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Bing Wang

ABSTRACT

Cloud computing which provides computation and storage resources in a pay-per-usage
manner has emerged as the most popular computation model nowadays. Under the new
paradigm, users are able to request computation resources dynamically in real-time to ac-
commodate their workload requirements. The �exible resource allocation feature endows
cloud computing services with the capability to o�er a�ordable and e�cient computation
services. However, moving data and applications into the cloud exposes a privacy leakage
risk of the user data. As the growing awareness of data privacy, more and more users begin
to choose proactive protection for their data in the cloud through data encryption. One ma-
jor problem of data encryption is that it hinders many necessary data utilization functions
since most of the functions cannot be directly applied to the encrypted data. The problem
could potentially jeopardize the popularity of the cloud computing, therefore, achieving e�-
cient data utilization over encrypted data while preserving user data privacy is an important
research problem in cloud computing.

The focus of this dissertation is to design secure and e�cient schemes to address essential
data utilization functions over encrypted data in cloud computing. To this end, we studied
three problems in this research area. The �rst problem that is studied in this dissertation
is fuzzy multi-keyword search over encrypted data. As fuzzy search is one of the most use-
ful and essential data utilization functions in our daily life, we propose a novel design that
incorporates Bloom �lter and locality-sensitive hashing to ful�ll the security and function re-
quirements of the problem. Secondly, we propose a secure index which is based on the most
popular index structure, i.e., the inverted index. Our innovative design provides privacy
protection over the secure index, the user query as well as the search pattern and the search
result. Also, users can verify the correctness of the search results to ensure the proper com-
putation is performed by the cloud. Finally, we investigate an important privacy-sensitive
data application in cloud computing, i.e., genetic testings over DNA sequences. To provide
secure and e�cient genetic testings in the cloud, we utilize predicate encryption and design a
bilinear pairing based secure sequence matching scheme to achieve strong privacy guarantee
while ful�lling the functionality requirement e�ciently. In all of the three research thrusts,
we present thorough theoretical security analysis and extensive simulation studies to evalu-
ate the performance of the proposed schemes. The results demonstrate that the proposed
schemes can e�ectively and e�ciently address the challenging problems in practice.

This work was supported by the National Science Foundation under the grands CNS-1217889,
CNS-1338102, CNS-1405747 and CNS-1446478.
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Chapter 1

Introduction

1.1 Emergence of Cloud computing

The concept of cloud computing in computer science can be traced back to Strachy's concept
of time-sharing [2] in high-performance computers. The idea of time-sharing is to share the
CPU time among the users to better utilize the high-performance computer. Cloud comput-
ing extends the concept of time-sharing from a single computer to a cluster of computers.
The shared resources are also extended from CPU time only to a variety of computation re-
sources such as memory and storage thank to hardware virtualization technique. The cloud
service providers treat the computation resources as utility and charge the users based on
the amount of the computation resource usage. A general system structure of cloud comput-
ing is shown in Fig. 1.1. According to the di�erent service types, cloud computing services
can be categorized as infrastructure-as-a-service (IaaS), platform-as-a-service (Paas), and
software-as-a-service (SaaS). IaaS such as the Amazon Web Services (AWS) gives its user
the control of the virtualized infrastructure. PaaS such as the Google App Engine provides
a well-constructed platform with a set of common APIs which users implement their services
based on. SaaS such as Dropbox provides its users speci�c services through software. On
the other hand, cloud services can be classi�ed as public cloud, private cloud, or hybrid
cloud regarding deployment. While public and private clouds are open to public and private
groups, respectively, hybrid cloud is a combination of public and private infrastructures.

The new computation paradigm has the following superiorities comparing with the tra-
ditional one. First of all, cloud computing provides a�ordable yet powerful computation
platforms. Small businesses and individuals who may not be able to purchase or rent expen-
sive servers can now enjoy the computation service provided by the cloud service providers
in a pay-per-usage manner. Secondly, the elasticity and scalability of cloud computing sig-
ni�cantly improve the usage e�ciency of the computation resource, and thus, enable a more
cost-e�ective computation service. When faced with the higher computation demands than

1
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Figure 1.1: Cloud Computing: a general system structure [1]

usual, users can request temporal computation resources in real time for the bursting work-
load. Finally, cloud computing relieves the taunting IT management burden from users.
Managing an IT system can be error-prone, time-consuming as well as costly especially for
small business owners. With the uni�ed system management from the cloud, users worry
less about the reliability of the underlying computation platform of their services and will
focus more on their computation tasks. Combining these advantages, cloud computing has
become one of the most popular computation solutions for both companies and individuals.
As a result, more and more individuals and companies begin to embrace the new paradigm
and move their services along with the data into the cloud.

As the computation moves into the cloud, the data that is used during the computation is
moved into the cloud storage as well. Cloud storage is one of the most popular cloud services
because storage is an indispensable component of a computing system. There are enterprise-
level cloud storage services such as the Amazon Simple Storage Service (Amazon S3) and
Microsoft Azure storage, and consumer-level cloud storage services such as Dropbox and
Google Drive. The primary purpose of the enterprise-level cloud storage services is to pro-
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vide a virtual storage for the cloud computing applications, which usually have well-de�ned
application programming interfaces (APIs) to interact with other cloud computing services.
Since network bandwidth is a more valuable resource, it is natural to use cloud storage to
avoid transmitting data through the Internet. In fact, most cloud computing providers also
provide cloud storage which is usually on the same premise with the physical servers. On
the other hand, consumer-level cloud storage services focus on hosting user �les. Users are
allowed to visit their �les from anywhere as long as the Internet is available. Advanced
functions such as auto-synchronizing among all registered devices are also available. Due to
its convenience, cloud-based �le hosting services become more and more popular, and people
begin to utilize the cloud storage as their primary way to store and share data. However, as
users outsource their data into the cloud, the control of the data is also handed over, which
raises data privacy concerns especially when the data contains sensitive private information.

1.2 Security and privacy challenges in cloud data appli-

cations

In this section, we unfold the data privacy challenges in cloud computing applications. The
data used in cloud applications is directly exposed to the cloud service provider and could
also be learned by adversaries because of the potential compromise of the cloud. A straight-
forward solution is to encrypt the data before outsourcing it to the cloud. However, the
cloud is not able to perform the original computation tasks over the data that is encrypted
using the traditional data encryption schemes such as DES [3] or AES [4]. The security
challenge comes from the urgent call of secure data encryption schemes that enable various
data utilization functions over the encrypted data. Although this dissertation is not able to
address the data privacy in all cloud computing applications, we focus our attention on a
fundamental yet important data utilization function, i.e., data search function.

Keyword search is one of the most commonly used data utilization functions in our daily
life. It has wide applications in information retrieval, data mining, and machine learning. As
the data volume of the Internet is still growing, keyword search has become one of the most
fundamental yet important functions. The keyword search problem has been well studied
in plaintext scenario for decades. The common approach is to build a keyword index from
a collection of documents, and the query is performed against the index. According to the
number of the keywords, queries can be categorized as single keyword queries and multi-
keyword queries. The later has become the dominant query type in today's Internet search
engine. Multi-keyword queries can be further classi�ed into conjunctive and disjunctive
queries. While the search result must contain all the query keywords for a conjunctive query,
a disjunctive query requires at least one of the query keywords exists in the search result.
Other important search functions include search result ranking and approximate keyword
search also known as the fuzzy keyword search. Search result ranking is achieved by giving
scores to matching documents based on certain measurements. Fuzzy search is to measure
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the distance between the query keywords and the keywords in the document given a similarity
measurement. If the distance is within a threshold, the document is included in the search
result. Although keyword search that supports all the aforementioned functions have been
well studied in plaintext scenario, searching over encrypted data is a challenging problem.
The challenge comes from two aspects, i.e., the security aspect and the functionality aspect.
Searchable encryption is a technique that is meant to address the aforementioned problem.
A common approach is to build a secure index, and the keyword search is performed over
the secure index. To guarantee user data privacy, the secure index should not leak any
information regarding the underlying document set. Additionally, queries also need to be
encrypted to ensure query privacy. Because the search process is performed by the cloud,
intermediate information, such as search pattern which is the collection of the submitted
queries and access pattern which is the output of the search algorithm, is available to the
cloud. As the cloud provider could perform analysis on this information to gain knowledge
about the documents and the queries, this information should also be well protected. In
the following sections, we list all the security challenges we are going to address in this
dissertation.

1.2.1 Approximate keyword search over encrypted data

Approximate keyword search also known as fuzzy search has become one of the essential
functions in today's search engines considering the amount of misspelled keywords people
make every day. The search engine should return search results that correspond to a proper
keyword when a query keyword is misspelled. The process is done by calculating the distance
between the indexed keywords and the query word in real-time in plaintext domain. However,
it becomes a technical challenge when the data is encrypted because the distance between
the encrypted keyword is not preserved.

Research e�orts have been made to address the privacy-preserving fuzzy search problem
over encrypted data. The existing solutions avoid the distance computation problem by
enumerating all possible misspells as keywords. The expansion of the dictionary will clearly
increase the storage overhead and eventually slows down the search computation e�ciency.
Although fully homomorphic encryption is another solution to the problem, the computation
is too expensive to scale for today's data volume. Therefore, we focus ourselves on the design
of an e�cient searchable encryption scheme that supports fuzzy search in Chapter 2.

1.2.2 Secure inverted index and search result veri�cation

The inverted index is an index data structure that stores the keyword-document mapping
information. Di�erent from the forward index which stores lists of words per document, the
inverted index consists of document lists for each keyword in the dictionary. Each document
list contains the IDs of all the documents that have the keyword. Compared with sequential
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iteration through each document for each keyword using the forward index, the inverted
index limits the search within a subset of the documents. The inverted index is considered
as the central component of a typical search engine indexing algorithm. Most of the well-
known search engines libraries such as Apache Lucene [5] and Sphinx [6] are based on the
inverted index. Therefore, the inverted index is an indispensable index structure to power
up today's Internet.

To provide privacy-preserving keyword search over encrypted data, we can either build the
secure index from scratch or secure an existing index structure such as the inverted index.
Considering the importance and the popularity of the inverted index, converting the inverted
index to support privacy-preserving keyword search will be not only important but also
convenient for users to move their data into the cloud. Therefore, we focus ourselves on
designing an e�cient and secure inverted index in Chapter 3.

1.2.3 Secure genetic sequence matching

Genetic sequences contain important personal information that can be used to identify ge-
netic diseases. The human genome consists of the long sequences of the DNA pairs. As re-
cent advances in genetics have revealed more and more genetic mutations that associate with
certain diseases, a new health care model known as personalized medicine [7] has emerged.
Instead of the �one-size-�t-all" approach of the traditional health care, personalized medicine
advances by being able to provide an e�cient and e�ective medical treatment utilizing the
patient's DNA information. Under the new health care paradigm, doctors perform genetic
disease diagnoses and prediction by matching the known disease-related genetic patterns
against the patient's DNA sequence. For instance, certain mutations in the genes BRCA1
and BRCA2 are related to high risk of breast cancer [8]. By testing the existence of those
gene mutations in a patient's DNA, early intervention measures can be taken to prevent
breast cancer from developing. Therefore, personalized medicine has been gaining great
popularity and is considered as the future health care model.

Recently, the cost of the DNA sequencing decreases from ten million dollars per genome a
decade ago to a few thousand dollars [9]. The personal genomics company, 23andMe, o�ers
DNA ancestry service for only $99 [10]. The a�ordable DNA sequence services will make
the DNA data of individuals available for various genetic applications including personalized
medicine. Considering the enormous volume of the storage to keep everyone's DNA data,
cloud computing is the perfect computing model to implement genetic applications. How-
ever, implementing cloud-based genetic application raises data privacy challenge in practice
because of the extremely high sensitivity of the genetic data. Existing privacy protection
of genetic data mainly relies on the regulations such as Health Insurance Portability and
Accountability Act (HIPAA), which is unable to prevent privacy leakage caused by system
failure or malicious behaviors. De-identi�cation is another widely adopted technique to pro-
tect user privacy in genetic data application. Unfortunately, the technique is not e�ective



Bing Wang Chapter 1 6

as the user's identity could be recovered through analyzing the genetic data along with the
public available records [11,12]. Therefore, we study the secure sequence matching problem
for genetic applications in cloud computing in Chapter 4.

1.3 Research contributions

This dissertation research uncovers emerging data privacy issues in fundamental cloud com-
puting applications, including privacy-preserving keyword search over encrypted data and
secure genetic testing for personalized medicine. We make the following contribution from
this research.

1. Multi-keyword fuzzy search over encrypted data. We design a novel secure
index structure combining Bloom �lter and Locality-Sensitive Hashing. Our secure
index tolerates the misspelled query keywords that are within the pre-de�ned distance
threshold and correctly match the query with the index. Compared with the existing
solutions [13�15] which expand a pre-de�ned dictionary to include all possible mis-
spellings within a certain edit distance, our scheme converts a keyword into a vector
and measures the distance in the vector space. Therefore, our scheme does not need
to expand the keyword space and can be easily scaled when the volume of the docu-
ments increases. We theoretically analyze the trade-o� between the search e�ciency
and the result accuracy for di�erent choices of the parameters of our scheme. The
simulation results demonstrate that our scheme is accurate and e�cient. This part of
the dissertation is published in part in [16].

2. Inverted index based dynamic searchable encryption. We design a crypto-
graphic provable secure inverted index, which supports various functions including
generic multi-keyword query, document updates, and search result veri�cation. Com-
pared with the existing works [17�19], our scheme provides stronger privacy guarantee
as it protects search pattern, access pattern as well as forward privacy and backward
privacy for index update. In addition, we embed veri�cation tokens into the index
structure so that the user is able to verify the correctness of the search result. We
provide a complete security proof under the random oracle model. Extensive analysis
and a series of experimental results are presented to show the e�ciency of the proposed
scheme. This part of the dissertation is published in part in [20].

3. Secure pattern matching for genetic testings. We propose a novel privacy-
preserving genetic testing scheme for personalized medicine in cloud computing. To
achieve practical and secure computation over the encrypted DNA data, we leverage
predicate encryption techniques [21, 22] to encrypt the DNA data. Di�erent from
previous works in secure DNA computation, we reduce the communication overhead
from a linear complexity respect with the length of the inputs to O(1) round, which



Bing Wang Chapter 1 7

greatly improves the scheme usability. Furthermore, our scheme support wild-card
based pattern matching. The testing result and the search pattern are both protected
to guarantee a strong data privacy. We have proved that our scheme is secure under the
well-de�ned cryptographic assumption. Extensive analytical and experimental results
are presented to show the security and e�ciency of our proposed scheme.

1.4 Organization

This dissertation is organized as follow. Chapter 2 presents our secure index design to sup-
port multi-keyword fuzzy query search. We describe our secure inverted index design and
the performance evaluation in Chapter 3. Chapter 4 introduces our secure pattern match-
ing algorithm for genetic testing applications in cloud computing. Finally, we summarize
our research achievements, conclude the dissertation and point out several future research
directions in Chapter 5.



Chapter 2

Privacy-Preserving Multi-Keyword

Fuzzy Search over Encrypted Data in the

Cloud

Enabling keyword search directly over encrypted data is a desirable technique for e�ective
utilization of the encrypted data which is outsourced to the cloud. Since Song et al.'s
seminal work on searchable encryption [23], much e�ort has been made to design e�ective
and e�cient mechanisms to enable search over encrypted data [14, 15, 24�36]. Instead of a
word-by-word linear scan in the full text search [34], early works [32,33,37] built various types
of secure index and corresponding index-based keyword matching algorithms to improve
search e�ciency. However, all these works only support the search of a single keyword.
Subsequent works [24,27�29,38] extended the search capability to multiple keyword search,
either conjunctive or disjunctive. However, they support only exact keyword matching.
Misspelled keywords in the query will result in a wrong matching or no matching at all.
Very recently, a few works [14,15,35] extended the search capability to approximate keyword
matching (also known as fuzzy search). These are all for single keyword search, with a
common approach involving expanding the index �le by covering possible combinations of
keyword misspelling so that a certain degree of the spelling error, measured by edit distance,
can be tolerated. Although a wild-card approach is adopted to minimize the expansion of
the resulting index �le, for a l-letter long keyword to tolerate an error up to an edit distance
of d, the index has to be expanded by O(ld) times. Thus, it is not scalable as the storage
complexity increases exponentially with the increase of the error tolerance. To support
multi-keyword search, the search algorithm will have to run multiple rounds. Very recently,
Boldreva and Chenette proposed a fuzzy-searchable encryption scheme which represents the
similar keywords within a distance with a single tag to improve the storage e�ciency of [35].
However, their scheme still lacks a generic multi-keyword query support.

To date, multi-keyword fuzzy search over encrypted data remains a challenging problem. We

8
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want to point out that the e�orts on search over encrypted data involve not only informa-
tion retrieval techniques such as advanced data structures used to represent the searchable
index, and e�cient search algorithms that run over the corresponding data structure, but
also the proper design of cryptographic protocols to ensure the security and privacy of the
overall system. Although multi-keyword search and fuzzy search have been implemented sep-
arately, a combination of the two does not lead to a secure and e�cient multi-keyword fuzzy
search scheme. In this chapter, a brand new idea for achieving multi-keyword (conjunctive
keywords) fuzzy search is proposed. Di�erent from existing multi-keyword search schemes,
the proposed scheme eliminates the requirement of a prede�ned keyword dictionary. The
fuzziness of the keyword is captured by an innovative data structure and algorithmic design
without expanding the keyword index and hence exhibits a high e�ciency regarding com-
putation and storage. This is achieved by several novel designs based on locality-sensitive
hashing (LSH) [39] and the Bloom �lter [40]. We convert each keyword to its bigram vector
representation and utilize Euclidean distance to capture keywords similarity. By construct-
ing �le indexes using LSH in the Bloom �lter, the proposed scheme �nds documents with
matching keywords e�ciently. For ease of presentation, we �rst present a basic scheme that
ful�lls the functionality of multi-keyword fuzzy search but has some security vulnerabilities.
Based on the basic scheme, we design our enhanced solution by incorporating another layer
of security protection. Extensive analysis and simulation show that our scheme is secure.

2.1 Related works

2.1.1 Searchable encryption scheme without fuzzy search support

Single keyword searchable encryption

Song et al. [34] studied this problem �rst under the symmetric key setting for email systems.
Their scheme did not contain an index. Thus, the search operation went through the entire
�le. Goh proposed a secure index using the Bloom �lter in [41]. Curtmola et al. gave the
formal de�nition of the searchable encryption and proposed an index structure based on
the inverted list in [32]. In [30], Wang et al. solved the result ranking problem utilizing
the keyword frequency and order-preserving encryption. Boneh et al. [37] proposed the �rst
searchable encryption scheme using the asymmetric encryption scheme. All of these works
only supported the single keyword search over the encrypted data.

Multiple keywords searchable encryption

To enrich the search functionality, the schemes supporting conjunctive keywords search have
been proposed [21, 22, 27�29, 38, 42]. Many works which supported the conjunctive keyword
search, subset search, range queries were using the asymmetric encryption [27�29]. [21,22,42]



Bing Wang Chapter 2 10

used the predicate encryption to achieve the conjunctive keywords search over encrypted
data. In [43], a logarithmic-time search scheme was presented to support the range queries.
Cao et al. [38] proposed a privacy-preserving multi-keyword ranked search scheme using
symmetric encryption. Sun et al. [44] proposed an e�cient privacy-preserving multi-keyword
supporting cosine similarity measurement. However, none of the schemes can support fuzzy
keyword search.

2.1.2 Searchable encryption scheme support fuzzy search

Li et al. proposed a wildcard-based fuzzy search scheme over encrypted data in [35]. Then
Liu et al. [14] improved the scheme by reducing the index size. In [45], the LSH functions
are used to generate �le index. But it took two rounds of communication to achieve results
ranking and only supported the single keyword search. All the aforementioned schemes only
support the single keyword search, the fuzzy match OR the exact match. In [15], Chuah et
al. improved [35] by introducing a tree structure index and enriched the search functionality
by treating the pre-de�ned phrases, for example, �cloud computing", as a single keyword.

Boldyreva and Chenette generalized Li et al.'s scheme [35] to a primitive called e�ciently
fuzzy-searchable encryption (EFSE) for fuzzy search on encrypted data in [36]. The primitive
works on a general closeness functions which translate data to a collection of tags. The tags
of data represent the closeness which is the supported fuzziness by design. The authors also
suggest using LSH functions as tag-encoding functions. Although this is a concurrent work,
our scheme has two major contributions compared to theirs. First of all, our approach which
utilizes Bloom �lter is di�erent from their tag-based scheme. As a result, we eliminate the
per-de�ned dictionary which is necessary for their scheme. Secondly, our scheme supports
conjunctive keyword search. Although the EFSE can be extended to support connective
search in multiple attributes such as in a database, it is in fact achieved by combining multiple
single attribute search results. Our scheme achieves the conjunctive keyword search through
our innovative design and is computationally independent with the number of keywords in
the query.

2.2 Problem formulation

The privacy preserving problem of multiple keywords fuzzy search over encrypted data is
formulated in this section. We denote a keyword collection of a �le as an index and an
encrypted index as a secure index. Similarly, a query is a keyword collection and a trapdoor
is the encryption of a query.
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Figure 2.1: System model for search over encrypted data problem in cloud computing

2.2.1 System model

Fig. 2.1 shows the overall system architecture. To outsource a �le collection to the cloud,
the data owner �rst builds a secure index then uploads the encrypted �les together with the
secure index to the cloud server. To perform a query over the encrypted �les, an authorized
user �rst obtains the trapdoor, i.e., the encrypted query keyword(s), from the data owner,
then submits the trapdoor to the cloud server. Upon receiving the trapdoor, the cloud server
executes the search algorithm over the secure index and returns the matched �les to the user
as the search result.

Users are assumed as trusted entities which have pre-existing mutual trust with the data
owner. The assumption is based on the fact that the access to the �le collection is restricted
to authorized users only in the practical application of searchable encryption. Open access
to the �le collection for all users including the cloud server will have no incentive for the
data owner to adopt searchable encryption to protect the content of the �les because the
cloud server can learn the �le content as search results through querying the �le collection.
Therefore, it is reasonable and practical to assume trusted users and rule out collusion
between the cloud server and the authorized users in our threat model. The trapdoors can
be transferred through regular authentication and secure channel establishment protocols
based on the prior security context shared between each user and the data owner. The
encryption of the individual �les and the distribution of the decryption keys to authorized
users are separate issues which have been discussed in other publications [46, 47].
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2.2.2 Security model

Our scheme aims to protect information privacy of the outsourced data, which includes: 1)
content privacy; 2) index privacy; and 3) query privacy. Because protecting content privacy
can be achieved by encryption-before-outsourcing schemes [46, 47], we focus on preserving
index privacy and query privacy.

• Index privacy: The secure index of a �le should not 1) leak the indexed keywords of
the �le; 2) be distinguishable from other secure indexes of di�erent �les.

• Query privacy: The trapdoor of a query should not 1) leak the query keywords; 2)
be linked to trapdoors of previous queries including the identical ones.

We exclude the security requirement of the access pattern in our discussion although we are
aware the privacy leakage caused by the access pattern [48]. Research works such as [49,50]
have been proposed to address the privacy leakage issue of the access pattern. However, the
gain of the privacy protection will cost either computation or communication. Our scheme
can be modi�ed easily to adopt these techniques to protect the access pattern with additional
cost. Therefore, our scheme will focus on protecting index privacy and query privacy. We
will brie�y discuss the modi�cation of the scheme to hide the access pattern as well.

We adopt the �honest-but-curious" model for the cloud server as in [14, 15, 35]. It assumes
that the cloud server would honestly follow the designated protocols and procedures to
ful�ll its service provider's role, while it may analyze the information stored and generated
on the server to learn additional information about the �le collection. Regarding level of
privacy protection, we consider three attack models which are also used in other related
works [30,31,33,51].

• Ciphertext-only attack (COA) model. In this model, the cloud server can only
access the encrypted �les, the secure indexes, and the submitted trapdoors. Although
the encrypted �les and the secure indexes are always available to the cloud server, the
cloud server can only access to a trapdoor when a user submits it.

• Known-keyword attack (KKA) model. In this model, the cloud server has a
limited number of the samples of the keyword-trapdoor pairs. Because the trapdoor
can be used to retrieve �les that contain the keyword, the cloud server will learn the
existence of the keyword in these �les. Some researchers refer this weaker model as
known-background attack model [38,44].

• Chosen-keyword attack (CKA) model. In this model, an adaptive adversary has
the access to the trapdoor generation algorithm to generate trapdoors for any selected
keywords. The objective of the adversary is to fully recover the secure indexes.
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The COA model is the least powerful attack model, and it is suitable when the �le set has
an evenly distributed keyword set. If a document set focuses on a speci�c topic such as a
conference proceeding, the background information of the �le set is predictable by the cloud
server. In practice, the KKA model is the most realistic model. The adversary has the most
attacking power in the CKA model because the adversary controls the access to the trapdoor
generation algorithm. Therefore, it is the hardest attack model to defend against.

2.2.3 Design objective

Our design bears the following security and performance goals.

• Multi-keyword fuzzy search: Our primary goal is to support multi-keyword fuzzy
search. For example, �network security" related �les should be found for a misspelled
query �netword security".

• Privacy guarantee: Our scheme should protect the index privacy and the query
privacy. It is worth mentioning that the search result, i.e., the access pattern, is known
to the cloud server in most scenarios. However, in the CKA model, the adversary
should not be given the search result. The adversary will be able to recover the index
by enumerating all the possible keyword since he has the access to generate the proper
trapdoors corresponding to the keywords.

• Space e�ciency and result accuracy: We design our scheme using the Bloom
�lter which is famous for its computation and space e�ciency. However, the Bloom
�lter is a probabilistic data structure. Therefore, we should ensure that the accuracy
of the search result should be within an acceptable range.

• No dictionary required: The need of a pre-de�ned dictionary is a limiting factor
that makes dynamic data operations, such as dataset/index update, very di�cult. In
our design, we would like to eliminate this requirement in contrast to many previous
solutions [30�32,35,38,44].

2.2.4 Preliminaries

Our scheme utilizes the Bloom �lter and the locality-sensitive hashing (LSH). The brief
introductions of them are given below.

Bloom �lter

A Bloom �lter is a bit array of m bits, all of which are set to 0 initially. A Bloom �lter uses
l independent hash functions from H = {hi|hi : S → [1,m], 1 ≤ i ≤ l}. To insert an element
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a ∈ S into the Bloom �lter, set the bits at the hi(a)-th positions in the array to 1 for all
hash functions. To test whether an element b is in S, feed it to each of the l hash functions
to get l array positions. If any of the l bits is 0, then b /∈ S; otherwise, either b belongs to S
or b yields a false positive. The false positive rate of a m-bit Bloom �lter is approximately
(1− e− lnm )l. The optimal false positive rate is (1/2)l when k = m

n
· ln 2 [40].

Locality-Sensitive Hashing (LSH)

Given a distance metric d, e.g. Euclidean distance, a LSH function hashes close items to the
same hash value with higher probability than the items that are far apart. A hash function
family H is (r1, r2, p1, p2)-sensitive if any two points s, t and h ∈ H satisfy:

if d(s, t) ≤ r1 : Pr[h(s) = h(t)] ≥ p1 (2.1)

if d(s, t) ≥ r2 : Pr[h(s) = h(t)] ≤ p2 (2.2)

where d(s, t) is the distance between the point s and the point t. We use the p-stable LSH
family [52] in our scheme. A p-stable LSH function has the form ha,b(v) =

⌊
a·v+b
w

⌋
where

a,v are vectors and b, w are real numbers.

De�nition 1. A distribution D over R is called a p-stable distribution, if ∃p ≥ 0 such that
for n real numbers v1, v2, · · · , vn and i.i.d. variables X1, X2, · · · , Xn with same distribution,
the summation

∑
i viXi also follows the distribution D with the variable (

∑
i |vi|p)1/pX, where

X is a random variable with distribution D.

• when p = 1, it isCauchy distribution, de�ned by the density function fp(x) = 1
π

1
1+x2

,
is 1-stable.

• when p = 2, it is Gaussian distribution, de�ned by the density function fp(x) =
1√
2π
e−x

2/2, is 2-stable.

The p-stable LSH function is given by ha,b(v) =
⌊
a·v+b
w

⌋
, where a is a d-dimensional vector,

b ∈ [0, w] is a real number and w is a �xed constant for one family.

The hash function ha,b(v) : Rd → Z maps a d-dimensional vector v onto the set of integers.
By choosing di�erent a, b, di�erent hash functions in the family can be generated. Given
two vectors v1,v2, let c =‖ v1 − v2 ‖p, it is easy to see

p(c) = Pra,b[ha,b(v1) = ha,b(v2)] =

∫ w

0

1

c
fp(

t

c
)(1− t

w
)dt, (2.3)

where fp is the probability density function. Denote ε = r2/r1, then p-stable LSH is showed
(r, εr, p1, p2)-sensitive where p1 = p(r), p2 = p(εr) in [52].
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2.3 Multi-keyword fuzzy search scheme

2.3.1 Main idea

To design a secure and well-functioning search scheme over encrypted data, one has to
make three important design choices that are closely inter-related and largely determine
the performance of the resulting search scheme. They are 1) data structure used to build
secure indexes and trapdoors; 2) e�ective search algorithm that can quantify the level of
match between keywords in the query and keywords in the index with high e�ciency; and
3) security and privacy mechanisms that can be integrated in the above two design choices
thus the index privacy and search privacy can be protected.

In this subsection, we outline the key ideas behind our design for 1) and 2). We will present
the key idea of the data structure and search algorithm in the plaintext format for ease of un-
derstanding. More detailed scheme design with integrated security and privacy mechanisms
will be described in section 2.3.2.

Our scheme builds index on a per �le basis, namely, ID for �le D. The index ID is a
m-bit Bloom �lter which contains all the keywords in D. To support fuzzy and multiple
keywords search, we �rst convert each keyword into a bigram vector. The Euclidean distance
between bigram vectors is used to measure the closeness between keywords. Then we use
LSH functions to replace standard hash functions to insert the keywords in the Bloom �lter
ID. By choosing proper LSH function family, the keywords, of which the Euclidean distance
of the bigram vectors is within a threshold, will match in the Bloom �lter. The main steps
are illustrated in Fig. 2.2 and explained as follows.

Bigram vector representation of keyword

One key step to building index is keyword transformation because the LSH function does
not apply to string. We use the following method to transform a keyword to its vector
representation. A keyword is �rst transformed to a bigram set. A bigram set of a keyword
contains all the contiguous two letters appeared in the keyword. For example, the bigram set
of the keyword �network" is {ne,et,tw,wo,or,rk}. We use a 26×26-bit long vector to represent
a bigram set. The order of the bigrams in the vector is �xed for all keywords. Each element
in the vector represents one of the 262 possible bigrams. The element is set to 1 if the
corresponding bigram exists in the bigram set of a given keyword. This bigram vector based
keyword representation is not sensitive to the position of the misspelling, nor is it sensitive
to which letter it was misspelled to. Therefore, the distance between the vectors is based
on the number of the di�erent bigrams. The misspelled keywords �nwtwork", �nvtwork",
or �netwoyk" will all be mapped to a vector with two-element di�erence from the bigram
vector of the keyword �network". By this representation, a keyword can be misspelled in
many di�erent ways but still be represented in a vector that is very close to the correct one.
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We measure closeness (distance) using Euclidean distance, the well-known distance metric
for vector-type data items. The bigram vector representation is robust, inclusive, and the
key to enabling the use of LSH functions.

Bloom �lter representation of index/query

Bloom �lter has been used to build per document index for single keyword exact search
scenario before [33, 53]. However, these schemes use regular hash functions in Bloom �lter
so that they cannot support fuzzy keyword search. In our scheme, we adopt a special class
of hash functions - locality sensitive hash - to build the index. Because LSH functions hash
inputs between which the similarity is within a certain threshold into the same output with
high probability, our index supports fuzzy keyword search. Fig. 2.2 explains the process
using an example that a misspelled keyword �netword" in the user query is hashed into the
same bucket as the correctly spelled keyword �network" under the LSH functions. The �rst
step is to transform the keywords �network", �security" and �privacy" into vectors. Then two
LSH functions h1, h2 are used from the same hash family to generate the index. When a query
is submitted, i.e., �netword" and �security", the same LSH functions are used to generate
the trapdoor. Because the word �network" has the same hash value of the misspelled work
�netword" using LSH function ha,b, the misspelled query matches exactly with the index
containing the keywords �network" and �security" (encryption is not shown in the example,
and we use `· · · ' to represent all the 0s). As a result, a match will be found during the search
process. The use of the LSH functions in building the per-�le Bloom �lter based index is
the key to implementing fuzzy search. Therefore, indexes and queries now are represented
as vectors instead of words. However, to ease the presentation, we still use the terms index,
query.

Inner product based matching algorithm

The last step of our scheme is to �nd all the matches and sort them based on the matching
score. As shown in Fig. 2.2, the secure index of each �le is a Bloom �lter that contains all
the keywords in the �le. We generate the query vector in the same way as generating the
index vector.

First of all, we represent each of the query keywords as a bigram vector. Then we insert the
bigram vectors to a Bloom �lter which has the same length as the index and uses the same
LSH functions. Since the query vector and the index Bloom �lter have the same length, we
can computer the inner product of them. Note that we use the same LSH hash functions in
both the index Bloom �lter and the query vector. If every position of 1s in the query vector
also matches an 1 in the index Bloom �lter, the query matches with the index. As a result,
the inner product result is the largest value that it can be.

Lemma 1. The inner product between the index of a �le D and the query vector of a query
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Figure 2.2: Simpli�ed scheme illustration: fuzzy query support.

Q yields the largest value which is the number of 1s in the query vector if and only if the �le
D contains all the keywords in the query Q. 1

Proof. Recall that we use the same LSH functions to generate the query vector which has
the same length as the index Bloom �lter. If the �le D contains all the keywords in the
query Q, every keyword in the query will result in a match when querying the index Bloom
�lter, which means the every corresponding position of the 1s in the query vector is 1 as well
in the index Bloom �lter. As a result, the inner product yields the maximum value which is
the number of the 1s in the query vector.

If the inner product value between an index Bloom �lter and a query vector is the number
of the 1s in the query vector, then the every corresponding position of the 1s in the query
vector is 1 as well in the index Bloom �lter, which implies that all the keywords in the query
are contained in the �le.

Based on this property, the search can be done through a simple inner product of the index
vector and the query vector.

1For now, we do not di�erentiate the false positive from the true positive. We will discuss the result
accuracy later.
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2.3.2 Scheme construction

We present the detailed description of the proposed scheme in this section, with integrated
security and privacy mechanisms. Our scheme is based on symmetric cryptography and
consists of six polynomial-time algorithms:

• KeyGen(m): Given a security parameter m, output the secret key SK(M1,M2, S),
where M1,M2 ∈ Rm×m are invertible matrices and S ∈ {0, 1}m is a vector.

• IndexEnc(SK, I :) Generate two vectors {I ′, I ′′} where |I ′| = |I ′′| = |I|. For each
element ij ∈ I, 1 ≤ j ≤ |I|, set i′j = i′′j = ij where i′j ∈ I ′, i′′j ∈ I ′′ if sj = 1, sj ∈ S;
otherwise i′j = 1

2
ij + r, i′′j = 1

2
ij − r where r is a random number. Output EncSK(I) =

{MT
1 · I ′,MT

2 · I ′′} as the secure index.

• QueryEnc(SK,Q :)Generate two vectors {Q′,Q′′} where |Q′| = |Q′′| = |Q|. For each
element qj ∈ Q, 0 ≤ j ≤ |Q|, set q′j = q′′j = qj where q′j ∈ Q′, q′′j ∈ Q′′ if sj = 0, sj ∈ S;
otherwise q′j = 1

2
qj + r′, q′′j = 1

2
qj − r′ where r′ is another random number. Output

EncSK(Q) = {M−1
1 · Q′,M−1

2 · Q′′} as the trapdoor.

• BuildIndex(D, SK, l): Choose l independent LSH functions from the p-stable LSH
family H = {h : {0, 1}26×26 → {0, 1}m}. Construct a m-bit Bloom �lter ID as the
index for each �le D.

1. Extract the keywords set WD = {w1, w2, · · · }, wi ∈ {0, 1}26×26 from D.
2. For each keyword wi, insert it into the index ID using hj ∈ H, 1 ≤ j ≤ l.

3. Encrypt the index ID using IndexEnc(SK, ID) and output EncSK(ID).

• Trapdoor(Q, SK): Generate a m-bit long Bloom �lter for the query Q. For each
search keyword qi, insert qi using the same l LSH functions hj ∈ H, 1 ≤ j ≤ l into the
Bloom �lter. Encrypt Q using QueryEnc(SK,Q), and output the EncSK(Q).

• Search(EncSK(Q), EncSK(ID)): Output

MT
1 I ′ ·M−1

1 Q′ +MT
2 I ′′ ·M−1

2 Q′′

as the search result for the query Q and the document D, which can be shown as
equivalent to compute

I ′T · Q′ + I ′′T · Q′′ = IT · Q

2.3.3 Soundness of the scheme

Now we prove that the inner product of the encrypted index and the trapdoor is equivalent to
the inner product of the original index and the query. IndexEnc(SK, I), QueryEnc(SK,Q)
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are index and query encryption function respectively, which are tailored for our design from
the secure kNN scheme [51].

Proof. Recall the Search operation, the cloud server computes the following:

MT
1 I ′ ·M−1

1 Q′ +MT
2 I ′′ ·M−1

2 Q′′ (2.4)

= I ′T (M1 ·M−1
1 )Q′ + I ′′T (M2 ·M−1

2 )Q′′ (2.5)

= I ′T · Q′ + I ′′T · Q′′ (2.6)

=
∑

i′j∈I′,q′j∈Q′
i′jq
′
j +
∑

i′′j ∈I′′,q′′j ∈Q′′
i′′j q
′′
j (2.7)

Recall the split process in IndexEnc and QueryEnc, if sj = 1, sj ∈ S

i′j = i′′j = ij, q
′
j =

1

2
qj + r, q′′j =

1

2
qj − r;

otherwise,

q′j = q′′j = qj, i
′
j =

1

2
ij + r, i′′j =

1

2
ij − r.

Therefore, the Eq. (2.7) can be rewritten as∑
sj=1,j∈[1,m]

ij(q
′
j + q′′j ) +

∑
sk=0,k∈[1,m]

qk(i
′
k + i′′k)

=
m∑
j=1

ijqj = ITQ

The search result of our basic scheme re�ects whether a query Q matches with a �le D.

1. Our basic scheme returns the correct results for the exact keyword search. If the query
keywords Q ⊂ WD, the cloud server should include �le D in the result set. Recall that
we use the same l hash functions hj ∈ H, 1 ≤ j ≤ l when building the index and the
query. The positions which are set to 1 in the query Q are also set to 1 the index ID,
which implicates that the inner product reaches the maximum value that the query
can produce. Therefore, the �le D is included in the result set.

2. Our basic scheme returns the correct results with high probability for the fuzzy keyword
search. Suppose the keyword w ∈ Q is slightly di�erent from the keyword w′ ∈ WD,
i.e., d(w,w′) ≤ r1 where r1 is the distance threshold de�ned in the LSH function. If
hj(w) = hj(w

′), hj ∈ H, 1 ≤ j ≤ l for all the l LSH functions, the Search returns the
maximum value as the exact keyword search.
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If d(w,w′) ≤ r1 but hj(w) 6= hj(w
′), then we call it a miss, which lowers the inner

product. The probability of k misses happen is
(
l
k

)
(1 − p1)kpl−k1 , where p1 is the

probability de�ned in the LSH function. If d(w,w′) > r1, the probability that the LSH
functions hash them together is very low. Thus, our basic scheme returns the relatively
high inner product with high probability.

Discussion: The inner product of the secure index EncSK(ID) and the trapdoor EncSK(Q)
is the exact number of the matching bits in the Bloom �lter, which shows whether the query
keywords existed in the document. For security consideration, we follow several rules when
choosing the secret key SK inKeyGen and random numbers during the encryption. First, the
security parameter m must be greater than 1024 to prevent the cloud server from launching
brute force attacks. Second, the number of 0s should be equal to the number of 1s in the
split vector S to maximize the randomness introduced by S. Last, the random number r
used during the split process should be picked uniformly from R.

Dataset update: A particular advantage of our scheme over the previous multi-keyword
search schemes [38,44] is that our scheme can support dataset updates e�ciently, due to the
facts that our scheme does not require a pre-de�ned global dictionary and each document
is individually indexed. Therefore, dataset updates, such as �le adding, �le deleting and
�le modifying, can be done e�ciently, involving only the indexes of the �les to be modi�ed,
without a�ecting any other �les.

Hiding the access pattern: As we mentioned earlier, the access pattern, i.e., the inner
product result, can be hidden from the cloud. One intuitive method is to encrypt the elements
of the secure index and the trapdoor with a multiplicative homomorphic encryption such as
the ElGamal encryption algorithm [54]. Then the inner product results must be �rst returned
to the user for decryption, and the user can retrieve the documents through oblivious transfer
protocols.

2.4 Security and privacy analysis

Since a block cipher such as AES [4] is used to protect the �le content, there are only two
ways for the cloud to learn the privacy of the indexes and the queries. The �rst one is
through the secure index and the trapdoors. The other way is through the search process
and the access pattern which is the search result, i.e., the inner product results, in our case.
The access pattern in our scheme would leak the following information. First, it may leak
the number of the keywords in a query. Because we assume the design of our scheme is
publicly known except the secret key, the cloud could refer the number of the keywords in
a query from the inner product results. Second, the cloud can link trapdoors of the same
query by the search results. This is intuitive since the same query will always lead to the
same search results. Finally, the search results also reveal the document set that shares the
same query keywords. To conceal the leakage caused by the access pattern is another active
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research topic. It is worth mentioning that the existing access pattern protection schemes
such as oblivious transfer protocols can be applied to our scheme directly. Therefore, we
exclude the discuss of the privacy leakage caused by the access pattern in this section and
focus on the privacy leakage caused by the secure index and the trapdoors. We consider the
followings as the privacy.

1. The keywords in the index and the query,

2. index-linkability through the secure indexes, i.e., whether di�erent indexes can be
linked through shared keywords,

3. query-linkability through the trapdoors, i.e., whether a query can be linked with a
previous one.

We adopt the security games proposed in [33] to de�ne the security of the proposed scheme.
The �rst game is used to de�ne the index security. Intuitively, the security game tries to
capture the notation that the adversary cannot deduce the content information from the
secure index. When the adversary is given two keyword sets, i.e., V0, V1, the adversary's
challenge is to determine which keyword set is encoded into the secure index. If the problem
of distinguishing the index for V0, V1 is hard, then it is also hard to determine at least one
keyword that is not in both V0, V1. Therefore, the secure index reveals no useful information
to the adversary. We require the number of the keywords in V0, V1 to be equal, which is
possible by adding dummy keywords.

Setup
The challenger C creates a set of keywords W . Then C chooses a subset W? ⊂ W and
chooses a number of subsets fromW? as the �le collection. The collection of the subsets
is denoted as D. The challenger C �rst runs KeyGen to generate the secret key, then
creates the index for each subset di ∈ D using BuildIndex. Finally, C publishes the
keyword set W , W?, and the secure indexes ID to A.

Queries
A is allowed to request the trapdoor TQ for a query Q ⊂ W from C at most n times.

Challenge
At some point, A chooses a non-empty keywords set V0 ⊂ W? and another non-empty
keywords set V1 ⊂ W such that |V0 − V1| 6= 0, |V1 − V0| 6= 0, and |V0| = |V1|. The
restriction is that A has not requested the trapdoor for queries which contain any
keyword in V04V1 = (V0 − V1) ∪ (V1 − V0).

C chooses b R←− {0, 1} and generates the secure index for Vb
The challenge for A is to decide b. After the challenge is issued, A can continue request
trapdoor if the query number limit n is not reached.
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Response
A outputs a bit b′ as his guess of b. The advantage of A in winning the game is de�ned
as

AdvA = |Pr[b = b′]− 1/2|.

The second game is used to de�ne the trapdoor security. Because the index construction
is very similar to the trapdoor construction in the proposed scheme, we adopt the similar
security game to de�ne the trapdoor security. We need to ensure that the trapdoor does not
reveal useful information about the query keywords.

Setup
The challenger C creates a set of keywords W and chooses a number of subsets of W
as the �le collection. The collection of the subsets is denoted as D. The challenger C
�rst runs KeyGen to generate the secret key, then creates the index for each subset
di ∈ D using BuildIndex. Finally, C publishes the keyword set W and the secure
indexes ID to A.

Queries
A is allowed to request the trapdoor TQ for a query Q ⊂ W from C at most n times.

Challenge
At some point, A chooses two queries Q0, Q1 on which it wishes to be challenged and
sends them to C. The restriction is that A has not requested the trapdoor for neither
Q0, Q1.

C chooses b R←− {0, 1} and generates the trapdoor TQb
The challenge for A is to decide b. After the challenge is issued, A can continue request
trapdoor if the query number limit n is not reached.

Response
A outputs a bit b′ as his guess of b. The advantage of A in winning the game is de�ned
as

AdvA = |Pr[b = b′]− 1/2|.

We set a limit on how many times the adversary can access to the trapdoor algorithm. If
we set n = 0, the security game simulates the COA model. Similarly, if we set n = N where
N is a �xed integer, the security game simulates the KKA model, and if we set n = MAX
where MAX is the maximum number of possible queries, the security game simulates the
CKA model. Therefore, we can use the above games to de�ne the security of our scheme
under all three attack models. Based on the security game, we present the security de�nition
as follows.
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De�nition 2 (ε−indistinguishability). A searchable encryption scheme is ε−indistinguishable
secure if no probabilistic polynomial-time (PPT) adversary can win the above games with an
advantage greater than ε

The security de�nition is based on the semantic security in cryptanalysis proposed by Gold-
wasser et al. [55]. Based on the above security de�nition, we have the following claim.

Theorem 1. The secure index and the trapdoor of the proposed scheme satisfy the Def. 2
under the ciphertext-only attack model.

Proof. Under the COA model, the trapdoor generation algorithm access limit n is set to 0
which means the adversary has no query-trapdoor pair available. Assume that the adversary
can win the games using a polynomial-time algorithm A with AdvA. We show that we can
build an algorithm B that use A to distinguish the ciphertext of the secure kNN encryption
from a random function f : {0, 1}26×26 → {Rm,Rm} with AdvA.

B has access to a random oracle Of where f : {0, 1}26×26 → {Rm,Rm} is the unknown
function. The objective of B is to determine whether f is a random function or the secure
kNN encryption function. B substitutes the IndexEnc and the QueryEnc in our protocol
with the queries to the oracle and plays the security game using the algorithm A. B indicates
f is the random function if A outputs 0; otherwise, B guesses f is the secure kNN encryption
algorithm. If f is a random function, then Pr[b′ = 0] = 1/2. If f is the secure kNN encryption
algorithm, A has the advantage bigger than ε to win the game, i.e., |Pr[b′ = 1] − 1/2| > ε.
Therefore, B can determine f in Of using A.

However, according to [51], the secure kNN encryption algorithm uses two full rank matrices
and random split vector to obfuscate the ciphertext. As shown in the original paper, the
ciphertext is indistinguishable from the random vectors without the plaintext-ciphertext
pairs. Therefore, our original assumption is incorrect, which means there exists no such an
algorithm A.

While our secure index satis�es the security de�nition under the ciphertext-only attack model,
the cloud server may obtain additional information besides the secure indexes and the trap-
doors such as the keyword frequency and distribution among the dataset [44]. As a result, the
cloud server should be considered as an adversary under the known-keyword attack (KKA)
model in practice. A more powerful attack model is the chosen-keyword attack (CKA) model,
where the adversary has the access to the trapdoor generation algorithm. The adversary
could upgrade itself from a known-keyword attacker to a chosen-keyword attack through a
so-called signature linking attack according to [51]. Because the CKA model is stronger than
and inclusive of the KKA model, we will analyze the security of the scheme under the CKA
model only.

Our basic scheme does not satisfy the security de�nition under the CKA model. Recall
IndexEnc andQueryEnc. The encryption ensures the following property when we perform
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the inner product between an index I and a query vector Q.

IT · Q = I ′ · Q′ + I ′′ · Q′′

Because the adversary can access to Trapdoor, given an index, there are only m unknown
variables which are the elements of the index. Therefore, m di�erent queries are su�cient
to build an equation system to solve the variables. After revealing the index, the adversary
can map the Bloom �lter back to keywords since we assume the LSH functions used in our
scheme are known to the public.

2.4.1 Enhanced multi-keywords fuzzy search scheme

Because the adversary potentially can recover the encrypted indexes through linear analysis
under chosen-keyword attack model and further infers the keywords in the index, we introduce
an extra security layer, i.e., a pseudo-random function f , to secure the linkage between the
keywords and the Bloom �lter.

Our enhanced scheme contains the following four processes:

• KeyGen(m, s): Given a parameterm, generate the secret key SK(M1,M2, S), where
M1,M2 ∈ Rm×m are invertible matrices while S ∈ {0, 1}m is a vector. Given another

parameter s, generate the hash key pool HK = {ki|ki
R←− {0, 1}s}.

• BuildIndex(D, SK, l) : Choose l independent LSH functions from the p-stable LSH
family H and one pseudo-random function f : {0, 1}∗×{0, 1}s → {0, 1}∗. For each �le
D,

1. Extract the keywords set W = {w1, w2, · · · } from D.
2. Generate a m-bit Bloom �lter ID. Insert W into ID using the hash functions
{gi|gi = fki ◦ hi, hi ∈ H, 1 ≤ i ≤ l}.

3. Encrypt the ID with SK and return EncSK(ID) as the index.

• Trapdoor(Q, SK): Generate a m-bit long Bloom �lter. Insert the Q using the same
hash functions gi, i.e., gi = fki ◦ hi, hi ∈ H, 1 ≤ i ≤ l into the Bloom �lter. Encrypt
the Q with SK and return the EncSK(Q) as the trapdoor.

• Search(EncSK(Q), EncSK(ID)): Output the inner product< EncSK(Q), EncSK(ID) >
as the search result for the query Q and the document D.

Note that the extra security layer in the enhanced scheme does not a�ect the search result
because the pseudo-random functions are one-to-one mapping. In practice, we can use a
keyed cryptographic hash function, e.g. HMAC-SHA1 as our pseudo-random function.
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2.4.2 Security analysis of enhanced scheme

Before analyzing the security of our enhanced scheme, we �rst de�ne ε-pseudo-random func-
tion.

De�nition 3. A function G : {0, 1}? → {0, 1}n is a ε-pseudo-random function if

1. G is e�ciently commutable by a deterministic algorithm;

2. For all polynomial-time probabilistic algorithm A,

|Pr[RandAG(s) = 1]− Pr[RandAr = 1]| < ε

where s R←− {0, 1}?, r R←− {0, 1}n.

Theorem 2. The secure index in our enhanced scheme satis�es the security de�nition if the
pseudo-random function f used in the scheme is a ε-pseudo-random function.

It is worth mentioning that under the CKA model, the objective of the adversary is to recover
the keywords in the secure index.

Proof. Assume there exists an algorithm A that wins the security game with advantage
greater than ε. Now we build an algorithm B which has access to an oracle Of where
f : {0, 1}? → {0, 1}logm. We replace the evaluation of f in our enhanced scheme with B.
We show that B is able to determine whether f is a ε-pseudo-random function or a random
function. Our detailed proof is presented as follows.

Setup
The algorithm B picks a set S and sends it to the adversary A. A chooses a number
of subsets from S as the �le collection denoted as S? which is then returned to B.

After receiving S?, B runs KeyGen and generates the index of each subset using
BuildIndex. Finally, the secure index is published to A.

Queries
A is allowed to query B on a query x and receive the trapdoor Tx.

Challenge
After making some Trapdoor queries, A picks a non-empty subset V0 ∈ S?, and gener-
ates another non-empty subset V1 ∈ S such that |V0−V1| 6= 0, |V1−V0| 6= 0 and |V0| =
|V1|. Most importantly, A must not have queried for the trapdoor of any word in
V04V1 = (V0 − V1) ∪ (V1 − V0).
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A then sends V0, V1 to B. B chooses b R←− {0, 1} and generates the secure index for Vb
The challenge for A is to decide b. After the challenge is issued, A is not allowed to
query ∀x ∈ V04V1.

Response
A outputs a bit b′ as his guess of b.

If A outputs 0, then B guesses f used in the random oracle is a random function, denoted
as Bf = 0. Otherwise, B guesses f is a pseudo-random function, denoted as Bf = 1. Similar
with our previous proof, A has advantage greater than ε to win the security game, which
means

|Pr(Bf = 1)− Pr(Bf = 0)| > ε. (2.8)

Now we prove that if f is a random function, A guesses b at best with 1
2
probability. Because

the only di�erences between V0, V1 are V04V1, without loss generality, we assume there are
only two keywords x, y ∈ V04V1. A is not able to link x, y from the trapdoors it has already
queried because x, y have not been queried and are independent with others. Therefore, A
at best distinguishes x, y from the outputs of a random function with the probability 1/2.
Therefore, Eq. (2.9) can be written as

|Pr(Bf = 1)− 1/2| > ε, (2.9)

which means B can distinguish a ε-pseudo-random function from a random function. But
this is contradict with the de�nition of the ε-pseudo-random function.

Since the adversary can generate the trapdoors for any keywords the trapdoor linkability
cannot be protected under the CKA model. Due to the same reason, the index linkability
is leaked as well. However, it is worth mentioning that the leakage is unavoidable under the
CKA model.

2.5 Performance analysis

In this section, we analyze the performance of our scheme in terms of the search result
accuracy, i.e., false positive rate and false negative rate.

2.5.1 False positive rate

A false positive is that a query keyword q matches with an index I but q 6∈ I. It is well
known that the Bloom �lter will generate false positive when testing the existence of an
element. The general false positive rate of an m-bit Bloom �lter using l hash functions is
(1− e− lnm )l, where n is the number of the items inserted into the Bloom �lter. However, the
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above result is based on the assumption that all l hash functions used in the Bloom �lter
hash elements to one of the m array positions with a uniform random distribution. In our
scheme, because we use LSH functions to replace standard hash functions, the assumption
does not hold. Therefore, we cannot use the above result directly.

To analyze the false positive rate, we �rst need to study the distribution of the hash results.
Recall the form of the p-stable LSH function which is

ha,b(v) = ba · v + b

w
c.

Because w is �xed for every hash function and b will not change the shape of the probability
density function of the distribution, we focus on the probability distribution of the random
variable Y = a ·v where v is the bigram vector and a is the parameter of the LSH function.
For each element ai, 1 ≤ i ≤ n = 262, it is drawn independently from a p-staple distribution
D which is Gaussian distribution (p = 2) in our case. Without loss generality, we assume
D ∼ N (0, 1).

One property of choosing the 2-stable distribution D is that when v1, v2, · · · , vn are real
numbers and a1, a2, · · · , an are i.i.d. random variables drawn from D, the inner product of
v, a, i.e.,

∑
i viai, forms a new random variable(∑

i

|vi|2
)1/2

X (2.10)

where X follows distribution D as well. In our case, the bigram vector v is a 0 − 1 vector.
Therefore, equation 2.10 can be written as(∑

i

vi

)1/2

X (2.11)

Because we want to examine the hash result distribution over all possible elements, i.e.,
bigram vectors, we need to determine the distribution of

∑
i vi. Instead of uniformly dis-

tributed, the bigrams of English words approximately follow Zipf's distribution which is also
known as discrete Pareto distribution [56]. To simplify our analysis, we assume the appear-
ance of each bigram is independent2; otherwise the problem becomes impossible to analyze
due to the complicated correlation amongst all the bigrams. Based on the independence
assumption, we can model each element vi in the bigram vector as a Bernoulli trial with the
success probability pi. Then the summation

∑n
i=1 vi forms a Poisson binomial distribution

of which the mean and the variance is

µ =
n∑
i=1

pi, σ
2 =

n∑
i=1

(1− pi)pi,

2The appearance of each bigram is not independent because it is decided by the word. Furthermore, the
vector space in practice is much less than the theoretical one because the average length of an English word
is �ve letters.
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Figure 2.3: Probability density function of
∑n

i=1 vi.

respectively. We use the data from [57] to calculate the density function based on the
recursive method which is shown in equation 2.12. We draw the probability density function
in �gure 2.3.

Pr(K = k) =



n∏
i=1

(1− pi) k = 0

1

k

k∑
i=1

(−1)i−1Pr(K = k − i) · T (i) k > 0

(2.12)

where T (i) =
∑n

j=1

( pj
1−pj

)i
. Note that because taking root square is a one-to-one mapping,

it will not change the shape of the distribution curve. Therefore, with the distribution of
‖v‖, we can now analyze the distribution of the hash result of the 2-stable LSH function.

The hash result is a joint-distribution of two independent random variables, i.e., ‖v‖, X.
The density function will be the product of both individual density functions. We draw the
density function graph in �gure 2.4. Now we can use the hash result density function which
we denote as f(v, a) to analyze the false positive rate. For each element vi in the Bloom
�lter, it is not hashed into the jth array positions by l LSH functions is

l∏
k=1

(1− f−1
vi

(j, ak), (2.13)

where f−1 is the inverse of the density function f . Then after inserting n elements, the
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Figure 2.4: The distribution of the hash result, where the x-axis is the hash result, the y-axis
is the probability and the depth represents the di�erent ‖v‖.

probability that the particular position is still 0 will be

n∏
i=1

( l∏
k=1

(1− f−1
vi

(j, ak))
)
. (2.14)

Now it is clear that the false positive rate is(
1−

n∏
i=1

( l∏
k=1

(1− f−1
vi

(j, ak))
))l

(2.15)

False positive rate discussion

During the analysis, we made one assumption that the appearance of each bigram was inde-
pendent. As we stated previously, we made the assumption mainly due to the complicated
probability distribution of the bigram and the hash result. However, because the statistic
of the frequency of the English bigrams in [57] has already implied the relationship among
bigrams, our analysis which is based on their result can be considered as a close approxima-
tion of the false positive rate. In practice, we can tune the parameter w which determines
the number of buckets of a hash table to achieve lower false positive rate.
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2.5.2 False negative rate

A false negative is that a query keyword q does not match with an index I but ∃p ∈ I.
Unlike false positive, the Bloom �lter will not generate false negative. Therefore, for exact
keyword matching, our scheme will not generate false negative because the same keyword
will always be hashed to the same positions by the LSH functions. However, for the fuzzy
keyword matching, LSH functions may hash close keywords, i.e., d(p, q) < r1, to di�erent
locations, where r1 is the parameters de�ned in the (r1, r2, p1, p2)-sensitive hash functions.

A false negative occurs when there exists at least one hash function that hashes two close
keywords separately. As de�ned in the LSH, the probability of ha,b(p) = ha,b(q) is no less
than p1. Therefore, the false negative rate is no bigger than 1− pl1 in our case.

False negative discussions

Our design returns the documents with the highest inner product score, which works �ne
when no fuzzy keyword presents in the query. But when there are fuzzy keywords in the
query, some of the matched �les may be missed from the search result because the inner
products may be lowered due to one or more misses caused by LSH functions. This increases
the false negative rate. One alternative approach to reducing the false negative rate is to
add documents with the relatively high score into the result to reduce the false negative
rate. However, the alternative will increase the false positive rate. We notice the trade-o�
between the false positive rate and the false negative rate of our scheme. It is commonly
known that lowing the false positive rate will increase the false negative rate and vice versa.
Therefore, the data owner can tune the parameters, i.e. m, l, to speci�cally �t his accuracy
requirements. Additionally, [38,44] show that returning obfuscated �les instead of the exact
�les into the search result can improve the security.

2.6 Experimental results

2.6.1 Experiment settings

We use the recent 10 years' IEEE INFOCOM publication as our experiment dataset which
contains more than 3600 �les. We extract 5734 unique keywords in total. The average
number of the keywords in a paper is 147 while the minimum and the maximum are 112 and
175, respectively.

We use 2-stable LSH function with r1 =
√

3, r2 = 2 to build the index. The LSH functions
can tolerant less than 2 bigram di�erence. Based on the result of [52], the probability
of hashing two close bigram vector together(separately) is p1 = P (

√
3) = 0.558864(p2 =
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Figure 2.5: Index and trapdoor generation time.

P (3/4) = 0.285932) using

P (x) = −

(
1− e−x

2

2

)√
2
π

x
+ Erf

[
x√
2

]
,

where Erf is the error function. For the Bloom �lter, we choose the number of the hash
function as l = 10, and set the length of each Bloom �lter as m = 8000.

We implement our schemes on a desktop PC equipped with Intel Core i3 processor at 3.3
GHz and 4 Gb RAM, which has the same computation power with an Amazon EC2 M1
Medium instance. To generate a fuzzy keyword in a query, we randomly choose one letter
from a keyword and replace it with another letter. We allow at most two fuzzy keywords in
a query.

2.6.2 Computation e�ciency

Index and trapdoor generation

The index generation process is a one-time computation which contains two major steps:
the Bloom �lter generation and the encryption. During the Bloom �lter generation, the
computation mainly comes from the hash function calculation. Figure 2.5.(a) shows the
Bloom �lter generation time for the index and the trapdoor Bloom �lter on the number of
keywords in the document. The generation time increases linearly on the number of the
inserted keywords. The trapdoor generation time is very close to the index generation time
due to the identical procedure. The encryption time which involves the matrix multiplica-
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tions is showed in �gure 2.5.(b). The time cost of encryption increases linearly respect to
the number of the �les in the dataset.

Search over encrypted index

Figure 2.6: Search time for di�erent parameter settings.

The search operation executed at the cloud server side consists of computing the inner
product calculation for all the �les in the dataset. Figure 2.6.(c) shows the search time
grows linearly with the size of the �le set while the number of keywords in the query has
little impact as showed in �gure 2.6.(d). This is intuitive because the search process needs
to go over all the �les in the dataset before the cloud server can get the �nal result. The
inner product computation is only related to the length of the index, so the computation
time changes little in �gure 2.6.(d).

2.6.3 Result accuracy

We adopt the de�nitions of the widely used performance metrics, precision and recall to
measure the search result accuracy. Denote tp as true positive, fp as false positive and fn
as false negative, then the precision equals to tp

tp+fp
while the recall is tp

tp+fn
. To generate the

fuzzy queries, we randomly pick two keywords and modify them into the fuzzy keywords.

Figure 2.7.(a) shows the performance metrics of our scheme according to l. Note that there
is no recall for the exact matching because the false negative doesn't exist. One observation
is that precision is very low when k is small, i.e. 5% at l = 1. Because that multiple LSH
functions are used together to enlarge the gap between p1 and p2. So when the l is small,
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Figure 2.7: Search result accuracy for fuzzy keyword queries.

the gap is not big enough to distinguish the di�erent keywords, and most of the �les in the
dataset have been returned, which leads to high fp and low fn. The jump at l = 5 is due to
the gap between p1 and p2 increases exponentially respect to l. After a certain l, i.e., l = 8,
the precision remains at a high level, which is above 90% for the exact search and above
80% for the fuzzy search. Another observation is that the recall drops when increasing the
l. This is because that increasing the l will cause more false negatives. In general, the false
positive and the false negative cannot be improved at the same time.

Another important parameter is the number of the keywords in the query. Figure 2.7.(b)
shows the precision of the exact match decreasing slightly, from 100% to 96% while the
number of the keywords in the query increases from 1 to 10. This is reasonable because the
false positive generated by each keyword accumulates. But the precision for the fuzzy search
doesn't show the same pattern. It is slightly increased from 70% to 81% when the number
of the keywords in the query increases from 1 to 10. The reason is that the false positive
caused by the LSH functions contributes much more than the false positive introduced by
the Bloom �lter. As the portion of the fuzzy keywords decreases, the impact of the false
positive caused by the fuzzy keyword is reduced since the fuzzy keywords contribute less in
the search result.

2.7 Summary

In this chapter, we tackled the challenging multi-keyword fuzzy search problem over the
encrypted data. We proposed and integrated several innovative designs to solve the multiple
keywords search and the fuzzy search problems simultaneously with high e�ciency. Our
approach of leveraging LSH functions in the Bloom �lter to construct the �le index is novel
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and provides an e�cient solution to the secure fuzzy search of multiple keywords. Also,
the Euclidean distance is adopted to capture the similarity between the keywords, and the
secure inner product computation is used to calculate the similarity score so as to enable
result ranking. We proposed a basic scheme as well as an improved scheme to meet di�erent
security requirements. Thorough theoretical analysis and simulation were carried out to
demonstrate the suitability of our proposed scheme for the practical usage.



Chapter 3

Multi-keyword Dynamic Searchable

Encryption based on Inverted-index

As cloud computing is continuing gaining popularity, more and more data has been moved
into the cloud. To provide privacy protection while enabling data search functionality,
searchable encryption which builds a secure index is a promising technique to achieve the
security and functional objectives. In the searchable encryption literature, some of the
works [13,16,24�26,41,58�64] design their own secure index structures. On the other hand,
it is also possible to secure an existing index structure. Inverted index is one of the most
popular index structures used in plaintext search. It has been widely adopted in today's
search engines and databases. Comparing with constructing a secure index from scratch,
building a secure index based on the inverted index provides a more convenient transition
for a dataset that already has an inverted index to move into cloud with privacy protec-
tion as well as keyword search enabled. Several works [17�19] build their secure indexes
based on the inverted index. However, the following limitations con�ne these solutions to
be impractical in cloud computing. First of all, the keyword privacy is compromised once
a keyword is searched. As a result, the index must be rebuilt for the keyword once it has
been searched. Obviously, such a solution is counterproductive due to the high overhead
su�ered. Secondly, the conjunctive multi-keyword search is not supported in these schemes.
As the most popular query type, conjunctive multi-keyword query support is essential in
practical searchable encryption schemes. Thirdly, the existing schemes do not support index
updates when changes are made to the underlying document set, i.e., document addition
and deletion. At last, as the cloud may cheat the users to avoid expensive computation, the
users should be able to verify the correctness of the search result.

In this chapter, we propose a dynamic searchable encryption scheme based on the inverted
index. Our scheme features a probabilistic veri�cation process which allows users to verify
the correctness of the returned result. Compared with the existing scheme, our scheme
advances in both privacy-wise and functionality-wise. Privacy-wise, our scheme protects

35
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the search pattern as well as the access pattern through a series of novel designs based on
a private set intersection protocol. Functionality-wise, our scheme supports multi-keyword
queries and allows the data owner to update the secure index when the underlying document
set has been changed. The update protocol supports document addition and deletion while
preserving the index forward and backward privacy.

3.1 Related works

The searchable encryption problem is �rst studied by Song et al. in [23]. The proposed
scheme supports single keyword search without an index which means the server must scan
the whole document to perform the keyword search. Follow-ups on searchable encryption
usually build a secure searchable index such that certain trapdoors generated via secret keys
could match with the index to get the search result while the content of the index is hidden
from the cloud. Some of the works [13,16,24�26,41,58�64] design their own index structures
while others [17�19] build their secure searchable indexes upon the inverted index.

Among the self-designed secure indexes, Goh et al. [41] �rst proposed a Bloom �lter based
index which supports single keyword search. Chang et al. [58] used a vector index of which
the length is the same as the cardinality of the dictionary for each document. Other works
[13,16,24,26,60�64] focus on enrich the search functionality including result ranking, multi-
keyword search and fuzzy search. In public key settings, Boneh et al. [25] proposed the �rst
public key based searchable encryption scheme. Bellare et al. [59] introduced an as-strong-as-
possible privacy de�nition for the public-key based searchable encryption and constructed
a solution that satis�es their de�nition. One major disadvantage of using self-designed
indexes is that their index structures are not compatible with each other. As a result, it is
impossible to provide a service that includes all the useful functions. Additionally, for users
who have already built their inverted indexes for plaintext search, they need to re-generate
their encrypted searchable index which could be expensive if the data volume is huge.

Curtmola et al. [17] proposed the �rst inverted index based encrypted searchable index.
The document list for each keyword is encrypted and obfuscated into an array. However,
according to the design, the position and the content of the inverted list will be disclosed to
the cloud server once the keyword is searched. As a result, one keyword can only be searched
once before regenerating the index for the keyword. Based on [17], Kamara et al. [18]
put forward the concept of dynamic searchable encryption and constructed an encrypted
inverted index that supports dynamic operations such as document updates. Naveed et
al. [19] designed a primitive named blind storage upon which they implemented the encrypted
searchable index scheme of [17]. As these works are based on [17], they share the same
limitation. Moreover, these schemes do not support conjunctive multi-keyword search which
is the most common query type nowadays. Stefanov et al. [65] proposed a practical dynamic
searchable encryption scheme that preserves the forward privacy. Compared with their
scheme, ours provides a better privacy guarantee because our scheme protects the search
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...
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Dictionary

Document set

Figure 3.1: Inverted index illustration.

pattern and the access pattern. Additionally, our scheme provides both the forward and the
backward privacy for the index updates.

Our scheme falls into the public-key searchable encryption category which includes [25, 59,
60, 64, 66�68]. While those works all adopt a pairing-based cryptosystem to construct the
indexes, our scheme only requires multiplication and exponentiation, which are a magnitude
less expensive in computation comparing to pairing operations. Additionally, most of these
schemes did not provide an implementation evaluation of the algorithm performance (we
only found [60, 64] performed the experimental studies). In this work, we not only provide
a complexity analysis of our algorithm but also perform a simulation study to evaluate the
performance. The simulation results show that our scheme is suitable for practical usage
and is more e�cient than existing public-key based solutions.

3.2 Preliminary

3.2.1 Inverted index

Inverted index is one of the most popular data structures used in document retrieval systems
[69]. As shown in Fig. 3.1, an inverted index contains multiple inverted lists. One inverted list
Iωi corresponds to one keyword ωi which is contained in all the documents of Iωi . Additional
information can be included in the inverted list such as the numerical statistics of the keyword
(to support result ranking) and the positions of the keyword within a document (to support
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phrase search). The biggest advantage of using the inverted index comes from the search
e�ciency especially for a large volume of documents. The search operation is performed on
a much smaller document set which consists of the document IDs in the inverted lists of the
query keywords.

3.2.2 Private set intersection

We build our secure index based on Private set intersection (PSI) technique. PSI is a
cryptography primitive that allows two or more parties to calculate the intersection of their
sets privately. The output of the PSI reveals no additional information other than the
intersection itself. In [70], Freedman et al. proposed an e�cient PSI protocol, denoted
as the FNP protocol, based on an additive homomorphic encryption scheme. They use
the Paillier homomorphic cryptosystem [71] in their paper but any additive homomorphic
encryption that supports the following operations will work.

E(m1 +m1) = E(m1) +h E(m2) (3.1)

E(m1 ×m2) = E(m1)×h m2 (3.2)

where +h,×h are homomorphic addition and multiplication, respectively.

A brief description of the Paillier algorithm is shown in Fig.3.2. The Paillier cryptosystem
features 1) additive homomorphic, i.e. given the ciphertexts E(a1), E(a2), the ciphertext
of a1 + a2 can be calculated as E(a1 + a2) = E(a1)E(a2), and 2) one-time multiplicative
homomorphic, i.e. given the ciphertext E(a1), the ciphertext of a1 × a2 is E(a1)a2 .

Key generation: pk = (n, g), where n = pq, gcd(pq, (p− 1)(q − 1)) = 1, g ∈ Z∗n2

sk = (λ, µ), where λ = lcm(p− 1, q − 1), µ =
(
gλ mod n2−1

n

)−1
mod n

Encryption: To encrypt a message m to its ciphertext c
c = gm · rn mod n2, r ∈ Zn
Decryption: m = cλ mod n2−1

n
· µ mod n

Figure 3.2: The scheme of the Paillier homomorphic cryptosystem

The FNP protocol works as follows. 1) Alice represents her set A as a polynomial f(x) =∏
ai∈A(x − ai). Clearly, the set of the roots of f(x) = 0 is A. 2) Alice encrypts the

coe�cients of the polynomial using the additive homomorphic encryption and sends the
encrypted polynomial f ′(x) = Enc(f(x)) to Bob. 3) Bob calculate R : {rj = f ′(bj) +h bj}
with his data bj ∈ B. Then Bob sends R back to Alice. 4) Alice decrypts R as R′, and the
intersection A ∩ B is the intersection A ∩R′.
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3.2.3 Fast Fourier transform

We utilize Fourier transform to design our secure index update protocol. A polynomial can
be determined either by its coe�cients or a set of point-value pairs. The later is known as the
point-value representation of a polynomial. The discrete Fourier transform (DFT) converts
the coe�cient representation of a polynomial to its point-value representation. The inverse
DFT does the opposite. The fast Fourier transform algorithm [72] is an e�cient algorithm
to compute both the DFT and the inverse DFT with complexity O(n log n).

Given a polynomial f with degree d− 1

f(x) = ad−1x
d−1 + · · ·+ a1x+ a0,

we denote the coe�cient form of f is the collection of the coe�cients, i.e., {ad−1, · · · , a0} and
the point-value form of f as {f(1), f(w), · · · , f(wd−1)} where w ∈ R. We show the recursive
version of the FFT algorithm in Fig. 3.3. Given a polynomial f with degree d− 1

f(x) = ad−1x
d−1 + · · ·+ a1x+ a0,

we denote the coe�cient form of f is the collection of the coe�cients, i.e., {ad−1, · · · , a0}
and the point-value form of f as {f(1), f(w), · · · , f(wd−1)} where w ∈ R.

To simply the presentation, we assume d = 2k, but the FFT algorithm works on any d. The
FFT algorithm is based on the following observation. We denote fe as

fe(x) = a0 + a2x+ · · ·+ ad−1x
d/2,

and fo as
fo(x) = a1 + a3x+ · · ·+ adx

d/2.

It is easy to see that
f(x) = fe(x

2) + xfo(x
2).

Therefore, the original problem has been divided into two problems each of which is half the
size of the original one.

Mohassel proposed an e�cient algorithm for encrypted FFT in [73]. The scheme calculates
the FFT and the inverse FFT algorithms over a polynomial of which the coe�cients are en-
crypted with an additively homomorphic encryption algorithm such as the Paillier encryption
scheme. Because the Paillier encryption scheme can perform addition among ciphertext and
multiplication between a ciphertext and a plaintext. The above FFT algorithm can be easily
modi�ed to the encrypted FFT in Fig. 3.4.

As mentioned before, we can use the FFT to compute the inverse FFT. Therefore, the inverse
encrypted FFT is to compute

1/n×h EncFFTd,u−1(Enc(f)),

which can be used to calculate the coe�cient representation of a polynomial from its point-
value representation.
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FFTd,u(f) :
Input: d = 2k ∈ N, {ad−1, · · · , a0}, and u ∈ R which is the nth root of unity
Output: {f(1), · · · , f(ud−1)}

1. if d = 1 then return a0.

2. Compute re = {aj + aj+d/2}d/2j=0, and ro = {(aj − aj+d/2)uj}d/2j=0.

3. Compute FFTd/2,u2(re) and FFTd/2,u2(ro)

Figure 3.3: The recursive version of the FFT algorithm

EncFFTd,u(Enc(f)) :
Input: d = 2k ∈ N, {Enc(ad−1), · · · , Enc(a0)}, and u ∈ R which is the nth root of unity
Output: {Enc(f(1)), · · · , Enc(f(ud−1))}

1. if d = 1 then return Enc(a0).

2. Compute re = {Enc(aj) +h Enc(aj+d/2)}d/2j=0, and

ro = {Enc(aj)−h Enc(aj+d/2)×h uj}d/2j=0.

3. Compute EncFFTd/2,u2(re) and EncFFTd/2,u2(ro)

Figure 3.4: The recursive version of the encrypted FFT algorithm

3.3 System model

The system model that we consider in this work is same as the system in Chapter 2. There
are three entities in the system, a cloud server, a data owner and multiple users. The data
owner generates the secure index and outsources it along with the encrypted data into the
cloud. An authorized user submits a query request to the server in the form of a trapdoor
which he gets from the data owner through a secure channel. After receiving the trapdoor,
the cloud server matches the secure index with the trapdoor. Finally, the cloud server returns
the matching documents as the search result. It is worth mentioning that the data owner
can outsource the trapdoor generation process to a trusted entity to avoid staying online
all the time because the trapdoor generation process does not require the knowledge of the
dataset.

We model the cloud server as an honest-but-curious adversary. We assume that the users
need to be authorized before accessing the document set through keyword search. The
assumption is based on the fact that the access to the document collection is restricted
to authorized users in practical application of searchable encryption. Open access to the
document collection for all users including the cloud server will have no incentive for the
data owner to adopt searchable encryption to protect the content of the documents because
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the cloud server can learn the document content as search results through querying the �le
collection. Therefore, the users are fully trusted by the data owner. The access control
between the data owner and the users is out of the scope of this paper as it can be achieved
using existing protocols such as [64,74].

3.3.1 Threat model

A searchable encryption scheme should protect data owner's data privacy. The data privacy
violation could come from three aspects, i.e., the document set, the secure index and the
query trapdoors. In most scenarios, the data owner will encrypt his document contents
using a block cipher such as AES [4]. Therefore, it is safe to claim that the privacy of the
document set itself is well protected. So we focus on the privacy of the other two aspects,
i.e., the secure index privacy and the trapdoor privacy.

Index privacy: The index privacy is twofold. Firstly, the cloud server should not learn
the content of the index since the content of the index directly re�ects the content of the
documents. Secondly, the cloud server should deduce no information about the document
through analyzing the encrypted index. Such information includes 1) whether a document
contains the certain keyword(s), and 2) whether di�erent documents contain a common
keyword.

Trapdoor privacy: A trapdoor is generated for each query request to allow the cloud server
to search over the secure index. Intuitively, the trapdoor contains the query information but
in an encrypted form. Given a trapdoor, the cloud server should learn nothing about the
user's query from it. We consider the protection of the following information for trapdoor
privacy: the content of the query, the number of the keywords in the query, and the fact
that whether the same query has been searched before.

Access pattern refers to the accessed documents, i.e. the search results. As pointed out
by [75], the adversary could further deduce the private information of the index and the
trapdoor from the access pattern. To avoid such leakage, the search results of queries must
be indistinguishable from each other.

Forward privacy & backward privacy are properties of a dynamic searchable encryption
protocol. If the cloud server cannot learn whether the newly added document has the
previously queried keywords through the index update process, the update protocol preserves
the forward privacy. Backward privacy means the cloud server cannot perform queries over
the deleted documents.

3.3.2 De�nition and notation

We will use the following notations through the rest of the paper.
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• Σ = (σ1, σ2, · · · , σn) is a �nite set of document collection, where σi is the ID of the ith
document.

• Ω = (ω1, ω2, · · · , ωm) is a �nite set of the keywords collected from Σ. We refer Ω as
the dictionary.

• I = (Iω1 , Iω2 , · · · , Iωm) is an inverted index for the document set Σ and the dictionary Ω.
Each Iωi is a list which contains Σi = (σi1, σi2, · · · , σip) ⊂ Σ where ωi ∈ σij, 1 ≤ j ≤ p.

• Ĩ is the encrypted searchable index based on I.

• Q ⊂ Ω is a query request which is a subset of the dictionary.

• TQ is the trapdoor for the query Q.

• [n] means an integer set from 1 to n.

• |S| refers to the cardinality of S which can be a set, a list or a vector.

Before delving into the detail of our scheme, we �rst present the searchable encryption
de�nition given in [17,25].

De�nition 4 (Searchable Encryption Scheme). A searchable encryption scheme consists of
the following probabilistic polynomial time algorithms.

• Setup(k) takes a security parameter k as input. It outputs a master key MK.

• IndexGen(MK, I) takes as input the master key MK and an index I for the docu-
ment set Σ. It outputs the encrypted searchable index Ĩ.

• TrapdoorGen(MK,Q) takes as input the master key MK and a query Q. It outputs
the trapdoor TQ for the query.

• Query(Ĩ, TQ) takes as input the encrypted index Ĩ and the trapdoor TQ. It outputs
R ⊂ Σ as the search result.

A veri�able searchable encryption has an additional algorithm besides the above four algo-
rithms to allow the user to verify the correctness of the search result.

• Verify(R, τ) takes the search result R and the veri�cation token τ as inputs. It outputs
1 if R is correct; otherwise, it outputs ⊥.
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3.4 Inverted index based public-key searchable encryp-

tion scheme

We present our scheme in this section. We assume the data owner already has an inverted
index available for the document collection. Thus, we skip the process of building an inverted
index from a document set.

3.4.1 Overview

As discussed in section 3.2, an inverted index consists of two parts: 1) a keyword dictionary
and 2) a document list for each keyword. When performing a search over plaintext, the
server matches the query keyword(s) to the dictionary to locate the target document list(s)
�rst. Then the server gets the document candidates by integrating the document list(s)
together. Finally, the document candidates are returned to the user as the search result.

When searching over encrypted inverted indexes, we have to solve three challenging tasks. We
�rst need a privacy preserving method to determine the match between the query keyword(s)
and the dictionary. To conceal the search pattern, we need to select the related inverted lists
without letting the cloud server know which ones are retrieved. Finally, the search result
must not directly reveal the access pattern, i.e., the document IDs of the search result. We
address these challenges through a series of novel designs based on the FNP PSI protocol. To
make the presentation clear, we use a simple example in Fig. 3.5 to illustrate our scheme. 1)
The data owner transforms each inverted list to a polynomial as described in the algorithm.
The polynomial is represented using its coe�cients. To secure the index, the data owner
encrypts the coe�cients of each polynomial. The data owner also generates a dictionary
matrix MD. 2) When generating a trapdoor for a query, the data owner �rst calculates
PΩ/PQ, then adding randomness to hide the number of the keywords in the query. The
trapdoor is a 2-tuple. 3) When the cloud server receives the trapdoor, he calculates V as
shown in the �gure. Because PR(ωi) = 0 if ωi 6∈ Q, the result polynomial PR(x) only contains
the inverted lists corresponding to the query keywords. We now present the details of our
scheme as follows.

3.4.2 Scheme details

Each document list in the inverted index is a set of document IDs. We use a polynomial to
represent a document list in our scheme.

• Setup(k) takes a security parameter k as input. It outputs a key pair Ek, Dk for
the additive homomorphic encryption algorithm and two pseudorandom permutations
(PRP) f1, f2 as the master key MK.
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Figure 3.5: Scheme process illustration.

• IndexGen(MK, I) takes an inverted index I and the master key MK. It outputs a
secure index (Ĩ, P̃ ), where Ĩ is a vector with each element representing a document
list polynomial and P̃ is the summation of all the document list polynomials. Given
an inverted index, the data owner encrypts it as follows.

1. The data own encodes each keyword ωi ∈ Ω with f1 as tωi = f1(ωi). Each
document list Iωi for the keyword ωi is represented as a polynomial with two
parts.

(a) The �rst part represents the document ID set. A tag tσj = f1(σj) is generated
for each document ID. We use the polynomial to represent the set. Therefore,
the �rst part of the polynomial is∏

σj∈Iωi

(x− tσj).

(b) The second part contains the veri�cation tokens. For each veri�cation to-
ken τj, 1 ≤ j ≤ N where N is a �xed number, generate a random number
f2(ωi, τj) = ej. The second part of the polynomial is∏

1≤j≤N

(x− τj)ej .

(c) Combining the two parts together, the polynomial is

Pωi =
∏

σj∈Iωi

(x− tσj)
∏

1≤j≤N

(x− τj)ej
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2. The data owner calculates a polynomial vector as follows,

I = (Pω1 , Pω2 , · · · , Pωm)T

(a) The data owner calculate an addition polynomial P =
∑m

i=1 Pωi . We denote
the encrypted polynomial as P̃ = EncEk(P ).

3. The data owner encrypts the coe�cients of each polynomial Pωi using the public
key, and sets the encrypted index as Ĩ = EncEk(I).

4. The data owner constructs a dictionary matrix

MD =


tmω1

tmω2
· · · tmωm

tm−1
ω1

tm−1
ω2

· · · tm−1
ωm

...
...

. . .
...

tω1 tω2 · · · tωm

 .

5. Finally, the data owner outsources the matrix MD, the index polynomial vector
Ĩ and P̃ to the cloud.

• TrapdoorGen(MK,Q): Before generating the trapdoors, the data owner �rst gener-
ates a polynomial for the entire dictionary PD as

PD =
∏
ωi∈Ω

(x− tωi)

Note that this is a one-time cost.

When the data owner receives a query request Q from a user, he constructs a polyno-
mial PQ = PD/

∏
ωi∈Q(x−tωi). Then, the data owner generates P ′Q by padding random

terms to PQ.

P ′Q = PQ

m∏
q+1

(x− rj), q = |Q|, rj 6∈ f(Ω)

We represent P ′Q using its coe�cients (am, am−1, a1, a0). Finally, the data owner returns
the trapdoor which is a 2-tuple to the user as

TQ[1] = (Enc(am), · · · , Enc(a1)), TQ[2] = a0

The data owner also returns f2,{τi}Ni=1 as the veri�cation token.

• Query(Ĩ, TQ): After receiving the trapdoor, the cloud server �rst calculates

V = TQ[1] ·hMD = (v1, v2, · · · , vm).
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and
P̃R = V ·h ĨT +h TQ[2]×h P̃ (3.3)

where ·h is to perform matrix multiplication using homomorphic addition and multi-
plication.

and returns P̃R back to the user.

• Verify(P̃R, f2): After receiving the P̃R, the user �rst calculates PR = DecDk(P̃R).

1. The user factors PR and �nds the roots of PR = 0. The root set exclude the
veri�cation tokens is the document IDs of the search result.

2. For each veri�cation token τi, 1 ≤ i ≤ N , the user computes ei = min f2(ωj, τi), ωj ∈
Q. At last, the algorithm output 1 if PR can be divided by

∏
1≤i≤N(x− τi)ei ; oth-

erwise, ⊥.

Discussion. The number of the veri�cation tokens is pre-de�ned in our scheme, i.e., N . The
number N determines the probability of the cloud server being able to bypass the veri�cation
with an incorrect search result successfully. Obviously, the more veri�cation tokens, the
harder the cloud can defeat the veri�cation process. The exponent ei for the veri�cation
token τi also a�ects the veri�cation probability. On the other side, the veri�cation terms
in the index increase the degree of the polynomial which leads to additional storage and
computation overhead. Therefore, there is a trade-o� between the scheme e�ciency and the
scheme security when choosing the parameters. We delay the discussion of the trade-o� in
section 3.6.

3.5 Secure index update protocol

3.5.1 Basic idea

Because our scheme represents a document list Iω in the inverted index as a polynomial,
Pω =

∏
σi∈Iω(x − tσi) (we ignore the veri�cation tokens for simplicity), adding a document

σ? to Iω is to multiply Pω with (x − tσ?). In practice, we can calculate the multiplication
of two polynomials in a three-step method. First, we use Discrete Fourier Transform (DFT)
to convert the two polynomials to their point-value representations. Then we calculate
the point-wise multiplications between the two point-value representations. At last, we use
inverse DFT to transfer the point-value representation to its coe�cient representation which
is the product of the two polynomials. Therefore, we can utilize the secure FFT algorithm
to perform the document addition.

Similarly, to delete a document σ? from Iω is equivalent to divide Pω by (x − tσ?). The
polynomial division can be achieved through polynomial multiplication using the Newton
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iteration. Therefore, we can also use the secure FFT algorithm to perform the index update
for document deletion.

3.5.2 Document set update

We consider two operations of document update, i.e., the document addition and the docu-
ment deletion. The document modi�cation can be achieved through a two-step operation by
deleting the original document �rst and then adding the modi�ed document as new to the
document set. We focus ourselves on the discussion of the update on an existing document
lists because a new document list can be generated following the secure index generation
process.

Setup

De�nition 5 (Root of unity). Let R be a ring, n ∈ N≥1, and u ∈ R.

1. u is an nth root of unity if un = 1.

2. u is a primitive nth root of unity if it is an nth root of unity, n is a unit in R, and
un/t − 1 is not a zero divisor for any prime divisor t of n.

The following lemma says when primitive roots of unity exist in a �nite �eld Fq with q
elements.

Lemma 2. For a prime power q and n ∈ N, a �nite �eld Fq contains a primitive nth root
of unity if and only if n divides q − 1.

The lemma has been proved in [76]. We refer readers to Chapter 8.2 in [76] for detail.

To perform the FFT algorithm, we require that the domain of the additive homomorphic
encryption algorithm contains a primitive nth root of unity. However, as shown in Chapter
8.3 in [76], the FFT can be performed over any commutative ring. In practice, most additive
homomorphic encryption algorithms satisfy the requirement. To simply our description, we
present our protocol based on an additive encryption algorithm of which the domain of the
plaintext contains a primitive nth root of unity. We denote the degree of a polynomial f as
degf through the remaining content.

Adding a document

When adding a document σ, we �rst extract all the keywords in the document, denoted as
Ωσ. Then for each keyword ω ∈ Ωσ, we add σ into the corresponding document list, i.e.,
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Iω. Recall that each of the document lists of our secure index is represented as an encrypted
polynomial. To simplify our presentation, we denote the polynomial of the document list Iω
as f(x) and represent the newly added document using the polynomial g(x) = x− tσ, where
tσ is the document tag for σ. The document addition protocol works as follows.

• The data owner performs the following computation.

1. Calculate
{f(1), f(u), · · · , f(un)},

and
{g(1), g(u), · · · , g(un)},

where u is the primitive nth root of unity, and n > degf + degg.

2. Compute a new keyword tag t′ω for the document list Iω.

3. The data owner calculates

Πf ·g = {f(1)g(1), f(u)g(u), · · · , f(un)g(un)}.

4. Send Πf ·g, u, and t′ω to the cloud.

• The cloud performs the following computation.

1. The cloud runs the encrypted FFT algorithm over (Πf ·g, u) to compute the new
encrypted polynomial f ′(x).

2. The cloud updates P̃ as P̃ −h f(x) +h f
′(x) and replaces f(x) with f ′(x) in Ĩ.

3. The cloud replaces tω with t′ω in MD.

It is worth mentioning that the algorithm returns a n-length vector to represent the result
polynomial. Although n > degf +degg, the coe�cients of xi for all i that n ≥ i > degf +degg
will be 0. It is known that the FFT algorithm can be used to calculate the inverse FFT,
which we brie�y show in the appendix. Therefore, the cloud is able to calculate the updated
document list.

Deleting a document

Deleting a document σ is to perform a polynomial division. We utilize the Newton's iteration
trick to convert polynomial division to polynomial multiplication. The same technique has
also been used in [73,77].

Given a polynomial f(x), we de�ne its reverse revdf(x) = xdf(1/x) where d is the degree
of f . It is easy to see that

revdf(x) = a0x
d + · · ·+ ad−1x+ ad.
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We focus on the case where the dividend polynomial g(x) = bkx
k + · · ·+ b0 of degree k < d

is a monic polynomial, i.e., bk = 1. Then we have

f(x) = q(x) · g(x) + r(x)

and
revdf(x) = revd−kq(x)revkg(x) + xd−k+1revk−1r(x).

We can re-write the above equations as

revdf(x) ≡ revd−kq(x)revkg(x) mod xd−k+1,

and
revd−kq(x) ≡ revdf(x)rev−1

k g(x) mod xd−k+1,

where rev−1
k g is the inverse of revkg. Because g is monic, rev−1

k g exists. Now we have convert
a polynomial division to a polynomial multiplication. Note that we are only interested in
the quotient. The document deletion protocol is as follows.

• The data owner performs the following computation.

1. First compute
{revdf(1), revdf(u), · · · , revdf(un)},

and
{rev−1

k g(1), rev−1
k g(u), · · · , rev−1

k g(un)},
where u is the primitive nth root of the unity.

2. Then calculate Πrevdf ·revkg as

{revdf(1) · rev−1
k g(1), · · · , revdf(un) · rev−1

k g(un)}.

3. Compute a new keyword tag t′ω for the document list Iω.

4. Finally send Πrevdf ·rev−1
k g, u, and t

′
ω to the cloud.

• The cloud performs the following computation.

1. The cloud runs the encrypted FFT algorithm over (Πrevdf ·rev−1
k g, u) to compute

the new encrypted polynomial f ′(x).

2. The cloud updates P̃ as P̃ −h f(x) +h f
′(x) and replaces f(x) with f ′(x) in Ĩ.

3. The cloud replaces tω with t′ω in MD.

3.6 Security and performance analysis

In this section, we �rst prove the correctness and the security of our scheme. Then we
analyze the computation performance of the proposed scheme.
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3.6.1 Correctness

In our scheme, we represent each document list as a polynomial. When the context is clear,
we may use document list to refer the polynomial.

Theorem 3 (Completeness). Our scheme returns all the documents that contain the query
keyword(s).

Proof. We represent the query trapdoor as a polynomial P ′Q(x) so that the roots of P ′Q(x) = 0
are the tags of the keywords except those in the query, i.e. {x|x = tωi , ωi 6∈ Q}.

Then, the result polynomial PR which is

V ·h ĨT +h TQ[2]×h P̃ (3.4)

=
∑

viPωi + a0

∑
Pωi (3.5)

=
∑

(vi + a0)Pωi (3.6)

=
∑

P ′Q(ωi)Pωi (3.7)

(3.8)

Clearly, PR consists of the query-related inverted lists only. The roots of equation 3.4 actually
is ∩ωj∈QΣωj , which is the set of the documents that contain all the query keywords. Therefore,
the user will fetch the correct documents from the cloud.

Veri�cation process. Because the veri�cation tokens are included in every document list
polynomial, VToken =

∏
1≤i≤N(x − τi)ei must be a common factor for all the polynomials

Pωi , ωi ∈ Q where ei = min f2(ωj, τi). Clearly, VToken can divide the search result polyno-
mial PR if Pωi is included in PR. On the other hand, if PR is divisible by VToken, we have
the following claim.

Theorem 4. Given a negligible number ε, there exists a number m such that the probability
of an adversary to forge a veri�cation token VToken that can divide PR is bounded by ε.

Proof. Each veri�cation token τi, 1 ≤ i ≤ m is selected uniformly from a �nite �eld with
size M . Because f2 is a pseudo-random function, the distribution of the exponent ei for
each keyword-token pair (ω, τj) is also uniform. We denote N as the size of the range of f2.
Therefore, the probability of the cloud to forge a VToken for a query with q keywords to
bypass the veri�cation process is

Prforge =
(M −m)!

M !
· 1

Nm
.

Because Prforge decreases exponentially as m increases, we can �nd a m such that Prforge ≤
ε.
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On the other hand, it is possible that two search results PR1 , PR2 share a same VToken. Since
PR1 , PR2 correspond to queries Q1, Q2, respectively, we analyze the probability based on the
query. There are two cases.

• Q1 ∩Q2 = ∅. Each (x− τj)ej , 1 ≤ j ≤ m, is shared by PR1 , PR2 . The probability of two
search results has the same ej for τj is

q1q2
N2 , where q1 = |Q1|, q2 = |Q2|. Therefore, the

probability of two search result share a same VToken is

PrQ1∩Q2=∅ =
(q1q2

N2

)m
• Q1 ∩ Q2 6= ∅. We denote Q1 ∩ Q2 = 4Q. Thus we can represent Q1 = 4Q + Q̃1 and
Q2 = 4Q+ Q̃2. There are m veri�cation tokens in VToken. If Q1, Q2 generate a same
VToken, we assume m1 veri�cation tokens come from 4Q and the remaining m2 come
from Q̃1, Q̃2.

1. If there is one ei come from 4Q, there exists one keyword in 4Q that generates
the smallest exponent for τi among all the query keywords, i.e., Q1 ∪ Q2. The
probability of m1 veri�cation come from 4Q is

Pr4Q =

(
1

N

N∑
x=1

(
N − x
N

)(q̃1+q̃2)
)m1

2. For the remaining m −m1 veri�cation tokens, we can re-use the equation in the
�rst case.

PrQ̃1∩Q̃2=∅ =

(
q̃1q̃2

N2

)m−m1

Therefore, the probability of the second case is

PrQ1∩Q2 6=0 =
m∑

m1=1

Pr4Q · PrQ̃1∩Q̃2=∅

Although there is no close form for this case, it is obvious that PrQ1∩Q2 6=0 also decreases
as m increases.

3.6.2 Security analysis

Before we prove the security of our basic scheme, we �rst review the de�nition of semantic
security.
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De�nition 6 (Semantic security). A cryptosystem is semantically secure if given the cipher-
text of a message Msg, any probabilistic polynomial-time algorithm (PPTA) cannot deduce
any partial information about Msg computationally with a high non-negligibly probability.

Similar to the semantic security requirement, we need to ensure that the secure index does
not reveal any information about the keywords. The security of the scheme can be de�ned
through the following game which is played between a challenge and an adaptive adversary
who can obtain trapdoors for any query of his choice. We follow the security de�nition of
the searchable encryption in [25]. The following game is used to de�ne the security.

Setup
The challenger C creates a set of keywords Ω. Then C chooses a number of subsets from
Ω as the �le collection. The collection of the subsets is denoted as Σ. The challenger
C �rst runs Setup to generate the key, then creates the secure inverted index for Σ
using IndexGen. Finally, C publishes the keyword set Ω and the secure indexes Ĩ to
the adversary A.

Queries
A is allowed to request the trapdoor TQ for a query Q ⊂ Ω from C. A can perform
Query using TQ over the secure index to get the P̃R.

Challenge
At some point, A chooses two non-empty queries V0, V1 ⊂ Ω such that |V0 − V1| 6=
0 and |V1 − V0| 6= 0. Then send them to C.

After receiving V0, V1, C chooses b
R←− {0, 1} and generates the trapdoor Tb for Vb. A is

allowed to use Tb to get the search result P̃R for Tb.
The challenge for A is to decide b. After the challenge is issued, A can continue request
trapdoor.

Response
A outputs a bit b′ as his guess of b. The advantage of A in winning the game is de�ned
as

AdvA = |Pr[b = b′]− 1/2|.

De�nition 7 (Semantic security of searchable encryption). A searchable encryption scheme
is semantic secure if no probabilistic polynomial-time adversary can win the above game with
non-negligible advantage.

The underlying security signi�cance of De�nition 7 is that any probabilistic polynomial-
time adversary (PPTA) cannot determine any partial information of the documents with
the encrypted index and the trapdoors. We assume the probabilistic additive homomor-
phic encryption scheme is a semantic secure cryptosystem. Many additive homomorphic
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encryption algorithms satisfy the above assumption, for example, the Paillier homomorphic
encryption [71] and the ElGamal [54]. Now we are ready to prove the security of our scheme.

Theorem 5 (Security). Our inverted index based public-key searchable encryption scheme
is semantically secure if the underlying additive homomorphic encryption algorithm is a
semantic secure cryptosystem.

Proof. The security of our scheme relies on the semantic security of the additive homomor-
phic encryption algorithm. Assume that the a polynomial-time algorithm A can win the
game with a non-negligible advantage. We can construct an algorithm B with A to break
the semantic security of the encryption algorithm under the random oracle model. The al-
gorithm B has the access to a random oracle Of where f is either a random function or the
additive homomorphic encryption algorithm. We replace the encryption in our scheme with
the evaluation of B. Then we construct the following game.

Setup
The algorithm B creates a set of keywords Ω. Then B chooses a number of subsets from
Ω as the �le collection. The collection of the subsets is denoted as Σ. The challenger
B �rst runs Setup to generate the key, then creates the secure inverted index for Σ
using IndexGen. Finally, B publishes the keyword set Ω and the secure indexes Ĩ to
the algorithm A.

Queries
A is allowed to request the trapdoor TQ for a query Q ⊂ Ω from B. A can perform
Query using TQ over the secure index to get the P̃R.

Challenge
At some point, A chooses a non-empty query V0 ⊂ Ω? and another non-empty query
V1 ⊂ Ω such that |V0 − V1| 6= 0 and |V1 − V0| 6= 0.

B chooses b R←− {0, 1} and generates the trapdoor for Vb
The challenge for A is to decide b. After the challenge is issued, A can continue request
trapdoor.

Response
A outputs a bit b′ as his guess of b.

If A outputs 0, then B guesses f used in Of is a random function, denoted as Bf = 0.
Otherwise, B guesses f is the encryption algorithm, denoted as Bf = 1.

Clearly, if f is a random function, the probability Pr[Bf = 0] = 1/2. If f is the encryption
algorithm, B has the same probability asA to output 1. Therefore, B has the same advantage
to distinguish a semantic secure encryption algorithm from a random oracle as A to win the
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security game. However, according to the de�nition of the semantic security cryptosystem,
B does not exist. Therefore, there exists no algorithm A to win the security game with
non-negligible probability.

Discussion. Linkability of the trapdoors: In TQ[1], the coe�cients are encrypted. In TQ[2],
a0 is not encrypted. Because of the random terms in the trapdoor, a0 will be di�erent each
time. As a result, a plaintext query will be transferred to di�erent trapdoors every time due
to the introduced randomness.

Forward & backward privacy

We denote an update as up = (op, σ, ω) where op ∈{add,del} is the operation, σ is the
newly added document ID, and ω ∈ Ω is used to identify the targeted document list of the
operation.

Because the cloud server performs the same operation for both document addition and
deletion, i.e., computing the inverse EncFFT, it is impossible to learn the op for the cloud
server. Our update protocol also hides the document ID tag, i.e., tσ, from the cloud server.
However, since our update protocol performs on each document list, it leaks the keyword
tag set of which is contained in the updated document.

Forward privacy. As we update both the document list and the keyword tag, the previously
searched trapdoors cannot apply to the updated secure index. Therefore, our update protocol
preserves the forward privacy.

Backward privacy. The later query result, i.e., the result polynomial, will not contain the
deleted document term because the delete process remove the term from the secure index.
Therefore, our update protocol preserves the backward privacy.

3.6.3 Complexity analysis

In the Setup phrase, the data owner needs to generate the key pair for the additive homo-
morphic encryption algorithm. It takes two exponentiations plus the computation of �nding
the prime numbers.

In the IndexGen process, there are m polynomials need to be encrypted. Each of them has
the degree of L. Since the polynomial is represented using its coe�cient, we need m × L
encryption operations in total.

In the TrapdoorGen process, the data owner needs to perform: 1) a polynomial division which
can be e�ciently done through the synthetic division method and 2) m exponentiation to
encrypt TQ[1].
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Table 3.1: Complexity comparison among the existing schemes

Setup Index Trapdoor Search

Baek et al. [66] M nm(E+M+P+2e) P+M nm(M+e)

Rhee et al. [67] 2E nm(2E+P+e) 2E+2P nm(2E+P+e)

Zhao et al. [68] M nm(4M+P+2e) 3M+4P+e nm(2M+P+4e)

Li et al. [60] 9mM n(m2+3m)M (m2+3m)M (m+3)e

Sun et al. [64] (3n+1)E+e m(n+2)E (2n+1)E ne+nM+E

Ours 2E mLE mE (m2 + L)E+LM

m is the size of the dictionary, n is the size of the document set, L is a constant decided by the
dataset.

In the Query process, the cloud server needs to perform m2 exponentiation to calculate V ,
m× L exponentiations and L multiplications to calculate P̃R.

Comparison with the existing public key based schemes: We compare the compu-
tational complexity of our scheme with the existing public-key based schemes [60,64,66�68]
in Table 3.1. Let E denote an exponentiation operation, M denote a multiplication and e
denote a pairing operation and P denote a map-to-point hash function which hashes any
input to the bilinear paring group G1 (such operations are not e�cient).

In most cases, the number of the documents are greater than the number of the keywords, i.e.
n � m. Pairing operations are far more expensive than multiplication and exponentiation.
The comparison table shows that the computation overhead of our scheme is light-weight. It
is worth mentioning that although our scheme requires more computation when generating
a trapdoor than other schemes, we support multi-keyword conjunctive search while none of
them has this functionality.

3.6.4 Document update computation

The update computation consists of the owner part computation and the server part com-
putation. The owner needs to perform n multiplications to compute the product of the
two polynomials using their point-value representation. The owner also needs to encrypt
the product of the polynomials before sending it to the server. The encryption takes O(n)
exponentiation. On the server side, the computation is carried out over the ciphertext. The
complexity of EncFFT is O(n log n) regarding exponentiation operation.
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3.6.5 Simulation

We evaluate the performance of our proposed scheme through a series of simulations. We
choose the Paillier homomorphic encryption algorithm to implement our scheme. We imple-
ment the prototype of our scheme using JAVA on a Windows 8.1 PC with Intel Core i3 3.3
GHz and 4 Gigabyte memory.

Dataset: we use two data sets to perform the evaluation. The �rst data set is a simulated
data set and we use part of the Enron spam email data set as the second one. The Enron
email data contains a large number of documents. The statistic of the Enron data set is
shown in Table 3.3 (the keyword set excludes the stop words and has been processed using
Porter's stemming algorithm).

Inverted index encryption

There are four factors that a�ect the computation time of the index generation process, i.e.,
the size of the dictionary, the length of each document list, the number of the veri�cation
tokens, and the range of the exponent for each veri�cation token. Thus, we evaluate the
performance of the proposed scheme under four di�erent parameter settings. Denote |Ω| as
the size of the dictionary, N as the size of the veri�cation tokens, range(f2) as the range of
the veri�cation exponent, and L as the length of the document list. The parameter setting
for each simulation is as follows.

• Size of Dictionary. Fix N = 50, range(f2) = 100, 500 ≤ L ≤ 1000. Increase |Ω| from
1000 to 5500.

• Size of Veri�cation Token. Fix |Ω| = 5000, range(f2) = 100, 500 ≤ L ≤ 1000. Increase
N from 10 to 100.

• Range of Veri�cation Exponent. Fix |Ω| = 5000, N = 50, 500 ≤ L ≤ 1000. Increase
range(f2) from 100 to 190.

• Size of Document List. Fix |Ω| = 5000, N = 50, range(f2) = 100. Increase the upper
bound of L from 1000 to 1900.

We show the computation time with di�erent parameters in Fig. 3.6. The computation of the
index generation process mainly comes from the encryption of the polynomial coe�cients.
As shown in the �gure, the major factor that a�ects the index generation computation time is
the size of the dictionary because most of the coe�cients are generated by the document lists.
Increase the size of the dictionary is the same as increase the number of the document lists.
The number of the veri�cation tokens and the range of the veri�cation exponent also have
a great impact on the index generation computation as these factors increase the number of
the coe�cient exponentially. On the other hand, increasing the length of the document list
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Figure 3.6: Index generation time for di�erent parameter settings

only has a small impact because the increase takes only a very small portion compared with
the total number of the coe�cients.

Trapdoor generation

The trapdoor generation process involves encryption of the query polynomial only. Therefore,
the degree of the query polynomial is the only factor that a�ects the computation time. As
we construct the query polynomial in the way that the degree of it is solely determined by
the size of the dictionary, we show the trapdoor generation cost respect with the dictionary
size in Fig.3.7.

Search computation

The search time is shown in Fig.3.8. The computation is a�ected mainly by the size of
the dictionary because of the matrix multiplication. On the other hand, the length of each
document list also impacts the search time as the longer the document list is, the more
homomorphic multiplications are needed. The search computation can be further reduced if
multiple threads are used by the cloud server which also has more computation power than
our proof-of-concept environment.
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Figure 3.8: Search time for di�erent parameter settings

Update computation

In this simulation, we update the entire secure index to present the worst case computation
cost. The update process involves both the data owner and the cloud server. We show the
computation cost at the user side and the server side in Fig. 3.9 and Fig. 3.10, respectively.
At the user side, the computation involves a �xed number of multiplications of two poly-
nomials in the value-point form. Since the number of multiplication is �xed, i.e., n (we set
n=4096 in our simulation, which is large enough to handle all document list update), the
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Figure 3.9: Update computation at user side
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Figure 3.10: Update computation at server side

computation is mainly determined by the size of the document dictionary. Because the input
of the server-side computation is the output of the user-side computation, the server-side
computation is mainly determined by the number of the user-side outputs, i.e., the number
of the dictionary.
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Simulation results using the Enron data set

In this simulation, we use Lucene [5] to generate the inverted index for the Enron data set.
The inverted index contains 5094 document lists. The total length of the document lists is
230618. The total length of the secure index, i.e., the encrypted document lists, is 12878368.
We show the computation cost for the Enron data set in Table 3.2.

Table 3.2: Computation on Enron data set

# of Doc Index generation Update: user-side Update: server-side Search

5097 241.6 s 177.2 ms 395.5 ms 24 s

Table 3.3: Dataset Statistic

# of Documents 2000 4000 6000 8000 1000 12000

# of Keywords 1517 2506 3253 3934 4572 5097

3.7 Summary

In this chapter, we proposed a novel construction of a public-key searchable encryption
scheme based on the inverted index. Compared with the existing works, our scheme achieves
stronger privacy guarantee by lifting the one-time-only search limitation, protecting the
search pattern and the access pattern, providing both forward privacy and backward privacy
for secure index update. The proposed scheme also advances in functionality. First of all, the
proposed scheme supports genetic multi-keywords conjunctive search which is left unsolved
in the existing schemes. Secondly, the data owner can update the secure index when the
underlining document set has changed. Finally, the proposed scheme allows the user to
verify the correctness of the search result returned from the cloud server. Compared with
the exiting public-key based schemes that heavily rely on expensive pairing operations, our
scheme is more e�cient by using only multiplications and exponentiations. We validated
the practicality of the proposed scheme by implementing a prototype of the scheme and
evaluated the performance using the Enron email dataset. The results showed that our
scheme features reasonable index construction time for a large document set. Furthermore,
our scheme scales well when handling large document set, which makes our scheme ideal for
the real-world scenario.



Chapter 4

Privacy-Preserving Pattern Matching

over Encrypted Genetic Data in Cloud

Computing

Personalized medicine has been gaining popularity and is recognized as the health care model
in the future. In this model, genetic testings are employed for selecting e�ective and optimal
treatment based on the context of a patient's genetic information, such as DNA sequence,
molecular, and cellular analysis. Compared with the traditional practice which takes a
�one-size-�ts-all� approach, personalized medicine is moving us to more precise, predictable
and powerful health care which is customized for each patients. According to NIH [78],
genetic testing, which could be used as diagnosis testing, prenatal testing, or predictive
testing, is to search the existence of certain gene mutations over a patient's genetic data.
For instance, certain mutations in the genes BRCA1 and BRCA2 are related to high risk of
breast cancer [8]. By testing the existence of those gene mutations in a patient's DNA, early
intervention measures can be taken to prevent breast cancer from development. Due to the
massive storage and computation requirement, many genetic services including personalized
medicine are outsourced to or provided by third-party service providers, for example, Google
Genomics1. Recently, architectures of performing genetic computation in cloud computing
have been proposed in [79,80].

While it is promising to have customized health care for each, there are many security and
privacy risks which could thwart its wide adoption in cloud computing. The main concern is
whether the patient's genetic information is exposed to unauthorized parties during testings,
especially when the testings are performed by a third-party such as cloud providers. In reality,
personal genomics companies enforce their privacy policies mainly relying on legislation
such as Health Insurance Portability and Accountability Act (HIPAA). However, such an
approach is ine�ective against information leakage caused by system failures or hackers. On

1https://cloud.google.com/genomics/

61
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the other hand, de-identi�cation, which removes or marks personal identi�ers, is another
widely adopted privacy-preserving technique. Unfortunately, many researchers (e.g. [11,12])
have found that attackers can re-identify participants using genetic data alongside with some
public records.

A feasible and promising approach to protect the genetic data privacy is to encrypt the
data before outsourcing. A challenging task is to perform genetic test over the encrypted
data. An authorized party, such as doctors, should be able to perform genetic test over the
encrypted DNA data while any revealed information such as the test result should leak no
information about the patient to third parties such as cloud providers. Although the fully
homomorphic encryption (FHE) [81] is a solution of the problem, its e�ciency is still far
from practical. Searchable encryption which builds secure indexes based on keywords is not
applicable either because there are no explicitly given keywords in DNA sequences. Existing
secure pattern matching schemes [82�86] are interactive protocols. The protocols assume
the authorized party is remaining online during the entire testing process, which imposes
usability and scalability issues. On the other hand, the communication overhead incurred by
the interaction limits the practicability of those schemes. Another scheme [87] has limited
privacy guarantee due to the leakage of the search pattern.

In this chapter, we aim to study the privacy-preserving genetic testing in cloud computing
and focus on communication e�ciency and strong privacy guarantee. To achieve genetic
testing over the encrypted data while providing strong privacy guarantee, we adopt predicate
encryption (PE) as the main cryptographic primitive. Using PE, the decryption of the
ciphertext depends on not only the secret key but also a pre-de�ned function. However, to
integrate PE into a privacy-preserving sequence matching scheme is nontrivial. To design
a secure and well-functioning scheme, there are three important design challenges, i.e., 1)
data structures to support sequence matching over encrypted data, 2) security and privacy
mechanism to prevent information leakages such as search pattern and result privacy, and
3) protocol design to achieve e�cient communication.

4.1 Related Work

Privacy-preserving computation over genetic data is always considered under two di�erent
system models. The �rst model assumes each party possesses its data and would like to
compute certain functions over its input along with other parties' data. Secure multi-party
computation is the main technique used under the �rst model. The second model is the
secure outsourcing of computation model. In this model, the genetic data is stored in a
semi-trusted party, usually in a cloud. The computation task is mainly carried out by the
cloud server over encrypted data. We review the related works under each system model
respectively.
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4.1.1 Secure multi-party computation model

Atallah and Li [82] proposed a privacy-preserving protocol to compute the edit distance
between two sequences based on dynamic programming. The protocol requires two non-
colluding servers, each of them possessing one input sequence, to engage an interactive
process. A secure look-up protocol is used to exchange the computation results of the servers
in each iteration. Because the number of the iterations is the product of the lengths of the two
input sequences, the computation, and the communication overhead are considerable. Jha
et al. [84] improve the computation e�ciency of [82]. Yet, it shares the same communication
complexity since it is an iterative protocol as well. It is worth mentioning that these schemes
can be applied to other problems that dynamic programming could solve. In [85], Wang et al.
proposed a distributed framework for privacy-preserving genetic computing, which applies
program specialization to partitioning genetic computation to di�erent sensitivity levels. The
expensive computation involving secure multi-party computation is only performed for the
higher sensitivity level data. However, with our current knowledge, it is unclear whether the
�insensitive� DNA data will be important in the future. Therefore, leaking these DNA data
is not a satisfying practice. Troncoso-Pastoriza et al. [83] proposed a protocol to calculate
edit distance with an encrypted input sequence through �nite state machine (FSM). In their
scheme, the server possesses the FSM for the target DNA sequence while the input of the FSM
is the client's query sequence. The server and the client participate in an interactive protocol
using oblivious transfer protocols to calculate the state transition of the FSM. Although the
payload of each communication is smaller compared to the dynamic programming based
approaches, the communication overhead is still considerable because the number of the
iterations is linear in the product of the lengths of the two sequence lengths. It is worth
mentioning that the computation used to generate the FSM can also be huge when the size
of the sequence grows. Therefore, the poor scalability limits the usability of those schemes.
In [86], Blanton and Aliasgari proposed a scheme which outsources the computation and
the communication of [83] to multiple servers to improve e�ciency in practice. All of the
aforementioned schemes are based on interactive algorithms that require all the participants
remain online during the entire process. However, in the genetic testing application scenario,
it is impractical to require the patient or the authorized party such as doctors to remain
online all the time as the process could be quite long for some tests. Wang et al. [88] proposed
an privacy-preserving protocol to estimate the edit distance between two genome sequence.
They estimate the edit distance by transforming the edit distance computation problem to
the set intersection size approximation problem. The computation of the set intersection
size is done through multi-party computation. Their scheme is extremely e�cient as the edit
distance computation time for two whole genome sequences can be �nished in seconds with
a relatively small error.
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4.1.2 Secure outsourcing of computation model

Under the secure outsourcing of computation model, the cloud server is always considered
as an honest-but-curious adversary. Therefore, the security objective is to perform certain
kinds of computation in cloud without leaking private information.

Lu et al. [89] proposed a secure outsourcing scheme for genome-wide association study
(GWAS). The GWAS aims to discover the association between gene mutations and certain
diseases. The major computation of the GWAS is based on the statistic information of the
genetic data. In [89], the computation is performed over the encrypted statistic in the cloud
to protect the data privacy. Barman et al. constructed a privacy-preserving computation
scheme to calculate the health risk based on the known association between gene mutations
and the diseases. Given a patient's gene mutation information as a vector and the known as-
sociation mapping with a weight between a gene mutation and a disease, the cloud computes
the aggregated risk. Chen et al. [90] proposed a secure DNA alignment scheme utilizing a
hybrid cloud. The scheme �rst locates an approximated location by comparing the cipher-
text of the genetic data in a public cloud. Then the alignment is performed in a private cloud
under the plaintext form of the genetic data. Baldi et al. [91] implement the secure paternity
tests utilizing the private set intersection (PSI) technique. Those applications work on the
short tandem repeats which are the number of the repeats of a speci�c nucleotides pattern.
A secure index is built based on the genetic signatures, i.e., the short tandem, and the cloud
calculates the occurrence for a speci�c short tandem over the encrypted genetic data. Ayday
et al. [92] proposed a private DNA sequence retrieving scheme based on the order-preserving
encryption. The scheme builds an index using the sequence position information instead of
the genetic sequence in the SAM �le. Kantarcioglu et al. [93] proposed a scheme to securely
query an SNP database using an additive homomorphic encryption scheme. Those schemes
focus on a speci�c application that involves little or no genetic sequence data, and thus, have
di�erent challenges compared to our problem.

Very recently, Chase and Shen [87] proposed a symmetric searchable encryption scheme
supporting subsequence matching. Similar to our approach, their construction is based
on su�x tree. However, the search pattern is leaked to the cloud because deterministic
encryption algorithm is used in their scheme. Also, approximate sequence matching is not
supported.

Secure DNA sequence matching is also related to searchable encryption which allows the user
to query the encrypted documents with the encrypted keyword(s). A considerable amount
of the searchable encryption schemes (e.g. [16, 17, 23, 25, 26]) has been proposed. The core
technique of searchable encryption is to build a secure index for the keywords extracted from
a document set. However, there is no explicitly given keyword in genetic sequence data. A
possible solution is to treat meaningful subsequences as keywords. However, the amount of
the possible subsequence is huge as the DNA sequence consists of millions of base pairs. On
the other hand, subsequences with various length are used in the DNA sequence matching
problem. Therefore, the searchable encryption schemes cannot be applied to the secure DNA
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sequence matching problem.

4.2 Problem formulation

Human DNA contains important genetic instructions that de�ne and function each. The
length of a DNA sequence is usually huge. For example, human DNA contains about 3
billion nucleotide base pairs. Luckily, only a small portion, i.e., 2%, is biological important
as they are used to encode protein sequences, which play important roles functioning our
body. According to NIH [78], genetic testing is mainly used to search for abnormal gene
mutations that lead to genetic disorder. In medical practice, diagnosis testing is to search
the existence of the known gene mutations that relate to certain genetic diseases. Therefore,
in personalized medicine, one of the fundamental genetic computation is to perform sequence
matching.

4.2.1 System model

We consider a personalized medicine model where there are four entities in the system, i.e.,
Patient, Provider, Authorized Party (AP), and Cloud. The provider such as a laboratory
or a personal genomics service company sequences the patient 's DNA from cell samples.
The DNA sequence is then outsourced into the cloud in the encrypted form to protect the
data privacy. When an authorized party, such as a doctor, would like to perform a genetic
testing for the patient, he can submit a testing request to the cloud and gets the result back.
To ensure the patient privacy, the testing request, i.e., a DNA sequence pattern, should be
encrypted as well. The proposed system model is shown in Fig. 4.1. The patient sends
his cell to the provider to get the DNA sequenced. The provider �rst extracts the DNA
sequences and then encrypts them. The encrypted DNA data is outsourced to the cloud.
When the doctor would like to perform a diagnostic testing in the patient's DNA data, he
�rst gets a trapdoor from the patient. This enforces the patient's authorization on the test
because of the sensitivity of the DNA data. After getting the trapdoor, the doctor submits
it to the cloud, and the cloud performs the matching between the secure indexes and the
trapdoor. The result is returned to the doctor. Finally, the doctor �nishes the diagnosis
after the result is decrypted. The core computation for privacy-preserving genetic testing is
secure sequence matching. Based on the system model, we de�ne secure sequence matching
as follows.

De�nition 8 (Secure sequence matching). A secure sequence matching (SSM) is a collection
of �ve polynomial-time algorithms, i.e., Setup, DataEnc, ReqEnc, Search, and Assert such
that

• (kS, kT ) ← Setup(1λ): is a probabilistic key generation algorithm run by the provider.
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Figure 4.1: System model of personalized medicine in cloud computing.

It takes a security parameter λ as the input and outputs a data encryption key kS and
a request encryption key kT .

• (S̃,ΩS) ← DataEnc(kS,S): is a probabilistic algorithm run by the provider. It takes
kS and a sequence S as the inputs, and outputs the ciphertext S̃ and an assertion token
ΩS.

• (T,ΩT )← ReqEnc(kT ,∆): is a probabilistic algorithm run by the patient. It takes kT
and a query sequence ∆ as the inputs, and outputs the trapdoor T as the encrypted
query and the other assertion token ΩT .

• R ← Search(S̃, T ): is a probabilistic algorithm run by the cloud. It takes S̃ and the
trapdoor T as the inputs, and outputs the encrypted search result R.

• 1 or ⊥← Assert(ΩS,ΩT , R): is a deterministic algorithm run by the authorized party.
It takes both the assertion tokens and R. Output 1 if the query ∆ is a subsequence of
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the sequence S; otherwise, it outputs ⊥.

4.2.2 Security model

Because the DNA data involved in the health care application is highly sensitive, we assume
secure communication channels are used to defend against the outside attacker. Therefore,
we focus on the possible inside privacy leakage of the system.

Among the four entities, the patient and the provider are fully trusted because they have
the original DNA data. We assume the cloud is �honest-but-curious� because of the possible
compromise caused by the system failure or hacking. At last, we allow the authorized party
to learn only the testing result. On the other hand, the authorized party must not be able
to generate any valid trapdoors unless the testing request is granted by the patient.

4.2.3 Design objective

To achieve privacy-preserving genetic testing, the core requirement is that the cloud cannot
deduce any useful information about the patient's genetic data. The requirement must be
enforced even the cloud has collected an abundance of trapdoors and the corresponding
matching results. We summarize the security and the performance objectives as follows.

• Data con�dentiality. The cloud should not be able to recover any useful information
from any encrypted data, which includes the encrypted genetic sequence, the encrypted
request, and the encrypted matching result.

• Trace indistinguishability. Denote the trapdoor and its corresponding match result
as a trace, the cloud should not be able to distinguish two traces. In other words, it is
impossible for the cloud to link an encrypted request with a previously submitted one.
It is also called search pattern privacy.

• Trapdoor unforgeability. The authorized party should not be able to forge a legit
genetic testing request without the help of the patient.

• E�ciency and usability. As genetic testing may not require a real-time result, the
computation time at the cloud side can be tolerated in certain extend. However, the
computation at the patient and the authorized party side must be constrained because
their computation resource is usually limited. On the other hand, the interaction
among the entities should be minimized to enjoy usability.
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4.3 Secure sequence matching scheme

In this section, we present our secure sequence matching scheme that ful�lls the requirements
of the privacy-preserving genetic testing problem. Then we further hide certain information
regarding the DNA sequence to meet the higher privacy protection requirement.

4.3.1 Scheme overview

The main goal of our scheme is to securely matching two genetic sequences. The key idea
of our scheme is to compare a query sequence ∆ with a target sequence S in a character-
by-character manner. If they match perfectly, we can assert that the query sequence ∆ is
a subsequence of S, which con�rms the existence of a genetic pattern in a patient's genetic
data. Because the query pattern can appear at any position of a target sequence, we adopt
the su�x tree structure to represent the target sequence. Given a sequence S of length n, a
su�x Si, 1 ≤ i ≤ n, is a subsequence of S from the position i to n. For example, S2 of the
sequence ATGC is TGC. The su�ces are very useful in subsequence matching because every
subsequence of S must be a pre�x of Si,∃i ∈ [1, n]. The su�xes of S are often organized
as a tree which has exactly n leaves. Every edge is labeled by a subsequence of S. The
concatenation of the string-labeled edges from the root to a leaf represents a su�x of S. To
encrypt the sequence, we utilize a predicate encryption scheme [94] which supports a secure
inner product computation between two encrypted sequences. The encryption algorithm is
based on a composite-order of three distinct primes bilinear group. The bilinear group is
de�ned as follows.

De�nition 9. G is a composite-order of three distinct primes bilinear group such that

1. G and GT are two cyclic groups of �nite order N = pqr, where p, q, r are distinct
primes.

2. e is a non-degenerate bilinear map e : G×G→ GT , i.e.,

• ∀g, h ∈ G, a, b ∈ ZN , e(ga, hb) = e(g, h)ab,

• if g is a generator of G, e(g, g) is a generator of GT as well.

3. e can be calculated in polynomial time.

However, to achieve secure and e�cient sequence matching using PE, there are three main
technical challenges.

1. The same character has to be encrypted di�erently to ensure indistinguishability while
the ciphertext must be able to match correctly to properly perform genetic testing.
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2. As most of the gene mutations are single-nucleotide polymorphisms (SNP), the match-
ing algorithm should be tolerant of character mismatches to correctly handle gene
mutations.

3. The character-by-character matching results must be aggregated e�ciently and prop-
erly to meet the requirement of the communication e�ciency.

In addition, the original PE in [94] does not support a character-by-character comparison
functionality. Therefore, another challenge we need to address is to modify the scheme of [94]
to support error-tolerant character-by-character comparison for two sequences.

4.3.2 Details of our scheme

First of all, we modify the original PE scheme in [94] to support our objective function. The
sequence comparison function can be expressed using the following equation.

f =
n∑
i=1

(xi − yi)2 =
n∑
i=1

x2
i − 2

n∑
i=1

xiyi +
n∑
i=1

y2
i ,

where xi, yi > 0 are the characters of the sequences. Now we are ready to present our secure
sequence matching scheme.

Following Def. 8, our scheme contains �ve algorithms, i.e., Setup, DataEnc, ReqEnc, Search,
Assert.

• Setup(1λ,S) generates a public key pk = (gp, gr) and a master secret key msk =
(p, q, r, gq) given the security parameter λ. The kT = {h1,i, h2,i}ni=1, and the kS =
(gq ·R0, {H1,i, H2,i}ni=1), where n is the length of the sequence S, H1,i = h1,i ·R1,i, H2,i =
h2,i ·R2,i, and R0, R1,i, R2,i,∈ Gr for i from 1 to n.

• DataEnc(kS,S) encrypts each su�x Si, 1 ≤ i ≤ n of the sequence S and generates an
assertion token ΩS. The encrypted sequence is generated as follow,

1. Randomly choose s, α, β ∈ ZN .
2. For each su�x Si = (xi, xi+1, · · · , xn) and S ′i = (x′i, x

′
i+1, · · · , x′n), 1 ≤ i ≤ n,

choose random R3,j, R4,j, R5,j, R6,j ∈ Gr for j from 1 to n− i+ 1.

3. Encrypt each xj ∈ Si, x′j ∈ S ′i as a 4-tuple (Ci
1,j, C

i
2,j, C

i
3,j, C

i
4,j) = (Hs

1,j ·k
α·H(xj ,j)
T ·

R3,j, H
s
2,j · k

β·H(xj ,j)
S ·R4,j, H

s
1,j · k

−α·H(xj ,j)
2

T ·R5,j, H
s
2,j · k

−β·H(xj ,j)
2

S ·R6,j), where H
is a cryptographic collision-free hash function.

4. Denote S̃i = {Ci
1,j, C

i
2,j, C

i
3,j, C

i
4,j}n−ij=1 as the ciphertext for Si.

The ciphertext of the sequence is S̃ = {S̃1, S̃2, · · · , S̃n}. The assertion token is ΩS = gsp.



Bing Wang Chapter 4 70

• ReqEnc(kT ,∆) encrypts the query sequence and generates an trapdoor assertion token
ΩT . Denote the character at the wildcard positions as ?. The trapdoor is encrypted
as follow,

1. Randomly choose R7 ∈ Gr, f1, f2 ∈ Zq, and R8 ∈ Gq.

2. let ∆ = (y1, y2, · · · , ym),m = |∆|, randomly choose r1,i, r2,i, r3,i, r4,i ∈ ZN for i
from 1 to m.

3. Encrypt each yi ∈ ∆ as a 4-tuple (T1,i, T2,i, T3,i, T4,i) = (g
r1,i
p · gf1·2·H(yi,i)

q , g
r2,i
p ·

g
f2·2·H(yi,i)
q , g

r3,i
p · gf1q , g

r4,i
p · gf2q ) if yi 6= ?. Otherwise, encrypt ? as (T1,i, T2,i) =

(g
r1,i
p , g

r2,i
p , g

r3,i
p , g

r4,i
p ). Generate the trapdoor assertion token ΩT as a 2-tuple

(R7·R8 ·
m∏
i=1

h
−r1,i
1,i h

−r2,i
2,i ,

e(gq, gq)
−(αf1+βf2 mod q)

∑m
i=1H(yi,i)

2

).

• Search(S̃, T ) generates the search result γi for each of S̃i ∈ S̃ for i from 1 to n as
follow

γi =
m∏
j=1

e(Ci
1,j, T1,j) · e(Ci

2,j, T2,j) · e(Ci
3,j, T3,j) · e(Ci

4,j, T4,j)

• Assert(ΩS,ΩT ,Γ = {γi}ni=1) outputs 1 i�

e(ΩI ,ΩT [1]) · γi · ΩT [2]
?
= 1

stands for at least one i ∈ [1, n].

Discussion. In our scheme, each character is encrypted along with a di�erent random
element each time. The introduced randomness hides the relationship of the underlying
characters while has no side-e�ect when performing sequence matching. We add wildcard
support during query request encryption algorithm to handle possible gene mutations. At
last, the matching result for each character is combined to a single value to enable e�cient
communication. Therefore, our scheme ful�lls the technical challenges. Note that the Setup
and the DataEnc both require the sequence as the inputs. Both the algorithms are run by
the provider, and we only need the length of the sequence in the Setup.

4.3.3 Correctness

We �rst prove the correctness of our scheme. We have the following claim.

Theorem 6. Assert outputs 1 if and only if the query sequence ∆ is a pre�x of at least one
su�x of the sequence S.
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Proof. Assert calculate the following equation.

e(ΩS,ΩT [1]) · γi · ΩT [2]

=e(gsp, R7 ·R8 ·
m∏
i=1

h
−r1,i
1,i h

−r2,i
2,i ) ·

m∏
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2,j, T2,j) · e(Ci
3,j, T3,j) · e(Ci
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=e(gq, gq)
(αf1+βf2)

∑m
i=1 2H(xi,i)H(yi,i) · e(gq, gq)−(αf1+βf2)

∑m
i=1H(yi,i)

2 · e(gq, gq)−(αf1+βf2)
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=e(gq, gq)
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Whether the above equation results 1 is determined by

m∑
i=1

(αf1 + βf2 mod q)(2H(xi, i)H(yi, i)−H(yi, i)
2 −H(yi, i)

2 −H(xi, i)
2) (4.1)

Clearly, if the query sequence ∆ is a pre�x of one of the su�x of the sequence S, Eq. 4.1
equals 0, which means the output of Assert is 1.

Now we focus on the proof of su�ciency. Note that because H is a cryptographic collision-
free hash function, the probability of H(xi, i) = H(yj, j), i 6= j is negligible. If for i from 1
to m, H(xi, i) = H(yi, i), i.e. xi = yi, then the above equation evaluates to 0. If there exits
i ∈ [1,m], h(xi, i) 6= H(yi, i), i.e., the query sequence ∆ is not a subsequence of S, there are
two cases. If

∑m
i=1(H(xi, i)−H(yi, i))

2 6= 0 mod q, then the above equation evaluates to 0
with a negligible probability. The other case is that

∑m
i=1(H(xi, i) −H(yi, i))

2 = 0 mod q.
However, this reveals a non-trivial factor of N = pqr. Because �nding a non-trivial factor of
N is hard according to the subgroup decision assumption, the probability of the second case
is also negligible. Therefore, if Assert outputs 1, the query sequence ∆ is a pre�x of one of
the su�x of the sequence S.

Combining the proof of necessity and su�ciency, we prove that our scheme correctly reveals
the fact whether a query sequence ∆ is a subsequence of S.
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4.3.4 Security analysis

Since we utilize predicate encryption in [94] as our cryptographic primitive, we �rst brie�y
introduce its security. The security of the predicate encryption scheme is based on the
following hardness assumption over a bilinear group.

De�nition 10 (Subgroup decision problem). Given two cyclic groups G,GT of �nite order
N = pqr and a bilinear map e : G×G→ GT , we randomly choose

1. P0 ∈ Gp, R0 ∈ Gr,

2. T0 ∈ Gpq, T1 ∈ Gp,

where Gp,Gr,Gq,Gpq are subgroups of G of orders p, r, q, pq, respectively.

Given D = (N,G,GT , e, P0, R0, Tb) where b = 0 or 1, we de�ne the advantage of an algorithm
A to solve the subgroup decision problem to be

AdvA = |Pr[A(D,T0) = 1]− Pr[A(D,T1) = 1]|.

The assumption is that for any PPT algorithm A, AdvA is negligible in the security param-
eter. The hardness of the subgroup decision problem relies on the hardness of factoring N .
The proof of the above assumption is given in [94] and we refer our readers to that paper
for more detail.

We now are ready to present our formal security de�nition of the secure sequence search
scheme. Our de�nition is based on an indistinguishable game between a challenger C and an
adversary A.

De�nition 11 (Indistinguishability security for SSM). Let SSM=(Setup, DataEnc, ReqEnc,
Search, Assert) be a secure sequence match scheme. An adversary A interacts with a chal-
lenger C to play the following game.

Setup
C creates an alphabet Σ and generates a sequence S from Σ. C �rst runs Setup to gen-
erate the encryption keys, then runs DataEnc to encrypt S as S̃. Finally, C publishes S̃.

Queries
A is allowed to request trapdoor for any query sequence of his choice. A can submit the
trapdoor to C and gets Γ as the matching result. However, A is not allowed to access
Assert.
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Challenge
At some point, A chooses two non-empty query ∆1,∆2 such that ∆1 6= ∆2, |∆1| = |∆2|.
Then submit them to C.
After receiving ∆1,∆2, C randomly chooses b ← {0, 1} and generates the trapdoor Tb
for ∆b. A is allowed to search with Tb. The challenge for A is to decide b. After the
challenge is issued, A may continue request trapdoors.

Response
A outputs her guess for b as b′. The advantage of the adversary winning the game is

ADVA = |Pr[b = b′]− 1/2|

If for any probabilistic polynomial-time adversary A, the ADVA is a negligible function of
the security parameter, we say the SSM is secure in terms of indistinguishability.

We denote an SSM that satis�es the above de�nition as an IND-CTA (indistinguishable
under chosen-trapdoor attack) SSM scheme.

Theorem 7. Our scheme is an IND-CTA secure sequence matching scheme.

Proof. The security of our scheme relies on the predicate encryption of [94]. We assume the
predicate encryption scheme is indistinguishability under the chosen-attribute attack (IND-
CAA). The attributes refer to the inputs of the function that is encoded in the encryption
algorithm. In our scheme, the two input sequences correspond to the attributes. Therefore,
the chosen-attribute attack is equivalent to the chosen-trapdoor attack under our application
scenario. Due to the page limitation, we refer our readers to [94] for the proof detail of that
assumption.

Assume that A can win the above security game with a non-negligible advantage ADVA,
we can construct a probabilistic polynomial-time algorithm B such that B can break the
indistinguishability of the PE in [94]. B can access to a random oracle Of , which f could
be either a random function or the PE algorithm. B modi�es the DataEnc and the ReqEnc
algorithms as follows.

1. In DataEnc, for each xj ∈ Si, i ∈ [1, n − 1], B gets (C1,j = gr1,j , C2,j = gr2,j , C3,j =
gr3,j , C4,j = gr4,j), j ∈ [1, i] and ΩS = grωp from Of .

2. In ReqEnc, for each yi ∈ ∆, i ∈ [1,m], B gets (T1,i, T2,i, T3,i, T4,i) and ΩT from Of .

Then A interacts with B to play the security game. B guesses f is the PE algorithm if A
outputs 1; otherwise, B guesses f is a random function. Because ADVA is non-negligible, B
also has non-negligible advantage to distinguish a random function from the PE algorithm.
However, as the PE algorithm is IND-CAA secure, B does not exist. Therefore, A does not
exist, which means our scheme is IND-CTA secure.
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The intuition behind the proof is that anything the adversary can learn from the interaction
can be learned solely from running a simulator himself. In another word, the history of the
trapdoors and the search results cannot help the adversary to distinguish other trapdoors,
i.e., the de�nition of the IND-CTA.

Trapdoor unforgeability. To forge a valid trapdoor, the authorized party must be able
to forge both T and ΩT . As T is a vector that each element corresponds to a character, the
authorized party can generate a valid T of his choice. However, ΩT is generated through
the trapdoor encryption key kT which is kept by the patient. A single ΩT is generated for
a query sequence. Recall the trapdoor generation process, a collection of random numbers
are introduced. Therefore, without knowing kT , it is impossible to forge a valid veri�cation
token.

Discussion. Our scheme reveals the length of the sequence as well as the length of the
query. Although this information is usually considered as less sensitive, we could apply
random padding to hide the information. Adding random padding is quite easy in our
scheme. We can add 0s at the end of the sequence and the query. The adversary cannot
distinguish the pseudo characters from the real ones because of the other randomness and
the subgroup decision assumption.

4.4 Performance analysis and evaluation

In this section, we theoretically analyze the performance of our scheme and compare it with
the secure dynamic programming solution [84] and the secure �nite automation machine
solution [86]. Then we perform a simulation study to illustrate the cost of our scheme using
a real-world DNA data.

4.4.1 Computation complexity

Our scheme relies on the bilinear pairing operation, which is computationally expensive. We
calculate the numbers of the multiplication as well as the exponentiation. The computation
complexity of each algorithm is summarized as follows.

• In DataEnc, each su�x of the sequence S is encrypted. For each character in a su�x,
we need 8 multiplications and 4 exponentiations. Therefore, to encrypt all the su�ces
requires 4n2 + 4n multiplications and 2n2 + 2n exponentiations, where n is the length
of S. One exponentiation is needed to generate the assertion token.

• In ReqEnc, 4m multiplications and 4m exponentiations are used to generate the trap-
door, where m is the length of the query sequence. 2m+ 1 multiplications are needed



Bing Wang Chapter 4 75

for the �rst part of the assertion token. The second part of the assertion token requires
one pairing, one exponentiation, and m+ 3 multiplications.

• In Search, 2m pairings are needed for each su�x. Therefore, it needs 2mn pairings in
total.

• In Assert, one pairing and n+ 1 multiplications are required.

In summary, our scheme requires O(mn) pairings, O(n2) exponentiations, and O(n2) mul-
tiplications. The dominance of the computation is the bilinear pairing. According to the
benchmark of the public available libraries such as JPBC [95] or PBC [96], the average time
for a 1024-bit discrete log security is 13 ms. Therefore, for a genetic sequence with �ve
thousand base pairs, it takes about three hours to test a query sequence with one hundred
base pairs. The computation time is within the reasonable range in practice.

In [84], Jha et al. proposed a secure dynamic programming scheme to compute the edit
distance between two sequences. Their scheme has three phase. Phase 0 involves no heavy
computation. In Phase 1, one player evaluates n × m instances of Yao's secure circuit
evaluation over an equality circuit. The other player needs to initiate n × m × q 1-out-
of-2 oblivious transfers, where q = log |Σ| and Σ is the alphabet, i.e., {A, T,G,C} in our
case. Phase 2 needs n×m iterations. Each iteration involves one evaluation of an instance
of a minimum-of-three circuit and 3 log(m + n) instances of 1-out-of-2 oblivious transfer.
In summary, the scheme requires 2mn circuit evaluations, 3mn log(n+m) + 2mn oblivious
transfers. As described in [84], their scheme takes about 35 seconds to compute for a (25×25)
problem. Since the complexity of their scheme is linear in nm, a (5000× 100) problems will
take much more time.

In [83], Troncoso-Pastoriza et al. presented a �nite automaton machine based scheme to
perform error resilient subsequence testing. The key idea of the scheme is to split the inputs
of the FSM to two servers and to compute the state of the FSM interactive protocol through
secret sharing. The computation of each iteration is small since the process only involves
a constant number of the Paillier homomorphic encryption operations [71]. However, the
number of the states of the FSM grows as the size of the sequence, which increases the
computation overhead as well as the storage overhead to store the transition matrix for
the FSM. Additionally, it also takes extra computation to construct the FSM for a speci�c
sequence.

Discussion. Among the three approaches, [83] incurs the least computation overhead but
requires a pre-process to generate the FSM. Although our scheme uses expensive bilinear
pairing operation, the computation complexity is similar to the scheme in [84]. On the
other hand, we push most of the computation to the cloud which has powerful and plenty
computation resources. Additionally, parallel computing techniques such as MapReduce [97]
can be e�ortlessly applied to our search algorithm which is to compute bilinear pairing
between two characters.
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4.4.2 Communication consumption

Our scheme advances the existing works in the communication complexity. Our scheme only
needs one round communication. The cloud returns n group elements in GT to the authorized
party. According to [98], a group of the size 128-bit over an elliptic curve is secure enough.
Therefore, the total communication to transmit the result is small, i.e., in the magnitude of
kilobytes.

The communication overhead of the scheme in [84] is high due to the interactions in Phase
2 and the interactions of the oblivious transfer. In Phase 0, the communication cost is
(m+ n) log(m+ n) bits. In Phase 1, there are n×m iterations. Each iteration consumes 4
bits. In Phase 2, there are n×m iteration. Each iteration contains 3 log(m+n) instances of
1-out-of-2 oblivious transfer. As shown in [84], for a (200× 200) problem, the most e�cient
protocol consumes more than 360 megabytes bandwidth. Since the communication overhead
is linear in the product of the size of the sequences, i.e., mn, the bandwidth cost will be
increased dramatically.

In [83], the communication overhead comes mainly from the oblivious transfer. There are
O(mn) oblivious transfers and O(n|Q|) ciphertext transfers, where |Q| is the number of the
state of the FSM and it is linear in n. Since the communication complexity is the same as
in [84], it implies that the scheme in [83] will consume similar amount of the bandwidth as
in [84].

Discussion. Comparing with the other schemes, our scheme incurs much less communica-
tion overhead. Because the bandwidth is more valuable in cloud computing compared with
the computation and the storage, the communication e�ciency is an important factor for the
schemes to be practical. Additionally, the existing schemes are interactive protocols, which
assume the both parties, i.e., the cloud and the doctor, to be online the entire process to
participate the interaction. However, the assumption is not reasonable in practice and raises
usability issues in the personalized medicine application scenario.

4.4.3 Simulation study

We carry out several experiments to evaluate the computation performance of our scheme.
We utilize the JAVA Paring-Based Cryptography Library (jPBC) [95] to implement the
proposed scheme in this paper. All the experiments are conducted on a laptop equipped
with an Intel 2.6GHz processor and 8GB memory. The operating system is Ubuntu 14.04.
We use the human genome data from the Ensembl project [99] in the form of SAM �les.
SAM �le format is one of the most popular �le formats to store genetic sequences. Each
SAM �le contains short DNA sequences of which the lengths are from hundreds to thousands
of base pairs.
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Figure 4.2: Sequence encryption time for a su�x.

Sequence encryption cost

The sequence time for a su�x is linear in the size of the su�x. Since there are n su�ces in
a sequence of length n, the encryption cost is quadratic in the size of the sequence S. It is
worth mentioning that the algorithm is only performed once. However, it is still computation
expensive considering that the provider may have limited computation power. To that end,
we further optimize the process. Note that the only terms in the ciphertext involving the
input sequence is kαh(xi,i)

S , k
βh(xi,i)
T . Therefore, the other parts of the ciphertext can be pre-

computed to reduce the computation. Meanwhile, we would like to reduce the amount of the
exponentiation by using a hash function H : Σ×Z+ → ZN , where Σ is an alphabet for the
DNA base pair, i.e., {A,T,G,C}. We can encode each letter σ in Σ to a binary expression
using a one-to-one mapping B : Σ→ {0, 1}log |Σ|. Then the h can be

H(xi, i) = B(xi)||F (i),

where || is concatenation and F : {0, 1}? → {0, 1}l is a cryptographic hash function such as
SHA-1. The concatenation can be expressed as an addition as B(xi) × 2l + F (i). Because
the size of the alphabet is limited, we can pre-compute kα·B(σ)·2l

Ind and kα·F (i)
Ind for σ ∈ Σ, i ∈

[1, n]. Then during the index generation process, we only need to compute a multiplication
instead of an exponentiation. We show the optimized encryption time in Fig. 4.2. The
pre-computation time is shown as the red dash in Fig. 4.2. Note that this modi�cation does
not a�ect the correctness of our scheme because h utilizes a cryptographic hash function and
is collision-free. We denote an alphabet of size n as Σ and de�ne the following hash function
h : Σ× Z→ ZN as

H(x, i) = B(x)||F (i) mod N, x ∈ Σ, i ∈ Z,
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Figure 4.3: Pattern encryption time.

where B : Σ → {0, 1}logn is one to one mapping and F : {0, 1}? → {0, 1}l is a collision-free
cryptographic hash function. We now prove h is also a collision-free hash function.

Proof. We prove our claim by contradiction. We assume the h is not a collision-free hash
function. Then there must exist x, y ∈ Σ and i, j ∈ Z such that H(x, i) = H(y, j). Because
the hash result from H is a concatenated string, we have the following equations B(x) =
B(y), F (i) = F (j). However, because B is a one-to-one mapping and F is a collision-free
cryptographic hash function, the above equations hold i� x = y, i = j, which contradicts
with our assumption. Therefore, h is a collision-free hash function as well.

Trapdoor generation cost

The trapdoor generation process is similar to the index generation process which involves
only the multiplication and the exponentiation. The generation time is linear in the size
of the query sequence because we encrypt each character only once. The patient can also
pre-compute part of the terms in the trapdoor to optimize the computation. We show the
trapdoor generation time for the both approaches in Fig. 4.3. Note that compared with the
index generation which is run by the provider, the computation cost of the trapdoor is more
important because the process might be run on the user's resource limited device. After
optimization, our scheme generates a trapdoor for a 1000-long in about 4 minutes. Since our
simulation is a proof-of-the-concept, we believe the overhead can be further reduced with
the proper implementation and optimization.
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Table 4.1: Pattern matching Cost in cloud

Computation time (hours) Cost in dollar amount

n m=100 m=200 m=300 m=100 m=200 m=300

500 1.724 3.510 5.311 0.25$ 0.42$ 0.67$

1000 3.484 6.948 10.440? 0.42$ 0.84$ 1.2$

The number with ? is estimated value.
The dollar amount is based on the hourly rate of an Amazon EC2
M4.large instance.

Pattern matching cost

The search process is the most computation expensive algorithm due the amount of the
pairing operation. As analyzed earlier, for a sequence S with length n and a query sequence
with length m, the number of the pairing computation is linear in mn. We show the search
cost in Table 4.1 when the size of S is �xed with n = 500, 1000, respectively. As shown in the
table, the computation cost is linearly increasing on the size of the query sequence grows.
Because the running time of the problem size (1000 × 300) takes more than 7 hours, we
estimate that value based on our observations. Although the computation overhead seems
high in our simulation, it is worth mentioning that the cloud should have better computation
power than ours. For example, an Amazon EC2 M4.large instance which has 2 vCPU, 6.5
ECU and 8 GB memory costs 0.12$ for an hour. The computation power of the M4.large
instance is roughly the same as our simulation platform. Therefore, the dollar amount
cost to perform a matching is very cheap compared with most of the laboratory testings
nowadays. Also, because the matching between the query and each su�x is independent, the
computation task can be divided into multiple sub-tasks so that a parallel processing model
such as MapReduce [97] is readily applied. On the other hand, in personalized medicine, the
search process, i.e., the diagnosis test like a blood test, is not required to return the real-time
result. Therefore, we consider our scheme is still reasonable.

4.5 Summary

E�cient secure sequence matching over the encrypted genetic data is the key challenge
to design practical personalized medicine system in cloud computing. In this chapter, we
propose a novel scheme to address the unique challenge brought by secure sequence matching
over the encrypted data in cloud computing. We achieve wildcard-based sequence pattern
matching through our novel modi�cation of the predicate encryption scheme in [94]. Our
proposed scheme is provable secure under the well-de�ned subgroup decision assumption.
We greatly reduce the communication overhead to O(1) round compared with the existing
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schemes. Although the computation complexity of our scheme is similar to the existing
schemes, we further optimize our encryption algorithm to reduce the computation overhead.
Through implementation and simulation, we show that our solution is feasible and practical.



Chapter 5

Conclusion and Future Research

In this dissertation, we have explored key points to protect user data privacy in various cloud
computing applications. We designed e�ective and e�cient secure index schemes to achieve
various keyword search functions over encrypted data. We investigated secure sequence
matching for genetic testings in personalized medicine. In this chapter, we summarize the
research work and discuss future research directions.

5.1 Research summary

The rapid development of cloud computing has quickly moved everything into the cloud. Al-
though cloud-based applications have been providing convenient, a�ordable, and productive
services for its users, the privacy concern of the data stored in the cloud has also emerged as
the most critical issue that hinders the further generalization of cloud computing. Although
traditional cryptographic approaches have been applied for decades to provide data privacy
protection, these approaches are not able to achieve the same e�ect in cloud computing
because most of the cloud applications cannot be performed over the encrypted data. On
the other hand, the success of cloud computing is driven by the economic gain from both
the service provider and the end users. Therefore, it is an extremely challenging task to
design e�cient secure data computation schemes for cloud applications that can work over
encrypted data. Our main �ndings and their implications can be concluded as follows.

• We address the multi-keyword fuzzy search over encrypted data problem with user data
privacy protection. In contrast to previous fuzzy keyword search solutions [13�15],
which require expanded storage for wild-card based fuzzy keyword set, our scheme
exploits locality-sensitive hashing to provide e�cient fuzzy search without expanding
index �les. Compared with the tag-encoding based scheme [36], our scheme provides
a generic multi-keyword support which means the search result is generated through a

81



Bing Wang Chapter 5 82

single run of a multi-keyword trapdoor instead of multiple single keyword trapdoors.
In contrast to previous solutions on multiple keywords search [38, 44], our scheme
eliminates the need for a prede�ned dictionary and hence enables e�cient �le update.
We theoretically analyze the trade-o� between the search e�ciency and the result
accuracy for di�erent choices of parameters to provide the deep insight of our scheme.
We implemented our scheme and evaluated on various parameter choices, and the
simulation results demonstrate that our scheme is accurate and e�cient.

• We propose a dynamic searchable encryption scheme based on the inverted index. We
design a probabilistic trapdoor generation algorithm to break the trapdoor linkability
and to hide the search pattern, which is left unsolved in the existing works. Our scheme
supports generic conjunctive multi-keyword search using only one trapdoor while the
existing invert index based searchable encryption schemes only support single keyword
search. In our scheme, the data owner can update the secure index when changes such
as document addition and deletion have been made to the underlying document set.
Also, our scheme features a probabilistic algorithm that allows the user to e�ciently
verify the correctness of the search result. Comparing with the existing public-key
searchable encryption schemes which use expensive pairing operations, our scheme
is more e�cient as only multiplication and exponentiation are used. We provide a
theoretical analysis and a simulation study. The simulation results show that our
scheme is suitable for practical usage, and the overhead is moderate.

• We propose a novel scheme for privacy-preserving genetic testing in cloud computing.
To address the genetic sequence matching challenge, we modi�ed the predicate encryp-
tion (PE) scheme in [94] to achieve approximate sequence (wildcard-based) matching
for genetic sequences. In particular, the genetic sequence is encrypted with PE and an
authorized party such as doctors can submit a genetic testing request with a secure
query sequence pattern to the cloud. Our scheme is provably secure under the well-
de�ned subgroup decision assumption over a bilinear group. To provide strong privacy
guarantee, search pattern and testing results are protected from the cloud server. Also,
the authorized party only learns the information which the patient allows. We utilize
su�x tree structure to pre-process the genetic sequence so that the sequence matching
computation can be done in a single round of communication. We thoroughly analyze
of the complexity of the di�erent approaches for the secure DNA sequence matching
problem. We then compare our scheme with them to illustrate the strength of our
scheme in practice. We further perform a simulation study using the public avail-
able DNA data. The results show that the computation overhead for the problem is
reasonable, and the communication cost is small.
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5.2 Future research directions

Searchable encryption has been studied for more than a decade. A lot of schemes have been
proposed. The main research directions are to provide rich search functions and to improve
computation e�ciency. We can further investigate the following open problems for practical
searchable encryption in cloud computing.

• Phrase search. One of the missing functions in current secure indexes is phrase search.
Current multi-keyword search schemes are able to test the existence of the query key-
words but not able to tell the relative positions of the query keywords. Because of
the importance of the phrase search, one of the future research objectives is to provide
secure phrase search over encrypted data.

• Result ranking which returns a list of documents has become a necessary function as the
data volume increases. Simple similarity measurement such as �coordinate matching"
and �cosine similarity". Advanced similarity measurement such as normalized Google
distance is more preferable as it suits better in a natural language sense. The technical
challenge is to incorporate computation of the similarity score in the secure index.

• Computation e�ciency. Finally, the computation e�ciency is another research direc-
tion of searchable encryption. Symmetric searchable encryption which uses symmetric
encryption algorithms is e�cient but can only support a limited number of search func-
tions. Asymmetric searchable encryption that utilizes functional encryption is more
powerful on search functionality but is less e�cient. Therefore, to design a secure index
that satis�es both the requirements is still an open question.

We can extend our research e�ort in the following directions for the secure genetic sequence
matching problem.

• Our secure genetic sequence works over the raw genetic data, i.e., sequence align-
ment/map (SAM) �le format. There exists a scalability problem when the sequence
matching is performed over a huge volume of DNA data. In plaintext genetic applica-
tions, compressed data format is usually used to save both storage and computation. A
possible future direction is to develop secure schemes based on the compressed genetic
data format such as binary alignment/map (BAM) or CRAM to improve computation
e�ciency.

• In the current scheme, the matching result is returned to the authorized party as the
diagnosis. However, the cloud provider may return random value as the result to avoid
expensive computation. To prevent such behaviors, the authorized party should be
able to con�rm the computation is properly performed over the intended data. An
extension of the work could be to implement result veri�cation into the scheme to
detect malicious or lazy behaviors of the cloud provider.
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• It is also possible to extend our scheme to support a more advanced genetic application.
For instance, current scheme returns the result that indicates the existence of a par-
ticular genetic pattern. In certain scenarios such as paternity testings, the occurrence
of a genetic pattern is also desired. It is worthwhile to study the security and function
requirements in a broader set of application scenarios.
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