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Abstract

The ability to detect a specific organism from a complex environment is vitally important to many fields of public health,
including food safety. For example, tomatoes have been implicated numerous times as vehicles of foodborne outbreaks due
to strains of Salmonella but few studies have ever recovered Salmonella from a tomato phyllosphere environment. Precision
of culturing techniques that target agents associated with outbreaks depend on numerous factors. One important factor to
better understand is which species co-enrich during enrichment procedures and how microbial dynamics may impede or
enhance detection of target pathogens. We used a shotgun sequence approach to describe taxa associated with samples
pre-enrichment and throughout the enrichment steps of the Bacteriological Analytical Manual’s (BAM) protocol for
detection of Salmonella from environmental tomato samples. Recent work has shown that during efforts to enrich
Salmonella (Proteobacteria) from tomato field samples, Firmicute genera are also co-enriched and at least one co-enriching
Firmicute genus (Paenibacillus sp.) can inhibit and even kills strains of Salmonella. Here we provide a baseline description of
microflora that co-culture during detection efforts and the utility of a bioinformatic approach to detect specific taxa from
metagenomic sequence data. We observed that uncultured samples clustered together with distinct taxonomic profiles
relative to the three cultured treatments (Universal Pre-enrichment broth (UPB), Tetrathionate (TT), and Rappaport-
Vassiliadis (RV)). There was little consistency among samples exposed to the same culturing medias, suggesting significant
microbial differences in starting matrices or stochasticity associated with enrichment processes. Interestingly, Paenibacillus
sp. (Salmonella inhibitor) was significantly enriched from uncultured to cultured (UPB) samples. Also of interest was the
sequence based identification of a number of sequences as Salmonella despite indication by all media, that samples were
culture negative for Salmonella. Our results substantiate the nascent utility of metagenomic methods to improve both
biological and bioinformatic pathogen detection methods.
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Introduction

Enrichment protocols to detect pathogens of interest vary from

pathogen to pathogen and depending on matrix of origin. The

Bacterial Analytical Manual (BAM) produced by the United States

Food and Drug Administration (FDA) describes methods for

isolating Salmonella ssp. from more than 25 different matrices (e.g.,

leafy greens, tomatoes, eggs, etc.). The level of specialization

required to isolate the same species from different matrices

illustrates the complexities associated with culturing methods for

detecting pathogens. The substantial number of enrichment

procedures also suggests that no single method is superior to

others in all cases.

Despite these levels of specialization, it is often even difficult to

detect pathogens from samples that have been intentionally spiked.

For example, average sensitivity across three different culturing

techniques for detection of Salmonella enterica from tomato samples

with known contamination was approximately 77% [1]. Work by

Gorski [2] demonstrated that for currently unknown reasons, some

serotypes of Salmonella appear to be more fit in certain media,

which could clearly bias certain investigations by favoring recovery

of serovars with less relevance to outbreaks. These studies and

others [3] suggest that serotype recovery is likely biased in many

situations and that we may fail to recover pathogens of importance

more often than we realize. Explanations for some biases are likely

correlated with the currently un-described microbial dynamics

associated with the complex assemblages of microflora that co-

culture during efforts to culture target pathogens.
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Published [3], and unpublished work by FDA scientists has

repeatedly demonstrated that during efforts to culture Salmonella

and other target Enterobacteriaceae pathogens within Proteobac-

teria, Firmicute genera are co-enriched. This phenomenon has

been observed numerous times from cultures of phyllosphere and

soil samples. Of particular interest is the fact that one co-enriching

Firmicute genus, Paenibacillus has been shown to inhibit and

reportedly kill Salmonella. A patent has even been filed for a newly

isolated non-pathogenic bacterial strain of Paenibacillus, known as

TS-15 which has shown the ability to kill or inhibit a wide variety

of harmful bacteria including many of the most common food-

borne pathogens such as Salmonella, Escherichia, Listeria, Shigella,

Enterobacter and Staphylococcus (www.ott.nih.gov/Technologies/

abstractDetails.aspx?RefNo= 2396). This type of information is

obviously significant for the streamlining of efforts to culture

Table 1. MG-RAST ID, BioSampleID, total number of bases (Yield), and average length of sequences per sample, of the 15
metagenomes for both the FLASH and Meta-Velvetg assembly methods.

Treatment Sample ID MG-RAST ID Yield (Mbp) Length (average)

FLASH Meta-Velvetg BioSampleID FLASH Meta-Velvetg FLASH Meta-Velvetg

Uncultured UNC1 4502820 4502821 SAMN01760734 21.43 1.93 205 179

UNC2 4502822 4502823 SAMN01760735 10.21 0.94 202 175

UNC3 4502824 4502825 SAMN01760736 63.16 7.07 209 168

Rappaport-Vassiliadis RV1 4502804 4502805 SAMN01760726 65.8 2.52 187 185

RV2 4502806 4502807 SAMN01760727 176.71 18.23 212 235

RV3 4502808 4502809 SAMN01760728 634.61 5.55 207 1574

RV4 4502810 4502811 SAMN01760729 163.09 3.74 185 186

Tetrathionate TT1 4502812 4502813 SAMN01760730 56.59 4.99 213 217

TT2 4502814 4502815 SAMN01760731 84.43 5.5 229 595

TT3 4502816 4502817 SAMN01760732 96.91 4.5 214 1508

TT4 4502818 4502819 SAMN01760733 121.12 18.32 221 234

Universal Pre-
Enrichment Broth

UPB1 4502826 4502827 SAMN01760737 128.73 17.71 219 209

UPB2 4502828 4502829 SAMN01760738 271.52 14.56 214 507

UPB3 4502830 4502831 SAMN01760739 312.66 14.32 221 328

UPB4 4502832 4502833 SAMN01760740 267.26 11.86 218 405

Average 164.95 8.78 210 447

doi:10.1371/journal.pone.0073079.t001

Figure 1. Rarefaction plots illustrating the increase in taxa identified as a function of different sequencing depths for a) flashed and
b) Meta-Velvetg reads.
doi:10.1371/journal.pone.0073079.g001
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specific pathogenic genera and strains from diverse food,

environmental and biological matrices.

For decades, targeted amplification of taxon-specific DNA

regions has been useful for pathogen detection, but recently whole

genome sequencing (WGS) has become an affordable method for

analyzing pathogens with small genomes. Compared to multi-

locus PCR targets or restriction digest methods such as PFGE,

WGS allows us to investigate outbreaks with an unprecedented

degree of resolution [4,5]. However, even WGS methods currently

require pre-enrichment procedures to obtain isolates for sequenc-

ing, raising again, the importance of better understanding

culturing dynamics.

A goal for pathogen detection that lies ahead, is the use of

metagenomic approaches to identify pathogens directly from

sequence data, independent of any culturing steps at all. Culture

free methods do not suffer biases introduced by enrichment

procedures [3,6–9]. While culture independent metagenomic

approaches have already proved useful, as in the case of the

recovery of the draft genome of the outbreak strain of Shiga-

Toxigenic Escherichia coli O104:H4 from fecal samples (Loman

et al. 2013), there are still limitations associated with this

approach. These include; the very low number of target pathogen

cells, the vast quantity of sequence data needed to sequence a

specific strain from amidst a complex microbial community,

incomplete reference databases for most environments and

intensive computational requirements for the processing of very

large datasets (180 GB were generated by Loman et al.). A useful

intermediate step may be the use of shotgun sequencing in

association with culturing procedures and application of bioinfor-

matic detection methods to identify pathogens directly from

enrichments. The work presented here was designed to explore the

utility of a metagenomic approach to describe the complex mileu

of microflora that co-enriches (assuming the target is enriching)

during the BAM protocol for detection of Salmonella from tomato

phyllosphere samples. These data will assist with future efforts to

improve culturing methods and bioinformatic detection of

pathogens directly from metagenomic and shotgun sequenced

enrichments. We examined DNA from four uncultured phyllo-

sphere replicates and followed these samples through three

enrichment steps used in the BAM for detection of Salmonella.

The three culturing conditions were: 1) Universal Pre-enrichment

broth (UPB) which provides buffering against rapid changes in pH

to aid growth of sublethally-injured Salmonella [10]; 2) Rappaport-

Vassiliadis (RV) more selective, with low pH, Malachite Green,

and high MgCl2 to increase osmotic pressure, [11,12]; and 3)

Tetrathionate (TT) broth, also selective for Salmonella spp. by

reported suppression of commensal intestinal organisms, with a

combination of Sodium Thiosulfate (Na2S2O3) and tetrathionate

[13].

Another goal of this study was to examine the efficiency of

different bioinformatic classification pipelines and approaches such

as assembly vs. no-assembly, to describe taxonomic profiles

associated with BAM enrichments for detection of Salmonella from

tomato phyllosphere. A vitally important future step for the

validation of this methodology will be the addition of known

concentrations of Salmonella (or other target pathogens) to samples.

Figure 2. Principal Coordinates Analysis (PCoA) depicting the taxonomic (a and b) and functional (c and d) differences among the
replicates and treatments.
doi:10.1371/journal.pone.0073079.g002
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This will allow us to determine the amount of sequence data

necessary for bioinformatic recovery of an introduced strain as

well as improve our understanding of the biological dynamics that

may be associated with inhibition by co-culturing organisms.

Materials and Methods

Sample collection and enrichment
Tomato phyllosphere samples were collected from the Eastern

Shore Agricultural Research and Extension Center of Virginia

Tech, in Painter, VA on July 15, 2011. No specific permissions

Figure 3. Taxonomic description of Phyla in uncultured and cultured samples using Flash and Meta Velvetg for assembly and the
lowest common ancestor taxonomic rank of best hits (maximum e-value cutoff of 1.025, minimum percent identity of 95%, and
minimum alignment length 99 bp).
doi:10.1371/journal.pone.0073079.g003

Figure 4. Taxonomic classification of the nine most prevalent Proteobacteria genera in uncultured and cultured samples based on
FLASHed and Meta Velvetg assembly and the lowest common ancestor taxonomic rank among the best hits (maximum e-value
cutoff of 1.025, minimum percent identity of 95%, and minimum alignment length 99 bp).
doi:10.1371/journal.pone.0073079.g004
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were required for collection from these research fields other than

the consent of the Virginia Tech agricultural research scientists

and extension agents who direct the activities of this Virginia

Agricultural Experiment Station. The field studies did not involve

endangered or protected species. Four independent samples were

collected with each sample comprised of ten leaves and four

tomatoes picked randomly from different plants in a single row

approximately 23 meters in length. Each of the four bags of

Figure 5. Taxonomic classification of Firmicute genera associated with metagenomic and shotgun sequenced enrichments using
FLASHed and Meta Velvetg assembly and the lowest common ancestor taxonomic rank among the best hits (maximum e-value
cutoff of 1.025, minimum percent identity of 95%, and minimum alignment length 99 bp).
doi:10.1371/journal.pone.0073079.g005

Figure 6. Boxplots of the relative abundance of a) Salmonella, b) Paenibacillus c) Proteobacteria, and d) Firmicutes among the
different treatments using the FLASHed and Meta Velvetg assemblies. Boxes show the interquartile range, bars illustrate the median, and
the whiskers extend out to 1.5 times the interquartile range.
doi:10.1371/journal.pone.0073079.g006
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pooled leaves and tomatoes came from a different row – in an

attempt to get a broad representation of the field. Samples were

stored at 4uC for 48 hours. Subsets of the four samples were used

to create the uncultured (UNC) treatment. Sterile water (300 ml)

was added to each phyllosphere subset (5 leaves and 2 tomatoes).

Bags were sonicated to disrupt biofilms associated with leaf and

fruit surfaces and the resulting ‘‘wash’’ water was centrifuged and

DNA was extracted from the pellet. The remaining samples were

enriched in UPB overnight and aliquots of the UPB enrichment

were added to TT and RV medias. Approximately one ml of each

enrichment was collected after the 24 hour incubation period and

pelleted for DNA extraction (Table 1). A real time PCR assay

developed for detecting Salmonella [14] was also performed on UPB

enrichments. No positive real time results were observed for any of

the samples.

DNA extraction, library preparation and DNA sequencing
DNA was extracted from cultured and culture independent

samples using the Promega WizardH Genomic DNA purification

Kit (Promega Corporation, Madison, WI) following the extraction

protocol for Gram-negative bacterial species. We used 50 ng of

DNA from each replicate as input for the Nextera DNA Sample

Preparation Kit (Illumina, San Diego, CA) with the Associated

Nextera Index Kit according to the manufacturers specifications.

Libraries were diluted to 2 nM and denatured with.1N NaOH

according to Illumina’s specification for sequencing on the MiSeq

V1 platform that produces 26151 reads.

Sequence assembly
We performed two different steps that increased the length of

reads and therefore should have increased our ability to accurately

assign taxonomy and function. The first approach was to use the

Fast Length Adjustment of Short reads (FLASH) [15] program

that combines paired-end reads that overlap into a single contig.

We used the default settings that included 10 bp minimum overlap

between reads.

In the second approach, we performed de novo assemblies of

the metagenomes using Meta-Velvet [16], which uses the program

velveth to construct k-mer hash tables and the program velvetg to

construct an initial de Bruijn graph [17]. Next, the Meta-Velvetg

program decomposes the initial de Bruijn graph into sub-graphs

from which contigs were built representing the different genomes

in the sample. Although this process loses the information about

the abundance of particular taxa, these longer reads may increase

the taxonomic resolution that can be assigned to individual reads.

(Abundance data can be regained later by blasting the original

reads back to the assembled contigs).

Taxonomic classification
To determine how the different culturing techniques altered the

taxonomic profiles of the samples, we used the reference-based

approach implemented within MG-RAST [18] that utilizes the

M5 non-redundant database (M5NR), a compilation of many

databases (e.g., BLAST nr, KEGG, and Uniprot). It is important

to note that by assigning taxonomy based on translated nucleotide

Table 2. Number of reads classified based on a lowest common ancestor approach to bacterial genera across the samples and
different assembly methods.

Flashed Meta-Velvetg

Genus UNC TT RV UPB UNC TT RV UPB

Bacillus 41 2511 17296 26580 3 834 3499 2064

Pantoea 652 2680 5076 21914 86 837 459 1943

Acinetobacter 0 159 2958 3780 0 21 308 36

Enterobacter 1 881 279 295 0 65 5 16

Clostridium 0 22 652 520 0 1 96 24

Lysinibacillus 0 3 554 2 0 1 182 16

Streptococcus 0 429 2 4 0 155 2 0

Lactococcus 0 93 154 25 0 22 26 0

Arsenophonus 0 31 94 154 0 1 1 1

Escherichia 0 34 227 13 0 4 1 1

Paenibacillus 1 23 77 77 0 3 4 7

Dickeya 0 30 88 68 0 1 1 0

Pseudomonas 1 133 6 5 0 0 1 1

Erwinia 1 4 34 55 0 0 1 0

Brevibacillus 0 4 39 9 0 1 3 1

Salmonella 0 41 8 3 1 0 0 1

Yersinia 0 19 13 8 0 3 0 4

Exiguobacterium 0 2 33 9 0 1 1 1

Acholeplasma 0 11 9 23 0 0 0 1

Klebsiella 0 18 9 10 0 1 0 1

Acetobacter 0 18 13 7 0 0 0 0

Candidatus_Regiella 0 2 6 23 0 0 0 1

Results are shown in rank order and for only those genera with greater than 30 reads assigned to them.
doi:10.1371/journal.pone.0073079.t002

Evaluating Culturing Methods for Pathogen Recovery

PLOS ONE | www.plosone.org 6 September 2013 | Volume 8 | Issue 9 | e73079



– protein homology we lose information contained in the 10–20%

of microbial genomes that are not protein coding [19] and are

unable to account for lineage specific differences in codon bias

[20]. We classified reads based on the lowest common ancestor

approach, which assigns each read the taxonomy of the lowest

taxonomic rank among the best hits. For all analyses in MG-

RAST we used a maximum e-value cutoff of 1.025, minimum

percent identity of 95%, and minimum alignment length of 33

amino acids (99 bp; MG-RAST classifications are based on amino

acid similarity). Overall taxonomic differences were estimated

through construction of a Principal Coordinates Analysis (PCoA)

based on normalized Bray-Curtis distances. To account for

differences in the number of reads among the samples, we present

differences in the normalized abundances of different taxonomic

groups. We performed paired t-tests using R [21] to determine

whether there were significant differences between the different

enrichments and the control (uncultured).

Pathogen detection pipeline for Salmonella
We used a novel pipeline, found in https://github.com/qiime/

platypus, that was developed to detect a specific organism, in this

case, Salmonella. The classification approach used sequences from

the Integrated Microbial Genomes (IMG) database and scripts

from the Quantitative Insights Into Microbial Ecology (QIIME)

package to construct a pair of databases. The first, labeled

InterestDB, contained only known Salmonella-specific sequences,

and the second, labeled OtherDB, consisted solely of non-

Salmonella. Sequences were quality-filtered (split_libraries.py) and

then analyzed using the program parallel_blast.py with an

extremely liberal setting (i.e., E-value = 0.1) against InterestDB

and against OtherDB to maximize the number of hits to each

database. We then ran the platypus_compare.py, which, as the

name suggests, compares the BLAST results against each database

and returns the better hit from the two databases. The parameter

settings for this step are much more stringent (i.e., E-value = 1230)

and we evaluated a number of different percent identity and

percent overlap thresholds. We ran the analyses using 100%

identity across at least 100 bp. The best hit for a given sequence

was determined by the BLAST result for those parameters that

had the best bit score between the two databases. To determine

the gene regions to which these putative Salmonella reads belonged,

we BLASTed them, using the same criteria, against an FDA in-

house collection of 156 annotated Salmonella genomes.

We were also interested in estimating the percentage of species

within a sample that we did not detect and how much more

sequence data (i.e., bps) we would have needed to obtain

approximately 1X coverage across all taxa within a sample. To

accomplish the former, based on the FLASHed results we

estimated the additional number of OTUs that would have been

observed given additional sampling based on the Solow estimate

using the calculation in MOTHUR [22]. We calculated the Solow

estimate based on if we had double the amount of sequences per

sample (the estimate is only valid when the additional number of

reads is equal to or less than those actually obtained). To estimate

the number of bases necessary to achieve 1X coverage across all

genomes, we assumed that the average genome size was 5 Mbp

that we then multiplied by the total number of species observed.

We then compared this to the number of bp we actually acquired.

We acknowledge that this a simplistic approach, but feel that it

represents a significant underestimate of the actual number of bp

Figure 7. Results of the IMG pipeline assigning reads to either only Salmonella (Salmonella Only, orange), both Salmonella and the
other database but with greater confidence to the former (Salmonella q + IMG, white), both databases with equal confidence
(both, black), or the other database only (IMG Only, grey) for a) flashed and b) Meta-Velvetg reads.
doi:10.1371/journal.pone.0073079.g007
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we would have needed. As a result, such information can serve as a

conservative heuristic regarding the additional sequencing effort

necessary to assemble the genomes of taxa present in an

environmental sample. This estimate was also based only on the

FLASHed reads.

Functional classification
MG-RAST was also used to evaluate whether functional

differences (i.e., the presence or absence of particular genes) could

be observed among the different culturing techniques. We used

protein databases such as COG, NOG, SEED, and KEGG that

hierarchically group proteins. We focused on differences based on

classification of reads to the highest level in the functional

hierarchy (i.e., Level 1). The same search parameters were used as

those in the taxonomic classification. A PCoA plot was then

constructed based on normalized Bray-Curtis distances.

Results

Sequencing yield
After assembling overlapping MiSeq reads with FLASH, we

obtained 15 million sequences totaling 2.6 Gbp (Table 1). De novo

assembly using Meta-Velvetg resulted in many fewer sequences;

3.16104 reads, compared to 9.96105 for FLASHed reads. As

expected, Meta-Velvetg reads were longer (�xx=447 bp) than the

FLASHed reads (�xx=210 bp). However, it is important to note

that the de novo assembly was done on reads that had not been

merged, therefore the Meta-Velvetg reads are, on average, shorter

than the FLASHed reads for some samples (Table 1). We attribute

the short mean fragment size relative to the maximum (290 bp) for

the FLASHed reads to an insert size of greater than 302 bp

(26151). All metagenomes are publicly available from MG-RAST

and SRA at NCBI, see Table 1 for all accession numbers and

BioSampleIDs.

Taxonomic descriptions of metagenomic and shotgun
sequenced enrichments
Rarefaction plots of species diversity as a function of number of

FLASHed reads generally showed that the sequencing depth was

insufficient to capture the majority of the diversity within our

samples (Fig. 1a). This pattern was even more pronounced when

using Meta-Velvetg assembled reads, which did not come close to

asymptote (Figure 1b). This is not surprising, due to the reduced

abundance of reads following assembly. The rarefaction plots also

indicated that species diversity was greater within the FLASHed

samples compared to the Meta-Velvetg assembled reads. Based on

the Solow estimate of the additional number of species we would

have detected if we had obtained double the number of reads, we

would still have only sampled 83% of the species present at

extremely low coverage.

Based on PCoA plots of both Flashed and Meta-Velvetg reads –

it is not surprising that uncultured (UNC) samples were the most

diverse in terms of their overall taxonomic profile. The UNC

samples clustered together independently of the enriched samples

along axis 1 (Fig. 2). Although there was some differentiation

among samples with respect to Axis 2, there did not seem to be

any clear separation by culturing technique (UPB, TT, RV). Data

from samples from the same enrichment medias did not cluster

together – perhaps because they were not laboratory replicates but

rather independent field replicates with inherent beta-diversity. To

make sure the observed patterns were not relics of insufficient or

unbalanced sampling, we reran the PCoA analyses on a rarefied

subset of the data and observed the same pattern (Figure S1).

In general, a greater number of sequences could be assigned

taxonomy from the FLASHed samples compared to the assembled

Meta-Velvetg raw reads (Table 1). This result is in part driven by

higher abundances of specific taxa within the FLASHed samples,

which is to be expected, as multiple copies of the same region will

be collapsed into a single contig using Mega-Velvetg. There were

also instances where taxa detected with the FLASHed samples

were not present in the Mega-Velvetg samples (Table 1 and Figs. 3

and 4). Observed Phyla across the samples included Actinobac-

teria, Tenericutes, Chloroflexi, Cyanobacteria, Bacteriodetes,

Cyanobacteria, Proteobacteria and Firmicutes (Figure 3). All of

which have been reported numerous times associated with the

phyllosphere [23–26].

Within the Firmicutes, the most prominent genera were

Clostridium, Bacillus, Brevibacillus, Paenibacillus and Lactococcus

(Fig. 5). As expected, an abundance of Firmicutes and Proteo-

bacteria was observed in all samples, including uncultured (Figs. 4

and 6). Significant differences in the abundance of Paenibacillus sp.

(Salmonella inhibitor) were observed between the uncultured and

UPB treatments. However, no significant differences in the

abundances of Paenibacillus sp. were observed among the different

medias (P,0.05). The UPB and RV enrichments had the highest

abundance of Firmicutes and Proteobacteria for both FLASHed

and Meta-Velvetg reads (Fig. 6).

Dominant observed Proteobacteria genera were Pantoea, Entero-

bacter, Dickeya, and Arsenophonus (Table 2, Figs. 4). Pantoea was the

dominant taxonomic group across all treatments, although this

was likely only true for uncultured samples due to the inability of

the majority of the reads to be mapped to any genera (Fig. 4).

Statistically significant differences in the abundance of sequences

from uncultured to cultured treatments were observed for

Enterobacter, Dickeya and Arsenophonus using FLASHed reads (Fig. 4).

Salmonella detection
All RT-PCR results from BAM enrichment procedures for these

samples were negative, however results from the bioinformatic

pipeline showed putative hits to Salmonella. The hits were based on

the pipeline described in Materials and Methods, (division of the

IMG database into InterestDB (Salmonella) and OtherDB (all other

taxa)) and a comparison of hit scores at ascending thresholds.

Among all treatments, TT had the highest incidence followed by

RV, UPB, and lastly the uncultured treatment (Fig. 7) – which in

itself, supports the potential legitimacy of these hits (because hits

would be more likely among cultured samples). Further explora-

tion of the putative hits revealed that they often matched to more

than one Salmonella serovar (e.g., S. Agonoa, S. Newport, and S.

Montevideo). They were also predominantly associated with

ribosomal genes, which is not be surprising given the higher copy

number of rRNA genes, but this fact certainly lessens the

diagnostic significance of these hits. Interestingly, FLASHed reads

tended to have a higher number of putative Salmonella than Meta-

Velvetg reads. Although more putative Salmonella sequences were

observed within the enriched samples, there was not a statistically

significant difference when compared to the uncultured samples.

Specifically, P=0.143 between the uncultured and UPB samples,

P=0.080 between the uncultured and TT treatments, and

P=0.077 between uncultured and RV samples.

Functional differences
AS with the taxonomic differences, we found that the

uncultured samples were distinct from enrichment treatments in

the abundance of different functional groups (Fig. 2). We also

found overlap among replicates from the same enrichment

Evaluating Culturing Methods for Pathogen Recovery
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treatment along Axis 2 of the PCoA plot. Axis 1 predominantly

differentiates uncultured samples from the enrichment samples.

Discussion

Using a metagenomic approach, we examined the microflora of

samples pre and post enrichment to describe non-target microbial

species that co-culture during enrichment steps associated with the

BAM for isolation of Salmonella from tomato phyllosphere samples.

We provided a preliminary taxonomic survey of organisms pre-

enrichment and a preliminary survey of taxonomy in response to

enrichments. These data will assist with estimates of the depth of

sequencing that will be needed for diagnostics associated with

cultured and uncultured phyllosphere microflora. They also

provide estimates of optimal bioinformatic approaches (e.g.,

assemble or not) required to reliably detect a pathogen from a

metagenomic or shotgun sequenced sample. Although our results

clearly demonstrate that the different enrichment methods

investigated had significant effects on the taxonomic profiles of

the samples relative to controls, they also suggested that there may

be a degree of stochasticity in enrichment procedures. Laboratory

replicates in addition to field replicates should be added to

subsequent experiments to better address this question. However,

the fact that the uncultured samples clustered together, suggests

that the independent field replicates were comprised of similar

microbial consortia. Rarefied subsets of the data did not produce a

different PCoA pattern (SuTherefore, the possibility exists that

laboratory replicates will not always produce the same taxonomic

profiles in terms of presence/absence or abundance post-

enrichment due to currently un-described microbial dynamics.

This pattern was less pronounced for functional differences: all

enrichment procedures appeared to select similar functional

groups with little variation among replicates including uncultured

replicates. The fact that the majority of the reads from the

uncultured tomato phyllosphere were assigned to only a few

genera, Pantoea and Bacillus, is likely not indicative of low diversity,

but rather an artifact of the inability to assign taxonomy to many

of the reads at the relatively stringent criteria selected, because the

majority of species within these samples are not well-represented in

existing databases [27,28]. Of particular importance is the

possibility that we detected Salmonella based on two conservative

methods using shotgun metagenomics when PCR and culture

techniques were unable to do so. The future addition of

experiments that include the spiking of known concentrations of

Salmonella will be crucial to validate these results and guide future

metagenomic and biological culture based detection methods.

The future of metagenomics as a diagnostic tool for detecting

pathogens rests in large part on several criteria: fraction of

genomes present that are sequenced (coverage), read length

(perhaps less important), completeness of reference databases, and

computational power. Our results suggest that we have extremely

low coverage across many genomes in that only tens to hundreds

of 151 bp reads were assigned to many taxa with genomes sizes

around 5 Mb. Based on our simplistic estimate, we would have

needed to acquire on average approximately 250 times as many

bp to achieve 1X coverage across all genomes present in a given

replicate (Fig. 8).

As for read length, we analyzed two different bioinformatic

approaches to increase the length of contigs and, thus, increase our

ability to assign taxonomy. These two approaches did increase the

average read length beyond a single paired-end read (e.g.,

assemblies were greater than 151 bp; average for FLASHed and

Meta-Velvetg reads were 210 and 450 bp, respectively; Table 1).

However, a comparison of those results is somewhat surprising:

increased read length reduced our ability to assign taxonomy. In

some instances we actually lost the ability to detect a species by

merging reads based on the Meta-Velvetg approach (e.g., UPB

treatment and the detection of Lactococcus and Dickeya; Table 2). As

a result, it does not appear that read length may be the most

significant impediment to classification and detection. Our results

and those of others [29] raise an interesting question of whether

there is much to be gained from performing de novo assemblies of

Figure 8. Plots of the average number of base-pairs (in millions) observed and estimates of quantity necessary to achieve
approximately 1X coverage across all genomes present in cultured and uncultured samples.
doi:10.1371/journal.pone.0073079.g008
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high-complexity sequences, using the longer read capabilities of

certain next-generation sequencing platforms. For example, we

found that we were not able to increase the unique taxa we could

detect using reads from the de novo assembly method.

All of the identified genera across the treatments will guide the

assembly of more complete reference databases for improved

taxonomic assignment in future work. The identification of the

significant enrichment of Paenibacillus (a species known to inhibit

and kill Salmonella) is an important finding in itself. Researchers

attempting to culture Salmonella from phyllosphere samples should

be aware of this finding. Our results suggest that bioinformatic

detection approaches using a combination of metagenomic and

shotgun sequence data from classical enrichment methods may be

useful both for detection of pathogens and for streamlining of

culturing methods.

Supporting Information

Figure S1 Results from the PCoA based on taxonomic

assignments using a subsampled dataset (,25% of observed data)

for both Flashed and Meta-Velvetg. Patterns were consistent

across multiple levels and serve to illustrate that our observed

pattern is not an artifact of insufficient sampling depth.
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