
i 
 

Predicting Performance Run-time Metrics in Fog Manufacturing using Multi-task Learning 

 

Vignesh Raja Nallendran 

 

Thesis submitted to the Faculty of the Virginia Polytechnic Institute and State University in 

partial fulfillment of the requirements for the degree of 

 

Master of Science 

in 

Industrial and Systems Engineering 

 

Ran Jin, Chair 

Subhash C. Sarin 

Xinwei Deng 

 

 

 

February 3, 2021 

Blacksburg, VA 

 

Keywords: Fog computing, Fog manufacturing, Multi-task learning, Run-time metrics 



ii 
 

Predicting Performance Run-time Metrics in Fog Manufacturing using Multi-task Learning 

Vignesh Raja Nallendran 

ABSTRACT 

The integration of Fog-Cloud computing in manufacturing has given rise to a new paradigm called 

Fog manufacturing. Fog manufacturing is a form of distributed computing platform that integrates 

Fog-Cloud collaborative computing strategy to facilitate responsive, scalable, and reliable data 

analysis in manufacturing networks. The computation services provided by Fog-Cloud computing 

can effectively support quality prediction, process monitoring, and diagnosis efforts in a timely 

manner for manufacturing processes. However, the communication and computation resources for 

Fog-Cloud computing are limited in Fog manufacturing. Therefore, it is significant to effectively 

utilize the computation services based on the optimal computation task offloading, scheduling, and 

hardware autoscaling strategies to finish the computation tasks on time without compromising on 

the quality of the computation service. A prerequisite for adapting such optimal strategies is to 

accurately predict the run-time metrics (e.g., Time-latency) of the Fog nodes by capturing their 

inherent stochastic nature in real-time. It is because these run-time metrics are directly related to 

the performance of the computation service in Fog manufacturing. Specifically, since the 

computation flow and the data querying activities vary between the Fog nodes in practice. The 

run-time metrics that reflect the performance in the Fog nodes are heterogenous in nature and the 

performance cannot be effectively modeled through traditional predictive analysis. In this thesis, 

a multi-task learning methodology is adopted to predict the run-time metrics that reflect 

performance in Fog manufacturing by addressing the heterogeneities among the Fog nodes. A Fog 

manufacturing testbed is employed to evaluate the prediction accuracies of the proposed model 
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and benchmark models. The proposed model can be further extended in computation tasks 

offloading and architecture optimization in Fog manufacturing to minimize the time-latency and 

improve the robustness of the system.  
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Predicting Performance Run-time Metrics in Fog Manufacturing using Multi-task Learning 

Vignesh Raja Nallendran 

GENERAL AUDIENCE ABSTRACT  

Smart manufacturing aims at utilizing Internet of things (IoT), data analytics, cloud computing, 

etc.  to handle varying market demand without compromising the productivity or quality in a 

manufacturing plant. To support these efforts, Fog manufacturing has been identified as a suitable 

computing architecture to handle the surge of data generated from the IoT devices. In Fog 

manufacturing computational tasks are completed locally through the means of interconnected 

computing devices called Fog nodes. However, the communication and computation resources in 

Fog manufacturing are limited. Therefore, its effective utilization requires optimal strategies to 

schedule the computational tasks and assign the computational tasks to the Fog nodes. A 

prerequisite for adapting such strategies is to accurately predict the performance of the Fog nodes. 

In this thesis, a multi-task learning methodology is adopted to predict the performance in Fog 

manufacturing. Specifically, since the computation flow and the data querying activities vary 

between the Fog nodes in practice. The metrics that reflect the performance in the Fog nodes are 

heterogenous in nature and cannot be effectively modeled through conventional predictive analysis. 

A Fog manufacturing testbed is employed to evaluate the prediction accuracies of the proposed 

model and benchmark models. The results show that the multi-task learning model has better 

prediction accuracy than the benchmarks and that it can model the heterogeneities among the Fog 

nodes.  The proposed model can further be incorporated in scheduling and assignment strategies 

to effectively utilize Fog manufacturing’s computational services. 
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CHAPTER 1: INTRODUCTION 

1.1 Motivation 

Fog manufacturing is an emerging manufacturing platform that integrates the Fog-Cloud 

collaborative computation services and Cyber-physical systems (CPS) to better support various 

data analytics in practice [1-4].  To effectively organize and implement the different types of data 

analytics in manufacturing, computational pipelines have been employed to flexibly demonstrate 

the on demand computational requirements [5]. A computational pipeline is a sequence of pipeline 

components and method options for computational tasks that are broken down into sub-steps [5]. 

There are different computation tasks in manufacturing, such as time series modelling, predictive 

analytics, etc. Therefore, the pipelines will have different components and method options.  My 

thesis is focused on data driven modelling pipelines, in particular simple data analytics pipelines. 

A simple data analytics pipeline is a sequential combination of sub-steps (e.g., feature extraction, 

parameter tuning, modeling, etc.) as shown in Figure 1, where selecting different sub-steps leads 

to the desired computational flow [6]. It is worth mentioning that the pipelines in manufacturing 

are not limited to the examples shown in Figure 1. Ideally the sub-step options are large enough to 

reflect the various computational requirements in a manufacturing facility.  
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Figure 1: Example of a simple data analytics pipeline 
 

 By efficiently analyzing the real-time data collected from manufacturing processes via the 

pipelines, Fog manufacturing can effectively support time-critical decisions based on the data 

analysis result with a satisfied time-latency and communication bandwidth utilization [4]. These 

advantages are accomplished by the Fog-cloud computation service in Fog manufacturing, which 

can decompose and distribute the computation tasks (i.e., sub-steps) to interconnected and 

geographically distributed devices (i.e., Fog nodes) that are capable of processing and analyzing 

the data locally [7].  

Compared with a Cloud only computing service which needs to firstly transfer all data to the Cloud 

then perform the computation, the Fog-Cloud computing service can significantly improve the 

responsiveness and reliability of the data analysis service by properly offloading (i.e., assigning) 

the computation tasks to the Fog nodes [13-15]. In addition, compared to Cloud computing, Fog 

manufacturing can also be scaled up cost-effectively based on the dynamic computation 

requirements [1,12].  
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To clearly demonstrate the structure of Fog manufacturing, a schematic diagram is shown in Figure 

1.  In Figure 1, there are three layers in this Fog manufacturing platform. The first layer is the 

facility layer, which includes manufacturing systems, robotic arms, and other Internet of Things 

(IoT) devices with corresponding sensor systems to collect real-time data from the production 

lines. To implement the computation service for the collected data, the data are efficiently 

transmitted to the second layer (i.e., Fog layer) via routers and gateways [4,7,8]. The Fog layer 

consists of geographically distributed and interconnected computation and networking resources. 

These Fog nodes are capable of conducting computation tasks that are not computationally 

intensive (e.g., data structuring, pre-processing, data cleaning etc. [7-9]), and will upload the 

intermediate results to the Cloud for further data analysis. Moreover, the Fog node can also collect 

the results from the Cloud and effectively transfer the real-time decision making to specific 

manufacturing system [11,12]. Finally, by collecting the processed data from the Fog nodes, the 

Cloud server can effectively perform the complex data analytics efforts to comprehensively 

optimize the manufacturing processes based on the customers’ requirements [13]. 
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Figure 2: A Schematic diagram for Fog manufacturing  
 

Even though there are many advantages in utilizing Fog manufacturing, there are still some 

challenges that restrict its wide deployment. One major advantage of Fog manufacturing is 

implementing the computation tasks in a distributed manner, rather than transmitting data to a 

centralized server for analysis [12,13]. However, computation and communication resources in 

Fog manufacturing are limited. To effectively deploy the computation tasks in Fog manufacturing, 

it is vital to properly schedule computation tasks, assign tasks to the proper Fog nodes at the right 

time (i.e., offloading), and automatically add or remove resources based on the computation 

requirements (i.e., autoscaling) [17]. For computation task scheduling and offloading in Fog 

manufacturing, predictive offloading strategies have garnered recent research interest [18,19,21]. 

However, optimized offloading decisions rely on the information from run-time metrics of each 

computation task, such as the time-latency (i.e., total time taken for a computation task on the 
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specific Fog node) [21,22].  Hence, there is a need to accurately predict the run-time metrics of 

each computation task before offloading the task to specific Fog nodes.  Similarly, in computation 

scale-up, it is also necessary to know the run-time metrics to proactively determine when to add 

or remove computation resources in Fog manufacturing [16]. Therefore, it is significant to predict 

run-time metrics that reflect the performance of Fog nodes before the implementation of each 

computational task.  

1.2 Research Objective and Challenges 

The objective of this thesis is to propose a model that can effectively predict the selected run-time 

metrics on each device in Fog manufacturing. Specifically, Time-latency, CPU utilization, and 

Bandwidth utilization are studied as the run-time metrics in this work [20]. Time-latency is defined 

as the total time taken to finish the computation task on a specific Fog node. It is also the key 

performance indicator to evaluate the responsiveness in Fog manufacturing. CPU utilization is 

defined as the computation capacity used divided by the total available computation capacity. 

Depending on the objective for offloading, CPU utilization is either preferred to be high or low. 

Download utilization indicates the rate of data transfer for downloading, lower the download 

bandwidth utilization more is the capacity for transferring more data. Apart from the three run-

time metrics stated above, Double redundancy is another run-time metric that reflects the reliability 

of the Fog nodes. Since it is calculated as twice the Time-latency in a Fog node, double redundancy 

is not separately predicted.   

In the literature, to effectively predict the run-time metrics defined above, information generated 

from the data analytics pipelines and historical in situ computation conditions on each Fog node 

have been identified as important predictors [20]. The hardware configurations of the Fog nodes 
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are expected to significantly affect the run-time metrics performance. Generally speaking, the Fog 

nodes have different hardware configurations (e.g., GPU units, CPU units, FPGA units, etc.) in a 

manufacturing facility. These differences in the hardware can be quantified by introducing new 

predictor variables that describe the configuration of the Fog node on which a computational task 

was offloaded.  

In this thesis, the Fog nodes have the same hardware configuration (i.e., Raspberry pie 3 units).  

Instead, the Fog nodes might not have the same computational flow or data query strategy when 

executing the computation tasks, the relationship between the run-time metrics and the predictors 

might vary. As shown in Figure 3, the two Fog nodes have identical hardware configuration and 

performance, but over time the difference in the computational workflow represented by the blue 

and orange blocks leads to varying accumulative effects in their hardware (e.g., CPU cache, 

Memory bandwidth).  This causes the relationship between the run-time metrics and identified 

predictor variables to vary between the two Fog nodes, resulting in heterogenous run-time 

performances. Moreover, modeling these heterogenous Fog nodes in one model would lead to poor 

prediction accuracy and would negatively affect offloading and computation scaling decisions.   

 

Figure 3: Heterogenous run-time performances of Fog nodes with identical hardware 

configurations due to different computation workloads and data sources 
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1.3 Proposed Methodology  

In this thesis, to tackle the challenges discussed above, the regularized multi-task learning 

framework [28,29] is adopted to predict run-time metrics effectively and accurately in Fog 

manufacturing. Specifically, multi-task learning is employed in this study to efficiently model the 

data heterogeneity in the run-time metrics present among the Fog nodes. Since the computation 

flow that the Fog nodes execute are similar-but-non-identical, their models are expected to share 

similar model coefficient structure (i.e., variable selection results) between each other. This is 

realized by penalizing on the 𝑙2,1 and 𝑙2 norms for achieving similarity and sparsity in the model 

coefficients [29]. The methodology is validated in a Fog manufacturing testbed. Based on the 

results, the multi-task learning model is shown to have better prediction accuracy by comparing 

with existing benchmark methods such as linear regression [39], Lasso regression [39] and 

Random forest regression [40]. Furthermore, the variable selection results are visualized to 

interpret the heterogeneous characteristics among the Fog nodes.  

  



8 
 

CHAPTER 2: LITERATURE REVIEW  

In this Chapter, the background of Fog manufacturing, existing offloading and scalability 

techniques in Fog computing, models to predict run-time metrics in Fog computing, and models 

to address the heterogeneity are reviewed in detail. Beginning with the Fog manufacturing, current 

research papers have identified Fog computing as a suitable platform for IoT applications and 

services such as smart grid, smart cities, connected vehicles, and virtual sensors and network 

actuators, where Cloud computing alone cannot meet the latency requirements for delay sensitive 

computational tasks [7].  

Fog computing is viewed as a platform solution to facilitate real-time data processing with a 

reduced requirement in bandwidth [8,9]. Consequently, the Fog computing paradigm that extends 

the Cloud to the Edge has garnered attention in manufacturing. Implementation of Fog computing 

in manufacturing (i.e., Fog manufacturing) seeks to alleviate traffic to the Cloud and facilitate real-

time decision making by processing data locally in a distributed manner. This helps in proactively 

predicting machine downtime, responding to varying demand, and effectively identifying the root 

cause of a manufacturing defect [1,2]. In an extension of Fog computing’s application in 

manufacturing, Qi et al. discussed how Fog computing technology can be used to realize a system-

level cyber-physical system (CPS) and Digital twin (DT) in smart manufacturing [10]. With these 

beneficial characteristics, Fog manufacturing has the potential in filling the gap in Cloud 

computing to respond to industrial requirements. However, implementing Fog computing in smart 

manufacturing has its challenges, these include 1) heterogeneous nature of data processed, 2) 

architecture design to allocate resources, and 3) scalability. A starting point to address these 
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challenges would be to model the computation and communication performance variables for 

analysis in Fog manufacturing [4].  

On the other hand, offloading methods in Fog manufacturing are essential in ensuring the effective 

use of Fog computing. In Fog manufacturing, a system of sensors and actuators collects data 

through smart gateways and send them to Fog nodes that support distributed data analytics for 

real-time decision making [2,11,12]. Since the network resources are limited for distributing tasks 

to the Fog nodes, scheduling tasks, and knowing when to assign tasks (offloading) becomes critical 

in ensuring reduced delay and optimizing the decision-making process [13-15]. Another important 

advantage in Fog manufacturing is its scalability. Based on the computation requirements, the Fog 

manufacturing can be scaled up or down rapidly and cost-effectively [1]. There are several 

algorithms proposed to automatically scale (i.e., autoscaling) the computation service based on the 

requirements of the computation task [16,17]. However, a prerequisite for implementing effective 

scheduling, offloading, and autoscaling strategies are to predict the run-time metrics of Fog nodes 

[16,18,19]. In the current literature, to facilitate the prediction of run-time metrics in Fog 

computing, performance run-time metrics, and corresponding process variables have been 

established. For example, a systems informatics approach was adapted by Zhang et al. to determine 

the process variables affecting performance run-time metrics, such as Time-latency and double 

redundancy [20]. These performance metrics were used as benchmarks to compare performance 

in Cloud and Fog-Cloud computing. Without accurately predicting the performance run-time 

metrics, we cannot utilize the fog manufacturing architecture effectively. 

In the current literature, there are many predictive models proposed to predict the run-time metrics 

in the manufacturing system, which are needed to improve the Fog computing performance. Luong 

et al. proposed a predictive autoscaling method by predicting CPU metrics and throughput metrics 
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in real-time to predict bust load and short-term future value [16].  Gao et al. predicted workload in 

Fog nodes to propose a dynamic offloading technique that minimized energy consumption [19]. 

In a paper by Chen et al., an offloading strategy based on predicting bandwidth and computation 

using the ARIMA model resulted in better task completion [21]. Patman et al. used machine 

learning algorithms to predict time-latency and concluded that their predictive models show higher 

accuracy than discrete calculation approaches [22]. In Fog computing, the Fog nodes handle 

different computational tasks and databases for storage that leads to process heterogeneity [23]. 

However, existing predictive models have not addressed the heterogenous characteristics in the 

run-time metrics among the Fog nodes. Therefore, it may lead to inaccurate prediction results, 

resulting in ineffective utilization of the Fog computing service.   

To model heterogeneity among the Fog nodes, it is necessary to find ways of sharing knowledge 

between the Fog nodes and improve the overall prediction accuracy. In current literature, models 

that leverage related tasks to induce the required knowledge transfer exist. For example, Baxter 

introduced a theoretical Bayesian model that samples from related tasks to induce bias. The bias, 

in this case, relates to the desired domain knowledge that is reflected in the model coefficients 

[24]. Caruana introduced the multi-task learning algorithm based on kernel regression and k-

nearest neighbors that used related tasks in parallel to achieve the desired bias [25]. Apart from 

capturing heterogeneity in tasks, modeling multiple related tasks simultaneously produces a better 

result in terms of variable selection and prediction accuracy than modeling tasks individually. For 

example, Huang et al. utilized a multi-task sparse Bayesian model that modeled related tasks along 

with the primary task to get better prediction in structural stiffness [26]. Multi-task Lasso 

regression was used by Lina et al. the resulting prediction showcased accuracy better than existing 

benchmark methods [27]. Generalization in the prediction model is achieved by forcing tasks to 
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share similar coefficient values. In the multi-task Lasso, the values of the input variables remain 

the same and the tasks are defined as varying output variables. However, in the case of modeling 

for performance in Fog computing, the value of both the input variables (in situ variables) and 

output variables (run-time metrics) varies across individual Fog nodes, where the task is to predict 

performance in individual Fog nodes.  

A form of regularized multi-task learning is more feasible in this given case [28, 29]. In regularized 

multi-task learning, the tasks to be modeled share the same process and performance variables, but 

the context and values of these parameters differ. But these existing methods have not been utilized 

in the context of predicting performance in Fog manufacturing. In this paper, a form of regularized 

multi-task learning method is utilized to predict the run-time metrics which are related to the 

performance and reliability of each Fog nodes in Fog manufacturing.   
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CHAPTER 3: METHODOLOGY   

In this chapter, the details of proposed regularized multi-task learning model is discussed. 

Specifically, the notations employed in this study are summarized in Table 1. Without the loss of 

generality, we consider modelling the run-time metrics for an individual Fog node as a single task.  

This is because the relationship between the performance and predictor variables used for 

modeling the performance of Fog nodes are non-identical.  In this study, a sample for each task is 

collected when a sub-step from a pipeline is offloaded to a specific Fog node, and run-time metrics 

(i.e., Time-latency, CPU utilization, Download utilization) for this Fog node are treated as the 

performance variables in modeling. 

Table 1: Notations in the Proposed Multi-task Learning Model 

Notation Description 

𝑛, 𝑝, 𝑡 Number of samples, predictors, and tasks 

𝑌𝑖 ℝ{𝑛𝑖 ×𝟏}, Response variable for task 𝑖 

𝑋𝑖 ℝ{𝑛𝑖 ×𝒑}, Predictor variables for task 𝑖 

𝑊𝑖 Coefficient of model for task 𝑖 

λ1,  λ2 Tuning parameter for Similarity and sparsity 

Ci Normally distributed constant 
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L(∙) Mean squared error loss function 

𝑌 = [𝒚1
T, … , 𝒚𝑡

T] Response variable for all tasks 

𝑋 = [𝒙𝟏
T, … , 𝒙𝑡

T] Predictor variable for all tasks 

𝜷𝑖 ℝ{𝑝 ×1},Model coefficient for task 𝑖 

𝑩 = [𝜷1
T, … , 𝜷𝑡

T] Combined model coefficient of all t tasks 

 

3.1 Assumptions  

The assumptions for the proposed multi-task learning include: (1) A linear model structure is 

adequate to model the relationship between the run-time metrics and predictors. (2) The model 

coefficients among different Fog nodes are similar-but-non-identical. It is because the Fog nodes 

have identical hardware build and similar computation tasks offloaded to the Fog nodes. This 

similarity can be captured in the variable selection effort where the Fog nodes share similar model 

coefficient structure. These two assumptions will be validated in the case study.  

3.2 The multi-task learning model 

Without the loss of generality, the model structure of this study can be formulated as:   

 𝒚𝑖 = 𝑋𝑖𝜷𝑖 + 𝝐𝑖. 

 

(1) 
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Moreover, the multi-task learning model induces generalization by forcing similarity in the model 

coefficients of related tasks. This induces the required knowledge transfer [27]. To enforce 

similarity in model coefficients, the model is formulated by penalizing for similarity and sparsity 

as:  

 argmin
𝑩

∑ 𝐿(𝜷𝑖, 𝝐𝑖|𝑋𝑖, 𝒚𝑖)
𝑡
𝑖=1 + 𝜆1𝜔(𝑩) + 𝜆2‖𝑩‖𝐹

2 , (2) 

where 𝑩 = [𝜷1
T, … , 𝜷𝑡

T]  is the overall model coefficient matrix; 𝜔(𝑩) = ∑ √∑ 𝜷𝑖,𝑗
2𝑡

𝑗=1
𝑝
𝑖=1 ; and 

‖𝑩‖𝐹
2  = ∑ ∑ 𝛽𝑖,𝑗

2𝑝
𝑗=1

𝑡
𝑖=1 ;  𝜆1and 𝜆2 are tuning parameters for similarity and sparsity; and 𝑡 is the 

total number of tasks. In the multi-task learning model the overall model coefficient matrix 𝑩 

captures the variations in the relationship between the run-time metrics and predictors among the 

Fog nodes. The residuals 𝝐𝑖 reflect the variability of the run-time metrics within a Fog node.  The 

first term in Model (2) is the least square function to minimize the squared error of the model. The 

second term is a 𝑙2,1  norm that enforces knowledge transfer between tasks by encouraging 

similarly sparse structured model coefficients [30]. The 𝑙2,1  norm encourages the selection of 

similar model coefficients for the Fog nodes, thereby reducing variation in the model prediction 

between the Fog nodes. The third term is a Frobenius norm that favors sparsity in the model 

coefficients [31] and reduces variation in the model prediction within a Fog node by limiting the 

number of non-zero model coefficients. The objective function is solved by the accelerated 

gradient descent method. It can effectively yield the global optimal in a timely manner than the 

traditional iterative shrinkage algorithms [32]. The tunning parameters are chosen based on a 5-

fold cross-validation to minimize the objective function using the training dataset [29].  
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CHAPTER 4: CASE STUDY 

4.1 Experimental setup  

To validate the proposed model, an existing Fog manufacturing testbed that can effectively 

generate manufacturing data and execute simple predictive data analytics pipelines is employed 

[18]. The multi-task learning model is evaluated by comparing the prediction accuracy for the run-

time metrics with other benchmark methodologies (i.e., linear regression [40], Lasso regression 

[40], and Random forest regression [41]). These benchmarks are chosen, because previous work 

by Wang, L., et al. showed that Lasso and Random forest regression can competently predict 

performance in a Fog manufacturing setup [22,32]. Moreover, the variable selection results are 

validated to identify whether the proposed model can properly capture the heterogeneous property 

among the Fog nodes.  

 

Figure 4: Fog manufacturing testbed (redrawn from [20]) 
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In this case study, simple predictive data analytics pipelines generated from the data generation 

layer are offloaded to the Fog manufacturing testbed. The architecture of the testbed is shown in 

Figure 2. It can be observed that this testbed consists of three layers. Starting from the data 

generation layer, seven manufacturing datasets (i.e., a set of predictor and response variables) 

based on a simulated plasma chemical vapor decomposition (PCVD) process [35] are generated. 

The generated data are then taken through a computational flow where the simple predictive data 

analytics pipelines are broken into sub steps (i.e., feature extraction, parameter tunning and model 

training). These sub-steps are further offloaded to Fog nodes at the second layer. The second layer 

consists of 10 Fog nodes (i.e., Raspberry Pi 3 units) that have the similar computation and 

communication features. The Fog nodes are capable for storing, processing, and transmitting the 

data in this testbed. The final layer is the orchestrator, which is a workstation (CPU i7-6700k), is 

responsible for implementing the offloading and data transmission decisions in the Fog nodes.  

To properly implement the simple predictive data analytics pipelines in Fog manufacturing, the 

orchestrator ranks the pipelines based on AdaPipe pipeline selection strategy [34]. The strategy 

prioritizes pipelines based on their statistical performance. Once the pipelines are identified and 

selected for offloading, the orchestrator decides upon assigning sub steps to the Fog nodes to 

maximize the number of completed pipelines in given time. The data sets for the corresponding 

sub steps are offloaded to the Fog nodes via a virtual offloading platform.[39]. The pipeline 

selection and offloading principles are extended to various combination of offloading scenarios 

shown in Table 2.  
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Table 2: Design of Experiments Factors 

Factor Level 1 Level 2 

Pipeline 

selection 
Random selection 

Recommendation using 

AdaPipe selection strategy 

[34] 

Pipeline number Top 5 Pipelines Top 10 Pipelines 

Offloading 

assignment 
Random assignment Time balanced offloading  

Data storage One copy on each node 
Three copies on three random 

nodes 

 

To achieve different offloading scenarios in Fog manufacturing and comprehensively validate the 

multi-task learning model, a full factorial design of experiments with four factors (two levels for 

each) was employed. The design table is shown in Table 2.  From Zhang et al., a comprehensive 

analysis on the factors dictating performance in Fog manufacturing showcased that the strategy of 

computation selection, number of computational flows, data storage, and offloading strategies 

effect performance in Fog computing. Hence these factors are chosen to cover the spectrum of 

offloading scenarios.  

Specifically, pipeline selection refers to a method of determining simple predictive data analytics 

pipelines to be executed in the experiment. The AdaPipe is a pipeline selection strategy [34] that 

can prioritize the simple predictive data analytics pipelines based on their statistical performance 

for a specific dataset. Pipeline number is defined as the number of pipelines in total that will be 

executed. The offloading assignment strategy determines how the orchestrator will offload the sub-

steps in selected pipelines to specific Fog nodes. Time balanced offloading means the orchestrator 

will assign sub-steps to the Fog nodes by maximizing the number of completed pipelines in given 

time [39]. Finally, the data storage strategy determines how the data will be allocated among the 
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Fog nodes. This characteristic can directly influence the data query efforts when executing the 

computation tasks.  

It is worth mentioning that there exist alternative offloading strategies (e.g., offloading to reduce 

cost [17], offloading to minimize power consumption with latency constraints [19], etc.), alternate 

pipeline selection, and data storage strategies which are not accounted for in the current 

experimental design.  The experimental testbed does not select these alternate scenarios and 

therefore the current model cannot be used to predict the run-time performance of the Fog nodes 

when new pipelines are deployed under different offloading and data querying scenarios. Since 

data for these alternate scenarios cannot be interpolated from the experimental data set. The scope 

of the current multi-task learning model is restricted to the levels explored in the experimental 

design.  The robustness and reliability of the multi-task learning model can be improved for other 

identified levels of offloading treatments in the future work.  

Table 3: Description of the Predictor Variables 

Type 
Dummy/Continuous 

variables Description Variable index 

In situ variables 

(historical and last 

step) 

Continuous 

Latency, 

temperature, 

time stamp, 

power 

consumption, 

memory, CPU 

utilization, 

bandwidth 

utilization 

(mean, std, 

kurtosis, and 

skewness) 

1-65 

(Historical and 

Last step) 
 

Setting variables 

(last step and 

current step) 

Continuous Pipeline 

description 

78-90 

(Last step) 

107-116 
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(Current step) 

Setting variables 

(last step and 

current step) 

Dummy Step in pipeline 

executed 

91 – 93 

(Last step) 

117 – 1119 

(Current step) 

Setting variable 

(last step and 

current step) 

Continuous 

Information on 

data processed, 

predictor and 

response 

variable 

(number of 

observations, 

mean, std, 

kurtosis, and 

skewness of the 

response and 

predictor 

variables) 

66-76 

(Last step) 

95-105 

(Current step) 

  

To collect the necessary data from the testbed, when a sub-step is completed on a Fog node, 

important data, such as historical in situ variables on the Fog node’s performance, pipeline 

description, and sub-step in the pipeline implemented are stored in a local database. The sample 

size for each Fog nodes reflect the total sub-steps completed in the Fog node; In the testbed, a total 

of 3,407 sub-steps were completed by the 10 Fog nodes with each Fog node completing between 

290 to 371 sub-steps. The maximum number of offloaded sub-steps to a Fog node being 371 and 

the minimum number of offloaded sub-steps to a Fog node being 290. In the current experimental 

design, the Fog nodes have relatively balanced sample sizes (i.e., the number sub steps completed 

in the Fog nodes are comparable). However, if there exists a high imbalance in the sample sizes 

among the Fog nodes then the least square function term in the model formulation would be 
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influenced by the mean squared error of the Fog nodes with larger sample sizes. This affects the 

model estimation and variable selection effort.    

    A full list of the variable collected during the process is shown in Table 3. It is worth to 

mentioned that the description of the pipeline shown in Table 3 are continuous variables that are 

generated based on the pipeline description. This is achieved by using a Non-Negative matrix 

decomposition method [36] where a combination of unique features can adequately describe the 

characteristics of the pipelines.    

4.2 Histogram of Run-time Metrics 

The run-time metrics that are predicted by the multi-task learning model are Time- latency, CPU 

utilization, and Download utilization.   

 

 

Figure 5: Distribution of CPU Utilization 
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Figure 6: Distribution of Time-latency 

 

Figure 7: Distribution of Download utilization 
 

The above histograms depict the distribution of the response variables CPU utilization, Time- 

latency. It is observed that Time-latency and Download utilization are skewed, a logarithmic 

operation is implemented to normalize the response variables [37]. In the case study, even though 

CPU utilization is truncated, the variance is relatively small, and a large sample of data is collected 

between the lower and upper bound.  The histogram plot for CPU utilization reflects this. Hence 

the current multi-task learning model is sufficient in providing an unbiased estimate for predicting 

the CPU utilization. This is reflected by the absence of heteroscedastic in the diagnosis.  If the 

variance of the truncated response variable is large, the maximum likelihood estimator for 

truncated data [42] can be used instead of the least square estimate to get an unbiased model 
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coefficient. Alternatively, the truncated data can be normalized through the means of logarithmic 

operations [37].   

To standardize the prediction accuracy and compare it with existing benchmark methods, a 

normalized root-means-squared-error (NRMSE) method is utilized. The normalized root mean 

squared error is defined as: NRMSE =  

√∑
(𝒚𝑖−𝒚𝑖̂)

2

𝑁
𝑁
𝑖=1

(𝒚𝑚𝑎𝑥− 𝒚𝑚𝑖𝑛)
 .    
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CHAPTER 5: RESULTS  

5.1 Prediction and Variable Selection Results  

The NRMSE for the proposed methodology and benchmark methods are shown in Table 4. It can 

be observed that the multi-task learning model outperforms linear regression, Lasso regression, 

and Random forest. This is because multi-task learning can model the data heterogeneity presented 

among the different Fog nodes by inducing a common meaningful bias without increasing the 

variance.  

Table 4: NRMSEs for the Predictive Models 

Model 
Normalized 

Time-latency  

CPU 

utilization  

Log 

Download 

utilization 

Linear 

Regression 
0.131 0.081 0.165 

Lasso 0.127 0.072 0.163 

Random 

Forest 
0.098 0.056 0.156 

Multi-task 

Learning 
0.070 0.030 0.103 

 

The average of NRMSEs for time-latency, CPU utilization, and Download utilization are 0.070, 

0.030, and 0.103, respectively. Comparing the accuracy with linear, Lasso, and random forest 

regression, it can be observed that multi-task learning can adequately identify key predictor 

variables better than the existing benchmark methods. This can be explained as multi-task learning 

models the heterogenous nature between the Fog nodes and transfers meaningful knowledge by 

forcing the model coefficients of the Fog nodes to be similar. When looking at the benchmark 

methods, random forest has better prediction accuracy than linear regression and Lasso regression 

model. It is because the random forest is an ensemble of decision trees that split till adequate depth 



24 
 

is achieved. This reduces the variance without increasing the model bias [41]. Lasso has slightly 

better prediction accuracy as the model not only aims at reducing the least square error, but also 

penalizes for sparsity. However, the linear regression model only aims at reducing the least square 

error and has the worst prediction accuracy among the benchmark models.  

To investigate the model coefficients of the Fog nodes, a heatmap on the absolute values of model 

coefficients are shown in Figures 5, 6, and 7. By comparing the model coefficients, we validate 

the initial assumption on the heterogenous nature among the Fog nodes. 

 

 

Figure 8: Magnitude of the Model Coefficients for Time-Latency 
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Figure 9: Magnitude of the Model Coefficients for Download Utilization 

 

Specifically, a comparison of the estimated model coefficients among Fog nodes for Time-latency 

and Download bandwidth utilization are shown in Figure 5 and Figure 6. The colors in the 

heatmaps show the absolute values of the model coefficients scaled from zero to a hundred. The 

darker the color, the larger the magnitude of the model coefficients. The x-axis represents the 

predictors listed in Table 3 and the y-axis represents the different Fog nodes. From the figures, it 

can be observed that there is a similarity in pattern of model coefficients among the Fog nodes. 

Hence, the initial assumption that similarity in the Fog nodes exists. The multi-task learning model 

captures this effect through the variable selection process is validated. Especially, in Figure 5, it 

can be found that the current sub-step has the most significant impact when predicting the time-

latency. It is because the current step can directly determine the computational workload for this 

sub-step and then influence the completion time of this task.  

From Figure 6, It can be observed that the significant model coefficients for Download utilization 

prediction are the current steps, information on the data processed, and the accumulative effects 

from the previous steps. One possible explanation is that Download utilization depends on the data 
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query strategy and the size of the dataset from historical computation steps. The data transmission 

efforts from the previous tasks might have an accumulative effect to the bandwidth utilization. 

To clearly demonstrate the accumulative effect on the Fog node, magnitude of the model 

coefficients for CPU utilization is shown in Figure. 7. 

 

 

Figure 10: Magnitude of the Model Coefficients for CPU Utilization 

 

From Figure. 7, it can be observed that the CPU utilization in the current step is highly related to 

the CPU utilization in the previous step. One possible explanation for the background computing 

tasks is that the previous computation can carry over to the next computational step. These 

computation workloads can further result in cumulative effects to the CPU utilization in practice.   

A zoomed in view on the model coefficients comparison between the Fog nodes shows that the 

values of the model coefficient differ between the Fog nodes. To test if the difference is significant, 
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a hypothesis test to compare the two-regression model was conducted [36]. For example, a 

hypothesis test shows the model coefficients for Fog node 1 and Fog node 9 differ, which also 

explains why the multi-task learning model is better than the linear regression and Lasso. This is 

primarily due to varying cumulative computation workloads that differentiates the Fog nodes over 

time.  
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5.2 Diagnostics and assumption validation 

To validate the initial assumption made when adapting multi-task learning, the diagnostic plots for 

Time-latency, CPU utilization, and Download utilization are shown below: 

 

  

 

Figure 11: Diagnostic plots for Time-latency 
 

 

  

 

Figure 12: Diagnostic plots for CPU utilization 
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Figure 13: Diagnostic plots for Download utilization 

 

From the diagnostic plots, it can be observed that the predicted v.s. residuals plots show no form 

of heteroskedasticity and the residuals follow a normal distribution. The prediction accuracy and 

diagnostics of the model validate the initial assumption that similarities in the run-time metrics 

among the Fog nodes exists. Also, a linear relationship is valid to explain the variance between the 

response and predictor variables.    
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CHAPTER 6: CONCLUSION 

In smart manufacturing, providing a reliable and responsive computation service becomes critical 

in facilitating real-time decision making and avoiding catastrophic failures. Fog manufacturing is 

an emerging concept where data can be processed locally through a network of geographically 

distributed Fog nodes, without the need to transfer it directly to the Cloud servers for analysis. 

This helps in completing tasks that are urgent with less latency and decreases workload in the 

cloud servers. To effectively utilize Fog manufacturing, optimal computation task offloading 

strategies are necessary. Therefore, it is necessary to accurately predict the run-time metrics on 

Fog nodes to support the offloading efforts. However, current predictive models either extrapolate 

based on historic data, or do not consider heterogeneity in the run-time metrics among the Fog 

nodes.  

To overcome this challenge, a regularized multi-task learning approach is adopted in this study. In 

multi-task learning, related tasks are simultaneously modeled together to induce a common bias 

that can capture the required domain knowledge. This solves the challenge of data heterogeneity 

among the Fog nodes. The methodology was validated using a Fog manufacturing testbed, where 

sub-steps in simple predictive data analytics pipelines were offloaded to ten Fog nodes. The 

proposed multi-task learning methodology was used to predict Time-latency, CPU utilization, and 

Download bandwidth utilization of the Fog nodes.  The NRMSEs were 0.07, 0.03, and 0.10 

respectively, which were better than linear regression, Lasso regression, and Random forest. The 

variable selection results were also presented to validate the assumptions made. The most 

important contribution of this paper is that the proposed model solves the problem of data 
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heterogeneity among the Fog nodes and predicts the performance run-time metrics of the Fog 

nodes before the implementation of a computational task. 
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CHAPTER 7: FUTURE WORK 

In this thesis, the Fog nodes have similar computing and communicating capabilities. However, 

this might not be a feasible scenario in a real manufacturing environment. One future work 

direction for this study is to extend the multi-task learning in a Fog manufacturing testbed that has 

different configurations of Fog nodes. On the other hand, an immediate application of the multi-

task learning model proposed in this study is facilitating the real-time predictive offloading in Fog 

manufacturing testbed. Moreover, the proposed multi-task learning model can also be extended to 

predictive autoscaling methods in Fog computing platform to dynamically optimize the 

architecture design.  
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