Figure 5.4 

Equilibria in a Convex, Compact Region 
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it is a strong equilibrium. Finally, it is easy to see that 

in this example (1) the set C of equilibria is the set of 

points on the semicircle aoc; (2) given any value of a 3 , there 

is a unique equilibrium; (3) given any "starting point" 

(a 11 , a 21 , a 30 ) there will be at most two intermediate weak 

equilibrium "moves" before a strong equilibrium will obtain; 

and (4) each equilibrium in C can be obtained by choosing 

at least one "starting point" and employing the decision al-

gorithm described above. 24 

Notice that in this example all of the action takes 

place in a cross-section of the parameter space defined by 

the intersection of A with the plane through a 3 = a 30 . 

In Figure 5.5, the triangle DEF is such a cross-section of a 

parameter space for a fixed value of a 3 , say a 30 • In this 

particular example, if we choose any point in the set except 

E = (a 1 *, a 2 *) and employ the previously discussed algorithm, 

24 The example illustrated in Figure 5.4 is useful for demon-
strating that after c 2 chooses a platform mapped by a 2 into 
a point on the face of the hemisphere, he can do notning 
else to increase his payoff. On the other hand, if c2 can 
conduct a campaign which eventuates in either a very small 
or a very large turnout (a 3 is either small or large), then 
he can effectively reduce c1 's payoff (a 1 will be small) by 

essentially forcing an equilibrium close to either a or c 
with no reduction in his own payoff. In short, the example 
illustrates what every candidate knows; that it is frequently 
useful to consider the effect of a large or small turnout on 
one's chances of winning (however winning is defined). 
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Figure 5.5 

A Unique Equilibrium in the Cross-Section 

of a Convex, Compact Region 
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we will not reach a strong equilibrium in a finite number of 

steps. On the other hand, since A is a convex, compact 

(closed and bounded) space, the cross-section will also be 

a convex, compact set, and the monotone sequence (aln' a 2n) 

*) 25 will converge to a point (a 1 *, a 2 . It is easy to see 

that the point to which the sequence converges is an equili-

brium point for any objective function which is maximized by ... 
increasing a 1 (or a 2 ), and it is also intuitively obvious 

that the equilibrium is on the boundary of the cross-section 

(and, consequently, on the boundary B of A). In this example, 

E = (a 1 *, a 2 *) is the unique equilibrium for the specified 

value of a 3 = a 30 • It is clear that if the candidates are 

at any point in the set except E, one or the other will have 

a unilateral incentive to choose another strategy; however, 

if they are located at E, neither will have such an incen-

tive to "move" to another point in the space. 

It is coincidental that in both of these examples there 

are unique equilibria for fixed values of a 3 , the parameter 

related to abstentions. In fact, if we take the parameter 

space to be the hemisphere in Figure 5.4 rotated ninety de-

grees about the ac axis, clockwise in the a 1a 2 -plane, then 

25 The sequence (aln' a 2n) is monotone in the sense that 

(a 1 , a 2 ) -<<ai, ai) if and only if a 1 ~ a 1 and a 2 ~ ai· 
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each cross-section will contain an infinite set of equilibria. 

A formal proof of Theorem 5.2 follows: 

Proof: Since we are concerned with a two-candidate 

election, AC E3 • If (a 1 , a 2 , a 3)e:A, then c1 has the power 

to manipulate a 1 , c2 can manipulate a 2 , and a 3 is related to 

the proportion of the electorate which abstains. 

Let (a 11 , a 21 , a 30 )e:A, assume that a 30 is fixed, and define 

rays parallel to the a 1 - and a 2 - axes respectively by 

xa10a20 = {(al, a2, a3o>la2 = a20 and al> alO} 

Ya10a20 = {(al, a2, a3o>la1 = alO and a2 > a20}. 

Let B be the boundary of A. 

Starting at the point z 1 = (a 11 , a 21 , a 30 )e:A we define a 

sequence of ordered triples as follows: 

z2 = (al2' a22' a30), where 

a12 = max{al I (al ,a22 ,a30) e:X nB} and a22 = a21 ° alla21 

z3 = (al3' a23' a30), where 

a23= max{a2I (al3'a2,a30)e:Ya12a22 nB} and a 13 = (l12 ° 

Z4 = (a14' a24' a30), where 

a14 = max{all (al,a24'a30)e:Xa13a23 nB} and a 24 = a23° 

In general, zn = (aln' a 2n, a 30 ), where 

aln = max{a 1 j (a 1 ,a 2n,a 30 )e:Xa a nB}and 
ln-1 2n-l 

a2n = a if 2n-1 

a = ln a ln-1 if 

n is 
even. 

n is 
odd. 
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Let ting z = (al, a2, a30) and z I = (ai, I a2, a30) we define 

partial order on A by z< z I if and only if al < a' and - 1 

a2 $. I a2, and define the distance d(z, z') between z and z I 

to be the usual Euclidean distance, that is 

With this, we claim that (z) is a Cauchy sequence which is n 
monotone increasing in < . 
The monotonicity of (z) is true by construction. n If ( z ) n 

a 

were not Cauchy, then there exists an E > 0 such that for any 

integer m there exists n > m such that d(zn, zn+l) > E. 

But, by virtue of the Archimedian Principle, this means that 

given any arbitrary distance 6 from the origin vector O, 

there exists an integer m such that for all n > m, 

d(O, z ) > 6. n 

Since A is bounded, this is a contradiction. 

(z) is a Cauchy sequence. n 

Therefore, 

Now observe that (z) is a monotone increasing, convergent n 
sequence with each component (except possibly z 1) on the 

boundary B of A. Since B is a closed subset of A, the 

limit point z* = Cai, a~, a 30 ) of (zn) is also on B. 

Obviously, each component of the sequence (z) (except n 
possibly z 1 ) is a weak equilibrium, and we claim that z* is 

a strong equilibrium. If not, there exists 

z** = (a** a** a )EA such that a**> a* and a**= a* or 1 ' 2 ' 30 1 1 2 2 
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else a**= a* and a**> a*, i.e., one of the candidates has 1 1 2 2 
a unilateral incentive to move. It follows that z** < z*. 

But since z*£B, the boundary of A, and since A is a convex 

~' this means z**~A, a contradiction. 

a strong equilibrium. 

Q. E. D. 

Consequently, z* is 

Finally, we will show that with fairly natural and 

realistic restrictions on the parameter space, all of the 

objective functions listed in Table 5,1 are equivalent for 

th . th d. d e J can 1 ate. In particular, we have 

Theorem 5.3: In a two-candidate election, if the can-

didates' proportions of the vote have a Dirichlet distribu-

tion, and if the parameter space is a convex, compact region, 

then the objective functions o1 through o7 are equivalent. 

In the proof of Theorem 5.1 it was shown that the jth 

candidate's payoff under each of the seven objective func-

tions can be increased by increasing In Theorem 5.2 a .• 
J 

it was demonstrated that if the parameter space is convex 

and compact, then each of the objective junctions is maxi-

mized by points (ai, a~, a 3 ) on the boundary of the para-

meter space. Consequently, the ballots 8£S which are mapped 

into (ai, a1, a 3) are equilibrium strategies; and since the 

sets of equilibria are identical for each objective function, 

o1 through o7 are equivalent. 

Q. E. D. 
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SUMMARY AND CONCLUSIONS 

In this dissertation we have attempted to answer three 

of the important questions regarding formal theories of vot-

ing under majority rule: (1) is it possible to develop a 

mathematically tractable spatial model of political partici-

pation in which citizens are heterogeneous both with regard 

to their preferences and the manner in which they "measure" 

the relative salience of the election issues; (2) is it 

possible to determine optimal candidate strategies in a 

spatial model (even if the citizens' perceptions of the 

relative importance of the issues is homogeneous) when 

citizens might abstain from voting because they are alien-

ated from all competing candidates' platforms; and (3) are 

the sets of equilibrium ballots of candidates' strategies 

invariant over elections in which candidates attempt to 

maximize different objective functions? 

Our answer to the first question is affirmative, and, 

thus, in that case we make a positive contribution to the 

mathematical theory of political behavior. For the model 

discussed in Chapter III we have shown that the generalized 

total median is the ultimate in strategic political plat-

forms in a model where the (generic) ith voter may be 

characterized by the ordered pair (x., A.), where x. is his 
]_ ]_ ]_ 

most preferred social state and Ai is then x n positive 
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definite matrix by which the voter discriminates between the 

relative salience of the spatial issues. We argue that the 

importance of the mean preference has previously been exag-

gerated by confounding the analysis with both the assumption 

of common quadratic loss functions and symmetric distribu-

tions of voters' preferences. Under the assumption that 

political contests are between two candidates, several plat-

forms are defined in Chapter III and the relationship between 

these platforms is investigated in a series of theorems and 

examples. Two displays summarize these relationships 

(Figures 3.6 and 3.9). It is noteworthy that many of the 

characteristics of a more rudimentary model developed by 

Hinich and Davis no longer hold in the more abstract spatial 

model. 

Of course there are numerous restrictive assumptions 

supporting the model formulated in Chapter III, the most 

bothersome of which is the supposition that all citizens 

vote. It would be desirable to construct a model of electoral 

processes which incorporates individual differences regarding 

both preference specification and loss (or utility) specifi-

cation and in which optimal strategies for candidates can be 

determined even when some citizens who are alienated from the 

vying candidates abstain from voting. We have been unable to 

construct such a model, but under the assumption that citi-

zens have identical loss matrices, and, consequently, per-
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ceive the relative salience of election issues in an identi-

cal manner, Hinich and Ordeshook have attempted to formulate 

such a model. We argue that they have at least implicitly 

used two structurally different probability measures--a per-

sonal probability and a relative frequency probability--

interchangeably while they are, in fact, not interchangeable. 

In addition, we have demonstrated that had they been consis-

tent in utilizing only one kind of measure, their analysis--

in either case--would lead to a voting model admitting inter-

personal comparisons of utility. This is a serious departure 

from the theoretical intent of the original Davis-Hinich 

model, especially since the impetus for studying either 

their model or our generalized model is a desire to produce 

a mathemathical structure devoid of interpersonal compari-

sons of utility yet consistent with reality • In a sense then, 

. we fail to make a positive contribution to spatial theories 

insofar as the question of voter abstentions is concerned. 

On the other hand, the first Hinich-Ordeshook paper on this 

topic appeared in 1969, so it is conceivable that since that 

time formal theorists with an interest in such problems have 

assumed that the problem is "solved." Our analysis essen-

tially reopens this particular area of study, Furthermore, 

by identifying the problems with llinich and Ordeshook's 

.work we may provide formal modelers with some insight into 

a constructive, workable theory. 
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Our answer to the third question is, surprisingly, an 

affirmative one. It is surprising simply by virtue of the 

fact that our basic prejudice is that candidates who are 

attempting to maximize different objective functions will 

probably adopt different political platforms in order to do 

so, while the results of our formal analysis lead us to the 

opposite conclusion. We believe that it would be difficult 

to develop a more mathematically sophisticated model of the 

process discussed in Chapter V than the one which we formu-

late, yet it is the case that our formal analysis is incon-

sistent with our intuitive conceptualization of the actual 

behavior of candidates for office. We resolve this diffi-

culty by claiming that our intuition is probably not too 

far off base, and conclude that a mathematical formulation 

of electoral processes in which candidates attempt to maxi-

.mize different objective functions is not likely to reveal 

the complex nature of the candidates' behavior. Although 

our model would be useful for a candidate who is attempting 

to make gross estimates of the relative advantages of var-

ious platforms, if the candidate understands the character-

istics of an election well enough to believe that equilibria 

are not invariant with respect to objective functions, then 

his own analysis is probably too sophisticated to be enlight-

ened by our, or any other, formal model of this process. 

In concluding this dissertation we would be remiss if 
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we failed to express our prejudice about the importance of 

formal models to political scientists· and politicians. Inso-

far as the utility of the spatial model for a candidate for 

office is concerned, we are not optimistic. The assumptions 

that (1) citizens have perfect information regarding the 

location of candidates' platforms, (2) citizens' preferences 

can be characterized by points in Euclidean n-space, and 

(3) citizens vote even when they are alienated from every 

candidate in a particular race are very restrictive. We 

are not alarmed about the assumption that voters measure 

the relative salience of the election issues with quadratic 

functions, because we believe that any model which provides 

for more general input data (for example, by allowing voters 

to have arbitrary convex loss functions) may be too complex 

to be verified empirically. It is not clear that, even with 

the aid of computers, there is any way to report, much less 

aggregate them. At any rate, it seems likely that the com-

plexity of the input coupled with at least two unrealistic 

assumptions limits the usefulness of the spatial model for 

a candidate for office. 

From another perspective, however, formal models in 

general, and particularly the spatial model, give political 

scientists insight into the structure of various political 

phenomena that they are unlikely to obtain by philosophizing 

"in a less formal manner about those phenomena or by analyz-
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ing data relative to them. 

We feel that the model explicated in Chapter V--which 

is based upon the Dirichlet distribution--may have some 

practical utility for politicians. More specifically, all 

that is required to obtain "optimal" platforms utilizing 

our model is that the candidate be reasonably adept at 

estimating the proportions of the vote which he and his 

opponents will receive and the proportion of the electorate 

which will abstain from voting if certain ballots are 

"chosen" by the candidates. While such computations are 

non-trivial, it is altogether possible that a thoughtful 

candidate working in consort with someone who understands 

the nature of the model could order the desirability of 

various platforms. Of course, in practice only platforms 

which are quite different could be ranked in this manner; 

nevertheless, we imagine that utilization of the model may 

assist the candidate under such conditions. 
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SOME MUL TIVl,RIATE PRQBLJ::!1S 

OF A SPATIAL HODEL OF VOTING 

UNDER NAJORITY RULE 

. by 

R.W. Hoyer 

(ABSTRACT) 

This dfasertation is concerned with a number of outstanding problems 

in the analysis of collective decision-making. More specifically, we 

specify the mathematical foundation for a spatial model of voting under 

majority rule, and, building upon that foundation, we make three con-

tributions to the formal.theory of public choice. 
1 

First, we formulate a spat:tal model in which voters are heterogeneous 

both uith respect to their most preferred social states and the manner 

in whi.ch they measure loss relative to their preferences, and within the 

structure of this model we identify various optimal strategies for the 

candidates for office. 

Second, we shew that all existing spatial models which purport to 

encompass voting abstentions by citizens 't.'ho are alienated from the 

candidates are either mathematically inaccurate or else they include inter-

personal comparisons of utility by the electorate. 

l<'inally, we show that the set of optimal strategies for a candidate 

is invariant w::fth respect to any one of seven objective functions which 

he may be attempting to maximize. This result is dependent upon the 

utilization of the f amlly of Dirichlet distributions to model the joint 

distribution of the estimated proportions of the vote which the candidates 

will receive. 
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