
Design and Implementation of OpenDSA Interoperable
Infrastructure

Hossameldin Latif Shahin

Thesis submitted to the Faculty of the
Virginia Polytechnic Institute and State University

in partial fulfillment of the requirements for the degree of

Master of Science
in

Computer Science and Applications

Clifford A. Shaffer, Chair
Dennis Kafura
Edward A. Fox

June 30, 2017
Blacksburg, Virginia

Keywords: computer science education, web application, learning tools interoperability

Copyright 2017 Hossameldin Latif Shahin

Design and Implementation of OpenDSA Interoperable Infrastructure

Hossameldin Latif Shahin

(ABSTRACT)

OpenDSA is a system for creating rich eTextbooks that combine quality text with visu-
alizations and interactive, auto-graded exercises. As OpenDSA gains recognition, its use
increases each year. This mandates a scalable, reliable, and sustainable infrastructure to
accommodate the fast-growing demand for OpenDSA access.

We implemented OpenDSA-LTI, an interoperable infrastructure which transforms OpenDSA
from a standalone, self-contained eTextbook to an integrated learning tool communicating
with a Learning Management System (LMS) through the Learning Tool Interoperability
(LTI) protocol. OpenDSA-LTI delivers OpenDSA content and interactive materials to stu-
dents through a reliable and secure LMS interface. LTI integration encourages OpenDSA
adoption by providing easy, intuitive tools that help instructors to build and generate
OpenDSA eTextbooks in their LMS courses. OpenDSA-LTI allows OpenDSA content devel-
opers to take advantage of various tools already provided by the LMS instead of reproducing
these through their own proprietary services.

The OpenDSA-LTI extendable design allows for adding new LTI-compliant exercises to
OpenDSA books. This changes OpenDSA developers’ efforts to searching for learning
tools instead of reimplementing them. As an example, instead of maintaining the origi-
nal OpenDSA programming evaluation engine, we could easily replace it with the Code
Workout online drill-and-practice system.

Since its launch in August 2016 until June 2017, OpenDSA-LTI has hosted 36 active courses
offered by 25 different universities in 6 countries, 41 instructors have used OpenDSA-LTI to
host their courses on the Canvas LMS, and the system has 2,729 registered students.

This work was supported in part by NSF grant DUE-1432008.

Design and Implementation of OpenDSA Interoperable Infrastructure

Hossameldin Latif Shahin

(GENERAL AUDIENCE ABSTRACT)

OpenDSA is a system for creating online textbooks that combine quality text with visu-
alizations and interactive, auto-graded exercises. As OpenDSA gains recognition, its use
increases each year. This mandates a scalable, reliable, and sustainable infrastructure to
accommodate the fast-growing demand for OpenDSA access.

We built OpenDSA-LTI, an online web application which transforms OpenDSA from a stan-
dalone, self-contained textbook to a learning tool which any university can integrate in their
learning systems.

OpenDSA-LTI delivers OpenDSA content and interactive materials to students through a
reliable and secure interfaces. The new infrastructure encourages OpenDSA adoption by
providing tools that help instructors to build and generate OpenDSA online textbooks in
their institution’s learning systems.

The OpenDSA-LTI extendable design allows for adding new exercises to OpenDSA online
textbooks. This changes OpenDSA developers’ efforts to searching for other learning tools
instead of creating them from scratch. As an example, instead of maintaining the origi-
nal OpenDSA programming exercises, we could replace it with the Code Workout online
programming evaluation system.

Since its launch in August 2016 until June 2017, OpenDSA-LTI has hosted 36 active courses
offered by 25 different universities in 6 countries, 41 instructors have used OpenDSA-LTI to
host their courses on the Canvas LMS, and the system has 2,729 registered students.

This work was supported in part by NSF grant DUE-1432008.

Dedication

In memory of my sister, Hanan Shahin and my labmate, Taylor Rydahl.

iv

Acknowledgments

First of all, all thanks due to ALLAH, may His peace and blessings be upon his prophet,
Mohammad. I thank ALLAH for helping me during my journey until I successfully complete
my master’s degree.

I would like to thank my advisor, Dr. Clifford A. Shaffer, both for his guidance and his trust
in me, and Drs. Dennis Kafura and Edward A. Fox for serving on my thesis committee.

I would also like to show my appreciation to the National Science Foundation which sup-
ported my work through grant DUE-1432008.

Thanks go to my friends and family for their support, and special thanks to my beloved wife,
Doaa Altarawy, for her encouragement and continuous support.

Also, I would like to thank my little twins, Zeyad and Somaia, who kept wishing me the best
of luck during my thesis writing.

v

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Research Objectives . 2

1.3 Solution Approach . 2

1.4 Major Contributions . 4

1.5 Structure of the Thesis . 4

2 The First Generation OpenDSA Infrastructure 5

2.1 OpenDSA Content . 5

2.2 The Authoring System and Compilation Process 9

2.3 Data Collection Server . 10

2.4 Client-Side Framework . 11

2.4.1 User Registration and Authentication 12

2.4.2 Loading New Exercises into the DCS 12

2.4.3 Score and Interaction Data Management 12

2.4.4 Managing User Proficiency . 13

2.4.5 Managing Student Login in Multiple Browser Tabs 14

2.4.6 Transmitting the Data . 15

2.5 Putting It All Together . 16

3 Mitigating Original Infrastructure Problems 19

3.1 Khan Academy Exercise Framework . 19

vi

3.1.1 KA Framework Upgrade . 19

3.1.2 Preventing the “Gaming” Problem . 20

3.2 Client-Side Framework . 22

3.2.1 Missing Interaction Data . 22

3.2.2 An Out-Of-Synch Local Proficiency Cache 23

3.3 Data Collection Server . 23

3.3.1 Proprietary Mechanism for Handling Session Keys 24

3.3.2 Automated Assessment Engine for Programming Exercises 24

3.4 Towards a Complete System . 25

4 Interoperability Alternatives 27

4.1 A Component-Oriented Approach . 27

4.2 Plug-In Architecture . 28

4.3 Widgets . 29

4.4 SCORM . 29

4.5 IMS Learning Tools Interoperability . 30

4.6 Summary . 30

5 OpenDSA-LTI Implementation 32

5.1 Technologies Stack . 32

5.1.1 Software Choice . 33

5.1.2 OpenDSA Redesign . 35

5.1.3 Licenses . 35

5.2 Identity Management . 36

5.2.1 Authentication . 36

5.2.2 Authorization . 37

5.3 How OpenDSA-LTI Works . 38

5.4 User Interfaces . 41

5.4.1 Student Interfaces . 41

vii

5.4.2 Instructor Interfaces . 43

5.4.3 Admin Interfaces . 46

5.5 Security . 48

5.5.1 Injection . 48

5.5.2 Broken Authentication and Session Management 49

5.5.3 Cross-Site Scripting (XSS) . 49

5.5.4 Insecure Direct Object References . 49

5.5.5 Security Misconfiguration . 50

5.5.6 Cross-Site Request Forgery (CSRF) 50

5.5.7 Insecure Cryptographic Storage . 51

5.5.8 Failure to Restrict URL Access . 51

5.5.9 Insufficient Transport Layer Protection 52

5.5.10 Unvalidated Redirects and Forwards 52

6 Conclusions and Future Work 54

6.1 Conclusions . 54

6.2 Future Work . 55

Appendices 57

Appendix A OpenDSA XBlocks Architecture 58

A.1 Introduction . 58

A.2 Main Components . 58

A.3 How It Works . 59

Bibliography 61

viii

List of Figures

2.1 A slideshow that illustrates in multiple steps how a list of numbers is sorted
by the QuickSort Algorithm . 6

2.2 An Algorithm Visualization (AV): In addition to demonstrating QuickSort
algorithm steps, AVs allow students to enter the initial data values to be used. 7

2.3 A Proficiency Exercise (PE): Students must simulate algorithm execution.
They are asked to do a series of steps and change the data structure (an array
in this case) until the algorithm completes. The score field shows the number
of steps done correctly. 7

2.4 Khan Academy-style Proficiency Exercise (KA): The KA exercise has a pool
of questions which is randomly presented to the students one by one. In this
example, students are asked to simulate a single step or one iteration of an
algorithm. 8

2.5 A state diagram for the exercise proficiency cache. Until a student starts the
exercise, there is no state saved in the cache. When the client-side framework
determines that a student achieves proficiency, a score object will be sent to
the DCS, and the state changes to “SUBMITTED”. If an error is responded
to by the server, the state will change to “ERROR”. Students can manually
resubmit the score object again for exercises in the “ERROR” state. Finally,
once DCS has saved the information successfully, the state changes to “STORED” 14

2.6 First Generation OpenDSA infrastructure 17

2.7 Client-side framework’s role in a module page 18

5.1 Software Stack for OpenDSA-LTI. 35

5.2 When the LMS launches a learning tool, it sends a launch message that con-
tains an LIS URL. Later, the learning tool uses this callback URL to send
grades back to the LMS. 38

5.4 An OpenDSA Book compiled into a Canvas LMS course. 42

ix

5.6 “New Course Offering” form is a page through which the instructor can select
his organization and course, and create a new course offering in the selected
semester. 44

5.7 The book customization tool allows the instructor to design his book before
generating it into a Canvas course. 44

5.8 Canvas course generation is a background process that uses the Canvas APIs
to create an OpenDSA book in a course. 45

5.9 Canvas resource selection extension to standard LTI protocol. 45

5.10 OpenDSA list of interactive materials from which instructor can choose to
add to a module. 46

5.11 The ActiveAdmin dashboard provides a summary of the system. It shows the
most recent errors, the recent logged-in users, and the courses offered during
the current semester. The admin interface menus contain links to multiple
pages that manage database lookup tables. 47

A.1 OpenDSAX XBlocks main components. 59

A.2 OpenDSAX XBlocks sequence diagram. 60

x

List of Tables

2.1 OpenDSA interactive materials characteristics. All of the exercises are capable
of giving immediate feedback, and they are self-grading. Only KA exercises
save the student’s state between sessions. Although slideshows and AVs can
be configured to have a grade component, instructors usually assign grades to
PEs and KAs only. 9

5.1 OpenDSA-LTI software licenses. 36

5.2 LTI functions: launch is a POST message containing LTI parameters sent
to the TP URL. ReplaceResult is a POST message sent to the LIS outcomes
URL, and it contains two parameters: 1) LIS address to be replaced, and
2) a student grade on a scale from 0.0 to 1.0. ReadResult and DeleteResults
retrieves and nullifies the student grade for a specific activity. 39

xi

Chapter 1

Introduction

OpenDSA is an open source eTextbook infrastructure combined with contents for a wide va-
riety of Computer Science topics. At this time, content available in OpenDSA covers topics
for a CS2-level course, a post-CS2-level Data Structures and Algorithms (DSA) course, Pro-
gramming Languages, Finite Languages and Automata (FLA), and a senior-level algorithms
course.

OpenDSA combines textbook-quality prose with visualizations and interactive, auto-graded
exercises, allowing students to practice as much as they want. OpenDSA exercises are de-
signed to provide students with immediate feedback as they progress through each exercise’s
steps or questions. Once a student has performed all of the exercise’s steps or has answered
all of the questions correctly, the exercise will display a green check mark indicator to show
that the student has become proficient with the concept presented.

The OpenDSA framework makes it easy to add new visualizations, exercises, and top-
ics. OpenDSA automatically handles exercise grading and gives immediate feedback, which
makes it suitable for large classes.

1.1 Motivation

Since the project began in 2011, OpenDSA contributors have worked hard to enhance project
content by adding new topics and creating more visualizations and comprehensive exercises.
However, OpenDSA requires more than content to be suitable for class environments. The
system has to support capabilities like account management, grade management, and ac-
tivity logging. It is also necessary to support instructors’ ability to follow their students’
progress through the OpenDSA content and exercises. OpenDSA developers spent time
and effort early in the project to design and implement these instructor’s tools. Designing,
implementing, and maintaining these tools made OpenDSA a stand-alone, one-size-fits-all

1

Hossameldin Shahin Chapter 1. Introduction 2

application. Thus, developers’ focus was taken away from their primary goals of adding new
topics, developing more exercises and visualizations, and conducting pedagogical studies [13]
[19][34][17][9].

As the OpenDSA project was noticed beyond the developers’ home institutions, instructors
became eager to adopt it, and in some cases wanted to run an OpenDSA server by themselves.
However, the original server infrastructure was not portable and was poorly documented,
which made it hard for third parties to install. As a consequence, courses offered for instruc-
tors in other institutions were usually hosted on Virginia Tech servers, which raised critical
scalability concerns and took further project resources away from core activities.

“Teachers value a secure, central single point of entry into an on-line learning en-
vironment which enables students to move seamlessly between learning activities
regardless of where the applications may be physically located.” [5]

For the past decade, course material has increasingly been organized within learning man-
agement systems (LMS). An LMS creates a suitable learning environment for students: it
typically contains discussion forums, accounts and login support, gradebooks, chat rooms,
wiki pages, and multimedia content [5]. The LMS environment provides communication and
collaboration facilities between individual learners, and between learners and teachers.

1.2 Research Objectives

The aim of this thesis is to document the design rationale and provide assessment for an
integration of OpenDSA with LMSs to achieve three goals. The first goal is to take ad-
vantage of the robust instructor’s tools and services already provided by an LMS, so that
OpenDSA collaborators do not need to implement and maintain such standard functional-
ities. The second goal is to deliver OpenDSA contents through a trusted and convenient
channel to instructors and students, which will lead to broader impact for the OpenDSA
project. The last goal is to allow for relatively easy deployment of OpenDSA servers at
third-party institutions.

Our research hypothesis is that online educational systems can be architected so as to keep
the eTextbook content generating system, the LMS, and the various exercise types as separate
software components, while allowing for a meaningful integration of the whole.

1.3 Solution Approach

Different integration protocols and approaches for improving the interoperability of learning
tools were assessed against OpenDSA requirements and constraints. Based on our findings,

Hossameldin Shahin Chapter 1. Introduction 3

a set of development tools and communication protocols were chosen to be the basis for the
new OpenDSA infrastructure.

The suitability of different protocols and Web frameworks as the proposed solution for inte-
grating OpenDSA with an LMS were analyzed based on the following criteria:

• Changes and modifications to OpenDSA content code base that would be required.

• The ability to integrate OpenDSA with a range of LMSs.

• The infrastructure’s overall performance overhead.

• The ability for other institutes to easily install the new infrastructure.

• The ability to augment OpenDSA with other learning tools (such as new exercise types)
within an LMS.

We want to support integration with third-party learning tools and exercises. A good exam-
ple, that we have already implemented, is CodeWorkout [29] integration. So, suitability for
such integration is a criterion for the chosen protocol.

Based on the findings, we have designed and implemented a new infrastructure, called
OpenDSA-LTI, which potentially integrates OpenDSA contents with any LMS that com-
plies with the Learning Tool Interoperability (LTI) standard protocol [23]. To our knowl-
edge, OpenDSA-LTI is the first infrastructure to integrate a standalone eTextbook system
into a learning management system like Canvas1 in a reusable way. The new infrastructure
design considered the student, instructor, and developer points of views. The implemented
infrastructure will hopefully:

• reduce students’ unnecessary extra work in learning from multiple learning systems;

• ease OpenDSA book configuration and compilation for instructors;

• support OpenDSA book integration in any LTI-compliant LMS;

• allow instructors to embed individual visualizations and exercises in their LMS courses,
in case they do not want to utilize the entire OpenDSA book; and

• provide instructors with the required tools to monitor students’ learning progress.

In addition to being able to integrate OpenDSA with other learning tools within an LMS,
a design goal for the integration protocol was to not require extensive changes in the ex-
isting OpenDSA content code base, or in the tools used to compile eTextbooks from those
contents. It should also have widespread community support and evidence for continuity
and progression. Finally, the selected protocol should not cause unnecessary performance
overhead, which would harm the usability of OpenDSA and other learning tools.

1https://www.canvaslms.com

https://www.canvaslms.com

Hossameldin Shahin Chapter 1. Introduction 4

1.4 Major Contributions

The following are my major contributions to the OpenDSA project.

• Made OpenDSA more robust by mitigating known problems, including:

– Missing interaction data and out-of-synch caching mechanism.

– Gaming problems and an outdated Khan Academy exercise framework.

– Manual configuration files preparation.

• Implemented the OpenDSA-LTI infrastructure, with the following features:

– Through the LTI protocol, integrated OpenDSA content with the widest range of
LMS.

– Provided interfaces for instructors to configure and compile books within the LMS.

– Designed the system to allow integrating any LTI-compliant learning tools (e.g.
CodeWorkout exercises) to OpenDSA Books.

1.5 Structure of the Thesis

This thesis has the following structure. Chapter 2 describes the original OpenDSA in-
frastructure. Chapter 3 pinpoints some of the known limitations and issues in the original
infrastructure, and explains how we mitigated and solved some of these problems. Chapter 4
assesses existing e-learning interoperability standards. Chapter 5 presents a detailed discus-
sion about the new infrastructure’s implementation. Finally, Chapter 6 presents conclusions
and potential future enhancements to the OpenDSA system.

Chapter 2

The First Generation OpenDSA
Infrastructure

The OpenDSA project architecture [32][33] comprises four components. The first component
is a rich collection of content types, including the explanatory text, visualizations, and
exercises. The second component is the compilation process; its main role is to generate
a complete book in the form of HTML files from the different content types. The third
component is the data collection server (DCS), which keeps track of student registrations,
interaction data, and scores. The final component is the client-side framework, which has
multiple responsibilities that can be briefly summarized as managing the communication
between the compiled HTML pages and the DCS. All OpenDSA components are open source
and available on GitHub. OpenDSA contents, the compilation process, and the client-side
framework can be found at https://github.com/OpenDSA/OpenDSA. The original
DCS is available at https://github.com/OpenDSA/OpenDSA-server.

In this chapter, I explain in detail about the major OpenDSA components and discuss how
they work together to form the OpenDSA system.

2.1 OpenDSA Content

The basic OpenDSA unit of presentation is the module; each module explains one topic or
concept, like QuickSort or Hashing. Modules were designed to be complete, and typically fit
within a regular lecture period. Modules are written in a plain text markup language known
as reStructuredText (ReST) [20], one ReST file for each module. Modules are compiled
into HTML pages using Sphinx [7], a tool developed by the Python community for Python
project documentation. The ReST/Sphinx combination is used to make a separation between
content authoring and how the content is presented. Keeping the content in a plain text file
makes collaborative authoring relatively easy. An OpenDSA book instance is a collection

5

https://github.com/OpenDSA/OpenDSA
https://github.com/OpenDSA/OpenDSA-server

Hossameldin Shahin Chapter 2. The First Generation OpenDSA Infrastructure 6

of modules grouped together in ordered chapters. For each book instance, Sphinx creates
the main landing page for the table of contents, from which the user can navigate to any
module. A module typically contains prose, static diagrams, and interactive materials. There
are multiple types of interactive materials: Slideshows (SS), Algorithm Visualizations (AV),
Proficiency Exercises (PE), programming exercises, and Khan Academy-style exercises (KA).

All the interactive materials are implemented in HTML5, CSS, and JavaScript. Slideshows,
AVs, and PEs are written using the JavaScript Algorithm Visualization library (JSAV) [27][28].
While slideshows are generated by Sphinx with inline HTML markup written in the module’s
HTML page, AVs, PEs, and KAs are embedded in the module as iframes. Iframe embedding
is a design choice made to ensure that instructors can use OpenDSA interactive materials
alone or as part of an OpenDSA book. KA exercises are developed using the open-source
Khan Academy exercise framework1. The KA exercise framework supports multiple question
types: True/False, Multiple Choice Questions (MCQs), and fill-in-the-blank.

In 2013, a snapshot of the KA framework was taken and made part of the project. The
KA framework snapshot was extended to include a new type of question, referred to as
proficiency exercise, where students are asked to manipulate a data structure to simulate a
single iteration of an algorithm [31][1]. Generally, the data being manipulated are randomly
generated. All OpenDSA interactive materials are capable of tracking student progress, and
they provide feedback to show their current status. Slideshows show the number of slides
visited and the number of slides remaining. PEs show the number of steps done correctly,
steps done incorrectly, and the total number of remaining steps. KA exercises indicate
whether the exercise was answered correctly in the form of smiling or frowning faces. KA
exercises send and save students’ state in the DCS so that they can solve the exercises
over multiple sessions. Multi-part exercises show a status bar displaying the number of
correct answers from the total number of questions to be answered to complete the exercise.
Figures 2.1-2.4 show examples of these interactive materials.

Figure 2.1: A slideshow that illustrates in multiple steps how a list of numbers is sorted by
the QuickSort Algorithm

1https://github.com/Khan/khan-exercises

https://github.com/Khan/khan-exercises

Hossameldin Shahin Chapter 2. The First Generation OpenDSA Infrastructure 7

Figure 2.2: An Algorithm Visualization (AV): In addition to demonstrating QuickSort algo-
rithm steps, AVs allow students to enter the initial data values to be used.

Figure 2.3: A Proficiency Exercise (PE): Students must simulate algorithm execution. They
are asked to do a series of steps and change the data structure (an array in this case) until
the algorithm completes. The score field shows the number of steps done correctly.

Hossameldin Shahin Chapter 2. The First Generation OpenDSA Infrastructure 8

Figure 2.4: Khan Academy-style Proficiency Exercise (KA): The KA exercise has a pool of
questions which is randomly presented to the students one by one. In this example, students
are asked to simulate a single step or one iteration of an algorithm.

All OpenDSA interactive materials track the student progress, and they fire a “completed”
event when the student finishes the material. The completion event is captured by the
OpenDSA infrastructure to award the student the grade assigned to the exercise in a par-
ticular book instance. There are different requirements for each interactive material to be
considered as “completed”. A slideshow is completed by going through all the slides one by
one until the student reaches the last slide. An AV is completed by advancing the algo-
rithm visualization step by step until the algorithm is complete. A PE requires a student to
perform a percentage of the total steps correctly to be marked as completed.

KA exercises are typically a set of questions; these questions make a pool that the KA
framework presents one at a time at random. The student has to answer a predefined
number of questions to accumulate the number of points required to complete the exercise.
A student’s attempt to answer a question will count only if it is correct, from the first trial,
and without using hints. If a student attempt is incorrect, he will lose a point, and if he uses
the hint, he will not get a point for the question. Table 2.1 compares each of the OpenDSA
interactive materials’ characteristics.

Hossameldin Shahin Chapter 2. The First Generation OpenDSA Infrastructure 9

Table 2.1: OpenDSA interactive materials characteristics. All of the exercises are capable of
giving immediate feedback, and they are self-grading. Only KA exercises save the student’s
state between sessions. Although slideshows and AVs can be configured to have a grade
component, instructors usually assign grades to PEs and KAs only.

Type Embedding Feedback Self-grading State-saving Grade-assigned

SS inline 3 3 7 Optional
AV iframe 3 3 7 Optional
PE iframe 3 3 7 3

KA iframe 3 3 3 3

2.2 The Authoring System and Compilation Process

Key elements in the compilation process are the compilation script and the configuration file.
A compiled collection of OpenDSA modules is called a “book instance”. The content of a book
instance is defined using a configuration file. A configuration file is written in JSON format;
it includes references to a set of OpenDSA modules grouped in ordered chapters. Config-
uration files are maintained and saved as part of the OpenDSA GitHub repository. There
are standard configuration files for CS2, CS3 (data structures), programming languages, and
senior algorithms book instances. Instructors who want to customize a configuration file for
their specific needs usually copy an existing one and modify it as appropriate. The main pur-
pose of the configuration file is to keep the content independent of specific settings related to
a book context. Configuration files provide a set of variations that instructors can customize
for their needs. Instructors can choose the book language, with a default fallback option
to English if there is no module found written in the selected language. Instructors can set
the programming language used for displaying code examples. Instructors can add, reorder,
and remove modules. They can configure different exercise attributes like the number of
points, threshold, and whether the exercise is required for module proficiency or not. The
module’s definition in the configuration file should identically mirror the module ReST file
regarding the number and the order of module sections, as well as the number and the order
of exercises defined in each section.

The compilation script uses a configuration file as input; it performs a series of tasks to
validate the file, enforce default values, and collect and copy the set of module ReST files
into the target book folder. Finally, the script calls Sphinx to compile the book instance in
HTML pages, and configures them to use the DCS URL.

There are two major use cases for OpenDSA eTextbooks. The first is as an integral part of
a course, where students are asked to perform the exercises before due dates, and exercise
grades are part of the course final grade. The second is as a supplementary reading and
practicing reference without grade tracking. In the latter case, the configuration process

Hossameldin Shahin Chapter 2. The First Generation OpenDSA Infrastructure 10

would remove the DCS URL from the configuration file so that the compilation process
generates a “Plain” book in the sense that students can use the book without registration.
They can go to the book to practice, but no interaction data is stored, and no grades are
tracked by the DCS.

2.3 Data Collection Server

The DCS in the first generation infrastructure was developed using Django2 (version 1.3).
Django is an open source Python-based Web framework based on Model-View-Controller
design pattern. DCS was integrated with the A+ course management system (CMS), which
was developed and used by OpenDSA collaborators in Finland [26]. A+ manages OpenDSA
course creation, instructor registration, and student enrollments. An OpenDSA book in-
stance is linked to a course taught by an instructor. DCS adopts a client-server architecture,
where a content server hosts OpenDSA book module pages and serves them to a student
browser in HTML format. Once a module page is loaded, all student interaction data and
exercise attempts are communicated to the DCS, which is deployed on a separate server.
Communication to the DCS is stateless, which means each request contains all the informa-
tion required by the DCS end point to function properly, without the need to save client
context information on the DCS side. The DCS database schema was designed to manage
and persist a collection of information categories (a.k.a. resources). Below is a description
of each resource category:

• User resource: To track and authenticate OpenDSA users.

• Book resources: A set of tables to store OpenDSA book instance information, which
includes the book name and URL. They also manage the list of learning modules in
the book and the list of interactive entities in each module. For each interactive entity,
a name, a description, and a classification of the material type (e.g., SS, AV, PE, or
KA) is stored.

• Students interactions resources: Interactions captured by the DCS have two main
types:

– Interface interaction resources: stores student click streams and module-level
events.

– Exercise interaction resources: stores student exercise attempts.

We will discuss interaction types in more detail in the next section.

• Student progress resources: a set of tables that tracks student proficiency status
and dates for each exercise or module.

2https://djangoproject.com

https://djangoproject.com

Hossameldin Shahin Chapter 2. The First Generation OpenDSA Infrastructure 11

DCS exposes its resources through a set of standard APIs, which are not open for public use.
Rather, DCS only authorizes requests from domains that are explicitly defined in its whitelist
of content server domain names. The separation between the content server and DCS allows
OpenDSA collaborators to install only the content server, and ask the OpenDSA team at
Virginia Tech to add their domain name to the Virginia Tech DCS. This design flexibility
helped with content dissemination, although it raised some performance concerns with the
DCS deployed at Virginia Tech. A full description of the original OpenDSA DCS design can
be found in [16].

DCS includes infrastructure for automated assessment of programming exercises. It allows
students to perform programming assignments through an in-browser coding interface. When
a student submits his code snippet, an attempt object is transmitted with the student code
for evaluation. An automated assessment engine within DCS stores and evaluates student
code. A complete description of the programming exercises embedded engine can be found
in [21].

2.4 Client-Side Framework

The client-side framework consists of multiple JavaScript files that are loaded with each mod-
ule page. The main role of this framework is to manage communications between the module
page and DCS. It also provides common functionalities for all OpenDSA interactive mate-
rials. It provides a level of abstraction for all common behaviors that OpenDSA interactive
materials might need. Interactive materials automatically inherit these common behaviors,
which makes a content developer’s job easier and helps them focus on the design and imple-
mentation tasks. The framework is mainly two files, odsaMOD.js and odsaAV.js. The
former file serves as an abstraction for the module page, while the latter contains common
code for all embedded AVs and PEs.

The client-side framework, among other responsibilities, mainly performs:

• User registration and authentication

• Transferring module information to the DCS to save new exercises in the database

• Buffering and transmitting user score data and interaction data to the DCS

• Managing user proficiency displays and keeping local proficiency in sync with the DCS

The client-side framework was designed with the goal of allowing users to use the book
instance and see their progress even without the DCS being accessible. This goal was achieved
by making use of the browser’s local storage [35] to track users’ scores and proficiency status
when the book instance is not configured to use the DCS.

Hossameldin Shahin Chapter 2. The First Generation OpenDSA Infrastructure 12

2.4.1 User Registration and Authentication

All pages in any book instance have links to allow users to register or login. When a new
user opens a page, he can use the “Register” link to open a form that allows him to input his
basic information. When the form is submitted, an AJAX request is sent to the DCS and
a new user is created. The DCS sends a user session key back to the client-side framework,
which in turn shows the new user as logged in, and stores the session key in the browser’s
local storage. Any subsequent communication between the client-side framework and the
DCS would be identified by this session key. Each time a student logs in, the DCS creates
a new session key. As a consequence, if a student logs in the second time, then the session
key saved by the client-side framework becomes invalid. When the client-side framework
sends any request using the invalid session key, the DCS rejects that request and returns an
HTTP 401 error code which causes the framework to delete the session key, and to inform
the student that he needs to log in again because his session is no longer valid.

2.4.2 Loading New Exercises into the DCS

The client-side framework, as well as OpenDSA contents, are hosted on the “Content Server”.
On the other hand, the DCS is designed to be deployed on a separate server. At Virginia
Tech these two systems are hosted on different physical servers with two different URLs.
OpenDSA’s original architecture enforces this separation to make it easier for instructors
to adopt the content server without the necessity of having a DCS if the instructor is not
interested in DCS functionalities.

It was believed that once an instructor sets up his content server, he should be able to
establish communication with a DCS instance deployed in another institution. Adding this
flexibility to OpenDSA’s original infrastructure introduces challenges, one of which is the
scenario when an instructor adds more contents or interactive materials to any of his book
instance modules. This situation mandates that the client-side framework communicates the
entire book configuration to the DCS each and every time a module is loaded.

2.4.3 Score and Interaction Data Management

OpenDSA’s interactive materials are self-grading, which means that the exercise decides by
itself, without consulting the DCS, whether a student attempt is correct or not. Based on
the completion criteria for each interactive material (discussed in Section 2.1), a score event
is fired.

The client-side framework provides two listeners in a module page for score events. The
first listener is for JSAV-based slideshow score events. The second listener listens to a
postMessage score event generated by the embedded AVs and PEs. The framework vali-

Hossameldin Shahin Chapter 2. The First Generation OpenDSA Infrastructure 13

dates the score events, stores them in the local storage, and then later sends them in batches
to the DCS. The communication mechanism implemented by the framework for managing
and transmitting score data is the same for interaction data (we’ll talk about interaction
data later in this chapter).

Since reading and writing data to the browser’s local storage is not an atomic operation,
there is a high chance that new score events might be stored in the local storage before the
DCS sends the response back. So if the framework simply waits until it receives a response
from the DCS, and then deletes the scores from the local storage, there is a high chance of
losing score events in this process. To mitigate this situation, the framework would copy
the score events and delete them immediately from the local storage, then send them to the
DCS. Upon successful response from the DCS, the framework just deletes the copied score
events. Otherwise, it rewrites them back to the local storage.

2.4.4 Managing User Proficiency

A student becomes proficient with an exercise when he can demonstrate “sufficient” knowl-
edge about the concepts tested by the exercise. Based on the exercise type, the term “suf-
ficient” translates to different criteria. Once a student achieves proficiency, the client-side
framework sends the score event to the DCS and caches the proficiency status in the browser’s
local storage. The framework keeps the local proficiency cache synchronized with the DCS.
So for each book, for each student, the framework stores the status for each exercise. Local
exercise status can be “SUBMITTED” when the score is sent to the DCS, “STORED” when
the DCS sends back a successful response, and “ERROR” when the DCS sends back a fail-
ure response. In the last case, the framework will change the proficiency indicator to show
an error, and provides the students with a “Resubmit” link to submit the score manually.
Figure 2.5 shows a state diagram of the local proficiency cache’s different states.

For the content server to function properly without the DCS, the client-side framework has
to save and maintain the student’s proficiency in the browser’s local storage. This caching
mechanism allows the student to continue his progress even when there is no DCS or when
the connection with the DCS server is temporarily unavailable, either due to a poor or no
Internet connection. In any case, the student can still maintain his progress locally until he
logs in, then the framework will synchronize his progress to the DCS.

Proficiency indication has two forms, a green check mark on the upper left corner of a
slideshow, or a button placed near the top left corner of the embedded exercise. The button
changes color based on the local cache status. The initial color is red, which means the
student is not yet proficient. It becomes yellow when the status is “SUBMITTED” or “ERROR”,
and finally it turns green when the student score is stored by the DCS, and the local cache
status becomes “STORED”.

Hossameldin Shahin Chapter 2. The First Generation OpenDSA Infrastructure 14

Figure 2.5: A state diagram for the exercise proficiency cache. Until a student starts the
exercise, there is no state saved in the cache. When the client-side framework determines
that a student achieves proficiency, a score object will be sent to the DCS, and the state
changes to “SUBMITTED”. If an error is responded to by the server, the state will change
to “ERROR”. Students can manually resubmit the score object again for exercises in the
“ERROR” state. Finally, once DCS has saved the information successfully, the state changes
to “STORED”

.

When “Module Complete” appears at the top of a module, it means that the student has
already answered all the required exercises in this module. “Module Complete” is colored
yellow or green. Yellow indicates that the student has achieved proficiency with all the
exercises; however, one or more is not yet “STORED” in the DCS. Green indicates that all
exercises are successfully marked as completed in the DCS.

When a book is configured to communicate with a DCS and a student is logged in, the
client-side framework synchronizes the proficiency status for all exercises once the module
page is loaded. The DCS becomes the ground truth when checking for student proficiency.
Otherwise, the client-side framework has full authority to store and manage the student’s
proficiency.

2.4.5 Managing Student Login in Multiple Browser Tabs

It is important to keep all browser tabs consistent, therefore, the client-side framework
developed a mechanism to check whether a student is logged in, and to ensure only one
student is logged in during one session. If a student logs in through a tab and after that
another student logs in through another tab on the same computer, the former student will
be logged out, and both tabs will show the latter student username. Likewise, if a student
logs in through a tab, opens another tab, then logs out, he will appear as logged out when he
switches back to the first tab. The logic to maintain consistency between tabs was developed
in the loadModule() function.

Hossameldin Shahin Chapter 2. The First Generation OpenDSA Infrastructure 15

2.4.6 Transmitting the Data

The DCS collects two categories of data: student interaction events and exercise attempt
events. Both event types are buffered in the browser’s local storage as a list of objects, for
each student, for each book instance. The buffered objects are sent to the DCS in batches
to increase client-server communication efficiency by reducing the network traffic. Exercise
attempt events fire whenever the client-side framework determines that the student has
completed an “attempt” with an exercise. The precise information that is transmitted to the
database server depends on the exercise type. Below is an example of information pieces
included in the PE attempt object:

• exercise - the name of the exercise with which the attempt event is associated

• module - the module with which the attempt event is associated

• score - a decimal number between 0.0 and 1.0 indicating a student’s attempt score

• steps_fixed - the number of steps fixed by the auto-grader during the attempt

• submit_time - the time in which a student finished the attempt

• total_time - the total time a student spent working on the attempt

• uiid - the unique instance identifier, which allows an attempt event to be tied to a
specific instance of an exercise in a specific load of a module page

• username - a student username

The following is the attempt object attributes for a KA exercise:

• exercise - the name of the exercise with which the attempt event is associated

• module - the module with which the attempt event is associated

• count_attempts - attempts counter for how many times a particular question has
been attempted

• attempt_content - student answer

• correct - “1” if the answer is correct, “0” otherwise

• count_hints - hints counter for how many times a particular question hint has been
used

• time_taken - the total time a student spent working on the attempt

• remote_adrr - student IP address

When a batch of student attempts objects are sent to the DCS, a session key and book
instance identifier are added to the request message.

Hossameldin Shahin Chapter 2. The First Generation OpenDSA Infrastructure 16

Student interaction events, in turn, are two main types. The first is student click events,
either on control buttons or on interface objects related to manipulating an exercise (such
as clicking on the value in an array to show behavior in a sorting algorithm). The second
type of interaction event relates to loading or unloading a module page, or changing focus
into or out of the page. Interaction events will typically transmit data fields such as:

• av - the name of the JSAV-based material with which the event is associated (null
string if it is a module-level event)

• module - the module with which the attempt event is associated

• book - the identifier of the book with which the event is associated

• desc - a stringified JSON object containing additional event-specific information

• submit_time - a timestamp in which the event has occurred

• type - the type of the event: module load/unload event or JSAV event

• uiid - the unique instance identifier, which allows an attempt event to be tied to a
specific instance of an exercise in a specific load of a module page

• username - a student username

2.5 Putting It All Together

Any instructor who wants to use the OpenDSA system in his class will probably follow the
following steps to set up his course.

First, the instructor has to select a set of OpenDSA learning modules. That usually happens
by looking at OpenDSA sample book instances for different CS courses. If any of these
standard books satisfies the instructor’s needs, he can use them as is. Otherwise, he may
choose to mix and match a collection of modules, reordering them in the way that satisfies
his curriculum. Or he may find that a topic he wants to teach is not part of OpenDSA
materials. In this case, he might decide to write the missing modules or interactive materials
and contribute them to the project repository.

Second, the instructor asks the OpenDSA team at Virginia Tech to prepare a configuration
file for his book instance. Whether he chooses a standard book or a customized one, he will
end up with a configuration file that he then can further choose to tweak for a specialized
version of his course. The instructor can choose the book language, select one or more of
the programming languages for code examples presented in the book, adjust the number of
points that each exercise is worth, and modify some other exercise-specific configurations
like the grading method for a particular exercise.

Finally, the instructor has to decide whether he wants OpenDSA to be used only as reference
material for his students, or if he wants OpenDSA to track his students’ progress and save

Hossameldin Shahin Chapter 2. The First Generation OpenDSA Infrastructure 17

Figure 2.6: First Generation OpenDSA infrastructure

each student’s exercise credit. In the latter case, the instructor has to define the DCS URL
in the configuration file as well.

Once the instructor has a configuration file in hand, he can start the compilation process
using the file on his content server. If the instructor did not have a content server available,
then he would ask the OpenDSA team at Virginia Tech to host his course on the VT content
server. Once the compilation process is completed, the newly generated book is comprised
of multiple HTML pages, one for each learning module. All book pages are Web accessible.
The instructor then shares the generated book URL with his students. Figure 2.6 depicts a
high-level view of the OpenDSA client-server architecture.

When a student opens a book module, he loads one HTML page that contains prose describ-
ing the topic. In the module page, there may be interactive materials. Slideshows are defined

Hossameldin Shahin Chapter 2. The First Generation OpenDSA Infrastructure 18

as inline HTML markups in the module page, while other visualizations and exercises are
embedded in the module page through iframes. As illustrated in Figure 2.7, the module page
loads the client-side framework with the odsaMOD.js file.

Figure 2.7: Client-side framework’s role in a module page

The communication between odsaMOD.js and embedded exercises happens in two direc-
tions. The first direction is from odsaMOD.js to the AVs, PEs, and KA exercises. In
this scenario, once the page is loaded, odsaMOD.js queries the DCS for all exercise profi-
ciency statuses in the module; then it communicates each status to its embedded exercises.
If a student was proficient, the exercise would show the proficiency indicator (the green
check mark). The other direction is from AVs and PEs to odsaMOD.js. In this scenario,
odsaMOD.js receives student interaction events and attempt events, which in turn are
communicated to the DCS. As an exception, KA exercises send the attempts directly to the
DCS without communicating with the odsaMOD.js library. The communication between
any embedded exercise and the module page is handled by sending the data in a JSON
format using HTML postMessage. postMessage is a Web messaging API introduced in
HTML5 specifications allowing documents to communicate with one another across different
origins or domains. The use of the postMessage API provided OpenDSA with more flex-
ibility, where a module page can embed any external exercise hosted on a different domain.
Given that they have already agreed on the message format, a module page and the external
exercise can communicate score and proficiency information.

Chapter 3

Mitigating Original Infrastructure
Problems

When I joined the OpenDSA project, I found that the majority of our collaborators were
working on content development. Reading through the OpenDSA literature [8][16], I found
known problems in the first infrastructure that had been reported by former collaborators.

In this chapter, Sections 3.1, 3.2, and 3.3 discuss initial efforts to mitigate various problems
with the original infrastructure. Section 3.4 presents the reasons that led us to adopt a
completely new infrastructure.

3.1 Khan Academy Exercise Framework

The Khan Academy (KA) exercise framework is a critical component in the OpenDSA project
since it is used to deliver the majority of exercises. In this section, I will discuss work done
to advance the KA exercise framework technically by enhancing students’ experience, and
pedagogically by preventing gaming behavior.

3.1.1 KA Framework Upgrade

The KA framework is used primarily for summary exercises, where one exercise contains
a pool of questions. The framework picks one question at random and presents it to the
student. In 2013, a snapshot of the KA framework repository was copied and made a part
of the OpenDSA repository. Then the local copy of the KA framework was modified many
times to satisfy OpenDSA requirements. On the other hand, the original framework was
actively modified during the same time period, which led to a huge deviation between the
two versions. We studied different options to rectify this situation and move forward. The

19

Hossameldin Shahin Chapter 3. Mitigating Original Infrastructure Problems 20

first option was to use a new exercise system, but since this option requires reimplementing all
the existing exercises, we found it infeasible. The second option was to keep up with the latest
version of the KA framework. However, we did not want to take a new snapshot and be in the
same situation again after a few years. Thus, we decided to clone the KA framework under
the OpenDSA account on GitHub, and reimplement OpenDSA requirements as a layer that
overrides some of the KA framework functionalities, so that we can maintain compatibility
and move forward by continuously pulling the original framework’s latest modifications.

The latest KA framework uses RequireJS [10], which is an asynchronous JavaScript module
loader. RequireJS aims at enhancing the loading time and improving the quality of the
JavaScript code. Using RequireJS helped us to solve two main problems. First, OpenDSA
KA summary exercises contain multiple individual questions, each in a separate file. The
original framework loads these files synchronously, which made the overall page loading
time relatively long. Using RequireJS, we could load the exercise files asynchronously
which reduces the page load time dramatically. Second, the original framework requires
the JavaScript code to be written in the same individual question HTML file, which made
them harder to understand and maintain. Using RequireJS’s dynamic loading feature, we
could move the questions’ JavaScript code to separate JS files. Also, we did not have to
worry about naming conflicts, tracking of dependencies, and JS module loading order since
RequireJS effectively handles these complexities. Upgrading to the latest version of KA
framework was the ideal solution since the OpenDSA project has many collaborators work-
ing together at the same time as a team.

While upgrading to the latest KA framework enhanced students’ experience and helped
OpenDSA developers as well, it was not without limitations. The latest version of the
KA framework does not provide a native method to recursively load summary exercises.
OpenDSA KA summary exercises, especially the ones at the end of each chapter, are not
implemented as a pool of individual questions, rather, They include a set of other summary
exercises. We have implemented the asynchronous recursive loading of questions in the
odsaKA.js layer that we wrote on top of the KA framework.

We have also added a new feature to odsaKA.js to let the framework differentiate between
static questions and dynamically generated ones. This feature was required because we
wanted the framework to remove static questions from the question pool once the student
answers them correctly. On the other hand, randomly generated questions should be kept
in the pool because the student will get a new instance of the question every time he loads
the exercise.

3.1.2 Preventing the “Gaming” Problem

It is widely known among developers of eLearning systems that students will attempt to
“game the system” [2][18]. This term refers to a range of behaviors that allow the student
to gain credit without achieving the intended goal of learning the material. Through log

Hossameldin Shahin Chapter 3. Mitigating Original Infrastructure Problems 21

analysis [18], we discovered a number of ways in which students gamed the OpenDSA system,
and we were able to take steps to deter some of this behavior.

One type of exercise commonly used in OpenDSA is a Summary, a collection of individual
questions. There might be ten questions, and a student has to get five points to successfully
gain credit for the exercise. Each time the student correctly answers a question, he gets
a point, and wrongly answering a question loses a point (this is done to deter the gaming
behavior of guessing). Students can also ask for a hint, which negates the question with
respect to credit (this is done to prevent the misuse of the hints system). Each time the
student correctly answers a question, a new question is selected at random. A given question
might, therefore, be repeated later during the course of completing the Summary exercise.
In the original system, reloading the browser window would cause a new random question
to come up, without charging the student for a wrong answer. So some students would learn
the answer to a few questions (possibly by abusing the hints system, or just by finding some
relatively easy questions in the group). Then they would repeatedly reload the browser page
until they got enough repeats of those questions to score the necessary points. We revised
the system to remember the “current” question that a student is on. They are not allowed to
progress to another question until the current one has been resolved. In particular, reloading
the page will just repeat the question.

Then we discovered that students use the hints system to get closer to the answer, but
before they submit the answer they would refresh the page to fool the system by answering
the question after page reload to get the question credit. To discourage this behavior we also
tracked the question on which a student uses the hints, then allow the student to answer
the question without penalty or reward even if he refreshes the page. We also remember if
a static question (one with no randomized component to make it different each time) has
been completed, in which case we will not present it again until the student has been shown
all of the other questions at least once.

While implementing the tracking mechanism, there were some cases that needed careful
attention. The first is after a student had already gained credit for the exercise. In this
case we no longer want to remove any question from the questions pool, on the contrary
we want to avail all questions for the student to keep practicing. The second is when a
question pool runs out of questions. This situation can happen because the tracking system
keeps removing questions from the pool while the student was alternating between correct
and wrong answers, but he still has not answered the five questions required to gain exercise
credit. Once the pool runs out of questions, we make all the questions available again. The
third is when the student has only one question left in the pool and he decides to use the
hints on that question. This situation will result in a student being stuck with the last
question forever without getting credit for it. In this situation, we also return all questions
to the pool.

Preventing gaming behaviors not only discouraged students from adopting harmful behav-
iors; it has a direct impact on OpenDSA research. Researchers usually depend on the time

Hossameldin Shahin Chapter 3. Mitigating Original Infrastructure Problems 22

a student spends to solve a question as a measure of question difficulty. Preventing gaming
is considered as an approach that produces more accurate data that researchers can depend
on during analysis.

In the original implementation for Summary exercises, we were not properly tracking which
sub-question was being answered at any given point in time. This made it difficult to
determine which specific questions were too easy or too hard, which were being gamed, and
which generated greater use of the hints system. We redesigned the tracking mechanism to
log each individual question.

3.2 Client-Side Framework

As discussed in Section 2.4, the client-side framework acts as the brain of the module page.
It is responsible mainly for communicating student interaction data and exercise attempts
to the DCS. Below is a discussion of how we mitigated client-side framework known issues.

3.2.1 Missing Interaction Data

The mass of data communicated to any cyberlearning system is only useful if it can be
collected accurately and then analyzed successfully [6]. OpenDSA researchers depend on in-
teraction data to analyze students’ learning behaviors and to get insights on how OpenDSA
book instances are used. Researchers convert the interaction row data from syntactic actions
(mouse clicks and page loads) to semantic behavior (time spent doing an exercise, exercise
success rates, whether students use a given visualization). Most detailed behavior analysis
involves tracking the amount of time spent by a user on an interactive element. Time mea-
surement is a widely used method to analyze student behavior [3][2]. Daniel A. Breakiron,
a former master’s student at Virginia Tech who developed the client-side framework, has
reported evidence that some of the data communicated to the DCS were lost [8]. We revised
the client-side framework design and found out that there were specific scenarios during
which interaction data was indeed lost.

Two students use the same browser: In this scenario, the client-side framework selects
the interaction data of both students and sends them to the DCS with the session key of the
last logged-in student. The DCS uses the session key to retrieve the student, then validates
each interaction data record received and checks whether it belongs to that student or not.
Since data sent has mixed objects for different students, the DCS rejects the entire request
and sends back an error message to the client-side framework, which in turn removes all
the interaction objects from the local storage. To rectify this situation, we changed the
client-side framework to filter the interaction data and send only objects that belong to the
current book and the currently logged in student.

Hossameldin Shahin Chapter 3. Mitigating Original Infrastructure Problems 23

When students close their browser abruptly: During data transmission, event data
are removed from local storage and kept in memory. If the student closed the browser before
the data were successfully transmitted to the DCS, the data would be lost. Likewise, if a
student clears his local storage, then the data to be transmitted will be lost. We solved this
situation by sending batches to the DCS more frequently to decrease the possibility of event
loss. In addition to sending batches on a timely basis, we also send them whenever a student
gets proficiency with any exercise.

Wrong mechanism for communicating interaction data: We found that copying the
interaction data from and to the local storage, as discussed in Section 2.4.3, would make the
data more likely to be lost. So we changed the mechanism to only copy the event IDs in the
memory and leave the event objects in the local storage. When the DCS sends a successful
response we would remove the events from local storage, otherwise, we would leave them to
be sent as part of the next batch.

3.2.2 An Out-Of-Synch Local Proficiency Cache

In Section 2.4.4 we discussed the purpose of storing student proficiency information locally in
the browser’s storage. It is simply to allow students to use an OpenDSA book instance even
without login or when there is no Internet connection. The idea seems reasonable; however,
the implementation was problematic.

We received complaints from students that they have already completed an exercise but did
not see the proficiency indicator. Even worse, sometimes students see that they are proficient
with an exercise, but they did not get a grade for it in the gradebook. We investigated these
cases and found that the local cache was not synchronized properly in some situations. To
correct this issue we decided to define the DCS as the ground truth for student grades, and
stop caching the proficiency information. This change requires that every time a module is
loaded, it would send a query to the DCS for the module proficiency status as well as all its
exercise statuses. When the client-side framework receives these statuses it will send them
directly to each exercise to update its indicator. The gradebook page was no different; it
also queries the DCS for all students’ grades in a specific book instance. As a side effect,
this solution requires students to always have an Internet connection while using OpenDSA.

3.3 Data Collection Server

The DCS is the central place to store and evaluate students’ exercise attempts. It also
provides services to store interaction data, manage student accounts, and manage book
instances.

Hossameldin Shahin Chapter 3. Mitigating Original Infrastructure Problems 24

In this section, we discuss some of the issues with the original DCS that led in the end to a
decision to entirely replace it with a new infrastructure.

3.3.1 Proprietary Mechanism for Handling Session Keys

Django provides full support for session handling. The Django session framework lets the
developer store and retrieve arbitrary data on a per-site-visitor basis. It can store data on
the client side or the server side and abstracts the sending and receiving of cookies. In the
latter case, cookies contain a session ID, not the data itself. For each Django installation,
developers should set up a SECRET_KEY, a unique, unpredictable value. SECRET_KEY is
used to provide cryptographic signing for session data, which makes it protected against
changes by the client so that the session data will be invalidated if tampered with.

Using cookies to handle session data is considered to be the most secure approach. Thus it is
implemented and provided by default in almost all modern Web frameworks. Unfortunately,
the DCS did not use the standard, secure way to handle sessions. Instead, it implemented
a proprietary mechanism which not only made it insecure and an easy target for attackers,
but also the mechanism put a restriction that only one session key per user is allowed. For
example, if a student uses his laptop to log in, and later he logs in using a lab machine or his
desktop at home, the old session key on his laptop is no longer valid, and he has to re-login
again. We also believe that manual session handling collectively with the wrong mechanism
used to handle interaction data has contributed to data loss as discussed earlier. The manual
way the DCS handled session keys has also complicated the client-side framework and made
it harder to maintain.

3.3.2 Automated Assessment Engine for Programming Exercises

The DCS contains an embedded engine to automate programming exercise evaluation. The
engine was written in Python and was made part of the DCS. The DCS system provided
endpoints used by the client-side framework to send students programming attempts. These
attempts were different from other exercise attempt objects since they contain students’
source code, and this code is evaluated on the server side rather than the client side. The
DCS receives the source code, stores it, then triggers the evaluation engine. The evaluation
process has multiple phases, and it was designed to run the code in a separate thread. The
thread times out if it is taking too much time to run (typically around 2 seconds).

We received complaints from students that the program evaluation process was taking a long
time. Right before exercises are due, students would submit their code and wait for a while.
If they did not get a response, they would refresh the page to re-submit again which put
more load on the evaluation engine and increased the failure rate. Due to the high load,
the engine quickly became unstable and incorrectly evaluated students’ code. Students were

Hossameldin Shahin Chapter 3. Mitigating Original Infrastructure Problems 25

confused because they could not tell whether the engine has a problem or their code is not
correct.

We realized that the evaluation process exhausted the server resources, and it was a wrong
decision to embed the engine in the DCS. We had two options, either we deploy the engine
on a separate server or replace it altogether with a sophisticated, stable program evaluation
system.

We chose the second option and decided to use CodeWorkout. It is a new, online, scalable
drill-and-practice system. CodeWorkout provides many online repositories of programming
questions that can be used in OpenDSA standard courses. It also facilitates creating new
programming questions, which we found helpful to fill the gaps by implementing our specific
exercises like recursion and binary tree exercises.

What also encouraged us to use CodeWorkout is that the application owners had plans to
integrate it with the Canvas learning management system through LTI. It was our plan as
well to integrate OpenDSA with Canvas, as we will discuss in detail in the next chapter.

The challenge now becomes: how to remove the old engine from the OpenDSA system in both
the client-side framework and the DCS without breaking the system? Also: how to effectively
integrate CodeWorkout in the two different offerings of OpenDSA (the “plain” books and
book instances instructors used for credit) without affecting the students’ experience?

In Chapter 5, we will present how we designed the new OpenDSA infrastructure to integrate
not only CodeWorkout, but any LTI-compliant learning tool in the OpenDSA book instances.

3.4 Towards a Complete System

As can be seen from the description of the first generation infrastructure presented in Chap-
ter 2 and the discussion in Sections 3.2 and 3.3, the communications between the client-side
framework and the DCS are quite complicated because of improper handling of session keys.
We mentioned in Section 2.4.1 that the DCS was developed using the Django Web frame-
work version 1.3 released in March 20121. This version was rather out-dated and no longer
supported2. In addition, the DCS had to take on several critical tasks normally handled by
an LMS. In particular, account login was particularly fragile. As a consequence, there were
many problems and bugs with the original DCS. Also, the DCS was built on top of A+,
which we wanted to replace for real LMS support. Finally, we wanted to be able to integrate
3rd party exercises like CodeWorkout, which DCS could not support.

Due to the DCS limitations, security concerns, and the fact that Django version 1.3 is
out of date, we decided to decommission the DCS and design a new infrastructure that

1https://docs.djangoproject.com/en/1.11/releases/1.11/
2As of this thesis writing the latest Django version is 1.11, which was released in April 2017.

https://docs.djangoproject.com/en/1.11/releases/1.11/

Hossameldin Shahin Chapter 3. Mitigating Original Infrastructure Problems 26

transforms OpenDSA from a standalone, self-contained eTextbook to an integrated learning
tool communicating with an LMS.

In the next chapter, we evaluate the considerations for and against the available integration
approaches for use by the new OpenDSA infrastructure.

Chapter 4

Interoperability Alternatives

As software technologies evolve, modern software systems become more complex. Thus,
there is a necessity to divide such systems into independent components that collectively
communicate to satisfy the overall system requirements [14].

Separating Web-based systems into components has been studied carefully over the last
decade [14]. There are multiple approaches and methods proposed for separating these
systems. These methods identify how best to partition a system, how independently each
component of a system can be further developed and maintained, and how all the components
can be integrated together using standard integration protocols.

An LMS is a complex software system; it has requirements that continuously change be-
cause Web technologies change or new studies suggest adding more features and capabilities.
Therefore, many LMS vendors have designed their systems to be modular and extendable.
Some provide a flexibility level that allows customers to extend the system by developing
extensions or connecting to extensions created by other vendors [12].

Dagger et al. [12] present some of the approaches used by the majority of the LMS vendors
to make their systems flexible and extendable. A number of standards have emerged recently
that support interoperability of an LMS and separate learning content.

In this chapter, we will discuss the different ways by which LMSs provided extendability to
their systems.

4.1 A Component-Oriented Approach

Component-oriented is a reuse-based approach to defining, implementing and composing
loosely coupled independent components into systems. This approach emphasizes separation
of concerns, where each component has a certain feature or concern it is meant to solve.

27

Hossameldin Shahin Chapter 4. Interoperability Alternatives 28

Although it improves the scalability and extendability of the system, this approach still
requires the components to be implemented with compatible technologies. Moreover, adding
new components might impact and require changing the existing parts of the system.

OpenEdX1 is one example of an LMS with a component architecture, called XBlocks2. The
OpenEdX LMS consists of multiple XBlocks that each focus on different features. XBlocks
should be developed using Python, which is the programming technology that the OpenEdX
platform uses. We considered OpenEdX and the XBlocks architecture as a potential basis
for the new OpenDSA infrastructure when we started looking for interoperability options.
We tested this option by developing XBlocks to integrate OpenDSA with OpenEdX. Un-
fortunately, the development workflow for XBlocks was not straightforward. However, that
was not a major issue since we had to develop only a small number of XBlocks. A “module”
XBlock could render OpenDSA book modules, and an XBlock would be needed for each
OpenDSA exercise type. We ended up developing three different XBlocks, which can be
found at https://github.com/OpenDSA/OpenDSAX. Although we had a successful
proof of concept, we had many concerns. The main concern is the lack of support from
the EdX community for implementing new XBlocks. It was a strong sign that the XBlocks
architecture might not continue in the near future. Another concern was that OpenDSA
would only work within the OpenEdX framework, since XBlocks do not integrate with other
LMSs.

Appendix A provides more details about our experience with developing XBlocks for OpenDSA.

4.2 Plug-In Architecture

A plug-in architectural approach consists of a host system and multiple replaceable modules,
each of which provides a specific feature of the system. Each plug-in adds a new feature
without impacting the functionality provided by other plug-ins. Although plug-ins can be
configured to suit users’ needs, they are always used without modifications to their default
configurations. Plug-ins require access to the host application database and file system,
which make them susceptible to be broken if the host database was changed. The host
applications provide APIs, which the plug-in must adhere to. The APIs specify the way for
plug-ins to register themselves with the host application and a protocol for the exchange
of data with plug-ins. The plug-in architecture has many advantages, like enabling third-
party developers to create abilities that extend an application, reducing the size of the host
system by separating its source code from the plug-in itself. However, the plug-in should be
implemented using the same technologies as the host system, and they do not work across
multiple systems.

Although Plug-in architecture is more loosely coupled than the component approach, it still
1http://docs.edx.org
2https://open.edx.org/xblocks

https://github.com/OpenDSA/OpenDSAX
http://docs.edx.org
https://open.edx.org/xblocks

Hossameldin Shahin Chapter 4. Interoperability Alternatives 29

shares the same data models of the host system, like users, assignments, and courses.

4.3 Widgets

Widgets are small applications with limited functionality that can be embedded in a Web
application. A widget usually plays an auxiliary role. It occupies a portion of a Web page
and displays, in place, something useful from the information collected from the Web. Web
widgets have multiple synonyms like portlet, Web part, gadget, and badge. Unlike plug-ins,
widgets can be deployed in a separate server other than the system utilizing them.

A number of initiatives to produce standard specifications for widgets have emerged. Google
Gadgets3 and OpenSocial4 aim to create widget platforms. Google’s implementation of the
platform is complex, with many internal dependencies. Even though it has many good
features, the Google solution is a proprietary solution, and unfortunately, Google did not
continue to contribute to open standards in this area. On the other hand, the W3C’s widget
specification initiative5 is an open standard approach adopted by a larger group of technology
leaders including Apple, Microsoft, Yahoo, Nokia, and Opera.

Although widgets mitigated some of the limitations on plug-ins and solved a few of the issues
related to compatibility and ease of installation, widgets suffer from problems in security and
privacy.

Wilson el at. [38] created a widget container for Moodle based on the W3C specifications.
The container is used for placing widgets for collaboration features like chatting, voting, and
a discussion forum. The authors had to make some extensions to W3C specifications to
develop their container. They hoped to see a convergence between Google and W3C, which
might lead to a more mature standard.

4.4 SCORM

The Sharable Content Object Reference Model (SCORM) standard of the Advanced Dis-
tributed Learning6 (ADL) initiative is a set of specifications for creating and sharing e-
learning material compatible with several LMSs. The specifications leverage standard Web
technologies as well as existing learning technology specifications. SCORM specifications
describe how the learning objects are packaged to create interoperable, plug-n-play, browser-
based e-learning content. It also specifies how the learning content is described with metadata
and how they operate at runtime [4].

3https://developers.google.com/gadgets
4https://developers.google.com/opensocial
5https://www.w3.org/TR/widgets/
6http://www.adlnet.org

https://developers.google.com/gadgets
https://developers.google.com/opensocial
https://www.w3.org/TR/widgets/
http://www.adlnet.org

Hossameldin Shahin Chapter 4. Interoperability Alternatives 30

Based on our review of existing literature, SCORM appears to be a widely adopted e-learning
standard. However, compared to other emerging interoperability standards, SCORM was
old. The latest version SCORM 2004 (4th edition) was released in 20097.

4.5 IMS Learning Tools Interoperability

The IMS Global Learning Consortium8 has released a standard specification called Learning
Tools Interoperability (LTI) [22]. The LTI specification consists of two parts, Full LTI
and Basic LTI. Their goal is to improve integration of external learning content in LMSs.
Both versions include the same main actors, called tool providers (TP) on the learning tool
side, and tool consumers (TC) on the LMS side. Both TP and TC pass messages over the
network and use HTTP for the service interfaces. In Full LTI, the TP and TC need an
initial negotiation process to agree about the services and security policies. Full LTI allows
supporting a wide diversity of learning tools and features, and the communications can be
initiated from TC to TP and vice versa.

The Basic LTI is a subset of the Full LTI and it only exposes a single address and a single
HTTP POST request from TC to TP. Therefore, the interactions between the LMS and the
learning tool are limited. The messages between TC and TP in both Full and Basic LTI are
signed with the OAuth protocol, and therefore the participants need to set up and share a
key and a secret before initiating communication.

LTI has received significant support from the IMS community, and has a positive reaction
from LMS vendors. In April 2015, IMS Global announced record levels of member growth
and adoption of LTI Standards9.

4.6 Summary

The integration approaches discussed in the previous sections have been used successfully at
some point in existing LMSs. However, the biggest challenge to choosing the right approach
is to understand its benefits and implications.

To choose the right approach we compared each one against the objectives we set in Chap-
ter 1. We excluded component-based and plug-in approaches as they seem to be restrictive.
Both approaches require the learning tool to be developed in the same technology used by
the LMS. We could overcome this restriction by implementing a wrapper for each LMS
technology. We decided against this workaround as it would complicate the overall solution

7http://www.adlnet.gov/adl-research/scorm/scorm-2004-4th-edition/
8https://www.imsglobal.org/
9https://www.imsglobal.org/pressreleases/pr150408.html

http://www.adlnet.gov/adl- research/scorm/scorm-2004-4th-edition/
https://www.imsglobal.org/
https://www.imsglobal.org/pressreleases/pr150408.html

Hossameldin Shahin Chapter 4. Interoperability Alternatives 31

architecture.

One of the main objectives is to increase the ability to integrate OpenDSA with the widest
possible range of LMSs. Therefore, we did not consider the component approach in partic-
ular, because it increases the coupling of the learning tools and the LMS.

Technically, widgets are more flexible than plug-ins. OpenDSA could be modified to pro-
vide its contents through a standard widget interface, and the W3C standard was a strong
candidate. Moreover, authentication and authorization can be implemented using OAuth
in the widget. However, the W3C widget specification does not include a standard way for
exchanging learning-tools-specific data like student interaction events. Moreover, widgets do
not provide a standard way to communicate student submissions and grades to the LMS. For
these reasons, and because compatibility across LMSs would not be guaranteed, we excluded
widgets.

We found the IMS LTI specifications most suitable for OpenDSA integration needs. LTI is
increasingly supported by major LMS vendors. The IMS consortium community is growing,
and specifications development is under continuous review and progression from LTI v1.0
(17 May 2010) until LTI v1.2 (5 January 2015)10. Compatible specifications from IMS under
development as of the writing of this thesis include Common Cartridge [24] and Caliper Ana-
lytics [25]. LTI would standardize the process of building embedded links between OpenDSA
and the LMS. LTI would enable us to make OpenDSA and LMS loosely coupled by building
one wrapper over OpenDSA to integrate it with any LTI-compliant LMS. By adhering to an
LTI interface, OpenDSA integration cost would decrease, OpenDSA adoption by instructors
would increase, and we could transform the OpenDSA platform to a Software as a Service
(SaaS) [37].

10https://www.imsglobal.org/activity/learning-tools-interoperability

https://www.imsglobal.org/activity/learning-tools- interoperability

Chapter 5

OpenDSA-LTI Implementation

This chapter is dedicated to present the implementation details of the new OpenDSA infras-
tructure, called OpenDSA-LTI, which can be accessed through http://opendsa.org.
OpenDSA-LTI is a learning tool that integrates OpenDSA book contents with any LTI-
enabled LMS. The new infrastructure followed the requirements and constraints in Chapter
1 and aimed at supporting multiple simultaneous courses and other services connected to it.

5.1 Technologies Stack

Since the new infrastructure would be developed as a Web application, the most important
choice of technologies was choosing the Web framework on top of which the infrastructure
will be built. A primary factor for choosing a Web framework is the programming language
used for the LTI library implementation. We examined the IMS Global official account on
GitHub1 for various LTI implementations.

There were two main implementations for LTI; they use the Python and Ruby languages.
The Python package (PyLTI 0.4.1)2 was provided by the MIT Office of Digital Learning3.
PyLTI supports LTI version 1.1.1 and LTI 2.0. It was originally written with OpenEdX as
its LTI consumer; later an LTI provider was added to make it a complete implementation of
the LTI specification. We examined the PyLTI repository4 and found it was obsolete since
2015.

In contrast, an up-to-date and stable implementation for the LTI protocol was developed as
1https://github.com/IMSGlobal
2https://pypi.python.org/pypi/PyLTI/0.4.1
3http://odl.mit.edu
4https://github.com/mitodl/pylti

32

http://opendsa.org
https://github.com/IMSGlobal
https://pypi.python.org/pypi/PyLTI/0.4.1
http://odl.mit.edu
https://github.com/mitodl/pylti

Hossameldin Shahin Chapter 5. OpenDSA-LTI Implementation 33

a Ruby library5 and provided by Instructure6 (the company that created Canvas).

Due to the LTI implementations and for other reasons described next, the Ruby on Rails
framework7 was chosen to implement OpenDSA-LTI. The Ruby on Rails framework has
extensive documentation, active development, and a wide user base. In addition, many LTI
learning tools (including CodeWorkout) and the Canvas8 LMS are developed using Rails.
This is an important consideration for us, since using Rails means that developers on the
project would need to be familiar with only one Web framework.

Rails has a clear separation of different concerns; it enforces the Model-View-Controller
(MVC) design pattern. The Model represents an object carrying data, View is the repre-
sentation of the data, and Controller acts on both Model and View to control the data flow.
Rails also have a powerful database layer that enforces the Active Record design pattern,
which stores in-memory objects in relational databases.

The Rails community has developed a wide range of additional open-source modules called
gems, which can be included in a new project to add new functionalities. They are publicly
available and searchable through https://rubygems.org/. Third-party gems called
Devise9, CanCanCan10, and ActiveAdmin11 were utilized when implementing authentication,
authorization, and an administration user interface, respectively.

Due to its database abstraction layer, Rails can utilize several databases with no modifica-
tions to the application’s source code. No SQL queries were written in the OpenDSA-LTI
source code, as all database access is handled through the Rails database abstraction.

During development, the OpenDSA-DevStack12 virtual development environment was used.
We developed OpenDSA-devStack to allow developers and collaborators to automatically
create and configure a lightweight and portable development environment. In OpenDSA-
devStack and production, a MySQL database is used due to its expected improvements in
scalability, flexibility, and performance.

5.1.1 Software Choice

The relations between software components and services can be presented as a stack of layers
and relations to external components and services. In this layered presentation, each layer
shares a unified interface with the upper layers and with components and services on the

5https://rubygems.org/gems/ims-lti
6https://www.instructure.com
7http://rubyonrails.org/
8https://www.canvaslms.com
9https://github.com/plataformatec/devise

10https://github.com/CanCanCommunity/cancancan
11https://activeadmin.info
12https://github.com/OpenDSA/OpenDSA-DevStack

https://rubygems.org/
https://rubygems.org/gems/ims-lti
https://www.instructure.com
http://rubyonrails.org/
https://www.canvaslms.com
https://github.com/plataformatec/devise
https://github.com/CanCanCommunity/cancancan
https://activeadmin.info
https://github.com/OpenDSA/OpenDSA- DevStack

Hossameldin Shahin Chapter 5. OpenDSA-LTI Implementation 34

same layer. The layers of OpenDSA-LTI are shown in Figure 5.1. The upper layer in this
architecture is OpenDSA-LTI itself.

OpenDSA-LTI’s extendable design allows communicating with any LTI-enabled LMS. As of
the writing of this thesis, we developed an adapter that compiles OpenDSA books in the
Canvas LMS using APIs. The adapter can be extended to include other LMSs like Moodle13,
Blackboard14 and Desire to Learn (D2L15). Once the book is compiled, OpenDSA-LTI is
responsible for displaying the contents for these courses’ users through LTI.

OpenDSA-LTI is built on the Rails framework, which maps URL addresses to Ruby functions
and controls the requests and responses. Rails is also taking care of database communications
and mappings between Ruby objects and database rows. Third-party Rails gems, such as
Devise, CanCanCan, and ActiveAdmin, are represented in Figure 5.1 on the same layer as
Rails. The software components on the upper layers are written in the Ruby programming
language, and therefore are executed by a Ruby interpreter and uses Ruby standard libraries
and gems.

OpenDSA-LTI runs on top of a Web server called NGINX16, which is known for its high
performance, stability, simple configuration, and low resource consumption. NGINX is an
extendable Web server, A module called Passenger17 is used to host the OpenDSA-LTI
Ruby application. While OpenDSA-LTI can be run on top of other combinations of Web
and application servers, to our knowledge, NGINX and Passenger are the best mix for Rails
applications.

13https://moodle.org/
14http://www.blackboard.com
15https://www.d2l.com/
16https://www.nginx.com/
17https://www.phusionpassenger.com/

https://moodle.org/
http://www.blackboard.com
https://www.d2l.com/
https://www.nginx.com/
https://www.phusionpassenger.com/

Hossameldin Shahin Chapter 5. OpenDSA-LTI Implementation 35

Figure 5.1: Software Stack for OpenDSA-LTI.

5.1.2 OpenDSA Redesign

In Section 3.3.1, we presented how the old DCS used a proprietary mechanism to manage
authentication and session keys, which go against the standards for modern Web frameworks.
In OpenDSA-LTI we used Devise, a popular authentication solution for Rails applications.
Devise provides many services like encrypting passwords, email confirmations, and HTTP
Authentication. In addition, many utility methods help secure the application and ease
development and maintenance. Using Device not only reduced the OpenDSA-LTI system
complexity but also simplified the client-side framework as well. For instance, unnecessary
uses and session management methods were removed. Mechanisms to track user data using
the local storage were modified to eliminate the use of additional unwanted data fields.

5.1.3 Licenses

All third-party applications, libraries, and components used in OpenDSA-LTI are published
under open source licenses. OpenDSA-LTI itself is open source and licensed under the MIT
License18. Table 5.1 summarizes the licenses for third-party components in OpenDSA-LTI.

18https://opensource.org/licenses/MIT

https://opensource.org/licenses/MIT

Hossameldin Shahin Chapter 5. OpenDSA-LTI Implementation 36

Table 5.1: OpenDSA-LTI software licenses.

Library Name License Name

Bootstrap Apache License v2.0

jQuery MIT

Rails MIT

NGINX BSD-like

Devise MIT

CanCanCan MIT

ActiveAmin MIT

5.2 Identity Management

Identity management in OpenDSA-LTI consists of two parts: authentication and authoriza-
tion. Authentication refers to identifying users and controlling their login to the system. It
is the process of verifying that “the user is who he claims to be”. Authorization refers to a
process of verifying that “the user is permitted to do what he is trying to do”.

In the following subsections, we discuss how these aspects are implemented in OpenDSA-LTI.

5.2.1 Authentication

The authentication mechanism is implemented on top of the authentication framework pro-
vided by Devise. Devise supports, among other things, registration, database authentication,
and password recovery.

The students’ registration process is different from the instructor’s process. As shown in Fig-
ure 5.3 step (3), when the student’s browser submits the launch message to OpenDSA-LTI,
the message contains the student’s email address and his name. Upon receiving the message,
OpenDSA-LTI will automatically register the student if he was not registered before, or au-
thenticate him if he already exists. Instructors, on the other hand, need to manually register
a new account in OpenDSA-LTI through http://opendsa.org. After instructors create
a new account, they have to email the OpenDSA team to get instructor privileges. Since our
system is open for public use, we added the instructor privilege request step to make sure
that the system will not be misused.

OpenDSA-LTI instructors can update their personal information, reset their password, and

http://opendsa.org

Hossameldin Shahin Chapter 5. OpenDSA-LTI Implementation 37

update their LMS access token stored in the system. An instructor’s access token gives
OpenDSA-LTI the necessary permission to manage his courses on his behalf on the target
LMS.

Additional authentication mechanisms, such as Google, Facebook, and Twitter authentica-
tion can be later added to OpenDSA-LTI so that instructors can use their existing credentials
from these platforms and do not have to register or remember new usernames and passwords
to use the system.

Because we aim for OpenDSA-LTI to be widely adopted, we are planning to remove the
instructor privilege request step and add the third-party authentication mechanism soon.

5.2.2 Authorization

While designing OpenDSA-LTI, we decided to utilize an existing flexible yet secure autho-
rization model, rather than re-inventing the wheel and building it from scratch. We found
the CodeWorkout permission model [29] is the most suitable for OpenDSA-LTI needs. The
permission model allows any user to have two different roles, global role and course role.
A global role defines a user as a system administrator, an instructor, or a regular user. A
course role defines the user role in each course in which he is enrolled. For example, someone
might have instructor access to the server, and be an instructor in one course, but a student
in another course.

Instructors have the privilege to define their organization and courses, as well as to start
new course offerings in different semesters. They also can upload and manage OpenDSA
book configuration files. Finally, they can generate OpenDSA books in any LMS course
after granting OpenDSA-LTI access to it.

Administrators are the super users; they can manage all aspects of the system, and they
can perform actions on behalf of the instructors. For example, a typical scenario is when an
instructor generates an OpenDSA book in his course and later the book content changes. In
this case, the administrator can use the instructor access token to re-generate the book on
behalf of the instructor.

Students by default will not have direct access to http://opendsa.org. Rather, they
will be enrolled in the LMS course generated by their instructors and automatically registered
in the system once they start to load any of the OpenDSA modules. Students are not even
aware of opendsa.org or the fact that OpenDSA contents are loaded from outside their LMS
course. That achieves one of the main goals of the infrastructure redesign, which enables
students to move seamlessly between different learning activities regardless of where the
learning tools may be physically located.

http://opendsa.org

Hossameldin Shahin Chapter 5. OpenDSA-LTI Implementation 38

5.3 How OpenDSA-LTI Works

In March 2012, IMS launched LTI v1.119 (final version) in which both Basic LTI and Full
LTI specifications were combined. This version includes updates and clarifications as well
as support for the outcomes service, and it enabled communication to be initiated in both
directions. The outcomes service provides OpenDSA-LTI with interfaces that allow setting,
reading, and deleting student scores in the LMS. This version also provides support for IMS
Learning Information Services (LIS) through outcomes service interfaces.

The LIS specification defines how systems manage courses, students, and outcomes (scores).
As per the specifications, the LMS is not required to provide an implementation for the LIS
services. Rather, the LMS can be configured to use the institute’s existing student informa-
tion systems. However, the LMS is required to provide OpenDSA-LTI with LIS pointers in
the launch data. Figure 5.2 shows high-level interactions according to LTI v1.1.

Figure 5.2: When the LMS launches a learning tool, it sends a launch message that contains
an LIS URL. Later, the learning tool uses this callback URL to send grades back to the
LMS.

In a context where student’s grades are reported back to the LMS, OpenDSA-LTI calls the
outcomes service interfaces, which support the following functionalities.

• replaceResultRequest - accepts a numeric grade (0.0 – 1.0) as a result for a
particular activity.

• readResultRequest - returns the current score for a particular activity.

• deleteResultRequest - removes the score for a particular activity.
19https://www.imsglobal.org/specs/ltiv1p1

https://www.imsglobal.org/specs/ltiv1p1

Hossameldin Shahin Chapter 5. OpenDSA-LTI Implementation 39

The LTI specification relies on the REST design model for Web applications [15]. LTI
functions use RESTful Web services to exchange data between LMSs and external tools.
Table 5.2 lists the LTI functions.

Table 5.2: LTI functions: launch is a POST message containing LTI parameters sent to the
TP URL. ReplaceResult is a POST message sent to the LIS outcomes URL, and it contains
two parameters: 1) LIS address to be replaced, and 2) a student grade on a scale from 0.0
to 1.0. ReadResult and DeleteResults retrieves and nullifies the student grade for a specific
activity.

Function REST method/URL Parameters Output

launch POST/APP_URL LTI_PARAMETERS None
ReplaceResult POST/LIS_OUTCOMES_URL LIS_SOURCE_ID+GRADE None
ReadResult POST/LIS_OUTCOMES_URL LIS_SOURCE_ID GRADE
DeleteResult POST/LIS_OUTCOMES_URL LIS_SOURCE_ID None

The launch function loads and executes a particular learning tool resource within the LMS.
Listing 5.1 shows some of the launch parameters that the LMS sends to the learning tool.
Two steps have to be done for students to be able to launch the LTI application. First, the
LMS administrator or the course teacher should define the learning tool as an LTI application
in the LMS by setting the name, launch URL, consumer key, and shared secret. Second, the
teacher should create an activity in the course that refers to the LTI application.

Listing 5.1: Subset of LTI launch parameters
resource_l ink_id = 6 a1735a118ea f c8 f996 f161 f ec3923013e43 f95a
r e s ou r c e_ l i nk_t i t l e = 01 . 01 . 01 − Data St ruc tu r e s and Algorithms
lis_person_name_full = Hossameldin Shahin
l i s_outcome_service_url = https : / / . . . / t o o l s /144033/ grade_passback
l i s_r e su l t_sou r c ed id = 144033− . . .−4 b7e0cd604a9e0fcb2692964c25ae972
custom_ex_name = IntroSumm

When a student, later on, selects the learning tool, the LMS launches the tool by sending a
HTTP POST request to the tool URL. Figure 5.3 shows a detailed description of the launch
process.

Hossameldin Shahin Chapter 5. OpenDSA-LTI Implementation 40

Figure 5.3: launch function sequence diagram

1. When the student clicks the OpenDSA-LTI link, the LMS performs these actions:

(a) Create a launch message containing:

i. User and activity context data, filtered by privacy policy defined in the LTI
app.

ii. All the custom fields that were configured during the LTI app definition.
iii. A pre-configure key, which was shared with the OpenDSA-LTI.

(b) Sign the message, using OAuth framework, based on a pre-shared secret.

(c) Add the generated signature to the message.

(d) Add a JavaScript code, which will automatically fire a POST request to the
OpenDSA-LTI when the student loads the page.

2. Then, the LMS sends the reply message to the student.

3. The student browser automatically POSTs the launch request to OpenDSA-LTI, due
to 1(d).

4. OpenDSA-LTI processes the request:

(a) Extract the key from the message and search for it in the database to get the
associated secret.

(b) If the key is not found, raise an exception. Otherwise, sign the message using the
secret in hand and check if the generated signature is equal to the received one.
If so, the received request is valid, if not, the launch cannot be performed.

(c) If the request is valid, send back the section HTML file. If the section is gradable,
send the LTI callback URL along with the section HTML file to be used later in
grade posting when the student completes the section correctly.

Hossameldin Shahin Chapter 5. OpenDSA-LTI Implementation 41

5.4 User Interfaces

There are different use cases and different actors for each use case when it comes to user in-
terfaces. When students use OpenDSA books as an integral part of their course and perform
exercises to get credit, their interface is the LMS course. Instructors, on the other hand,
need to first configure the book, then generate the book in their target LMS course. Book
configuration and course generation processes are performed using OpenDSA-LTI interfaces,
written as part of the Rails Web application.

System administrators have a wider permission. They are responsible for setting up and
managing the system. Since they are a small group of users and they do not usually use the
system actively, their interfaces are often discarded. It is commonly assumed that admins
are technically capable and can perform their jobs using direct database access or command
line tools.

We believe that the more manual work the admins have to perform, the more problems will
occur. Thus we decided to carefully design the interfaces that provide admins with all the
functionalities they may need to perform their day-to-day tasks.

In OpenDSA-LTI we used a general-purpose user interface library called Bootstrap. Boot-
strap is modern, simple, and responsive. Responsiveness is the feature that makes the
interface layout fluid and supports multiple devices, since it can scale to different screen
sizes and resolutions.

In the following sections, we present interfaces for students, instructors, and admins.

5.4.1 Student Interfaces

When students log in to their Canvas course, they are provided with standard menu items
that allow them to navigate to different parts of the course. The Canvas LMS as shown in
Figure 5.4 provides multiple views that serve different purposes.

When a student navigates to the “Modules”20 menu item, a list of course modules will be
shown. We designed OpenDSA book contents in Canvas to present a book chapter in each
Canvas module. Under each chapter, a list of DSA topics is arranged as labels with the
proper sequence number for easy tracking.

OpenDSA researchers are usually trying to know where in a module page that a user is
viewing at a particular time. It is possible to track scrolling and window focus events, but
generally, this requires using a special library. This makes it particularly difficult to tell what
prose content in a given page is viewed and what is ignored. To better track where within
the page the user is actually looking, we decided to divide the topic pages into multiple

20Canvas uses the term “Module” to represent a unit of a course, so to avoid confusion, we will use “topic”
to refer to an OpenDSA module throughout this chapter.

Hossameldin Shahin Chapter 5. OpenDSA-LTI Implementation 42

sections. Multiple sections also satisfy Canvas requirements to have each gradable activity
on a separate page.

Figure 5.4: An OpenDSA Book compiled into a Canvas LMS course.

When a section is gradable, it is shown as an “Assignment”, and a link to that assignment is
placed in the correct position in the list of DSA topic sections. Gradable sections can also be
accessed from the Canvas Assignments page, and they post a score back to the “Gradebook”
when students complete them.

Figure 5.3 presented the LTI launch sequence of events to load a resource from OpenDSA-
LTI. Likewise, launching a gradable section (“Assignment” in Canvas terminology) is no
different except that the launch message contains the callback LIS_OUTCOMES_URL
which is a Canvas endpoint that accepts student scores.

Figure 5.5 shows the LTI sequence of events taking place when a student completes a gradable
section correctly.

Figure 5.5: Sequence diagram to post a grade to Canvas LMS (ReplaceResult function)

Hossameldin Shahin Chapter 5. OpenDSA-LTI Implementation 43

1. When the student completes an exercise, the client-side framework performs these
actions:

(a) Fire a score event and prepare a score object. Add an LTI launch message (pre-
viously received from Step 4(c) in Figure 5.3) to the score object.

(b) Send the score object to an OpenDSA-LTI assessment endpoint to give the student
the exercise points.

2. OpenDSA-LTI authenticates the request as described in Figure 5.5 Steps 4(a) and
(b). If the request is valid, OpenDSA-LTI sends a POST request to Canvas callback
LIS_OUTCOMES_URL with the following parameters:

(a) LIS_SOURCE_ID: the Gradebook field Id that holds the student’s score

(b) Student score as 1.0: which gives the student the full credit for the assignment

3. OpenDSA-LTI receives the Canvas Gradebook response and sends it back to the client-
side framework, which shows the proficiency indicator to the student.

5.4.2 Instructor Interfaces

There are two main scenarios for how instructors would use OpenDSA in their LMS course.
First, compile a complete book within an LMS course. Second, if the instructor does not want
to include an entire book, instead, they want only to select and add interactive materials.
In the following subsections, we discuss these scenarios in detail.

Integrating an OpenDSA Book to the Canvas LMS We created a simple 3-step
process that allows the instructor to create, configure, and generate the book in his Canvas
course.

First, the instructor opens “New Course Offering” page as shown in Figure 5.6. The page
contains a form that collects the basic information to create a new course offering. Instructors
who are using the system for the first time need to define their organization and course names.
They can do that by following the link to the right of the organization and course dropdown
element respectively. Then the instructor chooses one of the OpenDSA standard books to
include in his course, or he can upload his custom configuration file by following the link
beside the “Book Instance” drop down element. Finally, the instructor provides his Canvas
access token for OpenDSA-LTI to be able to access the course and generate the book on his
behalf. The access token is verified before the instructor submits the form. If it is valid, a
green check mark is shown, otherwise, a red X mark is shown and the form will not submit
until a valid one is entered.

Hossameldin Shahin Chapter 5. OpenDSA-LTI Implementation 44

Figure 5.6: “New Course Offering” form is a page through which the instructor can select
his organization and course, and create a new course offering in the selected semester.

Once submitted, the instructor will be directed to the second step. Figure 5.7 shows the book
configuration tool. This tool allows the instructor to customize his book; he can manage
topics, change the topics order, and change the exercises’ number of points.

Figure 5.7: The book customization tool allows the instructor to design his book before
generating it into a Canvas course.

Hossameldin Shahin Chapter 5. OpenDSA-LTI Implementation 45

The last step is to generate the book; the instructor clicks the “Generate Course” button and
the system uses the customized book configuration and the access token to call Canvas APIs
to generate the book. The final step takes a few minutes to complete because of the many
API calls issued to Canvas. Since the last step is a long-running task, we implemented it to
run in the background to avoid any performance degradation. We also added a progress bar
element to visualize the progression of this operation.

Figure 5.8: Canvas course generation is a background process that uses the Canvas APIs to
create an OpenDSA book in a course.

Figure 5.9: Canvas resource selection extension to standard LTI protocol.

Hossameldin Shahin Chapter 5. OpenDSA-LTI Implementation 46

OpenDSA Resource Selection A common scenario is when the instructor wants to add
an individual visualization or exercise to his course modules. Canvas has implemented an
extension21 to the standard LTI protocol to allow selecting and customizing the learning
tool resources. To satisfy this scenario, we developed a process that enables the instructor
to manually define an OpenDSA-LTI app in his course. Then, when inserting content into
a module, if the instructor picks “External Tools” he will see the configured app “OpenDSA-
LTI” with a “find” icon as shown in Figure 5.9.

Clicking the app will bring up a new dialog where the instructor can pick one of OpenDSA’s
interactive materials to be inserted as a page or resource within the current module. Fig-
ure 5.10 shows a list of all interactive materials in the Quicksort topic. When an instructor
clicks on any element in the list, the tool will then redirect the instructor to the LTI success
URL with some additional parameters. Canvas will use these parameters to create a custom
URL that will be used as the launch link.

Figure 5.10: OpenDSA list of interactive materials from which instructor can choose to add
to a module.

5.4.3 Admin Interfaces

In OpenDSA-LTI the system administrators grant regular users an instructor role, upload
book configuration files to the system, and configure other learning tools used by OpenDSA-
LTI like CodeWorkout. Admin activities are usually related to adding or modifying data
to the database lookup tables like organizations and courses. In addition to modifying
data, Admins archive the completed course offerings so they will not appear unnecessarily in

21https://canvas.instructure.com/doc/api/file.link_selection_tools.html

https://canvas.instructure.com/doc/api/file.link_selection_tools.html

Hossameldin Shahin Chapter 5. OpenDSA-LTI Implementation 47

instructors’ interfaces. Although most of the admin activities are related to database changes,
direct access and modifying the database could introduce data integrity problems. The
OpenDSA-LTI Database is created and managed by Rails Active Records, which contains
a validation layer on top of Ruby objects. Rails Active Records also implement “callbacks”,
which are hooks into the life cycle of an Active Record object. These hooks automatically
update values in other database tables and execute actions after an alteration to the object
state. For example, archiving a course offering would archive the book associated with it.
If the course offering archive status changed manually, the associated book would remain
active.

We realized how important it is to have powerful administrator’s interface in OpenDSA-LTI.
However, every Web developer knows that creating an administration interface for their
projects is an incredibly tedious task. Thus we chose ActiveAdmin, which is a framework for
building administration style interfaces. With little effort, we created a highly customizable
interface which saved development time and allowed us to focus on other mission-critical
functionality. The initial version of the admin interface was inspired by CodeWorkout [29].
Then we added more functionalities that admins would mostly need to keep OpenDSA-LTI
running flawlessly. Figure 5.11 shows the OpenDSA-LTI ActiveAdmin interface.

Figure 5.11: The ActiveAdmin dashboard provides a summary of the system. It shows the
most recent errors, the recent logged-in users, and the courses offered during the current
semester. The admin interface menus contain links to multiple pages that manage database
lookup tables.

Hossameldin Shahin Chapter 5. OpenDSA-LTI Implementation 48

5.5 Security

eLearning systems security is important, especially if developed as a Web application ac-
cessible from the Internet. One of OpenDSA-LTI’s design goal is to be open and easy to
use. OpenDSA-LTI contains students’ personal information like name, email address, and
class performance information. These are considered as sensitive information that must
be kept protected under the FERPA (Family Educational Rights and Privacy Act) which
makes application security especially important. Security solutions such as SSL encryption
and firewalls are insufficient in protecting the applications from malicious users and many
threats.

The security metric timeline of a Web application is divided into three phases: design,
deployment, and runtime [30]. In OpenDSA-LTI, we decided to identify the security flaws
in the early design phase to minimize or completely remove any potential threats.

The security metric framework was based on top ten lists described by the Open Web Appli-
cation Security Project (OWASP)22. The security threats were ordered based on how critical
they are regardless of how common they are. The list includes:

1. Injection

2. Broken Authentication and Session Management

3. Cross-Site Scripting (XSS)

4. Insecure Direct Object References

5. Security Misconfiguration

6. Cross-Site Request Forgery (CSRF)

7. Insecure Cryptographic Storage

8. Failure to Restrict URL Access

9. Insufficient Transport Layer Protection

10. Unvalidated Redirects and Forwards

5.5.1 Injection

“Injection flaws, such as SQL, OS, and LDAP injection occur when untrusted
data is sent to an interpreter as part of a command or query. The attacker’s
hostile data can trick the interpreter into executing unintended commands or
accessing data without proper authorization.” [36]

22http://www.owasp.org

http://www.owasp.org

Hossameldin Shahin Chapter 5. OpenDSA-LTI Implementation 49

The most famous attacks on Web applications are SQL injection. These attacks aim at
influencing database queries by manipulating Web application parameters. A popular goal
of SQL injection attacks is to bypass authorization or read unauthorized data. OpenDSA-LTI
was prepared for injections by sanitizing query parameters before making database queries.
Sanitizing is also done even on data read from the database. Also, no “hand written” database
queries are done in OpenDSA-LTI. Instead, queries are handled by the Rails Active Records.

5.5.2 Broken Authentication and Session Management

“Application functions related to authentication and session management are
often not implemented correctly, allowing attackers to compromise passwords,
keys, or session tokens, or to exploit other implementation flaws to assume other
users’ identities.” [36]

OpenDSA-LTI uses Devise for identity management. Devise is a flexible authentication
solution for Rails. We are using cookies for the session management implementation. Sessions
are generated on the server during the first request, and then given by the client on every
subsequent request. A session could be stolen if the attacker can steal the cookie. The cookies
could be stolen by someone listening to the HTTP traffic, or by reading them from the
user’s browser. We prevent tampering with session IDs by using SSL encrypted connections
between OpenDSA-LTI and the users.

5.5.3 Cross-Site Scripting (XSS)

“XSS flaws occur whenever an application takes untrusted data and sends it to
a Web browser without proper validation or escaping. XSS allows attackers to
execute scripts in the victim’s browser, which can hijack user sessions, deface
Web sites, or redirect the user to malicious sites.” [36]

The Rails framework provides the html_safe method, which guarantees to escape all the
data that is rendered on the page while sending the response back to the client. Escaping
means that data inserted in the rendered page is modified so that user’s browser does not
interpret it as HTML tags, rather as textual content.

5.5.4 Insecure Direct Object References

“A direct object reference occurs when a developer exposes a reference to an
internal implementation object, such as a file, directory, or database key. With-
out an access control check or other protection, attackers can manipulate these
references to access unauthorized data.” [36]

Hossameldin Shahin Chapter 5. OpenDSA-LTI Implementation 50

As discussed in Section 5.2.2, OpenDSA-LTI implements a flexible user’s role model that
allows every user to have a different role at the level of a course. The permission system
is based on the user role in a course whether it is an Instructor or a student. Students are
not authorized to do any action using OpenDSA-LTI interfaces. Instead, students are only
allowed to interact with OpenDSA materials through the LMS. Instructors, on the other
hand, have a richer set of actions to perform when they are authenticated. While they can
view all the courses offered by OpenDSA- LTI in any term, they can only manage their
courses, configure OpenDSA book instances, and generate courses in a Canvas installation.

5.5.5 Security Misconfiguration

“Good security requires having a secure configuration defined and deployed for
the application, frameworks, application server, Web server, database server, and
platform. Secure settings should be defined, implemented, and maintained, as
defaults are often insecure. Additionally, software should be kept up to date.”
[36]

When we started the OpenDSA-LTI implementation, we decided to use Rails’ latest version
(4.2). Since release there were no security patches announced. Version 4.2 is still currently
supported. On June 2016, Rails version 5.0 was released. It did not contain any security
patches. Rather, it had major changes like creating APIs apps. Since OpenDSA-LTI does
not avail any service through API yet, we decided not to immediately upgrade to that
version. However, it is likely that similar security-related issues in third-party gems used
by OpenDSA- LTI will be revealed later, and thus different parts of the system should be
regularly updated with the latest security patches. In the deployment phase, we secured
OpenDSA-LTI keys. Also, our database server is not accessible from the public Internet.
Finally, our Passenger application server is not running in debug mode 3, which would expose
a stack trace if an unhandled exception would be raised.

5.5.6 Cross-Site Request Forgery (CSRF)

“A CSRF attack forces a logged-on victim’s browser to send a forged HTTP
request, including the victim’s session cookie and any other automatically in-
cluded authentication information, to a vulnerable Web application. This allows
the attacker to force the victim’s browser to generate requests the vulnerable
application thinks are legitimate requests from the victim.” [36]

The best practices and the guidelines for protecting a Web application from CSRF is to a)
only allow POST requests to change data, b) create a unique token called the authenticity_token
for each session, c) include the token in all HTML forms and d) verify that POST requests

Hossameldin Shahin Chapter 5. OpenDSA-LTI Implementation 51

contain the correct token for the session. Rails provides authenticity_token handling
by default through the form tools. When the user views a form to create, update, or destroy
a resource the Rails app creates a random authenticity_token, stores this token in the
session, and places it in a hidden field in the form. When the user submits the form, Rails
looks for the authenticity_token, compares it to the one stored in the session, and if
they match, the request is allowed to continue.

5.5.7 Insecure Cryptographic Storage

“Many Web applications do not properly protect sensitive data, such as credit
cards, SSNs, and authentication credentials, with appropriate encryption or hash-
ing. Attackers may steal or modify such weakly protected data to conduct iden-
tity theft, credit card fraud, or other crimes.” [36]

We use Devise for user identity management. Devise encrypts the user’s password and saves
it to the database. OpenDSA-LTI uses the user’s email address as an identifier. There are
two ways a user can register in the system. The first is by directly going to opendsa.org
and signing up. In this case, a user is asked to enter his email address and a password.
This step is typically done by instructors; then he asks the system administrator to grant
instructor privileges. Students are not required to register in the system by themselves,
rather they will be automatically registered when they open any of the OpenDSA modules
in Canvas for the first time. The automatic registration process does not save a password
for the student, in fact, the password field is left blank. If a student wants to login directly
to opendsa.org, he will not be allowed until he provides a new password, which in turn
will be encrypted and saved in the database.

5.5.8 Failure to Restrict URL Access

“Many Web applications check URL access rights before rendering protected links
and buttons. However, applications need to perform similar access control checks
each time these pages are accessed, or attackers will be able to forge URLs to
access these hidden pages anyway.” [36]

Securing a Web application should not depend on hiding content, rather it should be im-
plemented through a rigorous permission model. OpenDSA-LTI supports two categories of
user roles: the Global Role and the Course Role. In their Global Role, a user can be an
administrator, an instructor, or a regular user. At the course level, users can enroll as an in-
structor or a student. Each user has one Global Role. While this permission model provides
flexibility, it was implemented to avoid any potential security issues. We use CanCanCan, a
powerful authorization library for Ruby on Rails. CanCanCan works through a centralized

opendsa.org
opendsa.org

Hossameldin Shahin Chapter 5. OpenDSA-LTI Implementation 52

ability file in which we define for each user role what actions “can” or “cannot” be performed.
All controllers in OpenDSA-LTI are configured to check the ability file before executing any
of its actions. The checking step is applied by calling the load_and_authorize method
on the controller. The ability file is a set of “Can” and “Cannot” statements which are fur-
ther conditionally executed. For example, Administrators are given the ability to manage all
courses for all instructors. While an instructor can manage courses, however, he is restricted
to manage only his courses. Instructors can only view other instructors’ courses without
being able to make any changes. We are using ActiveAdmin, a Ruby on Rails plug-in for
generating administration style interfaces. ActiveAdmin URLs are rather easy to guess,
which would make them vulnerable if security checks were insufficient. Access to the admin
area of the system is also managed by the CanCanCan ability file.

5.5.9 Insufficient Transport Layer Protection

“Applications frequently fail to authenticate, encrypt, and protect the confiden-
tiality and integrity of sensitive network traffic. When they do, they sometimes
support weak algorithms, use expired or invalid certificates, or do not use them
correctly.” [36]

To secure all the communication between users and the system, we have issued an SSL
certificate for OpenDSA-LTI. Furthermore, all non-secured HTTP connections are redirected
to the corresponding HTTPS URLs. When users open any OpenDSA-LTI views through
Canvas, a signed LTI launch request is generated and sent to OpenDSA-LTI. The purpose
of each LTI request is to load an OpenDSA section page in a Canvas iframe. Before the
first LTI request is sent, the system generates a consumer_key and shared_secret for
each user. As discussed in Section 5.3, the key and secret are communicated and used by
both parties to identify who they are talking to. The secret is used to digitally sign every
request going in either direction using OAuth. OAuth protocol itself is well designed, and
requests are signed with timestamps and identifiers for preventing the repetition of requests.
Generating key and secret for each user allows us to revoke them in case a user misused
them or they got stolen.

5.5.10 Unvalidated Redirects and Forwards

“Web applications frequently redirect and forward users to other pages and web-
sites, and use untrusted data to determine the destination pages. Without proper
validation, attackers can redirect victims to phishing or malware sites, or use for-
wards to access unauthorized pages.” [36]

We usually redirect successful POST requests to a “show” view which displays the modified
resource to the user. Redirecting POST requests is important to avoid repeating requests in

Hossameldin Shahin Chapter 5. OpenDSA-LTI Implementation 53

case the user refreshes the page or moves back and forth in the browser history. All redirect
URLs are generated by the OpenDSA-LTI server without using any user input in building
those URLs.

Chapter 6

Conclusions and Future Work

6.1 Conclusions

The general theme of this thesis is to improve OpenDSA by achieving a number of goals.
The first goal is to make OpenDSA a more robust system by mitigating the known issues and
limitations. The second is to increase project adoption by integrating OpenDSA contents
with the widest range of Learning Management Systems (LMS). We wanted to make it
easier for students and instructors to use OpenDSA contents. We base our analysis on the
assumption that keeping students in one central learning environment and reducing the use of
parallel systems would improve learning and increase project adoption. Finally, integration
with a delivery platform would transform OpenDSA from a monolithic system to Software
as a Service (SaaS). That would offload from project developers and collaborators the need
to implement instructor support tools that are already provided by every LMS.

We started by presenting the components of the original infrastructure: content types, compi-
lation process, client-side framework, and data collection server. We discussed their technical
specifications and requirements, and how they work together in one system. We discussed
the problems reported by users and collaborators, and how we addressed these issues and
solved them in each component. Our modifications range from fixing a problem to a complete
overhaul in some situations.

Our review of interoperability and learning tool shows that there are different existing stan-
dards and solutions, all of which have their advantages and disadvantages. For our particular
requirements and constraints, the chosen standard should support the majority if not all the
LMSs. It does not require many changes to OpenDSA, and it can be used to add more
learning tools to OpenDSA. We excluded the restrictive and tightly coupled standards, like
the ones that required the use of a particular technology or which are used with a limited
number of learning management systems.

54

Hossameldin Shahin Chapter 6. Conclusion 55

For our needs and requirements, the Learning Tool Interoperability (LTI) standard was the
most prominent. It did not depend on a specific technology and allowed us to integrate
OpenDSA without re-writing it. We designed and implemented a system called OpenDSA-
LTI, which is a wrapper that communicates with any LTI-enabled LMS. We were also able
to simplify the OpenDSA client-side framework, so it does not have to deal with user au-
thentication, session handling, or students’ proficiency caching. Instead, it was simplified to
focus on interaction and to score data communication.

We created interfaces for OpenDSA-LTI administrators and instructors. Instructors are the
primary users of the system; they can define their organization, create courses, and create
course offerings in a particular semester. Instructors use a three-step intuitive interface to
create the course, customize the OpenDSA book, and generate the book contents into the
LMS course. Instructors are not restricted to create an entire book. Instead, they can select
OpenDSA individual interactive materials and make them part of their existing course.

We designed the new infrastructure with extendability in mind. The design allows for ex-
tending the existing adapter, which generates the book in an LMS, to accommodate new LTI-
compatible LMSs. OpenDSA-LTI allows system admins to add new LTI-compliant learning
tools to OpenDSA books. For example, we have replaced the old programming evaluation
engine with CodeWorkout, a drill-and-practice programming system. Since CodeWorkout
communicates with an LMS through LTI, our system could easily augment OpenDSA books
with CodeWorkout exercises.

Since its launch in Fall 2016, we received an increasing number of requests from instructors
to use OpenDSA-LTI. As of June 2017, OpenDSA-LTI has hosted 36 active courses offered
by 25 different universities in 6 countries. 41 instructors have used OpenDSA-LTI to host
their courses on the Canvas LMS, and the system has 2,729 registered students.

6.2 Future Work

OpenDSA is a fast-growing project, which presents many opportunities for future enhance-
ments. Here we propose a potential direction to improve OpenDSA based on our experiences
with LTI and the IMS Caliper [25] initiative.

LTI has changed the landscape of learning tools. Many vendors are now producing LTI-
compatible tools. The space of learning tools has grown much larger. The variety of LTI
tools allows instructors to design all their courses’ activities to happen inside the LMS course.
However, that mandates the activities to be scattered across multiple tools, each of which
has its interaction capture mechanism and data format. Collecting a large amount of data is
essential for understanding and improving student performance. It is especially important
that the data is accurately collected and probably stored for predicting students’ future
outcomes.

Hossameldin Shahin Chapter 6. Conclusion 56

Technologies have been developed to analyze larger data than ever. Machine learning meth-
ods and tools are designed to use data from different sources to learn and predict future
student behavior.

To achieve such ultimate goals, there is a need to collect all of the students’ interaction data
in a standardized way across different learning tools, store the data in a centralized place,
and then make it available for data analysis and visualization tools.

We can take OpenDSA-LTI as an example; the system is collecting a large amount of data.
The system also allows for integrating CoreWorkout exercises in book instances. However,
the data collected by CoreWorkout is not stored in the OpenDSA system, rather it is stored
in its proprietary data store. To analyze students’ performance, we should combine data
from the two systems and the LMS, then store it in yet another ad-hoc system where we can
roll up all the data for various kinds of analysis.

Caliper is designed to overcome this disconnectedness; it is a standard that enables the stu-
dents’ interaction data with learning tools and LMSs to be collected, stored, and transported.
It is flexible enough to accommodate a wide variety of current and future interaction types.
Since Caliper is an open standard, it will lower the cost of learning analytics. So, we are
enthusiastic about OpenDSA adoption of Caliper, along with the LTI open IMS standard
that we support. As OpenDSA-LTI has proven to be successful since launched in Fall 2016,
we believe the prominent future path would be focusing on and encouraging other teams in
the field to make more complete, and better, use of the students’ interaction data through
Caliper.

Appendices

57

Appendix A

OpenDSA XBlocks Architecture

A.1 Introduction

XBlock is an integration architecture for building courseware. An XBlock is similar in
structure to a Web application plug-in and fills a similar niche. The OpenDSAX XBlocks
attempt to host OpenDSA eBooks into the OpenEdX XBlock architecture.

OpenDSAX provides the following functionality:

1. Display of JSAV-based proficiency exercises, Algorithm Visualizations, and slideshows.

2. A user interface to allow course authors to select from a list of available exercises.

3. Course authoring tool to define exercise weight as well as other exercise configurations.

4. Student score tracking by the JSAV and Module XBlocks.

5. Student interaction data tracking and event logging.

A.2 Main Components

The OpenDSAX XBlock architecture consists of three XBlocks: Module, JSAV, and Content.
The Module XBlock is the parent XBlock, and it serves as a container to the other two
XBlocks. It provides JavaScript and CSS resources to its children. It is also considered
a centralized place in which JSAV score and logging events are checked and validated. A
Module XBlock receives score and logging events from children XBlocks through messaging.

The messaging facility is built on top of HTML5’s cross-document messaging via Win-
dow.postMessage capabilities, which let the main page communicate with a page loaded

58

59

within an iframe and vice versa. This technology is working on all current versions of all
major browsers [11].

Figure A.1 shows the main components for each OpenDSAX XBlock.

Figure A.1: OpenDSAX XBlocks main components.

A.3 How It Works

When a Module XBlock is loaded into EdX, it will contain one or more JSAV XBlocks. Each
client-side JavaScript of the JSAV XBlock will trigger events as the student starts to interact
with it. Depending on the JSAV XBlock instance type, events might be “message” events
(which are triggered by iframed proficiency exercises and AVs) or “jsav-log-event” events
(which are triggered by slideshows). Module XBlock client-side JavaScript will listen for
those events and handle them. Events that have scoring data will be filtered and validated
before the Module XBlock calls the reportProgress function of the corresponding JSAV
XBlock to report the score back to JSAV server-side XBlock via an AJAX request. The
server-side evaluation could have more rules to apply to scoring data than the client side.
Only the server-side evaluation decides whether the student will be awarded proficiency and
given the problem points. Server-side decisions will be sent back via AJAX response to the
JSAV XBlock on the client-side. Accordingly JSAV and Module XBlocks on the client-side
will update proficiency and score indicators based on server response.

60

Figure A.2 shows a sequence diagram that presents interactions happening between Module
and JSAV XBlocks, and between client and server sides as well.

Figure A.2: OpenDSAX XBlocks sequence diagram.

Bibliography

[1] A. Korhonen, L. Malmi, P. Silvasti, J. Nikander, P. Tenhunen, P. Mard, H. Salonen, and
V. Karavirta. TRAKLA2, http://www.cs.hut.fi/Research/TRAKLA2, last ac-
cessed 05-01-2017.

[2] R. S. Baker, A. T. Corbett, and K. R. Koedinger. Detecting student misuse of intelligent
tutoring systems. In International Conference on Intelligent Tutoring Systems, pages
531–540. Springer, 2004.

[3] R. S. Baker, A. T. Corbett, K. R. Koedinger, and A. Z. Wagner. Off-task behavior
in the cognitive tutor classroom: when students game the system. In Proceedings of
the SIGCHI conference on Human factors in computing systems, pages 383–390. ACM,
2004.

[4] O. Bohl, J. Scheuhase, R. Sengler, and U. Winand. The sharable content object reference
model (SCORM) - a critical review, http://ieeexplore.ieee.org/abstract/
document/1186122. In Computers in education, 2002. proceedings. international
conference on, pages 950–951. IEEE, 2002.

[5] S. Booth, S. Peacock, and S. P. Vickers. Plug and play learning application integration
using IMS learning tools interoperability. In Ascilite, pages 143–147, 2011.

[6] S. Boyer, B. U. Gelman, B. Schreck, and K. Veeramachaneni. Data science foundry for
MOOCs, http://ieeexplore.ieee.org/abstract/document/7344825. In
Data Science and Advanced Analytics (DSAA), 2015. 36678 2015. IEEE International
Conference on, pages 1–10. IEEE, 2015.

[7] G. Brandl. Sphinx: Python documentation generator. http://sphinx.pocoo.
org/index.html, 2009.

[8] D. A. Breakiron. Evaluating the Integration of Online, Interactive Tutorials into
a Data Structures and Algorithms Course, http://hdl.handle.net/10919/
23107. Master’s thesis, Virginia Polytechnic Institute and State University, Blacks-
burg, Virginia, 2013.

61

http://www.cs.hut.fi/Research/TRAKLA2
http://ieeexplore.ieee.org/abstract/document/1186122
http://ieeexplore.ieee.org/abstract/document/1186122
http://ieeexplore.ieee.org/abstract/document/7344825
http://sphinx.pocoo.org/index.html
http://sphinx.pocoo.org/index.html
http://hdl.handle.net/10919/23107
http://hdl.handle.net/10919/23107

62

[9] D. A. Breakiron, E. Fouh, S. Hamouda, and C. A. Shaffer. Analysis of interaction logs
for online tutorials. In Proceedings of the 45th ACM technical symposium on Computer
science education, pages 709–709. ACM, 2014.

[10] J. Burke. RequireJS, http://requirejs.org, last accessed 03-04-2017.

[11] Cross-document messaging. http://caniuse.com/#feat=x-doc-messaging,
last accessed 03-24-2017.

[12] D. Dagger, A. O’Connor, S. Lawless, E. Walsh, and V. P. Wade. Service-oriented
e-learning platforms: From monolithic systems to flexible services. IEEE Internet Com-
puting, 11(3), 2007.

[13] M. F. Farghally, K. H. Koh, H. Shahin, and C. A. Shaffer. Evaluating the effectiveness
of algorithm analysis visualizations. In Proceedings of the 2017 ACM SIGCSE Technical
Symposium on Computer Science Education, pages 201–206. ACM, 2017.

[14] R. T. Fielding. Architectural styles and the design of network-based software architec-
tures. PhD thesis, University of California, Irvine, 2000.

[15] R. T. Fielding and R. N. Taylor. Principled design of the modern web architecture.
ACM Transactions on Internet Technology (TOIT), 2(2):115–150, 2002.

[16] E. Fouh. Building and Evaluating a Learning Environment for Algorithm and Data
Structures Courses, http://hdl.handle.net/10919/51951. PhD thesis, Vir-
ginia Polytechnic Institute and State University, Blacksburg, Virginia, 2015.

[17] E. Fouh, D. Breakiron, M. Elshehaly, T. S. Hall, V. Karavirta, and C. A. Shaffer.
OpenDSA: using an active eTextbook to teach data structures and algorithms. In
Proceeding of the 44th ACM technical symposium on Computer science education, pages
734–734. ACM, 2013.

[18] E. Fouh, D. A. Breakiron, S. Hamouda, M. F. Farghally, and C. A. Shaffer. Exploring
students learning behavior with an interactive etextbook in computer science courses.
Computers in Human Behavior, 41:478–485, 2014.

[19] E. Fouh, M. F. Farghally, S. Hamouda, K. H. Koh, and C. A. Shaffer. Investigating
difficult topics in a data structures course using item response theory and logged data
analysis. In Proceedings of the 9th international conference on educational data mining,
pages 370–375, 2016.

[20] D. Goodger. reStructuredText Markup Specification. http://docutils.
sourceforge.net/docs/ref/rst/restructuredtext.html, last accessed:
06-15-2017.

http://requirejs.org
http://caniuse.com/#feat=x-doc-messaging
http://hdl.handle.net/10919/51951
http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html
http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html

63

[21] S. Hamouda. Enhancing Learning of Recursion, http://hdl.handle.net/10919/
64249. PhD thesis, Virginia Polytechnic Institute and State University, Blacksburg,
Virginia, 2015.

[22] IMS Global Learning Consortium. Learning Tools Interoperability Guidelines
Version 1.0, https://www.imsglobal.org/ti/tiv1p0/imsti_guidev1p0.
html, 2006.

[23] IMS Global Learning Consortium. IMS Global Learning Tools Interoperabil-
ity Implementation Guide, https://www.imsglobal.org/specs/ltiv1p1/
implementation-guide, 2010.

[24] IMS Global Learning Consortium. Profile, IMS Common Cartridge Version
1.0 Final Specification. http://www.imsglobal.org/cc/ccv1p0/imscc_
profilev1p0.html, 2010.

[25] IMS Global Learning Consortium. Caliper analytics. http://www.imsglobal.
org/activity/caliper, 2016.

[26] V. Karavirta, P. Ihantola, and T. Koskinen. Service-oriented approach to improve in-
teroperability of e-learning systems, http://ieeexplore.ieee.org/abstract/
document/6601947. In Advanced Learning Technologies (ICALT), 2013 IEEE 13th
International Conference on, pages 341–345. IEEE, 2013.

[27] V. Karavirta and C. A. Shaffer. JSAV: the JavaScript algorithm visualization library.
In Proceedings of the 18th ACM conference on Innovation and technology in computer
science education, pages 159–164. ACM, 2013.

[28] V. Karavirta and C. A. Shaffer. Creating engaging online learning material with the
JSAV JavaScript algorithm visualization library. IEEE Transactions on Learning Tech-
nologies, 9(2):171–183, 2016.

[29] K. P. Murali. CodeWorkout: Designing an Online Drill-and-Practice System for In-
troductory Programming. Master’s thesis, Virginia Polytechnic Institute and State
University, Blacksburg, Virginia, 2016.

[30] E. A. Nichols and G. Peterson. A metrics framework to drive application security
improvement. IEEE Security & Privacy, 5(2), 2007.

[31] J. Nikander, A. Korhonen, O. Seppälä, V. Karavirta, P. Silvasti, L. Malmi, et al. Visual
algorithm simulation exercise system with automatic assessment: TRAKLA2. Infor-
matics in Education-An International Journal, (Vol 3_2):267–288, 2004.

[32] C. A. Shaffer, V. Karavirta, A. Korhonen, and T. L. Naps. OpenDSA: beginning a
community active-ebook project. In Proceedings of the 11th Koli Calling International
Conference on Computing Education Research, pages 112–117. ACM, 2011.

http://hdl.handle.net/10919/64249
http://hdl.handle.net/10919/64249
https://www.imsglobal.org/ti/tiv1p0/imsti_guidev1p0.html
https://www.imsglobal.org/ti/tiv1p0/imsti_guidev1p0.html
https://www.imsglobal.org/specs/ltiv1p1/implementation-guide
https://www.imsglobal.org/specs/ltiv1p1/implementation-guide
http://www.imsglobal.org/cc/ccv1p0/imscc_profilev1p0.html
http://www.imsglobal.org/cc/ccv1p0/imscc_profilev1p0.html
http://www.imsglobal.org/activity/caliper
http://www.imsglobal.org/activity/caliper
http://ieeexplore.ieee.org/abstract/document/6601947
http://ieeexplore.ieee.org/abstract/document/6601947

64

[33] C. A. Shaffer, T. L. Naps, and E. Fouh. Truly interactive textbooks for computer science
education. In Proceedings of the Sixth Program Visualization Workshop, pages 97–103,
2011.

[34] C. A. Shaffer, T. L. Naps, and S. H. Rodger. Using OpenDSA eTextbooks in Your
Class. In Proceedings of the 47th ACM Technical Symposium on Computing Science
Education, pages 713–713. ACM, 2016.

[35] WebStorage. https://www.w3schools.com/html/html5_webstorage.asp,
last accessed: 02-15-2017.

[36] D. Wichers. A list of the 10 Most Critical Web Application Security Risks, https://
www.owasp.org/index.php/Top_10_2013-Top_10. OWASP Foundation, last
accessed 03-04-2017.

[37] Wikipedia. Software as a service, https://en.wikipedia.org/w/index.php?
title=Software_as_a_service&oldid=781150424, last accessed: 06-15-2017.

[38] S. Wilson, P. Sharples, and D. Griffiths. Distributing education services to per-
sonal and institutional systems using Widgets. In Proc. Mash-Up Personal Learning
Environments-1st Workshop MUPPLE, volume 8, pages 25–33, 2008.

https://www.w3schools.com/html/html5_webstorage.asp
https://www.owasp.org/index.php/Top_10_2013-Top_10
https://www.owasp.org/index.php/Top_10_2013-Top_10
https://en.wikipedia.org/w/index.php?title=Software_as_a_service&oldid=781150424
https://en.wikipedia.org/w/index.php?title=Software_as_a_service&oldid=781150424

	Introduction
	Motivation
	Research Objectives
	Solution Approach
	Major Contributions
	Structure of the Thesis

	The First Generation OpenDSA Infrastructure
	OpenDSA Content
	The Authoring System and Compilation Process
	Data Collection Server
	Client-Side Framework
	User Registration and Authentication
	Loading New Exercises into the DCS
	Score and Interaction Data Management
	Managing User Proficiency
	Managing Student Login in Multiple Browser Tabs
	Transmitting the Data

	Putting It All Together

	Mitigating Original Infrastructure Problems
	Khan Academy Exercise Framework
	KA Framework Upgrade
	Preventing the ``Gaming'' Problem

	Client-Side Framework
	Missing Interaction Data
	An Out-Of-Synch Local Proficiency Cache

	Data Collection Server
	Proprietary Mechanism for Handling Session Keys
	Automated Assessment Engine for Programming Exercises

	Towards a Complete System

	Interoperability Alternatives
	A Component-Oriented Approach
	Plug-In Architecture
	Widgets
	SCORM
	IMS Learning Tools Interoperability
	Summary

	OpenDSA-LTI Implementation
	Technologies Stack
	Software Choice
	OpenDSA Redesign
	Licenses

	Identity Management
	Authentication
	Authorization

	How OpenDSA-LTI Works
	User Interfaces
	Student Interfaces
	Instructor Interfaces
	Admin Interfaces

	Security
	Injection
	Broken Authentication and Session Management
	Cross-Site Scripting (XSS)
	Insecure Direct Object References
	Security Misconfiguration
	Cross-Site Request Forgery (CSRF)
	Insecure Cryptographic Storage
	Failure to Restrict URL Access
	Insufficient Transport Layer Protection
	Unvalidated Redirects and Forwards

	Conclusions and Future Work
	Conclusions
	Future Work

	Appendices
	Appendix OpenDSA XBlocks Architecture
	Introduction
	Main Components
	How It Works

	Bibliography

