
i

Predicting Performance Run-time Metrics in Fog Manufacturing using Multi-task Learning

Vignesh Raja Nallendran

Thesis submitted to the Faculty of the Virginia Polytechnic Institute and State University in

partial fulfillment of the requirements for the degree of

Master of Science

in

Industrial and Systems Engineering

Ran Jin, Chair

Subhash C. Sarin

Xinwei Deng

February 3, 2021

Blacksburg, VA

Keywords: Fog computing, Fog manufacturing, Multi-task learning, Run-time metrics

ii

Predicting Performance Run-time Metrics in Fog Manufacturing using Multi-task Learning

Vignesh Raja Nallendran

ABSTRACT

The integration of Fog-Cloud computing in manufacturing has given rise to a new paradigm called

Fog manufacturing. Fog manufacturing is a form of distributed computing platform that integrates

Fog-Cloud collaborative computing strategy to facilitate responsive, scalable, and reliable data

analysis in manufacturing networks. The computation services provided by Fog-Cloud computing

can effectively support quality prediction, process monitoring, and diagnosis efforts in a timely

manner for manufacturing processes. However, the communication and computation resources for

Fog-Cloud computing are limited in Fog manufacturing. Therefore, it is significant to effectively

utilize the computation services based on the optimal computation task offloading, scheduling, and

hardware autoscaling strategies to finish the computation tasks on time without compromising on

the quality of the computation service. A prerequisite for adapting such optimal strategies is to

accurately predict the run-time metrics (e.g., Time-latency) of the Fog nodes by capturing their

inherent stochastic nature in real-time. It is because these run-time metrics are directly related to

the performance of the computation service in Fog manufacturing. Specifically, since the

computation flow and the data querying activities vary between the Fog nodes in practice. The

run-time metrics that reflect the performance in the Fog nodes are heterogenous in nature and the

performance cannot be effectively modeled through traditional predictive analysis. In this thesis,

a multi-task learning methodology is adopted to predict the run-time metrics that reflect

performance in Fog manufacturing by addressing the heterogeneities among the Fog nodes. A Fog

manufacturing testbed is employed to evaluate the prediction accuracies of the proposed model

iii

and benchmark models. The proposed model can be further extended in computation tasks

offloading and architecture optimization in Fog manufacturing to minimize the time-latency and

improve the robustness of the system.

iv

Predicting Performance Run-time Metrics in Fog Manufacturing using Multi-task Learning

Vignesh Raja Nallendran

GENERAL AUDIENCE ABSTRACT

Smart manufacturing aims at utilizing Internet of things (IoT), data analytics, cloud computing,

etc. to handle varying market demand without compromising the productivity or quality in a

manufacturing plant. To support these efforts, Fog manufacturing has been identified as a suitable

computing architecture to handle the surge of data generated from the IoT devices. In Fog

manufacturing computational tasks are completed locally through the means of interconnected

computing devices called Fog nodes. However, the communication and computation resources in

Fog manufacturing are limited. Therefore, its effective utilization requires optimal strategies to

schedule the computational tasks and assign the computational tasks to the Fog nodes. A

prerequisite for adapting such strategies is to accurately predict the performance of the Fog nodes.

In this thesis, a multi-task learning methodology is adopted to predict the performance in Fog

manufacturing. Specifically, since the computation flow and the data querying activities vary

between the Fog nodes in practice. The metrics that reflect the performance in the Fog nodes are

heterogenous in nature and cannot be effectively modeled through conventional predictive analysis.

A Fog manufacturing testbed is employed to evaluate the prediction accuracies of the proposed

model and benchmark models. The results show that the multi-task learning model has better

prediction accuracy than the benchmarks and that it can model the heterogeneities among the Fog

nodes. The proposed model can further be incorporated in scheduling and assignment strategies

to effectively utilize Fog manufacturing’s computational services.

v

 ACKNOWLEDGMENT

I would like to start by thanking my advisor Dr Ran Jin for providing me an opportunity to work

under him. His valuable inputs have been beneficial both academically and professionally, and his

continued inputs and value addition for my research is something that I am grateful for. I would

like to thank Dr Subhash Sarin and Dr Xinwei Deng for being part of my committee and guiding

me through my master’s journey.

I would especially like to thank Mr. Lening Wang, who initially helped me in understanding Fog

manufacturing and continued giving valuable suggestions and course corrections during my

research. I am grateful for Ms. Yutong Zhang for helping me understand the data for my research

and Mr. Xiaoyu Chen for giving me valuable suggestions on my model. I would like to thank all

my fellow research members for welcoming me into the Data science and Visualization lab group.

vi

DEDICATION

My journey here at Virginia Tech is all thanks to my parents who have constantly supported me

be it financially or otherwise. And most importantly I would like to thank God for his continued

grace.

vii

TABLE OF CONTENTS

ABSTRACT .. ii

GENERAL AUDIENCE ABSTRACT.. iv

ACKNOWLEDGMENT.. iv

DEDICATION ... vi

TABLE OF CONTENTS .. vii

LIST OF FIGURES ... ix

LIST OF TABLES .. x

CHAPTER 1: INTRODUCTION ... 1

1.1 Motivation ... 1

1.2 Research Objective and Challenges .. 5

CHAPTER 2: LITERATURE REVIEW .. 8

CHAPTER 3: METHODOLOGY .. 12

3.1 Assumptions .. 13

3.2 The multi-task learning model .. 13

CHAPTER 4: CASE STUDY ... 15

4.1 Experimental setup .. 15

4.2 Histogram of Run-time Metrics .. 20

CHAPTER 5: RESULTS .. 23

viii

5.1 Prediction and Variable Selection Results .. 23

5.2 Diagnostics and assumption validation ... 28

CHAPTER 6: CONCLUSION ... 30

CHAPTER 7: FUTURE WORK .. 32

REFERENCES ... 33

ix

LIST OF FIGURES

Figure 1: Example of a simple data analytics pipeline .. 2

Figure 2: A Schematic diagram for Fog manufacturing [42-46] .. 4

Figure 3: Effect of different workloads and different data sources .. 6

Figure 4: Fog manufacturing testbed (redrawn from [20]) ... 15

Figure 5: Distribution of CPU Utilization .. 20

Figure 6: Distribution of Time-latency ... 21

Figure 7: Distribution of Download utilization .. 21

Figure 8: Magnitude of the Model Coefficients for Time-Latency .. 24

Figure 9: Magnitude of the Model Coefficients for Download Utilization 25

Figure 10: Magnitude of the Model Coefficients for CPU Utilization ... 26

Figure 11: Diagnostic plots for Time-latency ... 28

Figure 12: Diagnostic plots for CPU utilization ... 28

Figure 13: Diagnostic plots for Download utilization .. 29

x

LIST OF TABLES

Table 1: Notations in the Proposed Multi-task Learning Model .. 12

Table 2: Design of Experiments Factors ... 17

Table 3: Description of the Predictor Variables ... 18

Table 4: NRMSEs for the Predictive Models ... 23

1

CHAPTER 1: INTRODUCTION

1.1 Motivation

Fog manufacturing is an emerging manufacturing platform that integrates the Fog-Cloud

collaborative computation services and Cyber-physical systems (CPS) to better support various

data analytics in practice [1-4]. To effectively organize and implement the different types of data

analytics in manufacturing, computational pipelines have been employed to flexibly demonstrate

the on demand computational requirements [5]. A computational pipeline is a sequence of pipeline

components and method options for computational tasks that are broken down into sub-steps [5].

There are different computation tasks in manufacturing, such as time series modelling, predictive

analytics, etc. Therefore, the pipelines will have different components and method options. My

thesis is focused on data driven modelling pipelines, in particular simple data analytics pipelines.

A simple data analytics pipeline is a sequential combination of sub-steps (e.g., feature extraction,

parameter tuning, modeling, etc.) as shown in Figure 1, where selecting different sub-steps leads

to the desired computational flow [6]. It is worth mentioning that the pipelines in manufacturing

are not limited to the examples shown in Figure 1. Ideally the sub-step options are large enough to

reflect the various computational requirements in a manufacturing facility.

2

Figure 1: Example of a simple data analytics pipeline

 By efficiently analyzing the real-time data collected from manufacturing processes via the

pipelines, Fog manufacturing can effectively support time-critical decisions based on the data

analysis result with a satisfied time-latency and communication bandwidth utilization [4]. These

advantages are accomplished by the Fog-cloud computation service in Fog manufacturing, which

can decompose and distribute the computation tasks (i.e., sub-steps) to interconnected and

geographically distributed devices (i.e., Fog nodes) that are capable of processing and analyzing

the data locally [7].

Compared with a Cloud only computing service which needs to firstly transfer all data to the Cloud

then perform the computation, the Fog-Cloud computing service can significantly improve the

responsiveness and reliability of the data analysis service by properly offloading (i.e., assigning)

the computation tasks to the Fog nodes [13-15]. In addition, compared to Cloud computing, Fog

manufacturing can also be scaled up cost-effectively based on the dynamic computation

requirements [1,12].

3

To clearly demonstrate the structure of Fog manufacturing, a schematic diagram is shown in Figure

1. In Figure 1, there are three layers in this Fog manufacturing platform. The first layer is the

facility layer, which includes manufacturing systems, robotic arms, and other Internet of Things

(IoT) devices with corresponding sensor systems to collect real-time data from the production

lines. To implement the computation service for the collected data, the data are efficiently

transmitted to the second layer (i.e., Fog layer) via routers and gateways [4,7,8]. The Fog layer

consists of geographically distributed and interconnected computation and networking resources.

These Fog nodes are capable of conducting computation tasks that are not computationally

intensive (e.g., data structuring, pre-processing, data cleaning etc. [7-9]), and will upload the

intermediate results to the Cloud for further data analysis. Moreover, the Fog node can also collect

the results from the Cloud and effectively transfer the real-time decision making to specific

manufacturing system [11,12]. Finally, by collecting the processed data from the Fog nodes, the

Cloud server can effectively perform the complex data analytics efforts to comprehensively

optimize the manufacturing processes based on the customers’ requirements [13].

4

Figure 2: A Schematic diagram for Fog manufacturing

Even though there are many advantages in utilizing Fog manufacturing, there are still some

challenges that restrict its wide deployment. One major advantage of Fog manufacturing is

implementing the computation tasks in a distributed manner, rather than transmitting data to a

centralized server for analysis [12,13]. However, computation and communication resources in

Fog manufacturing are limited. To effectively deploy the computation tasks in Fog manufacturing,

it is vital to properly schedule computation tasks, assign tasks to the proper Fog nodes at the right

time (i.e., offloading), and automatically add or remove resources based on the computation

requirements (i.e., autoscaling) [17]. For computation task scheduling and offloading in Fog

manufacturing, predictive offloading strategies have garnered recent research interest [18,19,21].

However, optimized offloading decisions rely on the information from run-time metrics of each

computation task, such as the time-latency (i.e., total time taken for a computation task on the

5

specific Fog node) [21,22]. Hence, there is a need to accurately predict the run-time metrics of

each computation task before offloading the task to specific Fog nodes. Similarly, in computation

scale-up, it is also necessary to know the run-time metrics to proactively determine when to add

or remove computation resources in Fog manufacturing [16]. Therefore, it is significant to predict

run-time metrics that reflect the performance of Fog nodes before the implementation of each

computational task.

1.2 Research Objective and Challenges

The objective of this thesis is to propose a model that can effectively predict the selected run-time

metrics on each device in Fog manufacturing. Specifically, Time-latency, CPU utilization, and

Bandwidth utilization are studied as the run-time metrics in this work [20]. Time-latency is defined

as the total time taken to finish the computation task on a specific Fog node. It is also the key

performance indicator to evaluate the responsiveness in Fog manufacturing. CPU utilization is

defined as the computation capacity used divided by the total available computation capacity.

Depending on the objective for offloading, CPU utilization is either preferred to be high or low.

Download utilization indicates the rate of data transfer for downloading, lower the download

bandwidth utilization more is the capacity for transferring more data. Apart from the three run-

time metrics stated above, Double redundancy is another run-time metric that reflects the reliability

of the Fog nodes. Since it is calculated as twice the Time-latency in a Fog node, double redundancy

is not separately predicted.

In the literature, to effectively predict the run-time metrics defined above, information generated

from the data analytics pipelines and historical in situ computation conditions on each Fog node

have been identified as important predictors [20]. The hardware configurations of the Fog nodes

6

are expected to significantly affect the run-time metrics performance. Generally speaking, the Fog

nodes have different hardware configurations (e.g., GPU units, CPU units, FPGA units, etc.) in a

manufacturing facility. These differences in the hardware can be quantified by introducing new

predictor variables that describe the configuration of the Fog node on which a computational task

was offloaded.

In this thesis, the Fog nodes have the same hardware configuration (i.e., Raspberry pie 3 units).

Instead, the Fog nodes might not have the same computational flow or data query strategy when

executing the computation tasks, the relationship between the run-time metrics and the predictors

might vary. As shown in Figure 3, the two Fog nodes have identical hardware configuration and

performance, but over time the difference in the computational workflow represented by the blue

and orange blocks leads to varying accumulative effects in their hardware (e.g., CPU cache,

Memory bandwidth). This causes the relationship between the run-time metrics and identified

predictor variables to vary between the two Fog nodes, resulting in heterogenous run-time

performances. Moreover, modeling these heterogenous Fog nodes in one model would lead to poor

prediction accuracy and would negatively affect offloading and computation scaling decisions.

Figure 3: Heterogenous run-time performances of Fog nodes with identical hardware

configurations due to different computation workloads and data sources

7

1.3 Proposed Methodology

In this thesis, to tackle the challenges discussed above, the regularized multi-task learning

framework [28,29] is adopted to predict run-time metrics effectively and accurately in Fog

manufacturing. Specifically, multi-task learning is employed in this study to efficiently model the

data heterogeneity in the run-time metrics present among the Fog nodes. Since the computation

flow that the Fog nodes execute are similar-but-non-identical, their models are expected to share

similar model coefficient structure (i.e., variable selection results) between each other. This is

realized by penalizing on the 𝑙2,1 and 𝑙2 norms for achieving similarity and sparsity in the model

coefficients [29]. The methodology is validated in a Fog manufacturing testbed. Based on the

results, the multi-task learning model is shown to have better prediction accuracy by comparing

with existing benchmark methods such as linear regression [39], Lasso regression [39] and

Random forest regression [40]. Furthermore, the variable selection results are visualized to

interpret the heterogeneous characteristics among the Fog nodes.

8

CHAPTER 2: LITERATURE REVIEW

In this Chapter, the background of Fog manufacturing, existing offloading and scalability

techniques in Fog computing, models to predict run-time metrics in Fog computing, and models

to address the heterogeneity are reviewed in detail. Beginning with the Fog manufacturing, current

research papers have identified Fog computing as a suitable platform for IoT applications and

services such as smart grid, smart cities, connected vehicles, and virtual sensors and network

actuators, where Cloud computing alone cannot meet the latency requirements for delay sensitive

computational tasks [7].

Fog computing is viewed as a platform solution to facilitate real-time data processing with a

reduced requirement in bandwidth [8,9]. Consequently, the Fog computing paradigm that extends

the Cloud to the Edge has garnered attention in manufacturing. Implementation of Fog computing

in manufacturing (i.e., Fog manufacturing) seeks to alleviate traffic to the Cloud and facilitate real-

time decision making by processing data locally in a distributed manner. This helps in proactively

predicting machine downtime, responding to varying demand, and effectively identifying the root

cause of a manufacturing defect [1,2]. In an extension of Fog computing’s application in

manufacturing, Qi et al. discussed how Fog computing technology can be used to realize a system-

level cyber-physical system (CPS) and Digital twin (DT) in smart manufacturing [10]. With these

beneficial characteristics, Fog manufacturing has the potential in filling the gap in Cloud

computing to respond to industrial requirements. However, implementing Fog computing in smart

manufacturing has its challenges, these include 1) heterogeneous nature of data processed, 2)

architecture design to allocate resources, and 3) scalability. A starting point to address these

9

challenges would be to model the computation and communication performance variables for

analysis in Fog manufacturing [4].

On the other hand, offloading methods in Fog manufacturing are essential in ensuring the effective

use of Fog computing. In Fog manufacturing, a system of sensors and actuators collects data

through smart gateways and send them to Fog nodes that support distributed data analytics for

real-time decision making [2,11,12]. Since the network resources are limited for distributing tasks

to the Fog nodes, scheduling tasks, and knowing when to assign tasks (offloading) becomes critical

in ensuring reduced delay and optimizing the decision-making process [13-15]. Another important

advantage in Fog manufacturing is its scalability. Based on the computation requirements, the Fog

manufacturing can be scaled up or down rapidly and cost-effectively [1]. There are several

algorithms proposed to automatically scale (i.e., autoscaling) the computation service based on the

requirements of the computation task [16,17]. However, a prerequisite for implementing effective

scheduling, offloading, and autoscaling strategies are to predict the run-time metrics of Fog nodes

[16,18,19]. In the current literature, to facilitate the prediction of run-time metrics in Fog

computing, performance run-time metrics, and corresponding process variables have been

established. For example, a systems informatics approach was adapted by Zhang et al. to determine

the process variables affecting performance run-time metrics, such as Time-latency and double

redundancy [20]. These performance metrics were used as benchmarks to compare performance

in Cloud and Fog-Cloud computing. Without accurately predicting the performance run-time

metrics, we cannot utilize the fog manufacturing architecture effectively.

In the current literature, there are many predictive models proposed to predict the run-time metrics

in the manufacturing system, which are needed to improve the Fog computing performance. Luong

et al. proposed a predictive autoscaling method by predicting CPU metrics and throughput metrics

10

in real-time to predict bust load and short-term future value [16]. Gao et al. predicted workload in

Fog nodes to propose a dynamic offloading technique that minimized energy consumption [19].

In a paper by Chen et al., an offloading strategy based on predicting bandwidth and computation

using the ARIMA model resulted in better task completion [21]. Patman et al. used machine

learning algorithms to predict time-latency and concluded that their predictive models show higher

accuracy than discrete calculation approaches [22]. In Fog computing, the Fog nodes handle

different computational tasks and databases for storage that leads to process heterogeneity [23].

However, existing predictive models have not addressed the heterogenous characteristics in the

run-time metrics among the Fog nodes. Therefore, it may lead to inaccurate prediction results,

resulting in ineffective utilization of the Fog computing service.

To model heterogeneity among the Fog nodes, it is necessary to find ways of sharing knowledge

between the Fog nodes and improve the overall prediction accuracy. In current literature, models

that leverage related tasks to induce the required knowledge transfer exist. For example, Baxter

introduced a theoretical Bayesian model that samples from related tasks to induce bias. The bias,

in this case, relates to the desired domain knowledge that is reflected in the model coefficients

[24]. Caruana introduced the multi-task learning algorithm based on kernel regression and k-

nearest neighbors that used related tasks in parallel to achieve the desired bias [25]. Apart from

capturing heterogeneity in tasks, modeling multiple related tasks simultaneously produces a better

result in terms of variable selection and prediction accuracy than modeling tasks individually. For

example, Huang et al. utilized a multi-task sparse Bayesian model that modeled related tasks along

with the primary task to get better prediction in structural stiffness [26]. Multi-task Lasso

regression was used by Lina et al. the resulting prediction showcased accuracy better than existing

benchmark methods [27]. Generalization in the prediction model is achieved by forcing tasks to

11

share similar coefficient values. In the multi-task Lasso, the values of the input variables remain

the same and the tasks are defined as varying output variables. However, in the case of modeling

for performance in Fog computing, the value of both the input variables (in situ variables) and

output variables (run-time metrics) varies across individual Fog nodes, where the task is to predict

performance in individual Fog nodes.

A form of regularized multi-task learning is more feasible in this given case [28, 29]. In regularized

multi-task learning, the tasks to be modeled share the same process and performance variables, but

the context and values of these parameters differ. But these existing methods have not been utilized

in the context of predicting performance in Fog manufacturing. In this paper, a form of regularized

multi-task learning method is utilized to predict the run-time metrics which are related to the

performance and reliability of each Fog nodes in Fog manufacturing.

12

CHAPTER 3: METHODOLOGY

In this chapter, the details of proposed regularized multi-task learning model is discussed.

Specifically, the notations employed in this study are summarized in Table 1. Without the loss of

generality, we consider modelling the run-time metrics for an individual Fog node as a single task.

This is because the relationship between the performance and predictor variables used for

modeling the performance of Fog nodes are non-identical. In this study, a sample for each task is

collected when a sub-step from a pipeline is offloaded to a specific Fog node, and run-time metrics

(i.e., Time-latency, CPU utilization, Download utilization) for this Fog node are treated as the

performance variables in modeling.

Table 1: Notations in the Proposed Multi-task Learning Model

Notation Description

𝑛, 𝑝, 𝑡 Number of samples, predictors, and tasks

𝑌𝑖 ℝ{𝑛𝑖 ×𝟏}, Response variable for task 𝑖

𝑋𝑖 ℝ{𝑛𝑖 ×𝒑}, Predictor variables for task 𝑖

𝑊𝑖 Coefficient of model for task 𝑖

λ1, λ2 Tuning parameter for Similarity and sparsity

Ci Normally distributed constant

13

L(∙) Mean squared error loss function

𝑌 = [𝒚1
T, … , 𝒚𝑡

T] Response variable for all tasks

𝑋 = [𝒙𝟏
T, … , 𝒙𝑡

T] Predictor variable for all tasks

𝜷𝑖 ℝ{𝑝 ×1},Model coefficient for task 𝑖

𝑩 = [𝜷1
T, … , 𝜷𝑡

T] Combined model coefficient of all t tasks

3.1 Assumptions

The assumptions for the proposed multi-task learning include: (1) A linear model structure is

adequate to model the relationship between the run-time metrics and predictors. (2) The model

coefficients among different Fog nodes are similar-but-non-identical. It is because the Fog nodes

have identical hardware build and similar computation tasks offloaded to the Fog nodes. This

similarity can be captured in the variable selection effort where the Fog nodes share similar model

coefficient structure. These two assumptions will be validated in the case study.

3.2 The multi-task learning model

Without the loss of generality, the model structure of this study can be formulated as:

 𝒚𝑖 = 𝑋𝑖𝜷𝑖 + 𝝐𝑖.

(1)

14

Moreover, the multi-task learning model induces generalization by forcing similarity in the model

coefficients of related tasks. This induces the required knowledge transfer [27]. To enforce

similarity in model coefficients, the model is formulated by penalizing for similarity and sparsity

as:

 argmin
𝑩

∑ 𝐿(𝜷𝑖, 𝝐𝑖|𝑋𝑖, 𝒚𝑖)
𝑡
𝑖=1 + 𝜆1𝜔(𝑩) + 𝜆2‖𝑩‖𝐹

2 , (2)

where 𝑩 = [𝜷1
T, … , 𝜷𝑡

T] is the overall model coefficient matrix; 𝜔(𝑩) = ∑ √∑ 𝜷𝑖,𝑗
2𝑡

𝑗=1
𝑝
𝑖=1 ; and

‖𝑩‖𝐹
2 = ∑ ∑ 𝛽𝑖,𝑗

2𝑝
𝑗=1

𝑡
𝑖=1 ; 𝜆1and 𝜆2 are tuning parameters for similarity and sparsity; and 𝑡 is the

total number of tasks. In the multi-task learning model the overall model coefficient matrix 𝑩

captures the variations in the relationship between the run-time metrics and predictors among the

Fog nodes. The residuals 𝝐𝑖 reflect the variability of the run-time metrics within a Fog node. The

first term in Model (2) is the least square function to minimize the squared error of the model. The

second term is a 𝑙2,1 norm that enforces knowledge transfer between tasks by encouraging

similarly sparse structured model coefficients [30]. The 𝑙2,1 norm encourages the selection of

similar model coefficients for the Fog nodes, thereby reducing variation in the model prediction

between the Fog nodes. The third term is a Frobenius norm that favors sparsity in the model

coefficients [31] and reduces variation in the model prediction within a Fog node by limiting the

number of non-zero model coefficients. The objective function is solved by the accelerated

gradient descent method. It can effectively yield the global optimal in a timely manner than the

traditional iterative shrinkage algorithms [32]. The tunning parameters are chosen based on a 5-

fold cross-validation to minimize the objective function using the training dataset [29].

15

CHAPTER 4: CASE STUDY

4.1 Experimental setup

To validate the proposed model, an existing Fog manufacturing testbed that can effectively

generate manufacturing data and execute simple predictive data analytics pipelines is employed

[18]. The multi-task learning model is evaluated by comparing the prediction accuracy for the run-

time metrics with other benchmark methodologies (i.e., linear regression [40], Lasso regression

[40], and Random forest regression [41]). These benchmarks are chosen, because previous work

by Wang, L., et al. showed that Lasso and Random forest regression can competently predict

performance in a Fog manufacturing setup [22,32]. Moreover, the variable selection results are

validated to identify whether the proposed model can properly capture the heterogeneous property

among the Fog nodes.

Figure 4: Fog manufacturing testbed (redrawn from [20])

16

In this case study, simple predictive data analytics pipelines generated from the data generation

layer are offloaded to the Fog manufacturing testbed. The architecture of the testbed is shown in

Figure 2. It can be observed that this testbed consists of three layers. Starting from the data

generation layer, seven manufacturing datasets (i.e., a set of predictor and response variables)

based on a simulated plasma chemical vapor decomposition (PCVD) process [35] are generated.

The generated data are then taken through a computational flow where the simple predictive data

analytics pipelines are broken into sub steps (i.e., feature extraction, parameter tunning and model

training). These sub-steps are further offloaded to Fog nodes at the second layer. The second layer

consists of 10 Fog nodes (i.e., Raspberry Pi 3 units) that have the similar computation and

communication features. The Fog nodes are capable for storing, processing, and transmitting the

data in this testbed. The final layer is the orchestrator, which is a workstation (CPU i7-6700k), is

responsible for implementing the offloading and data transmission decisions in the Fog nodes.

To properly implement the simple predictive data analytics pipelines in Fog manufacturing, the

orchestrator ranks the pipelines based on AdaPipe pipeline selection strategy [34]. The strategy

prioritizes pipelines based on their statistical performance. Once the pipelines are identified and

selected for offloading, the orchestrator decides upon assigning sub steps to the Fog nodes to

maximize the number of completed pipelines in given time. The data sets for the corresponding

sub steps are offloaded to the Fog nodes via a virtual offloading platform.[39]. The pipeline

selection and offloading principles are extended to various combination of offloading scenarios

shown in Table 2.

17

Table 2: Design of Experiments Factors

Factor Level 1 Level 2

Pipeline

selection
Random selection

Recommendation using

AdaPipe selection strategy

[34]

Pipeline number Top 5 Pipelines Top 10 Pipelines

Offloading

assignment
Random assignment Time balanced offloading

Data storage One copy on each node
Three copies on three random

nodes

To achieve different offloading scenarios in Fog manufacturing and comprehensively validate the

multi-task learning model, a full factorial design of experiments with four factors (two levels for

each) was employed. The design table is shown in Table 2. From Zhang et al., a comprehensive

analysis on the factors dictating performance in Fog manufacturing showcased that the strategy of

computation selection, number of computational flows, data storage, and offloading strategies

effect performance in Fog computing. Hence these factors are chosen to cover the spectrum of

offloading scenarios.

Specifically, pipeline selection refers to a method of determining simple predictive data analytics

pipelines to be executed in the experiment. The AdaPipe is a pipeline selection strategy [34] that

can prioritize the simple predictive data analytics pipelines based on their statistical performance

for a specific dataset. Pipeline number is defined as the number of pipelines in total that will be

executed. The offloading assignment strategy determines how the orchestrator will offload the sub-

steps in selected pipelines to specific Fog nodes. Time balanced offloading means the orchestrator

will assign sub-steps to the Fog nodes by maximizing the number of completed pipelines in given

time [39]. Finally, the data storage strategy determines how the data will be allocated among the

18

Fog nodes. This characteristic can directly influence the data query efforts when executing the

computation tasks.

It is worth mentioning that there exist alternative offloading strategies (e.g., offloading to reduce

cost [17], offloading to minimize power consumption with latency constraints [19], etc.), alternate

pipeline selection, and data storage strategies which are not accounted for in the current

experimental design. The experimental testbed does not select these alternate scenarios and

therefore the current model cannot be used to predict the run-time performance of the Fog nodes

when new pipelines are deployed under different offloading and data querying scenarios. Since

data for these alternate scenarios cannot be interpolated from the experimental data set. The scope

of the current multi-task learning model is restricted to the levels explored in the experimental

design. The robustness and reliability of the multi-task learning model can be improved for other

identified levels of offloading treatments in the future work.

Table 3: Description of the Predictor Variables

Type
Dummy/Continuous

variables Description Variable index

In situ variables

(historical and last

step)

Continuous

Latency,

temperature,

time stamp,

power

consumption,

memory, CPU

utilization,

bandwidth

utilization

(mean, std,

kurtosis, and

skewness)

1-65

(Historical and

Last step)

Setting variables

(last step and

current step)

Continuous Pipeline

description

78-90

(Last step)

107-116

19

(Current step)

Setting variables

(last step and

current step)

Dummy Step in pipeline

executed

91 – 93

(Last step)

117 – 1119

(Current step)

Setting variable

(last step and

current step)

Continuous

Information on

data processed,

predictor and

response

variable

(number of

observations,

mean, std,

kurtosis, and

skewness of the

response and

predictor

variables)

66-76

(Last step)

95-105

(Current step)

To collect the necessary data from the testbed, when a sub-step is completed on a Fog node,

important data, such as historical in situ variables on the Fog node’s performance, pipeline

description, and sub-step in the pipeline implemented are stored in a local database. The sample

size for each Fog nodes reflect the total sub-steps completed in the Fog node; In the testbed, a total

of 3,407 sub-steps were completed by the 10 Fog nodes with each Fog node completing between

290 to 371 sub-steps. The maximum number of offloaded sub-steps to a Fog node being 371 and

the minimum number of offloaded sub-steps to a Fog node being 290. In the current experimental

design, the Fog nodes have relatively balanced sample sizes (i.e., the number sub steps completed

in the Fog nodes are comparable). However, if there exists a high imbalance in the sample sizes

among the Fog nodes then the least square function term in the model formulation would be

20

influenced by the mean squared error of the Fog nodes with larger sample sizes. This affects the

model estimation and variable selection effort.

 A full list of the variable collected during the process is shown in Table 3. It is worth to

mentioned that the description of the pipeline shown in Table 3 are continuous variables that are

generated based on the pipeline description. This is achieved by using a Non-Negative matrix

decomposition method [36] where a combination of unique features can adequately describe the

characteristics of the pipelines.

4.2 Histogram of Run-time Metrics

The run-time metrics that are predicted by the multi-task learning model are Time- latency, CPU

utilization, and Download utilization.

Figure 5: Distribution of CPU Utilization

21

Figure 6: Distribution of Time-latency

Figure 7: Distribution of Download utilization

The above histograms depict the distribution of the response variables CPU utilization, Time-

latency. It is observed that Time-latency and Download utilization are skewed, a logarithmic

operation is implemented to normalize the response variables [37]. In the case study, even though

CPU utilization is truncated, the variance is relatively small, and a large sample of data is collected

between the lower and upper bound. The histogram plot for CPU utilization reflects this. Hence

the current multi-task learning model is sufficient in providing an unbiased estimate for predicting

the CPU utilization. This is reflected by the absence of heteroscedastic in the diagnosis. If the

variance of the truncated response variable is large, the maximum likelihood estimator for

truncated data [42] can be used instead of the least square estimate to get an unbiased model

22

coefficient. Alternatively, the truncated data can be normalized through the means of logarithmic

operations [37].

To standardize the prediction accuracy and compare it with existing benchmark methods, a

normalized root-means-squared-error (NRMSE) method is utilized. The normalized root mean

squared error is defined as: NRMSE =

√∑
(𝒚𝑖−𝒚𝑖̂)

2

𝑁
𝑁
𝑖=1

(𝒚𝑚𝑎𝑥− 𝒚𝑚𝑖𝑛)
 .

23

CHAPTER 5: RESULTS

5.1 Prediction and Variable Selection Results

The NRMSE for the proposed methodology and benchmark methods are shown in Table 4. It can

be observed that the multi-task learning model outperforms linear regression, Lasso regression,

and Random forest. This is because multi-task learning can model the data heterogeneity presented

among the different Fog nodes by inducing a common meaningful bias without increasing the

variance.

Table 4: NRMSEs for the Predictive Models

Model
Normalized

Time-latency

CPU

utilization

Log

Download

utilization

Linear

Regression
0.131 0.081 0.165

Lasso 0.127 0.072 0.163

Random

Forest
0.098 0.056 0.156

Multi-task

Learning
0.070 0.030 0.103

The average of NRMSEs for time-latency, CPU utilization, and Download utilization are 0.070,

0.030, and 0.103, respectively. Comparing the accuracy with linear, Lasso, and random forest

regression, it can be observed that multi-task learning can adequately identify key predictor

variables better than the existing benchmark methods. This can be explained as multi-task learning

models the heterogenous nature between the Fog nodes and transfers meaningful knowledge by

forcing the model coefficients of the Fog nodes to be similar. When looking at the benchmark

methods, random forest has better prediction accuracy than linear regression and Lasso regression

model. It is because the random forest is an ensemble of decision trees that split till adequate depth

24

is achieved. This reduces the variance without increasing the model bias [41]. Lasso has slightly

better prediction accuracy as the model not only aims at reducing the least square error, but also

penalizes for sparsity. However, the linear regression model only aims at reducing the least square

error and has the worst prediction accuracy among the benchmark models.

To investigate the model coefficients of the Fog nodes, a heatmap on the absolute values of model

coefficients are shown in Figures 5, 6, and 7. By comparing the model coefficients, we validate

the initial assumption on the heterogenous nature among the Fog nodes.

Figure 8: Magnitude of the Model Coefficients for Time-Latency

100

80

60

40

20

0

25

Figure 9: Magnitude of the Model Coefficients for Download Utilization

Specifically, a comparison of the estimated model coefficients among Fog nodes for Time-latency

and Download bandwidth utilization are shown in Figure 5 and Figure 6. The colors in the

heatmaps show the absolute values of the model coefficients scaled from zero to a hundred. The

darker the color, the larger the magnitude of the model coefficients. The x-axis represents the

predictors listed in Table 3 and the y-axis represents the different Fog nodes. From the figures, it

can be observed that there is a similarity in pattern of model coefficients among the Fog nodes.

Hence, the initial assumption that similarity in the Fog nodes exists. The multi-task learning model

captures this effect through the variable selection process is validated. Especially, in Figure 5, it

can be found that the current sub-step has the most significant impact when predicting the time-

latency. It is because the current step can directly determine the computational workload for this

sub-step and then influence the completion time of this task.

From Figure 6, It can be observed that the significant model coefficients for Download utilization

prediction are the current steps, information on the data processed, and the accumulative effects

from the previous steps. One possible explanation is that Download utilization depends on the data

100

80

60

40

20

0

26

query strategy and the size of the dataset from historical computation steps. The data transmission

efforts from the previous tasks might have an accumulative effect to the bandwidth utilization.

To clearly demonstrate the accumulative effect on the Fog node, magnitude of the model

coefficients for CPU utilization is shown in Figure. 7.

Figure 10: Magnitude of the Model Coefficients for CPU Utilization

From Figure. 7, it can be observed that the CPU utilization in the current step is highly related to

the CPU utilization in the previous step. One possible explanation for the background computing

tasks is that the previous computation can carry over to the next computational step. These

computation workloads can further result in cumulative effects to the CPU utilization in practice.

A zoomed in view on the model coefficients comparison between the Fog nodes shows that the

values of the model coefficient differ between the Fog nodes. To test if the difference is significant,

100

80

60

40

20

0

27

a hypothesis test to compare the two-regression model was conducted [36]. For example, a

hypothesis test shows the model coefficients for Fog node 1 and Fog node 9 differ, which also

explains why the multi-task learning model is better than the linear regression and Lasso. This is

primarily due to varying cumulative computation workloads that differentiates the Fog nodes over

time.

28

5.2 Diagnostics and assumption validation

To validate the initial assumption made when adapting multi-task learning, the diagnostic plots for

Time-latency, CPU utilization, and Download utilization are shown below:

Figure 11: Diagnostic plots for Time-latency

Figure 12: Diagnostic plots for CPU utilization

Predicted Time-latency

R
es

id
u
al

s

Predicted vs Residuals

Theoretical Quantiles

S
am

p
le

 Q
u
an

ti
le

s

Q-Q Plot

Predicted CPU utilization

R
es

id
u
al

s

Predicted vs Residuals

Theoretical Quantiles

S
am

p
le

 Q
u
an

ti
le

s

Q-Q Plot

29

Figure 13: Diagnostic plots for Download utilization

From the diagnostic plots, it can be observed that the predicted v.s. residuals plots show no form

of heteroskedasticity and the residuals follow a normal distribution. The prediction accuracy and

diagnostics of the model validate the initial assumption that similarities in the run-time metrics

among the Fog nodes exists. Also, a linear relationship is valid to explain the variance between the

response and predictor variables.

Predicted Download utilization

R
es

id
u
al

s
Predicted vs Residuals

Theoretical Quantiles

S
am

p
le

 Q
u

an
ti

le
s

Q-Q Plot

30

CHAPTER 6: CONCLUSION

In smart manufacturing, providing a reliable and responsive computation service becomes critical

in facilitating real-time decision making and avoiding catastrophic failures. Fog manufacturing is

an emerging concept where data can be processed locally through a network of geographically

distributed Fog nodes, without the need to transfer it directly to the Cloud servers for analysis.

This helps in completing tasks that are urgent with less latency and decreases workload in the

cloud servers. To effectively utilize Fog manufacturing, optimal computation task offloading

strategies are necessary. Therefore, it is necessary to accurately predict the run-time metrics on

Fog nodes to support the offloading efforts. However, current predictive models either extrapolate

based on historic data, or do not consider heterogeneity in the run-time metrics among the Fog

nodes.

To overcome this challenge, a regularized multi-task learning approach is adopted in this study. In

multi-task learning, related tasks are simultaneously modeled together to induce a common bias

that can capture the required domain knowledge. This solves the challenge of data heterogeneity

among the Fog nodes. The methodology was validated using a Fog manufacturing testbed, where

sub-steps in simple predictive data analytics pipelines were offloaded to ten Fog nodes. The

proposed multi-task learning methodology was used to predict Time-latency, CPU utilization, and

Download bandwidth utilization of the Fog nodes. The NRMSEs were 0.07, 0.03, and 0.10

respectively, which were better than linear regression, Lasso regression, and Random forest. The

variable selection results were also presented to validate the assumptions made. The most

important contribution of this paper is that the proposed model solves the problem of data

31

heterogeneity among the Fog nodes and predicts the performance run-time metrics of the Fog

nodes before the implementation of a computational task.

32

CHAPTER 7: FUTURE WORK

In this thesis, the Fog nodes have similar computing and communicating capabilities. However,

this might not be a feasible scenario in a real manufacturing environment. One future work

direction for this study is to extend the multi-task learning in a Fog manufacturing testbed that has

different configurations of Fog nodes. On the other hand, an immediate application of the multi-

task learning model proposed in this study is facilitating the real-time predictive offloading in Fog

manufacturing testbed. Moreover, the proposed multi-task learning model can also be extended to

predictive autoscaling methods in Fog computing platform to dynamically optimize the

architecture design.

33

REFERENCES

1. Wu, D., et al. Fog-enabled architecture for data-driven cyber-manufacturing systems. in

International Manufacturing Science and Engineering Conference. 2016. American

Society of Mechanical Engineers.

2. Mocanu, S., et al. Fog-based solution for real-time monitoring and data processing in

manufacturing. in 2018 22nd International Conference on System Theory, Control and

Computing (ICSTCC). 2018. IEEE.

3. Jain, A. and P. Singhal. Fog computing: Driving force behind the emergence of edge

computing. in 2016 International Conference System Modeling & Advancement in

Research Trends (SMART). 2016. IEEE.

4. Bouzarkouna, I., et al. Challenges facing the industrial implementation of og computing.

in 2018 IEEE 6th International Conference on Future Internet of Things and Cloud

(FiCloud). 2018. IEEE.

5. Chen, X. and R. Jin. Data Fusion Pipelines for Autonomous Smart Manufacturing. in 2018

IEEE 14th International Conference on Automation Science and Engineering (CASE).

2018. IEEE.

6. Sparks, E.R., et al. Keystoneml: Optimizing pipelines for large-scale advanced analytics.

in 2017 IEEE 33rd international conference on data engineering (ICDE). 2017. IEEE.

7. Bonomi, F., et al. Fog computing and its role in the internet of things. in Proceedings of

the first edition of the MCC workshop on Mobile cloud computing. 2012.

34

8. Brzoza-Woch, R., et al. Embedded systems in the application of fog computing—Levee

monitoring use case. in 2016 11th IEEE Symposium on Industrial Embedded Systems

(SIES). 2016. IEEE.

9. Rahmani, A.M., et al., Exploiting smart e-Health gateways at the edge of healthcare

Internet-of-Things: A fog computing approach. Future Generation Computer Systems,

2018. 78: p. 641-658.

10. Qi, Q., et al. Modeling of cyber-physical systems and digital twin based on edge computing,

fog computing and cloud computing towards smart manufacturing. in ASME 2018 13th

International Manufacturing Science and Engineering Conference. 2018. American

Society of Mechanical Engineers Digital Collection.

11. Verba, N., et al., Modeling industry 4.0 based fog computing environments for application

analysis and deployment. Future Generation Computer Systems, 2019. 91: p. 48-60.

12. Aazam, M., S. Zeadally, and K.A. Harras, Deploying fog computing in industrial internet

of things and industry 4.0. IEEE Transactions on Industrial Informatics, 2018. 14(10): p.

4674-4682.

13. Yin, L., J. Luo, and H. Luo, Tasks scheduling and resource allocation in fog computing

based on containers for smart manufacturing. IEEE Transactions on Industrial Informatics,

2018. 14(10): p. 4712-4721.

14. Jiang, Y.-L., et al., Energy-efficient task offloading for time-sensitive applications in fog

computing. IEEE Systems Journal, 2018. 13(3): p. 2930-2941.

15. Jamil, B., et al., A job scheduling algorithm for delay and performance optimization in fog

computing. Concurrency and Computation: Practice and Experience, 2020. 32(7): p.

e5581.

35

16. Luong, D.-H., et al. Predictive Autoscaling Orchestration for Cloud-native Telecom

Microservices. in 2018 IEEE 5G World Forum (5GWF). 2018. IEEE.

17. Casalicchio, E. and S. Iannucci, The state‐of‐the‐art in container technologies:

Application, orchestration and security. Concurrency and Computation: Practice and

Experience, 2020: p. e5668.

18. Zhang, K., et al., Mobile-edge computing for vehicular networks: A promising network

paradigm with predictive off-loading. IEEE Vehicular Technology Magazine, 2017. 12(2):

p. 36-44.

19. Gao, X., et al., PORA: Predictive offloading and resource allocation in dynamic fog

computing systems. IEEE Internet of Things Journal, 2019. 7(1): p. 72-87.

20. Zhang, Y., et al. Fog Computing for Distributed Family Learning in Cyber-Manufacturing

Modeling. in 2019 IEEE International Conference on Industrial Cyber Physical Systems

(ICPS). 2019. IEEE.

21. Chen, X., et al. Predictive offloading in mobile-fog-cloud enabled cyber-manufacturing

systems. in 2018 IEEE Industrial Cyber-Physical Systems (ICPS). 2018. IEEE.

22. Patman, J., et al. Predictive analytics for fog computing using machine learning and GENI.

in IEEE INFOCOM 2018-IEEE Conference on Computer Communications Workshops

(INFOCOM WKSHPS). 2018. IEEE.

23. Clemente, J., et al. Fog computing middleware for distributed cooperative data analytics.

in 2017 IEEE Fog World Congress (FWC). 2017. IEEE.

24. Baxter, J. A Bayesian/information theoretic model of bias learning. in Proceedings of the

ninth annual conference on Computational learning theory. 1996.

25. Caruana, R., Multi-task learning. Machine learning, 1997. 28(1): p. 41-75.

36

26. Huang, Y., J.L. Beck, and H. Li, Multi-task sparse Bayesian learning with applications in

structural health monitoring. Computer‐Aided Civil and Infrastructure Engineering, 2019.

34(9): p. 732-754.

27. Li-na, C. and Z. Pei-ai, Application of Multi-task Lasso Regression in the Parametrization

of Stellar Spectra. Chinese Astronomy and Astrophysics, 2015. 39(3): p. 319-329.

28. Evgeniou, T. and M. Pontil. Regularized multi--task learning. in Proceedings of the tenth

ACM SIGKDD international conference on Knowledge discovery and data mining. 2004.

29. Cao, H., J. Zhou, and E. Schwarz, RMTL: an R library for multi-task learning.

Bioinformatics, 2019. 35(10): p. 1797-1798.

30. Liu, J., S. Ji, and J. Ye, Multi-task feature learning via efficient l2, 1-norm minimization.

arXiv preprint arXiv:1205.2631, 2012.

31. Nie, F., et al. Efficient and robust feature selection via joint ℓ2, 1-norms minimization. in

Advances in neural information processing systems. 2010.

32. Wang, L., et al. Online Computation Performance Analysis for Distributed Machine

Learning Pipelines in Fog Manufacturing. in 2020 IEEE 16th International Conference

on Automation Science and Engineering (CASE). 2020. IEEE.

33. Beck, A. and M. Teboulle, A fast iterative shrinkage-thresholding algorithm for linear

inverse problems. SIAM journal on imaging sciences, 2009. 2(1): p. 183-202.

34. Chen, X. and R. Jin, AdaPipe: A Recommender System for Adaptive Computation Pipelines

in Cyber-Manufacturing Computation Services. IEEE Transactions on Industrial

Informatics, 2020.

37

35. Bower, C., et al., Nucleation and growth of carbon nanotubes by microwave plasma

chemical vapor deposition. Applied Physics Letters, 2000. 77(17): p. 2767-2769.

36. Gupta, M.D. and J. Xiao. Non-negative matrix factorization as a feature selection tool for

maximum margin classifiers. in CVPR 2011. 2011. IEEE.

37. Box, G.E. and D.R. Cox, An analysis of transformations. Journal of the Royal Statistical

Society: Series B (Methodological), 1964. 26(2): p. 211-243.

38. Bruin, J., Newtest: command to compute new test. UCLA: Statistical Consulting Group,

2006.

39. G. Pemmasani, "dispy: Distributed and Parallel Computing with/for Python," 2020.

[Online]. Available: http://dispy.sourceforge.net/.

40. Hastie, T., R. Tibshirani, and J. Friedman, The elements of statistical learning: data mining,

inference, and prediction. 2009: Springer Science & Business Media.

41. Breiman, L., Random forests. Machine learning, 2001. 45(1): p. 5-32.

42. Orme, C.D. and P.A. Ruud, On the uniqueness of the maximum likelihood estimator.

Economics Letters, 2002. 75(2): p. 209-217.

