Panel Stacking and Worker Assignment Problems in Residential Construction Using Prefabricated Panels: A Lean Approach

Cheng Guo

Dissertation submitted to the Faculty of
Virginia Polytechnic Institute and State University
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy
In
Industrial and Systems Engineering

Shewchuk, John P., Chairman Bish, Douglas R. Mills, Thomas H. Nussbaum, Maury A.

> May 14, 2010 Blacksburg, Virginia

Keywords: residential panel stacking, worker assignment, construction plan

Panel Stacking and Worker Assignment Problems in Residential Construction Using Prefabricated Panels: A Lean Approach

Cheng Guo

Abstract

A current trend in residential construction is the use of prefabricated wall panels. It is important to carefully establish how panels will be stacked, because an optimal sequence will improve productivity and reduce the possibility of worker injury. Mathematical models and heuristics are proposed for solving the panel stacking problem without consideration of interference. Dissertation work includes a mathematical model of the corresponding panel stacking problems in which the goal is to minimize total weighted panel move distance concurrent with certain construction assumptions. The heuristic method was provided to establish how each panel would be stacked and gave the drop-off location of each stack. The heuristic method was found to be able to reduce the total weighted panel move distance and ensure connectivity was always maintained, meanwhile, interference could also be avoided. In terms of solution speed, the heuristic method can solve real size problems in less than one second. Solutions to such problems can increase productivity.

Three improvements to the only known existing panel stacking algorithm with consideration of interference were proposed. The computational results indicate the proposed algorithm performed better than existing algorithm in all experimental cases. Improvement on panel move distance ranged from 1.35-47.93%, and improvement on interfering panels ranged from 20-100%. The proposed algorithm can solve non-rectangular cases (not possible with existing algorithm) and was compared with an experienced panel designer and commercial software. When compared to the proposed algorithm, total weighted panel move distance increased 0.10-85.52% and 0.77-136.23%, respectively, for the panel designer and software. While connectivity was 100% for all cases with the proposed algorithm (the algorithm ensures connectivity is always maintained), it ranged from 69.56-86.95% and 73.33-90.91%, however, for the panel designer and software respectively. Finally, the proposed algorithm can solve the interfering panels in the last stack: this cannot be done with the existing algorithm.

Because prefabricated wall panels are typically large and cumbersome to work with, there is a significant probability of worker injury. It is important to carefully establish how each panel will be handled by workers. This is typically the responsibility of field construction foreman, but such personnel are often ill-equipped to make such decisions. An alternative, proactive approach is to establish how each panel will be handled in advance, such that overall ergonomic consequences can be properly considered. This dissertation presents mathematical models of the corresponding construction task scheduling and worker assignment problems, where the goal is to minimize total project completion time (subject to worker quantity constraints) and assign tasks to workers as evenly as possible. The solution of such problems can help residential construction managers better plan construction by establishing the ergonomic impact associated with a given construction plan. A heuristic was also developed to solve large problems by balancing workload between workers. The heuristic was found to be able to provide near-optimal solutions, and can solve large problems in less than one second.

ACKNOWLEDGEMENTS

First, I would like to gratefully and sincerely thank my advisor, Dr. John P. Shewchuk, for his continuous support in the Ph.D. program. He taught me how to ask questions and express my ideas. He showed me different ways to approach a research problem and the need to be persistent to accomplish any goal. Not only did he give me substantial and relevant advice, guidance and encouragement, but also taught me what a great professor should be.

Besides my advisor, I would also like to thank my committee members, Dr. Douglas R. Bish, Prof. Thomas H. Mills, and Dr. Maury A. Nussbaum, for their constructive advice and efforts in my dissertation research. Their encouragement and constant guidance means a lot to me.

Thanks to my friends at Virginia Tech, Lingrui Liao, Min Chen, Chengbin Zhu, Lixin Wang, Liming Yao, and Billy Wang. Thanks to Dr. Lynn Ehrke for proofreading my dissertation. I cannot list everyone here but I want to thank you for all your help and friendship.

Last, but not least, I thank my parents, Jian Guo, and Min Luo, for giving me life in the first place, for educating me with your hearts, for unconditional support and encouragement to pursue my interests, for reminding me that my research should always be useful and serve good purposes for all humankind. I would also thank my wife, Sisi Ji, for her love and care, without which this dissertation would not have been possible.

Table of Contents

Abstract	ii
ACKNOWLEDGEMENTS	iv
Table of Contents	v
List of Figures	vii
List of Tables	X
Chapter 1 Introduction	
1.1 Motivation	
1.2 Problem Statement	2
1.3 Research Objective	7
Chapter 2 Literature Review	9
Chapter 3 Panel Stacking without Consideration of Interference	13
3.1 Introduction	13
3.2 Research Approach and Methodology	14
3.3 Mathematical Model	14
3.4 Heuristic	17
3.5 Computational Experiments	20
3.5.1 Experimental Design	20
3.5.2 Results	21
3.5.3 Discussion of Results	26
Chapter 4 Panel Stacking with Consideration of Interference	27
4.1 Introduction	27
4.2 Improvement 1 — Minimize Zone Width	29
4.2.1 Algorithm	29
4.2.2 Experimental Design	34
4.2.3 Results	35
4.2.4 Discussion of Results	40
4.3 Improvement 2 — Solve for non-rectangular cases	41
4.3.1 Algorithm	41

4.3.2 Experimental Design	55
4.3.3 Results	56
4.3.4 Discussion of Results	64
4.4 Improvement 3 — Solve for interfering panels	66
4.4.1 Algorithm	66
4.4.2 Experimental results	71
Chapter 5 Worker Assignment in Residential Construction Using	
Prefabricated Panels	74
5.1 Introduction	74
5.2 Problem Formulation	75
5.3 Results	80
5.4 Simplified Model	84
5.4.1 Simplified Model — Heuristic	86
5.4.2 Simplified Model — Mathematical Model	86
5.4.3 Simplified Model — Results and Discussions	87
Chapter 6 Conclusions	89
6.1 Research contributions	89
6.2 Strengths and limitations	91
6.2.1 Panel stacking Problem	91
6.2.2 Worker assignment	91
6.3 Future research	92
Appendix A: Iterative algorithm	94
Appendix B: Data set and results, Chapter 3	95
Appendix C: Data set and results, Section 4.2	111
Appendix D: Data set and results, Section 4.3, 4.4 & 5.4	241
References	476

List of Figures

Figure 1.1 Stack example	2
Figure 1.2 Panel parameters	3
Figure 1.3 Stack parameters	3
Figure 1.4 Dropping edge	4
Figure 1.5 Panel stacking orientations	5
Figure 1.6 Use of Block	5
Figure 1.7 Interference situations: (a), (b) and (c)	7
Figure 2.1 Estimated housing productions by industry segments 1996-2006 (in thousand	nds)10
Figure 3.1 Algorithm Flow Chart	19
Figure 3.2 Building structure	22
Figure 3.3 Solution of traditional approach (by build sequence)	25
Figure 3.4 Solution of proposed approach (by build sequence)	25
Figure 4.1 Panelized Wall Construction Process (Shewchuk, 2008)	28
Figure 4.2 Process of the algorithm	33
Figure 4.3 Last zone, Shewchuk (2008) vs. Proposed Algorithm	34
Figure 4.4 Building plan	37
Figure 4.5 Non-rectangular, Zone 1, case a	42
Figure 4.6 Non-rectangular, Zone 1, case b	42
Figure 4.7 Lift activity (Shewchuk et al., 2009)	42
Figure 4.8 Non-rectangular, Zone 1, case c	43
Figure 4.9 Non-rectangular, Zone 1, case d	44
Figure 4.10 Non-rectangular, Zone 1, case e	44
Figure 4.11 Non-rectangular, Zone 1, case f	45
Figure 4.12 Non-rectangular, Zone 1, case g	45
Figure 4.13 Non-rectangular, Zone 1, case h	45
Figure 4.14 Non-rectangular, Zone <i>i</i> -type A-case a	46
Figure 4.15 Non-rectangular, Zone <i>i</i> -type A-case b	47
Figure 4.16 Non-rectangular, Zone <i>i</i> -type A- case c	48
Figure 4.17 Non-rectangular, Zone <i>i</i> -type A-case d	48

Figure 4.18 Non-rectangular, Zone <i>i</i> -type A-case e	49
Figure 4.19 Non-rectangular, Zone <i>i</i> -type A-case f	49
Figure 4.20 Non-rectangular, Zone <i>i</i> -type B-case a	50
Figure 4.21 Non-rectangular, Zone <i>i</i> -type B-case b	51
Figure 4.22 Non-rectangular, Zone <i>i</i> -type B-case c	52
Figure 4.23 Non-rectangular, Zone <i>i</i> -type B-case d	53
Figure 4.24 Non-rectangular, Last Zone-type A-case a	53
Figure 4.25 Non-rectangular, Last Zone-type A-case b	54
Figure 4.26 Non-rectangular, Last Zone-type A-case c	54
Figure 4.27 Non-rectangular, Last Zone-type A-case d	55
Figure 4.28 Building plan	58
Figure 4.29 Stacking Solution from Panel designer	59
Figure 4.30 Stacking solution from IntelliBuild	60
Figure 4.31 Stacking solution from the proposed algorithm	61
Figure 4.32 Solution of Panel designer (by build sequence)	62
Figure 4.33 Solution of IntelliBuild (by build sequence)	63
Figure 4.34 Solution of the proposed algorithm (by build sequence)	64
Figure 4.35 Last zone, type B-case a	67
Figure 4.36 Last zone, type B-case b	67
Figure 4.37 Last zone, type B-case c	67
Figure 4.38 Last zone, type B-case d	68
Figure 4.39 Last zone, type B-case e	68
Figure 4.40 Last zone, type B-case f	69
Figure 4.41 Last zone, type B-case g	69
Figure 4.42 Last zone, type B-case h	70
Figure 4.43 Example-interfering panels	71
Figure 4.44 Example-move interfering panels	72
Figure 4.45 Example-install interfering panels-1	72
Figure 4.46 Example-install interfering panels-2	73
Figure 4.47 Example-install interfering panels-3	73
Figure 5.1 Schedule for the example problem	84
	viii

Figure 5.2 Worker Assignment

List of Tables

Table 2.1 Estimated housing productions by industry segments 1996-2006 (in thousands)	9
Table 3.1 Computational results for Proposed Algorithm vs. Traditional Approach	21
Table 3.2 Stacking solution using the traditional approach	23
Table 3.3 Stacking solution using the proposed approach	24
Table 4.1 Computational results for Proposed Algorithm vs. Shewchuk (2008)	36
Table 4.2 Solution from Shewchuk (2008)	38
Table 4.3 Solution from proposed algorithm	39
Table 4.4 Summary for the computational results	41
Table 4.5 Computational results for Proposed Algorithm vs. IntelliBuild vs. Panel Designer	57
Table 4.6 Summary for the computational results	66
Table 5.1 Input parameters for the example problem	81
Table 5.2 Output from Model 1 for the example problem	82
Table 5.3 Output from Model 2 for the example problem	83
Table 5.4 Computational results for proposed heuristic vs. optimal solution	88
Table 5.5 Computational results for proposed heuristic solving large cases	88

Chapter 1 Introduction

1.1 Motivation

A current trend in residential construction is the use of prefabricated wall panels (O'Brien et al., 2000). Panelized wall construction presents significant opportunities to improve housing quality, safety, and affordability. Prefabricated wall systems are becoming a popular element of building construction (Louis, 1999). It has many benefits (Lindow et al., 2003) which include: reduced on-site construction time, reduced labor costs, increased product consistency, and decreased noise pollution for the indoor environment.

Lean manufacturing has become a popular topic in recent years because it is a method of manufacturing using less of everything compared to mass production. Lean has been proved powerful in the manufacturing industry. Residential construction can also be viewed as a manufacturing industry, if we consider the house as the final merchandise. Therefore, if we can apply the lean philosophy to the building construction, less waste and less human effort will be required in the whole construction process. Actually lean thinking principles have been applied to identify and reduce the non-value added activities and improve performance in residential construction (Sharma et al., 2006). Lean construction research has also shown that managing work flow effectively and maintaining labor flow on site can improve construction labor performance (Watkins et al., 2009).

The key of lean is to reduce all kinds of waste. The first thing needed is to identify where waste exists in the construction process. After viewing several construction field video tapes and interviewing some construction workers, it was established that prefabricated panels were usually shipped to the construction site via trucks and unloaded in several stacks. The usual objective of this process is to minimize the number of trips. This results in two problems. The first problem is that the panel stacking order is not in the order the construction workers need. A typical scene in the video tapes showed that workers kept moving the top panels of a stack to somewhere else until they got to the panel they wanted. A field study of mechanical installation work has shown that over 50% of the total time observed on construction sites is non-value-adding time in the categories of interruption, disturbance, communication and preparation (Vedder et al., 2005). The second problem is that in some cases, the panel drop off

location is not predetermined. If the drop off location was not pre-arranged, it often required workers to walk a long way to get the panels.

The disadvantage of the above scene is obvious. There is too much wasted motion and time, as well as the possibility of damaging parts during the process of workers seeking the "right" panel. From the ergonomic point of view, it is not safe as well. Due to the unneeded work efforts and unorganized workplace, the ergonomic impact on workers therefore increases the possibility of their injury.

Under this circumstance, we propose an effective lean approach which will reduce wasted motion and time, improve work efficiency, and maximize worker safety. During the construction process each panel must join to one or more of the panels already in place, excluding the first panel. To minimize the workload and the possibility of worker injury, we should sequence those panels within a stack, in the order they are going to be used, so that the next available panel is the next needed panel. Once a panel is taken from a stack, it will be moved to its location and put in place. Meanwhile, minimization of total number of stacks (total shipments) reduces the shipping costs. As many panels per layer as possible as noted in Figure 1.1. Traps, such as situations that prevent workers from accessing a panel due to its location, must be avoided.

Figure 1.1 Stack example

The approach will assign panels to stacks and provide the order they are going to be stacked. The drop-off location of each stack will also be provided under the goal of minimizing total panel move distance. Computational experiments are conducted to establish performance.

1.2 Problem Statement

The panel stacking problem may be formulated as follows. There is a set of N (which is given) prefabricated wall panels (panel parameters are defined as Figure 1.2) which are going to be shipped to the construction site and divided into S (unknown) stacks.

Figure 1.2 Panel parameters

Based on transportation limits, ergonomic considerations and other considerations, the maximum of stack length and stack height (defined as Figure 1.3) will be specified.

Figure 1.3 Stack parameters

When trucks arrive at the construction site, usually for easy access of trucks, an edge (dropping edge) will be chosen along which the trucks should unload stacks. Also, one or more possible dropping edges (refer to Figure 1.4) are given. In the Figure 1.4, the outside rectangle refers to the building plan, and the bottom edge is the dropping edge we choose. All stacks will be dropped on the chosen dropping edge (if there are multiple possible dropping edges, we will choose one).

Figure 1.4 Dropping edge

Panels are placed with the bottom plate parallel to the dropping edge (Figure 1.5). It has two ways to place the panel just like (a) and (b) in Figure 1.5, and when you turn the panel over it will have two additional ways to place the panel like (c) and (d) in Figure 1.5. So when stacking a panel, there are total four possible orientations which will be specified in the solution. Just like Figure 1.5, the rectangle indicates a panel and we use the little circle to indicate different orientations. These are established per Shewchuk (2008).

Figure 1.5 Panel stacking orientations

We have the following assumptions:

- All panels have the same height.
- Stacks always have the long edge parallel to the chosen dropping edge (Figure 1.5).
- Temporary bracing used on the construction site is not considered.
- Workers have the ability to choose an appropriate way to carry and move a panel, i.e., the workers will carry panels vertically when space is not enough for carrying them horizontally, since carrying panels horizontally will need more space.
- Blocks will be used to keep panels parallel to each other (Figure 1.6).
- Stacks are delivered to the dropping edge separately which means the second stack will not be delivered to the dropping edge until the first stack is fully completed.

Figure 1.6 Use of Block

Since the number of stacks is positively associated with the shipping costs, one objective is to minimize the number of stacks. The other objective is to minimize the total weighted panel move distance weighted by panel length. This will also reduce workers' workload and construction project completion time

The problem is thus to determine how to assign panels to each stack, the location of each panel in a stack, the stacking orientation of each panel, as well as the drop-off location of each stack to minimize total weighted panel move distance and the number of stacks under the following constraints:

- To improve the work efficiency, during the construction process each panel must join to one or more of the panels already in place if possible, excluding the first panel.
- To reduce the wasted motion and minimize the possibility of worker injury, panels should be stacked in the order they are going to be used. It means once a panel is taken from a stack, it will be moved to its location and put in place.
- Transportation physical constraints on stack length and stack height.
- Interference constraints to avoid the following interference situations (Figure 1.7) when move clearance (which will provide enough room for workers to walk around stack and unload the panels) is considered:
 - (a) the interference between stacks and finished panels (due to the overlapping of stacks and panels, they cannot be installed).
 - (b) panels left in a stack cannot be moved to their destinations since they are blocked by other finished panels.
 - (c) the interference from finished panels encountered by workers while moving panels to final location, i.e., when carrying panels, workers cannot access the final location since they are blocked by some finished panels.

Figure 1.7 Interference situations: (a), (b) and (c)

1.3 Research Objective

This dissertation research primarily focused on two areas. The first area is on the panel stacking problem. The second is on the worker assignment problem. Overall, objectives of the research were to develop algorithms which will solve the panel stacking and worker assignment problem and provide a solution which includes:

- The number of stacks.
- Which panel goes to which stack and the location of each panel in a stack.
- Orientation of each panel.
- Which dropping edge will be chosen among all possible dropping edges.
- The location of each stack.
- How to handle the interfering panels in the last stack.
- Worker assignment.

Chapter 2 Literature Review

The use of panelized construction increased dramatically during the past several years (Table 2.1 & Figure 2.1). It accounted for only 5.2% of the linear feet of light-frame frame walls in residential construction in 1991 (Annual Builder Practices Survey, 2000). The number increased to 47% in 2006 and continues to increase. Among the industrialized housing segments, the panelized manufacturers posted the greatest increase, estimated at 8% for 2006. Panelizer's production continued to exceed that of production builders from 2004 (Automated Builder, 2007).

Table 2.1 Estimated housing productions by industry segments 1996-2006 (in thousands)

Year	1996	1997	1998	1999	2000	2001
panelizers	740	762	793	801	841	877
production builders	696	698	792	889	960	984
modular	112	124	140	163	148	166
Year	2002	2003	2004	2005	2006	% change
panelizers	989	1081	1254	1377	1483	+8%
production builders	1082	1118	1241	1293	1354	+5%
modular	181	198	206	212	187	-12%

Figure 2.1 Estimated housing productions by industry segments 1996-2006 (in thousands)

Many sources of literature referred to construction project scheduling, but few of them addressed the panel stacking problem. The only known work is Shewchuk (2008). Only a few related previous works were found.

Zhang et al. (2005) proposed to replace the traditional management approach with residential construction site operation by using a management philosophy that has as its sole and unifying objective: the elimination of process waste. However, they did not address panel stacking. The waste considered was about the following aspects: 1) Missing or broken tools/equipment; 2) lack of sufficient information; 3) misstaged material; and 4) preceding work that has not been totally completed.

Jang, Lee & Choi (2007) proposed a floor-level construction material layout to minimize repositioning construction materials by the genetic algorithm. It was reported that material handling time is reduced. However, it only discussed the material layout problem, such as the crane location, but it did not address the panel stacking problem.

Hegazy et al. (1999) presented a genetic algorithm based model for site layout planning which placed facilities within a construction site. It "places the facilities", but actually did not stack the panels when they were delivered to construction site.

Beary & Abdelhamid (2005) developed a production planning model based on Lean Construction production planning concepts and Six Sigma methodology. It was reported that lean construction aimed at identifying and eliminating waste. But there is a need for continuous improvement in lean construction since there are no guidelines for implementation.

Choo et al. (1999) created a database program which implemented several lean construction techniques to help crew foremen allocate available equipment resources. However, the program did not address the panel stacking problem.

Hu (2005) presented a model based on geometric reasoning which reversed the disassembly process to produce a construction sequence. The model could generate a graph of precedence constraints. However, it did not explicitly specify how the panels should be stacked and which panel should come first. Instead, it was the responsibility of field construction crews to choose construction sequences, but such personnel are often ill-equipped to make such decisions.

Nguyen and Oloufa (2001) developed a building design framework in a solid modeling platform which generated complex building information. Nguyen (2005) proposed a framework that generated sequences of construction activities automatically. Since the framework was limited to the use of spatial information to establish construction sequences, other factors such as work spaces and panel stacking were not taken into consideration.

Chantawit et al. (2005) developed a 4DCAD-Safety application which uses scheduling information created by MS Project software to assist users in analyzing what, when, where and why safety measures are needed. Yet, this method separated safety planning with scheduling. Again, the panel stacking problem is not considered.

Constructing a building involves design tasks and construction tasks. Both practitioners and researchers have paid increasing attention to the control of the schedule of design work, because construction is commonly delayed by the lateness of design deliverables (Wang et al. 2006). However, the panel stacking problem is still not addressed.

For human resource planning in construction, most approaches allocate labor based on the assumption of a stable organizational structure for executing processes. Some researchers have forecasted human resource requirements based upon mass sampling surveys with statistical analysis (Cheng et al. 2006).

Discrete-event simulation has been used to assist construction engineers in analyzing and designing construction operation processes for years (Cheng et al. 2006). Similarly, discrete optimization techniques can be applied to generate construction schedules.

Gomar et al. (2002) investigated the mechanics of allocating a multiskilled workforce and developed a linear programming model to help optimize the multiskilled workforce assignment and allocation process in a construction project. Ahuja et al. (2004) mentioned further research should increase the use of various mathematical scheduling models such as linear programming. All of the above papers assumed panel stacking problem was solved.

In short, the automatic construction planning literature provides useful background, but no one, except Shewchuk (2008), focuses on the very first problem, which is the panel stacking problem. This research complements the previous researches by improving upon Shewchuk (2008) and hence helping workers further reduce wasted motion and total project completion time.

Chapter 3 Panel Stacking without Consideration of Interference

Abstract

More and more prefabricated wall panels are used in residential construction. Panels are manufactured in a factory and shipped to a construction site for workers to assemble. Current approaches usually aim at reducing the transportation cost and do not consider how construction workers will handle these panels after they are brought to construction site. From the observation of construction video tapes, this increases material handling workload, possibility of damaging panels, construction time, and risk of worker overload. This chapter proposes a lean approach to the panel stacking problem without consideration of interference, where panels are stacked in the exact construction sequence which means workers can work continuously to get a panel from stack and put it in place. Mathematical models and a heuristic are presented for solving the panel stacking problem. Computational experiments are conducted and results show the proposed heuristic can ensure a continuous flow and reduce total panel move distance without compromising panel transportation costs.

3.1 Introduction

More and more prefabricated wall panels are used in residential construction. In this case panels are manufactured in factory and then shipped to construction site for workers to assemble. This will bring some benefits like: reduced on-site construction time, reduced labor costs, increased product consistency, increased soundproofing, and decreased noise pollution for the indoor environment.

It is very important to determine how to transport the panels to construction site. Panels are usually arranged into stacks (Figure 1.1) and transported to construction site by trucks. Current approaches usually only aim at reducing the transportation cost and don't consider how construction workers will handle these panels after they are brought to construction site. Also the drop-off location of each stack is not pre-determined and stacks are typically dropped off at the most convenient location to drivers, even though that may increase panel move distance for workers. The construction sequence will be determined by construction foreman. If it is not the same sequence panels are arranged in stacks, workers will have to remove unwanted panels

from top of a stack until they get to the one they need. This process not only increases material handling workload, but also may cause damaged panels. In other cases, some panels are carried to their final location and temporarily braced since they are not connected with any completed panels. This additional activity (bracing) is not required if each panel connects with at least one completed panels. Overall, current panel stacking approach will result in unnecessary material handling workload and increase the total construction time.

In this chapter, we propose a lean approach to panel stacking problem which will assign panels to stacks, provide the arrangement of panels within each stack, and establish drop-off location for each stack to minimize total panel move distance.

3.2 Research Approach and Methodology

Because there is a finite set of alternative panels and configurations, it allows us to model the panel stacking problem as discrete optimization problems. Then operations research (OR) techniques can be employed. Such techniques include both optimal methods (Mixed Integer Linear Program, which takes a long time to find optimal solution) and heuristics (rapid solution, but only a near optimal solution is expected).

The objective of both optimal methods and heuristics is minimizing total weighted panel move distance which will decrease the possibility of musculoskeletal injuries of workers since total material handling workload is minimized.

The overall approach is to use computer-based methods (optimal methods and heuristics) to generate panel stacking solutions. By construction assumptions, there are the following constraints:

- i) Panels are erected in the order in which they are arranged in the stack. This ensures workers will always get the panel they want.
- ii) Workers will always remove the top panel to its final location and get it erected directly.
- iii) Except the first panel, each panel will connect with at least one completed panels. This will reduce unnecessary bracing activity.

3.3 Mathematical Model

We formulate the problem as a Mixed Integer Linear Program (MILP), using binary variables that establish the sequences of panels on each stack. Objective function is to minimize

total weighted (weighted by panel length) material handling distance (*x*-direction only, since the *y*-location of stacks are fixed). Quantity of stacks is given. In practice, we will try from the smallest number which is calculated based on the smallest size panel (actually it is a lower bound on number of stacks needed). If the problem is infeasible, then increase the number until a feasible solution is reached.

Parameters

N Total number of panels

 S_{max} Maximum possible length, any stack layer

 H_{max} Maximum height, any stack

 L_i Length of panel i

 T_i Thickness of panel i

 q_i x coordinate, final location of panel i

 L_{\min} The minimum possible panel length

 $L_{\rm max}$ The maximum possible panel length

 T_{\min} The minimum panel thickness

 $T_{\rm max}$ The maximum panel thickness

K Number of stacks

M Total length of the dropping edge

 K_{\min} Lower bound on number of stacks: $K_{\min} = \left[N / \left(\left\lfloor \frac{L}{L_{\min}} \right\rfloor \cdot J_{\max} \right) \right]$

 K_{max} Upper bound on number of stacks: $K_{\text{max}} = \left[N / \left(\left\lfloor \frac{S_{\text{max}}}{L_{\text{max}}} \right\rfloor \cdot \left\lfloor \frac{H_{\text{max}}}{T_{\text{max}}} \right\rfloor \right) \right]$

 J_{max} Upper bound on number of layers per stack: $J_{\text{max}} = \left| \frac{H_{\text{max}}}{T_{\text{min}}} \right|$

Sets

Panels set of panels $(1, 2, 3, \dots, N)$

Layers set of layers $(1, 2, 3, \dots, J_{\text{max}})$

Stacks set of stacks $(1, 2, 3, \ldots, K)$

Maxstacks set of stacks $(1, 2, 3, \ldots, K_{max})$

P[i] set of panels that is connected to panel i

Variables

 $X_{i,j,k}$ Binary variable. $X_{i,j,k} = 1$ if panel *i* is placed in layer *j* stack *k*, 0 otherwise

 U_k x coordinate of stack k

 $C_{j,k}$ Maximum panel thickness of layer j stack k

 $F_{i,i,k}$ x coordinate of the stack to which panel i is assigned

 $E_{i,j,k}$ Move distance for panel i, layer j, stack k

A mathematical model for the proposed approach, where the quantity of stacks *K* is given, is as follows:

$$Minimize \sum_{i=1}^{N} \sum_{j=1}^{J_{max}} \sum_{k=1}^{K} L_i E_{ijk}$$
 (1)

subject to
$$E_{iik} + F_{iik} \ge x_{iik}q_i$$
 $\forall i \in Panels, j \in Layers, k \in Stacks$ (2)

$$E_{iik} - F_{iik} \ge -x_{iik}q_i$$
 $\forall i \in Panels, j \in Layers, k \in Stacks$ (3)

$$F_{ijk} \le u_k + M(1 - x_{ijk})$$
 $\forall i \in Panels, j \in Layers, k \in Stacks$ (4)

$$-F_{ijk} \le -u_k + M(1 - x_{ijk})$$
 $\forall i \in Panels, j \in Layers, k \in Stacks$ (5)

$$F_{iik} \le Mx_{iik}$$
 $\forall i \in Panels, j \in Layers, k \in Stacks$ (6)

$$-F_{ijk} \le Mx_{ijk}$$
 $\forall i \in Panels, j \in Layers, k \in Stacks$ (7)

$$\sum_{i=1}^{J_{max}} \sum_{k=1}^{K} x_{ijk} = I \qquad \forall i \in Panels$$
 (8)

$$\sum_{i=1}^{N} L_{i} x_{ijk} \leq S_{max} \qquad \forall j \in Layers, k \in Stacks$$
 (9)

$$\sum_{i=1}^{J_{max}} C_{jk} \le H_{max} \qquad \forall k \in Stacks$$
 (10)

$$C_{ik} \ge T_i x_{ijk}$$
 $\forall i \in Panels, j \in Layers, k \in Stacks$ (11)

$$x_{ijk} \le \sum_{n \in P[i]} \sum_{m=1}^{j} x_{nmk} + \sum_{q=1}^{k-1} \sum_{m=1}^{J_{\text{max}}} x_{nmq} \qquad \forall i \in Panels, j \in Layers, k \in Stacks (12)$$

Where the objective function (1) minimizes total weighted material handling distance. Constraint (2) (3) are objective function absolute value forcing constraints. $E_{i,j,k}$ represents the absolute value of move distance in x direction only if $X_{i,j,k} = 1$, $E_{i,j,k} = 0$ if $X_{i,j,k} = 0$ by constraint (6). Constraint (4)-(7) are logical constraints which ensure $Y_{i,j,k}$ represents the x coordinate of stack to which panel i is assigned and make sure $Y_{i,j,k} = U_k$ only if $X_{i,j,k} = 1$, $Y_{i,j,k} = 0$ if $X_{i,j,k} = 0$. Constraint (8) forces each panel appears in exactly one layer of a stack. Constraint (9) forces total length of each layer of a stack does not exceed S_{max} . Constraint (10) forces total height of each stack does not exceed Y_{max} . Constraint (11) calculates maximum panel thickness each layer of each stack and make it equal to $Y_{i,j,k}$. Constraint (12) ensures that panel connectivity is maintained.

The above model is a variation of the generalized assignment problem, which is NP-hard. Few papers have addressed this problem mathematically before. Although the models developed cannot solve large problems (it was found that the optimal solution can be found for a problem with up to 17 panels, but needs more than 15 hours runtime), they provide insight into the problem structure. To solve the panel stacking problem quickly and easily in practice, a new algorithm for solving the problem was developed.

3.4 Heuristic

A practical problem cannot be solved optimally by the mathematical model because the size of the problem is too large for the MILP model to solve optimally. So a heuristic approach is required.

The following preliminary work is presented without the consideration interference constraints. To avoid traps, a global building direction should be specified, e.g., from north to south. We should specify the dropping edges first, along which the trucks should unload panels. Usually we choose the dropping edge for easy access of trucks. Then the building direction should be from the opposite edge to the dropping edge. For example, if the south edge of the structure is the dropping edge, the build direction is north-south. Also any panel should join to a

panel already in place, except the first panel. The heuristic only can handle rectangular building plans.

After all the panels are assigned, the drop-off location for each stack is determined. Since the larger panels are more difficult for workers to handle, we multiply panel move distance by panel length. The problem then becomes a traditional weighted mini-sum location problem, with weight corresponding to panel length. An iterative algorithm can be used (Appendix A) to calculate drop-off locations for each stack. The objective is to minimize total weighted panel move distance. Let

I: Set of panels that already assigned to a stack.

A: Set of all panels.

C: Set of candidate panels for the next panel.

N: Total number of panels.

 D_i : Distance from the center of panel i to the dropping edge.

 B_i : Distance from the center of panel i to the left side of structure (building plan rotated until the dropping edge is at the bottom)

 A_{ij} : $A_{ij} = 1$ if panel i and j are adjacent, 0 otherwise.

 L_i : Length of panel i.

 H_i : Height of panel i.

 $S_{\it rem}$: Length capacity remaining for the current layer.

 H_{rem} : Height capacity remaining for the current layer

Using the above notation (and that established previously), the algorithm is shown in the flowchart of Figure 3.1.

Figure 3.1 Algorithm Flow Chart

Note Figure 3.1 shows calculations for a single dropping edge only. But the algorithm can run for each accessible dropping edge (all the coordinates recalculated automatically) and the stacking solution having the minimum total weighted panel move distance selected.

3.5 Computational Experiments

3.5.1 Experimental Design

As outlined in Chapter 2, there is no published algorithm for panel stacking problem. The traditional emphasis in stacking is to minimize the quantity of stacks. The problem of minimizing the number of stacks is actually a two-staged fixed-orientation two-dimensional cutting stock problem. It is a variant of the constrained two-dimensional cutting stock problem (Hifi et al. 2006). If all the panels have the same thickness, then it is reduced to a one-dimensional cutting stock problem, for which several commercial software packages are available. Thus, all the experiments were assumed to have the same panel thickness, and a commercially-available business cutting stock software package (Astrokettle, 2009) was employed as the traditional approach to solve all the problems.

A set of computational experiments was performed to establish the performance of the proposed algorithm as compared to the traditional approach. Three sizes of residential home design were investigated: small (<1,000 sq.ft.), medium (1,000-2000 sq.ft.) and large (>2,000 sq.ft) which were based on the size of the house. For each scenario, 5 problems were randomly chosen from an online database (The Home Plan Group, 2009), giving fifteen problems with rectangular building plans. For each problem, the corresponding set of panels were found by 'breaking up' walls one-at-a-time into panels assuming a preferred panel length of 8 feet. These can all be found in Appendix B.

Each problem was solved using both the proposed algorithm and traditional approach. Solutions were compared in terms of (a) quantity of stacks (b) total weighted panel move distance, and (c) the percentage of panels for which connectivity is maintained (when panels are installed in the stacking order). On a construction site, it requires more activity (like additional bracing) to install a panel when it does not connect with any completed panels. Of the three criteria, (a) is the objective of traditional approach, but the traditional approach does not consider (b) and (c). Instead, our proposed algorithm tried to minimize (a) and (b) under the constraint (c) must be 100%.

3.5.2 Results

Experimental results are presented in Table 3.1. The proposed approach reduces the total weighted panel move distance in all cases, for which the improvement ranged from 18 - 68%. Connectivity was 100% for all cases with the proposed algorithm since it will always maintain connectivity. And using the traditional approach the connectivity ranged from 26 - 59%. Finally, the proposed approach resulted in the same quantity of stacks in all cases except one (Med-5). In terms of solution speed, the proposed algorithm will always provide a solution in less than one second.

Table 3.1 Computational results for Proposed Algorithm vs. Traditional Approach

		Traditional Approach					Propos	ed Algorit	thm
Case	# of panels	# of stacks	Total move distance, ft	Total weighted move distance, ft.2	Connectivity, %	# of stacks	Total move distance, ft	Total weighted move distance, ft.2	Connectivity, %
Small-1	27	2	116	730	26	2	93	599	100
Small-2	26	2	143	960	34	2	109	708	100
Small-3	21	2	102	655	47	2	59	372	100
Small-4	25	2	177	1,119	56	2	109	641	100
Small-5	27	2	152	970	44	2	79	484	100
Med-1	35	3	259	1,632	57	3	168	1,037	100
Med-2	52	5	618	3,886	28	5	269	1,658	100
Med-3	27	2	111	697	41	2	62	375	100
Med-4	39	3	317	1,997	40	3	128	796	100
Med-5	43	3	329	2,075	39	4	155	974	100
Big-1	60	5	552	3,477	43	5	206	1,310	100
Big-2	47	4	351	2,208	49	4	136	800	100
Big-3	49	4	452	2,831	33	4	179	1,146	100
Big-4	52	4	473	2,979	42	4	346	2,211	100
Big-5	46	4	386	2,427	59	4	132	780	100

In order to show the difference between traditional approach and the proposed algorithm, please see an example (Small-1) in Figure 3.2 which shows the building structure.

Figure 3.2 Building structure

The stacking solution using the traditional approach is shown in Table 3.2. From table 3.2 we can see that the solution contains two stacks.

Table 3.2 Stacking solution using the traditional approach

No	Mult	Size	Offe	cut	Panels
Stac	k 1				
1	1 156	2	14	17	15
2	1 156	2	2	26	
$\begin{vmatrix} 2 \\ 3 \end{vmatrix}$	1 156	4	6	18	25
4 5	1 156	4	11	23	27
5	1 156	6	3	20	10
6	1 156	6	4	21	13
7	1 156	6	5	22	1
8	1 156	60	8		
9	1 156	60	9		
Stac	k 2				
1	1 156	60	12		
2	1 156	60	16		
$\begin{vmatrix} 2 \\ 3 \end{vmatrix}$	1 156	60	19		
4	1 156	60	24		
5	1 156	62	7		

The stacking solution for the proposed algorithm is shown in Table 3.3. From table 3.3 we can see that the solution contains two stacks as well which is the same as the solution from traditional approach.

In order to show the impact on panel move distance and non-connecting panels by different stacking solutions, panelization plan is shown with the panels labeled by build sequence for each approach in Figure 3.3 & 3.4. From these figures, it can be seen the traditional approach results in excessive walking and more non-connecting panels. Also note that the traditional approach would result in interference during construction. Figure 3.4 shows top – down, left – right build direction, which leads to smoother construction.

Table 3.3 Stacking solution using the proposed approach

```
*** smallcase1.txt
** Dropping Edge (1=South, 2=West, 3=North,4=East)
** NStacks
** stack#
           xloc #layers j #panels panels
            80.3
                             2
                        1
   1
                    9
                                  10 11
                             3
                                  12 1 15
                        2
                        3
                             1
                                  2
                        4
                            1
                                  9
                        5
                             2
                                  14 13
                        6
                            2
                                  16 17
                        7
                             1
                                  3
                        8
                             2
                                  8 18
                        9
                             3
                                  19 20 21
   2
           223.3
                        1
                            4
                                  22 23 25 26
                        2
                             2
                                  24 27
                        3
                             1
                                  4
                        4
                             1
                                  7
                             1
                                  6
                                  5
```


Figure 3.3 Solution of traditional approach (by build sequence)

Figure 3.4 Solution of proposed approach (by build sequence)

3.5.3 Discussion of Results

The computational results indicate the proposed algorithm performed much better than traditional approach in 14 cases, because it provided much less total panel move distance and much better connectivity with the same quantity of stacks. Only in Medium case 5, the traditional approach provided one stack less, but much worse in total panel move distance and connectivity. The advantages of proposed algorithm against the tradition approach include much less total panel move distance (less workload) and better panel connectivity issue (increase working efficiency). It is not surprising that proposed algorithm will perform much better in panel move distance since it is also one of our objectives. Instead, the traditional approach has just one objective.

From these computational results, we can see the proposed research can reduce worker's workload by reducing the total weighted panel move distance and providing much better connectivity in working with panels.

Chapter 4 Panel Stacking with Consideration of Interference

Abstract

Chapter 3 mainly solved the panel stacking problem without the consideration of interference. But in practice, there may be several kinds of interference (Figure 1.7). Such issues are extremely difficult to model mathematically. From Chapter 2 we can know that Shewchuk (2008) is the only algorithm that solve panel stacking problem with consideration of interference. But it still has some limitations: (1) the zone width is not optimally calculated, (2) cannot solve non-rectangular cases, and (3) cannot solve the panels left in the last zone. This chapter proposes new algorithms which are based on Shewchuk (2008) and address the limitations (1) - (3) mentioned above.

4.1 Introduction

Chapter 3 discusses the panel stacking problem without consideration of interference constraints which means extra work (moving some panels to somewhere else) is needed to continue working. But in practice, in addition to the constraints considered in last chapter, we still have "interference constraints" to avoid any interference problems in the practical work. When put into practice, the walking clearance around a stack will be required to provide enough room for workers to walk around and unload the panels.

Some interference is hard to be incorporated to mathematical models since we do not know if such interference exists until we know which panel will be assigned to which stack.

Usually interference happens in the last stack since by that time the number of finished panels has increased. As a result, we should choose dropping edge carefully to minimize the interference occurring in the last stack.

The only known algorithm which tackles panel stacking problem is Shewchuk (2008). This work solves the panel stacking problem by splitting building plan into vertical zones which can provide a feasible solution without interference. Zone 1 only has one stack type which has the panels in area 1A and all the other zones have two stack types which have the panels in corresponding area (Figure 4.1). Since the building direction is from North to South and from West to East (in Figure 4.1), so the stack unloading sequence is 1A, 2A, 2B, 3A, 3B. Stack type

1A, 2A, and 3A are placed on the dropping edge, since we don't need tip a panel off the bottom of stack. Stack type 2B and 3B have an offset, due to the need to tip the horizontal finished panels on the dropping edge off the bottom of stack.

Figure 4.1 Panelized Wall Construction Process (Shewchuk, 2008)

However, this algorithm has the following limitations:

- 1) Zone width is determined by the maximum panel length which is not the best solution. All zones have the same width, w, which is determined by the maximum panel length except the last zone. Plus, the width of last zone, w^* , can be greater than w, i.e., $w \le w^* < 2w$. All the above situations may increase the total weighted panel move distance.
- 2) The algorithm can only handle rectangular building plans.
- 3) The panels in zone 3B in Figure 4.1 are referred as interfering panels. The algorithm can handle at most only the last interfering panel in the stack.

The new proposed algorithm will be developed based on Shewchuk (2008) and address the shortcomings (1) — (3) mentioned above.

- i. The new proposed algorithm will optimize the zone width and stack locations which will provide a solution with less total weighted panel move distance. A new iterated algorithm will be developed to solve the zone width problem.
- ii. The new proposed algorithm will be able to handle both rectangular and non-rectangular building plans.
- iii. The new proposed algorithm will determine how to handle the interfering panels in the last zone which is not addressed in Shewchuk (2008).
- iv. The new proposed algorithm will check building direction of Left→Right and Right→Left and provide a better solution in terms of panel move distance, while Shewchuk (2008) will only check building direction of Left→Right.

Above all, the new proposed algorithm will provide a solution which includes:

- The number of stacks,
- Which panel goes to which stack and the location of each panel in a stack,
- Orientation of each panel,
- Which dropping edge will be chosen among all possible dropping edges,
- The location of each stack,
- How to handle the interfering panels in the last stack.

4.2 Improvement 1 — Minimize Zone Width

4.2.1 Algorithm

Shewchuk (2008) split the building plan into vertical zones which have the same zone width except possibly the last. Also each zone is divided vertically into a lower and an upper zone based on 'unload zone height'. Meanwhile stack clearance is calculated which ensures enough room for workers to work around stacks. Please refer to Shewchuk (2008) for additional details. In the algorithm, zone width and unload zone height are calculated for all zones based on the maximum panel length and stack length (see Figure 1.3). It is actually a relaxation, and the maximum panel width and stack length in the current zone should be used. In order to tighten the calculation, a new iterated algorithm was developed as follows and here are some notations:

Input Parameters

H = panel height, inch.

 $w_dia = worker diameter, inch.$

 L_{min} = minimum panel length (inch), all stacks

 L_0 = maximum panel length (inch), all stacks

mc = move clearance, inch..

 $M = \text{zone width multiplier } (M \ge 1)$

Variables

 L_{max} = maximum panel length (inch), current stack

 L_S = maximum stack length (inch), current stack

W = current zone width

 W_{new} = current zone width from current iteration

 H^* = unload zone height, current stack

1. Calculate initial value for unload zone height, H^*_{max} , for all zones

$$H^*_{max} = \max\{H_{min}, (f_1(L) + D/2 + w_dia/2), (f_2(L) + L/2 + 2 \cdot w_dia), (f_3(L) + D^*/2)\},$$

Shewchuk (2008)

where

$$H_{min} = H + mc + H + w_dia + mc$$

$$f_1(L) = \max\{D/2, Y_{r,min}\}\$$

$$f_2(L) = \max\{L/2 + w_dia, Y_{r,min}\}\$$

$$f_3(L) = \max\{D^*/2, Y_{r,min}\}$$

$$Y_{r,min} = H + w_dia/2$$

$$D = \sqrt{L^2 + H^2}$$

$$D^* = \sqrt{(L + 2 \cdot w_dia)^2 + (H + 2 \cdot w_dia)^2}$$

and $L = L_0$

2. Calculate initial value for stack clearance, sc and minimum zone width, W_{min}

$$sc = \max\{3, D - L_s, (D_{sum} - L_s)/2\}, \text{ Shewchuk (2008)}$$

where $D = \sqrt{L^2 + H^2}$

$$D^* = \sqrt{(L + 2 \cdot w_dia)^2 + (H + 2 \cdot w_dia)^2}$$

$$D_{sum} = D*/2 + D'/2$$

$$D' = \sqrt{(L + 2 \cdot w_dia)^2 + H^2}$$

and $L = L_{min}$

$$W_{min}$$
 = minimum zone width = $(sc + L_s + sc) * M$

Where $L_S = L_{min}$

3. Initiate zone width for current zone

Each zone starts from zone width:

$$W = W_{min}$$

If current zone width exceeds building plan, it means current zone is the last zone, go to step 6.

Otherwise, go to step 4.

4. Update current zone width

If current zone width exceeds building plan, it means current zone is the last zone, go to step 6.

Otherwise calculate and record panel set which include panels within current zone, update L_{max} , L_S correspondingly.

Update sc and current zone width W_{new} .

$$sc = \max\{3, D - L_s, (D_{sum} - L_s)/2\}, \text{ Shewchuk (2008)}$$
Where $D = \sqrt{L^2 + H^2}$

$$D^* = \sqrt{(L + 2 \cdot w_dia)^2 + (H + 2 \cdot w_dia)^2}$$

$$D_{sum} = D^*/2 + D^*/2$$

$$D' = \sqrt{(L + 2 \cdot w_dia)^2 + H^2}$$
and $L = L_{max}$

$$W_{new} = (sc + L_s + sc) * M$$

If $W_{new} = W$, then find current zone width W_{new} , go to step 5.

If $W_{new} > W$, then set $W = W_{new}$, go to step 4.

If $W_{new} < W$, then if panel set within current zone equals some previous panel set for current zone, we find current zone width W, go to step 5, otherwise go to step 4.

5. Update unload zone height, H^* , for current zone

Update H^* using L_{max} .

$$H^* = \max\{H_{min}, (f_1(L) + D/2 + w_dia/2), (f_2(L) + L/2 + 2 \cdot w_dia), (f_3(L) + D^*/2)\},$$

Shewchuk (2008)

where
$$H_{min} = H + mc + H + w_dia + mc$$

 $f_1(L) = \max\{D/2, Y_{r,min}\}$

$$f_2(L) = \max\{L/2 + w_dia, Y_{r,min}\}\$$

 $f_3(L) = \max\{D^*/2, Y_{r,min}\}\$
 $Y_{r,min} = H + w_dia/2$

and $L = L_{max}$

Since $H^* \leq H^*_{max}$, New panels may be introduced into current zone. Update L_{max} , L_S and W_{new} correspondingly.

If $W_{new} > W$, then set $H^* = H^*_{max}$.

If current zone is the last zone, then END.

Otherwise go to step 3.

6. Update zone width for last zone

Zone start from right side of the building plan, zone width increasing direction is from right to left. Let current zone width $W = W_{min}$, calculate and record panel set which include panels within current zone, update L_{max} , L_S correspondingly.

Update sc and current zone width W_{new} .

$$sc = \max\{3, D - L_s, (D_{sum} - L_s)/2\}, \text{ Shewchuk (2008)}$$
Where $D = \sqrt{L^2 + H^2}$

$$D^* = \sqrt{(L + 2 \cdot w_dia)^2 + (H + 2 \cdot w_dia)^2}$$

$$D_{sum} = D^*/2 + D'/2$$

$$D' = \sqrt{(L + 2 \cdot w_dia)^2 + H^2}$$
and $L = L_{max}$

$$W_{new} = (sc + L_s + sc) * M$$

If $W_{new} = W$, then find current zone width W_{new} , go to step 5.

If $W_{new} > W$, then set $W = W_{new}$, go to step 6.

If $W_{new} < W$, then if panel set within current zone equals some previous panel set for current zone, we find current zone width W, go to step 5, otherwise go to step 6.

The whole process is shown in Figure 4.2. And Figure 4.3 shows the difference between Shewchuk (2008) and the proposed algorithm. White zone in Figure 4.3 shows the "interfering zone" which contains the interfering panels. Obviously the proposed algorithm will have a smaller "interfering zone" which result in less interfering panels than Shewchuk (2008).

Figure 4.2 Process of the algorithm

Figure 4.3 Last zone, Shewchuk (2008) vs. Proposed Algorithm

4.2.2 Experimental Design

A set of computational experiments was performed to establish the performance of both the proposed panel stacking algorithm and Shewchuk (2008). Three sizes of residential home design were investigated: small (<1500 sq.ft.), medium (1500-3000 sq.ft.) and large (>3000 sq.ft.) based on the size of the house. For each scenario, 5 problems were randomly chosen from an online database (The Home Plan Group, 2009), giving fifteen problems with rectangular building plans since Shewchuk (2008) can only solve rectangular building plans.

The computational experiments were performed for different panelization strategy. For each problem, the corresponding set of panels were found by 'breaking up' walls one-at-a-time into panels using different preferred panel length, 8 ft., 10 ft. & 12 ft., giving total 45 problems. These can all be found in Appendix C. From there it can be seen if the panelization would affect the performance of proposed algorithm.

Each problem was solved using both the proposed panel stacking algorithm and Shewchuk (2008). Solutions were compared in terms of (a) total weighted panel move distance and (b) the number of interfering panels left in the last zone.

4.2.3 Results

Experimental results are presented in Table 4.1. The table compares total weighted panel move distance and number of stacks of for both approaches. The cases are named in this format: Sa-b. The first character S indicates the size of the problem (S: small cases, M: medium cases, and L: large cases). The number a indicates the case number and number b indicates the panelization parameter (1: preferred panel length is 8 ft., 2: preferred panel length is 10 ft., and 3: preferred panel length is 12 ft.). For example, case M3-2 would be medium case 3 with preferred panel length 10 ft.

In all cases, the proposed algorithm reduces both the total weighted panel move distance and the number of interfering panels. In terms of solution speed, the proposed algorithm solved each problem in less than one second.

Table 4.1 Computational results for Proposed Algorithm vs. Shewchuk (2008)

_	1		Original Algorithm			roved Algorit			
Case	p^1	s^2	TWD^3 , ft. ²	ip^4	s^2	TWD^3 , ft. ²	ip ⁴	IMP ⁵ , %	IMP^6 , 9
S1-1	31	4	1,336	8	5	1,299	6	3	25
S2-1	37	3	1,804	12	5	1,614	7	11	42
S3-1	29	4	1,612	6	5	1,535	4	5	33
S4-1	31	2	1,930	7	3	1,301	2	33	71
S5-1	27	2	1,522	7	4	1,296	4	15	43
S1-2	28	4	1,386	9	5	1,349	7	3	22
S2-2	33	3	1,793	11	5	1,677	6	6	45
S3-2	23	4	1,672	5	6	1,588	3	5	40
S4-2	26	2	1,909	6	3	1,409	2	26	67
S5-2	23	2	1,506	6	3	1,307	4	13	33
S1-3	24	4	1,316	9	5	1,298	7	1	22
S2-3	28	3	1,796	10	5	1,609	6	10	40
S3-3	20	4	1,594	3	6	1,529	2	4	33
S4-3	24	2	1,894	5	3	1,499	4	21	20
S5-3	23	2	1,498	6	3	1,260	4	16	33
M1-1	57	5	2,681	6	6	2,385	3	11	50
M2-1	69	6	4,411	3	6	3,481	0	21	100
M3-1	67	5	3,855	7	5	3,705	6	4	14
M4-1	78	8	3,833 4,469	4	9	3,703	0	26	100
	62			4	6		0	26 16	
M5-1	62 49	6	3,227	7		2,722		9	100
M1-2		5	2,678		6	2,441	4		43
M2-2	57	6	4,297	1	6	3,295	0	23	100
M3-2	47	5	3,678	5	5	3,529	4	4	20
M4-2	65 53	7	4,675	3	8	3,469	0	26	100
M5-2	52	5	3,321	4	5	2,843	0	14	100
M1-3	43	5	2,532	5	6	2,354	3	7	40
M2-3	47	5	4,752	1	4	3,484	0	27	100
M3-3	44	5	3,687	5	5	3,539	4	4	20
M4-3	58	7	4,398	2	8	3,475	0	21	100
M5-3	46	5	3,340	2	5	2,924	0	12	100
L1-1	114	13	9,022	5	13	5,402	3	40	40
L2-1	111	12	6,072	5	12	4,936	0	19	100
L3-1	108	10	8,769	7	10	6,253	3	29	57
L4-1	114	13	8,750	5	13	4,556	0	48	100
L5-1	111	13	9,033	5	13	6,633	3	27	40
L1-2	93	11	7,926	4	11	5,703	3	28	25
L2-2	85	11	5,973	4	11	4,922	0	18	100
L3-2	94	9	7,531	6	9	6,138	3	18	50
L4-2	90	12	7,130	4	13	5,123	0	28	100
L5-2	91	10	8,413	2	10	6,694	1	20	50
L1-3	82	10	8,431	4	10	6,168	3	27	25
L2-3	74	10	6,096	4	10	5,134	0	16	100
L3-3	72	8	6,921	5	9	6,094	2	12	60
L4-3	80	12	8,561	3	12	6,350	0	26	100
L5-3	81	10	8,232	3	9	6,476	1	21	67
: number of panels									
: number of stacks									
WD ³ : total weighted panel move distance									
	of interfer								
			listance, and I						

In order to show the difference between the proposed algorithm and Shewchuk (2008), please see the case S3-1 in Figure 4.4 which shows the building plan. Table 4.2 and 4.3 show the solution from Shewchuk (2008) and the proposed algorithm, respectively. From the two tables, we can see the proposed algorithm will have one zone more than Shewchuk (2008), just like Figure 4.3, which result in less interfering panels. Also, the proposed algorithm has smaller zone width and less panel move distance (239,606 in. 2 vs. 244,080 in. 2).

Figure 4.4 Building plan

Table 4.2 Solution from Shewchuk (2008)

```
** Stacking Plan
** File: example.stk
** Dropping Edge (1=North, 2=South, 3=East,4=West)
2
** # of zones
2
**zone left edge X coordinate
1
         6.0
2
        228.0
** # of Stacks
** stack
                  flush
** # zone type
                                  yloc #layers j #panels panels
                                                                          orientation
                  edge
                           xloc
       1 A RIGHT
                          117.0
                                  48.0
                                          6
                                                1
                                                                9
                                                                               2
                                                2
                                                       1
                                                               10
                                                                               2
                                                3
                                                       1
                                                               14
                                                                               1
                                                4
                                                               15
                                                                               1
                                                5
                                                       1
                                                               16
                                                                               1
                                                6
                                                                               3
                                                       1
                                                               1
            A RIGHT 344.0
                                  48.0
                                                               11
                                                                               2
                                          6
                                                 1
                                                 2
                                                       1
                                                               12
                                                                               2
                                                 3
                                                                               2
                                                               13
                                                       1
                                                                               2
                                                 4
                                                                6
                                                 5
                                                       1
                                                                7
                                                                               2
                                                                               2
                                                 6
                                                       1
                                                                8
  3
                                          5
                                                                2
                                                                               3
                  LEFT 344.0
                                  90.0
                                                 1
                                                       1
                                                 2
                                                               17
                                                       1
                                                                               1
                                                 3
                                                       3
                                                               19 18 20
                                                                               1 1 1
                                                 4
                                                       1
                                                               21
                                                                               3
                                                 5
                                                      2
                                                              26 27
                                                                               1 1
                                          7
  4
        2
                LEFT 344.0
                                  90.0
                                                 1
                                                       1
                                                                3
                                                                               3
                                                 2
                                                       1
                                                               4
                                                                               3
                                                 3
                                                       1
                                                               22
                                                                               3
                                                 4
                                                                               3
                                                       1
                                                               23
                                                 5
                                                      2
                                                              24 25
                                                                               33
                                                       2
                                                              28 29
                                                 6
                                                                               11
                                                       1
                                                               5
                                                                                 3
** # of interfering panels
6: 22 23 24 25 28 29
** weighted panel move distance
232151
```

Table 4.3 Solution from proposed algorithm

```
** Stacking Plan
** File: example.stk
** Dropping Edge (1=North, 2=South, 3=East,4=West)
** # of zones
3
**zone left edge X coordinate
1
          6.0
2
         210.0
3
         258.0
** # of Stacks
5
** stack
                  flush
** # zone type
                                  yloc #layers j #panels panels
                                                                           orientation
                  edge
                           xloc
       1 A RIGHT
                           102.0
                                  48.0
                                          6
                                                 1
                                                                 9
                                                                                2
                                                                                2
                                                 2
                                                       1
                                                                10
                                                 3
                                                       1
                                                                14
                                                                                1
                                                 4
                                                                15
                                                                                1
                                                 5
                                                                16
                                                                                1
                                                 6
                                                                                3
                                                                1
                                                                                2
  2
       2
                RIGHT
                           351.0
                                   48.0
                                                                11
                                                 1
                                                                                2
                                                 2
                                                                12
                                                                                3
  3
        2
                 LEFT
                           351.0
                                   90.0
                                                 1
                                                                2
             В
                                          6
                                                 2
                                                                3
                                                                                3
                                                 3
                                                                4
                                                                                3
                                                 4
                                                               17
                                                                                1
                                                 5
                                                       3
                                                               19 18 20
                                                                                111
                                                 6
                                                               21
                                                                                3
                                                                                2
                                                               13
  4
        3
             A RIGHT
                           369.0
                                   48.0
                                                 1
                                                       1
                                                                                2
                                                       1
                                                                6
                                                 3
                                                                7
                                                                                2
                                                       1
                                                                8
                                                                                2
                                                 4
                                                       1
  5
        3
             В
                 LEFT
                           369.0
                                   90.0
                                          7
                                                 1
                                                       2
                                                               28 29
                                                                                1 1
                                                 2
                                                       1
                                                               26 27
                                                                                1 1
                                                 3
                                                                                3
                                                       1
                                                               5
                                                 4
                                                       1
                                                              25
                                                                                3
                                                 5
                                                                                3
                                                       1
                                                              24
                                                                                3
                                                       1
                                                              23
                                                 6
                                                       1
                                                              22
** # of interfering panels
4: 25 24 23 22
** weighted panel move distance
```

4.2.4 Discussion of Results

Improvement was found in all cases. Improvement on panel move distance ranged from 1.35-47.93%, and improvement on interfering panels ranged from 20-100%. The computational results indicate the proposed panel stacking algorithm performed better than Shewchuk (2008) in all cases, because it provided less total weighted panel move distance and interfering panels. It is not surprising that proposed algorithm will perform better in panel move distance since zone width is optimized for each zone and from Figure 4.3 it can be seen the proposed algorithm will have less interfering panels than Shewchuk (2008).

A summary is presented in Table 4.4. From the summary we can see that the proposed algorithm can provide more improvement on panel move distance in large cases than small cases. It is not surprising since the larger the problem, more zones it will have which results in more improvement. In terms of the improvement on interfering panels, the proposed algorithm can provide a slight more improvement in medium and large cases than small cases, it maybe because there are more interfering panels in the last zone for medium and large cases. Regarding the panelization strategy, we can see from the summary that the proposed algorithm can provide more improvement if the preferred panel length 8 ft. is selected. When 8 ft. is selected as the preferred panel length, it will result in more panels and smaller average panel length which will possibly result in smaller zone width, and as a result, it will possibly result in more improvement on both improvements on panel move distance and interfering panels. From these computational results, we can see the proposed algorithm performs better in larger cases with the preferred panel length 8 ft.

Table 4.4 Summary for the computational results

Case	Average improvement on panel move distance, %	Average improvement on interfering panels, %				
Small - panelization 8ft	13.11	42.86				
Small - panelization 10ft	10.72	41.53				
Small - panelization 12ft	10.53	29.78				
Medium - panelization 8ft	15.47	72.86				
Medium - panelization 10ft	15.29	72.57				
Medium - panelization 12ft	14.23	72.00				
Large - panelization 8ft	32.41	67.43				
Large - panelization 10ft	22.54	65.00				
Large - panelization 12ft	20.34	70.33				

4.3 Improvement 2 — Solve for non-rectangular cases

4.3.1 Algorithm

When the building plan is non-rectangular, which Shewchuk (2008) could not solve, the idea of the proposed algorithm is similar to Shewchuk (2008). First, zone width and unload zone height will be calculated based on the algorithm described in chapter 4.2. Then each zone will be examined: if the zone is rectangular, it will be the same as Shewchuk (2008), otherwise, it will provide different solutions based on the shape of the zone and unload zone height.

The follows will show how the proposed algorithm perform for each situations (first zone-type a, second zone-type b, etc.)

1. First Zone (stack type a)

1.1 When the width of first zone is calculated like Figure 4.5 and $H_1^* + offset < H_0 - L_{max}$, Where L_{max} = maximum panel length (inch), current stack H_0 = maximum distance from the top edge of the building plan to the dropping edge Stack 1a in the location as Figure 4.5 indicates. Calculate x coordinate $Xstack_{1a}$:

$$Xstack_{1a} = \frac{W_1}{2}$$

Calculate y coordinate of stack 1a $Ystack_{1aold}$ following Shewchuk (2008). Then now $Ystack_{1anew} = Ystack_{1aold} + offset$

If $H_1^* + offset \ge H_0 - L_{max}$ and $H_{llow}^* + offset < H_0$, we put stack 1a in the location as Figure 4.6 indicates.

Figure 4.5 Non-rectangular, Zone 1, case a Figure 4.6 Non-rectangular, Zone 1, case b

Where H_{Ilow}^* = unload zone height calculated based on lift activity L3 and L4 (Shewchuk et al., 2009, Figure 4.7). L3 and L4 are two lift activities which will be used when the space is limited, they are illustrated in Figure 4.7.

Activity	Horizontal Panels	Vertical Panels					
L1	$y \uparrow \longrightarrow_{X} \longrightarrow \leftarrow stack$						
L3	() () () () () () () () () ()						
L4	-						

Figure 4.7 Lift activity (Shewchuk et al., 2009)

Calculate x coordinate Xstac k_{1a} :

$$Xstack_{1a} = \frac{W_1}{2}$$

Calculate y coordinate of stack 1a Ystack_{1aold} following Shewchuk (2008). Then now

$$Ystack_{lanew} = Ystack_{laold} + offset$$

If $H_{llow}^* + offset \ge H_0$, we put stack 1a in the location as Figure 4.8 indicates.

Calculate x coordinate Xstac k_{1a} :

$$Xstack_{1a} = \frac{W_1}{2} + W_0$$

Calculate y coordinate of stack 1a $Ystack_{Iaold}$ following Shewchuk (2008). Then now

$$Ystack_{1anew} = Ystack_{1aold}$$

Figure 4.8 Non-rectangular, Zone 1, case c

1.2 When the width of first zone is calculated like Figure 4.9 and $H_1^* + offset < H_0 - L_{max}$ Stack 1a in the location as Figure 4.9 indicates. Calculate x coordinate $Xstack_{1a}$:

$$Xstack_{1a} = \frac{W_1}{2}$$

Calculate y coordinate of stack 1a Ystack_{1aold} following Shewchuk (2008). Then now

$$Ystack_{lanew} = Ystack_{laold} + offset$$

If $H_I^* + offset \ge H_0 - L_{max}$ and $H_{Ilow}^* + offset < H_0$, stack 1a in the location as Figure 4.10 indicates.

Figure 4.9 Non-rectangular, Zone 1, case d Figure 4.10 Non-rectangular, Zone 1, case e

Calculate x coordinate Xstac k_{1a} :

$$Xstack_{1a} = \frac{W_1}{2}$$

Calculate y coordinate of stack 1a Ystack_{1aold} following Shewchuk (2008). Then now

$$Ystack_{lanew} = Ystack_{laold} + offset$$

If $H_{Ilow}^* + offset \ge H_0$, stack 1a in the location as Figure 4.11 indicates.

Calculate x coordinate Xstac k_{1a} :

$$Xstack_{1a} = \frac{3}{2}W_1$$

Calculate y coordinate of stack 1a Ystack_{1aold} following Shewchuk (2008). Then now

$$Ystack_{Ianew} = Ystack_{Iaold} + offset$$

Situation like Figure 4.12 is similar to situation 1.2.

Figure 4.11 Non-rectangular, Zone 1, case f Figure 4.12 Non-rectangular, Zone 1, case g

1.3 When the width of first zone is calculated like Figure 4.13:

Figure 4.13 Non-rectangular, Zone 1, case h

Stack 1a in the location as Figure 4.13 indicates. Calculate x coordinate $Xstack_{1a}$:

$$Xstack_{1a} = \frac{W_1}{2}$$

Calculate y coordinate of stack 1a $Ystack_{1aold}$ following Shewchuk (2008). Then now $Ystack_{1anew} = Ystack_{1aold}$

2. Zone i > 1 (except last zone), stack type a

2.1 When the width of zone i is calculated like Figure 4.14 and $H_i^* + offset < H_0 - L_{max}$, Stack ia in the location as Figure 4.14 indicates. Calculate x coordinate $Xstack_{ia}$:

$$Xstack_{ia} = \sum_{j=1}^{i-1} W_j + \frac{W_i}{2}$$

Calculate y coordinate of stack ia Ystackiaold following Shewchuk (2008). Then now

$$Ystack_{ianew} = Ystack_{iaold} + offset$$

Figure 4.14 Non-rectangular, Zone i-type A-case a

If $H_i^* + offset \ge H_0 - L_{max}$ and $H_{ilow}^* + offset < H_0$, stack ia in the location as Figure 4.15 indicates. Calculate x coordinate $Xstack_{ia}$:

$$Xstack_{ia} = \sum_{j=1}^{i-1} W_j + \frac{W_i}{2}$$

Figure 4.15 Non-rectangular, Zone *i*-type A-case b

Calculate y coordinate of stack ia Ystack_{iaold} following Shewchuk (2008). Then now

$$Ystack_{ianew} = Ystack_{iaold} + offset$$

If $H_{ilow}^* + offset \ge H_0$, stack ia in the location as Figure 4.16 indicates.

Calculate *x* coordinate *Xstack_{ia}*:

$$Xstack_{ia} = \sum_{i=1}^{i-1} W_j + \frac{W_i}{2} + W_0$$

Calculate y coordinate of stack ia Ystack_{iaold} following Shewchuk (2008). Then now

$$Ystack_{ianew} = Ystack_{iaold}$$

If a location like Figure 4.16 could not be found, stack ia in the location as Figure 4.17 indicates. Calculate x coordinate $Xstack_{ia}$:

$$Xstack_{ia} = \sum_{j=1}^{i-1} W_j + \frac{W_i}{2}$$

Figure 4.16 Non-rectangular, Zone i-type A- case c

Figure 4.17 Non-rectangular, Zone i-type A-case d

Calculate y coordinate of stack ia Ystack_{iaold} following Shewchuk (2008). Then now

$$Ystack_{ianew} = Ystack_{iaold} + offset$$

In this situation, stack *i*a will only contain the exterior panels E1.

Situation like Figure 4.18 is similar to situation 2.1

Figure 4.18 Non-rectangular, Zone i-type A-case e

2.2 When the width of zone i is calculated like Figure 4.19:

Figure 4.19 Non-rectangular, Zone i-type A-case f

Stack *i*a in the location as Figure 4.19 indicates. Calculate *x* coordinate *Xstack_{ia}*:

$$Xstack_{ia} = \sum_{j=1}^{i-1} W_j + \frac{W_i}{2}$$

Calculate y coordinate of stack ia $Ystack_{iaold}$ following Shewchuk (2008). Then now $Ystack_{ianew} = Ystack_{iaold}$

3. Zone i > 1 (except last zone), stack type b

3.1 When the width of zone i is calculated like Figure 4.20:

Figure 4.20 Non-rectangular, Zone *i*-type B-case a

Stack *i*b in the location as Figure 4.20 indicates. Calculate *x* coordinate *Xstack_{ib}*:

$$Xstack_{ib} = \sum_{j=1}^{i-1} W_j + \frac{W_i}{2}$$

Calculate y coordinate of stack ib Ystackibold following Shewchuk (2008). Then now

$$Ystack_{ibnew} = Ystack_{ibold} + offset$$

3.2 When the width of zone i is calculated like Figure 4.21:

Figure 4.21 Non-rectangular, Zone i-type B-case b

Stack *i*b in the location as Figure 4.21 indicates. Calculate *x* coordinate *Xstack_{ib}*:

$$Xstack_{ib} = \sum_{j=1}^{i-1} W_j + \frac{W_i}{2}$$

Calculate y coordinate of stack ib Ystack_{ibold} following Shewchuk (2008). Then now

$$Ystack_{ibnew} = Ystack_{ibold} + offset$$

3.3 When the width of zone *i* is calculated like Figure 4.22:

Figure 4.22 Non-rectangular, Zone *i*-type B-case c

Stack *i*b in the location as Figure 4.22 indicates. Calculate *x* coordinate *Xstack_{ib}*:

$$Xstack_{ib} = \sum_{j=1}^{i-1} W_j + \frac{W_i}{2}$$

Calculate y coordinate of stack ib Ystack_{ibold} following Shewchuk (2008). Then now

$$Ystack_{ibnew} = Ystack_{ibold}$$

3.4 When the width of zone *i* is calculated like Figure 4.23:

Stack *i*b in the location as Figure 4.23 indicates. Calculate *x* coordinate *Xstack_{ib}*:

$$Xstack_{ib} = \sum_{i=1}^{i-1} W_j + \frac{W_i}{2}$$

Calculate y coordinate of stack ib Ystack_{ibold} following Shewchuk (2008). Then now

$$Ystack_{ibnew} = Ystack_{ibold}$$

Figure 4.23 Non-rectangular, Zone *i*-type B-case d

4. Zone i > 1 (last zone), stack type a

4.1 When the width of first zone is calculated like Figure 4.24 and $H_i^* + \textit{offset} < H_0 - L_{\max}$,

Figure 4.24 Non-rectangular, Last Zone-type A-case a

Stack *i*a in the location as Figure 4.24 indicates. Calculate *x* coordinate *Xstack_{ia}*:

$$Xstack_{ia} = L_B - \frac{W_i}{2}$$

Where L_B is the total building length.

Calculate y coordinate of stack ib Ystackiaold following Shewchuk (2008). Then now

$$Ystack_{ianew} = Ystack_{iaold} + offset$$

If $H_i^* + offset \ge H_0 - L_{max}$ and $H_{ilow}^* + offset < H_0$, we put stack ia in the location as Figure 4.25 indicates.

Calculate *x* coordinate *Xstack*_{ia}:

$$Xstack_{ia} = L_B - \frac{W_i}{2}$$

Calculate y coordinate of stack *ib Ystack*_{iaold} following Shewchuk (2008). Then now $Ystack_{ianew} = Ystack_{iaold} + offset$

If $H_{ilow}^* + offset \ge H_0$, we still put stack ia in the location as Figure 4.25 indicates. But stack ia will only contain those exterior panels like shown in Figure 4.26.

Figure 4.25 Non-rectangular, Last Zone-type A-case b

Figure 4.26 Non-rectangular, Last Zone-type A-case c

4.2 When the width of first zone is calculated like Figure 4.27,

Stack *i*a in the location as Figure 4.27 indicates. Calculate *x* coordinate *Xstack_{ia}*:

$$Xstack_{ia} = L_B - \frac{W_i}{2}$$

Where L_B is the total building length.

Calculate y coordinate of stack *ib Ystack*_{iaold} following Shewchuk (2008). Then now $Ystack_{ianew} = Ystack_{iaold}$

Figure 4.27 Non-rectangular, Last Zone-type A-case d

5. <u>Last Zone, stack type b</u>

It will be discussed in section 4.4.1.

4.3.2 Experimental Design

A set of computational experiments was performed to establish the performance of the proposed panel stacking algorithm, as compared with commercial software and an experienced panel designer. For commercial software we chose IntelliBuild 2.4.8.4, which was developed by Truswal Systems and Intelligent Building Systems and widely used in the industry. We also chose a panel designer, who has 8 years experience in generating panel stacking plan, to solve all the problems manually. Three sizes of residential home design were investigated: small (<1500 sq.ft.), medium (1500-3000 sq.ft.) and large (>3000 sq.ft.) based on the size of the house.

For each scenario, 5 problems were randomly chosen from an online database (The Home Plan Group, 2009), giving fifteen problems with non-rectangular building plans.

The computational experiments were performed using different panelization strategy. For each problem, the corresponding sets of panels were found by 'breaking up' walls one-at-atime into panels using different preferred panel length: 8 ft., 10 ft. & 12 ft., giving total 45 problems. These can all be found in Appendix D. From there we can see if the panelization would affect the performance of the proposed algorithm.

Each problem was solved using the proposed panel stacking algorithm, IntelliBuild, and the panel designer. Solutions were compared in terms of (a) total weighted panel move distance and (b) the percentage of panels for which connectivity is maintained (when panels are installed in the order they appear in the stack). Since solutions from IntelliBuild and the panel designer did not provide stack drop-off locations, we assumed the best case possible and used an iterative algorithm (Appendix A) to calculate stack drop-off locations to minimize total weighted panel move distance. Note that as interference was not checked here, problems can occur when panels are unloaded from their stacks. By contrast, the proposed approach guarantees no such interference will occur when panels are unloaded.

4.3.3 Results

Experimental results are presented in Table 4.5. The table compares total weighted panel move distance and connectivity for all approaches. The cases are named in this format: Sa-b. The first character S indicates the size of the problem (S: small cases, M: medium cases, and L: large cases). The number a indicates the case number and number b indicates the panelization parameter (1: preferred panel length is 8 ft., 2: preferred panel length is 10 ft., and 3: preferred panel length is 12 ft.). For example, case M3-2 would be medium case 3 with preferred panel length 10 ft. In terms of solution speed, the proposed algorithm solved each problem in less than one second.

Table 4.5 Computational results for Proposed Algorithm vs. IntelliBuild vs. Panel Designer

		Panel Designer		IntelliBuild			Proposed Algorithm					
G 1		s^2	TWD^3 ,	C^4 ,	s^2	TEXA 3 c. 2	C^4	s^2	TWD^3 ,	C^4	INC^5 ,	INC^6 ,
Case	p^1	S	ft. ²	%	S	TWD ³ ,ft. ²	%	S	ft. ²	%	%	%
S1-1	28	3	1,967	82	3	1,910	89	5	1,548	100	27	23
S2-1	27	3	1,353	81	3	1,504	89	3	1,308	100	3	15
S3-1	30	4	1,478	80	3	1,814	73	5	1,311	100	13	38
S4-1	31	4	1,480	80	3	1,920	84	3	1,313	100	13	46
S5-1	36	4	1,642	72	4	1,657	86	3	1,629	100	1	2
S1-2	23	3	1,999	87	3	1,915	87	5	1,602	100	25	20
S2-2	23	3	1,346	74	3	1,430	89	3	1,319	100	2	8
S3-2	27	3	1,652	74	3	1,825	81	5	1,361	100	21	34
S4-2	25	3	1,699	80	3	1,910	84	3	1,422	100	20	34
S5-2	33	4	1,470	73	4	1,731	79	3	1,467	100	0	18
S1-3	20	3	1,948	80	3	1,996	85	5	1,543	100	26	29
S2-3	23	3	1,398	70	3	1,414	89	3	1,272	100	10	11
S3-3	24	3	1,643	71	3	1,647	75	5	1,310	100	25	26
S4-3	24	3	1,568	79	3	1,884	83	3	1,513	100	4	25
S5-3	30	3	1,459	77	3	1,732	83	3	1,457	100	0	19
M1-1	66	6	2,588	70	5	2,242	83	5	2,225	100	16	1
M2-1	61	7	3,212	80	5	3,432	87	6	2,747	100	17	25
M3-1	56	7	2,962	84	5	3,137	88	6	2,407	100	23	30
M4-1	77	9	4,452	83	6	7,917	91	9	3,351	100	33	136
M5-1	68	8	2,482	79	6	4,512	87	6	2,551	100	-3	77
M1-2	46	5	2,800	78	5	2,690	85	5	2,450	100	14	10
M2-2	51	6	3,845	84	5	4,431	84	5	2,869	100	34	54
M3-2	49	6	2,431	84	5	3,268	86	6	2,427	100	0	35
M4-2	64	8	5,533	78	6	6,890	89	8	3,501	100	58	97
M5-2	59	7	2,667	83	5	4,502	86	6	2,631	100	1	71
M1-3	43	5	2,382	74	5	3,263	88	5	2,376	100	0	37
M2-3	45	6	4,027	76	5	4,804	84	5	2,951	100	36	63
M3-3	43	6	2,399	81	5	3,615	86	6	2,376	100	1	52
M4-3	57	8	5,230	81	5	6,427	89	8	3,506	100	49	83
M5-3	47	6	3,307	79	5	5,405	87	4	3,258	100	1	66
L1-1	107	11	6,157	82	8	6,459	86	9	6,102	100	1	6
L2-1	112	13	8,529	83	9	10,438	86	11	4,597	100	86	127
L3-1	113	13	6,696	81	9	9,567	87	13	5,451	100	23	76
L4-1	110	12	10,543	83	9	13,019	87	13	6,693	100	58	95
L5-1	110	12	7,252	82	8	8,280	87	12	4,981	100	46	66
L1-2	90	11	6,452	79	8	7,033	86	9	6,194	100	4	14
L2-2	91	10	8,014	84	8	11,230	89	10	5,169	100	55	117
L3-2	93	11	6,291	81	8	10,222	89	11	5,755	100	9	78
L4-2	87	10	11,077	80	8	15,468	87	12	6,755	100	64	129
L5-2	84	10	8,162	77	8	7,703	88	11	4,967	100	64	55
L1-3	71	9	6,260	77	7	6,855	87	9	6,149	100	2	11
L2-3	82	9	8,928	78	7	12,620	88	9	6,408	100	39	97
L3-3	81	9	8,025	81	7	11,079	86	10	6,224	100	29	78
L4-3	74	10	10,788	77	7	14,759	88	12	6,535	100	65	126
L5-3	73	10	6,496	79	7	11,423	82	10	5,181	100	25	121

p¹: number of panels
s²: number of stacks
TWD³: total weighted panel move distance
C⁴: connectivity
INC⁵: increase on the TWD¹ by panel designer, and INC⁶: increase on the TWD¹ by IntelliBuild

In order to show the difference between the panel designer, IntelliBuild, and the proposed algorithm, please see the case S4-1 in Figure 4.28 which shows the building plan. Figure 4.29, 4.30 and 4.31 show the solution from panel designer (4 stacks), IntelliBuild (3 stacks), and the proposed algorithm (3 stacks), respectively. Panel designer mainly makes the stacking efficiently and stable (no block will be used).

Figure 4.28 Building plan

Figure 4.29 Stacking Solution from Panel designer

Figure 4.30 Stacking solution from IntelliBuild

Figure 4.31 Stacking solution from the proposed algorithm

In order to show the impact on panel move distance and non-connecting panels by different stacking solutions, we show the panelization plan with the panels labeled by build sequence for each approach in Figure 4.32, 4.33 and 4.34. From these figures, we can see the panel designer and IntelliBuild results in more non-connecting panels.

Figure 4.32 Solution of Panel designer (by build sequence)

Figure 4.33 Solution of IntelliBuild (by build sequence)

Figure 4.34 Solution of the proposed algorithm (by build sequence)

4.3.4 Discussion of Results

There were improvements in all cases except one for panel move distance, M5-1: panel designer (357,366) vs. proposed algorithm (367,284) with 2 less stack. When compared to the proposed algorithm, total weighted panel move distance increased 0.10-85.52% and 0.77-136.23%, respectively, for the panel designer and IntelliBuild. While connectivity was 100% for all cases with the proposed algorithm (the algorithm ensures connectivity is always maintained), it ranged from 69.56-86.95% and 73.33-90.91%, however, for the panel designer and IntelliBuild respectively. Finally, it is seen that typically IntelliBuild resulted in the least

quantity of stacks, panel designer and the proposed approach resulted in the same quantity of stacks for medium and large cases.

The computational results indicate the proposed panel stacking algorithm can decrease the amount of material handling workers must perform in erecting panelized structures. Additionally, it will always guarantee connectivity and reduce the amount of additional work required when panels are installed in the given stack order (as indicated by the connectivity values). Plus it can avoid interference problems which was not addressed in Panel designer or commercial software.

A summary is presented in Table 4.6. From the summary it can be seen that the proposed algorithm can provide more improvement on panel move distance in large cases than small cases. It is not surprising since large cases will have more panels, shorter average panel length, and more zones. IntelliBuild tends to have more material handling work since it typically results in least quantity of stacks.

In terms of the panelization strategy, the effect was mixed. When compared to panel designer in large cases, the proposed algorithm can provide more improvement if the preferred panel length 8 ft. is selected. The possible reason could be that it would result in more panels and shorter average panel length. While for small and medium cases, the computational results indicated 10 ft. preferred panel length can provide more improvement. From the value of panel move distance, we can see that 8 ft. preferred panel length would result in better solutions, but the panel designer provided relatively worse solutions for 10 ft. preferred panel length which resulted in better improvement. So it can be concluded that the proposed algorithm performs better in larger cases with the preferred panel length 8 ft. selected.

Table 4.6 Summary for the computational results

Case	Average increase on panel move distance by panel designer, %	Average increase on panel move distance by IntelliBuild, %
Small - panelization 8ft	11	25
Small - panelization 10ft	14	23
Small - panelization 12ft	13	22
Medium - panelization 8ft	17	54
Medium - panelization 10ft	22	53
Medium - panelization 12ft	18	60
Large - panelization 8ft	42	74
Large - panelization 10ft	39	79
Large - panelization 12ft	32	87

4.4 Improvement 3 — Solve for interfering panels

The third improvement is that the proposed algorithm specifies how to handle the interfering panels in the last zone. First, following building direction, install any panels directly (lifting, moving, and erecting, etc.) as long as there is no interference. Then for those panels which do have interference, a place is found to put them and then install them directly.

The algorithm is as follows:

4.4.1 Algorithm

Last Zone (stack type b)

1.1 When the width of last zone is calculated like Figure 4.35:

Stack 1a in the location as Figure 4.36 indicates.

Step 1: Install the exterior panels along edge E1;

Step 2: Install some panels directly as long as it does not have any interference.

After step 2 is completed, we define 2 corners (C1& C2) as Figure 4.36.

- Step 3: The panels left are interfering panels. If an interference situation is not detected as Figure 4.37, we lean these panels against the corner C1 as Figure 4.38. Then install the interfering panels. Otherwise, go to step 4.
- Step 4: Check corner C2. If no similar interference like step 3 exists, these panels are leaned against the corner C2, then install these panels. Otherwise, go to step 5.
- Step 5: Install panel a and b, then lean other panels against the corner C1. Install the interfering panels.

Figure 4.35 Last zone, type B-case a

Figure 4.36 Last zone, type B-case b

Figure 4.37 Last zone, type B-case c

The benefits putting the interfering panels like Figure 4.38 include:

- a) Avoid the interference situation shown in Figure 4.39 since $l_1 < l_2$.
- b) The rule is simple as all the interference panels will be handled in the same way.

Figure 4.38 Last zone, type B-case d

Figure 4.39 Last zone, type B-case e

Calculate *x* coordinate *Xstack*_{ib}:

$$Xstack_{ib} = L_B - \frac{W_i}{2}$$

Calculate y coordinate of stack ia Ystack_{iaold} following Shewchuk (2008). Then now

$$Ystack_{ibnew} = Ystack_{ibold} + L_s * \sqrt{2} / 2$$

Where L_B is the total building length,

 L_S is the maximum interfering panel length.

1.2 When the width of zone *i* is calculated like Figure 4.40:

Figure 4.40 Last zone, type B-case f

Situation 1.2 is similar to situation 1.1 except

$$Ystack_{ianew} = Ystack_{iaold} + offset + L_s * \sqrt{2} / 2$$

1.3 When the width of zone i is calculated like Figure 4.41:

Figure 4.41 Last zone, type B-case g

Situation 1.3 is similar to situation 1.1 except

$$Ystack_{ianew} = Ystack_{iaold} + offset + L_s * \sqrt{2}/2$$

1.4 When the width of zone i is calculated like Figure 4.42:

Figure 4.42 Last zone, type B-case h

Situation 1.4 is similar to situation 1.1 except

$$Ystack_{ianew} = Ystack_{iaold} + offset + L_s * \sqrt{2} / 2$$

4.4.2 Experimental results

The panelization problems described in section 4.3.2 and presented in Appendix D were studied using the proposed algorithm, the proposed algorithm was found to be able to solve the interfering panels left in the last stack for these experiments. It could provide a place for workers to put down interfering panels first and then install these panels. The most common case was picked to show as an example. The building plan is in Figure 4.43. The proposed algorithm specified that panel 25, 26 and 31 are interfering panels. When all the other panels are completed, only panel 25, 26, and 31 are left as interfering panels. According to the proposed algorithm, move panel 31 and 26 to the corner C1. At this time, the bottom panel is panel 25, just like Figure 4.44. Then panel 25 can be completed directly like Figure 4.45. The next step, panel 26 can be completed like Figure 4.46. Last step, panel 31 can be completed like Figure 4.47.

Figure 4.43 Example-interfering panels

Figure 4.44 Example-move interfering panels

Figure 4.45 Example-install interfering panels-1

Figure 4.46 Example-install interfering panels-2

Figure 4.47 Example-install interfering panels-3

Panel 31 needs to be rotated first, so either don't fix panel 25 until after rotation or break panel 31 into two small panels during panelization.

Chapter 5 Worker Assignment in Residential Construction Using Prefabricated Panels

Abstract

A current trend in residential construction is the use of prefabricated wall panels. This chapter proposes an approach which specifies how to handle each panel in advance: how many and which workers should be assigned to each panel, etc. Mathematical models of the corresponding worker assignment problems were developed, where the goal was to minimize total project completion time (subject to worker quantity constraints) and try to assign tasks to workers as evenly as possible. The mathematical models were very difficult to solve large size problems, so a heuristic was developed to solve the worker assignment problem when the panel stacking plan was generated by the proposed algorithm described in Chapter 4. Meanwhile a simple mathematical model was developed to test the performance of the heuristic. The solution of such problems can help panel designers generate better construction plans.

5.1 Introduction

Construction accidents often lead to project delays. However, in practice, construction safety and schedule control are often managed separately (Wang et al. 2006). But designers can positively influence construction site safety by integrating safety considerations into the design process (Gambatese et al. 1999). Prior research efforts aimed at construction safety have seldom considered safety planning at the design stage. Our goal is to address safety from the design stage because integration of safety and human factors into the design phase is a vital necessity (Fadier et al. 2006).

This chapter presents an approach to generate a plan of construction activity and worker assignment, showing the schedule of construction tasks and by whom. The construction schedule is very important to the whole project: a field study of mechanical installation work has shown that over 50% of the total time observed on construction sites is non-value-adding time in the categories of interruption, disturbance, communication and preparation (Vedder et al. 2005). A good construction schedule can reduce non-value-adding time in construction and improve efficiency.

A finite set of construction tasks can be identified via laboratory-based experiments. All the parameters, like ergonomic risk and task time with different quantity of workers, are assumed available. Additional assumptions are as follows: (i) all workers are considered identical, (ii) task time and ergonomic risk are deterministic, (iii) there are no defective panels during the construction, (iv) setup time for all tasks is not considered, and (v) all construction tasks will be completed successively without rework.

5.2 Problem Formulation

The problem may be formulated as follows. There is a set of N prefabricated wall panels to be assembled by workers. The set of workers is denoted W, $W=\{W_I, W_2, ..., W_m\}$. Each panel i is defined as a job and consists of a sequence of J_i tasks O_{iI} , O_{i2} ,... O_{iji} : all tasks have to be performed to complete a job. The construction of each task j of a job i (noted O_{ij}) requires at least Q_{ij} number of workers, takes T_{ijk} time units to complete, and has R_{ijk} ergonomic impact on workers when k workers are utilized. For any panel, some tasks may be sequential and thus handled by same workers. We use breakpoint B_{ij} to denote this. To minimize the maximum ergonomic impact of workers, we should assign the tasks to workers as evenly as possible.

The problem is thus to both determine an assignment and a sequence of the tasks on all workers that minimizes total project completion time and distributes all the tasks to workers as evenly as possible with the consideration of ergonomic risk. Minimizing completion time is assumed most important and that is our objective function. We decompose the original problem into two sequential problems. The first step (Model 1) is to determine how many workers are needed to perform each task under the objective of minimizing total project completion time. The solution from Model 1 would be input parameters for second step (Model 2). Model 2 solves the worker assignment problems, which then assigns all the tasks to workers evenly with the consideration of ergonomic impact. Since all workers are considered identical, so the solution from Model 2 is optimal to Model 1.

We formulate the problem as a mixed-integer linear program (MILP), using binary variables that establish the assignments of jobs on workers and continuous variables that decide the time a task is finished.

Sets

Jobsset of panels (1, 2, 3....N)Tasksset of tasks (1, 2, 3, 4...J)Workersset of workers (1, 2...M)

Parameters

 $Q_{i,j}$ the minimum number of workers needed to execute panel i task j

 $T_{i,j,k}$ the time needed to execute panel i task j with k workers

 J_i the number of tasks of panel i

 $B_{i,j}$ the breakpoint (if the first and second tasks of panel i are required to be

sequential, then $B_{i,1}=0$, $B_{i,2}=1$)

H a big positive number

S a small positive number

Variables

 $X_{i,j,k}$ = 1 if panel i, task j performed by k workers, 0 otherwise.

 $S_{i,j,p,q} = 1$ if the start time of panel p, task q is earlier than the completion time of

panel i task j, 0 otherwise.

 $E_{i,j,p,q} = 1$ if the completion time of panel p, task q is not earlier than the

completion time of panel i task j, 0 otherwise.

 $O_{i,j,p,q,k}$ = 1 if panel *i* task *j*, panel *p* task *q* has already been started but not yet

completed and panel p task q is performed by k workers, 0 otherwise.

 $Z_{i,j}$ completion time of panel i, task j.

C total project completion time. $C=max\{Z_{ij}, i \in Jobs, j \in Tasks\}$

Mathematical Model 1

$$Min C$$
 (1)

Subject to

$$Z_{i,1} \geq \sum_{k \in Workers} T_{i,1,k} X_{i,1,k} \qquad \forall i \in Jobs$$
 (2)

$$Z_{i,j} - \sum_{k \in Workers} T_{i,j,k} X_{i,j,k} \ge Z_{i,j-1} \qquad \forall i \in Jobs \ \forall j = 2,...,J_i \qquad (3)$$

$$Z_{i,1} - \sum_{k \in Workers} T_{i,1,k} X_{i,1,k} \ge Z_{i-1,1} \quad \forall i=2, ..., N$$
 (4)

$$Z_{i,j[i]} - \sum_{k \in Workers} T_{i,J[i],k} X_{i,J[i],k} \geq Z_{i-I,J[i-1]} - \sum_{k \in Workers} T_{i-I,J[i-1],k} X_{i-I,J[i-1],k} \quad \forall i=2,...,N \quad (5)$$

$$\sum_{k \in Wonkers} kX_{i,j,k} \ge Q_{i,j} \quad \forall i \in Jobs, \ \forall j \in Tasks$$
 (6)

$$\sum_{k \in Workers} X_{i,j,k} = 1 \quad \forall i \in Jobs, \ \forall j \in Task$$
 (7)

$$O_{i,j,p,q,k} \le X_{p,q,k} \quad \forall i,p \in Jobs, \forall j,q \in Tasks, \forall k \in Workers$$
 (8)

$$(1 - E_{i,j,p,q})H + Z_{p,q} \ge Z_{i,j} \quad \forall i, p \in Jobs \text{ and } i \ne p, \ \forall j, q \in Tasks$$
 (9)

$$Z_{p,q} - E_{i,i,p,q}H \le Z_{i,j} - S$$
 $\forall i,p \in Jobs \text{ and } i \ne p, \ \forall j,q \in Tasks \ (10)$

$$Z_{p,q} - \sum_{k \in Workers} T_{p,q,k} X_{p,q,k} \le Z_{i,j} - S + (1 - S_{i,j,p,q}) H \quad \forall i, p \in Jobs \text{ and } i \ne p, \ \forall j, q \in Tasks \quad (11)$$

$$Z_{p,q} - \sum_{k \in Workers} T_{p,q,k} X_{p,q,k} \ge Z_{i,j} - S_{i,j,p,q} H \qquad \forall i,p \in Jobs \text{ and } i \neq p, \ \forall j,q \in Tasks \quad (12)$$

$$E_{i,j,p,q} + S_{i,j,p,q} \le 1 + \sum_{k \in Workers} O_{i,j,p,q,k} \quad \forall i,p \in Jobs \text{ and } i \neq p, \quad \forall j,q \in Tasks \quad (13)$$

$$E_{i,j,p,q} \ge \sum_{k \in Workers} O_{i,j,p,q,k}$$
 $\forall i,p \in Jobs \text{ and } i \ne p, \ \forall j,q \in Tasks \ (14)$

$$S_{i,j,p,q} \geq \sum_{k \in Workers} O_{i,j,p,q,k} \quad \forall i,p \in Jobs \text{ and } i \neq p, \ \forall j,q \in Tasks$$
 (15)

$$\sum_{k \in Workers} kX_{i,j,k} + \sum_{p \in Jobs} \sum_{q \in Tasks} \sum_{k \in Workers} kO_{i,j,p,q,k} \le M \quad \forall i \in Jobs \text{ and } i \neq p, \ \forall j \in Tasks$$
 (16)

$$Z_{i,j} = Z_{i,j-1} + \sum_{k \in Workers} T_{i,j,k} X_{i,j,k}$$
 $\forall i \in Jobs, \ \forall j = 2,...,J_i \text{ and } B_{i,j-1} = 0$ (17)

$$C \ge Z_{i,J[i]} \tag{18}$$

Objective function (1) minimizes total project completion time. Constraints (2) ensures all tasks start from time 0. Constraints (3) and (4) are precedence constraints. Due to the nature of construction activities, constraint (3) ensures for each panel, the subsequent task cannot be started unless the preceding task has been already completed. Constraint (4) forces the

subsequent panel cannot be started (lifting) unless the preceding panel has been already started (moved from the stack). Constraints (5) is a construction sequence constraints: according to the construction sequence, the final task (attaching the panel to a connected and completed panel) of preceding panel should precede that of subsequent panel. Constraints (6) forces the construction of task j of job i requires at least $Q_{i,j}$ workers. Constraint (7) forces only k workers are assigned to job i task j. Constraint (8)-(15) force the logical relationship between variables $S_{i,j,p,q}$, $E_{i,j,p,q}$, $O_{i,j,p,q,k}$, and $Z_{i,j}$ which maintain the definition of these variables. Constraint (16) ensures, at any time, number of workers assigned to tasks should not be greater than M. Constraints (17) ensures for each panel, some tasks should be sequential and handled by same workers. Constraints (18) determines total project completion time based on the last completed task.

The solution of Model 1 $(X_{i,j,k})$ tells us how many workers are needed to perform each task under the objective of minimizing the total project completion time. And it will be input parameters for Model 2.

Addition Parameters for Model 2

 $X_{i,j,k}$ the solutions from Model 1

 $R_{i,j,k}$ the ergonomic impact of panel i task j with k workers

Additional Variables for Model 2

 $W_{i,j,k} = 1$ if panel i, task j is performed by worker k, 0 otherwise.

 $Y_{i,j,p,q} = 1$ if panel i, task j precedes panel p, task q (where panel i, task j, panel p and task q are performed by the same worker), 0 otherwise.

 $Maxrisk = max \left\{ \sum_{i \in Jobs} \sum_{j \in Tasks} W_{i,j,k} R_{i,j}, \ k \in Workers \right\} : \text{total ergonomic impact for }$

the busiest worker.

Minrisk $Maxrisk=min\left\{\sum_{i\in Jobs}\sum_{j\in Tasks}W_{i,j,k}R_{i,j},\ k\in Workers\right\}$: total ergonomic impact for

the least-busy worker.

$$Min\ maxrisk - minrisk$$
 (1)

Subject to

$$\sum_{k \in Workers} W_{i,j,k} = \sum_{k \in Workers} kX_{i,j,k} \quad \forall i \in Jobs, \ \forall j \in Tasks$$
 (2)

$$Z_{p,q} - Z_{i,j} + H(1-Y_{i,j,p,q}) + H(1-W_{i,j,k}) + H(1-W_{p,q,k}) \ge T_{p,q}$$

$$\forall i, p \in Jobs \text{ and } i \neq p, \ \forall j, q \in Tasks \text{ and } j \neq q, \ \forall k \in Workers$$
 (3)

$$Z_{i,j} - Z_{p,q} + HY_{i,j,p,q} + H(1 - W_{i,j,k}) + H(1 - W_{p,q,k}) \ge T_{i,j}$$

$$\forall i, p \in Jobs \text{ and } i \neq p, \ \forall j, q \in Tasks \text{ and } j \neq q, \ \forall k \in Workers$$
 (4)

$$\sum_{i \in Jobs} \sum_{j \in Tasks} W_{i,j,k} R_{i,j} \ge Minrisk \quad \forall k \in Workers$$
 (5)

$$\sum_{i \in Jobs} \sum_{j \in Tasks} W_{i,j,k} R_{i,j} \le Maxrisk \quad \forall \ k \in Workers$$
 (6)

$$W_{i, j-1, k} \leq W_{i, j, k}$$

$$\forall i \in Jobs, \ \forall j = 2,...,J_i, \ \forall k \in Workers, \ B_{i,j-1} = 0 \text{ and } \sum_{k \in Workers} kX_{i,j-1,k} \le \sum_{k \in Workers} kX_{i,j,k}$$
 (7)

$$W_{i, j-l,k} \geq W_{i, j, k}$$

$$\forall i \in Jobs, \ \forall j = 2,...,J_i, \ \forall k \in Workers, \ B_{i,j-1} = 0 \text{ and } \sum_{k \in Workers} kX_{i,j-1,k} \ge \sum_{k \in Workers} kX_{i,j,k}$$
 (8)

Objective function (1) minimizes the workload difference between workers. Constraint (2) forces that the number of workers assigned to all the tasks will match the results from Model 1. Constraints (3), (4) ensure any worker cannot perform multiple tasks simultaneously. So either constraint (3) or constraint (4) must hold. Constraints (5), (6) calculate the ergonomic impact of the most and least busy worker. Constraints (7), (8) are breakpoint constraints which ensure for each panel, some tasks should be sequential and handled by same workers.

The solution of Model 2 ($W_{i,j,k}$) tells us the worker assignment.

5.3 Results

If we consider the construction tasks as jobs and the workers as machines, construction scheduling closely resembles job shop scheduling, where a set of jobs must be processed on a set of machines and each job can visit different machines and in a different order. Job shop scheduling problems are generally NP-complete, which means that nowadays there is still no polynomial-time algorithm being able to solve the problems optimally (Cheng et al. 2009). Similarly deterministic project scheduling for construction projects is difficult too (Ahuja et al. 2004).

The MILP (generally NP-hard problems) models we present cannot solve large size problems optimally. To test the model performance, the above two mathematical models were implemented. The programs were coded using the AMPL programming language (Fourer et al. 2003) and run using CPLEX optimization software (ILOG, Inc., Mountain View, CA), version 9.0 with default settings. An Intel(R) Xeon(TM) CPU 3.60 GHz with 3.25GB of RAM and Windows XP professional operating system was employed.

Of the above two models, the first one is very hard to solve. We have tested a few cases and found that the maximum size of problem that we can solve optimally is 6 panels (each of which has 5 tasks) and 3 workers (first model: computation time is 15561.1 seconds) or 5 panels (each of which has 5 tasks) and 4 workers (first model: computation time is 19133.5 seconds). Any larger size problem is essentially intractable.

A problem of 5 panels (each of which has 5 tasks) and 4 workers is presented as the example. The parameters are as shown in Table 5.1.

Table 5.1 Input parameters for the example problem

Doromotor O						
Parameter $Q_{i,j}$						
j	1	2	3	4	5	
1	2	2	1	2	2	
2	1	2	1	2	2	
3	2	3	1	1	2	
4	2	2	1	2	3	
5	1	2	1	2	2	
Parameter $T_{i,j,k}$						
i j	1	2	3	4	5	
	15	18	15	18	15	k=1
1	12	14	11	15	14	
1	12	11	11	14	12	2 3
	12	10	10	12	12	4
	15	18	16	17	15	k=1
2	14	12	14	15	14	2 3
2	13	11	13	11	11	3
	12	10	10	10	11	4
	15	18	16	18	15	k=1
2	11	13	11	15	14	2
3	11	11	11	12	12	2 3 4
	10	10	10	12	12	4
	15	18	15	18	15	k=1
,	12	14	11	15	14	
4	12	11	11	13	12	2 3
	12	10	10	12	12	4
	15	20	15	18	15	k=1
_	12	14	11	14	14	
5	12	13	11	13	12	2 3 4
	12	10	10	12	12	4
Parameter $B_{i,j}$						
i j	1	2	3	4	5	
1	0	0	1	0	1	
2	0	1	1	1	1	
3	0	1	1	0	1	
4	0	0	1	0	1	
5	0	0	1	1	1	
Parameter H	1000					
Parameter S	0.5					

The above performance parameters are assumed reasonably-accurate predictions generated from laboratory-based experiments. The results generated from the Model 1 are as shown in Table 5.2.

Table 5.2 Output from Model 1 for the example problem

$X_{i,j,k}$						
j	1	2	3	4	5	
	0	0	0	0	0	k=1
1	0	0	1	1	1	2 3 4
1	0	1	0	0	0	3
	1	0	0	0	0	
	1	0	1	0	0	k=1
2	0	1	0	0	1	2 3 4
2	0	0	0	1	0	3
	0	0	0	0	0	4
	0	0	0	1	0	k=1
	1	0	1	0	1	2
3	0	1	0	0	0	2 3 4
	0	0	0	0	0	4
	0	0	1	0	0	k=1
4	1	1	0	1	0	2 3
4	0	0	0	0	0	3
	0	0	0	0	1	4
	1	0	0	0	0	k=1
E	0	1	1	1	0	2 3 4
5	0	0	0	0	0	3
	0	0	0	0	1	4
$Z_{i,j}$						
j	1	2	3	4	5	
i						
1	12	23	34	71	85	
2	27	39	55	104	118	
3	45	56	67	126	140	
4	79	93	108	158	170	
5	119	133	144	158	182	

The results tell us how many workers needed to perform each task and completion time of each task. Then this data is used as input for Model 2. The results generated from Model 2 are shown in Table 5.3.

Table 5.3 Output from Model 2 for the example problem

$W_{i,j,k}$						
j	1	2	3	4	5	
	1	1	1	1	1	k=1
1	1	1	1	1	1	2 3
1	1	1	0	0	0	3
	1	0	0	0	0	4
	0	0	0	1	0	k=1
2	0	0	0	1	1	2 3
2	0	1	1	0	0	3
	1	1	0	1	1	4
	1	1	0	0	0	k=1
2	1	1	0	0	0	2 3
3	0	0	1	1	1	3
	0	1	1	0	1	4
	0	0	0	0	1	k=1
4	0	0	0	0	1	2 3
4	1	1	1	1	1	3
	1	1	0	1	1	4
	1	1	1	1	1	k=1
_	0	1	1	1	1	2
5	0	0	0	0	1	3
	0	0	0	0	1	4

The solution of Model 2 ($W_{i,j,k}$) tells us the worker assignment, i.e., which workers should perform which tasks. The computational time for Model 1 is 19133.5 seconds and for Model 2 is 48.177 seconds. Combining the solutions of model 1 and 2, we can obtain the final optimal schedule as shown in Figure 5.1. From the schedule we see that the total project completion time is 182.

Figure 5.1 Schedule for the example problem

5.4 Simplified Model

Although the mathematical models developed cannot solve large problems, they provide insight into the problem structure and provide a foundation for the development of heuristic (approximate) methods. In order to solve larger size problems, the original problem is simplified as follows: (1) each panel is defined as a job and no more sub tasks will be considered and (2) we assume we have the knowledge that how many workers are required for each panel depending on the panel size and that is the exact number of workers we will assign to the panel. The simplification results in the same workers for all tasks of each panel which means workers are assigned to panels (jobs) and no tasks are considered. The objective here is to balance the workload between workers. Workers are considered identical. The panel stacking plan is available at this point, we multiply panel move distance by panel length as the workload for each panel to account for the fact the larger panels are more difficult for workers to handle.

5.4.1 Simplified Model — Heuristic

To solve real-size problems based upon the simplified model, a heuristic was developed. The heuristic is a greedy algorithm which is simple and straightforward. It will first find out how many workers will be assigned to the panel, and then choose that amount of the least busy workers to the panel. The number of workers assigned to each panel is based on panel length

and the fact of if the panel is sheathed or not. This guidance of determining the number of workers needed for each panel is based on lab experiments from ergonomic point of view (Kim et al., 2009). The heuristic detail is described as Figure 5.2.

Figure 5.2 Worker Assignment

5.4.2 Simplified Model — Mathematical Model

In order to know how good the heuristic is, a mathematical model was developed to establish the performance of the heuristic.

Parameters

N Total number of panels

M Total number of workers

 q_i Number of workers needed for panel i.

 l_i Workload of panel i

c Control parameter. Any worker cannot be assigned c consecutive panels

Sets

Panels Set of panels (1, 2, 3, ..., N)

Workers Set of workers $(1, 2, 3, \dots, M)$

Variables

 $X_{i,j}$ Binary variable. $X_{i,j} = 1$ if panel i is assigned to worker j, 0 otherwise

 W_{max} Total maximum workload on workers

 W_{min} Total minimum workload on workers

Mathematical Model

$$Min W_{max} - W_{min}$$
 (1)

Subject to

$$\sum_{j \in Wor \ker s} X_{ij} = q_i \qquad \forall i \in Panels$$
 (2)

$$\sum_{k \in Panels \text{ and } k \ge i, k \le i+c} X_{k,j} \le c-1 \quad \forall i \in Panels, j \in Workers, \text{ and } i \le N-c+1$$
 (3)

$$\sum_{i \in Panels} l_i X_{ij} \le W_{max} \qquad \forall j \in Workers \tag{4}$$

$$\sum_{i \in Panels} l_i X_{ij} \ge W_{min} \qquad \forall j \in Workers \tag{5}$$

$$\sum_{i \in Panels} X_{ij} \ge \sum_{i \in Panels} X_{i,j+1} \quad \forall \ j \in Workers \text{ and } j \ne M$$
 (6)

Objective Function (1) is to balance workload between workers. Constraint (2) forces each panel will be assigned to the pre-determined number of workers. Constraint (3) ensures any worker cannot be assigned c consecutive panels from ergonomic point of view. Constraint (4) & (5) determine the maximum and minimum worker load of all workers. The above model is symmetrical and in order to reduce the solution space and running time, two symmetry breaking constraints, constraint (6) and (7), were invested.

$$\sum_{i \in Panels} X_{ij} \ge \sum_{i \in Panels} X_{i,j+1} \qquad \forall j \in Workers \text{ and } j \ne M$$
 (6)

$$\sum_{i \in Panels} l_i X_{ij} \ge \sum_{i \in Panels} l_i X_{i,j+1} \qquad \forall j \in Workers \text{ and } j \ne M$$
 (7)

Through experiments, constraint (6) performed better than constraint (7). Constraint (6) was found to reduce the total running time by average 18.6% while constraint (7) increased total running time.

5.4.3 Simplified Model — Results and Discussions

A set of computational experiments was performed to establish the performance of the heuristic. The cases described in section 4.3.2 and presented in Appendix D were investigated.

Even though the mathematical model described in Chapter 5.4.2 was very simple, it still could only solve the cases with around 30 panels optimally. In order to compare the solutions of the heuristic to optimal solutions, some small cases were chosen to be solved using both the proposed worker assignment heuristic and mathematical model. Since the objective of heuristic and mathematical model is balancing the workload between worker, solutions were compared in

terms of
$$\frac{W_{\text{max}}}{W_{\text{min}}} - 1$$
.

Experimental results are presented in Table 5.4. In all cases, the gap between heuristic solution and optimal solution ranged from 1.31-3.02%. The average gap is 2.25%. In terms of solution speed, the proposed heuristic solved each problem in less than one second while the mathematical model took several hours to find the optimal solution.

Table 5.4 Computational results for proposed heuristic vs. optimal solution

Case	# of panels	$rac{W_{ m max}}{W_{ m min}} - 1$ optimal solution	$rac{W_{ m max}}{W_{ m min}}$ -1 heuristic	Gap
Small1-1	28	0.16%	2.46%	2.30%
Small2-1	27	0.09%	3.11%	3.02%
Small3-1	31	0.04%	2.22%	2.18%
Small4-1	31	0.08%	1.39%	1.31%
Small5-1	36	0.09%	2.54%	2.45%
Average				2.25%

Obviously, the proposed heuristic will perform better with the increasing of the number of panels, percentage wise. Five large cases were solved using the proposed heuristic. Experimental results are presented in Table 5.5.

From Table 5.5, it can be seen the average of the value is 0.21%, although the optimal solutions are not available for those large cases, we can easily know that the lower bound of the value is 0, which means the average gap is less than 0.21%. The computational results indicate that the proposed heuristic can effectively balance the workload, especially for larger cases, between workers and solve any size of problems very fast.

Table 5.5 Computational results for proposed heuristic solving large cases

Case	# of panels	$\frac{W_{\text{max}}}{W_{\text{min}}}$ – 1, heuristic
Large-1	107	0.16%
Large-2	112	0.24%
Large-3	113	0.28%
Large-4	110	0.25%
Large-5	110	0.11%
Average		0.21%

Chapter 6 Conclusions

6.1 Research contributions

The research presented in this dissertation focused on two areas: panel stacking problems in residential construction (with and without consideration of interference) and construction worker assignment problems.

A lean approach to reduce construction workload and the possibility of worker injury was proposed. When interference constraints are not considered, a mathematical model was developed, along with heuristic algorithms which can solve real stacking problems quickly. From computational results it can be concluded the proposed algorithm can dramatically reduce the panel move distance and provide better connectivity without compromising the transportation costs when compared to traditional approach. Overall, it can be seen the proposed research can reduce worker's workload by reducing the total weighted panel move distance and provide much better connectivity in working with panels.

When interference constraints are considered, this research makes three improvements upon Shewchuk (2008).

- The zone width is optimized. Improvements were found in all experimental cases. Improvement on panel move distance ranged from 1.35-47.93% (average: 17.18%), and improvement on interfering panels ranged from 20-100% (average: 59.37%). The computational results indicate the proposed panel stacking algorithm performed better than Shewchuk (2008) in terms of total weighted panel move distance and interfering panels. Also we can conclude that the proposed algorithm can provide more improvement on panel move distance and interfering panels in larger cases than smaller cases. Meanwhile, proposed algorithm can provide more improvement if the preferred panel length 8 ft. is selected.
- The proposed algorithm can solve the non-rectangular cases. Based on computational results, compared to the proposed algorithm, panel designer and IntelliBuild increased 0.10-85.52% (average: 23.17%) and 0.77-136.23% (average: 52.90%), respectively, on the total weighted panel move distance. While Connectivity was always 100% for all cases with the proposed algorithm, it ranged from 69.56-86.95% (average: 79.11%) and 73.33-90.91% (average: 85.85%), however, by the panel designer and IntelliBuild

respectively. The computational results indicate the proposed panel stacking algorithm can decrease the amount of material handling effort in erecting panelized structures. Additionally, it will always guarantee connectivity and reduce the amount of additional work required when panels are installed in the given stack order (as indicated by the connectivity values). Plus, it can avoid interference problems which was not addressed in panel designer or commercial software. Also it can be concluded that the proposed algorithm can provide more improvement on panel move distance in larger cases than smaller cases when preferred panel length 8 ft. is selected.

• The proposed algorithm can solve the interfering panels. From the computational experiments, proposed algorithm was found to be able to solve the interfering panels left in the last stack. It could provide a place for workers to put down the interfering panels first and then install these panels.

Overall, the proposed algorithm can improve the original algorithm (Shewchuk, 2008) by providing less panel move distance, solving non-rectangular cases, and solving the interfering panels. Computational experiments indicate that the proposed algorithm can reduce the construction workload when compared to the panel designer or commercial software by providing less total weighted panel move distance and better connectivity value. It may be useful for panel designers to generate efficient panel stacking plans.

Meanwhile, mathematical models were developed for the construction worker assignment problem. The models worked correctly based on a small case but it is extremely difficult to solve real construction problems so a greedy heuristic was developed to provide worker assignment solution quickly. From experiments of some small cases, the gap between heuristic solution and optimal solution ranged from 1.31-3.02% (average: 2.25%). And the proposed heuristic performs better with the increasing of the number of panels, percentage wise. From experiments of some large cases, the average gap is less than 0.21%. The computational results indicate that the proposed heuristic can effectively balance the workload, especially for larger cases, between workers and solve any size of problems very fast.

6.2 Strengths and limitations

6.2.1 Panel stacking Problem

The proposed approach is based on Shewchuk (2008) and has several improvements:

- It can reduce the workload at the construction site by providing less total weighted panel move distance.
- It will always reduce the amount of additional bracing, fitting, etc., by maintaining connectivity.
- It can avoid interference problems.

Though the proposed approach has the above advantages, it still has some limitations:

- It does not consider the temporary bracing used on the construction site.
- It assumes that blocks are used to keep panels from falling when stacking (Figure 1.6). But the use of blocks should be minimized.
- Stacks always have the long edge parallel to the chosen dropping edge (Figure 1.5), but there may be other ways to put stacks.

6.2.2 Worker assignment

The model discussed in Chapter 5.3 is sophisticated which can minimize total project time subject to worker quantity constraints and try to assign tasks to workers as evenly as possible with the consideration of ergonomic risk. It can help residential construction managers better plan construction activities. But the limitation is obvious: it cannot solve real size problems.

The greedy algorithm discussed in Chapter 5.5 is simple and runs fast. However, it has more assumptions which will result in the same workers for all tasks of each panel, and the number of workers assigned to each panel is determined by the size of the panels.

All the workers are considered identical in both the mathematical models and the algorithm, while in reality it is not true, as the physical conditions of workers are different.

6.3 Future research

For panel stacking problem in residential construction, the current approach has some assumptions. In future research, more realistic situation should be considered.

- When generating stacking plan, current approach does not consider the panel thickness difference of the panels in the same layer, in other words, it allows two panels with different panel thickness to be placed in the same layer. In future research, panel thickness should be taken into account, it should try to put more panels with the same thickness in the same layer.
- Currently, blocks are assumed to be used to keep panels from falling when stacking (Figure 1.6). But more blocks used, more unstable the stack would be. Meanwhile, more effort and material will be needed when stacking panels. So in future research, the use of block should be minimized.
- Current approach does not considered the temporary bracing used on the construction site
 which might cause interference problems in reality. In future research, this should be
 taken into account.
- Current approach assumes stacks are delivered to the dropping edge separately, in other words, the second stack will not be delivered to the dropping edge until the first stack is fully completed. In future research, the situation like two or more stacks are delivered to the dropping edge should be considered. Corresponding interference problems should be considered as well.
- Currently, the approach will consider all accessible dropping edges, but only one dropping edge will be selected as the solution based on the panel move distance. In future research, more than one dropping edges should be allowed in the solution, in other words, different stacks may be delivered to different dropping edges based on the structure. Corresponding interference problems should be considered as well.

For worker assignment problems, a more advanced algorithm may be needed if more factors are considered.

Currently, panel move distance is multiplied by panel length as the workload for each
panel to account for the fact that larger panels are more difficult for workers to handle.
 In future research, more accurate method of predicting the workload may be needed.

- All workers are considered identical in current approach. However, people are different.
 Therefore in future research, the difference between workers, such as physical conditions and skill sets, should be considered.
- Currently, the heuristic assumed panels are completed one by one, however, in future research, a new heuristic which allows workers to handle more than one panel at a time may be needed.

Appendix A: Iterative algorithm

For each stack, we calculate the drop-off location (x location along the dropping edge) via iterative algorithm. $\overline{Y} = y$ location of each stack, $q_i = x$ coordinate, final location of panel i, $v_i = y$ coordinate, final location of panel i.

- 1. Find Starting Point: $\overline{X} = \frac{\sum_{i} l_{i} q_{i}}{\sum_{i} l_{i}}$
- 2. Using \overline{X} , \overline{Y} to calculate all $d_i = \sqrt{\left(\overline{X} q_i\right)^2 + \left(\overline{Y} v_i\right)^2}$
- 3. Find new \overline{X} with d_i : $\overline{X} = \frac{\sum_{i} \frac{l_i q_i}{d_i}}{\sum_{i} \frac{l_i}{d_i}}$
- 4. If the stacking location values have converged to an acceptable level, go to step 5, otherwise go to step 2.
- 5. End

Appendix B: Data Sets and Results (Chapter 3)

Small-1

Small	l-2: T	Traditional approach				
No	Mult	Size	Offcut	Pan	els	
Stack	1					
1	1	156	0	23	17	
2	1	156	2	2	21	15
3	1	156	4	9	19	
4	1	156	4	10	25	
5	1	156	8	3	26	8
6	1	156	10	4	18	
7	1	156	10	7	24	
8	1	156	36	5	1	
9	1	156	60	6		
Stack	2					
1	1	156	60	11		
2	1	156	60	13		
3	1	156	60	14		
4	1	156	60	16		
5	1	156	60	20		
6	1	156	60	22		
7	1	156	74	12		

Small-2:	: Proposed approach							
** stack#	xloc	#layers	j	#pa	nels panel	ls		
1	51.3	9		1	1	11		
				2	1	12		
				3	1	13		
				4	3	14	1 15	
				5	1	10		
				6	1	17		
				7	1	16		
				8	2	2 1	8	
				9	2	3 9		
2	259.2	9		1	1	19		
				2	2	20	21	
				3	2	4 8		
				4	1	22		
				5	2	24	23	
				6	2	25	26	
				7	1	7		
				8	1	6		
				9	1	5		
								-

Small-3

Small-4

Small-5

Med-1

Med-2

Med-3

Med-5

Big-1

No	Mult	Size	Offcut	Pan	els	
Stacl	k 1					
1	1	156	0	25	7	10
2	1	156	0	57		
3	1	156	0	20	18	
4	1	156	0	2	6	
5	1	156	0	3	21	
6	1	156	2	5	4	
7	1	156	2	8	16	
8	1	156	4	50	52	
9	1	156	4	19	11	2
Stacl	k 2					
1	1	156	10	42	60	1
2	1	156	18	29	44	
3	1	156	20	37	13	
4	1	156	24	48	36	5
5	1	156	60	9		
6	1	156	60	12		
7	1	156	60	14		
8	1	156	60	15		
9	1	156	60	17		
Stacl						
1	1	156	60	22		
2	1	156	60	23		
3	1	156	60	24		
4	1	156	60	26		
5	1	156	60	28		
6	1	156	60	30		
7	1	156	60	31		
8	1	156	60	32		
9	1	156	60	33		
Stacl						
1	1	156	60	34		
2	1	156	60	35		
3	1	156	60	38		
4	1	156	60	39		
5	1	156	60	40		
6	1	156	60	41		
7	1	156	60	43		
8	1	156	60	45		
9	1	156	60	46		
Stacl	k 5					
1	1	156	60	47		
2	1	156	60	49		
3	1	156	60	53		
4	1	156	60	54		
5	1	156	60	55		
6	1	156	60	56		
7	1	156	60	59		
8	1	156	76	51		

stack#	xloc #lay	ers	j	#pan	nels	panels	
1	28.7	9		1	2	35	36
				2	1	37	
				3	1	38	
				4	1	39	
				5 6	1 2	40 41	1
				7	1	2	1
				8	1	43	
				9	1	48	
2	117.0	9		1	1	50	
				2	1	34	
				3	1	42	
				4	1	49	
				5	1	51	
				6	1	3	
				7	1	47	
				8 9	1 2	46 45	44
3	232.2	9		1	1	33	44
J	232.2			2	1	24	
				3	1	55	
				4	1	54	
				5	1	53	
				6	2	52	32
				7	1	56	
				8	2	6	
	202.4			9	2		7
4	392.1	9		1	1	31	12
				2 3	2 2	25 26	13 27
				4	1	28	21
				5	1	57	
				6	2	8	11
				7	1	12	
				8	1	30	
				9	2	14	58
5	506.0	8		1	1	9	
				2	2	10	29
				3	1	15	16
				4 5	2 2	59 17	16
				5 6	2	17 23	60 22
				7	2	23	20
				8	2	19	18

Big-2

Big-3

Big-4

Big-5

Appendix C: Data Sets and Results (Chapter 3)

S1-1

1 2	6.0 222.0									
* NSta		,								
* stack			flush							
* #	zone	type	edge x	doc yle	oc #lay	ers j	#pane	ls par	nels	orientation
1	1	A	ŘIGHT	114.0	48.0	6	1	1	10	2
							2 3	1	11	2
							3	1	15	1
							4	1	16	1
							5	2	18 17	11
2	•		DIGITE	2460	40.0	-	6	1	1	3
2	2	Α	RIGHT	346.0	48.0	7	1	1	12	2
							2 3	1	13 14	3 2 2 2 2 2 2 2 2
							3 4	1 1	14 7	2
							5	1	8	2
							6	1	9	2
							7	1	19	2
3	2	В	LEFT	346.0	90.0	4	1		2.3	33
3	_	ь	LLII	340.0	70.0	7	2	2 2	30 31	3 1
							2 3	ĩ	20	1
							4	1	21	1
4	2	В	LEFT	346.0	90.0	8	1	1	4	
							2	1	5	3 3 3
							2 3 4	1	6	
								1	27	1
							5	2	26 28	3 1
							6	1	24	3
							7	2	25 22	3 1
	interfer						8	2	23 29	3 1

```
S1-1: Proposed algorithm
** Nzones
3
**zone
                 left edge X coordinate
1 2 21
3 25
** NStacks
5 ** stack
** # zo
              6.0
210.0
              254.0
                               flush
       # zone type
1 1 A
                             edge xloc yloc #layers j
RIGHT 114.0 48.0 6
                                                                                 #panels panels 1 10
                                                                                                                 orientation
                                                                                                                            2
                                                                                                       11
                                                                                                       15
16
                                                                                                       18 17
                                                                                                                            11
3
2
2
2
33
3
3
3
1
2
2
2
2
1
                                                                                                      1
12
       2
                2
                                  RIGHT 330.0 48.0
                                                                          3
                         Α
                                                                                                      13
19
23
4
5
30 31
14
7
8
9
20
21 22
27
6
6
29
23
25
24
28
26
                2
                         В
                                  LEFT
                                               330.0 90.0
                                  RIGHT 362.0 48.0
                3
                                                                                   1
2
3
4
                3
                         В
                                  LEFT
                                               362.0 90.0
                                                                        10
                                                                                  1
2
3
4
5
6
7
8
9
10
                                                                                                                             1 1
** # of interfering panels
6: 29 23 25 24 28 26
```

S1-2


```
S1-2: Shewchuk (2008)
** Nzones
**zone
            left edge X coordinate
 1
            6.0
          222.0
** NStacks
4
** stack
** #
                      flush \\
         zone type edge xloc yloc #layers j
1 A RIGHT 114.0 48.0 5
                                                           #panels
                                                                     panels
1 9
                                                                                  orientation
                                                                                           2
                                                                           13
                                                                           14
                                                                           15
                                                                           1
                                                                                           3
2
2
2
2
2
2
                        RIGHT 346.0 48.0
           2
                  Α
                                                      6
                                                                           10
                                                                           11
                                                                           12
                                                                           6
                                                                                          222
                                                                           17 16 8
                                                                           2
27 28
     3
           2
                  В
                        LEFT
                                  346.0 90.0
                                                     2
                                                                                           3 1
           2
                                                     9
                                                                                            3
                  В
                        LEFT
                                  346.0 90.0
                                                                           4 5
                                                                                           33
                                                                           18
                                                                           24
                                                                           19
                                                                           23 20
25
                                                                                           33
                                                                                           1
                                                                           21
** # of interfering panels
9: 18 24 19 23 20 25 21 22 26
```

```
S1-2: Proposed algorithm ** Nzones
**zone
            left edge X coordinate
1
            6.0
         211.0
2
          254.0
3
** NStacks
5
** stack
    # zone type
1 1 A
                         lge xloc yloc #layers j
RIGHT 114.0 48.0 5
**
                      edge
                                                            #panels panels 1 9
                                                                                   orientation
                                                                            13
                                                                            15
                                                                            1
           2
                 Α
                         RIGHT 330.0 48.0
                                                       3
                                                                            10
                                                                            16 11
                                                                                            2
3
3
3 1
                                                                            17
     3
           2
                 В
                        LEFT
                                  330.0 90.0
                                                      3
                                                                            27 28
                                                                                            2 2
           3
                         RIGHT 362.0 48.0
                                                      4
                                                                            12
                 Α
                                                                            6
7
                                                                                             2
2
                                                                            8
     5
           3
                 В
                        LEFT
                                 362.0 90.0
                                                     10
                                                                            18
                                                                                             1
                                                                            19
                                                                                             1
                                                                            4 5
24
                                                                                            33
                                                                                             1
                                                                            26
22
21
                                                                                             1
                                                                                             3
                                                                            25
20
23
                                                              8
                                                                                             1
                                                            10
                                                                     1
** # of interfering panels
7: 24 26 22 21 25 20 23
```

S1-3


```
S1-3: Shewchuk (2008)
** Nzones
              left edge X coordinate
**zone
                6.0
              206.5
** NStacks
** stack
** # zone type
1 1 A
                              flush edge xloc yloc #layers j #panels panels RIGHT 116.2 57.3 4 1 1 7
                                                                                                               orientation 2 1 1 3 2 2 2 2 2 2 2 2 2 2 2 2 2 1 3 3 3 1 3 3 3 1 3 3 3 1 1 3 3 3 1 1 3 3 3 1 1
                                                                                                     11
12
                                                                                                      1
                                 RIGHT 348.2 57.3
                                                                         5
                                                                                                      8
                        A
                                                                                                     9
10
                                                                                                      5
13 6
2 23
24
3
4
               2
                        В
                                 LEFT
                                               348.2 99.3
                                                                        2
       3
               2
                                              348.2 99.3
                        В
                                 LEFT
                                                                                                     14
15
21
18
19 16
20 17
22
** # of interfering panels
9: 14 15 21 18 19 16 20 17 22
```

```
S1-3: Proposed algorithm
** Nzones
3
**zone
              left edge X coordinate
 1
2
3
           6.0
203.5
249.5
** NStacks
5
** stack
** #
1
                         flush
                         edge xloc yloc #layers j
RIGHT 116.2 57.3 4
                                                                 #panels panels 1 1 7
          zone type
                                                                                            orientation
                                                                    1 2 3
                                                                                    12
                                                                                                     2
                           RIGHT 336.7 57.3
                                                            3
                                                                                    8
                                                                    2
3
1
2
3
1
2
3
1
2
3
4
5
6
7
8
9
                                                                                    9
                                                                                    14 13
             2
                           LEFT
                                                            3
                    В
                                      336.7 99.3
                                                                                   23 24
10
5
6
15
4
                                                            3
             3
                    A
                           RIGHT 359.8 57.3
      5
             3
                    В
                           LEFT 359.8 99.3
                                                                                    16
21
22
17
20
19
                                                                                    18
** # of interfering panels
7: 16 21 22 17 20 19 18
```

S2-1


```
S2-1: Shewchuk (2008)
SZ-1: Snewchuk (2000)

** Nzones: 2

** NStacks: 3

** stack flush

** # zone type edge xloc yloc #layers j #panels panels

1 1 A RIGHT 114.0 48.0 11 1 1 1 1 1

2 1 12

2 1 12
                                                                                                                           orientation
                                                                                                               11
                                                                                                                                        2
2
                                                                                                                12
                                                                                                                16
17
                                                                                                                18
                                                                                                                20 19
21
22
23
24
1
                                                                                                                                        1 1
                                                                                                                                       10
                                                                                          11
                        Α
                                     RIGHT 341.0 48.0
                                                                                                                13
                                                                                                                14
                                                                                                                15
                                                                                                                6
7
                                                                                                                10 9
29
2
3
4
5
25 26
30 35
27 28
31 36
33 32
34 37
                 2
                           В
                                     LEFT 341.0 90.0
                                                                                10
                                                                                                                                       1 1
1 3
                                                                                          10
** # of interfering panels
12: 25 26 30 35 27 28 31 36 33 32 34 37
```

** 5	stack #	zone	tyne	flush edge x	loc vlo	oc #la	yers j	#panels	nar	iels	orientation
	1	1	A	RIGHT	114.0	48.0	11	1	1	11	2
								2 3 4 5 6 7 8 9	1 1 1 2 1 1 1	12 16 17 18 20 19 21 22 23	2 1 1 1 1 1 1 2
								10 11	1	24 1	2
	2	2	Α	RIGHT	330.0	48.0	2	1	1	13	2
	3	2	В	LEFT	330.0	90.0	4	2 1 2 3	1 1 1 1	14 2 3 4	2 2 3 2 2 3 3 3
	4	3	A	RIGHT	352.0	48.0	6	4 1 2 3 4 5	2 1 1 1 1 2	25 26 15 6 7 8 10 9	1 1 2 2 2 2 2 2 2 2 2 2 2
	5	3	В	LEFT	352.0	90.0	10	5 6 1 2 3 4 5 6 7 8 9	1 1 1 1 1 1 1 1 1 1	29 27 28 30 5 37 34 32 33 36 31 35	2 2 3 3 1 3 3 1 1 1 1 1 3 1 2 2

S2-2

** Nzone ** NStac ** stack										
			flush							
** #	zone	type		loc vlo	oc #la	yers j	#panel	s nai	nels	orientation
ï	1	A	ŘIGHT	114.0	48.0	8	1	1	10	2
_	_					-	2	1	14	1
							3	1	15	Ī
							4	1	16	ĺ
							5	1	17	1
							6	1	20	2
							7	1	21	2
							8	1	1	3
2	2	Α	RIGHT	341.0	48.0	10	1	1	11	2
							2	1	12	2
							3	1	13	2
							4	1	6	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3
							5	1	7	2
							6	1	8	2
							7	1	9	2
							8	1	18	2
							9	1	19	2
	_	_					10	1	26	2
3	2	В	LEFT	341.0	90.0	11	1	1	2	3
							2	1	2 3 4	3
							3	1		3
							4	1	5	3 11
							5	2	22 23	
							6 7	1 1	27 31	1 2
							8	2	24 25	33
							9	$\frac{2}{2}$	28 32	13
							10	$\frac{2}{2}$	30 33	13
							11	1	29	1 3
** # of in	nterfer	ing pa	nels 5 28 32 30 3	33 29			11	1	29	1

stack	70na	type	flush edge x	loc yl	oc #1ax	zore i	#nanale	panels	orientation
1	1	A	RIGHT	114.0	48.0	8 8	πpaneis	1 10	2
_	_					-		1 14	1
							2 3	1 15	1
							4	1 16	1
							5	1 17	1
							6	1 20	2
							7 8	1 21	2
2	2	Α	RIGHT	330.0	48.0	4	8 1	1 1 1 11	3
2	2	А	KIGITI	330.0	40.0	4	2	1 12	2 2 3 2 2
							3	1 18	1
							4	1 19	
3	2	В	LEFT	330.0	90.0	4	1	1 2	1 3 3 3
							2	1 3	3
							3	1 4	
4	2		DICHE	252.0	40.0		4	2 22 23	
4	3	A	RIGHT	352.0	48.0	6	$\frac{1}{2}$	1 13 1 6	2
							3	1 7	2
							4	1 8	2
							5	1 9	2 2 2 2 2 2 2
							6	1 26	2
5	3	В	LEFT	352.0	90.0	9	1	1 24 25	
							2 3	1 27	1
							3 4	1 5 1 29	3
							5	1 29	3
							6	1 30	1
							7	1 32	3
							8	1 28	1
							9	1 31	2

S2-3


```
S2-3: Shewchuk (2008)
** Nzones: 2
**zone
           left edge X coordinate
 1
             6.0
          226.5
** NStacks: 3
** stack
                         flush \\
** # zone type edge
1 1 A RIG
                           dge xloc yloc #layers j #panels panels
RIGHT 116.2 57.3 7 1 1 8
                                                                                            orientation
                                                                    3
                                                                                    13
                                                                                    17
                                                                                                     2
2
3
2
2
2
2
2
2
2
2
2
3
3
3
1
                                                                                    18
                           RIGHT 343.2 57.3
                                                            8
                                                                                    10
                                                                                    11
                                                                                   5
                                                                                   6
7
                                                                    5
                                                                    6
                                                                                    15
                                                                                   16
2
                           LEFT 343.2 99.3
                   В
                                                           3
                                                                    2
                                                                    4
                                                                                    .
19
                                                                                    22
                                                                    5
                                                                                                      1
                                                                                    20 21
                                                                                                     33
                                                                    6
7
                                                                            2
1
                                                                                   23
                                                                                                      1
                                                                            2
1
                                                                                   26 27
                                                                    8
9
                                                                                                     33
                                                                                    24
                                                                                                      1
                                                                                                     13
                                                                  10
                                                                                   25 28
** # of interfering panels
10: 19 22 20 21 23 26 27 24 25 28
```

```
S2-3: Proposed algorithm ** Nzones: 3
**zone
           left edge X coordinate
 1
             6.0
          214.5
239.5
3
** NStacks: 5
** stack
                        flush
** #
                         edge xloc yloc #layers j
RIGHT 116.2 57.3 7
          zone type edge
                                                                #panels
                                                                           panels
                                                                                         orientation
           1 A
                                                                                  12
                                                                  3
                                                                                  13
                                                                  4
                                                                                  14
                                                                                  17
                                                                                                   2
2
3
2
2
                                                                                  18
                           RIGHT 336.7 57.3
                                                                                  9
                   Α
                                                                                  10
                                                                                  15
                                                                                                    1
                                                                                                   1
3
3
1
2
                                                                                  16
                   В
                           LEFT
                                     336.7 99.3
                                                          3
                                                                                  19
                           RIGHT 349.8 57.3
                                                           4
                                                                                  11
            3
                   Α
                                                                                 5
                                                                                                    2 2 2
                                                                  3
                                                                                  6
                                                                                                   33
            3
                          LEFT
                                     349.8 99.3
                                                          9
                                                                                  20 21
                   В
                                                                  1
2
3
                                                                                  \overline{22}
                                                                                                    1
3
3
                                                                                  4
                                                                                 28
25
24
27
26
23
                                                                  4
5
6
                                                                                                    1
                                                                                                    1
                                                                                                    3
1
** # of interfering panels
6: 28 25 24 27 26 23
```



```
S3-1: Shewchuk (2008)
** Nzones: 2
**zone
          left edge X coordinate
            6.0
         222.0
** NStacks: 4
** stack
** # zone type edge
                      edge xloc yloc #layers j
RIGHT 114.0 48.0 6
                                                          #panels panels
                                                                                orientation
                                                                                        2
          1 A
                                                                         10
                                                                         16
                        RIGHT 343.0 48.0
                                                    6
                                                                         11
                                                                         13
                                                                         6
7
                                                           6
           2
                 В
                       LEFT
                                343.0 90.0
                                                    5
                                                                                         3
                                                                         17
                                                                         19 18 20
                                                                                        111
                                                                         21
                                                                                         3
                                                                         26 27
                                                                                        11
           2
                 В
                       LEFT
                                343.0 90.0
                                                                         3
                                                                                         3
                                                                        4
22
23
                                                                                         3
                                                                                         3
                                                                         24 25
28 29
                                                           5
                                                                                        3 3
1 1
                                                           6
                                                                                         3
** # of interfering panels
6: 22 23 24 25 28 29
```

```
S3-1: Proposed algorithm ** Nzones
**zone
          left edge X coordinate
1
           6.0
         210.0
2
         258.0
3
** NStacks
5
** stack
** # zone type edge xloc yloc #layers j
1 1 A RIGHT 114.0 48.0 6
                                                     #panels panels
                                                                          orientation
                                                                                  2
                                                                    15
                                                                    16
                                                       6
                      RIGHT 330.0 48.0
                                                 2
                                                                    11
                                                                    12
                В
                      LEFT 330.0 90.0
                                                6
                                                                    3
                                                                    4
                                                                                   3
                                                       4
                                                                    17
                                                                    19 18 20
                                                                                  111
                                                       6
                                                                    21
                                                                                   3
                      RIGHT 356.0 48.0
          3
                                                                    13
                                                                                   2
                                                       2
                                                                    6
                                                                    8
28 29
          3
                В
                      LEFT 356.0 90.0
                                                                                  11
                                                                    26 27
                                                                               11
                                                                    5
25
                                                                                   3
                                                                    24
23
22
                                                       5
                                                                                   3
** # of interfering panels
4: 25 24 23 22
```

S3-2


```
S3-2: Shewchuk (2008)
** Nzones
**zone
            left edge X coordinate
             6.0
          222.0
** NStacks
** stack
                       flush
                         dge xloc yloc #layers j
RIGHT 114.0 48.0 4
    #
                       edge
                                                              #panels panels
                                                                                      orientation
         zone type
           1
                  Α
                                                                1
                                                                               12
                                                                               14 13
                                                                                               1 1
3
2
2
2
2
2
2
2 2
2 2 2
                                                                               9
           2
                          RIGHT 343.0 48.0
                                                        5
     2
                  Α
                                                                        1
                                                                              10
                                                                              11
                                                                              5
7 6
           2
                         LEFT
     3
                  В
                                    343.0 90.0
                                                        4
                                                                               15
                                                                                               1
1
3
1
3
3
3
3
3
3
                                                                              16
                                                                              17
                                                                              21
2
3
           2
                  В
                         LEFT
                                   343.0 90.0
                                                        7
                                                                              4
                                                                              18
                                                                              19
                                                                              20 22
                                                                              23
** # of interfering panels
5: 18 19 20 22 23
```

```
S3-2: Proposed algorithm ** Nzones
**zone
              left edge X coordinate
 1
              6.0
 2
            209.0
 3
            248.0
** NStacks
** stack
** #
                          flush
                            dge xloc yloc #layers j
RIGHT 114.0 48.0 4
          zone type
1 A
                                                                     #panels panels
                                                                                                orientation
                          edge
                                                                       1
                                                                                                           2
                                                                                       12
                                                                       3
                                                                                       14 13
                                                                                2
1
                                                                                                          1 1
3
2
2
3
3
1
                                                                                        9
             2
                            RIGHT 330.0 48.0
      2
                    Α
                                                               2
                                                                                       10
2
3
                                        330.0 90.0
                                                              5
             2
                    В
                            LEFT
                                                                       2
                                                                                       15
                                                                       4
                                                                                       16

\begin{array}{cccc}
1 & & & \\
3 & & 2 & \\
2 & & 2 & \\
1 & 1 & & \\
\end{array}

                                                                                       17
             3
                            RIGHT 356.0 48.0
                                                               3
                                                                                       11
5
      4
                     A
                                                                       2
                                                                                       76
                                                                                       22 23
21
             3
                            LEFT
                                        356.0 90.0
                    В
                                                              6
                                                                       2
                                                                                                          1
                                                                       3
                                                                                                          3
3
                                                                                       20
                                                                                       19
** # of interfering panels
3: 20 19 18
```

S3-3


```
S3-3: Shewchuk (2008)
** Nzones
**zone
            left edge X coordinate
1
            6.0
2
         226.5
** NStacks
** stack
** # zone type edge xloc yloc #layers j #panels panels 1 1 A RIGHT 116.2 57.3 4 1 1 7
                                                                                  orientation
                                                                                          3
2
2
2
2
2
2
1
1
3
3
3
3
3
3
1
1
                        RIGHT 345.2 57.3
                                                                           8
                                                                          9
                                                                          10
                                                                          6
13
14
           2
                        LEFT
                                 345.2 99.3
                                                     5
                 В
                                                                          15
18
                                                             3
4
5
                                                                           16
                        LEFT 345.2 99.3
                                                     5
                 В
                                                             1
2
3
                                                                           17
                                                                           19 20
** # of interfering panels
3: 17 19 20
```

```
S3-3: Proposed algorithm ** Nzones
**zone
          left edge X coordinate
1
            6.0
         212.5
 2
          243.5
** NStacks
** stack
                      flush
** # zone type edge xloc yloc #layers j #panels panels 1 1 A RIGHT 116.2 57.3 4 1 1 7
                                                                                 orientation
                                                                          11
                                                                                          1
                                                                          12
                                                                                          1
3
2
2
3
3
1
1
3
2
2
2
2
2
                                                            4
     2
           2
                        RIGHT 336.7 57.3
                                                     2
                                                                         9
2
3
13
                                                            2
1
           2
                        LEFT 336.7 99.3
                                                    5
                 В
                                                            2
                                                                          14
                        RIGHT 353.8 57.3
                                                     3
                                                                          10
                                                                          6
                        LEFT
                                 353.8 99.3
                                                                          19 20
                                                                          18
                                                                          17
** # of interfering panels
2: 17 16
```

S4-1


```
S4-1: Shewchuk (2008)
** Nzones
**zone
            left edge X coordinate
1
            6.0
** NStacks
2
** stack
                      flush
** # zone type edge xloc yloc #layers j #panels panels
1 1 A RIGHT 203.0 106.5 9 1 1 10
                                                                                  orientation 2 2 2 2
                                                                           11
                                                                           12
                                                                                           2 2
2
2
2
2
2
                                                                           14 13
                                                                          6
                                                                           16
                                                                           17
                                                                           19 18
                                                                                           22
                                                                          27 20 26
21
    2
                        RIGHT 203.0 106.5
        1
                 В
                                                     13
                                                                                          1 1 1
                                                                                           2 2 2
                                                                           23 22
                                                                           8
                                                                                           3
                                                                           23
                                                                                           33
                                                                           4
                                                            10
                                                                           9 24
                                                                           25 29
                                                                                           3 1
                                                            12
                                                                           30
                                                                                           3
                                                                           31 28
                                                                                           33
** # of interfering panels
7: 9 24 25 29 30 31 28
```

```
S4-1: Proposed algorithm
** Nzones
2
**zone
         left edge X coordinate
1
           6.0
         184.0
** NStacks
3
** stack
                    flush
** # zone type edge xloc yloc #layers j
1 1 A RIGHT 114.0 48.0 9
                                                      #panels panels 1 1 1
                                                                            orientation
                                                                     10
                                                                                    2
                                                                     11
                                                                                    1
                                                                     15
                                                                     16
                                                                     17
                                                                                    1
                                                                     19 18
                                                                                   11
                                                                                   2 1 2 3
                                                                     21 20
                                                                    22
                      RIGHT 292.0 48.0
          2
                                                                     12
                                                                                   22
                                                                    14 13
                                                                    6
                                                        6
7
                                                                    269
                                                                                   2 2
2 2
                                                                     23 27
                В
                      LEFT 292.0 90.0
                                                                     24 25 28
                                                                                   123
                                                                     29
                                                                                    1
                                                                     23
                                                                                   33
                                                                     4
                                                                                    3
3
2
                                                        5
                                                                     31
                                                                     30
** # of interfering panels
2: 31 30
```



```
S4-2: Shewchuk (2008)
** Nzones
**zone
            left edge X coordinate
1
             6.0
** NStacks
2
** stack
                        flush
** # zone type edge xloc yloc #layers j #panels panels
1 1 A RIGHT 203.0 106.5 8 1 1 9
                                                                                          orientation
                                                                   1 2
                                                                                                     2
                                                                                   10
                                                                                                    2
2
2
2
2
                                                                                   12
                                                                                   13
                                                                                                    \overline{2} 2
                                                                                   16 15
                        RIGHT 203.0 106.5
                                                                                  17
                                                                                                    1
                                                                                                    2
                                                                   4
5
6
7
                                                                                   19
                                                                                  6
7 8
                                                                                                    1.1
                                                                                                    3 3 3
                                                                                  1
                                                                                  3
                                                                  10
                                                                                                    3
                                                                  11
                                                                                  20 21
                                                                                                    12
                                                                  12
                                                                                  24
                                                                                                    1
                                                                  13
                                                                                  25
                                                                           1
                                                                                                    \overline{2} 3
                                                                                   26 23
** # of interfering panels
6: 20 21 24 25 26 23
```

```
S4-2: Proposed algorithm
** Nzones
**zone left edge X coordinate
1
            6.0
        184.0
** NStacks
3
** stack
                     flush
** # zone type edge xloc yloc #layers j
1 1 A RIGHT 114.0 48.0 7
                                                           #panels panels
                                                                                  orientation
                                                            1 2
                                                                          13
                                                                           14
                                                                           16 15
                                                                           17
                                                                                           2
3
2
2
2
2
2
2
                        RIGHT 292.0 48.0
                                                                          6
8 7
22
                                                                                          2 2
2
2
                                                                           19
                                                             8
1
2
3
                        LEFT 292.0 90.0
                                                     7
                                                                           20 21 23
                                                                                          123
                                                                           24
                                                                                           1
                                                                          2 3
                                                                                           3
3
2
2
                                                             5
                                                                          26
25
** # of interfering panels
2: 26 25
```

S4-3


```
S4-3: Shewchuk (2008)
** Nzones
**zone
           left edge X coordinate
1
** NStacks
2
orientation
2
2
2
2
2
2
2
2
1
                                                                     10
                                                                     11
                                                                     12
                                                                     13
                      LEFT 203.0 115.8
               В
                                                14
          1
                                                                     14
                                                                     19
                                                                     15

\begin{array}{c}
2 \\
2 \\
1 \\
3 \\
3 \\
3 \\
2 \\
1
\end{array}

                                                                     16 17
                                                                     2
                                                       10
                                                                     4
                                                                     18 21
                                                                     22
23 20
                                                       13
** # of interfering panels
5: 18 21 22 23 20
```

```
S4-3: Proposed algorithm
** Nzones
2
**zone
          left edge X coordinate
             6.0
          179.5
** NStacks
3
** stack
                       flush
    # zone type edge xloc yloc #layers j #panels panels 1 1 A RIGHT 116.2 57.3 5 1 1 8
                                                                                         orientation
                                                                                11
                                                                                12
                                                                                13
                                                                5
1
2
3
4
5
1
2
3
4
5
6
7
8
9
10
                                                                                1
                                                                                                  3
2
2
2
2
2
2
1
2
            2
                          RIGHT 289.8 57.3
                                                          5
                   Α
                                                                                10
5
     3
            2
                  В
                          LEFT 289.8 99.3
                                                        11
                                                                                 14
                                                                                15
                                                                                                 123
                                                                                17 18 20
                                                                                19
                                                                                                  1
3
3
3
                                                                                2
3
4
23
22
21
                                                                                                   3
                                                                11
                                                                                 16
                                                                                                   2
** # of interfering panels
4: 23 22 21 16
```

S5-1


```
S5-1: Shewchuk (2008)
 ** Nzones
 1
 **zone
                 left edge X coordinate
                 6.0
 ** NStacks
2
** stack
                               flush
       # zone type
1 1 A
                             edge xloc yloc #layers j
RIGHT 198.0 106.5 7
 **
                                                                                #panels panels
                                                                                                               orientation
                                                                                                                           2
2
2
2
2
2
2
2
2
                                                                                                      10
                                                                                                      13 12
                                                                                                     14
                                                                                                     15
                                                                                                     16
                        В
                                 LEFT
                                              198.0 106.5
                                                                        14
                                                                                                     6
7
                                                                                                     8
                                                                                                     17
23
24
                                                                                                                           2
                                                                                                     18

\begin{array}{c}
1 \\
3 \\
3 \\
3 \\
3 \\
1 \\
1 \\
2
\end{array}

                                                                                   89
                                                                                                     1
                                                                                             2
                                                                                                     23
                                                                                                     4
5 19
25 26
27 20
21 22
                                                                                 10
                                                                                 11
                                                                                 12
                                                                                                                           2 2
2 2
                                                                                 13
                                                                                 14
** # of interfering panels 7: 19 25 26 27 20 21 22
```

```
S5-1: Proposed algorithm
** Nzones
**zone
             left edge X coordinate 6.0
 1
           174.0
 2
** NStacks
3
                         flush
    # zone type edge xloc yloc #layers j
1 1 A RIGHT 114.0 48.0 6
                                                                  #panels
                                                                              panels 9
                                                                                             orientation
                                                                                                       2
                                                                                    10
                                                                                     14
                                                                                     15
                                                                     4
                                                                     5
                                                                                    16
                                                                                                       3
                                                                                    1
             2
                           RIGHT 282.0 48.0
                                                             8
                                                                                     11
                                                                                                      2 2
2
2
2
2
                                                                                     13 12
                                                                                    6
7
                                                                                    3 2
                                                                                                      3 3
3
3
2
1
     3
                    В
                           LEFT
                                      282.0 90.0
                                                           11
                                                                                     20
                                                                                    21
17
                                                                     4
5
6
7
                                                                                    23
                                                                                                       2
                                                                                     18
                                                                                    19
22
27
26
25
24
                                                                                                       2 2 2
                                                                     89
                                                                   10
                                                                                                       1
                                                                   11
** # of interfering panels
4: 27 26 25 24
```



```
S5-2: Shewchuk (2008)
** Nzones
1
**zone
            left edge X coordinate
1
** NStacks
2
** stack
                      flush
   orientation
                                                                                          2
2
2
2
2
2
2
2
2
                                                                          10
                                                                          11
                                                                          12
                                                                          13
                                                                          14
                 В
                        LEFT
                                198.0 106.5
                                                    14
                                                                         5
                                                           1
2
3
4
5
6
7
8
9
10
11
12
13
                                                                          6
                                                                          15
                                                                                         1
2
1
3
3
3
1
1
                                                                          19
                                                                         20
1
                                                                         4
                                                                          16 21
                                                                         22 23
17
                                                                                         2 2 2 2 2
                                                                          18
** # of interfering panels
6: 16 21 22 23 17 18
```

```
S5-2: Proposed algorithm
** Nzones
**zone
               left edge X coordinate
               6.0
            176.0
 2
** NStacks
3
** stack
                           flush
    # zone type edge xloc yloc #layers j #panels panels 1 1 A RIGHT 114.0 48.0 5 1 1 8
                                                                                                     orientation
                                                                                            12
                                                                                                                 1
                                                                           2
3
4
                                                                                            13
                                                                                                                2
                              RIGHT 282.0 48.0
                                                                                             9
                                                                           \begin{array}{c} 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 1 \end{array}
                                                                                            10
                                                                                            11
                              LEFT 282.0 90.0
                                                                                            17
                                                                                            15
                                                                           2
3
4
5
6
7
                                                                                            19
                                                                                            16
                                                                                            18
                                                                                            23
22
                                                                                            21
                                                                                                                1
** # of interfering panels
4: 23 22 21 20
```

S5-3


```
S5-3: Shewchuk (2008)
** Nzones
**zone
             left edge X coordinate
 1
              6.0
** NStacks
2
** stack
                         flush
   # zone type edge xloc yloc #layers j #panels panels
1 1 A RIGHT 198.0 115.8 7 1 1 10
                                                                                            orientation
                                                                                   10
                                                                                                      2
2
2
2
2
2
2
2
                                                                                   11
                                                                                   8
9
                                                                                   12
13
                                                                                   14
            1
                   В
                           LEFT 198.0 115.8
                                                           14
                                                                                   6
7
                                                                                   15
                                                                                                      1
2
1
3
3
3
3
                                                                                    19
                                                                                   20
                                                                                   1
                                                                    8
                                                                                   3
                                                                                   22 16 21
                                                                                                     2 1 1
                                                                   11
                                                                                   23
                                                                                                      2
2
2
                                                                   13
                                                                                    17
                                                                                    18
** # of interfering panels
6: 22 16 21 23 17 18
```

```
S5-3: Proposed algorithm
** Nzones
2
**zone
            left edge X coordinate
            6.0
         169.5
** NStacks
3
** stack
                      flush
    # zone type edge xloc yloc #layers j
1 1 A RIGHT 116.2 57.3 6
                                                          #panels panels 1 1 1
                                                                                 orientation
                                                                          10
                                                                                          2
                                                                          11
                                                            3
                                                                          12
                                                                                          1
                                                                          13
                                                                                          1
                                                                          14
                                                                                         3
2
2
2
2
3
3
3
3
1
2
1
                                                                          1
                        RIGHT 279.8 57.3
           2
                                                     7
                                                                          8
                                                                          9
                                                            2
                                                                         5
6
2 7
                                                                          3
                                                                          4
           2
                 В
                        LEFT 279.8 99.3
                                                    9
                                                                          17
                                                            2
                                                                          15
                                                                          19
                                                                          16
                                                                                          2
                                                                          18
                                                                         23
21
                                                                          22
20
                                                                                          2
** # of interfering panels
4: 23 21 22 20
```

M1-1


```
M1-1: Shewchuk (2008)
** Nzones
**zone
          left edge X coordinate
              6.0
           222.0
** NStacks
5
** stack
                          flush
                                                                                                 orientation 2 2
** # zone type edge xloc yloc #layers j #panels panels
1 1 A RIGHT 114.0 48.0 13 1 1 14
                                                                       2
3
4
5
6
7
8
9
                                                                                         15
                                                                                        20
21
22
23
24
26 25
29
27
28
31 30
1
                                                                                                           1 1
                                                                                                           1
2
2
1 1
                                                                       11
                                                                       12
13
                                                                                                          RIGHT 361.0 48.0
             2
                                                              13
                                                                       1
2
3
4
5
6
7
8
9
                                                                                        16
                                                                                         19 18
                                                                                        10
                                                                                         11
                                                                                         40
                                                                       11
                                                                                        41
                                                                                        44 43
38 37
39
32
                                                                       13
             2
                             RIGHT 361.0 48.0
                                                              11
                     Α
                                                                                        33
34
                                                                                        45
46 56 55
47 57
48
                                                                        89
                                                                       10
                                                                                        35
49
2
3
4
5
6
                                                                                                          2
3
3
3
3
3
22
2
                                                                       11
                            LEFT
             2
                     В
                                      361.0 90.0
             2
                     В
                            LEFT
                                        361.0 90.0
                                                                                       50 \, 51
                                                                        1
2
3
                                                                                        52
36
53
54
                                                                                                            2
** # of interfering panels
6: 50 51 52 36 53 54
```

```
M1-1: Proposed algorithm
** Nzones
3
**zone
           left edge X coordinate
           6.0
210.0
284.0
 1
 2
** NStacks
5
dge xloc yloc #layers j #panels panels
RIGHT 114.0 48.0 13 1 1 14
                                                                                                orientation
                                                                                       14
                                                                                       20
21
22
23
24
26 25
29
27
                                                                                                          1
                                                                       4
5
6
7
8
9
                                                                                                          1
2
2
1 1
                                                                      10
                                                                                       28
31 30
                                                                      11
                                                                     13
1
2
3
4
5
6
7
8
9
                                                                                                          3
2
2
1
                            RIGHT 330.0 48.0
                                                                                       16
                                                                                       17
                                                                                       40
                                                                                       41
                                                                                                          1
2
2
2
1
                                                                                       42
32
33
34
                                                                               1
1
1
2
1
                                                                                       46 45
47
35
                                                                                                          1 1
2
1
                                                                     10
11
                                                                                       50 49
2
3
4
39
                                                                                                          1 1
                                                                      12
      3
             2
                    В
                            LEFT
                                       330.0 90.0
                                                                      1
2
3
4
1
                                                                                                          3
                                                                                                          3
                                                                                                         RIGHT 392.0 48.0
                                                             13
                                                                                        19 18
             3
                    Α
                                                                                       7
                                                                     2
3
4
5
6
7
8
9
10
                                                                                       9
10
                                                                                       11
                                                                               1
2
2
2
3
1
                                                                                       13 12
44 43
                                                                                       38 37
57 56 55
                                                                                       48
                                                                                                          2
2
2
1
                                                                                       51
52
36
5
6
54
53
                                                                      13
                            LEFT 392.0 90.0
                                                                       1
2
3
** # of interfering panels
2: 54 53
```



```
M1-2: Shewchuk (2008)
** Nzones
2
**zone left edge X coordinate
1 6.0
2 222.0
** NStacks
5
** stack
                         flush
** # zone type edge
1 1 A RIC
                         edge xloc yloc #layers j #panels panels
RIGHT 114.0 48.0 9 1 1 1:
                                                                                            orientation
                                                                                   18
                                                                                   19
                                                                                   20
21
23 22
24
27 25
                                                                                                     \begin{smallmatrix}1&1\\2\\1&2\end{smallmatrix}
                                                                                   1 28
                                                                                                     RIGHT 361.0 48.0
                                                           13
                                                                                   15
                                                                                   17
7
                                                                                   8
                                                                                   10
                                                                                   12 11
                                                                   10
                                                                                   26
                                                                   11
                                                                                   36
                                                                   12
                                                                                   37
                                                                                   38
39
                                                                  13
1
2
3
4
5
6
7
8
9
            2
                           RIGHT 361.0 48.0
                   Α
                                                                                   34
                                                                                   35
29
                                                                                   30
                                                                                   31
                                                                                   40
49 48
                                                                                   41
                                                                   10
                                                                                   42
                                                                                   23
                                                                                                     \bar{3} 3
                   В
                           LEFT
                                    361.0 90.0
                                                           3
                                                                                   5 6
32
                                                                                                     3 3
                   В
                           LEFT 361.0 90.0
                                                           6
                                                                                                      1
2
2
2
2
                                                                                   43
                                                                                   44
                                                                                   45
                                                                                   46
                                                                                   47 33
                                                                                                     2 1
** # of interfering panels
7: 32 43 44 45 46 47 33
```

```
M1-2: Proposed algorithm
** Nzones
**zone
               left edge X coordinate
             6.0
209.0
284.0
 1
2
3
** NStacks
5
** stack
** #
                             flush \\
                               dge xloc yloc #layers j
RIGHT 114.0 48.0 9
     # zone type edge
1 1 A RIG
                                                                            #panels panels
                                                                                                          orientation
                                                                                                 13
                                                                                                18
19
                                                                                                20
21
23 22
24
27 25
1 28
                                                                                                                     2
1 2
3 1
                                                                                                14
15
26
                                                                                                                      2
2
1
                                RIGHT 330.0 48.0
                                                                                                36
37
38
29
30
31
                                                                                                                      1
2
2
2
1
                                                                               8
                                                                                                40
41
                                                                             10
                                                                                                                     11
                                                                                                43
2 3
4
35
16
17
7
8
9
10
12 11
39
34
49 48
42
44
45
                                                                             12
      3
               2
                       В
                               LEFT
                                            330.0 90.0
                                                                     3
                                                                               1
2
3
               3
                                RIGHT 392.0 48.0
                                                                    13
      4
                       Α
                                                                              2
3
4
5
6
7
8
9
                                                                                        1
2
1
1
                                                                             10
                                                                             11
                                                                             12
                                                                             13
                                                                                        1
2
2
1
                                                                                                5 6
33 47
               3
                       В
                               LEFT
                                            392.0 90.0
                                                                               1
2
3
4
                                                                                                46
                                                                                                32
** # of interfering panels
4: 33 47 46 32
```

M1-3


```
M1-3: Shewchuk (2008)
** Nzones
**zone left edge X coordinate
1 6.0
2 226.5
         6.0
** NStacks
5
orientation
                                                  1 2
                                                                           1
                                                              14
                                                              15
16
17
                                                                           1
                                                                           1
                                                                           1
                                                             17
19 18
22 20
1
11
                                                                           RIGHT 363.2 57.3
    2 2 A
                                         13
                                                              12
13
                                                             5
6
7
8
9
21
29
30
31
32
27
28
23
24
25
33
                                                  6
7
8
9
                                                  10
                                                 13
       2 A RIGHT 363.2 57.3
                                                              42 41
                                                                           34
                                                             35
36
37
38
2
3
4
26
37
38
39
40
                                                 10
                                                 11
                                                 12
                  LEFT 363.2 99.3
         2
              В
                  LEFT 363.2 99.3
         2
            В
                                                  3
4
5
** # of interfering panels 5: 26 37 38 39 40
```

```
M1-3: Proposed algorithm
** Nzones
3
**zone
            left edge X coordinate
 1
2
3
          6.0
222.5
279.5
** NStacks
5
orientation
                                                              1 2 3
                                                                           10
                                                                             14
                                                                             15
                                                                            16
17
                                                             4
5
6
7
8
1
                                                                             19 18
                                                                             22\ 20
                                                                                             RIGHT 336.7 57.3
                                                                             12
                                                              2
3
4
5
6
7
8
9
                                                                             21
                                                                            29
30
                                                                            31
23
24
25
33
28
13
5
6
7
8
32 9
27
42 41
34
35
36
37
                                                             10
1
2
3
1
2
3
4
5
6
7
8
9
10
11
12
13
1
2
3
4
                         LEFT 336.7 99.3
     3
            2
                  В
                                                      3
                         RIGHT 389.8 57.3
                                                      13
            3
                  Α
                                                                      1
1
2
1
                                                                            38
4
40
            3
                         LEFT
                                   389.8 99.3
                                                                                            1
2
2
1
                                                                             39
                                                                             26
** # of interfering panels
3: 40 39 26
```

M2-1


```
M2-1: Shewchuk (2008)
** Nzones
 **zone
                                                      left edge X coordinate
                                                                    6.0
                                                      222.0
 ** NStacks
 6
  ** stack
                                                                                                                        flush
                    # zone type edge xloc yloc #layers j #panels panels
1 1 A RIGHT 114.0 48.0 13 1 1 1
                                                                                                                                                                                                                                                                                                                                                                                                                                                       orientation
                                                                                                                                                                                                                                                                                                                               1
2
3
4
5
6
7
8
9
10
                                                                                                                                                                                                                                                                                                                                                                                                              16
17
23
24
25
26
27
28
30
29
34
35
36
                                                                                                                                                                                                                                                                                                                                11
                                                                                                                                                                                                                                                                                                                                12
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     1
2
1
2
1 1
                                                                                                                                                                                                                                                                                                                                                                                                               31
32
40
                                                                                                                                                                                                                                                                                                                                13
                                                                                                                                   RIGHT 114.0 48.0
                                                            1
                                                                                               Α
                                                                                                                                                                                                                                                                                                                                     2
3
4
5
                                                                                                                                                                                                                                                                                                                                                                                                               43
42 41
47
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    \begin{smallmatrix}2\\1&2\\2&2&2\\2&2&2\\2&2&2&2\\2&2&2&2\\2&2&2&2\\2&2&2&2\\2&2&2&2\\2&2&2&2\\2&2&2&2\\2&2&2&2\\2&2&2&2\\2&2&2&2\\2&2&2&2\\2&2&2&2\\2&2&2&2\\2&2&2&2\\2&2&2&2\\2&2&2&2\\2&2&2&2\\2&2&2&2\\2&2&2&2\\2&2&2&2\\2&2&2&2\\2&2&2&2&2\\2&2&2&2&2\\2&2&2&2&2\\2&2&2&2&2\\2&2&2&2&2\\2&2&2&2&2\\2&2&2&2&2\\2&2&2&2&2\\2&2&2&2&2\\2&2&2&2&2\\2&2&2&2&2\\2&2&2&2&2\\2&2&2&2&2\\2&2&2&2&2\\2&2&2&2&2\\2&2&2&2&2\\2&2&2&2&2\\2&2&2&2&2\\2&2&2&2&2\\2&2&2&2&2\\2&2&2&2&2\\2&2&2&2&2\\2&2&2&2&2\\2&2&2&2&2\\2&2&2&2&2\\2&2&2&2&2\\2&2&2&2&2\\2&2&2&2&2\\2&2&2&2&2\\2&2&2&2&2\\2&2&2&2&2\\2&2&2&2&2\\2&2&2&2&2\\2&2&2&2&2\\2&2&2&2&2\\2&2&2&2&2\\2&2&2&2&2\\2&2&2&2&2\\2&2&2&2&2\\2&2&2&2&2\\2&2&2&2&2\\2&2&2&2&2\\2&2&2&2&2\\2&2&2&2&2\\2&2&2&2&2\\2&2&2&2&2\\2&2&2&2&2\\2&2&2&2&2\\2&2&2&2&2\\2&2&2&2&2\\2&2&2&2&2\\2&2&2&2&2\\2&2&2&2&2\\2&2&2&2&2\\2&2&2&2&2\\2&2&2&2&2\\2&2&2&2&2\\2&2&2&2&2\\2&2&2&2&2\\2&2&2&2&2\\2&2&2&2&2\\2&2&2&2&2\\2&2&2&2&2\\2&2&2&2&2\\2&2&2&2&2\\2&2&2&2&2\\2&2&2&2&2\\2&2&2&2&2\\2&2&2&2&2\\2&2&2&2&2\\2&2&2&2&2\\2&2&2&2&2\\2&2&2&2&2\\2&2&2&2&2\\2&2&2&2&2\\2&2&2&2&2\\2&2&2&2&2\\2&2&2&2&2\\2&2&2&2&2\\2&2&2&2&2\\2&2&2&2&2\\2&2&2&2&2\\2&2&2&2&2\\2&2&2&2&2\\2&2&2&2&2\\2&2&2&2&2\\2&2&2&2&2\\2&2&2&2&2\\2&2&2&2&2\\2&2&2&2&2\\2&2&2&2&2\\2&2&2&2&2\\2&2&2&2&2\\2&2&2&2&2\\2&2&2&2&2\\2&2&2&2&2\\2&2&2&2&2\\2&2&2&2&2\\2&2&2&2&2\\2&2&2&2&2\\2&2&2&2&2\\2&2&2&2&2\\2&2&2&2&2\\2&2&2&2&2\\2&2&2&2&2\\2&2&2&2&2\\2&2&2&2&2\\2&2&2&2&2\\2&2&2&2&2\\2&2&2&2&2\\2&2&2&2&2\\2&2&2&2&2\\2&2&2&2&2\\2&2&2&2&2\\2&2&2&2&2\\2&2&2&2&2\\2&2&2&2&2\\2&2&2&2&2\\2&2&2&2&2\\2&2&2&2&2\\2&2&2&2&2\\2&2&2&2&2&2\\2&2&2&2&2\\2&2&2&2&2\\2&2&2&2&2\\2&2&2&2&2\\2&2&2&2&2\\2&2&2&2&2&2\\2&2&2&2&2&2\\2&2&2&2&2&2\\2&2&2&2&2&2\\2&2&2&2&2&2\\2&2&2&2&2&2\\2&2&2&2&2&2\\2&2&2&2&2&2\\2&2&2&2&2&2\\2&2&2&2&2&2\\2&2&2&2&2&2\\2&2&2&2&2&2\\2&2&2&2&2&2\\2&2&2&2&2&2\\2&2&2&2&2&2\\2&2&2&2&2&2\\2&2&2&2&2&2\\2&2&2&2&2&2\\2&2&2&2&2&2\\2&2&2&2&2&2\\2&2&2&2&2&2\\2&2&2&2&2&2\\2&2&2&2&2&2\\2&2&2&2&2&2\\2&2&2&2&2&2\\2&2&2&2&2&2\\2&2&2&2&2&2\\2&2&2&2&2&2\\2&2&2&2&2&2\\2&2&2&2&2&2\\2&2&2&2&2&2\\2&2&2&2&2&2\\2&2&2&2&2&2\\2&2&2&2&2&2\\2&2&2&2&2&2\\2&2&2&2&2&2\\2&2&2&2&2&2\\2&2&2&2&2&2&2\\2&2&2&2&2&2&2\\2&2&2&2&2&2&2\\2&2&2&2&2&2&2\\2&2&2&2&2&2&2\\2&2&2&2&2&2&2\\2&2&2&2&2&2&2\\2&2&2&2&2&2&2\\2&2&2&2&2&2&2\\2&2&2&2&2&2&2\\2
                                                                                                                                                                                                                                                                                                                                                                                                               52 48
53
55 54
                                                                                                                                   RIGHT 411.0 48.0
                                                                                                                                                                                                                                                                                                                                                                                                                   18
                                                                                                                                                                                                                                                                                                                                     2
3
4
5
                                                                                                                                                                                                                                                                                                                                                                                                                19
                                                                                                                                                                                                                                                                                                                                                                                                               20
22 21
8
                                                                                                                                                                                                                                                                                                                                     6
7
                                                                                                                                                                                                                                                                                                                                                                                                               10
                                                                                                                                                                                                                                                                                                                                                                                                              10
11
12
13
15 14
37
56
                                                                                                                                                                                                                                                                                                                                    8 9
                                                                                                                                                                                                                                                                                                                                10
                                                                                                                                                                                                                                                                                                                                11
                                                                                                                                                                                                                                                                                                                                                                          1
                                                                                                                                                                                                                                                                                                                                12
                                                            2
                                                                                               Α
                                                                                                                                   RIGHT 411.0 48.0
                                                                                                                                                                                                                                                                                                                                                                             1
2
1
                                                                                                                                                                                                                                                                                                                                                                                                               61

  \begin{array}{c}
    2 \\
    3 \\
    4 \\
    5 \\
    6 \\
    7 \\
    8 \\
    9
  \end{array}

                                                                                                                                                                                                                                                                                                                                                                                                               63 62
                                                                                                                                                                                                                                                                                                                                                                                                              38
57
64
67
69 68
                                                                                                                                                                                                                                                                                                                                                                                                              33 39
2
3
4
                                                              2
                                                                                               В
                                                                                                                                  LEFT 411.0 90.0
                                                                                                                                                                                                                                                                                              6
                                                                                                                                                                                                                                                                                                                                       2
                                                                                                                                                                                                                                                                                                                                                                                                               5
6
7
58
44
                                                                                                                                                                                                                                                                                                                                       6
1
2
3
4
5
6
7
                                                            2
                                                                                                В
                                                                                                                                  LEFT
                                                                                                                                                                                      411.0 90.0
                                                                                                                                                                                                                                                                                              8
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        2
                                                                                                                                                                                                                                                                                                                                                                                                               45
                                                                                                                                                                                                                                                                                                                                                                                                               50
                                                                                                                                                                                                                                                                                                                                                                                                               46 51 59
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  111
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      2
                                                                                                                                                                                                                                                                                                                                                                                                               49
                                                                                                                                                                                                                                                                                                                                                                                                               60
                                                                                                                                                                                                                                                                                                                                                                                                               66 65
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    22
 ** # of interfering panels
 3: 60 66 65
```

```
M2-1: Proposed algorithm
** Nzones
**zone
         left edge X coordinate
           6.0
         212.0
          384.0
** NStacks
6
** stack
                      flush
** # zone type edge xloc yloc #layers j #panels panels 1 1 A RIGHT 114.0 48.0 13 1 1 1
                                                                                   orientation
                                                                            17
                                                                            23
24
25
26
27
28
                                                              8
                                                                            30 29
34
                                                                                            1 1
                                                             10
                                                                                             1
                                                                            35
36
31
32
                                                             11
                                                                                            1 2 2
                                                             12
                                                             13
                        RIGHT 114.0 48.0
                 Α
                                                              2
                                                                            40
                                                                            43
                                                                            42 41
47
                                                                                            1 1
                                                              4
5
6
7
8
9
                                                                                            2 1 2
                                                                            52 48
53
55 54
                                                                                            2 2 2
                                                                                             3
2
2
1
           2
                         RIGHT 330.0 48.0
                                                              1
2
3
                                                                            18
                                                                            19
                                                                            37
                                                                            38
                                                                            33 39
                                                                                            2 1
                                                                            44
                                                                                             2
                                                                            45
                                                                            51 46 50
                                                                                            111
                                                                            49
                                                                                            3
3
3
2
                 В
                        LEFT
                                 330.0 90.0
           3
                         RIGHT 492.0 48.0
                                                     13
                                                                            20
                 Α
                                                                            22 21
                                                                                            2 2
2
2
2
2
2
2
2
2
2
2
2
                                                                            10
                                                              5
6
7
                                                                            11
                                                                            12
                                                              89
                                                                            13
                                                                            15 14
                                                                                             2 2
                                                             10
                                                                            56
                                                             11
12
                                                                            61
                                                                            63 62
                                                                                            ^{-2}_{2}
                                                                                            2 3
                                                             13
                                                                            57
           3
                         RIGHT 492.0 48.0
                                                     10
                                                                            61
                 A
                                                             1
2
3
4
5
                                                                                            3 1
                                                                            62 \ 63
                                                                            57
                                                                                             1
                                                                            64
                                                                                             1
                                                                            67
                                                                            68 69
                                                                                            2 2
                                                                            58
59
                                                                                             2
1
                                                              9
                                                                      1
                                                                            60
                                                                                            22
                                                             10
                                                                            65 66
** # of interfering panels
```

M2-2


```
M2-2: Shewchuk (2008)
** Nzones
**zone
             left edge X coordinate
           6.0
222.0
** NStacks
                         flush
** stack
    # zone type
1 1 A
                         edge xloc yloc #layers j #panels panels
RIGHT 114.0 48.0 14 1 1 13
                                                                                               orientation
                                                                                      19
                                                                                    20
21
22
23
24
28
30 29
25
34
36
35
39 38
45 40
                                                                     8
9
10
11
                                                                                                         1 1
2
1
2
1
                                                                     12
13
                                                                              1
2
2
1
                                                                                                         1 1
                            RIGHT 114.0 48.0
                    Α
                                                                                                        46
                                                                                      47
                            RIGHT 411.0 48.0
     3
            2
                    A
                                                             12
                                                                                       14
                                                                                      15
                                                                                      16
                                                                                      18 17
                                                                               2
                                                                                      8
9
                                                                                      10
                                                                                      11
                                                                     11
12
1
2
3
1
                                                                                      31
                                                                                      48
                                                                                     52
53
33 32
2 3
                    Α
                            RIGHT 411.0 48.0
            2
                    В
                            LEFT
                                       411.0 90.0
                                                             3
                                                                                      4
5
32 33
                                                                               1
            2
                    В
                           LEFT
                                       411.0 90.0
                                                            12
                                                                               2
                                                                                                           11
     6
                                                                                      49
54
56
57
26
27 37
43
50 44
51
                                                                     2
3
4
5
6
7
8
9
10
                                                                                                         1
2
2
2
2
2
2
2
1
                                                                              1
2
1
2
1
2
1
                                                                                                         1 1
                                                                                      41 42
                                                                                                         22
                                                                     11
                                                                                      55
** # of interfering panels
1: 55
```

```
M2-2: Proposed algorithm
** Nzones
3
         left edge X coordinate
**zone
           6.0
 1
 2 3
         211.4
         384.0
** NStacks
6
orientation
                                                       1 2 3
                                                                    13
19
                                                                    20
21
22
23
24
28
30 29
25
34
                                                       4
5
6
7
8
9
10
                                                       12
13
                                                                     36
                                                                    35
39 38
                      RIGHT 114.0 48.0
                                                                     45 40
                                                                     46
                                                        2
3
4
                                                                     47
                                                                     14
15
                A
                      RIGHT 330.0 48.0
                                                       2
3
4
5
6
7
                                                                     31
                                                                                   33 32
                                                              2
1
2
2
2
2
1
                                                                     26
                                                                    37 27
                                                                     44 43
                                                       8
                                                                     42 41
                                                                                   2
                      LEFT 330.0 90.0
                                                 2
                                                                     23
                В
                                                       2
1
2
3
4
5
6
7
8
9
10
11
                                                                     4
                                                              1
2
1
          3
                A
                      RIGHT 492.0 48.0
                                                13
                                                                     16
                                                                    18 17
                                                                    7
8
9
                                                                     10
                                                                     11
                                                                     12
                                                                    48
52
53
49
54
49
                                                       12
                                                       13
1
2
3
4
                                                 7
          3
                      RIGHT 492.0 48.0
                                                                    54
56
57
50
                                                                     51
55
** # of interfering panels
```



```
M2-3: Shewchuk (2008)
 ** Nzones
2
**zone left edge X coordinate
                6.0
              226.5
  2
** NStacks
5
                               flush
** stack

** # zone type edge xloc yloc #layers j #panels panels

1 1 A RIGHT 116.2 57.3 13 1 1 1 1

2 1 1 6
3 1 17
4 1 18
5 1 19
6 1 20
7 1 23
8 1 24
9 1 21
                                                                                                                 orientation
                                                                                                       11
                                                                                                       16
17
                                                                                                       19
20
23
24
21
27
28
32
1
12
13
14
15
                                                                                                                             10
                                                                                   11
                                                                                  12
13
1
2
3
4
5
6
7
8
9
10
              2 A
                                  RIGHT 413.2 57.3
                                                                         13
                                                                                                       6
7
8
9
10
25
38
42
43
26
22
39
44
46
                                                                                  11
12
                                                                                   13
                2
                        Α
                                  RIGHT 413.2 57.3
                                                                                   1
2
3
4
5
                                                                                                       47
2
3
                                  LEFT 413.2 99.3
                         В
                                                                         4
                                                                                                       4
5
29
30
31
34
40
41
33
35
36
37
                         В
                                  LEFT 413.2 99.3
                                                                                    23456789
                                                                                                                              1
1
2
1
2
2
                                                                                   10
                                                                                                       45
** # of interfering panels
1:45
```

```
M2-3: Proposed algorithm
** Nzones
**zone
           left edge X coordinate
            6.0
214.5
379.5
 2 3
** NStacks
orientation
                                                                                         16
17
                                                                                         18
19
20
23
24
21
27
28
32
1
12
13
25
38
26
22
39
29
30
31
34
                                                                       13
1
2
3
4
5
6
7
8
9
                             RIGHT 336.7 57.3
                                                                                                            1
2
1
2
2
1
1
                                                                       10
11
12
13
1
2
3
4
5
1
2
3
4
5
6
7
8
9
10
11
                                                                                         40
33 41
2
3
35
36
37
14
                                                                                                            1
2
3
3
1
2
2
2
3
2
2
1
1
                             LEFT 336.7 99.3
                     В
                             RIGHT 489.8 57.3
             3
                                                               14
                     Α
                                                                                         15
6
7
8
9
10
                                                                                         44 43
                                                                                         46
                                                                                         47
** # of interfering panels
```

M3-1


```
M3-1: Shewchuk (2008)
** Nzones
2
**zone left edge X coordinate
            6.0
         222.0
2
** NStacks
5
** stack
                      flush
** # zone type edge xloc yloc #layers j #panels panels orientation
1 1 A RIGHT 114.0 48.0 14 1 2 19.18 2.2
                                                                                            22
                                                             2
                                                                           15
                                                                           20
21
22
24 23
59
                                                             6
7
8
9
                                                                           61
                                                                           62 60 63
                                                            10
                                                                           38 64
                                                                                            22
                                                            11
                                                                           28 27
                                                                           35
                                                                           30 29
                                                            13
                                                                                            2 2
3
2 2
2
                                                            14
                                                                           66 65
                        RIGHT 114.0 48.0
RIGHT 361.0 48.0
                                                     13
                                                                            17 16
                                                             2
3
4
5
6
7
                                                                           12
                                                                                            2 2
2
2
2
2
                                                                           14 13
                                                                           7
                                                                           8
                                                                     1
2
2
2
2
3
1
3
1
2
2
1
                                                                                           2 2
2 2
2 2
2 2
2 2
                                                                           11 10
                                                             8
                                                                           26 25
                                                                           40 39
                                                            10
                                                                           45 41
                                                                                           2 2 2
2
2 2 2
                                                                           42 44 43
                                                            11
                                                            12
13
                                                                           53
                                                                           48 55 54
           2
                 В
                        LEFT 361.0 90.0
                                                                           2
                                                                                            3
                                                             1
2
3
                                                                           31 32
36 37
                                                                                           2 2
1 1
                                                             4
5
                                                                           50
51
                                                                                            2
                                                                           33 34
                                                                                            33
                                                                           56
                                                                                            1
           2
                 В
                        LEFT 361.0 90.0
                                                                           3
                                                                                             3
                                                                           4
                                                                           56
                                                                                            33
                                                                           46
                                                                                            1
                                                                     2
                                                                           52 57
                                                                                           2 1
                                                                           47 49 67 58
                                                                                         1221
** # of interfering panels
7: 46 52 57 47 49 67 58
```

```
M3-1: Proposed algorithm
** Nzones
**zone
            left edge X coordinate
              6.0
 2
           211.0
           284.0
** NStacks
5
** stack
                         flush
    # zone type edge xloc yloc #layers j
1 1 A RIGHT 114.0 48.0 15
                                                                   #panels panels 1 2 1
                                                                                             orientation
                                                                                      19 18
                                                                                                         22
                                                                      2
                                                                                      15
                                                                                     20
21
                                                                                     22
24 23
59
                                                                      5
6
7
                                                                              1
2
1
                                                                                                         1
                                                                                                        1 1
                                                                                                         1
                                                                                      61
                                                                      8
                                                                              1
3
2
2
1
2
1
2
1
2
2
1
2
2
3
1
2
2
3
1
                                                                                     62 60 63
38 64
28 27
35
30 29
                                                                                                       10
                                                                    11
                                                                    12
13
                                                                     14
                                                                                      66\ 65
                                                                                     1
17 16
                                                                     15
                                                                                                       2 2
2
2 1
2 2
1 1
             2
                            RIGHT 330.0 48.0
     2
                    A
                                                              6
                                                                      2
3
4
                                                                                      12
                                                                                     26 25
40 39
                                                                                      45 41
                                                                                                        1 1
                                                                                     42 44 43
2
3
4
                                                                                                       122
             2
                           LEFT 330.0 90.0
                                                             7
     3
                    В
                                                                                                        3
3
22
11
2
32
                                                                      4
                                                                                      31 32
                                                                                     36 37
50
                                                                      6
7
                                                                                      33 34
                                                                                                         2 2
2
2
2
2
             3
                    Α
                            RIGHT 392.0 48.0
                                                              8
                                                                                      14 13
7
                                                                                      8
                                                                      4 5
                                                                                      9
                                                                               1
2
1
                                                                                                        22
                                                                                      11 10
                                                                      6
7
                                                                                      53
                                                                               3
2
2
1
                                                                                      48 55 54
                                                                                                       222
                                                                                     6 5
51 52
56
                                                                                                        33
             3
                    В
                           LEFT
                                      392.0 90.0
                                                             8
                                                                                                           2 2
     5
                                                                                                         1
                                                                      2
3
4
5
6
7
8
                                                                                     58
67
                                                                               1
                                                                                                         1
2
2
1
                                                                                     49
47
57
                                                                               1
                                                                               1
                                                                                                         1
                                                                               1
                                                                                      46
** # of interfering panels
6: 58 67 49 47 57 46
```

M3-2


```
M3-2: Shewchuk (2008)
** Nzones
**zone
              left edge X coordinate
           6.0
222.0
** NStacks
5
** stack
                         flush \\
                                                                                             orientation 2
   # zone type edge xloc yloc #layers j #panels panels
1 1 A RIGHT 114.0 52.5 9 1 1 14
2 1 15
3 1 16
4 1 17
5 2 211
                                                                                    21 18
25
45
22
                                                                                                       1 12
                            RIGHT 361.0 52.5
                    A
                                                            13
                                                                                     13
                                                                                     10
                                                                                     11
                                                                                     8
                                                                                     42 9
                                                                                     43
                                                                    10
                                                                                     44
                                                                                     20 19
27
                                                                    11
                                                                    12
13
                                                                                     28
29
32
31 30
                            RIGHT 361.0 52.5
                                                                                     38
                                                                                     34 39
2
23
                    В
                           LEFT
                                       361.0 94.5
                                                             6
                                                                                     26
24
                                                                                    36
37
3
4
5
40
33
35
46
41
             2
                    В
                           LEFT
                                       361.0 94.5
                                                             7
     5
                                                                     2
3
4
5
                                                                                                       22
** # of interfering panels 5: 40 33 35 46 41
```

```
M3-2: Proposed algorithm
** Nzones
3
**zone
              left edge X coordinate
              6.0
 2
           211.0
           284.0
** NStacks
5
** stack
                         flush
    # zone type edge xloc yloc #layers j #panels panels
1 1 A RIGHT 114.0 52.5 9 1 1 14
2 1 15
                                                                                              orientation
                                                                    1
2
3
4
5
6
7
8
9
                                                                                                        1
                                                                                     16
17
21 18
25
45
22
                                                                                                       2 1
2
2
3
2
2
2
1
                                                                                     1 12
             2
                            RIGHT 330.0 52.5
                                                            12
                                                                     1
2
3
4
5
6
7
8
9
                                                                                     13
                                                                                     10
                                                                                     42
43
                                                                                     44
                                                                                                      20 19
27
28
                                                                    10
                                                                                     29
                                                                                     32
31 30
2
3
23
26
                    В
                           LEFT
                                     330.0 94.5
                            RIGHT 392.0 52.5
                                                                                      11
                    Α
                                                                                     6
                                                                     2
3
4
5
6
7
                                                                                     8
9
                                                                                     38
39
                                                                                     4 5
                                                                     8 9 1 2 3 4 5 6 7
                                                                                     36
37
40
41
                           LEFT 392.0 94.5
             3
                    В
                                                                                     46
35 34
33
** # of interfering panels
4: 46 35 34 33
```

M3-3


```
M3-3: Shewchuk (2008)
** Nzones
**zone
          left edge X coordinate
             6.0
          226.5
** NStacks
   stack flush
# zone type edge xloc yloc #layers j #panels panels
1 1 A RIGHT 116.2 57.3 9 1 1 1 1
** stack
                                                                                          orientation
                                                                                  12
                                                                                  13
                                                                                  14
15
                                                                   4
                                                                                                   18
19
22
                                                                   5
6
7
                                                                                  42
                                                                                  1
10
                           RIGHT 363.2 57.3
            2
                                                         14
                   Α
                                                                 2
3
4
5
6
7
8
9
10
11
                                                                                  11
                                                                                  5
                                                                                 6
7
39
40
41
                                                                                  17 16
                                                                  12
13
                                                                                 24
25
                                                                                 25
26
29
27
28
35
31 36
                                                                  14
            2
                           RIGHT 363.2 57.3
                                                                  1
2
3
4
5
                   В
                          LEFT
                                     363.2 99.3
                                                          5
                                                                                  20
23
                                                                                  21
                                                                                  33
                   В
                          LEFT 363.2 99.3
                                                          6
                                                                   2 3 4
                                                                                 3
4
                                                                                  37
                                                                   5
                                                                                  30
                                                                                  32 43 38
                                                                                                  221
** # of interfering panels 5: 37 30 32 43 38
```

```
M3-3: Proposed algorithm
** Nzones
3
 **zone
                   left edge X coordinate
  1
                    6.0
  2
                213.5
                279.5
** NStacks
5
** stack flush

** # zone type edge xloc yloc #layers j #panels panels

1 1 A RIGHT 116.2 57.3 9 1 1 12

2 1 13
                                                                                                                                    orientation
                                                                                                1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 10 11 12 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5
                                                                                                                        13
14
15
18
19
22
42
                                                                                                                                                   1
2
1
2
3
2
2
2
                                       RIGHT 336.7 57.3
                                                                                                                          10
                  2
                                                                                     13
                                                                                                                         11
                                                                                                                        8
39
                                                                                                                                                   1
                                                                                                                         40
                                                                                                                         41
                                                                                                                                                  2 1
2
2
1
                                                                                                                        17 16
24
25
26
29
27
28
2
3
20
23
21
9
5
6
7
7
35
36
37
38
4
43
33
34
43
31
32
30
                                                                                                                                                   1
2
3
3
2
1
3
2
2
2
2
2
2
1
1
                             В
                                       LEFT
                                                       336.7 99.3
                  3
                                        RIGHT 389.8 57.3
                             Α
                                                                                                                                                  3
2
2
2
2
2 2
2 2
        5
                  3
                             В
                                       LEFT
                                                     389.8 99.3
                                                                                      5
                                                                                                              1
2
1
** # of interfering panels 4: 43 31 32 30
```

M4-1


```
M4-1: Shewchuk (2008)
** Nzones
2
**zone
         left edge X coordinate
         6.0
222.0
 1
** NStacks
8
** stack
                    flush
** # zone type edge xloc yloc #layers j
                                                     #panels panels
                                                                          orientation
                                                                    16
                                                       1
                                                       2
                                                                    17
                                                                                  2
                                                                   23
24
25
26
27
29 28
                                                       3
                                                                                  1
                                                                                 30
                                                      10
                                                                   31
                                                                    33
                                                                   38
                                                      13
                                                                   39
                      RIGHT 114.0 48.0
                Α
                                                                    44 43
                                                                   47
                                                                   48
                                                                   1
          2
                Α
                      RIGHT 421.0 48.0
                                                12
                                                                    18
                                                                    19
                                                                    20
                                                                    21
                                                                   22
                                                       5
6
7
                                                                   10
                                                       8
                                                                   11
                                                                   12
                                                      10
                                                                    13
                                                                   15 14
34
36
                                                      11
                                                      12
          2
                      RIGHT 421.0 48.0
                                               14
                Α
                                                                   32 61
35
37
                                                       2
3
4
                                                                   40
                                                                   42 41
                                                                   45
                                                                   62
                                                                   68
                                                      10
                                                                   69
                                                                                 46 56 55
                                                      12
                                                                    50 49
                                                      13
                                                                   51
                                                                   57
                                                      14
                                                                   63
72
71 70
                      RIGHT 421.0 48.0
                                                                   73 77
78 74
                                                                                 2 2
2 2
                      RIGHT 421.0 48.0
                Α
                                                                                  2 2 3
                                                                    75
                                                                    76
                                                                   2
52
                В
                      LEFT
                              421.0 90.0
                                                6
                                                                                  1
                                                                   58
53
                                                                                  1
                                                                   59
                                                       5
                                                                                  1
                                                                   60
                                                                   3 4
54
                      LEFT
                              421.0 90.0
     8
          2
                В
                                                8
                                                                                  33
                                                       2
3
4
                                                                                  1
3
3
                                                                   5
                                                                    6
                                                                   78
                                                                                  33
                                                                   64
                                                                                  1
                                                                    65
                                                                                  1
                                                                   66 67
                                                                                  11
** # of interfering panels
4: 64 65 66 67
```

```
M4-1: Proposed algorithm
** Nzones
**zone
            left edge X coordinate
          6.0
222.0
 3
          404.0
** NStacks
** stack
                       flush
** # zone type edge xloc yloc #layers j
1 1 A RIGHT 114.0 48.0 13
                                                              #panels panels 1 1 1
                                                                                       orientation
                                                                                                2
                                                                               16
                                                                               17
                                                                              23
24
25
26
27
29 28
30
                                                                6
7
8
9
                                                                                                2
                                                                               31
33
                                                               10
                                                               11
                                                               12
13
                                                                               38
                                                                                                1 1
2
2
3
                  A
                          RIGHT 114.0 48.0
                                                                               44 43
                                                                               48
                                                                                                2 2
     3
            2
                          RIGHT 330.0 48.0
                                                                               18
                  Α
                                                                               19
                                                                2
3
4
5
6
7
                                                                                               2 1
1
2
                                                                               32 34
                                                                               35
                                                                               40
                                                                                               2 2
1 1
2 2
1
                                                                               42 41
                                                                               46 45
50 49
                                                                8
9
                                                                               51
2
3 4
                                                                                                3
            2
                  В
                         LEFT
                                   330.0 90.0
                                                                                               33
                                                                               54
                                                                                                1
                                                                               5 20
                                                                                               RIGHT 512.0 48.0
            3
                                                       13
     5
                  Α
                                                                              21
22
9
                                                                4
5
6
7
8
9
                                                                               10
                                                                               12
                                                                               13
                                                                               15 14
                                                               10
                                                                               36
                                                                               61
                                                                               37
                                                               13
                                                                               62
                          RIGHT 512.0 48.0
            3
                                                       12
                                                                               68
                                                                               69
                                                                               56 55
                                                                               57
                                                                               63
                                                                               72
71 70
                                                                               73 77
78 74
                                                                              64
75
                                                               10
                                                                                                1
2
2
                                                               11
                                                                               76
52
                                                               12
            3
                         LEFT
                                   512.0 90.0
                  В
                                                                               53
58
                                                                2
3
4
5
6
7
                                                                               59
                                                                               65
                                                                               60
                                                                                                1
                                                                               66 67
                                                                                                1 1
                                                                               6
7 8
                                                                                               3
3 3
** # of interfering panels
0
```

M4-2


```
M4-2: Shewchuk (2008)
** Nzones
**zone left edge X coordinate
                6.0
             222.0
** NStacks
6
** stack flush

** # zone type edge xloc yloc #layers j #panels panels

1 1 A RIGHT 114.0 48.0 12 1 1 13

2 1 19
                                                                                                              orientation
                                                                                1
2
3
4
5
6
7
8
9
                                                                                                   19
20
21
22
24 23
25
27
32
36
                                                                                                                         10
                                                                                11
                                                                                                    38
                                                                                12
                                                                                                    1
                                                                                                    14
15
               2
                                 RIGHT 421.0 48.0
                                                                      12
                                                                                 2
3
4
5
6
7
8
9
                                                                                                    16
                                                                                                    17
                                                                                                    18
7
8
9
                                                                                                    10
                                                                                10
                                                                                                    12 11
                                                                                11
                                                                                                    26
                                                                               11
12
1
2
3
                                                                                                    28
30
       3
               2
                                 RIGHT 421.0 48.0
                                                                      17
                       Α
                                                                                                   31 29
33 34
35 37
50 54
44 55
39 45
40 41
46 58
57 56
60 63
59 64
                                                                                 4
5
6
7
                                                                                10
11
12
13
14
16
17
               2
                                 RIGHT 421.0 48.0
                        A
                                                                                 2
                                                                                                    61
                                                                                                    62
               2
       5
                       В
                                LEFT
                                                                                                    42
2
3
43
47
48
                                            421.0 90.0
                                                                                 2
3
4
                                                                                 5
6
7
                                                                                                                          1
3
3
2
1
                                                                                                    4
5
6
51
52
53
                                LEFT
                                             421.0 90.0
** # of interfering panels 3: 51 52 53
```

```
M4-2: Proposed algorithm
** Nzones
**zone
             left edge X coordinate
          6.0
211.0
           408.0
** NStacks
6
** stack
                        flush
** # zone type edge xloc yloc #layers j #panels panels
1 1 A RIGHT 114.0 48.0 12 1 1 1 1:
                                                                                          orientation
                                                                                   13
                                                                                  20
21
22
24 23
25
27
32
36
38
                                                                                                    1 1
                                                                                                    2
1
2
1
2
3
2
2
1
                                                                  10
                                                                  11
                                                                  12
                                                                                  1
                           RIGHT 330.0 48.0
                                                                   1
2
3
                                                                                  14
15
                                                          12
                                                                                  26
28
29
33
34
35
37
                                                                   4
5
6
7
8
9
                                                                                                    1
2
2
1
2
1
3
3
1
                                                                  10
                                                                                  40
                                                                  11
                          LEFT
                                    330.0 90.0
                                                                                                    3
2
2
2
2
2
2
2
2
                           RIGHT 512.0 48.0
                   Α
                                                          13
                                                                                   16
                                                                                  17
                                                                                  18
                                                                                  7
                                                                                  10
                                                                   8
9
                                                                                                    12 11
                                                                                  30
                                                                  10
11
                                                                                  49
31
                                                                                  50
54
                                                                  12
13
                           RIGHT 512.0 48.0
            3
                                                                                   44 55
                                                                                  46 45
51
58
                                                                                  57 56
60 63
                                                                                  59 64
                                                                                  61
            3
                   В
                          LEFT 512.0 90.0
                                                                                  42
                                                                                  47
                                                                                  48
                                                                                  52 53
5
6
                                                                                                 11
** # of interfering panels
```

M4-3


```
M4-3: Shewchuk (2008)
** Nzones
**zone
               left edge X coordinate
             6.0
226.5
** NStacks
6
                            flush edge xloc yloc #layers j #panels panels RIGHT 116.2 57.3 13 1 1 12 2 1 17 2 1 18
** stack
    # zone type
1 1 A
                                                                                                          orientation
                                                                             3
4
5
6
7
8
9
10
                                                                                                 18
19
20
21
22
23
24
29
32
34
                                                                                                                     11
                                                                             12
13
1
2
3
4
5
6
7
8
9
              2
                       Α
                               RIGHT 423.2 57.3
                                                                    13
                                                                                                  13
                                                                                                 14
15
                                                                                                 16
7
8
9
                                                                                                 10
                                                                              10
                                                                                                 25
27
44
                                                                             11
12
                                                                                                 28 26
30
                                                                             13
1
2
3
4
5
6
7
8
9
10
11
12
13
                               RIGHT 423.2 57.3
                                                                    13
                                                                                                 31
                                                                                                 33
                                                                                                40
35
36
45
49
50
53
52 51
55 58
54 59
56
57
37
41
                                                                                       1
2
2
2
1
                               RIGHT 423.2 57.3
              2
                                                                      2
      4
                       Α
                                                                              1
2
1
2
3
1
2
3
4
5
6
7
8
9
              2
                                            423.2 99.3
                                                                     3
      5
                       В
                               LEFT
                                                                                                                       1
                                                                                                 38
2
3 39
                       В
                               LEFT
                                          423.2 99.3
                                                                                                                     3 3 1
      6
              2
                                                                   10
                                                                                        2
                                                                                                                      1
                                                                                                 42
                                                                                                 43
                                                                                                 46
                                                                                                 4
5
6
                                                                                                                       3
3
3
                                                                                                 47
                                                                                                 48
** # of interfering panels
2: 47 48
```

```
M4-3: Proposed algorithm
** Nzones
3
**zone left edge X coordinate
            6.0
215.5
 2 3
            399.5
** NStacks
6
** stack flush

** # zone type edge xloc yloc #layers j #panels panels

1 1 A RIGHT 116.2 57.3 13 1 1 1 12

2 1 17
                                                                                                    orientation
                                                                         1 2 3
                                                                                           18
19
20
21
22
23
24
29
32
34
                                                                          4
5
6
7
8
9
                                                                                                               2
2
1
                                                                         10
                                                                                                               12
                                                                                           1
13
14
                                                                         13
                              RIGHT 336.7 57.3
                                                                                           25
26
30
31
33
35
                                                                                           36
2
      3
             2
                     В
                             LEFT 336.7 99.3
                                                                                           3 39
                                                                                                              3
                              RIGHT 509.8 57.3
                                                                14
                                                                                           15
                     Α
                                                                          2 3
                                                                                           16
7
                                                                                           8
9
                                                                          4
5
6
7
8
9
                                                                                           10
11
27
44
28
40
                                                                         10
11
                                                                                           45
49
50
53
52 51
55 58
54 59
                                                                         12
13
                                                                         14
1
                              RIGHT 509.8 57.3
             3
                     A
                                                                          2
3
4
                                                                                                               1
2
2
                                                                                           46
                                                                                           56
57
37
38
41
             3
                              LEFT 509.8 99.3
                                                                                           42
43
                                                                                           47 48
                                                                                                              11
                                                                                           4
5
6
                                                                                                               3
3
3
** # of interfering panels
```

M5-1


```
M5-1: Shewchuk (2008)
** Nzones
**zone left edge X coordinate
           6.0
 2
         222.0
** NStacks
** stack
                    flush
** # zone type edge xloc yloc #layers j #panels panels 1 1 A RIGHT 114.0 48.0 14 1 1 1
                                                                            orientation
                                                                      17
                                                                      22
23
                                                                      24
25
27 26
                                                                                     1 1
                                                                      32
                                                                                    33
                                                        10
                                                                      28
                                                        11
                                                                      29
                                                                      34
                                                        12
                                                        13
                                                                      30
                                                        14
                                                                      31
                      RIGHT 114.0 48.0
RIGHT 386.0 48.0
                                                                      1
                                                                      18
                                                 13
                                                         2
3
4
                                                                      19
                                                                      20
21
                                                                      10
                                                         5
6
7
8
9
                                                                      11
                                                                      12
                                                                      13
                                                                      15 14
                                                        10
                                                                      37
                                                        11
                                                                      42
                                                                      38
                                                        12
                                                        13
                                                                      43
                                                        1 2 3
          2
                    RIGHT 386.0 48.0
                                                                      47
                                                                      44 39 48
                                                                                     2 2 2 2 2 2
                                                                      41 40
                                                                      45
                                                                      50
                                                                      46 60 49
                                                                                    222
                                                                                      2 2
                      LEFT 386.0 90.0
                                                                      35
                                                                      36 62
                                                                                     1 1
                                                                      54
                                                                      5 6
                                                                                     22
                                                                      52
                                                                                     1
                                                                      53
                                                                                     33
          2
                В
                      LEFT 386.0 90.0
                                                  7
                                                                                      3
                                                                      8
                                                         3
4
5
                                                                                   22
                                                                      56 61
                                                                      58
59
                                                         6
** # of interfering panels
4: 56 61 58 59
```

```
M5-1: Proposed algorithm
** Nzones
**zone
          left edge X coordinate
 1
           6.0
          212.0
 3
          334.0
** NStacks
orientation
                                                                                          2
                                                                          16
                                                                          17
22
23
24
25
27 26
32
33
28
29
34
                                                                                           1
                                                                                           1
                                                                                           1
                                                                                          1 1
                                                                                           1
                                                           10
11
                                                                                           2
1
2
2
2
2
2
1
                                                           12
                                                           13
                                                                          30
                        RIGHT 114.0 48.0
                                                                          1
                        RIGHT 330.0 48.0
                                                                          19
                                                                          37
                                                                          42
                                                            4
5
6
7
                                                                          38
                                                                          44 39 43
                                                                          41 40
55
                                                                                          2 2
2
1 1
                                                                          46 45
                                                                          57
2
                                                                                           2
                                                           10
                 В
                        LEFT 330.0 90.0
                                                                          3 4
7
                                                                                          3 3 3 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1
                                                                          35
                                                                          36
                                                                          20
21
     5
           3
                        RIGHT 442.0 48.0
                                                    14
                 Α
                                                           1
2
3
4
5
6
7
8
9
10
11
12
13
                                                                          10
                                                                          11
                                                                          12
                                                                          13
                                                                          15 14
47
48
50
                                                                          60 49
                                                                          56\,51
                                                                          61
                                                                          58
59
                                                           14
           3
                                                     7
                 В
                        LEFT
                                 442.0 48.0
                                                            1
2
3
4
5
                                                                          8
                                                                   1
2
2
2
1
                                                                          5 6
                                                                                          22
                                                                          62 54
52
53
** # of interfering panels
```

M5-2


```
M5-2: Shewchuk (2008)
** Nzones
2
**zone
             left edge X coordinate
           6.0
222.0
 1 2
** NStacks
5
** stack
                        flush
** # zone type edge xloc yloc #layers j
1 1 A RIGHT 114.0 48.0 12
                                                               #panels panels 1 1
                                                                                         orientation
                                                                                 13
                                                                                                   2
                                                                                 18
19
                                                                                20
22 21
23
24
                                                                                                  28
25
26
                                                                 11
                                                                                 29
                                                                 12
                          RIGHT 381.5 48.0
                                                                                 14
                                                                                 15
                                                                                 16
                                                                                 17
                                                                                 8
9
                                                                                 10
                                                                 8
                                                                                12 11
27
31
34
32
35
37
33 38
45
                                                                                                  10
                                                                 11
                                                                          1
                                                                12
13
                          RIGHT 381.5 48.0
     3
            2
                   Α
                                                                                 36
40
                                                                          1
2
1
                                                                                 50 39
                                                                                 41
                                                                                 47
            2
                   В
                          LEFT
                                     381.5 90.0
                                                                                 30
                                                                                                  \begin{smallmatrix}2&2\\1&1\end{smallmatrix}
                                                                                 4 5
                                                                                 52 44
42
                                                                                 43
2
3
                                                                                                   3
            2
                   В
                          LEFT
                                     381.5 90.0
                                                                                                  3
3
2 2
                                                                                 6
7
                                                                                 46 51
                                                                                 48 49
                                                                                                  22
** # of interfering panels
4: 46 51 48 49
```

```
M5-2: Proposed algorithm
** Nzones
3
**zone
          left edge X coordinate
 2
        211.0
        325.0
** NStacks
orientation
                                                               13
                                                                19
                                                               20
22 21
23
24
                                                                             28
25
                                                   10
11
12
                                                               26
29
                                                               1
                     RIGHT 330.0 48.0
                                                   1
2
3
4
5
6
7
8
9
                                                                14
                                                               15
27
31
32
33
                                                                             45
                                                               36
47
                                                               2 3
         2
                    LEFT 330.0 90.0
    3
               В
                                                    1
2
3
                                                               30
                     RIGHT 433.0 48.0
         3
                                                   1
2
3
4
5
6
7
8
9
                                                               17
                                                                12 11
                                                               35
                                                               37
                                                   10
11
                                                               38
                                                               40
                                                   12
                                                               50 39
                                                   13
                                                               46 41
                                                  14
1
2
3
4
5
6
                                                               51
                     RIGHT 433.0 48.0
                                                                49 48
                                                                             1 1
                                                               4 5
                                                                             11
                                                               52 44
42
43
                                                                           2 1
                                                                             2
** # of interfering panels
```

M5-3


```
chuk (2008)

| chuk (2008)
| chuk (2008)
| chuk (2008)
| chuk (2008)
| chuk (2008)
| chuk (2008)
| chuk (2008)
| chuk (2008)
| chuk (2008)
| chuk (2008)
| chuk (2008)
| chuk (2008)
| chuk (2008)
| chuk (2008)
| chuk (2008)
| chuk (2008)
| chuk (2008)
| chuk (2008)
| chuk (2008)
| chuk (2008)
| chuk (2008)
| chuk (2008)
| chuk (2008)
| chuk (2008)
| chuk (2008)
| chuk (2008)
| chuk (2008)
| chuk (2008)
| chuk (2008)
| chuk (2008)
| chuk (2008)
| chuk (2008)
| chuk (2008)
| chuk (2008)
| chuk (2008)
| chuk (2008)
| chuk (2008)
| chuk (2008)
| chuk (2008)
| chuk (2008)
| chuk (2008)
| chuk (2008)
| chuk (2008)
| chuk (2008)
| chuk (2008)
| chuk (2008)
| chuk (2008)
| chuk (2008)
| chuk (2008)
| chuk (2008)
| chuk (2008)
| chuk (2008)
| chuk (2008)
| chuk (2008)
| chuk (2008)
| chuk (2008)
| chuk (2008)
| chuk (2008)
| chuk (2008)
| chuk (2008)
| chuk (2008)
| chuk (2008)
| chuk (2008)
| chuk (2008)
| chuk (2008)
| chuk (2008)
| chuk (2008)
| chuk (2008)
| chuk (2008)
| chuk (2008)
| chuk (2008)
| chuk (2008)
| chuk (2008)
| chuk (2008)
| chuk (2008)
| chuk (2008)
| chuk (2008)
| chuk (2008)
| chuk (2008)
| chuk (2008)
| chuk (2008)
| chuk (2008)
| chuk (2008)
| chuk (2008)
| chuk (2008)
| chuk (2008)
| chuk (2008)
| chuk (2008)
| chuk (2008)
| chuk (2008)
| chuk (2008)
| chuk (2008)
| chuk (2008)
| chuk (2008)
| chuk (2008)
| chuk (2008)
| chuk (2008)
| chuk (2008)
| chuk (2008)
| chuk (2008)
| chuk (2008)
| chuk (2008)
| chuk (2008)
| chuk (2008)
| chuk (2008)
| chuk (2008)
| chuk (2008)
| chuk (2008)
| chuk (2008)
| chuk (2008)
| chuk (2008)
| chuk (2008)
| chuk (2008)
| chuk (2008)
| chuk (2008)
| chuk (2008)
| chuk (2008)
| chuk (2008)
| chuk (2008)
| chuk (2008)
| chuk (2008)
| chuk (2008)
| chuk (2008)
| chuk (2008)
| chuk (2008)
| chuk (2008)
| chuk (2008)
| chuk (2008)
| chuk (2008)
| chuk (2008)
| chuk (2008)
| chuk (2008)
| chuk (2008)
| chuk (2008)
| chuk (2008)
| chuk (2008)
| chuk (2008)
| chuk (2008)
| chuk (2008)
| chuk (2008)
| chuk (2008)
| chuk (2008)
| chuk (2008)
| chuk (2008)
| chuk (2008)
| c
                               22
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   3
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              46
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           46
42
43
25
26 47 39
4
2
3
5
6
37
38
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   4
5
1
2
3
1
2
3
4
5
6
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             2
                                                                                                                                                                                                                                                     LEFT 371.2 99.3
                                                                                                                                  2
                                                                                                                                                                                         В
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  3
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     1 1 1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             2
                                                                                                                                2
                                                                                                                                                                                      В
                                                                                                                                                                                                                                                     LEFT 371.2 99.3
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  6
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             3 3 3
                                 ** # of interfering panels
                                 2: 37 38
```

```
M5-3: Proposed algorithm
** Nzones
**zone
              left edge X coordinate
           6.0
211.5
295.5
 2
** NStacks
5
** stack
                          flush
** # zone type edge
                           edge xloc yloc #layers j #panels panels
RIGHT 116.2 57.3 12 1 1 1
2 1 15
3 1 16
                                                                                        16
                                                                                        17
                                                                                        18
                                                                                                           1
2
1
2
2
2
2
3
2
1
                                                                                        19
                                                                                        20
24
                                                                                        40
                                                                      10
                                                                                        21
                                                                      11
12
                                                                                        22
1
                                                                                       12
13
23
27
30
31 28
29
32
42
2
3
25
26
                             RIGHT 336.7 57.3
                                                                      1
2
3
4
5
6
7
8
9
1
2
3
                                                                                                           1
                                                                                                          1
1
1
2
1
2
3
3
1
                            LEFT 336.7 99.3
                                                                                                           1
2
2
2
2
                             RIGHT 405.8 57.3
                                                                                        14
7
                                                              11
                                                                       1
2
3
4
5
6
7
8
9
                                                                                        33 10
                                                                                                           22
                                                                                        44
                                                                                        35
                                                                                        41 36 45 34
                                                                                                         2\bar{2}22
                                                                                        43 46
                                                                      11
                                                                                        6
                            LEFT 405.8 99.3
                                                                                        47 39
37
                                                                                                           11
                                                                                        38
** # of interfering panels
```

L1-1


```
L1-1: Shewchuk (2008)
 ** Nzones
4
** NStacks
13
              left edge X coordinate
 **zone
               6.0
            222.0
 2
            438.0
 4
            654.0
 ** stack
                          flush
 **
            zone type
1 A
                         edge
                                     xloc yloc #layers j
                                                                    #panels panels
                                                                                               orientation
                            RIGHT 114.0 48.0
                                                             13
                                                                                      20
21
31
32
33
34
35
36
37
39 38
40
                                                                               1
2
1
1
2
1
                                                                     10
                                                                                                         22
                                                                     11
12
                                                                                       41
                                                                                       46 45
42
47
                                                                      13
                                                                                                         22
                             RIGHT 114.0 48.0
      2
             1
                     Α
                                                               3
                                                                                                          1
2
2
2
2
1
                                                                       2
                                                                                       1
22
23
      3
             2
                             RIGHT 330.0 48.0
                                                             16
                                                                               1
                     A
                                                                      1
2
3
4
5
                                                                                      49
55
50
63 62
                                                                               1
2
1
                                                                                                          1
                                                                       6
7
8
                                                                                                         22
                                                                                       56
51
                                                                               2
                                                                                       65 64
57
52
                                                                       9
                                                                                                         22
                                                                      10
                                                                                                          1
                                                                     11
                                                                                       108 107
                                                                                                            22
                                                                      12
                                                                                       58
53
                                                                      13
                                                                      14
                                                                      15
                                                                                       110 109
                                                                                                        1 2 2
1
2
2
1
                                                                      16
                                                                                       54 112 111
59
                             RIGHT 330.0 48.0
                                                                                       66
                                                                                       67
                                                                                       60
                                                                                       68
2
3
                                                                       5
1
2
3
4
5
                                                                                                          2
3
3
3
             2
                     В
                            LEFT
                                        330.0 90.0
                                                              6
                                                                                       4
48 113
                                                                               1
2
1
                                                                                                         12
                                                                                       43
                                                                                                          1
                                                                                       44
24
25
                                                                       6
                                                                                                         1
2
2
2
2
2
2
1
3
3 1 1
             3
                             RIGHT 546.0 48.0
                                                               5
                     Α
      6
                                                                               1
                                                                                      69
71 70
78
5
6 7
79 61
26
27
28
29
30
                                                                               1
2
1
                                        546.0 90.0
      7
             3
                            LEFT
                     В
                                                              3
                                                                               1
2
2
1
                             RIGHT 830.0 48.0
      8
              4
                     A
                                                             11
                                                                                                         2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
                                                                       4
5
                                                                                       13
                                                                                       14
                                                                                       15
                                                                                       16
                                                                      10
                                                                                       17
```

```
L1-1: Shewchuk (2008)
9 4 A RIGHT 830.0 48.0
                                                                        19
73
87
74
88
97
                                                   17
                                                                                        2
3
4
5
                                                                         98
75
                                                          9
                                                                         80
                                                                         82 81
                                                          11
                                                                         76
                                                                                        12
                                                                         83
                                                          13
                                                                         89
                                                          14
                                                                         99
                                                          15
                                                                         84
                                                          16
                                                                         8685
                                                          17
                                                                         90
                        RIGHT 830.0 48.0
    10
                                                                         100
                                                                         103
                                                                         104
                                                                         102 101
                                                                         94
                                                                         96 95
    11
                 В
                        LEFT
                                  830.0
                                         90.0
                                                                         114 72
                 В
                                         90.0
                                                    4
    12
                        LEFT
                                  830.0
                                                                         8
                                                                         10
                                                                                         33
                                                                  2
                                                                         11 12
                 В
                        LEFT
                                 830.0 90.0
    13
                                                    5
                                                                         91
                                                                                         1
                                                                         105
                                                            2
                                                                  1
                                                                         106
92
                                                                                         2
1
1
                                                                         93
** # of interfering panels
5: 91 105 106 92 93
```

```
L1-1: Proposed algorithm ** Nzones 5
      ** NStacks 13
       **zone
1 2 2 3 4 5 5 ** stack ** # 2
                     left edge X coordinate
                    6.0
212.0
416.0
642.0
790.0
                                      flush \\
                                                                                          #panels
1
2
3
4
5
6
7
                                      edge xloc yloc #layers j
RIGHT 114.0 48.0 13
                                                                                                          panels
                    zone type
1 A
                                                                                                                            orientation
                                                                                                                 20
21
31
32
33
34
35
36
37
39 38
40
                                                                                            10
11
                                                                                                                                        2 2
1
1
                                                                                                       1 2 1
                                                                                            12
13
                                                                                                                 41
46 45
                                                                                                                                        2 2
1
2
2
2
2
2
1
1
1
                                         RIGHT 114.0 48.0
             2
                                                                                                                 42
47
                      1
                                Α
                                                                                   3
                                                                                                                 1
22
23
49
55
50
                                          RIGHT 330.0 48.0
             3
                                                                                  16
                                                                                                        1
2
1
                                                                                                                                        2 2
1
1
                                                                                                                  63 62
                                                                                                                 56
51
                                                                                                        1
2
1
                                                                                                                 65 64
57
                                                                                                                                        2<sup>1</sup>2
                                                                                            10
11
12
13
14
15
                                                                                                        1
2
1
                                                                                                                  108 107
                                                                                                                                          2 2
                                                                                                                 58
53
                                                                                                                  110 109
                                                                                                                  54 112 111
                                                                                                                                       122
```

111 P		1 -1 '	41						
L1-1: Pro	_	_							
4	2	A	RIGHT	330.0	48.0	5	1 2 3 4	1 59 1 66 1 67 1 60	1 2 2 1
5	2	В	LEFT	330.0	90.0	6	5 1 2 3 4	1 68 1 2 1 3 1 4 2 48 113	
6	3	A	RIGHT	546.0	48.0	5	5 6 1 2 3 4	1 43 1 44 1 24 1 25 1 69 2 71 70	1 1 2 2 2 2 2 2 2 2 2
7	4	В	LEFT	546.0	90.0	6	5 1 2 3 4	1 78 1 5 2 67 1 79 1 77	3 3 3 3 1
8	4	A	RIGHT	762.0	48.0	16	5 6 1 2 3 4 5 6	1 77 2 61 114 1 72 1 26 1 27 1 28 1 73 1 87 1 74	
							7 8 9 10 11 12 13 14 15	1 74 1 88 1 75 1 80 2 82 81 1 76 1 83 1 89 1 84 2 86 85 1 90	1 1 2 2 2 2 1 1 1 2 2 2 2
9	4	A	RIGHT	762.0	48.0	3	1 2 3	1 91 1 94 2 96 95	$\begin{smallmatrix}1\\2\\222\end{smallmatrix}$
10	4	В	LEFT	762.0	90.0	2	1	1 8	
11	5	A	RIGHT	898.0	48.0	13	2 1 2 3 4 5 6 7 8 9	1 9 1 29 1 30 1 13 1 14 1 15 1 16 1 17 1 18 1 19 1 97	3 2 2 2 2 2 2 2 2 2 2 2 2 2
12	5	A	RIGHT	898.0	48.0	7	11 12 13 1 2 3 4 5	1 98 1 99 1 100 1 103 1 104 2 102 10 1 105 1 106	2 2
13	5	В	LEFT	898.0	90.0	1	6 7 1 4	1 10 2 12 11 1 93 1 92	2 2 2 1 1
** # of ir 2: 93 92	nterfei	ring pai	nels						


```
L1-2: Shewchuk (2008)
      ** Nzones 4
      ** NStacks 11
1 2 2 3 4 ** stack ** # 2 1
      **zone
                      left edge X coordinate
                     6.0
222.0
438.0
                     654.0
                                       flush \\
                                       edge xloc yloc #layers j
RIGHT 114.0 48.0 14
                                                                                              #panels panels 1 17
                    zone type
1 A
                                                                                                                                 orientation
                                                                                                                      26
27
28
29
30
31
33 32
34
39 38
35
36
40
1
                                                                                                                                              22
                                                                                                10
                                                                                                11
                                                                                               12
13
14
                                                                                                                                               1
2
2
2
2
1
2
1
                       2
                                A
                                          RIGHT 330.0 48.0
                                                                                     16
                                                                                                                     18
19
42
53
47
43
54
48
44
89
49
                                                                                               8
9
10
11
12
                                                                                                                                               \begin{array}{c} 1\\2\\1\\1\\2\end{array}
                                                                                               13
14
15
                                                                                                                      90
46 91
50
55
56
2
                                                                                                                                              12
                                                                                                                                               1
2
2
3
3
                                                                                                16
                                          RIGHT 330.0 48.0
LEFT 330.0 90.0
                       2
                                A
B
                                                                     90.0
                                                                                      4
                                                                                                 2
                                                                                                                      41 92
37
                                                                                                                                              1 2
1
2
2
3
                       3
                                          RIGHT 546.0 48.0
                                                                                                                     20
21
4
5 6
66
51
57
52
22
23
24
25
11
12
13
14
15
16
             5
                                Α
                       3
                                В
                                          LEFT
                                                         546.0 90.0
             6
                                                                                      6
                                                                                                                                              33
                                                                                                 2
3
4
5
                                                                                                                                              7
                       4
                                A
                                          RIGHT 830.0 48.0
                                                                                     12
                                                                                                 6
7
                                                                                                10
                                                                                                11
                                                                                                                      61
72
80
81
62
73
82
85
86
63
67
68
69
70
71
74
83
64
75
                                                                                                12
                       4
                                A
                                          RIGHT 830.0 48.0
                                                                                     17
                                                                                               8
9
10
11
12
                                                                                                13
                                                                                                15
                                                                                                16
                                                                                                17
```

```
L1-2: Shewchuk (2008)
9 4 A RIGHT 830.0 48.0
                                                          5
                                                                                                  2
2
2
2
2
1
                                                                                 58
59
78
79
93
65
                                                                          1
    10
            4
                   В
                          LEFT
                                     830.0 90.0
                                                         3
                                                                                60
7
8
9
                                                                                                  1
    11
            4
                   В
                          LEFT
                                     830.0
                                             90.0
                                                         5
                                                                                                  3
3
3
                                                                  2
                                                                                 10
                                                                                 76
77
                                                                                 87
** # of interfering panels
4: 76 77 87 88
```

```
L1-2: Proposed algorithm
** Nzones 5
** NStacks 11
**zone
              left edge X coordinate
           6.0
213.0
 2
           429.0
 4
            642.0
            788.0
** stack
                         flush
                        edge xloc yloc #layers j
RIGHT 114.0 48.0 13
                                                                    #panels
                                                                                panels
1 17
**
           zone type
1 A
                                                                                               orientation
                                                                      2
3
4
5
6
7
                                                                                      26
27
28
29
30
31
33 32
34
39 38
                                                                                                         22
                                                                                                         1 2 2
                                                                     10
                                                                                      35
36
                                                                     11
                                                                                                         1
1
2
2
2
2
1
2
1
                                                                     12
                                                                     13
                                                                                      40
                                                                     13
                                                                                      18
19
             2
                            RIGHT 330.0 48.0
                                                             17
                    Α
                                                                      1
2
3
4
5
6
7
8
                                                                                      42
53
47
                                                                                      43
54
48
                                                                                                         2
1
                                                                      9
                                                                                      44
                                                                                                         2
                                                                     10
                                                                                      89
                                                                     11
                                                                                      49
                                                                     12
                                                                                      45
                                                                                                         1
                                                                     13
                                                                                      90
                                                                     14
                                                                                      46 91
                                                                                                         12
                                                                                      50
55
56
2
3
41 92
                                                                     15
                                                                                                         1
2
2
3
3
                                                                     16
                                                                     17
     3
                    В
                            LEFT
                                       330.0 90.0
                                                                                      37
                                                                                                         1
2
2
3
                                                                                      20
21
             3
                            RIGHT 546.0 48.0
                                                              2
                    Α
                                                                                      4
5 6
      5
             3
                    В
                            LEFT
                                       546.0 90.0
                                                             9
                                                                                                         33
                                                                                       66
                                                                                                         1
                                                                                      51
57
58
                                                                      4
5
6
7
8
9
                                                                                                         2
                                                                               1
                                                                                      59 52 93
                                                                                                        2 1 1
                                                                               3
                                                                                      65
60
                                                                                                         1
```

6	4	Λ.	DICIT	762.0	49 O	16	1	1	22	
	4	A	RIGHT	762.0	48.0	16	1 2 3 4 5 6 7 8 9 10 11	1 1 1 1 1 1 1 1 1 1	22 23 61 72 62 73 63 67 68 69 70 71	
7	4 4	A B	RIGHT LEFT	762.0 762.0	48.0 90.0	1 2	13 14 16 1	1 1 1 1	74 64 78 79 7	
9	5	A	RIGHT	898.0	48.0	13	2 1 2 3 4 5 6 7	1 1 1 1 1 1 1	8 24 25 11 12 13 14 15	
0	5	A	RIGHT	898.0	48.0	6	8 9 10 11 12 13 1 2 3	1 1 1 1 1 1 1 1 1	16 80 81 82 85 86 83 84 87	
1	5	В	LEFT	898.0	90.0	3	4 5 6 1 2 15	1 1 1 1 1	88 9 10 77 76 75	

Nzon		t edge	X coordina	te					
2 3 4 5 NSta	6.0 226.5 446.9 667.4 cks 10) ;)		ic					
stack		4	flush	.11	41		ш 1 -	1-	
* # 1	1	A	edge x RIGHT	116.2	57.3	yers j 11	#paneis	panels 1 14	orientation 2
							2 3 4 5 6 7 8 9	1 22 1 23 1 24 1 25 1 26 1 27 1 28 1 32 1 29	1 1 1 1 1 2 1 2
2	2	A	RIGHT	336.7	57.3	16	11 1 2 3 4 5 6 7 8 9 10 11 12 13	1 1 1 15 1 16 1 16 1 135 1 44 1 1 39 1 36 1 45 1 40 1 37 1 78 1 79 1 41 1 38	2 2 2 1 2 1 1 2 1 1 2 2 1 1 1 2 2 1 1 1
3	2	В	LEFT	336.7	99.3	6	14 15 16 1 2 3 4 5	1 80 1 46 1 47 1 2 1 3 2 33 34 1 81 1 30	2 2 2 3 3 2 1 2
4 5	3 3	A B	RIGHT LEFT	557.1 557.1	57.3 99.3	1 4	6 1 1 2 3	1 31 1 17 1 4 2 5 56 1 42	1 2 3 3 1 1
6	4	A	RIGHT	836.7	57.3	13	4 1 2 3 4 5	1 43 1 18 1 19 1 20 1 21 1 9	1 2 2 2 2 2 2
7	4	A	RIGHT	836.7	57.3	15	6 7 8 9 10 11 12 13 1 2 3 4 5 6 7 8 9 10 11 12 13 1 1 2 3 4 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 10 1 11 1 12 1 13 1 52 1 62 1 69 1 70 1 53 1 57 1 58 1 54 1 59 1 63 1 71 1 74 1 75 1 60 1 75 1 63 1 71 1 74 1 75 1 64 1 75	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

```
L1-3: Shewchuk (2008)
                   Α
                           RIGHT 836.7 57.3
                                                                                                     2
2
2
2
1
                                                                                  50
67
68
                                                                                  82
55
51
                           LEFT
                                      836.7 99.3
                   В
                                                                   2
3
1
2
3
4
5
6
7
                                                                                                     1
1
    10
                                      836.7 99.3
                                                                                   6
                   В
                           LEFT
                                                           7
                                                                                                     3
3
2
2
1
                                                                                  8
76
77
66
                                                                                   65
** # of interfering panels
4: 76 77 66 65
```

```
L1-3: Proposed algorithm
** Nzones
 5
**zone
                left edge X coordinate
             6.0
226.5
446.9
 1
 2
 4 5
             667.4
785.5
** NStacks
10
                              flush
                                                                                             panels
     # zone type edge xloc yloc #layers j
1 1 A RIGHT 116.2 57.3 11
                                                                                #panels
                                                                                                                orientation
                                                                                                     22
23
24
25
26
27
28
32
29
                                                                                                                            10
                                                                                                     1
15
                                                                                 11
               2
                                 RIGHT 336.7 57.3
                                                                       16
                       Α
                                                                                 2
3
4
5
6
7
8
9
10
11
12
13
14
                                                                                                     16
                                                                                                     35
44
39
36
45
40
37
78
79
41
38
80
                                                                                                                            1
2
1
                                                                                                                            1
2
2
1

\begin{array}{c}
1 \\
2 \\
2 \\
3 \\
3 \\
2 \\
1
\end{array}

                                                                                                     46
47
                                                                                 15
                                                                                 16
                                                                                                     2
3
33 34
                        В
                                 LEFT 336.7 99.3
                                                                                                     81
                                                                                                     31
               3
                                 RIGHT 557.1 57.3
```

L1-3: P	roposed	l algori	ithm							
5	3	В	LEFT	557.1	99.3	8	1 2 3 4 5 6	1 2 1 1 1 3	4 5 56 42 48 49 50 43 82	3 3 1 1 2 2 2 1 1
6	4	A	RIGHT	777.6	57.3	15	7 8 1 2 3 4 5 6 7 8 9 10 11 12 13	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	55 51 18 19 52 62 53 57 58 54 59 63 60 61 64	1 1 2 2 1 1 1 1 2 2 1 1 1 1 2 2 1 1 1 2 2
7 8	4 5	B A	LEFT RIGHT	777.6 895.8	99.3 57.3	1 13	14 15 1 2 3 4 5 6 7 8 9 10 11 12 12	1 1 1 1 1 1 1 1 1 1 1 1 1 1	67 68 6 20 21 9 10 11 12 13 69 70 71 74 75	1 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
9	5	A	RIGHT	895.8	57.3	2	13	1	72 7	2 2
10	5	В	LEFT	895.8	99.3	5	2 1 2 3 4 5	1 1 1 1 1	8 65 66 77 76 73	2 1 1 2 2 2
** # of 2: 77 76	interfer 5 73	ing pa	nels							

L2-1


```
L2-1: Shewchuk (2008)
** Nzones
4
**zone
            left edge X coordinate
            6.0 222.0
 1
 2
            438.0
            654.0
** NStacks
12
12
** stack flush

** # zone type edge xloc yloc #layers j #panels panels
1 1 A RIGHT 114.0 48.0 11 1 1 2
2 1 28
                                                                                                      orientation
                                                                                             27
                                                                                                                 2
2
                                                                           2
                                                                                            28
36
37
38
39
40
41
42
43
                                                                                                                 1
                                                                           4
5
6
7
8
9
                                                                          10
                                                                                            44
45
                                                                          11
                              RIGHT 114.0 48.0
                     Α
                                                                                                                2
3
4
                                                                                            46
                                                                                            47
                                                                                            60
                                                                           5
6
7
                                                                                             61
                                                                                             110
                                                                                            64
                                                                            8
9
                                                                                            65
                                                                                            1
29
                              RIGHT 330.0 48.0
      3
              2
                                                                 16
                                                                                            30
52
53
                                                                           2
3
4
5
6
7
                                                                                            68
49 48
51 50
                                                                                            54
73
                                                                           8
9
                                                                                                                 1 2
                                                                                    1
2
1
                                                                                                                2 2
1
2
1
                                                                          10
                                                                                            63 62
55
76
56
77
57
78
58
79
59 80
                                                                          11
                                                                          12
13
                                                                                    1
                                                                          14
15
16
                                                                                                                 1
                                                                                    1
              2
                      A
                              RIGHT 330.0 48.0
                                                                                     1
                                                                                                                 1
                                                                           2
3
4
1
2
3
                                                                                    1
2
3
1
                                                                                            59 80
67 66 81
2
3
4
31
32
70 69
72 71
75 74
91
92
5 6
                                                                                                               2
                      В
                              LEFT
                                          330.0 90.0
                                                                  3
                                                                                    1
                                                                  7
      6
              3
                      A
                              RIGHT 546.0 48.0
                                                                           1
2
3
4
5
                                                                                    1
2
2
2
1
                                                                            6
7
                                                                                    1
2
1
                                                                                            5 6
7
33
      7
              3
                      В
                              LEFT
                                          546.0 90.0
                                                                  2
      8
              4
                              RIGHT 827.0 48.0
                                                                 11
                                                                                             35 34
                                                                           2
3
4
5
                                                                                            24
26 25
                                                                                             16
                                                                            6
7
                                                                                             17
                                                                                             18
                                                                                             19
                                                                                            20
21
                                                                          10
                                                                                     1
```

```
L2-1: Shewchuk (2008)
                        RIGHT 827.0 48.0
         4 A
                                                                                         2
3
4
5
6
7
8
9
                                                                          13
                                                                          15 14
                                                                          83
                                                                          84
                                                                          85
                                                                          86
                                                                          111
                                                                          87
                                                           11
12
13
14
15
16
                                                                          95
                                                                          96
                                                                          98 97
                                                                          88
                                                                   1 2 1
                                                                          99
                                                                          94 93
    10
                        RIGHT 827.0 48.0
                                                            1
2
3
                                                                          89
                 Α
                                                                          100
                                                                          104
                                                                          106 105
                                                            4
                 B
B
                        LEFT
                                  827.0
    11
                                          90.0
                                                                          90 101
                        LEFT
                                  827.0 90.0
                                                            2
3
4
                                                                          10
                                                                    2
                                                                          11 12
                                                                                          3 3
                                                                                          2
                                                            5
6
7
                                                                          107
                                                                          108 109
                                                                                          2 2
                                                                          102 103
** # of interfering panels
5: 107 108 109 102 103
```

```
L2-1: Proposed algorithm
** Nzones
5
**zone
            left edge X coordinate
 1
2
3
          6.0
212.0
          418.0
          624.0
784.0
 4
 5
** NStacks
12
                      flush \\
** # zone type edge xloc yloc #layers j
1 1 A RIGHT 114.0 48.0 11
                                                                     panels
1 27
                                                            #panels
                                                                                   orientation
                                                                            28
                                                                            36
37
                                                                            39
                                                                            41
                                                             10
                                                                            43
                                                                            44
                                                                                            1
                                                             11
           1
                 Α
                        RIGHT 114.0 48.0
                                                                            45
                                                                                            1
2
2
2
2
2
2
2
2
2
3
                                                                            46
                                                                            47
                                                                            60
                                                                            61
                                                                            110
                                                                            64
                                                                            65
                                                              8
                                                                            1
```

3	2	algori A	RIGHT 330.0 48.0) 16	1 1	29	2
					2 1 3 1 4 1 5 1 6 2 7 2 8 1 9 1 10 2 11 1 12 1	30 52 53 68 49 48 51 50 54 73 63 62 55 76	2 1 1 2 2 2 2 1 1 1 2 2 2 2 1 2
4	2	A	RIGHT 330.0 48.0) 4	13 1 14 1 15 1 16 1 1 1 2 1 3 2	56 77 57 78 58 79	1 1 1 1 1
5	2	В	LEFT 330.0 90.0	3	4 3 1 1	59 80 67 66 81 2 3	1 1 2 2 1 3 3
6	3	A	RIGHT 546.0 48.0) 7	3 1 1 1 2 1 3 2 4 2	4 31 32 70 69 72 71	3 3 3 2 2 2 2 2 1 1
7	3	В	LEFT 546.0 90.0	2	5 2 6 1 7 1 1 2	75 74 91 92 5 6	2 2 2 2 3 3
8	4	A	RIGHT 762.0 48.0		2 1 1 1	7 33	3 3 3 2
					5 1 6 1 7 1 8 1 9 1 10 1 11 1 12 2 13 1 14 1	84 85 86 87 95 88 99 94 93 89 100	1 1 1 2 1 1 2 2 1 1 1 2 2 1
9	4	В	LEFT 762.0 90.	0 2	$\begin{array}{ccc} 1 & 1 \\ 2 & 1 \end{array}$	8	3 3
10	5	A	RIGHT 892.0 48	.0 11	1 1 2 2 3 1 4 1 5 1 6 1 7 1 8 1 9 1 10 1	24 26 25 16 17 18 19 20 21 22 23	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
11	5	A	RIGHT 892.0 48.0	8	11 1 2 2 1 3 1 4 2 5 1 6 2 7 1	13 15 14 111 96 98 97 104 106 105 10	2 2 2 2 2 2 2 3
12	5	В	LEFT 892.0 90.0	7	8 2 1 1 2 1 3 1 4 1 5 1 6 1 7 1	12 11 90 101 107 108 109 102 103	33 1 1 2 2 2 2 1


```
L2-2: Shewchuk (2008)
** Nzones
**zone left edge X coordinate
             6.0 222.0
 1
 2
             438.0
 4
             654.0
** NStacks
11
** stack flush

** # zone type edge xloc yloc #layers j #panels panels

1 1 A RIGHT 114.0 48.0 13 1 1 22

2 1 29
                                                                                                              orientation
                                                                                3
4
5
6
7
8
9
                                                                                                    30
31
32
33
34
35
36
37
47
                                                                                                                          11
                                                                                12
13
1
1
2
3
4
5
6
7
8
9
                                                                                                    84
50
1
23
24
41
                                 RIGHT 114.0 48.0
                                 RIGHT 330.0 48.0
                                                                                                    38
39
                                                                                                    40
                                                                                                    42
53
48
                                                                                10
11
12
13
14
15
                                                                                                    49
43
56
58
44
59
                                                                                16
1
2
3
4
5
6
                                                                                           1
1
                                                                                                    45
60
46
61
62
51
52
2
3
25
26
54
55
57
70
71
               2
                       A
                                 RIGHT 330.0 48.0
                                                                                           1
                                                                                                                          1
2
2
3
3
2
2
2
1
2
2
2
3
3
3
3
                                LEFT
               2
                                             330.0 90.0
       5
                       В
                                                                        2
                                                                                 1
2
3
4
5
6
               3
                                 RIGHT 546.0 48.0
       6
                       A
       7
               3
                                LEFT 546.0 90.0
                                                                        2
                                                                                                    4 5
```

```
L2-2: Shewchuk (2008)
                                                                                               27
28
20
21
              4
                              RIGHT 827.0 48.0
                                                                                                                   2
3
4
5
6
7
8
9
                                                                                               13
                                                                                               14
15
                                                                                               16
17
                                                                            10
                                                                                               18
                                                                                              19
11
12
63
64
65
66
85
67
73
74
72 75
68
                                                                           11
1
2
3
4
5
6
7
8
9
10
11
12
13
14
                              RIGHT 827.0 48.0
                      A
                                                                   15
                                                                                               76
80
                                                                           15
1
2
1
2
3
                                                                                               81
                                                                                               69
77
7
                      В
                               LEFT
                                           827.0 90.0
     10
                                                                    2
     11
                              LEFT
                                           827.0 90.0
                                                                                               9 10
                                                                                               78
82
                                                                                                                   1
2
2 1
                                                                             4 5
                                                                                               83 79
** # of interfering panels
4: 78 82 83 79
```

```
L2-2: Proposed algorithm
** Nzones
5
**zone
              left edge X coordinate
              6.0
            213.0
 2
3
4
            428.0
            650.0
            784.0
** NStacks
11
** stack
                           flush
** # zone type edge xloc yloc #layers j #panels 1 1 A RIGHT 114.0 48.0 14 1
                                                                                    panels
1 22
1 29
                                                                                                     orientation
                                                                         3
4
5
6
7
8
9
10
11
12
13
14
                                                                                            30
31
32
33
34
35
36
37
47
                                                                                                                2
2
2
2
3
                                                                                            84
50
```

2 2 A RIGHT 330.0 48.0 16 1 1 23 2 1 24 3 1 41 4 1 38 5 1 39 6 1 40 7 1 42 8 1 53 9 1 48 10 1 49 11 1 1 43 12 1 56 13 1 58 14 1 4 1 44 15 1 59 16 1 1 60 2 1 46 3 1 61 4 1 62 5 1 51 5 3 A RIGHT 330.0 90.0 2 1 1 2 5 3 1 54 4 1 55 5 1 57 6 1 70 7 1 71 6 3 B LEFT 546.0 90.0 2 1 2 1 26 7 4 A RIGHT 762.0 90.0 2 1 2 2 1 6 7 4 A RIGHT 762.0 48.0 11 1 1 27 1 6 8 4 B LEFT 762.0 90.0 2 1 28 8 1 73 9 1 72 10 1 68 8 4 B LEFT 762.0 90.0 2 1 1 28 8 1 73 9 1 72 10 1 68 8 4 B LEFT 762.0 90.0 2 1 1 7 2 1 68 8 4 B LEFT 762.0 90.0 2 1 1 7 2 1 68 8 4 B LEFT 762.0 90.0 2 1 1 7 2 1 68 8 1 73 9 1 72 10 1 68 8 1 73 9 1 72 10 1 68 8 1 73 9 1 72 10 1 68 8 1 73 9 1 72 10 1 68 8 1 73 9 1 72 10 1 68 8 1 73 9 1 72 10 1 68 8 1 73 9 1 72 10 1 68 8 1 73 9 1 72 10 1 68 8 1 73 9 1 72 10 1 68 8 1 73 9 1 72 10 1 68 8 1 73 9 1 72 10 1 68 8 1 73 9 1 72 10 1 68 11 1 76 1 67 1 71 1 71 1 71 1 71 1 71 1	-2: Pro	oposec	l algori	ithm						
\$\begin{array}{cccccccccccccccccccccccccccccccccccc	2	2	A	RIGHT	330.0	48.0	16	2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 1 10 1 11 1 12 1 13 1	24 41 38 39 40 42 53 48 49 43 56 58	
4 2 B LEFT 330.0 90.0 2 1 1 2 2 1 26 3 1 54 4 1 55 5 1 66 1 70 7 1 71 71 6 3 1 63 4 1 64 5 1 65 6 1 66 7 1 67 8 1 73 9 1 72 10 1 68 11 76 8 4 B LEFT 762.0 90.0 2 1 2 1 2 8 9 5 A RIGHT 892.0 48.0 12 1 1 70 2 1 8 9 5 1 15 7 6 1 15 7 6 1 1 70 7 1 71 71 71 71 71 71 71 71 71 71 71 71	3	2	A	RIGHT	330.0	48.0	6	15 1 16 1 1 1 2 1 3 1 4 1	59 45 60 46 61 62	
5 3 A RIGHT 546.0 48.0 7 1 1 25 2 1 26 3 1 54 4 1 55 5 1 57 6 1 70 7 1 71 6 3 B LEFT 546.0 90.0 2 1 2 45 7 4 A RIGHT 762.0 48.0 11 1 1 27 2 1 28 3 1 63 4 1 64 5 1 65 6 1 66 7 1 67 8 1 73 9 1 72 10 1 68 11 73 9 1 72 10 1 68 11 73 9 1 72 10 1 68 11 76 8 4 B LEFT 762.0 90.0 2 1 1 7 2 1 8 9 5 A RIGHT 892.0 48.0 12 1 1 7 2 1 8 9 5 A RIGHT 892.0 48.0 12 1 1 20 2 1 8 9 1 72 10 1 68 11 1 76 2 1 8 9 1 72 10 1 68 11 1 76 2 1 8	4	2	В	LEFT	330.0	90.0	2	6 1	52	
2 1 26 3 1 54 4 1 55 5 1 57 6 1 70 7 1 71 6 3 B LEFT 546.0 90.0 2 1 2 45 7 4 A RIGHT 762.0 48.0 11 1 1 27 2 1 28 3 1 63 4 1 64 5 1 65 6 1 66 7 1 67 8 1 73 9 1 72 10 1 68 11 1 76 8 4 B LEFT 762.0 90.0 2 1 1 7 2 10 1 68 11 1 76 8 4 B LEFT 762.0 90.0 2 1 1 7 2 10 1 68 11 1 76 8 4 B LEFT 762.0 90.0 2 1 1 7 2 1 8 9 5 A RIGHT 892.0 48.0 12 1 1 20 2 1 8 9 5 1 65 6 1 66 7 1 67 8 1 73 9 1 72 10 1 68 11 1 76 8 1 73 9 1 72 10 1 68 11 1 76 8 1 73 9 1 72 10 1 68 11 1 76 8 1 73 9 1 72 10 1 68 11 1 76 8 1 73 9 1 72 10 1 68 11 1 76 8 1 73 9 1 72 10 1 68 11 1 76 8 1 73 9 1 72 10 1 68 11 1 76 8 1 73 9 1 72 10 1 68 11 1 76 8 1 73 9 1 72 10 1 68 11 1 76 8 1 73 9 1 72 10 1 68 11 1 76 8 1 73 9 1 72 10 1 68 11 1 76 8 1 73 9 1 72 10 1 68 11 1 76 8 1 73 9 1 72 10 1 68 11 1 76 8 1 13								2 1	3 25	
\$\begin{array}{cccccccccccccccccccccccccccccccccccc								5 1 6 1 7 1 1 2 2 1 1 1	55 57 70 71 4 5 6 27	
8 4 B LEFT 762.0 90.0 2 1 1 7 2 1 8 9 5 A RIGHT 892.0 48.0 12 1 1 20 2 1 21 3 1 13 4 1 14 5 1 15								5 1 6 1 7 1 8 1 9 1 10 1	63 64 65 66 67 73 72 68	
9 5 A RIGHT 892.0 48.0 12 1 1 20 2 1 21 3 1 13 4 1 14 5 1 15	8	4	В	LEFT	762.0	90.0	2	1 1	7	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	9	5	A	RIGHT	892.0	48.0	12	1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 1 10 1 11 2	20 21 13 14 15 16 17 18 19	
10 5 A RIGHT 892.0 48.0 4 1 1 75 2 1 80 3 1 81	10	5	A	RIGHT	892.0	48.0	4	12 1 1 1 2 1 3 1	74 75 80 81	
4 2 10 9 11 5 B LEFT 892.0 90.0 6 1 1 69 2 1 77 6 1 78 4 1 82 5 1 83 3 1 79	11	5	В	LEFT	892.0	90.0	6	1 1 2 1 6 1 4 1	69 77 78 82	


```
L2-3: Shewchuk (2008)
** Nzones
4
**zone
              left edge X coordinate
           6.0 \\ 226.5
 2
           446.9
 4
           667.4
** NStacks
10
** stack
** # zone type
                          flush \\
                            dge xloc yloc #layers j #panels panels
RIGHT 116.2 57.3 13 1 1 1
                        edge
                                                                                               orientation
                                                                                      23
24
25
26
27
28
29
30
                                                                                                         1
2
2
2
2
3
2
2
1
2
                                                                                      39
73
                                                                     10
                                                                     11
                                                                                       42
                                                                     12
                                                                                      1
17
                                                                     13
      2
             2
                            RIGHT 336.7 57.3
                                                                      1
                    Α
                                                             16
                                                                                       18
                                                                                      34
31
33 32
35
40
41
                                                                     3
4
5
6
7
8
9
10
                                                                                                         12
                                                                                                         1
2
2
1
2
1
                                                                                      36
50
37
51
38
52
53
43
44
2
3
                                                                     11
                                                                     12
                                                                     13
                                                                     14
                                                                                                          1
                                                                     15
                                                                                                         16
             2 2
                            RIGHT 336.7 57.3
      3
      4
                    В
                            LEFT
                                       336.7 99.3
                                                              2
                                                                      2
      5
             3
                    Α
                            RIGHT 557.1 57.3
                                                              8
                                                                       1
                                                                                       19
                                                                                      45
                                                                      2
3
4
                                                                                      46
                                                                                      47
                                                                      5
                                                                                      48
                                                                                       49
                                                                                      60
                                                                      8
                                                                                      61
             3
                    В
                            LEFT
                                       557.1 99.3
                                                              2
      6
                                                                                      20
21
22
9
                    Α
                            RIGHT 833.7 57.3
                                                             12
                                                                      4
5
6
7
8
9
                                                                                      10
11
                                                                                      12
13
14
15
54
55
56
74
57
63
                                                                     10
                                                                     11
                                                                     12
                            RIGHT 833.7 57.3
                                                             10
                                                                      1
2
3
4
5
6
7
             4
                    Α
                                                                                      64
62 65
                                                                                      58
                                                                      8
                                                                                      66
                                                                                      69
                                                                     10
                                                                                      70
```

```
L2-3: Proposed algorithm
** Nzones
**zone left edge X coordinate
            6.0
218.5
437.9
657.4
779.5
 2
 3
4
5
** NStacks
11
edge xloc yloc #layers j #panels panels
RIGHT 116.2 57.3 13 1 1 1 10
                                                                                                        orientation
                                                                                              23
24
25
26
27
28
29
30
39
73
42
                                                                             4
5
6
7
8
9
                                                                                                                   1
2
2
2
2
3
2
1
2
1 2
                                                                            10
                                                                                              1
17
                                                                            13
                               RIGHT 336.7 57.3
                                                                            1
2
3
4
5
6
7
8
9
                                                                                              18
                                                                                              34
31
33 32
                                                                                              35
40
                                                                                                                   1
2
2
1
2
1
                                                                                              41
                                                                                             36
50
37
51
38
52
53
43
44
2
3
                                                                           10
11
12
13
14
15
                                                                                                                   16
                               RIGHT 336.7 57.3
LEFT 336.7 99.3
              2
                      A
B
      3
4
                                                                   2
      5
              3
                     Α
                               RIGHT 557.1 57.3
                                                                    8
                                                                                              45
                                                                                              46
47
                                                                             5
                                                                                              48
                                                                                              49
                                                                                              60
                                                                                              61
```

6	4	В	LEFT	557.1	99.3	2	1	1	4	3
7	4	A	RIGHT	777.6	57.3	10	2 1 2 3 4 5 6	1 1 1 1 1 1	5 20 21 54 55 56 57	3 3 2 2 1 1 1
8 9	4 5	B A	LEFT RIGHT	777.6 889.8	99.3 57.3	1 15	7 8 9 10 1 1 2 3 4 5 6 7 8	1 1 1 1 1 1 1 1 1 1 1 1	63 62 58 66 6 22 9 10 11 12 13 14 15 74	2 2 1 1 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
10	5	В	LEFT	889.8	99.3	4	10 11 12 13 14 15 1 2 3 4	1 1 1 1 1 1 1 1 1 1 2	74 64 65 69 70 7 8 59 67 71 72 68	2 2 2 2 2 3 3 1 1 2 1 2

L3-1


```
L3-1: Shewchuk (2008)
** Nzones
3
**zone
               left edge X coordinate
              6.0 222.0
              438.0
** NStacks
10
** stack flush

** # zone type edge xloc yloc #layers j #panels panels

1 1 A RIGHT 114.0 48.0 11 1 1 25

2 1 26
                                                                                                              orientation
                                                                                                   32
33
34
35
36
37
38
39
41
40
42
43
45
48
                                                                                  6
7
8
9
                                                                                10
                                                                                11
                                 RIGHT 114.0 48.0
                                                                                  2
3
4
5
                                                                                                    1 27
                                                                                                                           3
2
2
1
       3
               2
                                 RIGHT 330.0 48.0
                        Α
                                                                      16
                                                                                                    28
58
59
60
                                                                                                    44
                                                                                                    61
62
                                                                                                    63
47 46
                                                                                                                         2 2
1
                                                                                10
                                                                                                   52
64
70 69
82
65
                                                                                11
                                                                                12
13
14
15
                                                                                                                         1
2 2
1
                                                                                                   83
95
2
3
4
49
53
50 51
54
                                                                                16
                                                                                                                           1
2
3
3
3
                                 RIGHT 330.0 48.0
LEFT 330.0 90.0
                                                                                                                          1 2
                                                                                                                        8
                                                                                                    55
                                                                                                    30 29
21
22
24 23
                                 RIGHT 619.0 48.0
                                                                                  2
3
4
5
6
7
8
9
                                                                                                    10
                                                                                                    13
                                                                                                    14
                                                                                10
                                                                                                    15
                                                                                                    16
17
                                                                                11
               3
                                 RIGHT 619.0 48.0
                        Α
                                                                      16
                                                                                                    18
20 19
                                                                                                    20 19
76
77
78
79
71
72
73
75 74
                                                                                  89
                                                                                10
                                                                                11
                                                                                12
13
                                                                                                    80
                                                                                14
15
                                                                                                    81
                                                                                                    86
```

```
L3-1: Shewchuk (2008)
                                                                                 RIGHT 619.0 48.0
                Α
                                                10
                                                                    90
                                                       2
3
4
5
6
7
                                                                    91
                                                                    92
                                                                    94 93
                                                                    88 87
                                                                    96
                                                       8 9
                                                                    97
                                                                    98
                                                                    100 99
                                                      10
                      LEFT
                               619.0 90.0
                                                                                  33
                                                                    56 57
                                                                    66
67 68
                                                                                   1
                                                                                  1 1
                                                                                  1
3
3
3
                                                                    103
                      LEFT
   10
          3
                В
                               619.0 90.0
                                                                    5
                                                       1
2
3
4
5
                                                                    6
7
                                                                                  3
3 3
2 2
                                                                    89
                                                                    101 102
                                                                    106
                                                                    104
                                                                    107 105
                                                              2
                                                                    108
** Ninfeasible
7: 101 102 106 104 107 105 108
```

```
L3-1: Proposed algorithm
** Nzones
4
**zone
            left edge X coordinate
            6.0
211.0
 2
 3
            418.0
            584.0
** NStacks
** stack
                           flush
** # zone type edge
1 1 A RIG
                              dge xloc yloc #layers j
RIGHT 114.0 48.0 11
                                                                                    panels
1 25
                                                                        #panels
                                                                                                    orientation
                                                                                           26
31
32
33
33
34
35
36
37
38
39
41
40
42
43
45
48
1
27
28
58
59
60
                                                                          6
                                                                          89
                                                                         10
                                                                         11
                              RIGHT 114.0 48.0
                     Α
                                                                                                              1 1
2
2
2
1
3
2
2
1
             1
                                                                          2
                                                                          6
                              RIGHT 330.0 48.0
      3
              2
                                                                17
                                                                                                               1
2
1
                                                                                           44
                                                                                           61
                                                                                           62
63
                                                                                           63
47 46
52
64
70 69
82
65
                                                                         10
                                                                                                               22
                                                                         11
                                                                         13
                                                                                                               22
                                                                         14
15
                                                                         16
                                                                                           83
```

			rithm							
5	2	В	LEFT	330.0	90.0	8	2 3 4 5 6	1 1 1 1 2	2 3 4 49 53 50 51	3 3 1 1 1 1,2
6	3	A	RIGHT	546.0	48.0	16	7 8 1 2 3 4 5 6 7 8 9 10 11	1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	54 55 30 29 21 76 77 78 79 71 72 80 84 81 85	1 3 2 2 1 1 1 1 2 2 2 1 1 1 1
7	3	A	RIGHT	546.0	48.0	4	13 14 15 16 1 2 3	1 1 2 2 1	86 89 92 94 93 88 87 96 97	1 2 2 1 1 2 2
8	3	В	LEFT	546.0	90.0	9	4 1 2 3 4	1 1 1 2 1 1	98 5 6 56 57 66 103	2 2 2 3 3 3 1
9	4	A	RIGHT	692.0	48.0	11	5 6 7 8 9 1 2 3 4 5 6 7	1 1 2 1 1 2 1 1 1 1 1 1	101 67 104 68 105 22 24 23 10 11 12 13	1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
10	4	A	RIGHT	692.0	48.0	8	8 9 10 11 1 2 3 4 5	1 1 1 2 1 2 1 1	15 16 17 18 20 19 73 75 74 90 91	2 2 2 2 2
11	4	В	LEFT	692.0	90.0	4	6 7 8 1 2 3	2 1 2 1 1	100 99 7 9 8 102 108 107	3 3 3


```
L3-2: Shewchuk (2008)
** Nzones 3
**zone
            left edge X coordinate
           6.0
222.0
2 422.
3 438.
** NStacks 9
           438.0
** stack
                        edge xloc yloc #layers j
RIGHT 114.0 48.0 12
                                                                 #panels panels 1 20
** # zone type
                                                                                           orientation
                                                                                  26
27
28
29
30
                                                                                  31
32
33
                                                                  10
                                                                                                    1
2
1
3
2
2
1
                                                                                  34
37
                                                                  11
                                                                  12
     2
                           RIGHT 114.0 48.0
                                                                                   40
            1
                   Α
                                                           2
                                                                  2
                                                                                  1 21
            2
                           RIGHT 330.0 48.0
                                                          14
                   Α
                                                                                  22
                                                                                  50
51
52
                                                                                  36 35
53
                                                                                                    22
                                                                                  39 38
                                                                                                    22
                                                                                  54
                                                                                  44
55
                                                                  10
                                                                                                    1
                                                                  11
                                                                  12
13
                                                                           2
                                                                                  60 \, 59
                                                                                                    22
                                                                                  70
                                                                  14
                                                                                  71
                                                                                  2
            2
                   В
                           LEFT
                                     330.0 90.0
                                                                                                    3
1
2
1 1
                                                                   2
                                                                                  41
                                                                                  43
45 42
                                                                                  46 47
23
24
                                                                                                    3
                           RIGHT 619.0 48.0
                                                                                   17
                                                                                   18
                                                                                  19
                                                                                  10
                                                                                  11
                                                                  10
                                                                                  12
                                                                                   13
                                                                  11
            3
                           RIGHT 619.0 48.0
                                                          16
                                                                                   14
     6
                   Α
                                                                                  15
16
                                                                                  65
                                                                                  66
67
61
                                                                                  62
63
64
68
72
69
73
76
                                                                  10
11
12
13
14
15
                                                                           1
2
1
2
1
                                                                                  78 77
79
                                                                  16
     7
            3
                           RIGHT 619.0 48.0
                                                                                  81 80
                                                                                  74
75
82
83
                                                                                  84
                                                                                                    \overline{2} 2
```

```
L3-2: Shewchuk (2008)
            3 B
                                LEFT 619.0 90.0
                                                                                                      48 49
                                                                                                                            33

\begin{array}{c}
2 \\
3 \\
4 \\
5 \\
1 \\
2 \\
3 \\
4 \\
5 \\
6 \\
7
\end{array}

                                                                                                      57
                                                                                                      89
                                                                                                                            1
                                                                                                      4 5
                                                                                                                           3
3
3
3
22
                                LEFT 619.0 90.0
                                                                                                      6
7
                                                                                                      87 88
                                                                                                      92
                                                                                                                            1
                                                                                                      90
                                                                                                      93 91 94
                                                                                                                          111
** # of interfering panels
6: 88 92 90 93 91 94
```

```
L3-2: Proposed algorithm
** Nzones
4
        left edge X coordinate 6.0
**zone
 2
        215.0
         430.0
 4
        584.0
** NStacks
orientation
                                                                  20
                                                                                 2
                                                                 25
26
                                                                 27
28
29
30
31
32
33
34
37
                                                     4
5
6
7
8
9
                                                                                1
                                                                                1
                                                     10
                                                                                1
2
2
1
3
2
2
1
                                                     11
                                                     12
                                                     13
                                                                  40
                                                                 1
21
22
50
51
                                                     14
                     RIGHT 330.0 48.0
       2 A
                                                     2
3
4
5
6
7
8
9
                                                                                1
                                                                 52
36 35
                                                                                22
                                                                                1
                                                                  39 38
                                                                                22
                                                                  44
                                                     11
                                                                  55
                                                                  60 59
                                                     12
                                                     13
                                                                                1
                                                                 71
2
3
                                                     14
               В
                     LEFT 330.0 90.0
                                                     1
2
3
4
5
6
                                                                                3
                                                                                3
                                                                  41
                                                                                1
                                                                  43
                                                                                2
                                                                  45 42
                                                                                \bar{1} 1
                                                                  46 47
                                                                                13
```

L3-2: Pr	oposed	d algori	ithm							
4	3	A	RIGHT	546.0	48.0	16	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	23 24 17 65 66 67 61 62 68 72 69 73 79 81 80	2 2 2 1 1 1 2 2 1 1 1 1 1 2 2 1 1 1 1 1
5	3	A	RIGHT	546.0	48.0	2	16 1	1	75 83	1 2
6	3	В	LEFT	546.0	90.0	10	2 1 2 3 4 5 6 7 8	1 1 1 1 2 1 1 1 1 2	84 4 5 56 82 48 49 57 89 87 58 90	2 3 3 1 2 3 3 1 1 2 1 1
7	4	A	RIGHT	692.0	48.0	12	10 1 2 3 4 5 6 7 8 9 10 11	1 1 1 1 1 1 1 1 1 1 1	91 18 19 8 9 10 11 12 13 14 15 16	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
8	4	A	RIGHT	692.0	48.0	6	12 1 2 3 4 5	1 1 1 2 2 1	63 64 76 78 77 86 85 6	2 2 2 2 2 2 2 2 2 2 3 3 2
9	4	В	LEFT	692.0	90.0	4	6 1 2 3 4	1 1 1 1	7 88 94 93 92	3 2 1 1 1
** # of i 3: 94 93	nterfer 92	ring pai	nels							

L3-3

*zone 1 2 3 * NStac	6.0 226.5 446.9		X coordina	te			
* stack * # 1	zone 1	type A	flush edge x RIGHT	doc yl- 116.2	oc #lay 57.3	vers j 12	#panels panels orientation 1 1 17 2 2 1 21 1 3 1 22 1 4 1 23 1 5 1 24 1 6 1 25 1
2	2	A	RIGHT	336.7	57.3	16	7 1 26 1 8 1 27 1 9 1 28 2 10 1 30 2 11 1 32 1 12 1 1 32 1 12 1 1 3 1 1 1 18 2 2 1 19 2 3 1 39 1 4 1 50 1 5 1 40 1 6 1 51 1 7 1 29 2 8 1 41 1 9 1 52 1 10 1 42 1 11 1 53 1
3 4	2 2	A B	RIGHT LEFT	336.7 336.7	57.3 99.3	2	12 1 31 2 13 1 35 1 14 1 43 1 15 1 46 2 16 1 54 1 1 1 55 1
5	3	A	RIGHT	623.5	57.3	12	5 1 36 1 6 1 37 3 1 1 20 2 2 1 14 2 3 1 15 2 4 1 16 2 5 1 7 2 6 1 8 2
6	3	A	RIGHT	623.5	57.3	12	
7	3	В	LEFT	623.5	99.3	3	7 1 61 2 8 2 63 62 22 9 1 58 2 10 1 65 2 11 1 66 2 12 1 67 2 1 1 38 3
8	3	В	LEFT	623.5	99.3	8	2 1 44 1 3 1 45 1 1 1 4 3 2 1 5 3 3 1 6 3 4 1 69 1 5 1 68 2 6 1 71 1 7 1 70 1

one NSta	6.0 218.5 440.9 579.5 cks 9) 5 9	X coordina	te					
# 1		type A	edge x RIGHT	doc yl 116.2	oc #la 57.3	yers j 12	#panels 1 2 3 4 5 6 7	panels 1 17 1 21 1 22 1 23 1 24 1 25 1 26	orientation 2 1 1 1 1 1 1 1 1 1
2	2	A	RIGHT	336.7	57.3	16	8 9 10 11 12 1 2 3 4 5 6 7 8 9	1 27 1 28 1 30 1 32 1 1 1 1 18 1 19 1 39 1 50 1 40 1 51 1 29 1 41 1 52 1 42	1 2 2 1 3 2 2 2 1 1 1 1 2 1 1 1
3 4	2 2	A B	RIGHT LEFT	336.7 336.7	57.3 99.3	2	11 12 13 14 15 16 1 2 1 2 3 4	1 53 1 31 1 35 1 43 1 46 1 54 1 55 1 64 1 2 1 3 1 33	1 2 1 1 2 1 2 3 3 3 1 2 1
5	3	A	RIGHT	557.1	57.3	7	3 4 5 6 1 2 3 4 5 6	1 34 1 36 1 37 1 20 1 14 1 47 1 61	1 1 3 2 2 2 2 2 1 2
6	3	В	LEFT	557.1	99.3	7	7 1 2 3 4	2 63 62 1 58 1 65 1 4 1 57 1 38 1 44	1 2 3 1 3 1
7	4	A	RIGHT	689.8	57.3	13	5 6 7 1 2 3 4 5 6 7	1 45 1 69 1 70 1 15 1 16 1 7 1 8 1 9 1 10	1 1 1 2 2 2 2 2 2 2
0	A	A	DICHE	290.0	57 2	5	8 9 10 11 12 13	1 11 1 12 1 13 1 48 1 49 1 56 1 59	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
8	4	A	RIGHT	689.8	57.3	5	1 2 3 4 5 1	1 60 1 66 1 67 1 5 1 6	2 2 2 3 3
9	4	В	LEFT	689.8	99.3	3	1 2 3	1 68 1 72 1 71	2 1 1

L4-1

T 4 1 ~:		1 (222	.0)							
L4-1: Sh										
3	2	A	RIGHT	330.0	48.0	12	1 2 3 4 5 6 7 8 9 10 11	1 1 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1	26 27 59 60 62 61 67 74 76 75 80 77 79 78	2 2 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2
4	2	В	LEFT	330.0	90.0	5	12 1 2 3 4	1 1 1 1	81 2 3 4 53	1 3 3 3 1
5	3	A	RIGHT	546.0	48.0	5	5 1 2 3 4	2 1 1 1 1	54 55 28 29 68 69	$\begin{array}{c} 1 \ 1 \\ 2 \end{array}$
6	3	В	LEFT	546.0	90.0	5	5 1 2 3 4 5	1 1 1 1 1	70 5 6 82 83	2 2 2 2 3 3 1 1
7	4	A	RIGHT	762.0	48.0	8	5 1 2 3 4 5 6 7	1 1 1 1 1 1 2 1	84 30 31 32 63 64 66 65	1 2 2 2 2 1 1 1 1 2
8	4	В	LEFT	762.0	90.0	3	8 1 2	2 1 2	71 73 72 7 8 9	2 2 3 3 3
9	5	A	RIGHT	1035.0	48.0	11	3 1 2 3 4 5 6 7 8 9	1 1 1 1 1 1 1 1 1 1 1	93 33 34 35 36 15 16 17 18 19 20	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
10	5	A	RIGHT	1035.0	48.0	17	11 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	1 2 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1	21 23 22 100 101 102 97 99 98 85 86 87 88 89 94 104 103 105 106 107	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
11	5	A	RIGHT	1035.0	48.0	2	17 1	1	90 95	2
12	5	В	LEFT	1035.0	90.0	4	2 1 2 3	1 1 1	108 91 96 92	1 1 1
13	5	В	LEFT	1035.0	90.0	8	4 1 2 3 4 5 6 7 8	2 1 1 2 1 1 1 1	109 110 10 11 12 13 14 111 112 113 114	11 3 3 3 3 3 3 3 3 3
** Ninfe 5: 110 11		113 1	14				-			_

```
L4-1: Proposed algorithm
** Nzones
6
**zone
            left edge X coordinate
 1
             6.0
          210.0
 3
          428.0
          634.0
 5
          860.0
6 98
** NStacks
          984.0
13
** stack flush

** # zone type edge xloc yloc #layers j

1 1 A RIGHT 114.0 48.0 12
                                                              #panels panels 1 2
                                                                                       orientation
                                                                               37
                                                                               38
                                                                               39
                                                                               40
                                                                               41
                                                                               42
                                                                               43
                                                               10
                                                                               45 44
                                                                                                2 2 2
                                                               11
                                                                               46
                                                               12
                  Α
                          RIGHT 114.0 48.0
                                                                                49
                                                                                                 1
                                                                               50
                                                                               56
                                                                                                \bar{2} 2
                                                                               58 57
                                                                               51
52
                                                                                                 1
1
                                                                5
6
7
                                                                                                 3
2
2
                                                                1
2
3
                          RIGHT 330.0 48.0
                                                       12
                                                                                26
                                                                               27
59
                                                                               60
                                                                               62 61
67
                                                                6
7
8
                                                                               74
                                                                                                \overline{2} 2
                                                                               76 75
                                                                               80
77
                                                                                                1
2
2 2 2
                                                               10
                                                                               79 78
                                                               12
                                                                               81
                                                                                                1
3
3
1
                                                                               2
                          LEFT
                                    330.0 90.0
                                                                2
                                                                               54 55
                                                                               28
29
                                                                                                2
2
2
2
2
2
3
3
1
           3
                          RIGHT 546.0 48.0
                                                                               68
                                                                               69
                                                                               70
           3
                         LEFT
                                                                               5
                  В
                                    546.0 90.0
                                                        5
                                                                2
                                                                               6
                                                                               82
                                                                4
                                                                               83
                                                                               84 93
                                                                                                1 1
                                                                                                2 2 2 1
           4
                          RIGHT 762.0 48.0
                                                                               30
                                                                               31
                                                                2
3
4
                                                                               32
63
                                                                               64
                                                                               66\ 65
                                                                                                1 1
2 2 2
3 3 3
2 1
                                                                               71
                                                                               73 72
                  В
                         LEFT
                                    762.0 90.0
                                                        5
           4
                                                                               89
                                                                2
3
4
5
1
2
3
4
                                                                               33
92
                                                                                                3
                                                                               10
           5
                          RIGHT 978.0 48.0
                                                                               34
100
                                                                                                  1
                                                                               101
                                                                               102
                                                                        2
                                                                               104 103
                                                                                                  1 1
                                                                               105
108
                                                                                                  2
```

L4-1	: Pro	posed	algorit	hm							
	0 1	5 6	B A	LEFT RIGHT	978.0 1092.0	90.0 48.0	1 12	1 2 3 4 5 6 7 8 9	1 1 1 1 1 1 1 1 1 1 1 2	11 35 36 15 16 17 18 19 20 21 23 22	3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
1	2	6	A	RIGHT	1092.0	48.0	12	11 12 1 2 3 4 5 6 7 8 9	1 2 1 1 1 1 1 1 1 1 1 1	97 99 98 85 86 87 88 89 94 106 107 90 95	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
	3	6	В	LEFT	1092.0	90.0	7	11 12 1 2 3 4 5 6 7	1 2 1 1 2 1 1 1 1	12 14 13 91 96 109 110 111 112 113 114	2 2 3 3 3 3 1 1 1 1 1 1 2 2 2 2
0	or in	terteri	ng pan	eis							

L4-2


```
L4-2: Shewchuk (2008)
** Nzones
**zone
                left edge X coordinate
                6.0
             222.0
             438.0
             654.0
5 8/
** NStacks
             870.0
12
** stack
                             flush \\
** #
            zone type edge xloc yloc #layers j
1 A RIGHT 114.0 48.0 13
                                                                              #panels
                                                                                            panels
                                                                                                             orientation
                                                                                2
3
4
5
6
7
8
9
                                                                                                   30
                                                                                                   31
32
33
34
35
36
37
38
39
45
                                                                                                                        1
2
2
1
2
2
1
                                                                               10
                                                                               11
12
                                                                              13
                                                                                                   46
40
      2
                       Α
                                 RIGHT 114.0 48.0
                                                                       3
                                                                                                   41
                                                                                                                         \begin{smallmatrix}1\\3\\2\\2\\1\end{smallmatrix}
                                                                                                   20
21
47
               2
                       Α
                                RIGHT 330.0 48.0
                                                                      11
                                                                                                   48
49
53
59
60
61
                                                                                4
5
6
7
8
9
                                                                                                                         1
2
2
2
2
2
1
3
1
                                                                               10
                                                                                                 62
63
2
3
42
43 44
22
23
54
55
4
55
64
65
66
24
25
56
7
73
26
27
29 28
                                                                               11
               2
                       В
                                LEFT
                                             330.0 90.0
                                                                      4
                                                                                1
2
3
                                                                                                                        1 1
2
2
2
2
2
3
3
1
                                 RIGHT 546.0 48.0
      5
               3
                                                                       4
                       Α
                                                                                2
               3
                       В
                                LEFT
                                             546.0 90.0
                                                                      5
       6
                                                                                                                        RIGHT 762.0 48.0
       7
               4
                       Α
                                                                       4
                                LEFT
                                             762.0 90.0
                                                                      3
       8
               4
                       В
                                                                                2
               5
                       A
                                 RIGHT 1035.0 48.0
                                                                       12
                                                                                1
2
3
4
5
6
7
                                                                                                   12
13
                                                                                                   14
15
                                                                                                   16
17
                                                                                8
                                                                                                  18
50
79
51
                                                                               10
                                                                               11
                                                                               12
     10
                       Α
                                RIGHT 1035.0 48.0
                                                                       15
                                                                                                   80
77
52 78
67
                                                                                                   68
69
70
```

```
L4-2: Shewchuk (2008)
                                                                                                          2
2
2
2
2
1
                                                                     11
                                                                     12
                                                                                       83
                                                                                       84
85
                                                                     13
                                                                     14
                                                                                       86
71
75
72
                                                                     15
                    В
                            LEFT
                                       1035.0 90.0
    11
                                                                                                          1
                                                                                       76
8
                                                                                                          1
3
3
3
1
    12
                    В
                            LEFT
                                       1035.0 90.0
                                                               8
                                                                                       9
                                                                                       10
                                                                       3
4
5
6
7
                                                                                       11
                                                                                       87
                                                                                       88
                                                                                                          3
2
                                                                                       89
                                                                                       90
** # of interfering panels 4: 87 88 89 90
```

```
L4-2: Proposed algorithm
** Nzones
6
             left edge X coordinate 6.0
**zone
 2
3
4
5
           210.0
           428.0
642.0
858.0
6 98
** NStacks
           984.0
13
** stack
                         flush
** # zone type edge xloc yloc #layers j
1 1 A RIGHT 114.0 48.0 13
                                                                     #panels panels
                                                                                                orientation
                                                                                        19
                                                                                       31
32
33
34
35
36
37
38
                                                                                                           2
1
2
2
                                                                      10
                                                                      11
                                                                                       39
                                                                     12
                                                                     13
                                                                                       46
     2
                    Α
                            RIGHT 114.0 48.0
                                                               3
                                                                                        40
                                                                                                           1
                                                                                       41
                                                                                                           \begin{array}{c} 1\\3\\2\\2\\1\end{array}
     3
             2
                            RIGHT 330.0 48.0
                                                                                        20
                    Α
                                                             11
                                                                                       21
                                                                       2
3
4
5
6
7
8
9
                                                                                       47
                                                                                       48
                                                                                                           1
                                                                                       49
53
                                                                                                          1
2
2
2
2
2
1
3
                                                                                       59
                                                                                       60
                                                                                       61
                                                                     10
                                                                                       62
                                                                     11
                                                                                       63
2
3
42
43 44
22
23
54
55
4
             2
                            LEFT 330.0 90.0
                    В
                                                                                                          3
                                                                                                          1
                                                                                                          1 1
                            RIGHT 546.0 48.0
                    Α
                                                               4
                                                                                                          2
2
2
2
3
3
             3
                    В
                            LEFT
                                     546.0 90.0
                                                              6
                                                                       2
                                                                                       5
                                                                                       64
                                                                                       65
```

L4-2: Pro	oposed	d algor	ithm							
7	4	A	RIGHT	762.0	48.0	4	1 2	1 1	24 25	2 2
8	4	В	LEFT	762.0	90.0	8	2 3 4 1 2 3 4	1 2 1 1 1 1	56 58 57 6 7 26 50	2 2 2 2 3 3 2 1
9	5	A	RIGHT	978.0	48.0	7	5 6 7 8 1 2 3 4 5	1 1 1 1 1 1 1 1	51 52 72 8 27 79 80 81 82	1 1 3 2 1 1 1
10 11	5 6	B A	LEFT RIGHT	978.0 1092.0	90.0 48.0	1 13	6 7 1 1 2 3 4 5	1 1 2 1 1 1 1	83 86 9 29 28 12 13 14	2 1 3 2 2 2 2 2 2 2
12	6	A	RIGHT	1092.0	48.0	6	6 7 8 9 10 11 12 13 1	1 1 1 1 1 1 1 1	16 17 18 77 78 67 68 69 70	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 1
							2 3 4 5	1 1 1 1	74 84 85 10	2 2 2 3
13	6	В	LEFT	1092.0	90.0	7	6 1 2 3 4 5	1 1 1 1 1	11 71 75 76 87 88	3 1 1 1 1 2 2
** # of i	nterfei	ring pa	nels				6 7	1 1	89 90	2 2

L4-3


```
L4-3: Shewchuk (2008)
** Nzones
5
**zone
         left edge X coordinate
         6.0
226.5
446.9
 2
3
4
         667.4
5 88
** NStacks
         887.8
orientation
                                                                    24
25
26
27
28
29
30
31
32
33
34
39
                                                      40
35
                       RIGHT 116.2 57.3
          1
                                                                    1
                                                                   18
41
42
43
47
52
53
54
55
56
          2
                       RIGHT 336.7 57.3
                                                10
                                                                                   1
2
2
2
2
2
2
```

```
L4-3: Shewchuk (2008)
                                                                                                     3
1
            2
                   В
                           LEFT 336.7 99.3
                                                           5
                                                                                   2
                                                                   2
3
4
            3
                   Α
                           RIGHT 557.1 57.3
                                                                                   20
                                                                                   48
4
      6
            3
                   В
                           LEFT
                                      557.1 99.3
                                                                                   57
                                                                                   58
                                                                                   59
21
                                                                                                     4
                   Α
                           RIGHT 777.6 57.3
                                                                                   49
50
                                                                                   51
5
6 66
22
23
16
17
            4
                   В
                           LEFT
                                      777.6 99.3
                                                           2
                                                                  1
2
3
4
5
6
7
8
9
10
            5
                   Α
                           RIGHT 1043.9 57.3
                                                            12
                                                                                   11
                                                                                   12
                                                                                   13
                                                                                   14
15
                                                                                   44
71
                                                                  11
                                                                  12
                           RIGHT 1043.9 57.3
    10
            5
                                                            14
                                                                                    45
                                                                                   46
72
69
                                                                   2
3
4
5
6
7
8
9
                                                                                   70
                                                                                   61
                                                                                   62
63
67
73
74
75
76
                                                                  10
                                                                  11
12
                                                                  13
                                                                                   64
68
    11
            5
                   В
                           LEFT
                                      1043.9 99.3
                                                                   1
2
3
4
1
                                                                                   65
77
7
                                                                                                     1
    12
                   В
                           LEFT
                                      1043.9 99.3
            5
                                                             6
                                                                                                     3
3
3
3
2
                                                                   2
3
4
5
6
                                                                                   8
9
78
79
80
** # of interfering panels 3: 78 79 80
```

```
L4-3: Proposed algorithm

** Nzones
6

**zone left edge X coordinate
1 6.0
2 213.5
3 432.9
4 653.4
5 868.8
6 979.5

** NStacks
12
```

ack #	zone	type	edge x	loc yle	oc #lav	ers i	#panels	panels	orientat
1	1	Ä	ŘIGHT	116.2	57.3	13	1 2 3 4 5 6 7 8 9 10	1 24 1 25 1 26 1 27 1 28 1 29 1 30 1 31 1 32 1 33 1 34	
2	1	A	RIGHT	116.2	57.3	2	12 13 1 2 1	1 39 1 40 1 35 1 1	
3	2	A	RIGHT	336.7	57.3	10	2 3 4 5 6 7 8	1 18 1 41 1 42 1 43 1 47 1 52 1 53 1 54	
4	2	В	LEFT	336.7	99.3	5	9 10 1 2 3 4	1 55 1 56 1 2 1 3 1 36 1 37	
5	3	A	RIGHT	557.1	57.3	3	5 1	1 38 1 19 1 20	
6	3	В	LEFT	557.1	99.3	4	2 3 1 2 3	1 48 1 4 1 57	
7	4	A	RIGHT	777.6	57.3	4	3 4 1 2 3	1 58 2 59 66 1 21 1 49	
8	4	В	LEFT	777.6	99.3	8	3 4 1 2 3 4 5 6	1 50 1 51 1 5 1 6 1 22 1 44 1 45	
9	5	A	RIGHT	998.1	57.3	6	7 8 1 2 3 4	1 46 1 65 1 7 1 23 1 71 1 72 1 73	
0	4 6	B A	LEFT RIGHT	998.1 1089.8	99.3 5 57.3	1 17	5 6 1	1 74 1 76 1 8 1 16 1 17 1 10	
2	6	В	LEFT	1089.8	99.3	6	6 7 8 9 10 11 12 13 14 15 16 17 1 2 3 4 5 6	1 12 1 13 1 14 1 15 1 69 1 70 1 60 1 61 1 62 1 63 1 67 1 75 1 9 1 64 1 68 1 77 1 78 1 79	

L5-1


```
L5-1: Shewchuk (2008)
** Nzones
**zone
             left edge X coordinate
              6.0
           222.0
           438.0
           654.0
           870.0
** NStacks
13
** stack flush

** # zone type edge xloc yloc #layers j #panels panels

1 1 A RIGHT 114.0 48.0 13 1 1 2

2 1 2.
                                                                                              orientation
                                                                                      21
22
                                                                                      33
34
35
                                                                                      36
37
                                                                      6
7
8
9
                                                                                      38
                                                                                      39
                                                                                                        1
2
2
2
2
2
1
                                                                    10
11
                                                                                      40
                                                                                     41
                                                                    12
13
                                                                                     44
45
                            RIGHT 114.0 48.0
                                                                                      50
                                                                                      52 51
53
54
                                                                      2
                                                                                                        1 1
2
2
1
2
2
                                                                                      57
                                                                                      1 23
             2
                            RIGHT 330.0 48.0
                                                                                      24
                                                                                                        2
1
2
2
                                                                                      59
                                                                                      42
                                                                                      43
                                                                                      48
                                                                                      60
                                                                                                        1
2
2
                                                                                      46
                                                                                      47
                                                                    11
                                                                                      61
                                                                    12
                                                                                      62
                                                                                                        \begin{array}{c} 1 \\ 2 \\ 2 \end{array}
                                                                    13
                                                                                      55
                                                                                      56
                                                                    14
                                                                                                        1
1
3
3
3
1
2
2
1
             2
                    Α
                            RIGHT 330.0 48.0
                                                            2
                                                                                     63
                                                                                      64
                                                                                     2
                    В
                            LEFT
                                      330.0 90.0
                                                             4
                                                                      2 3
                                                                                     58
25
26
                            RIGHT 546.0 48.0
             3
                                                            10
                    Α
                                                                                     66
67
                                                                                                        1
                                                                                     73
75 74
                                                                                                        \overline{2} 2
                                                                                      68
                                                                                                        1
                                                                                      69
                                                                                                        1
                                                                                      70
71
5
                                                                                                        1
                                                                     10
                                                                                                        1
3
3
1
             3
                    В
                            LEFT 546.0 90.0
                                                             3
                                                                      2
                                                                      3
                                                                                      65
27
28
29
79
                            RIGHT 762.0 48.0
                                                                                                         2
             4
                                                                                                        2 2
                                                                                                        1
                                                                                      92
                                                                                                        1
2
2
                                                                                      93
                                                                    10
                                                                    11
                                                                                      94
                                                                                                        2 2
                                                                    12
                                                                                      88
                                                                    13
                                                                                      89
                                                                                      95 82
                                                                                                        1 1
                                                                    14
```

```
L5-1: Shewchuk (2008)
         4
                     RIGHT 762.0 48.0
                                              2
                                                                 100
                                                                                2
               À
                                                                 90
   10
          4
               В
                     RIGHT 762.0 48.0
                                                                 91
                                                                               2
                                                                 83
                                                                 84
                                                                85
7 8
9
                     LEFT
                             762.0 90.0
                                              5
   11
         4
               В
                                                                              76
77 78
72
30
   12
                     RIGHT 985.0 48.0
                                             12
         5
               Α
                                                                31
32
                                                                 14
                                                                 15
                                                                 16
                                                                 17
                                                    8
                                                                 18
                                                                 19
                                                   10
                                                                 20
                                                   11
                                                                 96
                                                                97
                                                   12
                     LEFT 985.0 90.0
   13
               В
                                             14
                                                                 10
                                                    2
                                                                 12 13
                                                                              33
                                                                 98 99
                                                                 101
                                                                                2
2
2
1
                                                                 103
                                                                 110
                                                   10
                                                                 111
                                                   11
                                                                 106
                                                           1
2
2
                                                   12
                                                                 107
                                                                 108 104
                                                                               22
                                                   13
                                                                 105
** Ninfeasible
5: 106 107 108 104 105
```

```
L5-1: Proposed algorithm
** Nzones
6
**zone
            left edge X coordinate
          6.0
 2
 3
          425.0
 4 5
          640.0
          850.0
6 88
** NStacks
          884.0
13
** stack
                       flush \\
** # zone type edge xloc yloc #layers j
1 1 A RIGHT 114.0 48.0 13
                                                            #panels panels
1 1 21
2 1 22
                                                                                    orientation
                                                                                             2
                                                                            33
34
                                                                            35
36
37
                                                              8
9
                                                                            39
                                                                            40
                                                             10
                                                             11
                                                                            41
                                                             12
                                                             13
                                                                            45
                         RIGHT 114.0 48.0
                                                       6
                                                                             50
                                                                                              1
                                                                            52 51
53
                                                                                            1 1 2 2 1
                                                                            54
57
                                                                                             2
                                                              6
                         RIGHT 330.0 48.0
                                                                             23
                  Α
                                                      16
                                                                            24
59
                                                                                             2
                                                                            42
43
```

1: Pro	oposed	l algori	thm				6 7	1 1	48 60	
							8 9 10	1 1 1	49 46 47	:
							11 12 13	1 1 1	61 62 55	1
							14 15	1 1	56 63	1
4	2	В	LEFT	330.0	90.0	4	16 1 2 3	1 1 1	64 2 3	1
5	3	A	RIGHT	546.0	48.0	10	4 1	1 1 1	4 58 25	
							2 3 4	1 1 1	26 66 67	-
							5 6 7	1 2 1	73 75 74 68	2
							8 9 10	1 1 1	69 70 71	
6	3	В	LEFT	546.0	90.0	6	1 2 3	1 1 1	5 6 65	
							4 5 6	1 2 1	76 77 78 72	2
7	4	A	RIGHT	762.0	48.0	14	1 2 3	1 1 1	27 28 29	,
							4 5	1 1	79 92	
							6 7 8	1 1 1	86 87 80	4
							9 10 11	1 1 1	93 81 94	1 1
							12 13 14	1 1 2	88 89 95 82	1
8	4 5	A A	RIGHT RIGHT	762.0 762.0	48.0 48.0	2 7	1 2 1	1 1 1	100 90 91	2
			140111	, 02.0	.0.0	,	2 3 4	1 1 1	83 109 84	
							5 6 7	1 1 1	110 111 106	
10	5	В	LEFT	762.0	90.0	3	1 2 3	1 1 1	7 8 9 85	3
11	6	A	RIGHT	978.0	48.0	9	1 2	1 1	30 31 32	2
							3 4 5	1 1 1	14 15 16	1
							6 7 8	1 1 1	17 18 19	
12	6	A	RIGHT	978.0	48.0	6	9 1 2	1 1 1	20 96 97	1
							3 4 5	2 1 1	99 98 101 102 103	1 2 2
13	6	В	LEFT	992.0	90.0	12	6 1 2	1 1 1	107 10 11	2
							3 4 5	2 1 2	12 13 105 104 108	2 2 2
# of ii	nterfer	ing par	nels				J	۷	104 108	2

L5-2

L5-2: Sh	ewchu	ık (200	08)		4.50	_			_
2	2	A	RIGHT	330.0	48.0	16	1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 1 10 1 11 1 12 1 13 1 14 1 15 1	18 19 34 35 39 48 40 49 37 38 41 50 42 44 45	2 2 2 1 1 1 1 2 2 1 1 1 1 2 2
3 4	2 2	A B	RIGHT LEFT	330.0 330.0	48.0 90.0	1 3	16 1 1 1 1 1 2 1	46 51 2 3	1 1 3 3
5	3	A	RIGHT	546.0	48.0	8	3 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1	47 20 21 54 60 61 55 56	1 2 2 1 3 3 1 2 2 1 2 1 2 1
6	3	В	LEFT	546.0	90.0	4	8 1 1 1 2 1 3 1 4 1	57 4 5 52	1 1 3 3
7	4	A	RIGHT	762.0	48.0	15	4 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 1 10 1 11 1 12 1	53 22 23 64 76 70 71 65 77 72 73 66 78	1 3 3 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2
8	4	В	LEFT	762.0	90.0	6	13 1 14 1 15 1 1 1 2 1 3 1 4 1	74 75 67 6 7 62 63	2 2 1 3 3 2 2
9	5	A	RIGHT	985.0	48.0	12	5 1 6 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1	58 59 24 25 26 11 12	2
10	5	В	LEFT	985.0	90.0	14	8 1 9 1 10 1 11 1 12 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 2 10 1 11 1 12 1	14 15 16 79 80 81 8 9 10 82 83 84 89 68 91 90 87 88	2 2 2 2 2 2 2 2 2 3 3 3 2 2 2 1 1 1 1 1
** # of ii 2: 85 86	nterfei	ring pa	nels				14 1	86	2

```
L5-2: Proposed algorithm
** Nzones
**zone
               left edge X coordinate
            210.0
             423.0
  4 5
            638.0
            860.0
6 oc
** NStacks
            884.0
** stack flush

** # zone type edge xloc yloc #layers j

1 1 A RIGHT 114.0 48.0 11
                                                                       #panels panels 1 1 1
                                                                                                    orientation
                                                                                            17
                                                                          2
                                                                                           27
                                                                                                               1
                                                                                           28
29
                                                                          3
                                                                                                               1
                                                                                                               1
                                                                          5
6
7
                                                                                           30
31
32
33
36
43
                                                                                                               1
                                                                                                               1
                                                                                                               1
2
2
2
2
2
2
2
2
2
1
                                                                          8
                                                                         10
                                                                                           1
                                                                         11
                                                                                           18
19
                              RIGHT 330.0 48.0
             2
                                                                16
                      Α
                                                                          1
2
3
4
5
                                                                                           34
35
39
                                                                                           48
                                                                                                               1
                                                                          6
7
8
                                                                                           40
49
                                                                                                               1
                                                                                                               1
                                                                                           37
38
                                                                                                               2
2
1
                                                                         10
                                                                         11
                                                                                           41
                                                                         12
                                                                                           50
                                                                                                               1
                                                                         13
                                                                                           42
                                                                                                               1
2
2
1
3
3
1
2
2
1
2
2
1
                                                                         14
                                                                                           44
                                                                         15
                                                                                           45
                                                                         16
                                                                                           46
                              RIGHT 330.0 48.0
                                                                                            51
                      В
                              LEFT
                                          330.0 90.0
                                                                 3
                                                                          2
                                                                                           47
      5
              3
                              RIGHT 546.0 48.0
                                                                                            20
                      A
                                                                  8
                                                                          2 3
                                                                                           21
54
                                                                                           60
                                                                          4
5
6
7
                                                                                           61
55
56
57
4
5
52
62
63
58
53
59
22
23
                                                                                                               1
                                                                          8
                                                                                                               1
3
1
2
2
1
              4
                      В
                              LEFT 546.0 90.0
                                                                 7
      6
                                                                          2
3
4
5
                                                                                                              1 1
                                                                                                              2 2 1
      7
                              RIGHT 762.0 48.0
              5
                                                                15
                                                                          2
                                                                                           64
                                                                                           76
70
71
                                                                          4
5
6
7
                                                                                                               1
2
2
1
                                                                                           65
77
72
73
                                                                          8
9
                                                                                                               1
2
2
1
                                                                         10
                                                                                           66
78
74
75
67
                                                                                                               2 2 1
                                                                         13
                                                                         14
                                                                         15
             5
                     В
                             LEFT 762.0 90.0
                                                                 8
                                                                          1 2
                                                                                           6
7
                                                                                                               3
```

L5-2: Pro	nneed	l algori	thm							
L3-2.110	эрозсс	angon					3	1	82	2
							4	1	89	2
							5	1	68	1
							6	2	90 91	11
							7	1	87	2
							8	1	69	1
9	6	Α	RIGHT	978.0	48.0	8	1	1	24	1 2 2
							2	1	25	2
							3	1	79	1
							4	1	80	1
							5	1	81	1
							6	1	83	2
							7	1	88	2
							8	1	85	2
10	6	В	LEFT	992.0	90.0	11	1	1	8	2
							2 3	1	9	2
							3	1	26	2
							4	1	11	2
							5	1	12	2
							6	1	13	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
							7	1	14	2
							8	1	15	2
							9	1	16	2
							10	1	84	2

L5-3


```
L5-3: Shewchuk (2008)
** Nzones
**zone
                left edge X coordinate
                6.0
             226.5
 2
3
4
             446.9
             667.4
** NStacks
10
** stack

** # zone type

1 1 A
                              flush
                                 dge xloc yloc #layers j
RIGHT 116.2 57.3 12
                                                                                 #panels panels
                                                                                                                orientation
                             edge
                                                                                  1
2
3
4
5
6
7
8
9
                                                                                                      22
23
24
25
26
27
30
35
36
37
1
                                                                                                                             1
                                                                                                                             1
                                                                                                                             1
2
2
1
                                                                                  10
                                                                                                                            1
2
2
2
2
2
2
1
                                                                                  11
                                                                                  12
                                 RIGHT 336.7 57.3
               2
                                                                        13
                                                                                                       15
                                                                                   2
3
4
5
6
7
8
9
                                                                                                      16
28
29
33
42
34
31
32
43
                                                                                                                             1
2
2
1
                                                                                  10
                                                                                  11
12
                                                                                                      44
38
39
2
3
                                                                                                                             1
2
2
3
3
1
                                                                                  13
1
2
3
4
1
       3
               2
                        В
                                 LEFT
                                              336.7 99.3
                                                                                                      40
                                                                                                      41
17
                                                                                                                             1
               3
                                 RIGHT 557.1 57.3
                        Α
                                                                         6
                                                                                   2
3
4
5
6
1
                                                                                                      47
52
53
48
49
4
45
                                                                                                                             1
2
2
1
                                                                                                                             1
3
1
                                 LEFT
                                              557.1 99.3
               3
                        В
                                                                         3
       5
                                                                                   2
                                                                                                      46
                                                                                                                            RIGHT 883.7 57.3
                                                                        13
                                                                                  1
2
3
4
5
6
7
8
9
10
       6
               4
                        Α
                                                                                                       18
                                                                                                      19
                                                                                                      20
21
9
10
                                                                                                      11
                                                                                                      12
13
                                                                                                      61
62
56
67
70
57
                                                                                  12
13
                                 RIGHT 883.7 57.3
                                                                        17
                                                                                   2
3
4
5
6
7
8
9
                                                                                                      68
71
                                                                                                      63
64
                                                                                                      65
66
58
72 69
73
74
75
80
                                                                                 10
11
12
                                                                                 13
14
15
                                                                                                      81
```

```
L5-3: Shewchuk (2008)
                                                                                                                                 \begin{smallmatrix}2\\1\\2\\2&1\end{smallmatrix}
                                   RIGHT 883.7 57.3
                                                                           17
                4
                                                 883.7 99.3
                                                                                                           50
                                   LEFT
                                                                                       1
2
3
4
5
1
2
3
4
5
6
7
                                                                                                           54
55 51
59
                                                                                                                                  1
                                                                                                           60
5
6
7
      10
                         В
                                   LEFT
                                                 883.7 99.3
                                                                            7
                                                                                                                                  3
3
3
                                                                                                           8
79
                                                                                                                                2 2 2
                                                                                                           76
77
** # of interfering panels 3: 79 76 77
```

```
L5-3: Proposed algorithm
** Nzones
5
**zone
                 left edge X coordinate
                  6.0
  2
              216.5
  3
              427.9
  4
              651.4
  5
              879.5
** NStacks
9
** stack
                                flush
     # zone type
1 1 A
                              edge xloc yloc #layers j #panels panels
RIGHT 116.2 57.3 12 1 1 1
                                                                                                                     orientation
                                                                                      1
2
3
4
5
6
7
8
9
                                                                                                           22
23
24
25
26
27
30
                                                                                                           35
36
37
                                                                                     10
11
12
1
2
3
4
5
6
7
8
9
                                                                                                                                  1
2
2
2
2
2
2
1
                                                                                                           1
                                                                                                          15
16
                2
                                   RIGHT 336.7 57.3
                                                                           13
                                                                                                          28
29
33
                                                                                                          42
34
31
32
                                                                                                                                  1
2
2
1
                                                                                                           43
                                                                                     11
                                                                                                           44
                                                                                                           38
39
2
                                                                                     12
13
1
2
3
4
                                                                                                                                  2
2
3
3
                                   LEFT 336.7 99.3
                2
                         В
                                                                            4
                                                                                                           40
                                                                                                           41
                3
                                   RIGHT 557.1 57.3
                                                                             6
                                                                                                           17
                                                                                                           47

  \begin{array}{c}
    2 \\
    3 \\
    4 \\
    5 \\
    6 \\
    1 \\
    2 \\
    3 \\
    4 \\
    5 \\
    6
  \end{array}

                                                                                                           52
53
                                                                                                           48
                                                                                                           49
                3
                         В
                                   LEFT
                                               557.1 99.3
                                                                            6
                                                                                                           4
                                                                                                                                   3
                                                                                                           45
                                                                                                           50
                                                                                                           46
                                                                                                                                  1
                                                                                                                                  2
                                                                                                           54
                                                                                                  1 2
                                                                                                           55 51
                                                                                                                                  \bar{2} 1
```

	4		DICHT 777 (57.2	1.4		10	2
6	4	A	RIGHT 777.6 57.3	14	3 4 1 1 5 6 7 1 1 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	18 1 19 1 61 1 62 1 56 1 67 1 57 1 68 1 63 1 64 1 65 1 65 1 66 1 58	2 2 2 1 1 1 1 2 2 2 2
7	4	В	LEFT 777.6 99.3	2	14	1 69 1 5	
8	5	A	RIGHT 989.8 57.3	14	1 2 3 4 5 6 7 8 9	1 6 1 20 1 21 1 9 1 10 1 11 1 12 1 13 1 70 1 71 1 72 1 73	1 3 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
9	5	В	LEFT 989.8 57.3	9	12 13 14 1 1 1 2 3 4 4 5 6 6 7 8 1 8	1 74 1 75 1 80	2 2 2 1 1 1 2 2 2 1 1 2 2

Appendix D: Data Sets and Results (Section 4.3, 4.4, & 5.4)

S1-1


```
S1-1: Proposed algorithm
** Nzones: 3

**zone left edge X coordinate
1 6.0
2 212.0
#panels panels
1 1 13
2 1 14
3 1 17
4 1 18
                                                                                        orientation
                                                                                                 2
2
1
                                                                                                 1
3
2
2
1
                           RIGHT 330.0 87.3
      2
             2
                    A
                                                          2
                                                                                15
                                                                                16
19
             2
                           LEFT
                                     330.0 99.3
                   В
                                                                                21 20 22
23
24 2
3
10 12
                                                                                                111
                                                                                                 3 3 3
                                                                                                 1
22
2
2
2
3
1
3
3
3
3
3
3
                           RIGHT 353.8 57.3
             3
                    Α
                                                                                11
                                                                                8
9
4
28
5
6
7
25
26
27
             3
                           LEFT
                                     353.8 99.3
```

S1-2


```
S1-2: Proposed algorithm
** Nzones
3
**zone
               left edge X coordinate
1 c
2 220
3 24'
** NStacks
            6.0 220.0
            243.5
5
** stack
                           flush
           zone type edge xloc yloc #layers j #panels panels
1 A RIGHT 114.0 87.3 4 1 1 12
2 1 15
3 1 16
4 1 1
                                                                                                 orientation
                                                                                        13
              2
                              RIGHT 332.2 87.3
                                                                                        14
17
                             LEFT
                                         332.2 99.3
                                                                                        18
                                                                                                           1
33
1
2
22
2
1
3
3
3
3
3
                                                                        19 2
3
              3
                              RIGHT 353.8 57.3
                                                                                        11
                                                                                        10 9
7
                                                                                        8
23
4
5
6
20
21
22
              3
                     В
                             LEFT 353.8 99.3
```

S1-3

S1-3: IntelliBuild										
S1-3. Internation		***********	***************************************	***********						
	11 (10'8")									
12 (6' 8")										
	13 (11' 6")									
14 (5' 9-1/2")										
	8 (11' 3-1	/2")								
9 (4' 0-1/2")	AAAAA				_					
	10 (9' 11")	*********	**************************************							
5 (4' 2")										
***************	6 (10' 9-1/2"))	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~							
7 (6' 8")	*************************************	740-20-20-20-20-20-20-20-20-20-20-20-20-20								
***************************************		3 (11' 6")	**************	*******************					
	***********	******	4 (12' 0")	***********						
***************************************	1 (9' 6"		***************************************	88888888	4.					
2 (4' 8")				7.0						
2/4 0 /										
	19 (9' 4")		.,	Г						
20 (4' 8")										
		17 (12	4")							
		18 (12' 0'	')							
	15 (9' 2")									
	16 (9' 2")									

```
S1-3: Proposed algorithm
** Nzones
3
**zone
         left edge X coordinate
 1 2 3
         6.0
226.5
243.5
** NStacks
5
orientation 2
                                                                             2
1
3
3
1
1
3
2
2
2
2
1
3
3
3
3
3
                                                    12
2
3
4
15
16
17
9
8
6
7
20
5
18
19
                     LEFT 336.7 99.3
                     RIGHT 353.8 57.3
          3
               В
                     LEFT 353.8 99.3
          3
```

S2-1


```
S2-1: Proposed algorithm
** Nzones
**zone left edge X coordinate
1
                6.0
            174.0
** NStacks
3
** stack
3
*** stack
** # zone type edge xloc yloc #layers j #panels panels
1 1 A RIGHT 114.0 92.5 5 1 1 10
2 1 11
2 1 15
                                                                                                            orientation
                                                                                                                        15
17 16
                                                                                                 1
                      A RIGHT 282.0 92.5
           2
                                                                                                  14 13
7

  \begin{array}{c}
    2 \\
    3 \\
    4 \\
    5 \\
    6 \\
    1 \\
    2 \\
    3 \\
    4 \\
    5 \\
    6
  \end{array}

                                                                                                  3 2
18
21 22
19 20
      3 2 B LEFT 282.0 94.5
                                                                      4
                                                                                                  23
4
5
                                                                                                  6
24
25
26
27
```

S2-2

S2-2: IntelliBuild										
12 (4' 0")	12 (4° 0°) 11 (8° 0°)									
	13 (10' 2")									
	14 (9' 4")									
	7 (9' 4")		***************************************							
8 (5' 4")										
	9 (10' 3	3")								
	10 (1	0' 8")								
	4 (10' 2	ⁿ)								
5 (3' 10")										
	6 (10' 3-	1/2")								
				-						
	2 (7' 9-1/2")		SOLDON SOLDON SOLD	f						
3 (5' 0")	******	******		ļ						
	************	1 (10' 8")	*************	**********	****************					
		20 (10' 8")	<u>.</u>							
22 (3' 4")	22 (3' 4") 21 (4' 4")									
23 (3' 7-1/2")		OFFICE VALUE OF THE	45							
		15 (10' 8")								
	16 (8'									
		(9' 4")	-							
19	6' 8")		18 (2	2' 8")						

```
S2-2: Proposed algorithm
** Nzones
2
**zone left edge X coordinate
1 6.0
2 174.0
** NStacks
orientation 2
                                                           13
14
1
10
11
12
6
7
8
2
17 18
                                                                        1
                                                                        RIGHT 282.0 52.5
    3
         2
              В
                   LEFT 282.0 94.5
                                        11
                                                            15
                                                           16
19
                                                           3
4
5
20
21
22
23
```


3: IntelliBuild											
12 (4' 0")		11 (8' 0")	*****							
	13 (1	1' 6")									
***************************************	14 (8' 0")										
	7 (10' 8")										
8 (4' 0")											
	9 (1	1' 7")									
	10 (9' 4")										
	4 (1	1' 6")	<u> </u>								
5 (2' 6")											
<u></u>	6 (10' 3-1/2")										
	1 (1	2' 0")									
3 (5' 0")		2 (6' 5	-1/2")								
19	(6' 8")	18 (2' 8")									
	20 (1	2' 0")									
22 (3' 4")	21 (3' 0")										
23 (3' 7-1/2")											
	15 (1	2' 0")									
	16 (7' 6")										
	17 (9' 4")										

```
S2-3: Proposed algorithm
** Nzones
**zone left edge X coordinate

1 6.0

2 169.5
** NStacks
orientation 2
1
                                                           13
14
                                                          1 10
                                                                         3
2
2
2
2
2
3
2
2
3
2
2
2
2
1
       2 A
                   RIGHT 279.8 57.3
                                                           10
12 11
6
7
2 8
17 18
         2 B
                   LEFT 279.8 99.3
                                        11
                                                            15
                                                            16
                                                            19
3
4
5
20
22
21
23
```

S3-1

					(
S2-3: Pro	oposed alg	orithm							
**zone 1 2 3	left edg 6.0 214.5 239.5	ge X coordina	ite						
** NStac	ks: 5								
** stack ** # 1	zone type	flush e edge ? RIGHT	xloc yl 116.2	oc #lay 57.3	vers j 7	1 2 3 4 5	1 1 1 1 1	8 12 13 14 17	orientation 2 1 1 1 1 2
2	2 A	RIGHT	336.7	57.3	4	6 7 1 2 3	1 1 1 1	18 1 9 10 15	2 2 3 2 2 1
3	2 B	LEFT	336.7	99.3	3	4 1 2 3	1 1 1	16 2 3	1 3 3 1
4	3 A	RIGHT	349.8	57.3	4	3 1 2 3	1 1 1 1	19 11 5 6	1 2 2 2 2 2 2 3 3
5	3 B	LEFT	349.8	99.3	9	4 1 2 3 4 5 6 7 8	1 1 1 1 1 1 1 1 1 1	7 20 21 22 4 28 25 24 27 26 23	2 3 3 1 3 3 1 1 1 3 3 1
** # of ii 6: 28 25	nterfering j 24 27 26 2	panels 3							


```
S3-1: Proposed algorithm
** Nzones
 **zone
              left edge X coordinate
6.0
222.0
  1 2
3 254
** NStacks
               254.0
** NStack.

5

** stack flush

** # zone type edge xloc yloc #layers j

1 1 A RIGHT 114.0 72.5 5
                                                                                                                orientation 2 2 1
                                                                                 #panels panels
1 1 11
2 1 12
3 1 16
4 2 18 17
                                                                                                                             1 1
3
2
                                                                                                       13
20 19 14
21
2 3 4
15
                                   RIGHT 330.0 72.5
        2
                                                                           3
                                                                                                                            112
2
331
2
2
2
2
1
                                  LEFT 330.0 94.5
RIGHT 362.0 72.5
                                                                          1
4
        3
4
                         В
                                                                                                       8
                                                                                                       10
22
23
28
27 24
29
                                   LEFT
                                                362.0 94.5
                                                                        10
                                                                                                                            33
                                                                                                        6
7
                                                                                                       25
                                                                                                        26
```

S3-2


```
S3-2: Proposed algorithm

** Nzones 3

**zone left edge X coordinate
1 6.0
2 212.
3 254.
** NStacks 5
             212.0
             254.0
                            flush
edge xloc yloc #layers j
RIGHT 114.0 72.5 4
** stack
** #
                                                                           zone type
1 A
                                                                                                          orientation
                                                                                                 15
                                                                                                                    2
               2
                       A
                               RIGHT 330.0 72.5
                                                                      3
                                                                                                11
12
18 17 16
2 3
13
7
8
9
19
20
25
24
21
26
                      B
A
                               LEFT 330.0 94.5
RIGHT 362.0 52.5
      5
                               LEFT
               3
                       В
                                            362.0 94.5
                                                                   11
                                                                                                4
27
5 6
22
23
                                                                                                                     3 3
3
3
```

S3-3


```
S3-3: Proposed algorithm
** Nzones
3
\begin{array}{ll} **zone & \quad \text{left edge X coordinate} \\ 1 & \quad 6.0 \end{array}
          226.5
** NStacks
5
   stack flush
# zone type edge xloc yloc #layers j #panels panels
1 1 A RIGHT 116.2 72.5 4 1 1 8
** stack
                                                                                           orientation
                                                                                 8
                                                                                   12
                                                                                   13
                                                                                                     3
2
2
           2
                          RIGHT 336.7 57.3
                                                                                   10
                                                                                                    2 1 1
3 1
2
2
2
1
                                                                                   16 15 14
2 3
11
                           LEFT 336.7 99.3
RIGHT 359.8 57.3
                                                                                   6
                                                                                   7
17
     5 3 B LEFT 359.8 99.3
                                                                                   18
                                                                                   22 23
4
                                                                                    5
                                                                                    20
                                                                                   21 19
24
                                                                                                     33
```

S4-1

S4-1: Panel Designer

S4-1: IntelliBuild


```
S4-1: Proposed algorithm

** Nzones 2

**zone left edge X coordinate
               6.0
** NStacks 3
** stack flush

** # zone type edge xloc yloc #layers j #panels panels

1 1 A RIGHT 114.0 48.0 9 1 1 1
                                                                                                            orientation
                                                                                1 2
                                                                                                                        2
                                                                                                   11
                                                                                                   12
15
16
                                                                                3
4
5
6
7
8
9
                                                                                                                         1
                                                                                                   18 17
                                                                                                                        1 1
                                                                                                                        3
11
2
2
2
2
2
2
2
2
2
                                                                                                   1
                                                                                                  20 19
21
22
13
      2 2 A RIGHT 292.0 48.0
                                                                                                  14
7
8
9
                                                                                2 3 4 5 6 7 8 1 2 3 4 5 6
                                                                                          1
2
2
2
3
1
2
1
                                                                                                  26 10
23 27
3 2
                                                                                                                        2 2
2 2
3 3
      3 2 B LEFT 292.0 90.0
                                                                                                   24 25 28
29 4
5
                                                                                                                        123
                                                                                                                        1 1
3
3
3
2
                                                                                                   30
                                                                                                   31
```

S4-2

: IntelliBuild			
13 (9'			
***************************************	14 (10' 8")	***************************************	***************************************
15 (5' 9-1/2")		2000000000	
9 (9' 3-1	1/2")		
10 (9'	4")		
11 (9'	4")	***************************************	
12 (5' 4")	SHINHAM		
6 (9' 7	7-1/2")		***************************************
7 (9' 4	4")	*******************************	
8 (9' 4	4")		
4 (9' 4")			3 (2' 6")
5 (5' 8")			******
1 (9' 4")			
2 (8' 11-1/2")			
	24 (9' 4")		
25 (4' 0")			
00 (41.9.1/08)	18 (10		
20 (4' 8-1/2")	1 (9' 2")	19 (3' 3-1/2")	
23 (5' 3-1/2")	1 (3 2)	22 (2' 6")	
	6 (9' 2") 17 (9' 4")		

S4-:	S4-2: Proposed algorithm ** Nzones 2										
**Z		le	ft edge	X coordinat	te						
1	0110	6.	0	2 18	4.0						
**]	NStac		-								
	stack			flush							
**	#	zone	e type		loc vlo	oc #1a	yers j	#panels	pan	els (orientation
	1	1	A	RIGHT	114.0	48.0	6	1	i	9	2
								2	1	13	1
								2 3	1	14	1
								4	1	15	1
								5	1	1	1 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
								6	1	17	2
	2	2	Α	RIGHT	292.0	48.0	10	1	1	10	2
								2 3	1	11	2
								3	1	12	2
								4	1	6	2
								5	1	7	2
								6	1	8	2
								7	1	16	2
								8	1	21	2
								9	1	18	2
								10	1	2	
	3	2	В	LEFT	292.0	90.0	7	1	3	19 20 2	
								2 3	1	23 3	1
								3	1	3	1
								4	1	4	3
								5	1	5	3
								6	1	25	3 3 3 2
								7	1	24	2

S4-3

9 (12 5°) 10 (9 4°) 11 (12 0°) 5 (3 6°) 6 (9° 7-1/2") 7 (12 0°) 8 (6° 6°) 12 (11° 6°) 13 (12 0°) 14 (11° 10°) 1 (12 0°) 1 (12 0°) 1 (12 0°) 1 (12 0°) 1 (12 0°) 2 (6° 3-1/2") 1 (12 0°) 1 (12 0°) 2 (6° 3-1/2")	S4-3: IntelliBuild	l										
11 (12 0°) 5 (3°6°) 6 (9°7-1/2°) 7 (12°0°) 8 (6°8°) 12 (11°6°) 13 (12°0°) 14 (1°10°) 3 (2°6°) 2 (6°3-12°) 4 (11°6°) 1 (12°0°) 19 (5°0°) 20 (9°2°) 15 (9°2°) 16 (12°0°) 22 (5°0°) 21 (2°6°) 23 (10°6°)	********** *****	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	9 (12' 5")									
5 (3° 6°) 6 (9° 7-1/2°) 7 (12° 0°) 8 (6° 8°) 12 (11° 6°) 13 (12° 0°) 14 (1° 10°) 17 (7° 9-1/2°) 19 (5° 0°) 20 (9° 2°) 15 (9° 2°) 16 (12° 0°) 22 (5° 0°) 22 (5° 0°) 23 (10° 6°)	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	10 (9' 4")										
5 (3' 6') 6 (9' 7-1/2') 7 (12' 0') 8 (6' 8') 12 (11' 6') 13 (12' 0') 14 (1' 10') 3 (2' 6") 2 (6' 3-1/2") 4 (11' 6") 1 (12' 0") 17 (7' 9-1/2") 19 (5' 0") 20 (9' 2") 15 (9' 2") 16 (12' 0") 22 (5' 0") 23 (10' 6")	***************************************	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,										
7 (12'0') 8 (6'8') 12 (11'6") 13 (12'0") 14 (1'10") 3 (2'6") 2 (6'3-1/2") 4 (11'6") 1 (12'0") 19 (5'0") 19 (5'0") 10 (12'0") 22 (5'0") 21 (2'6") 23 (10'6")					-							
12 (11' 6") 13 (12' 0") 14 (1' 10") 2 (6' 3-1/2") 4 (11' 6") 1 (12' 0") 19 (5' 0") 19 (5' 0") 10 (12' 0") 20 (9' 2") 15 (9' 2") 16 (12' 0") 22 (5' 0") 21 (2' 6") 23 (10' 6")			6 (9' 7-1/2")									
12 (11' 6") 13 (12' 0") 14 (1' 10") 2 (6' 3-1/2") 4 (11' 6") 1 (12' 0") 19 (5' 0") 20 (9' 2") 15 (9' 2") 16 (12' 0") 22 (5' 0") 21 (2' 6") 23 (10' 8")			7 (12' 0")									
13 (12' 0") 14 (1' 10") 3 (2' 6") 2 (6' 3-1/2") 4 (11' 6") 1 (12' 0") 19 (5' 0") 18 (3' 0") 20 (9' 2") 15 (9' 2") 16 (12' 0") 22 (5' 0") 21 (2' 6") 23 (10' 8")		8 (6' 8	3")									
14 (1' 10") 3 (2' 6") 2 (6' 3-1/2") 4 (11' 6") 1 (12' 0") 19 (5' 0") 20 (9' 2") 15 (9' 2") 16 (12' 0") 22 (5' 0") 21 (2' 6") 23 (10' 8")	******************	*******	12 (11' 6")									
3 (2' 6") 2 (6' 3-1/2") 4 (11' 6") 1 (12' 0") 17 (7' 9-1/2") 19 (5' 0") 20 (9' 2") 15 (9' 2") 16 (12' 0") 22 (5' 0") 21 (2' 6") 23 (10' 8")	***************************************		13 (12' 0")	******************								
4 (11' 6") 1 (12' 0") 17 (7' 9-1/2") 19 (5' 0") 20 (9' 2") 15 (9' 2") 16 (12' 0") 22 (5' 0") 21 (2' 6") 23 (10' 8")	14 (1' 10")											
4 (11' 6") 1 (12' 0") 17 (7' 9-1/2") 19 (5' 0") 20 (9' 2") 15 (9' 2") 16 (12' 0") 22 (5' 0") 21 (2' 6") 23 (10' 8")												
1 (12' 0") 17 (7' 9-1/2") 19 (5' 0") 20 (9' 2") 15 (9' 2") 16 (12' 0") 22 (5' 0") 21 (2' 6") 23 (10' 8")	3 (2' 6")		2 (6' 3-1/2")									
1 (12' 0") 17 (7' 9-1/2") 19 (5' 0") 20 (9' 2") 20 (9' 2") 15 (9' 2") 16 (12' 0") 22 (5' 0") 21 (2' 6") 23 (10' 8")			4 (11' 6")									
19 (5' 0") 20 (9' 2") 15 (9' 2") 16 (12' 0") 22 (5' 0") 23 (10' 8")			1 (12' 0")									
19 (5' 0") 20 (9' 2") 15 (9' 2") 16 (12' 0") 22 (5' 0") 23 (10' 8")												
20 (9' 2") 15 (9' 2") 16 (12' 0") 22 (5' 0") 21 (2' 6") 23 (10' 8")			17 (7' 9-1/2")									
15 (9' 2") 16 (12' 0") 22 (5' 0") 23 (10' 8")		19 (5' 0")		(3' 0")								
16 (12' 0") 22 (5' 0") 21 (2' 6") 23 (10' 8")				- PJ								
22 (5' 0") 21 (2' 6") 23 (10' 8")				FI.								
23 (10' 8")		22 (5' 0")										
24 (2' 8")												
	24 (2' 8")											

```
S4-3: Proposed algorithm
2
**zone
              left edge X coordinate
#panels panels
1 1 9
2 1 12
3 1 13
4 1 14
5 1 1
                                                                                             orientation
                                                                                                      1
3
2
2
2
2
2
2
2
3
1
2
1
2
3
                            RIGHT 289.8 57.3
                                                                   2
3
4
5
6
1
2
3
4
5
6
7
8
9
10
11
                                                                                     11
6
7
8
2
                    В
                            LEFT 289.8 99.3
                                                           11
                                                                                     15
                                                                                     16
18 19 21
                                                                                   20
17
22
3
4
5
24
23
                                                                                                       1
2
1
                                                                                                       1
3
3
3
3
```

S5-1

S5-1: IntelliBuild									
	**********	11 (9' 4")	**********						
· · · · · · · · · · · · · · · · · · ·	12 (6' 8")								
********************************		3 (6' 8")							
	7 (8' 0")								
		8 (8' 0")					****	*****	*****
	*********	10 (8' 3")	***	*******				9 (3' 6")	
		14 (7' 6")			*****				
		15 (8' 0")							
		16 (8' 0")						~~~~~~	
18 (3' 1-1/2")				17 (8' 0")					
	~~~~~~~~~ <u>~</u>	4 (8' 0")	<del>~~~~~~</del>	*********	<del>~~~~</del>	*****	~~~~~~		
		5 (6' 7-1/2")			*****	~~			
		6 (8' 10'	")			~~~~~~~			
*****	AAAAAAAAAA	1 (8' 10'	")	\^^^^	******		0000000		
**************	*******	2 (7' 0")	XXXXXXXXX	XXXXXXX					
		3 (5' 10")							
		27 (10' 8	3")						
OA (O: 0")	29 (7' 0")						28 (3' 6")		
27 (2 0 )	24 (2' 8") 23 (8' 6") 25 (10' 8")								
26 (1' 10-1/2")		30 (3) 0(0)		04	/OI 781			20 (41 41)	
33 (2' 6")		32 (3' 0") 35 (8' 6")		31	(3' 7")			30 (1' 4") 34 (3' 0")	
	36 (5' 4"						16.	April and a second and a second	
			10						
		21 (8' 0'	")						
1		22 (7' 8") 19 (8	3' 6")						
		20 (5' 4")	, 0 )						
		THE ACT SHE							

```
S5-1: Proposed algorithm
** Nzones
**zone left edge X coordinate
1 6.0
2 144.0
** NStacks
3
orientation
                                                         14
                                                                         15
                                                                         16
                                                                        16
18 17
34 19
35
36 20
21
22
                                                                                        1 1
2 1
1
                                                                                        11
2
3
3
2
2
2
2
2
2
1
3
3
12
                      RIGHT 252.0 48.0
                                                                        12
13
                                                                        6
                                                                        9 8
3
4
5
23 33
24 25
26
                        LEFT 252.0 100.0
                                                                                        1 3
3
1
                                                                        27
28
31
32
29
30
```

S5-2







```
S5-2: Proposed algorithm
** Nzones
               left edge X coordinate 6.0
**zone
** NStacks
orientation 2
                                                                                                    #panels panels
1 1 9
2 1 13
3 1 14
4 1 15
5 1 16
6 1 19
7 1 1
1 1 10
2 2 121
3 1 6
4 1 7
5 1 8
6 1 17
7 1 31
8 1 32
9 2 33 1
10 1 20
11 2 23
12 1 4
13 1 5
1 2 213
2 2 242
3 2 242
4 2 262
5 1 29
6 1 27
                                                                                                                                                            1
2
3
2
2
2
2
2
2
2
2
2
2
2
2
2
2
                                          RIGHT 252.0 48.0
                                                                                        13
                                                                                                                                 12 11
                                                                                                                                6
7
8
17
31
32
33 18
20
2 3
4
5
21 30
22 23
24 25
26 28
29
27
                                                                                                                                                      2
22
2
31
3
3
                                          LEFT 252.0 90.0
                                                                                                                                                            13
                                                                                                                                                      13
12
3
1
```

S5-3





S5-3: IntelliBuild										
	10 (12'	0")								
	11 (8'0")									
	12	(12' 10")								
5 (2' 7-1/2")										
**********	6 (11' 6")									
	7 (12' 0	D")								
8 (4' 10		<u> </u>								
	9 (10' 11")									
***************************************		***************************************								
	13 (10' 8")									
	14 (11' 1-1/2")									
***************************************	3 (5' 10")	2 (4' 4")								
100000000000000000000000000000000000000										
************************	4 (	(12' 0")								
	1 (11'	6")								
10.0										
18 (5	5' 0")	n (								
	20 (10' 8")									
	15 (11'2	,n)								
16 (2' 8")										
	17 (10' 8")									
21 (1' 10-1/2")										
	22 (10' 8")									
23 (3' 6") 25 (3' 7")		24 (8' 4")								
28 (3' 0")	27 (2' 6")	26 (3' 0")								
( /	29 (11'2									
30 (2' 8")										

S5-3: Pro ** Nzone **zone	s 2	_	rithm X coordinat	te						
1	6.0	)								
2	139.5	5								
** NStac ** stack	KS 3		flush							
** #	zone	tyne	edge x	loc vl	oc #1av	verc i	#nanel	e na	nele	orientation
1	1	A	edge x RIGHT	1162	57 3	6	πραποι 1	1 1	9	2
-	•		1110111	110.2	07.0	Ü	2	1	12	1
							2 3	1	13	1
							4	1	14	1
							5	1	17	2
2	2		DICHT	240.0	57.2	1.1	6	1	1	3
2	2	A	RIGHT	249.8	37.3	11	1	1 1	10 11	2
							3	1	6	2
							4	1	7	$\frac{2}{2}$
							2 3 4 5	1	8	2 3 2 2 2 2 2 2 2 3 1
							6 7	2	3 2	3 1
							7	2	5 4	3 3
							8	1	15	2
							9 10	1 1	28 29	2 2 2
							11	3	18 30 16	
3	2	В	LEFT	249.8	99.3	6	1	1	19	1
	_	_				-	2	1	27	3
							2 3	2 2	20 21	3 3
							4		22 23	1 1
							5 6	2	25 26 24	3 2 1
							Ü	1	24	1

M1-1







M1-1: IntelliBuild								
26 (6'								
2	*******		27 (2' 1	-1/2")	AAAA			
	19 (8' 0")							
21 (5' 11")	20 (2' 8	")						
22 (6'	8")							
	4 (7' 6")		23 (4′ 0")				3 (4′ 0")	
25 (6' 4-1/)								
	29 (8' 0")						n.	
30 (9' 4")								
31 (3' 6")								
2xxxxxxxxxxxxxxxxxxxxxxxxxxxx	10 (0) 0"\		*****		XXXXXX	223		
	12 (8' 0")							
13	(6' 8")			CXXXXXX	XXXXXX	=		
	6 (8' 0")	******		XXXXXXX	******			
	7 (8' 0")	***************						
	8 (8' 0")		*****		*****			
10 (7' 11-1/2")							9 (1' 10")	
	11 (8' 0")	******		******				
15 (7' 5-1/2")							14 (2' 8")	
	16 (8' 0")							
18	(7' 0-1/2")						17 (2' 8")	



```
M1-1: Proposed algorithm
** Nzones
**zone
            left edge X coordinate
 1 2 3
          6.0
212.0
          284.0
** NStacks
5
** stack
                       flush
** # zone type edge xloc yloc #layers j #panels panels 1 1 A RIGHT 114.0 48.0 11 1 2 2
                                                                                       orientation
                                                                               27 26
21
                                                                                                2 2
2
                                                                               24
25
28
29
                                                                               31 30
                                                                                                1 1
                                                                                                2<sub>2</sub>2
                                                                               36 35
                                                               10
                                                                               43
                                                                                                2 2
2 2
                                                                               38 37
                                                               11
                                                                               23 22
32
            2
                          RIGHT 330.0 48.0
                                                        12
                                                                                                 1
                                                                        18
                                                                               19 33
                                                                                                1 1
1 2
                                                                               20 34
                                                                                                2
2
2 2 2
2 1
1 1
                                                                67
                                                                               15
46
                                                                               48 47
                                                                               48 47
56 54
53 49
55 52 51
50 57
                                                               10
                                                                                               1 2 2
1 2
2 2
                                                               11
                                                               12
                                                                               39 40
            2
                  В
                         LEFT 330.0 90.0
     3
                                                        6
                                                                               44\ 45
                                                                                                1 1
                                                                                               2 3 3 3
                                                                               58
                                                                               41 42 2
                                                                               3 4 5
                                                                                                1 1
                                                                                                3
22
2
2
2
                                                                               17 16
            3
                          RIGHT 392.0 48.0
                                                                               10
                                                                               11
                                                                                              22
22
3
3
                                                                               14 13
            3
                   В
                         LEFT
                                    392.0 90.0
                                                                               59 60
                                                                               6
                                                                               89
                                                                                                33
                                                                                                1
2
2 2 2
                                                                               64
                                                                               61
                                                                               62 63
                                                                               65 66
                                                                                                1 1
```

M1-2







ntelliBuild		
26 (7' 10	")	
27 (7' 10	")	
	23 (11' 0")	
25 (4' 6-1/2")	24 (2' 8")	
28 (7' 10		
29 (8' 1-		

```
M1-2: Proposed algorithm
** Nzones
**zone
               left edge X coordinate
               6.0
222.0
284.0
 1 2 3
** NStacks
** stack flush

** # zone type edge xloc yloc #layers j #panels panels

1 1 A RIGHT 114.0 48.0 10 1 1 1 19

2 1 17

2 1 18
                                                                                                                              orientation
                                                                                                                 18
20
21
22
1
26
30
27
15
16
23
13
14 24
25
                                                                                                                                           1
2
1
2
2
2
1
                                                                                            10
                                     RIGHT 330.0 48.0
                2
                                                                                                                                          11
2
2
2
2
1
22
1
                                                                                                                  32
33
38
40
39
34
37
36
35
2
3
4
28
31
29
12
7
8
9
10
41
42
5
6
45
43
44
                                                                                           10
11
                                                                                           12
13
14
1
2
3
4
5
6
                                                                                                                                          2 2 1 3 3 2 1 2 2 2 2 2 2 2 3 3 1 2 2 1
       3
                 2
                           В
                                     LEFT 330.0 90.0
                 3
                                     RIGHT 392.0 48.0
                                     LEFT 392.0 90.0
                                                                                 8
       5
                 3
                           В
                                                                                                                  46
```

M1-3







M1_3. Pr	oposed algo	rithm							
** Nzone		,,,tilli							
3	es								
**zone 1 2 3	left edge 6.0 216.5 279.5	X coordina	te						
** NStac 5	ks								
** stack ** # 1	zone type 1 A	flush edge x RIGHT	doc yl	oc #la 57.3	yers j 10	#panels 1 2 3 4 5 6 7	panels 1 17 1 15 1 16 1 18 1 19 1 20 1 1	7	ntation 2 1 1 1 1 1 1 1 1 3 2 2
2	2 A	RIGHT	336.7	57.3	13	9 10 1 2 3 4 5 6 7 8 9 10	1 25 1 28 1 13 1 14 1 21 1 11 3 23 1 9 1 30 1 31 1 35	3 12 22 36	3 2 2 1 2 2 1 2 1 2 1 2 1 2 2 1 2 2 1 2 2 2 1 2 2 2 2 1 1 2 2 2 1 1 2 2 2 1
3	2 B	LEFT	336.7	99.3	6	12 13 1 2 3 4 5	1 34 1 33 1 2 1 3 1 4 1 26 1 29		1 2 1 3 3 2
4	3 A	RIGHT	389.8	57.3	4	6 1 2 3 4	1 27 1 10 1 6 1 7		3 2 2 2
5	3 B	LEFT	389.8	99.3	7	1 2 3 4 5	1 8 1 38 1 39 1 5 1 42 1 40		3 2 2 2 2 2 2 2 2 3 1 2 2 1
						6 7	1 41 1 43		1

M2-1









34 (8' 0")				
35 (8' 0")				
27 (8' 0")				
28 (4' 6")				
29 (8' 0")				
31 (7' 6")		30 (4' 6")		
32 (8' 0")				
33 (8' 0")				
37 (7' 4")		36 (2' 6")		
38 (6' 8")	(4 f)			
40 (6' 8")		9 (2' 8")		

** ]	-1: Pr Nzone		_	orithm  X coordina	ta						
1 2 3	NStac	6.0 210.0 329.5	)	A coordina	ie						
	stack # 1	zone 1	type A	flush edge x RIGHT	doc yl 114.0	oc #la 87.3	yers j 13	#panels 1 2 3 4 5 6 7 8 9	pane 1 1 1 1 1 1 1 1 1	els 16 17 22 23 24 25 26 1 31	orientation 2 2 1 1 1 1 1 1 1 1 3 1 1
	2	1 2	A A	RIGHT RIGHT	114.0 330.0	87.3 87.3	3	10 11 12 13 1 2 3 1	1 1 1 2 2 1 1 1 1	54 32 27 55 28 36 33 29 30 18	1 1 2 12 21 2 2 2 2
	4	2	В	LEFT	330.0	99.3	3	2 3 4 5 6 7 8 1 2	1 1 1 3 3 1	37 42 38 43 39 57 5 41 40 4 34 35	1 1 1 1 1 2 2 1 1
	5	3	A	RIGHT	439.8	57.3	12	3 1 2 3 4 5 6 7 8 9 10	1 1 1 1 1 1 1 1 2 2 1 2	2 20 21 10 11 12 13 14 45 15 47 46 49 61 48	3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
	6	3	A	RIGHT	439.8	57.3	8	12 1 2 3 4 5 6 7 8	2 1 1 2 2 2 2 2 2 1	51 50 58 59 3 60 5 4 7 6 8 52 9 53	22 3 1 21 22 32 3 13 2







25 (3' 2") 27 (3' 2")	
24 (9' 4")	
26 (9' 4")	
28 (10' 2")	

M2-2: IntelliBuild								
	19 (8' 0")	**************************************						
	21 (9' 4")							
14 (2' 8")		13 (9' 4")						
	15 (10′ 3")							
	17 (9' 4")							
	18 (9' 4")	**********						
	22 (9' 4")							
	23 (10' 8")							
		***************************************		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	***************************************			
8 (2' 2")		7 (9' 4")	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	******				
	9 (9' 11-1/2")	××××××××××××××××××××××××××××××××××××××	******					
***************************************	1 (9' 4")							
	2 (9' 4")							
	3 (6' 9-1/2")							
	4 (8′ 0")							
	6 (8' 10")	****		5 (2' 0")				
	10 (9' 4")							
	12 (9' 4")							
	51 (4' 10-1/2")							



```
| Left edge X coordinate | 6.0 | 212.0 | 334.0 |
| acks | Ack | Expert type | edge | xloc yloc | #layers | years | yea
M2-2: Proposed algorithm
  ** Nzones
  **zone
  ** NStacks
  5
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           2
3
4
5
6
7
8
9
10
11
12
13
1
2
3
4
5
6
7
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              10
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              11
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             12
14 13
39 38
41
51 40
42
48
50 49
2
3
4
65
7
43 8
                                                                                                                                                                                                                                                     RIGHT 442.0 48.0
                                                                                                                3
```







```
M2-3: Proposed algorithm
** Nzones
3
**zone left edge X coordinate
 1
2
3
           6.0
216.5
            329.5
** NStacks
5
** stack
                          flush
** # zone type edge xloc yloc #layers j #panels panels
1 1 A RIGHT 116.2 77.3 12 1 1 1 12
2 1 16
                                                                                                 orientation
                                                                                                             1
                                                                                         17
                                                                                         19
                                                                                         20
41 21
                                                                                                            12
                                                                                         25
28
22
23
13
14
                                                                                                            1
2
2
2
2
2
2
1
                                                                       10
                                                                       11
                                                                       12
3
4
5
6
7
8
9
10
           2 A
                             RIGHT 336.7 77.3
                                                             12
                                                                                        24
40
29
32
33
30
42
31
37
38
43
2
26
27
15
7
8
                                                                                                            1
                                                                                 1
1
2
1
                                                                                                            1
                                                                                                            1 1 2 2 1 1 2 3 1 1 2 2 2 1 1 1 3 1 3 3 3
                                                                       11
                                                                       12
1
2
3
             2
                     В
                             LEFT 336.7 99.3
                                                               3
      3
                             RIGHT 439.8 57.3
                                                                8
             3
                     Α
                                                                                         11 10
                                                                                         3 4
                                                                                         6
35 34
                                                                                                           2 2
2 2
2
1
            3
                             RIGHT 439.8 57.3
                                                                                         44
39
```

M3-1







N	/13-1: IntelliBuild							
	19 (8' 0")	<del>~~~~</del>	~~~	************	*****			
22	20 (6' 8")	*******	××××				00/7/00/00/7/00/0	
222	22 (7' 6")	******	2222	0000000000	*************	21 (2' 8")	)	XXXXXXX
	15 (8' 0")				*******			
	16 (8' 9")							
-	17 (8' 0")			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
	18 (8' 0")							
8.8	23 (8' 0")	********	****	**********				
	24 (8' 0")				^^^^			
~	25 (9' 4")	**************			222			
F		*****	****	-				
	8 (8' 0")							ADADOD
	10 (7' 3-1/2")	20000	9 (3' 6")					
	11 (8' 0")							
	2 (8' 0")							
	4 (6' 8")		3 (5' 3-1/2")		******			
	5 (8' 0")							
	7 (8' 10")	*********	6 (2	2' 0")				
2	12 (10' 8")							
2	13 (8' 0")	******		<del></del>				
	14 (8' 0")							



```
M3-1: Proposed algorithm
** Nzones
             left edge X coordinate
6.0
222.0
279.5
**zone
 1
 2
** NStacks
6
** stack flush

** # zone type edge xloc yloc #layers j
1 1 A RIGHT 114.0 87.3 11
                                                                               #panels panels 1 16
                                                                                                              orientation
                                                                                                                          2
                                                                                                    17
22
23
24
25
1
                                                                                                                         2
1
2
2
1
2
2
2
2
2
2
2
2
                                                                                                    38
26
27
28
18
19
37 36
39
40
                                                                                10
                                                                                11
                                 RIGHT 330.0 87.3
                                                                                                    41
31
32
33
44 56 43
34
47 45
48
29 30
2
3
21 20
10
                                                                                                                          2
2
2
1
                                                                                10
11
                                                                                                                         111
                                                                                12
13
1
2
3
                                                                                                                         12
                                                                                                                          1
                                LEFT 330.0 99.3
       3
               2
                       В
                                                                                                                         3
                                 RIGHT 389.8 57.3
                                                                       12
                        Α
                                                                                 2
3
4
5
6
7
8
9
                                                                                                    11
12
13
14
15
54 42
55
                                                                                10
                                                                                                    46
                                                                                                    49
50
4
5
6
53
7
8 9
35
51
52
                                 RIGHT 389.8 57.3
               3
               3
                       В
                                 LEFT
                                             389.8 99.3
```









```
M3-2: Proposed algorithm
 ** Nzones
 **zone
             left edge X coordinate
               6.0
            210.0
            284.0
 ** NStacks
 5
orientation
                                                                      1
2
3
4
5
6
7
8
9
1
2
3
4
5
6
7
8
9
1
7
8
9
9
                                                                                                          1
2
2
1
2
1
2
1
1
2
2
1
2
1
                             RIGHT 330.0 78.0
                                                             14
                                                                                      16
17
34
33
35
36
37
28
29
                                                                     10
11
12
13
14
1
                                                                                       30
                                                                                       49 39
40
                                                                                       31
                             LEFT 330.0 90.0
RIGHT 392.0 48.0
                     В
                                                                                                         13
                                                                     1
2
3
4
5
6
7
8
9
10
11
12
13
1
2
3
4
5
6
7
                                                                                        18
                                                                                       19
                                                                                       10
                                                                                       11
                                                                                       12
                                                                                       14 13
                                                                                       38
48
                                                                                       41
43
2 44
47 3
4
5
6
7 8
32
45
             3
                   В
                             LEFT 392.0 90.0
                                                              7
                                                                                                          1
2
2
```

M3-3





M3-3: IntelliBuild								
	13 (12' 0")							
***************************************	14 (12' 0")							
15 (5' 4")								
	9 (12' 0")							
**************************************	10 (12' 0")							
11 (2' 8")								
	12 (12' 9")							
2000,000,000,000,000,000,000,000,000,00	16 (11' 6")							
	17 (12' 0")							
	18 (9' 4")							
	A ( ( 0 A)							
	3 (12' 0")							
4 (4' 8")								
*************	5 (11' 6")							
	1 (12'0")							
	2 (9' 3-1/2")							
	6 (8' 10")							
	7 (11' 3-1/2")							
	8 (12' 0")							
41 (4' 2-1/2")	40 (3' 10")							
43 (2' 6") 38 (2' 1-1/2")								
30 (2 1-1/2 )	39 (12' 0")							
-								
-	26 (9' 4") 27 (9' 10")							
28 (5' 10"	") 29 (9' 4")							
30 (3' 2")								
- L3	31 (12′0°) 21 (12′8°)							
22 (4' 0")	23 (9' 4")							
24 (3' 2-1/2")								
32 (4' 8")	25 (11'6")							
	33 (8° 0°) 34 (11′ 10°)							
35 (4' 0")	\\							
	36 (9' 2") 37 (10' 8")							
20 (2) 2%	19 (9' 4")							
20 (3' 2")								

```
M3-3: Proposed algorithm
 ** Nzones
 3
 **zone
            left edge X coordinate
           6.0
220.5
  1
2
3
 ** NStacks
 6
** stack
                         flush
                                                                                        orientation
                                                                                20
21
13
14
28
27
29
30
31
23
24
25
43
33
22
15
7
8
9
10
                                                                11
                           LEFT 336.7 99.3
RIGHT 389.8 57.3
                           LEFT
                                                                                32 11
42
34
35
2
3
4
36
37
38
41
5
6
26
39
40
                                                                11
                                                                12
13
                                                                14
                           RIGHT 389.8 57.3
LEFT 389.8 99.3
                           LEFT
                                                                  1
2
3
4
5
6
```

M4-1



M4-1: Panel Designer	
28 (7' 6")	34 (2' 11-1/2")
29 (8' 0")	*********
30 (8' 0")	
31 (8' 0")	
32 (8' 0")	
33 (8' 0")	
21 (8' 0")	<u> </u>
22 (8' 0")	
26 (6' 8")	27 (2' 8")
23 (8' 0")	
24 (8' 0")	
25 (9' 4")	······································





M4-1: IntelliBuild					
	28 (7' 6")			27 (2' 8")	
	29 (8' 0")				
	30 (8' 0")				
	23 (8' 0")				
	24 (8' 0")				
	25 (9' 4")				
	26 (6' 8")				
060600600600600600600600600600600600600	31 (8' 0")				
	32 (8' 0")		~~~~		
34 (2' 11-1/2")	3	3 (8' 0")			
			-		
***************************************	16 (8' 0")	*******			
	17 (8′ 0")	********		927227	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
	19 (8' 11")	~~~~~~			18 (2' 2")
	11 (8′ 0")	^^^^			
	12 (8′ 0")	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		~~~~~~~	<b>X</b>
	14 (7' 2")		13 (2' 1-	1/2")	
	15 (8′ 0")				
	20 (8′ 0")		6.2		
***************************************	21 (8' 0")		==		
	22 (8′ 0")				



```
M4-1: Proposed algorithm
** Nzones
**zone
            left edge X coordinate
            6.0
2 3
          222.0
          438.0
4
          584.0
** NStacks
9
** stack
                       flush
                         dge xloc yloc #layers j
RIGHT 114.0 52.5 13
                                                             #panels panels 1 1 1
** # zone type edge
                                                                                     orientation
          1
                A
                                                                             20
28
                                                                             29
30
                                                               4
5
6
7
8
9
                                                                             31
32
34 33
35
                                                                                               1
                                                                                              1 1 2 2 1 1 2 2 2 1 1 2 2 2 1 1 1 2 2 2 1 1 1
                                                                             36
38
43
                                                              10
                                                              11
                                                              12
13
                                                                             44
49 48
52
53
                         RIGHT 114.0 52.5
                                                                             1
21
22
37 39
           2
                         RIGHT 330.0 52.5
                  Α
                                                               1
                                                                             40
                                                                             45
47 46
                                                                             51 50
                                                                             55 54
                                                                             56
           2
                  В
                         LEFT
                                   330.0 94.5
                                                       2
                                                                                              3 3
2
2
           3
                  A
                         RIGHT 546.0 52.5
                                                                             41
                                                                             59 58
                                                               5
                                                                                              22
                                                               6
1
2
3
4
5
                                                                             60
                                                                                               1
           3
                  В
                         LEFT
                                   546.0 94.5
                                                       5
                                                                              7 57 61
     6
                                                                                             1 1 1
                                                                             6
5
8
9
                                                                                               1
                                                                                             25
27 26
                         RIGHT 692.0 52.5
                                                       14
                  Α
                                                               2
3
4
5
6
7
8
9
                                                                             14
                                                                             15
                                                                              16
                                                                             13 18 17
                                                                             62
                                                                             63
                                                                             67
                                                              10
                                                                             68
                                                              11
                                                                             64
                                                              12
13
                                                                             71
70 69
76
                                                                             73 72
77
                         RIGHT 692.0 92.5
                                                                              10
                                                                              11
                                                                              12
                                                                             66 75
74
                                 692.0 124.5
                         LEFT
                                                        3
                                                                                              12
```

## M4-2













M4-2: F	Propose	d algo	rithm							
** Nzor	nes									
4		, ,	37 11							
**zone	lef 6.0		X coordina	te						
2	222.0	)								
3 4	438.0 584.0									
** NSta		,								
8										
** stack ** #	zone	typo	flush edge x	doc vl	oc #lay	zore i	#panels	nana	ale	orientation
1	1	A	RIGHT	114.0	48.0	12	1	1	15	2
							2 3 4 5 6 7	1 1 1 2 1	22 23 24 25 27 26 28	1 1 1 1 1 1 2
2	2	A	RIGHT	330.0	48.0	12	8 9 10 11 12 1 2 3 4 5	1 1 1 1 1 1 1 1 1 1	30 35 39 41 1 16 17 29 31 32	1 2 1 2 3 2 2 2 2 1
3	2	В	LEFT	330.0	90.0	2	6 7 8 9 10 11 12 1 2	1 1 1 1 1 1 1 1	36 37 38 40 42 43 44 2 3	2 2 2 1 2 2 1 3 3
4	3	Α	RIGHT	546.0	88.0	6	1	1	18	2
							2 3 4 5 6	1 1 2 1	19 33 34 47 46 48	2 1 1 2 2 1
5	3	В	LEFT	546.0	100.0	4	1 2 3 4	3 1 1 1	5 4 6 7	1 1 2 2
6	4	A	RIGHT	692.0	88.0	13	5 1 2 3 4	1 2 1 1 1	45 49 20 21 11 12	1 1 2 2 2 2 2
7	4	A	RIGHT	692.0	88.0	3	5 6 7 8 9 10 11 12 13	1 2 1 1 1 1 1 2 2 2	13 10 14 50 51 54 55 58 57 56 59 63 64 60	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
							2 3	1	8 9	2
8	4	В	LEFT	692.0	100.0	3	1 2 3	1 2 1 1	53 62 61 52	1 2 2 2

## M4-3











```
M4-3: Proposed algorithm
** Nzones
**zone
           left edge X coordinate
           6.0
 2
         226.5
         446.9
         579.5
** NStacks
orientation
                                                                    13
                                                                   20
21
22
23
24
25
26
31
34
36
                                                                                  10
11
12
13
                                                                   1
14
15
27
28
32
33
35
          2
                      RIGHT 336.7 97.3
                Α
                                                      1
2
3
4
5
6
7
8
                                                                   37
39 38
2
3
                                                       9
                                                                                 12
     3
          2
                В
                      LEFT
                             336.7 129.3
                                                                                  3
2
1
                                                       2
          3
                      RIGHT 557.1 97.3
                                                                   29
30
                                                                   41
     5
          3
                В
                      LEFT
                               557.1 129.3
                                                                   6\,40\,43
                                                                                 Α
                      RIGHT 689.8 97.3
                                                                   17
                                                                   18
                                                                   10
                                                                   11
                                                                   12
                                                                   44
                                                                   45
47
                                                                   47
48
51
50 49
52 56
57 53
7
                                                      10
11
12
13
                                                      14
                      RIGHT 689.8 97.3
                A
                                                                   8
55
54
                В
                      LEFT
                             689.8 129.3
                                                                   46
```

M5-1











```
M5-1: Proposed algorithm
** Nzones
**zone
              left edge X coordinate
 1
              6.0
            222.0
 3
            384.0
** NStacks
** stack
** #
1
           flush
zone type edge xloc yloc #layers j #panels panels
1 A RIGHT 114.0 52.5 13 1 1 11
                                                                                                    orientation
                                                                                                               2
                                                                                           16
                                                                                           17
22
23
24
25
26
27
29 28
30
                                                                         4
5
6
7
8
9
10
11
                                                                                                              1 1
2
2
1
2
1 1
2
                                                                                           31
                                                                         12
13
                                                                                           39
                                                                                           42
41 40
                              RIGHT 114.0 52.5
                                                                          2
                                                                                           46
                                                                                           51 47
                                                                                                               1 2
3
2
2
1
             2
                              RIGHT 330.0 52.5
                                                                13
                                                                                            18
                                                                                            19
                                                                                           33
                                                                                           36
                                                                                           34
37
38 35
                                                                                                               11
                                                                                           32
43
                                                                                                               2
2
1
                                                                         10
11
                                                                                           44
                                                                                           50 49
                                                                                                              12
13
1
2
3
4
5
6
                                                                                           45
                                                                                           48
                                                                                          2
3
6
5
4
52
53 54
20
21
             2
                     В
                              LEFT 330.0 94.5
                                                                 7
             3
                              RIGHT 492.0 92.5
                                                                17
                     Α
                                                                        2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
17
12
3
                                                                                           11
                                                                                           12
13
                                                                                           15 14
7
8
                                                                                           9
                                                                                           10
55
60
                                                                                           62 61
56
                                                                                           64 63
68
65
                                                                                           67 66
57
                              RIGHT 492.0 92.5
                                                                                           59 58
                                                                                                               2 1
```

M5-2











```
M5-2: Proposed algorithm
** Nzones
3
**zone
                      left edge X coordinate
                       6.0
                  212.0
384.0
 2
** NStacks
6
** stack
                                        flush
** # zone type edge xloc yloc #layers j
1 1 A RIGHT 114.0 48.0 14
                                                                                                          #panels panels
1 1 14
2 1 20
3 1 21
4 1 22
5 1 23
6 1 24
7 1 25
8 1 26
9 1 35
10 1 37
11 1 36
12 2 40
13 2 46
14 1 47
1 1 1 1
1 1 1
1 1 15
2 1 16
3 1 29
4 1 32
5 1 30
6 2 31
3
7 2 2 7
8 2 38
2 38
2 38
2 45
4
10 2 43
11 1 48
                                                                                                                                                      orientation
                                                                                                                                        21
22
23
24
25
26
35
37
36
40 39
46 41
47
                                             RIGHT 114.0 48.0
RIGHT 330.0 98.0
                                                                                                11
                                                                                                                                        16
29
32
30
31 33
27 34
38 28
                                                                                                                            1
1
2
2
2
2
2
2
1
2
1
                                                                                                                                                                     1 1
2 1
2 2
1 1
                                                                                                                                        45 44
43 42
                                                                                                                                                                     2 2
2
3 3
1
                    2
                                В
                                            LEFT
                                                              330.0 98.0
                                                                                                                                        23
                                                                                                                                        6
5
4
7
                                                                                                                                                                     RIGHT 492.0 98.0
                    3
                                Α
                                                                                                15
                                                                                                            1
2
3
4
5
6
7
8
9
10
11
12
                                                                                                                                        10
                                                                                                                                        11
                                                                                                                                        12
                                                                                                                                        13
                                                                                                                                        8
                                                                                                                                        49
                                                                                                                                     53
54
50
56 55
59
57
58
51
52
                                                                                                                                                                     2 2
2
2
2
2
                                                                                                             13
14
15
                    3
                                            RIGHT 492.0 98.0
```

M5-3







M5-3: IntelliBuild		
23 (11' 2")		
24 (9' 4")		*
25 (12' 0")	90.	
21 (11' 3-1/2")		
22 (12' 0")		
26 (8' 6")		
27 (11' 4")		

```
M5-3: Proposed algorithm
                ** Nzones
                **zone
                                                         left edge X coordinate
                   1 2 3
                                                   6.0
226.5
379.5
** NStacks

4

*** stack

** # zone type edge xloc yloc #layers j #panels

1 1 A RIGHT 116.2 57.3 11

2 3

4 5

6 7

8 8

9 10

11

2 2 A RIGHT 336.7 97.3 14

1 2

3 3

4 5

6 6

7 8

9 10

11

12

13

3 4

5 6

6 7

8 9

10

11

12

13

3 4

5 6

6 7

8 9

10

11

12

13

4 5

6 6

7 8

9 9

10

11

12

13

14

3 2 B LEFT 336.7 129.3 6 1

2 3

3 4

5 6

6 7

8 9

10

11

12

13

14

3 2 B LEFT 336.7 129.3 12

1 2

3 3

4 5

6 6

7 7

8 9

10

11

12

13

14

3 4

5 6

6 7

8 9

10

11

12

13

14

15

16

17

18

18

19

10

11

11

12

11

11

12
                ** NStacks
                4
                                                                                                                                                                                                                                                              panels
1 11
                                                                                                                                                                                                                                                                                                              orientation 2
                                                                                                                                                                                                                                                                                   16
17
18
19
20
21
27
28
32
1
12
13
23
25
38
24
26
22
29
31 30
34
39
40
                                                                                                                                                                                                                                                                                                                                             1
2
3
2
2
1
                                                                                                                                                                                                                                                                                                                                            1
2
2
1 2
                                                                                                                                                                                                                                                                                                                                              1
1
                                                                                                                                                                                                                                                                                                                                              1
2
3
1
                                                                                                                                                                                                                                                                                    33
2
4
3
5 35
36
37
                                                                                                                                                                                                                                                                                     15
                                                                                                                                                                                                                                                                                     10
                                                                                                                                                                                                                                                                                                                                           1
2
2
12
2
2
2
2
2
2
                                                                                                                                                                                                                                                                                     41
                                                                                                                                                                                                                                                                                   43 42
47 44
45
46
```



L1	-1: Panel Designer								
	42 (2' 7-1/2")								
222222	35 (8' 0")		22222						
	36 (8' 0")								
	37 (8' 0")								
	38 (8' 0")								
	39 (8' 0")		****						
	40 (8' 0")								
	41 (8' 0")								
*********	25 (6' 2")	24 (2' 3")	-						
	26 (8' 0")		_						
	28 (7' 11-1/2")	27 (2' 6-	-1/2")						
	29 (8' 0")								
	34 (7' 6")	33 (2' 8")							
	30 (8' 0")								
	31 (8' 0")								
	32 (8' 0")								
ſ									
2	15 (8' 0") 16 (8' 0")								
-	17 (8' 0")								
	18 (8' 0")	******************	E20						
PARKET NAME OF THE PARKET NAME O	21 (6' 8")	20 (2' 8")	DOXXXXXXXXX						
	19 (8' 0")		DO						
į	22 (8' 0")								
	23 (8' 0")	***************************************							
	8 (8' 0")	9 (2	2' 8")						
	11 (8' 0")	***************************************							
	12 (8' 0")	××××××××××××××××××××××××××××××××××××××	z						
	13 (8' 0")	************************	5						
	14 (8' 0")	*****************	3						
			= 1						



L1-1: Panel Designer		
	61 (2' 2")	
	60 (9' 4")	ri
	62 (8' 0")	
	63 (8' 0")	
	64 (8' 0")	
	65 (8' 0")	
	66 (8' 0")	
	67 (8' 0")	
	68 (8' 0")	
	69 (8' 0")	
	54 (4' 10")	51 (2' 2")
	52 (8' 0")	
	53 (8' 0")	
58 (4' 10")		55 (4' 7")
	56 (8' 0")	
	57 (8' 0")	
	59 (9' 4")	
	10 (01 08)	
-	43 (8' 0")	
	44 (8' 0")	(10 (1) 10 N
45 (4) 400		
45 (4' 10")	46 (0, 0,)	48 (4' 10")
45 (4' 10")	46 (8' 0")	48 (4' 10")
45 (4' 10")	46 (8' 0") 47 (8' 0") 49 (9' 4")	48 (4' 10")

L1-1: IntelliBuild			
	36 (8' 0")	×	*******
	37 (8' 0")		
	38 (8' 0")		XXXX
*******************************	31 (8' 0")	***********************	
	32 (8' 0")		
	34 (7' 6")		33 (2' 8")
	35 (8' 0")	*************************	********
***************************************	39 (8' 0")	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	200000
	40 (8' 0")		***************************************
42 (2' 7-1/2")	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	41 (8' 0")	

	L1-1: IntelliBuild				
_	23 (8' 0")				
	25 (6' 2")	")			
	26 (8' 0")	*****			
	18 (8' 0")	******			
	19 (8' 0")	*****			
	21 (6' 8")	******	20 (2' 8")	********	
	22 (8' 0")				
	28 (7' 11-1/2")		27 (2' 6-	1/2")	
	29 (8' 0")	~~~~~~~~~			
	30 (8' 0")				
******	12 (8' 0")				
*****	13 (8' 0")				
277777	14 (8' 0")	******			
200000	7 (8' 0")				
33333	8 (8' 0")	*********			
*********	10 (8' 7-1/2")				9 (2' 8")
*****	11 (8° 0°)	~~~~~~~			
	15 (8' 0")	^^^^^			
******	16 (8° 0°')				
	17 (8' 0")				
				·····	222
	4 (8' 0")	·····		~~~~	****
	5 (8' 0")		~~~		
	6 (8, 0,,)			*******	
	1 (7' 6")				
	2 (8' 0")				
	3 (8' 0")				
	,				<del></del>



```
L1-1: Proposed algorithm
** Nzones 4
**zone
             left edge X coordinate
                6.0
             212.0
 2
             438.0
 4
             584.0
** NStacks 8
** stack
                            flush
                                                                                         panels 28
            zone type
1 A
                            edge xloc yloc #layers j
RIGHT 114.0 48.0 12
                                                                            #panels
1
2
** #
                                                                                                           orientation
                                                                                                 34
                                                                                                 35
36
37
38
39
                                                                               6
7
                                                                               8
                                                                                                 40
42 41
43
44
46
47
49
52
55
                                                                              10
                                                                                                                      1 1 2 2 2 2 2 1 2 3 2 2 1 2 1 2 1
                                                                              11
                                                                             12
1
2
3
4
      2
                                RIGHT 114.0 48.0
                                                                      6
              1
                      Α
                                                                               5
                                                                                                 1
30
31
      3
              2
                                RIGHT 330.0 48.0
                                                                    16
                       Α
                                                                               2
3
4
5
6
7
8
                                                                                                 45
62
48
                                                                                                 63
72 71
64
                                                                                                                      22
                                                                                                                       1
                                                                               9
                                                                                                 78
                                                                                                 51 50
                                                                              10
                                                                                                                      22
                                                                              11
                                                                                                 56
                                                                             12
13
14
                                                                                                 65
                                                                                                 79
                                                                                                 66
                                                                                                 80
                                                                             15
16
1
2
3
4
5
6
7
1
2
3
4
5
6
7
8
9
10
11
11
                                                                                                 80
82 81
2
3
4
53
57
54 58
                                                                                                                      11
              2
                      В
                               LEFT
                                            330.0 90.0
                                                                     7
                                                                                                                       3
3
1
                                                                                                                      1 1
                                                                                                 54 58
59
33 32
73
74
83
84
                                                                                                                       3
2 2
2
2
1
      5
              3
                                RIGHT 546.0 48.0
                                                                    13
                      Α
                                                                                                                       1
                                                                                                 85
88
91
93 92
                                                                                         1
2
2
1
                                                                                                                      12
                                                                                                 87 86
95
                                                                                                                      1 1
2
2
2
2
3
3
                                                                                                 96
97
                                                                             12
13
1
2
3
4
5
6
7
8
              3
                      В
                               LEFT
                                            692.0 90.0
                                                                   14
                                                                                                 5
                                                                                                 67
                                                                                                                      1
2
2
2 2
3 3
                                                                                                 94
                                                                                                 99
                                                                                         1
2
2
                                                                                                 100 101
                                                                                                 60 61
                                                                                                 68
                                                                                                 102
                                                                                                 105
                                                                              11
                                                                                                 69
                                                                              12
                                                                                                 103
                                                                                         1
2
2
                                                                              13
                                                                                                 106 70
                                                                                                                      1 1
                                                                             14
                                                                                                 104 107
                                                                                                                      11
```

7										
8	4	A	RIGHT	692.0 692.0	48.0	17	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	2 1 1 1 2 1 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	26 27 25 21 22 24 23 10 11 12 13 14 104 107 16 17 18 20 19 7 9 8 75	22 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Ü	-						2 3 4	2 1 2	77 76 89 98 90	2 2 2 2 3







L1-2: IntelliBuild							
	28 (9' 4")						
29 (10' 8")							
30 (9' 4")							
	24 (10' 8")						
	25 (10' 8")						
26 (2' 8")							
	27 (10' 2")						
	31 (10' 8")						
	32 (9' 4")						
33 (6' 7-1/2")		SOCIAL DESCRIPTION OF THE PROPERTY OF THE PROP					
	18 (9' 4")						
19 (5' 4")							
20 (10' 2")							
14 (10' 8")							
40 (41 08)	15 (9' 4")						
16 (4' 0")	17 (10' 3")						
21 (6' 6-1/2")	77 (10 0 )						
21(0 0-1/2 )	22 (9' 3-1/2")	***************************************					
	23 (9' 4")						
	***************************************						
	8 (9' 11-1/2")						
200000000000000000000000000000000000000	9 (9' 4")	Seanaceanaceanaceanaceanaceanaceanaceana					
	10 (10' 8")						
***************************************	4 (9' 4")						
	5 (10' 8") 6 (9' 4")						
7 (6' 8")	6 (9 4 )	***************************************					
7 (0 0 )	11 (9' 4")						
	12 (10' 8")						
	13 (9' 4")						
	10 (0 4 )						

L1-2: IntelliBuild	***************************************	
3 (10' 8")		
1 (10' 2")		
2 (9' 4")		
79 (6' 8")	78 (3' 3-1/2")	
80 (9' 4")		
81 (10' 8")		
82 (9' 4")		- 54
83 (4' 0")		
77 (9' 4")	76 (1' 1	0")
85 (6' 8")		
86 (10' 0")		
87 (6' 8")		
88 (9' 4")		
89 (9' 4")		
84 (10' 0")		
90 (1' 4")		
64 (9' 4") 65 (4' 4-1/2")		
66 (9' 10")		
67 (10' 8")		1
68 (9' 4")		
69 (4' 0")		
58 (9' 4")		
59 (5' 8")		
60 (9' 4")		
62 (9' 4")	61 (2' 0")	)
63 (10' 8")		
70 (9' 10")	1	21
71 (10' 8")		]
72 (9' 4")		
73 (4' 0")	1	
74 (9' 4")		
75 (9' 4")		
43 (9' 4")	42 (2' 2")	
44 (9' 4")		
46 (4' 7") 45 (2' 2")		
47 (9' 4")		
48 (9' 4")		
50 (9' 4")	49 (2' 2")	
35 (9' 4")	20 (0) (0)	
37 (9' 4")	36 (2' 2")	
38 (9' 4")	30 /2' 2"	
40 (9° 4°) 41 (9° 4°)	39 (2' 2")	
51 (9' 4") 53 (9' 4")	52 (2' 2")	
53 (9 4 )		
55 (10'8")		
56 (9' 4")		
57 (10' 8")		

## 34 (9' 4")

```
L1-2: Proposed algorithm
** Nzones
               left edge X coordinate
**zone
               6.0
 2
            212.0
            438.0
 4
            584.0
** NStacks
8
** stack
                           flush
    # zone type edge xloc yloc #layers j #panels panels
1 1 A RIGHT 114.0 48.0 13 1 1 22
2 1 27
                                                                                                      orientation
                                                                                            28
29
30
31
32
33
34
37
40
43
46
47
                                                                          3
4
5
6
7
8
9
10
11
                                                                                                                1
2
2
1
2
1
3
2
2
2
2
1
                                                                          12
13
                              RIGHT 114.0 48.0
              1
                      A
                                                                           2
                                                                                            1
23
      3
              2
                      A
                              RIGHT 330.0 48.0
                                                                 14
                                                                                             24
                                                                           2
3
4
5
6
7
8
9
                                                                                             36 35
                                                                                            53
39 38
                                                                                                                2 2
1
                                                                                             54
                                                                                            61 60
55
                                                                                                                22
                                                                                             66
                                                                          10
                                                                                                                2 2
1
                                                                                             42 41
                                                                          11
                                                                                             56
                                                                          12
                                                                                             67
                                                                          13
                                                                                             68
                                                                          14
                                                                                             69
                                                                                            2 3
             2
                     В
                              LEFT 330.0 90.0
                                                                 5
                                                                           1
2
3
                                                                                                                 3
1
                                                                                             44
                                                                                            48 45
49 50
25
                                                                                                                1 3
2
2
1
2
2
2
1
             3
                              RIGHT 546.0 48.0
                                                                 14
                     A
                                                                                            26
21
20
62
63
70
71
77
79 78
72
73
81
                                                                          2
3
4
5
6
7
8
9
10
                                                                                                                 1 2
                                                                                                                12
                                                                          11
                                                                                                                 1
                                                                          12
                                                                                                                 1
2
2
                                                                          13
```

L1-2: F	Propose	d algor	ithm							
6	3	В	LEFT	692.0	90.0	13	1 2 3 4 5 6 7 8 9 10 11 12	1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1	4 5 57 80 84 85 51 52 58 86 88 59 87	3 3 1 2 2 2 2 3 3 1 1 1 1
7	4	A	RIGHT	692.0	48.0	16	13 1 2 3 4 5 6 7 8 9 10 11 12 13 14	2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	89 90 17 18 19 8 9 10 11 12 13 14 15 16 6 7	1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
8	4	A	RIGHT	692.0	48.0	4	14 15 16 1 2 3 4	1 1 1 1 2 1	7 64 65 65 74 76 75 83	3 2 2 2 2 2 2 2 2 2 3



	L1-3: Panel Designer				
		28 (6' 7-1/2")			
		22 (6' 8")			
202		23 (11' 6")	**************************************		
	***************************************	24 (12' 0")	***************************************	***************************************	
Z	***************************************	25 (12' 0")	***************************************	***************************************	AAAA
		26 (12' 0")			
		27 (12' 0")			
	paramanan				
		18 (5' 2-1/2")	16 (3' 7")	***************************************	
		14 (10' 8")			
		15 (10' 8")			
PC2		17 (11' 6")	******************************	***************************************	
		19 (11' 11-1/2")			
		20 (12' 0")		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
		21 (12' 0")			
-		7 (11' 3-1/2")			***
- C-C-	××××××××××××××××××××××××××××××××××××××	8 (12' 0")			
		9 (12' 0")	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		****
2.0	***************************************	10 (12' 0")	ARAKRAKRAKRAKRAKRAK	***************************************	CAAA
	××××××××××××××××××××××××××××××××××××××	11 (12′ 0")		****************	~~~
		12 (12′ 0″)			****
		13 (12′ 0″)			
	Î	6 (6'8")	***************************************		
AAA		1 (11' 6")	************		-
		2 (12' 0")			
20.0	**************************	3 (12' 0")	***************************************	**************************************	
5-26		4 (12' 0")			
22		5 (12' 0")			7977



24 (12°0°) 25 (12°0°) 19 (11°11-1/2°) 20 (12°0°) 21 (12°0°) 22 (6°8°)  23 (11°6°) 26 (12°0°) 27 (12°0°) 28 (6°7-1/2°)  19 (12°0°) 10 (12°0°) 11 (12°0°) 11 (12°0°)
25 (12' 0")  19 (11' 11-1/2")  20 (12' 0")  21 (12' 0")  22 (6' 8")  23 (11' 6")  26 (12' 0")  27 (12' 0")  28 (6' 7-1/2")  13 (12' 0")  14 (10' 8")  15 (10' 6")  9 (12' 0")  10 (12' 0")  11 (12' 0")
20 (12'0") 21 (12'0")  22 (6'8")  23 (11'6")  26 (12'0")  27 (12'0")  28 (6'7-1/2")  13 (12'0")  14 (10'8")  9 (12'0")  10 (12'0")  11 (12'0")
21 (12'0")  22 (6'8")  23 (11'6")  26 (12'0")  27 (12'0")  28 (6'7-1/2")  13 (12'0")  14 (10'8")  9 (12'0")  10 (12'0")  11 (12'0")
22 (6' 8")  23 (11' 6")  26 (12' 0")  27 (12' 0")  28 (6' 7-1/2")  13 (12' 0")  14 (10' 8")  9 (12' 0")  10 (12' 0")  11 (12' 0")
23 (11' 6")  26 (12' 0")  27 (12' 0")  28 (6' 7-1/2")  13 (12' 0")  14 (10' 8")  9 (12' 0")  10 (12' 0")  11 (12' 0")
23 (11' 6")  26 (12' 0")  27 (12' 0")  28 (6' 7-1/2")  13 (12' 0")  14 (10' 8")  15 (10' 8")  9 (12' 0")  10 (12' 0")  11 (12' 0")
27 (12' 0")  28 (6' 7-1/2")  13 (12' 0")  14 (10' 8")  15 (10' 8")  9 (12' 0")  10 (12' 0")  11 (12' 0")
28 (6' 7-1/2")  13 (12' 0")  14 (10' 8")  15 (10' 8")  9 (12' 0")  10 (12' 0")  11 (12' 0")
28 (6' 7-1/2")  13 (12' 0")  14 (10' 8")  15 (10' 8")  9 (12' 0")  10 (12' 0")  11 (12' 0")
14 (10' 8")  15 (10' 8")  9 (12' 0")  10 (12' 0")  11 (12' 0")
14 (10' 8")  15 (10' 8")  9 (12' 0")  10 (12' 0")  11 (12' 0")
15 (10' 8")  9 (12' 0")  10 (12' 0")  11 (12' 0")
15 (10' 8")  9 (12' 0")  10 (12' 0")  11 (12' 0")
10 (12' 0") 11 (12' 0")
11 (12' 0")
12 (12' 0")
16 (3' 7")
17 (11' 6")
18 (5' 2-1/2")
3 (12' 0")
4 (12' 0")
5 (12' 0")
1 (11'6")
2 (12' 0")
6 (6' 8")
7 (11' 3-1/2")
8 (12' 0")



```
L1-3: Proposed algorithm
** Nzones
**zone left edge X coordinate
 1 2 3
      6.0
216.5
446.9
 4
      579.5
** NStacks
** stack
                                                orientation
```

L1-3: Pr	oposeo	l algori	ithm							
5	3	A	RIGHT	557.1	57.3	7	1 2 3 4 5 6 7	1 1 1 1 1 2	22 18 17 49 60 62 61 57	2 1 2 2 2 2 1 1
6	3	В	LEFT	689.8	99.3	11	8 1 3 4 5 6 7 8	1 1 1 1 1 1 1 2 1	64 4 45 41 46 66 67 47 68 70	2 3 1 3 1 2 2 2 1
7	4	A	RIGHT	689.8	57.3	15	10 11 1 2 3 4 5 6 7 8 9 10	1 1 1 1 1 1 1 1 1 1 1 1 1	70 69 71 14 15 16 7 8 9 10 11 12 13 5	1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
8	4	A	RIGHT	689.8	57.3	4	12 1 2 3 4	1 1 1 1 1	6 50 51 55 56	3 2 2 2
9	4	A	RIGHT	689.8	57.3	3	1 2 3	1 1 1 1	58 59 65	2 3 2

L2-1





L 2 1: Banal Dagigner					
L2-1: Panel Designer			************	***********	
		36 (4' 0"	)		
		29 (8' 0"	)		***************************************
30 (8' 0")					
31 (8' 0")					
32 (8' 0")					
33 (8' 0")					
	******	34 (8' 0"	)	***********	
	*************	35 (8' 0"	)	XXXXXXXXXXX	
	ZXXXX	24 (2' 8"	)		
	***************************************	21 (8' 0"	)		
26 (8' 0")					
27 (8' 0")					
28 (8' 0")					
22 (8' 0")					
23 (8' 0")					
25 (8' 1")					
		15 (2' 2	")	XXXXX	
	******	13 (8' 0	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXX	**************************************
14 (8' 0")					
16 (7' 11-1/2")					
17 (8' 0")					
18 (8' 0")					
19 (8' 0")					
	*************	20 (8' 0	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXX	*************************
		20 (8 0	1		





L2-1: IntelliBuild		
38 (8' 0")		
39 (8' 0")	****************	
40 (8' 0")		
33 (8' 0")		
34 (8° 0")		
35 (8' 0")		
37 (7' 6")		36 (4' 0")
41 (8' 0")		
42 (8' 0")		
43 (6' 2")		
27 (8' 0")		~~~
28 (8' 0")	********	****
29 (8' 0")	******	
22 (8' 0")		*****
23 (8' 0")		
25 (8' 1")	30000000000000000000000000000000000000	24 (2' 8")
26 (8' 0")	000000000000000000000000000000000000000	2002
30 (8.0,)	000000000000000000000000000000000000000	****
31 (8' 0")		<u> </u>
32 (8' 0")		
4.0 (0.0%)		***
18 (8' 0")	***************************************	
19 (8' 0")	**********	s.c.a.
20 (8' 0")	<del>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</del>	
21 (8' 0")		10 (11 01)
11 (6' 2")		10 (4' 6")
12 (8' 0")	ONNOBRAMA A A A A ONNOBRAMA	TANGOTO .
13 (8' 0")	***************************************	***
14 (8' 0")	***************************************	
16 (7' 11-1/2")		15 (2' 2")
17 (8' 0")		



73 (8' 0")		
74 (8' 0")		
75 (8' 0")		
76 (5' 8")		
77 (8' 0")		
78 (6' 8")		
68 (8' 0")		
69 (5' 8")		
70 (8' 0")		
71 (8' 0")		
72 (8' 0")		
80 (8' 0")		79 (1' 8")
81 (6' 8")		1
83 (8' 0")		82 (1' 8")
84 (8' 0")		1
85 (8' O")		
86 (8' 0")		
control Visiting Visi		
55 (6' 8")		
57 (8' 0")	5	6 (1' 7-3/4")
58 (8' 0")		
59 (8' 0")		
60 (5' 2")		
61 (8' 0")		
50 (8' 0")		
51 (5' 2")	47	
52 (8' 0")		
53 (4' 6")		
54 (8' 0")		
62 (7' 10")		
63 (8' 0")		
64 (8' 0")		
65 (8' 0")		
66 (8' 0")		
67 (8' 0")		
47 (5100)		
47 (5' 2")		
48 (8' 0")		-
49 (8' 0")		
44 (8' 0")		
45 (8' 0")		

```
L2-1: Proposed algorithm ** Nzones
**zone
                 left edge X coordinate
 1
                  6.0
               212.0
  2
3
4
              438.0
654.0
870.0
884.0
  5
6
** NStacks
11
** stack
                                flush
** # zone type edge xloc yloc #layers j #panels panels
1 1 A RIGHT 114.0 48.0 12 1 1 25
                                                                                                                       orientation
                                                                                       1 2 3 4
                                                                                                            26
37
38
39
40
                                                                                        5
6
7
8
9
                                                                                                            41
                                                                                                            43
1
                                                                                                                                    1
2
2
2
2
2
1
                                                                                       10
                                                                                                            44
45
48
                                                                                       11
                         Α
                                   RIGHT 114.0 48.0
                                                                                                            49
54
56 55
                                                                                        2 3 4 5 6 7 1 2 3 4 5 6 7 8 9
                                                                                                                                   1 1
2
2
1
2
2
1
2
2
1
                                                                                                            57
58
                                                                                                            61
27
28
63
46
47
52
64
53
50
51
65
       3
                2
                          Α
                                   RIGHT 330.0 48.0
                                                                            16
                                                                                                                                   10
11
                                                                                                            66
59
60
67
68
62
2
29
30
70
71
77
79 78
72
73
74
75
69
                                                                                      12
13
14
15
16
                2
                         В
                                   LEFT
                                                 330.0 90.0
                                                                             2
       4
                                                                                        2
                3
                                    RIGHT 546.0 48.0
                                                                             10
                                                                                        1
2
3
4
5
6
7
8
9
                                                                                       10
1
2
3
4
5
6
7
8
                         В
                                   LEFT
                                                 546.0 90.0
                                                                             8
                                                                                                            80
                                                                                                            81 82
                                                                                                                                   2 2
1
3
3
3
3
                                                                                                            76
                                                                                                            3
                                                                                                            5
```

L2-1: Pr	oposec	l algor	ithm							
7	4	A	RIGHT	762.0	48.0	16	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	31 32 33 83 94 84 95 90 91 85 96 92 93 97 86 102 87	2 2 2 1 1 1 1 2 2 2 1 1 2 2 1 1 2 2 1 1 1 2 1
8	5	A	RIGHT	762.0	48.0	4	1 2 3 4	1 1 1 1	111 112 108 88	1 1 1 2 1
9	5	В	LEFT	762.0	90.0	5	1 2 3 4	1 2 1 1	89 7 8 9 10	1 3 3 1 1
10	6	A	RIGHT	978.0	48.0	14	5 1 2 3 4 5 6 7 8 9 10 11 12 13 14	1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1	11 34 35 36 16 17 18 19 20 21 22 24 23 12 13 15 14	3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
11	6	A	RIGHT	978.0	48.0	9	1 2 3 4 5 6 7 8	1 1 2 1 1 1 1 2 1	98 99 101 100 103 104 106 107 110 109 105	1 1 1 1 2 2 2 1 1 1 2 2 2

## L2-2









L2-2: IntelliBuild					
	30 (8' 10")				
ZAAAAAAAAAAAAAAAAAAAAAAAAAA	31 (9' 4		**************		
******************************		32 (10' 8")	OXXXXXXXXXXXXX	ORKKRIKKKISKKEKK	************
	26 (9' 4	m)			
***************************************	27 (9' 4	ⁿ )		*********	-
	28 (9' 4	m)			
29 (4' 0")	********				
P0000000000000000000000000000000000000	33 (9' 4	m)	······································	***************************************	~
***************************************	*************	34 (10' 8")	*****	******	*******
35 (4' 10")					
		***************************************			
	20 (9' 5")	AAAAAAAAAAAAAAAAAAAAAA			
	21 (9' 4")	********	OXOXXOXXOXXOXXOX	************	CXXXXXXXXXXXXXXXX
	***********	2 (10' 8")		***************************************	
	16 (9' 4")	***************************************			***************************************
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	7 (10' 8")			
***************************************	18 (9' 4")	*******************	***************************************		
	19 (8' 0")		***************************************		
***************************************	2	3 (10' 8")	*****	*****	
200.000.000.000.000.000.000.000.000.000	24 (9' 4")		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	2	5 (10' 8")			
		***************************************	*****		
	10 (9' 4")	7A7A7A7A7A7A7A7A7A7A7A7A7A7A7A7A7A7A7A			
40 (0.01)	11 (10' 8	3")			
12 (3' 6")	5 (9' 4")		0.000,000,000,000,000,000	avavavava.	
***************************************	6 (9' 11-1/2")	***************************************	************	******	
	7 (9' 4")		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
	9 (8' 10")			8 (:	3′ 2″)
	13 (9' 3-1/2")			(AAAAAAAAA	<u> </u>
	14 (9' 4")		************		
	15 (10' 8	3")			

L2-2: Pro			ithm							
2	2	A	RIGHT	330.0	48.0	16	1 2 3 4 5 6 7 8 9 10 11 12 13 14	1 1 1 1 1 1 1 1 1 1 1	21 22 37 38 42 51 43 52 40 41 44 53 45 47	2 2 2 1 1 1 1 2 2 1 1 1 2 2
3 4 5	2 2 3	A B A	RIGHT LEFT RIGHT	330.0 330.0 546.0	48.0 90.0 48.0	1 1 8	15 16 1 1 1 2 3 4	1 1 1 1 1 1 1 1	48 49 54 50 23 24 57 63 64	2 1 1 1 2 2 1 2 2
6	3	В	LEFT	546.0	90.0	9	5 6 7 8 1 2 3 4 5 6	1 1 1 1 1 1 1 2	58 59 60 55 65 66 61 56 62 2	1 1 1 2 2 2 1 1 1
7	4	A	RIGHT	762.0	48.0	14	7 8 9 1 2 3 4 5 6 7	1 1 1 1 1 1 1 1 1	3 4 5 25 26 67 77 73 74 68	3 3 3 2 2 1 1 2 2
8	5	В	LEFT	762.0	90.0	9	8 9 10 11 12 13 14 1 2 3 4	1 1 1 1 1 1 1 1 1 1	78 75 76 69 79 70 88 83 90 91 71 72	1 2 2 1 1 1 2 2 1 1
9	6	A	RIGHT	978.0	48.0	13	5 6 7 8 9 1 2 3 4 5	1 1 1 1 1 1 1	6 7 8 9 27 28 29 13 14	1 3 1 1 3 2 2 2 2 2
10	6	A	RIGHT	978.C	90.0	6	6 7 8 9 10 11 12 13 1 2 3 4 5 6	1 1 1 1 1 1 2 1 1 1 1 1 1 2 1 1	15 16 17 18 19 10 11 85 12 80 81 82 84 86 89 87	2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 2 3 1 1 1 1

L2-3: Intel	liBuild
************	24 (9' 4")
	25 (11' 6")
************	26 (12' 0")
	20 (12' 0")
***********	21 (12' 0")
	22 (12' 0")
	23 (12' 0")
	27 (12' 0")
	28 (12' 0")
	29 (6' 2")
	14 (12' 0")
************	15 (12' 0")
	16 (6' 8")
X	10 (8' 10")
	11 (11' 11-1/2")
	12 (12' 0")
	13 (12' 0")
	17 (10' 9")
***************************************	18 (12' 0")
	19 (12′ 0″)
	4 (12' 0")
	5 (11' 3-1/2")
***************************************	6 (10' 8")
	1 (12' 0")
	2 (12' 0")
************	3 (12' 0")
7 (1' 10")	
*************	8 (11' 6")
200200000000000000000000000000000000000	9 (12' 0")
.	


```
L2-3: Proposed algorithm
** Nzones
**zone
              left edge X coordinate
              6.0
 1
 2
           226.5
           446.9
           667.4
879.5
 4 5
** NStacks
8
** stack
                         flush
    # zone type edge xloc yloc #layers j
1 1 A RIGHT 116.2 87.3 12
                                                                               panels
1 17
                                                                   #panels
                                                                                               orientation
                                                                                      25
26
27
28
29
                                                                                                         8
9
10
                                                                                      33
38
                                                                                      40
            2
                            RIGHT 336.7 87.3
     2
                                                             13
                                                                                      31
32
                                                                                      36
                                                                                      45
37
                                                                                      34
35
                                                                     10
11
                                                                                      46
                                                                                      47
41
42
43
44
20
50
55
56
51
52
48
53
49
57
58 54
                                                                     12
13
1
2
1
2
3
4
5
     3
            2
                    В
                            LEFT 336.7 99.3
                                                              2
            3
                            RIGHT 557.1 57.3
     5
                            LEFT 557.1 99.3
                                                             8
            3
                    В
                                                                      1
2
3
                                                                                                         1
2
2
1
3
3
2
2
1
1
2
1
                                                                                      2
3
4
21
22
59
68
                            RIGHT 777.6 57.3
                                                             12
                                                                                      64
65
                                                                                      60
                                                                                      69
                                                                                      66
                                                                     10
                                                                                      67
                                                                                      61
70
```

L2-	3: Pro	posed	algorit	hm							
	7	5	A	RIGHT	989.8	57.3	17	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	23 24 11 12 13 14 15 16 5 6 7 8 9 10 71 72 73	2 2 2 2 2 2 2 2 3 1 1 3 3 3 2 2 2 2 2 2
	8	5	A	RIGHT	989.8	57.3	10	1 2 3 4 5 6 7 8 9	1 1 1 1 2 1 1 1	74 75 76 81 77 78 82 79 80 62 63	2 2 1 1 1 1 1 2 2 1 1

L3-1

f	101.0.10.1
1	L3-1: Panel Designer
	30 (8' 0")
	31 (8' 0")
	32 (8' 0")
	33 (8' 0")
Į	27 (8' 0")
_	
	28 (8' 0")
	29 (8' 0")
	23 (2' 8")
	20 (8' 0")
	21 (8' 0")
	22 (8' 0")
27	24 (8' 3")
-	25 (8' 0")
)	26 (8' 0")
,	
	12 (8' 0")
	13 (6' 8") 14 (2' 8")
	15 (8' 5-1/2")
	16 (8' 0")
	16 (8' 0")
	16 (8' 0") 17 (8' 0")
	16 (8' 0") 17 (8' 0") 18 (8' 0") 19 (8' 0")
	16 (8' 0") 17 (8' 0") 18 (8' 0") 19 (8' 0")
	16 (8' 0") 17 (8' 0") 18 (8' 0") 19 (8' 0") 6 (8' 0") 7 (2' 11-1/2")
2002	16 (8' 0") 17 (8' 0") 18 (8' 0") 19 (8' 0") 6 (8' 0") 7 (2' 11-1/2")
200	16 (8' 0") 17 (8' 0") 18 (8' 0") 19 (8' 0") 6 (8' 0") 7 (2' 11-1/2")
222	16 (8' 0") 17 (8' 0") 18 (8' 0") 19 (8' 0") 9 (4' 6") 7 (2' 11-1/2") 8 (8' 0") 10 (7' 6")

L3-1: IntelliBuild	1						
	36 (8′ 0″)						
	37 (8′ 0″)						
	38 (8′ 0″)						
	31 (8' 0")		LARLACK A				
	32 (8' 0")						
	33 (8' 0")	3000000000000000000000000000000000000					
	35 (7′ 6″)				34 (4' 0")		
	39 (8' 0")	~~~~~~	~~~~				-
200000000000000000000000000000000000000	40 (8' 0")		*****				
**********	41 (6' 8")						
			*****	Ξ.			
·	25 (8' 0")	VAXXAXXXXXXXX	******	5			
200000000000000000000000000000000000000	26 (8' 0")	********	KHKKKKK	3			
***************	27 (8' 0")		*****	_			
	20 (8' 0")	*********	****	5			
~~~~~	21 (8' 0")	~~~~~~	~~~~				
	22 (8' 0")		,,,,,,,,,,			~~~~	
	24 (8' 3")				23 (2' 8")		
	28 (8' 0")						
	29 (8' 0")			2			
	30 (8' 0")						
				_			
<del>*************************************</del>	16 (8' 0")		77777	-			
	17 (8' 0")	*******	*****				
	18 (8' 0")	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	~~~~				
	8 (8' 0")	~~~~~~~~~~~		7	(2' 11-1/2")		
***************************************	10 (7' 6")	0000000000			9 (4' 6")		2212
VAAAAAAAAAAAAAAAAAA	11 (8' 0")	AAAAAAAAA	~~~~		8 6		
	12 (8' 0")	***************************************					
	13 (6' 8")	2					
	15 (8' 5-1/2")		~~~~~~		14 (2' 8")		
*************	19 (8' 0")		*****		(20)	ă	J
	17 17 4 V						

3 (8' 0")	
4 (8' 0")	
1 (8' 0")	
2 (8' 0")	<del>202002020202020</del>
5 (8' 0")	
6 (8' 0")	***************
	J,
108 (6' 8")	
110 (8' 0")	109 (2' 4")
111 (5' 6")	
105 (7' 10")	
106 (8' 0")	
107 (8' 0")	
112 (8' 0") 113 (5' 9-1/2")	
1 100 40 100 100 100 100 100 100 100 100	
90 (6' 8")	
90 (6' 8")	91 (2' 0")
90 (6' 8") 92 (8' 0")	91 (2' 0")
90 (6' 8") 92 (8' 0") 93 (8' 0")	91 (2' 0")
90 (6' 8") 92 (8' 0") 93 (8' 0") 94 (8' 0")	91 (2' 0")
90 (6' 8") 92 (8' 0") 93 (8' 0") 94 (8' 0") 95 (8' 0")	91 (2' 0")
90 (6' 8")  92 (8' 0")  93 (8' 0")  94 (8' 0")  95 (8' 0")  96 (8' 0")	91 (2' 0")
90 (6' 8")  92 (8' 0")  93 (8' 0")  94 (8' 0")  95 (8' 0")  96 (8' 0")  84 (6' 2")	91 (2' 0")
90 (6' 8")  92 (8' 0")  93 (8' 0")  94 (8' 0")  95 (8' 0")  96 (8' 0")  84 (6' 2")  85 (8' 0")	91 (2' 0")
90 (6' 8")  92 (8' 0")  93 (8' 0")  94 (8' 0")  95 (8' 0")  96 (8' 0")  84 (6' 2")  85 (8' 0")	
90 (6' 8")  92 (8' 0")  93 (8' 0")  94 (8' 0")  95 (8' 0")  96 (8' 0")  84 (6' 2")  85 (8' 0")  86 (6' 8")  88 (7' 8-1/2")	91 (2' 0") 87 (2' 0")
90 (6' 8")  92 (8' 0")  93 (8' 0")  94 (8' 0")  95 (8' 0")  96 (8' 0")  84 (6' 2")  85 (8' 0")  86 (6' 8")  88 (7' 8-1/2")  89 (8' 0")	
90 (6' 8")  92 (8' 0")  93 (8' 0")  94 (8' 0")  95 (8' 0")  96 (8' 0")  84 (6' 2")  85 (8' 0")  86 (6' 8")  88 (7' 8-1/2")  89 (8' 0")  97 (8' 0")	
90 (6' 8")  92 (8' 0")  93 (8' 0")  94 (8' 0")  95 (8' 0")  96 (8' 0")  84 (6' 2")  85 (8' 0")  86 (6' 8")  88 (7' 8-1/2")  89 (8' 0")  97 (8' 0")  98 (8' 0")	
90 (6' 8")  92 (8' 0")  93 (8' 0")  94 (8' 0")  95 (8' 0")  96 (8' 0")  84 (6' 2")  85 (8' 0")  86 (6' 8")  88 (7' 8-1/2")  89 (8' 0")  97 (8' 0")  98 (8' 0")  99 (8' 0")	87 (2' 0")
90 (6' 8")  92 (8' 0")  93 (8' 0")  94 (8' 0")  95 (8' 0")  96 (8' 0")  84 (6' 2")  85 (8' 0")  86 (6' 8")  88 (7' 8-1/2")  89 (8' 0")  97 (8' 0")  98 (8' 0")	

71 (8' 0")		70 (1' 8"
72 (6' 6")		,,,,
73 (8' 0")		
74 (8' 0")		
75 (6' 8")		
77 (6' 8")	7	'6 (2' 6")
64 (8' 0")		
65 (8' 0")		_
66 (6' 2")		
67 (6' 8")		
69 (6' 8")	68 (1'	8")
78 (8' 0")	2-1-	
79 (8' 0")		
80 (8' 0")		
81 (8' 0")		
82 (8' 0")		
83 (8' 0")		
51 (8' 0") 53 (6' 2")		50 (2' 0")
53 (6' 2")		
	52 (2' 0")	
54 (8' 0")	52 (2' 0")	
54 (8' 0") 44 (8' 0")	52 (2' 0")	
54 (8' 0") 44 (8' 0") 45 (8' 0")	52 (2' 0")	
54 (8' 0") 44 (8' 0") 45 (8' 0") 46 (8' 0")	52 (2' 0")	
54 (8' 0") 44 (8' 0") 45 (8' 0")	52 (2' 0")	
54 (8' 0") 44 (8' 0") 45 (8' 0") 46 (8' 0") 47 (8' 0")	52 (2' 0")	
54 (8' 0") 44 (8' 0") 45 (8' 0") 46 (8' 0") 47 (8' 0") 48 (5' 5-3/4")	52 (2' 0")	
54 (8' 0")  44 (8' 0")  45 (8' 0")  46 (8' 0")  47 (8' 0")  48 (5' 5-3/4")  55 (8' 0")  56 (8' 0")  57 (8' 0")	52 (2' 0")	
54 (8' 0")  44 (8' 0")  45 (8' 0")  46 (8' 0")  47 (8' 0")  48 (5' 5-3/4")  55 (8' 0")  56 (8' 0")  57 (8' 0")  58 (8' 0")	52 (2' 0")	43 (2' 1-3/4")
54 (8' 0")  44 (8' 0")  45 (8' 0")  46 (8' 0")  47 (8' 0")  48 (5' 5-3/4")  55 (8' 0")  56 (8' 0")  57 (8' 0")  60 (8' 0")	52 (2' 0")	
54 (8' 0")  44 (8' 0")  45 (8' 0")  46 (8' 0")  47 (8' 0")  48 (5' 5-3/4")  55 (8' 0")  56 (8' 0")  57 (8' 0")  58 (8' 0")  60 (8' 0")  61 (8' 0")	52 (2' 0")	43 (2' 1-3/4")
54 (8' 0")  44 (8' 0")  45 (8' 0")  46 (8' 0")  47 (8' 0")  48 (5' 5-3/4")  55 (8' 0")  56 (8' 0")  57 (8' 0")  58 (8' 0")  60 (8' 0")  61 (8' 0")  62 (8' 0")	52 (2' 0")	43 (2' 1-3/4")
54 (8' 0")  44 (8' 0")  45 (8' 0")  46 (8' 0")  47 (8' 0")  48 (5' 5-3/4")  55 (8' 0")  56 (8' 0")  57 (8' 0")  58 (8' 0")  60 (8' 0")  61 (8' 0")	52 (2' 0")	43 (2' 1-3/4")
54 (8' 0")  44 (8' 0")  45 (8' 0")  46 (8' 0")  47 (8' 0")  48 (5' 5-3/4")  55 (8' 0")  56 (8' 0")  57 (8' 0")  58 (8' 0")  60 (8' 0")  61 (8' 0")  62 (8' 0")	52 (2' 0")	43 (2' 1-3/4")
54 (8' 0")  44 (8' 0")  45 (8' 0")  46 (8' 0")  47 (8' 0")  48 (5' 5-3/4")  55 (8' 0")  56 (8' 0")  57 (8' 0")  58 (8' 0")  60 (8' 0")  61 (8' 0")  62 (8' 0")	52 (2' 0")	43 (2' 1-3/4")

```
L3-1: Proposed algorithm
** Nzones
5
**zone
             left edge X coordinate
 1 2 3
           6.0 210.0
           438.0
654.0
 4
 5
            790.0
** NStacks
13
                                                                                 panels
1 24
1 25
1 35
1 36
1 37
1 38
1 39
** # zone type edge xloc yloc #layers j
1 1 A RIGHT 114.0 78.0 12
                                                                      #panels
                                                                                                 orientation
                                                                        6
7
8
9
                                                                                         40
                                                                                         41
                                                                       10
                                                                       11
                                                                                         43 42
                                                                                        44
45
                                                                       12
3
4
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
                    Α
                             RIGHT 114.0 78.0
                                                                                         50 49
                                                                                                           22
                                                                                         46
                                                                                        52 51
                                                                                                           2 2
                                                                                                           2 2 1
                                                                                        26
27
54
      3
             2
                    Α
                             RIGHT 330.0 78.0
                                                              16
                                                                                        60
55
                                                                                        68 67
61
                                                                                                           22
                                                                                                            1
                                                                                        56
70 69
                                                                                                           22
                                                                                        62
57
63
59 58
64
71
72
65
73
53
47
                                                                                                            1
                                                                                 1
2
1
                                                                                                           1 1
                                                                                                            16
             2
                    A
                             RIGHT 330.0 78.0
             2
                    В
                             LEFT
                                        330.0 90.0
                                                               4
                                                                        1
2
3
                                                                                        48
2
28
29
74
76 75
                    Α
                             RIGHT 546.0 48.0
                                                               5
                                                                        1
2
3
4
5
1
2
3
4
5
6
7
8
9
                                                                                         83
             3
                    В
                             LEFT
                                        546.0 90.0
                                                              10
                                                                                         3
                                                                                         67
8
9
                                                                                                           33
                                                                                         82
                                                                                         66
77
                                                                                                            1
                                                                       10
                                                                                         84
```

L3-1	: Proj	posed a	algoritl	nm							
	8	4	A	RIGHT	762.0	48.0	16	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1	30 31 32 78 92 79 93 80 85 87 86 81 88 94 89	2 2 2 1 1 1 1 1 2 2 2 2 1 1 1 1 2 2 2 2
	9	4	A	RIGHT	762.0	48.0	2	16 1	1	95 96	1 1
1	.0	4	В	LEFT	762.0	90.0	2	2 1 2	1	97 10	3
	1	5	A	RIGHT	898.0	48.0	14	2 1 2 3 4 5 6 7 8 9 10 11 12 13 14	1 1 1 1 1 1 1 1 1 1 2 1 2 1 2	11 33 34 15 16 17 18 19 20 21 23 22 12 14 13 104 105	1 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
	2	5	A	RIGHT	898.0	48.0	7	1 2 3 4 5 6 7	1 1 1 2 1 1	106 107 110 111 109 108 112 113	3 3 2 2 2 2 2 2 2 2 2 3 3 3 1
1	.3	5	В	LEFT	898.0	90.0	6	1 2 3 4 5 6	1 1 1 1 1 1	101 102 98 100 99 103	3 3 1 1 1 2

L3-2

















```
L3-2: Proposed algorithm
 ** Nzones
 **zone left edge X coordinate
1 6.0
2 211.0
   2
            438.0
  4 5
            654.0
790.0
 ** NStacks
** stack

** # zone type edge xloc yloc #layers j #panels panels

1 1 A RIGHT 114.0 78.0 13 1 1 20

2 1 29
3 1 30
4 1 31
5 1 32
6 1 33
7 1 34
0 1 1
 11
                                                                                                         orientation 2
                                                                             2
3
4
5
6
7
8
9
10
                                                                                                                     1
1
                                                                                                                     1
                                                                                                                     1 2
                                                                                                36 35
37
                                                                                                                    22
                                                                                                                    1 2 2
                                                                                                42 41
                                                                             11
                                                                             12
                                                                                                38
                                                                                                                     1
                                                                                                                     \begin{smallmatrix}1\\2&2\end{smallmatrix}
        2 1 A RIGHT 114.0 78.0
                                                                  1
                                                                                                44 43
```

L3-2: Proposed algorithm										
3	2	A	RIGHT	330.0	78.0	14	1 2 3 4 5 6 7 8 9	1 1 1 1 1 1 1 1 1	21 22 46 57 51 47 52 48 58 53	2 2 1 2 1 1 1 1 2 1 2
4 5	2 3	B A	RIGHT	330.0 546.0	90.0 78.0	2 2	11 12 13 14 1 2 1 2	2 1 1 1 1 1 1 1	50 49 54 59 60 45 40 23 24	1 1 1 2 2 1 1 2 2
6	3	В	LEFT	546.0	90.0	13	1 2 3 4 5 6 7 8 9 10 11	1 1 2 1 1 1 1 1 2 1	2 3 4 5 6 7 8 55 61 62 63 56 64	2 3 3 3 3 3 1 1 1 1 2 2 2 1
7	4	A	RIGHT	762.0	48.0	15	12 13 1 2 3 4 5 6 7 8 9 10 11 12 13	1 1 1 1 1 1 1 1 1 1 1	69 70 25 26 65 76 66 77 71 72 73 74 75 78	1 1 2 2 1 1 1 1 1 1 2 2 2 1 1 2 1 1 1 1
8	4	В	LEFT	762.0	90.0	2	14 15 1	1 1 1	68 79 9	1 1 3
9	5	A	RIGHT	898.0	48.0	15	2 1 2 3 4 5 6 7 8 9 10 11 12 13	1 1 1 1 1 1 1 1 1 1 1 1	10 27 28 13 14 15 16 17 18 19 11 12 85 86	3 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
10	5	A	RIGHT	898.0	48.0	5	14 15	1 1 1 1 1	87 90 91 88 89	2 2 2 2 2 2
11	5	В	LEFT	898.0	90.0	5	1 2 3 4 5 1 2 3 4 5	1 1 1 1 1	92 93 83 80 82 81 84	2 3 1 1 1 2

L3-3









L3-3: IntelliE	Build									
24	(4' 0")									
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	25 (11' 6")				~~~~~				
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		26 (12' 0")	<del>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</del>	**************************************	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~					
	20 (12' 0")									
*******	21 (12' 0")									
****************	22 (10' 8")									
	23 (10' 8")									
		27 (12' 0")		***********	~~~~~~~~~	~~~~~~~~				
		28 (12' 0")								
*************	29 (6' 8")									
			-							
***************************************	<del>&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;</del>	14 (12' 0")	***************	***************************************		************				
15 (12' 0")										
	16 (8' 0")									
		10 (9' 4")								
		11 (11' 1-1/2")								
		12 (12' 0")								
		13 (12' 0")								
		17 (10' 11")								
		18 (12' 0")								
		19 (12' 0")								
				AAAAAAAAA						
		4 (12' 0")								
5 (2' 11-1/2"		*******************************		************	***************************************					
		6 (10' 8")								
7 (1' 10")				******						
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		1 (12' 0")		~~~		~~~~				
	********	2 (12' 0")	*****	*****	******	****				
	VVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVV	3 (12' 0")								
***************************************		8 (11' 6")			AAAAAAAAAAA					
		9 (12' 0")	9 (12' 0")							



```
L3-3: Proposed algorithm
** Nzones
**zone
                 left edge X coordinate
              6.0
226.5
446.9
667.4
785.5
 1
 2
3
4
5
** NStacks
10
** stack
** # zone type edge xloc yloc #layers j
1 1 A RIGHT 116.2 87.3 11
                                                                                   #panels
                                                                                                  panels
                                                                                                                      orientation
                                                                                                           25
26
27
                                                                                                           28
29
                                                                                                                                   1
2
1
2
1
2
1
2
1
2
1
2
1
                                                                                                           30
31
35
                                                                                                           32
18
19
                                                                                      11
                                   RIGHT 336.7 87.3
                                                                            13
                                                                                                           38
                                                                                                           47
                                                                                                           42
                                                                                                           39
                                                                                                                                  1
2
1
1
1
1
2
2
2
1
1
1
1
2
3
3
3
3
1
                                                                                                           48
43
                                                                                                           40
                                                                                                           44
41
                                                                                      10
11
12
13
1
2
3
4
                                                                                                           49
50
36
37
33
34
20
2
3
4
5
6
7
45
       3
                2
                         В
                                   LEFT
                                                 336.7 99.3
                                   RIGHT 557.1 87.3
LEFT 557.1 99.3
                                                                           1
13
                         A
B
                                                                                                                                1
1
2
2
2
2 1
                                                                                                         51
52
53 46
                                                                                    10
                                                                                    11
12
                                                                                                        54
58
59
21
22
55
65
56
                                                                                    13
                         A
                                   RIGHT 777.6 57.3
                                                                            13
                                                                                                                                   1
2
2
1
1
                                                                                                           60
                                                                                                           61
57
62
66
63
64
67
8
                                                                                      10
11
                                                                                                                                   1
2
2
1
3
                                                                                      12
13
1
       7
                         В
                                   LEFT 777.6 99.3
```

8	5	Α	RIGHT	895.8	57.3	15	1	1	23	2
0	5		MOIII	0,5.0	57.5	10		1	24	2 2 2 2 2 2 2 2 3 3 2 2 2 2 2 2 2 2 2 2
							2 3 4	î	11	$\frac{2}{2}$
							4	ī	12	2
							5	1	13	2
							6	1	14	2
							6 7	1	15	2
							8	1	16	2
							9	1	9	3
							10	1	10	3
							11	1	73	2
							12	1	74	2
							13	1	75	2
							14	1	78	2
	_		D. C. C. C.	0050			15	1	79	2
9	5	Α	RIGHT	895.8	57.3	4	1	1	76	2
							2 3	1	77	2
							3 4	1	80	2
10	5	D	LEFT	905.9	00.2	_		1	81 71	2
10	3	В	LEFI	895.8	99.3	5	1	1 1	68	1
							2 3 4 5	1	70	1
							1	1	69	
							5	1	72	1 2
							5	1	, 2	_

## L4-1





L4-1: Panel Designer				
35 (8' 0")				
36 (8' 0")				
37 (8' 0")	***************************************			
38 (8' 0")	***************************************			
31 (8' 0")	***************************************			
32 (8' 0")	***************************************			
33 (8' 0")				
34 (8' 0")				
	<b>a</b>			
26 (2' 8")				
23 (8' 0")				
24 (8' 0")				
25 (8' 0")				
27 (8' 11")				
28 (8' 0")				
29 (8' 0")				
30 (8' 0")	********************************			
14 (8' 0")				
15 (8' 0")				
16 (6' 8")	17 (2' 8")			
18 (7' 11-1/2")	********			
19 (8' 0")	***************************************			
20 (8' 0")				
21 (8' 0")				
22 (8' 0")	***************************************			





L4-1: IntelliBui	ld								
	40 (7' 6")		39 (4	' 0")					
	41 (8' 0")								
	42 (8' 0")								
	35 (8' 0")								
	36 (8' 0")								
	37 (8' 0")								
	38 (8' 0")								
	43 (8' 0")								
	44 (8' 0")								
46 (2' 0")	45 (8' 0")	<u> </u>	******						
		~~~~~							
***************************************	29 (8' 0")	AAAAAAA							
***************************************	30 (8′ 0″)	******							
	31 (8' 0")								
	24 (8' 0")								
***************************************	25 (8' 0")								
	27 (8' 11")	***************************************		26 (2' 8")					
***************************************	28 (8' 0")	******							
	32 (8' 0")	*****							
	33 (8. 0)								
	34 (8' 0")								
***************************************	18 (7 [°] 11-1/2")	***************************************	· · · · · · · · · · · · · · · · · · ·	17 (2' 8")					
	19 (8' 0")		L						
***************************************	20 (8' 0")	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,							
	13 (7' 6")		12 (2' 0")						
	14 (8' 0")	****							
	15 (8' 0")								
**************************************	16 (6' 8")	. R H A H A A H A H B B							
AAAAAAAAAAAAAAA	21 (8' 0")								
***************************************	22 (8' 0")	*****************							
	23 (8' 0")								

<i>A</i> -1: IntelliBuild		
5 (8° 0")		
6 (8' 0")	***************************************	
7 (8' 0")		
1 (8' 0")		
2 (8' 0")		

3 (8' 0")	***************************************	
4 (8' 0")		
8 (8' 0")		
10 (8' 0")	**************	9 (3' 7-1/2")
11 (6' 8")	****	
110 (2' 2")		
110 (2' 2")		
96 (8' 0")		
97 (8' 0")		
98 (6' 8")		
100 (8' 0")		99 (2' 8")
101 (8' 0")	<i>77</i>	
102 (6' 7-3/4")		
90 (8' 0")		
91 (8' 1-1/2")		
92 (8' 0")		
93 (6' 8")		
95 (8' 0")		94 (2' 0")
103 (8' 0")		
104 (8' 0")		
106 (8' 0")		105 (3' 0-1/4")
107 (8' 0")		
108 (8' 0")		
109 (6' 8")		
77 (6' 8")		
79 (8° 0")		78 (2' 0")
80 (8' 0")		10(20)
81 (4' 11-1/2")		<u> </u>
82 (8' 0")		
83 (8' 0")		1
70 (8' 0")		
71 (8' 0")		
73 (8' 0")		72 (2' 5-1/4")
74 (6' 8")		12 (2 3-114)
	2.1	75 (0) 0%
76 (8' 0")		75 (2' 0")
84 (8' 0")		
85 (4' 7-3/4")		
86 (8' 0")		
87 (8' 0")		
88 (4' 11-3/4")		
89 (8' 0")		

55 (8' 0")	54 (1' 7-1/2")
56 (6' 8")	
58 (8' 0")	57 (1' 8")
59 (8' 0")	
60 (6' 8")	
62 (8' 0")	61 (2' 4")
48 (6' 8")	
50 (8' 0")	49 (1' 8")
51 (8' 0")	
52 (8' 0")	
53 (8' 0")	
63 (8' 0")	
64 (8' 0")	
66 (8' 0")	65 (1' 1-3/4")
67 (8' 0")	
68 (8' 0")	
69 (8' 0")	
24 - 77	
47 (8' 0")	

L4-1: Pro	opose	d algori								
3	2	Ä	RIGHT	330.0	78.0	12	1 2 3 4 5 6 7 8 9 10	1 1 1 2 1 1 2 1 1 2 1 2	29 30 58 59 61 60 66 73 75 74 79 76 78 77	2 2 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2
4 5	2 3	B A	LEFT RIGHT	330.0 546.0	90.0 78.0	1 5	12 1 1 2 3 4	1 2 1 1 1	80 2 54 31 32 67 68	1 2 1 2 2 2 2 2
6	3	В	LEFT	546.0	90.0	5	5 1 2 3 4	1 1 1 1	69 3 4 5	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
7	4	A	RIGHT	762.0	78.0	8	5 1 2 3 4 5 6	1 1 1 1 1 1 2	6 81 33 34 35 62 63 65 64	2 2 1 1 1 1
8	4	В	LEFT	762.0	90.0	7	7 8 1 2 3 4 5 6	1 2 1 2 1 2 1 1	70 72 71 7 8 9 10 11 12 13 36	2 22 2 2 2 2 1 1 1 1 3 2
9	5	A	RIGHT	978.0	78.0	8	7 1 2 3 4 5 6	1 1 1 1 1 2 1	88 37 95 96 97 99 98 100	1 2 1 1 1 1 1 2
10 11	5 6	B A	LEFT RIGHT	978.0 1092.0	90.0) 48.0	1 14	7 8 1 1 2 3 4 5 6 7 8 9 10 11 12	1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 2 1 2 1	87 103 14 38 39 18 19 20 21 22 23 24 26 25 15 17 16	1 1 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
12	6	A	RIGHT	1092.0) 48.0	9	13 14 1 2 3 4 5 6 7	1 2 1 1 1 1 1 1 1	92 94 93 82 83 84 85 86 89 101	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
13	6	В	LEFT	1092.0	90.0	7	8 9 1 2 3 4 5 6 7	1 1 2 1 1 1 1 1	102 90 91 104 105 106 107 110 109	2 1 1 1 1 3 2 2 2 2 2

L4-2

	L4-2: Panel Designer	***************************************	××××××××××××××××××××××××××××××××××××××							
	************************	27 (9' 4")	******							
		28 (9' 4")								
		29 (9' 4")								
		23 (9' 4")								
	***************************************	24 (10' 8")								
	<u> </u>	25 (9' 4")								
		26 (10' 8")								
		<u> </u>								
-		20 (6' 8")		797						
		16 (10' 8")								
DO		17 (9' 4")		***						
		18 (10' 8")								
		19 (9' 4")								
	21 (10' 3")									
		22 (9' 4")								
	***************************************		0.3.3.6.3.4.3.6.3.4.3.6.3.6.3.6.3.6.3.6.3							
272	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	9 (6' 0")	13 (2' 8")	_						
		8 (10' 8")								
5000		8 (10' 8") 10 (10' 2")								

000		10 (10' 2")								
		10 (10' 2") 11 (10' 8")								
200		10 (10' 2") 11 (10' 8") 12 (9' 4")								
		10 (10' 2") 11 (10' 8") 12 (9' 4") 14 (9' 3-1/2") 15 (10' 8")								
		10 (10' 2") 11 (10' 8") 12 (9' 4") 14 (9' 3-1/2") 15 (10' 8") 7 (7' 7-1/2")								
		10 (10' 2") 11 (10' 8") 12 (9' 4") 14 (9' 3-1/2") 15 (10' 8") 7 (7' 7-1/2") 1 (9' 4")		_						
		10 (10' 2") 11 (10' 8") 12 (9' 4") 14 (9' 3-1/2") 15 (10' 8") 7 (7' 7-1/2") 1 (9' 4") 2 (10' 8")		_						
		10 (10' 2") 11 (10' 8") 12 (9' 4") 14 (9' 3-1/2") 15 (10' 8") 7 (7' 7-1/2") 1 (9' 4") 2 (10' 8") 3 (9' 4")		_						
		10 (10' 2") 11 (10' 8") 12 (9' 4") 14 (9' 3-1/2") 15 (10' 8") 7 (7' 7-1/2") 1 (9' 4") 2 (10' 8") 3 (9' 4") 4 (10' 8")		_						
		10 (10' 2") 11 (10' 8") 12 (9' 4") 14 (9' 3-1/2") 15 (10' 8") 7 (7' 7-1/2") 1 (9' 4") 2 (10' 8") 3 (9' 4")								

	L4-2: IntelliBuild							
	31 (4' 0")							
		32 (10' 2						
ZXXX	33 (9' 4")							
	27 (9' 4")							
	28 (9' 4")							
	29 (9' 4")							
		0 (9' 4")						
	34	4 (9' 4")						
***		35 (1	0' 8")		************			
50000		36 (10' 0"	')					
<u></u>								
	21 (10' 3")							
	22 (9' 4")							
Rana	23 (9' 4")							
	17 (9' 4")							
		18 (10						
		9 (9' 4")	******					
	20 (6' 8")		A			***************************************		
	<u> </u>	24 (10						
		5 (9' 4")			***************************************			
		26 (10	0' 8")	THE STANDARD SERVICE ST	200000000000000000000000000000000000000			
*********	10 (10	0' 2")						
*****	***************************************					3		
.477474	12 (9' 4")			~~~~~		1		
	6	(10' 8")				-		
	7 (7' 7-1/2")		**********			3		
	8	(10' 8")						
	9 (6' 0")		*		******			
	14 (9' 3-1/2")	· · · · · · · · · · · · · · · · · · ·	***************			13 (2' 8")		
****	***************************************			******************* *	******	3		
	16 (10' 8")							

L4-2: Pro	oposeo	d algori	thm							
2	2	A	RIGHT	330.0	78.0	12	1 2 3 4 5 6 7 8 9 10	1 1 1 1 1 1 1 1 1 1	22 23 45 46 47 51 57 58 59 60 61	2 2 1 1 1 2 2 2 2 2 2 1
3 4	2 3	B A	LEFT RIGHT	330.0 546.0	110.0 78.0	1 4	12 1 2 3	1 1 1 1	62 42 24 25 52	1 1
5	3	В	LEFT	546.0	110.0	4	4 1 2 3	1 1 1 1	53 2 3 4	2 2 2 2 2 2 2 2 2 2 2
6	4	A	RIGHT	762.0	78.0	4	4 1 2 3	2 1 1 1	5 63 26 27 54	2 1 2 2 2 2
7	4	В	LEFT	762.0	110.0	9	4 1 2 3 4	2 1 1 1 1	56 55 6 7 8 9	2 2 2 2 1 1
8	5	A	RIGHT	978.0	48.0	8	5 6 7 8 9 1 2 3 4 5 6	1 1 1 2 1 1 1 1 1	10 28 48 49 50 69 29 75 76 77 78 79	3 2 1 1 1 1 2 1 1 1 1 2
9 10	5 6	B A	LEFT RIGHT	978.0 1092.0	90.0 48.0	1 15	7 8 1 2 3 4 5 6 7	1 1 2 1 1 1 1 1	68 82 11 31 30 14 15 16 17 18 19	1 1 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
11	6	A	RIGHT	1092.0	48.0	4	8 9 10 11 12 13 14 15 1 2 3 4	1 1 1 1 1 1 1 1 1 1	20 12 13 73 74 64 65 66 67 70 80	2 3 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
12	6	В	LEFT	1092.0	90.0	7	4 1 2 3 4 5 6 7	1 1 1 1 1 1 1	81 71 72 83 84 85 87 86	1 1 1 3 2 2 2 2

L4-3

L4-3: Par	nel Designer	•								
	F	***************************************	~~~~	***************************************	17 (6		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			
*********		EXXXXXXXXX		CXXXXXX	18 (11	l' 7")	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	***************************************	**********	*******
podococococococo	******	*****	******	AAAAAAA	19 (12	2' 0")				
	******	**********	******	~~~~~~	20 (12	2' 0")	******			
************	(AXAAXAAXAXXXXXXXXXXXXXXXXXXXXXXXXXXXX	*************	(XXXXXXX	CAXXAXAX.	21 (12	2′ 0")	KARAARARAA	***************************************	***************************************	AARARARARARARA
					22 (12	2' 0")				
	******	***********	*****	*******	23 (12	2' 0")	**********	******	***********	*********
P-2	~~~~~~~~~	******	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	~~~~~~	~~~~~~~	~~~~~~~~~~	·~~~~~~~~		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	**************************************
	*****	*****	******	*****	11 (9' 4")	*****			***************************************
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<b>.</b>	<del>~~~~~</del>	~~~~~ <u>~</u>	12 (11'	11-1/2")	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
***********		**********			13 (1	2' 0")			**********	**************************************
****	****	AAAAAAAAAAA	****	~~~~~~	14 (1	2' 0")	*****	****		56888888888888888888888888888888888888
***************************************	<del>99999999999</del>		<del>,,,,,,,,,,</del>	<del></del>	15 (1	2' 0")	<del>~~~~~~~~</del>	~~~~~~~~~~	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	yyyyyyyyyyyyy
					16 (1	2' 0")				
				~^^^	^~^^^		<u> </u>			
	F				8 (	4' 8")	***********		-	
**********	*******	*********	*****	*******	***************	7-1/2")	*********	********	****************	
000000000000000000000000000000000000000			~~~~	~~~~~	5 (1	2' 0")		~~~~~~~~	XAXAXAAAAAAAA	
				********	7 (1	2' 0")	************	<del>~~~~~~</del>	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	***********	*********	********		9 (1	1' 6")			A A A A A A A A A A A A A A A A A A A	
					10 (	12' 0")				
************		************			3 (1	2' 0")			************	*************
	************	AAAAAAAAAA	********		4 (1	2' 0")	*********	<u> </u>		**************************************
					1 (1	2' 0")				
				~~~	2 (1	2' 0")				


L4-3: IntelliBuild									
26 (5' 4")									
	27 (11' 6")								
	28 (12' 0")								
22 (12' 0")									
	23 (12' 0")								
	24 (12' 0")								
	25 (12' 0")								
	29 (12' 0")								
	30 (12' 0")								
31 (2' 0")									
	16 (12' 0")								
17 (6' 8")									
	18 (11' 7")								
	19 (12' 0")								
***************************************	12 (11' 11-1/2")								
	13 (12' 0")								
	14 (12' 0")								
	15 (12' 0")								
***************************************	20 (12' 0")								
	21 (12' 0")								
6 (7' 7-1/2")									
	7 (12' 0")								
8 (4' 8")									
	2 (12' 0")								
	3 (12' 0")								
	4 (12' 0")								
	5 (12' 0")								
	9 (11' 6")								
	10 (12' 0")								
	(9' 4")								

L4-3: IntelliBuild	^^^^^		******		
	1 (12' 0")			
A2363G/246	63 (1	12' 0")			
64 (4' 8")	GE (1	2' 0")			
		2' 0")			
	67 (9' 4")				
		2' 0")			
58 (4' 7-3/4")					
		12' 0")			
	60 (8' 11-3/4")	12' 0")		1	
		2' 1-1/2")			
	69 (10' 7-3/4")	1 10 100			
		12' 0")			2
71 (7' 0-	1/4")				
		12' 0")			
		12' 0")		12	
	74 (8' 10")				
	46 (12' 0")			
		12' 0")			
		12' 0")			
49 (2' 5-1/4")					
112111122	50 (12' 0")			
51 (4' 8")					
41 (2' 4")	42 (12' 0")			
	43 (10' 8")	,			
44 (2' 5-3/4")	<u> </u>				
		12' 0")			
	52 (12' 0")			
53 (4' 8")	54 (12' 0")			
	55 (8' 11-1/2")	1201			
		12' 0")			
	57 (12" 0")			
	35	(12' 0")			
	36 (9' 7-1/2")				
		(12' 0")			
00 /41 483	32	(12' 0")			
33 (4' 4")	24	(12' 0")			
38 (4' 4")	34	(120)			
To All I	39	(12' 0")			
	40 (10' 8")	etimental strain			

```
L4-3: Proposed algorithm
** Nzones
**zone
             left edge X coordinate
             6.0
 2
           226.5
           446.9
 4 5
           667.4
           887.8
 6
           979.5
** NStacks
** stack
** #
1
                         flush
          zone type edge xloc yloc #layers j #panels panels 1 A RIGHT 116.2 77.3 13 1 1 1
                                                                                           orientation
                                                                   2
                                                                                  27
28
29
30
31
1
32
33
                                                                                                     1
                                                                                                    1
2
2
1
2
2
1
2
2
1
2
1
                                                                   8
                                                                                  34
37
                                                                  10
                                                                  11
                                                                  12
                                                                                  38
35
19
                                                                  13
                           RIGHT 336.7 77.3
            2
                                                          11
                                                                   1
2
3
4
                                                                                  20
                                                                                  39
                                                                                  40
                                                                                  41
                                                                                                   45
50
51
52
53
54
36
21
                                                                   8
                                                                  10
                                                                  11
            2
                   В
                           LEFT
                                      336.7
                                               119.3
                           RIGHT 557.1
                   A
                                               77.3
                                                                                  46
2
                                                                   2
            3
                   В
                           LEFT
                                      557.1 119.3
                                                                                                    3
4
55
22
23
42
43
44
47
48
     6
            4
                   A
                           RIGHT 777.6 77.3
                                                                   5
6
7
                                                                   8
                                                                                  49
5
6
7
8
9
                           LEFT
                                     777.6 119.3
            4
                   В
                                                                   2
3
4
5
                                                                                                    1
                                                                                                    1
2
1
                                                                                   60
                                                                                  24
65
                           RIGHT 998.1 57.3
     8
            5
                                                                                  66
59
67
                                                                                   70
                                                                                                     1
     9
                           LEFT
                                     998.1 99.3
```

L4-3: P	Proposed	d algori	thm							
10	6	A	RIGHT	1089.8	57.3	14	1 2 3 4 5 6 7 8 9 10 11 12 13 14	1 1 1 1 1 1 1 1 1 1 1 1	25 26 12 13 14 15 16 17 11 63 64 56 57 58	2 2 2 2 2 2 2 2 2 3 2 2 2 2 2 2 2 2 2 2
11	6	A	RIGHT	1089.8	57.3	2	1 2	1	61 69	2 2
12	6	В	LEFT	1089.8	99.3	5	1 2 3 4 5	1 1 1 1 1	62 71 72 73 74	1 1 3 2 2

L5-1

L5-1: Panel Designer					
	46 (4' 9-1/2")				
	40 (8' 0")				
	41 (8' 0")				
	42 (8' 0")		******		
*************	43 (8' 0")		***************************************		
	44 (8' 0")				
	45 (8' 0")				
	35 (4' 0")				
	32 (8' 0")	*************			
	33 (8' 0")	***************************************			
	34 (8' 0")				
36 (7' 6")					
37 (8' 0")					
38 (8' 0")					
39 (8' 0")					
	24 (2' 2")	~~~~			
	25 (8' 3")				
	26 (8′ 0")				
	27 (8' 0")	***********			
	28 (8' 0")				
	29 (8' 0")				
	30 (8′ 0")				
	31 (8' 0")		**************************************		

L	5-1: Panel Designer		***************************************	***************************************		
		16	6 (8' 6")			
	*****************	17	7 (8' 0")	***************************************		
		18	3 (8' 0")	***************************************		
-	19 (8' 0")					
200	20 (8' 0")					
		21	(8' 0")			
		22	2 (8' 0")			
		23	3 (8' 0")			
		<u></u>		******		
		15 (2' 1-1/2")	9 (2' 8")			
500	***************************************		8 (8' 0")		***************************************	
	***************************************	1	0 (8' 0")	***************************************	*********	
5.6.6	~~~	1	1 (8' 0")		***************************************	
	******************	1	2 (8' 0")	**************	**********	
8.8.8	***************************************	1	3 (8' 0")	***************************************	***************************************	
122	***************************************	1	4 (8' 0")	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	KKKKKKKK	
E			1 (7' 6")			
	***************************************	7 (6' 6")		6 (2' 2")		
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		2 (8' 0")	~~~	***	
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	3	3 (8' 0")		~~~	
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		4 (8' 0")		~~~	
		Ę	5 (8' 0")			



60 (2' 11-3/4")	
 55 (8' 0")	
56 (8' 0")	
57 (8' 0")	
58 (8' 0")	
59 (8' 0")	
61 (8' 0")	
62 (8' 0")	
47 (8' 0")	
48 (8' 0")	
49 (6' 8")	50 (2' 4")
51 (6' 8")	52 (1' 8")
53 (8' 0")	
54 (8' 0")	

L5-1: IntelliBuild
44 (91.0%)
41 (8' 0")
***************************************
42 (8' 0")
42 (8 0 )
43 (8' 0")
45 (6 0 )
37 (8' 0")
o, (o o )
38 (8' 0")
39 (8' 0")
40 (8' 0")
44 (8' 0")
502 97
45 (8' 0")
, , , , , , , , , , , , , , , , , , ,
46 (4' 9-1/2")

	L5-1: IntelliBuild			
	30 (8. 0.,)			
	31 (8' 0")			
	32 (8' 0")			
	26 (8' 0")			
	27 (8' 0")			
	28 (8' 0")			
	29 (8' 0")			
ľ	33 (8. 0.,)	20000		
	34 (8' 0")	^^^^		
	36 (7' 6")	**********	35	6 (4' 0")
		· · · · · · · · · · · · · · · · · · ·		
	19 (8' 0")	~~~~~		
	20 (8' 0")	~~~~~~~ <u>~</u>		
	21 (8' 0")			
	14 (8' 0")			
	16 (8' 6")			15 (2' 1-1/2")
	17 (8' 0")			
	18 (8' 0")	^^^^		
_	22 (8′ 0″)	*******		
	23 (8′ 0″)	AAAAAAA		
	25 (8' 3")	**********	******	24 (2' 2")
		~~~~		
	7 (6' 6")	6 (2' 2")	<u>~</u>	
	8 (8' 0")	CHRKKKKKKK	XXXXXXXXX	000000000000000000000000000000000000000
	10 (8' 0")		_	9 (2' 8")
	2 (8' 0")			
	3 (8' 0")			
	4 (8' 0")	~		
	5 (8' O")			
1	11 (8' 0")	~~~~~	~	20 (
	12 (8' 0")	******		
	13 (8' 0")	70000000000		

L5-1: IntelliBuild		
1 (7' 6")	****	A
96 (8' 0")		95 (1' 9-1/2")
97 (8' 0")		00 (1 0 112)
98 (6' 8")		
100 (8' 0")		99 (2' 0")
101 (8' 0")		7-1
102 (8' 0")		
89 (8' 0")		
90 (8' 0")		
92 (8' 0")		91 (2' 8")
93 (8' 0")		
94 (8' 0")		
103 (6' 8")		
105 (8' 0")		104 (2' 8")
106 (6' 8")		1
108 (8' 0")		107 (1' 8")
109 (6' 8")		
110 (1' 11-1/2")		
75 (6' 8")		
77 (7' 3-1/2")	7	6 (1' 9-3/4")
78 (8' 0")	J	
79 (8' 0")		1
80 (8' 0")		
81 (8' 0")		1
67 (6' 8")		
69 (8' 0")		68 (2' 5-3/4")
70 (6' 8")		
72 (6' 8")	71 (1' 8"))
74 (8' 0")	APT	73 (2' 1-1/4")
83 (8' 0")		82 (2' 5-1/2")
84 (8' 0")		
85 (8' 0")		
86 (8' 0")		7
87 (8' 0")		
88 (8' 0")		
53 (8' 0")		52 (1' 8")
54 (8' 0")		•
55 (8' 0")		
56 (8' 0")		
57 (8' 0")		
58 (8' 0")		
47 (8' 0")		
48 (8° 0") 49 (6° 8")		
51 (6' 8")	50 (2' 4")	
	50 (2-47)	
59 (8' 0")		60 (2' 11-3/4")
61 (8' 0") 62 (8' 0")		00 (2 11-3/4)
63 (6' 8")		
65 (8' 0")		64 (2' 4")
66 (8' 0")		THE PARTY AND TH

```
L5-1: Proposed algorithm
** Nzones
5
**zone
               left edge X coordinate
 2
            218.0
            438.0
 4
            654.0
            784.0
** NStacks
11
** stack
                           flush
           zone type edge xloc yloc #layers j
1 A RIGHT 114.0 48.0 11
                                                                        #panels panels 1 2
                                                                                                      orientation
                                                                                             26
                                                                                             36
                                                                                             37
38
                                                                           5
6
7
8
9
                                                                                             39
                                                                                            40
                                                                                            41
42
                                                                         10
11
                                                                                            42
43
44
46 45
47
                              RIGHT 114.0 48.0
                                                                                                                 1 1
2
2
2
2
2
2
2
2
3
2
2
1
                                                                           1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
9
                                                                                            48
61
                                                                                             62
                                                                                             65
                                                                                             66
                                                                                             1
27
28
53
54
69
                              RIGHT 330.0 48.0
             2
                                                                 16
                                                                                                                 1
                                                                                                                2 2
1 1
                                                                                             50 49
                                                                                             52 51
55
74
                                                                          10
                                                                                                                \frac{1}{2} 2
                                                                                             64 63
                                                                          11
                                                                                            56
77
57
78
58
79
59
                                                                          12
13
                                                                         14
15
16
1
2
3
4
             2
                              RIGHT 330.0 48.0
                     Α
                                                                                             80
                                                                                             60 81
                                                                                             68 67 82
                                                                                                               221
3
3
2
2
22
11
22
2
             2
                                          330.0 90.0
                     В
                              LEFT
                                                                 3
                                                                                             2
3
4
                                                                           1
2
3
1
2
3
4
5
6
7
1
                                                                                             29
30
             3
                              RIGHT 546.0 88.0
                      A
                                                                                             71 70
73 72
                                                                                             76 75
92
93
                                        546.0 130.0
                                                                   3
                                                                                                               3 3 1
2
2
             3
                     В
                              LEFT
                                                                                             569
                                                                                            8
7
                                                                           2
```

L5-1: P	roposed	d algori	thm							
8	4	A	RIGHT	762.0	88.0	16	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	31 32 33 83 84 85 96 86 100 87 101 88 102 89 104 103 95 94	2 2 2 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1
9 10	4 5	AAA	RIGHT RIGHT	762.0 892.0	88.0 88.0	1 15	1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	1 2 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1	90 35 34 16 17 18 19 20 21 22 24 23 10 11 12 13 15 14 97	1 22 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
11	5	A	RIGHT	892.0	88.0	6	1 2 3 4 5 6	1 2 1 2 1 2	99 98 105 107 106 108 110 109 91	2 2 2 2 2 2 2 2 2 2 2 2

L5-2

L5	3-2: Panel Designer							
			7 (4' 9-1/2")					
	***************************************		31 (9' 4")	***************************************	*******			
	32 (9' 4")							
			33 (10' 8")		<u> xonoxonodononex</u>			
			34 (9' 4")					
******			35 (10' 8")					
			36 (9' 4")		***************************************			
		***********	*************************					
******	~~~		28 (5' 4")	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			
		1	23 (10' 8")					
200			24 (10' 8")					
			25 (9' 4")					
			26 (10' 8")					
	020000004230023002300230023002		27 (9' 4")	200000000000000000000000000000000000000	XXXXXXXX			
	×^^^^		29 (10' 2")	~~~~~	~~~~~~			
*****	****************		30 (10' 8")	****	****			
					1			
,,,,,,,,,,			19 (7' 6")					
			15 (10' 8")					
		***********************	16 (9' 4")					
			17 (10' 8")					
			18 (9' 4")	<u> </u>				
			20 (9' 7")		XXXXXXXXXXXXXXXX			
			21 (9' 4")					
	***********************	***************************************	22 (9' 4")	*******************	*****			
	y L							

L5-2: IntelliBuild				
	22 (9' 4")			
	23 (10' 8")			
	24 (10' 8")		*************	************
	18 (9' 4")			
	9 (7' 6")	*************		
	20 (9' 7")			
	21 (9' 4")			A A
	25 (9' 4")	~~~~~~~~~~	· · · · · · · · · · · · · · · · · · ·	777
	26 (10' 8")	***************************************	· · · · · · · · · · · · · · · · · · ·	***************************************
	27 (9' 4")			
12 (3' 5-1/2")				
	13 (9' 10")	<u> </u>	<u> </u>	AAAAAAAAAAAA
	14 (9' 4")	TXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	***************	***
***************************************	8 (9' 4")			
***************************************	9 (9' 4")			
	10 (10' 8")		××××××××××××××××××××××××××××××××××××××	
************************************	11 (9' 4")	<u> </u>	***************************************	202
	15 (10' 8")	***************************************	***************************************	
	16 (9' 4")	******	*****	***
	17 (10' 8")	A0A0A0A0A0A0A0A0A0A0A0A0A0A0A0A0A0A0A0	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~
5 (2' 2")	***************************************	4 (9' 4")	A H R A H R A H R A H R A H R A H R A H	
***************************************	6 (10' 6")	***************************************	**************************************	
7 (6' 8")				
	1 (10' 2")	1		
	2 (9' 4")	***********	************	
	3 (10' 8")			

L5-2: IntelliBuild		
40 (5' 0")		
41 (8' 4")		
42 (9	COA)	
38 (9	4")	
	39 (10' 8")	

```
L5-2: Proposed algorithm
 ** Nzones
**zone
               left edge X coordinate
              6.0
214.0
438.0
654.0
784.0
  1
  2
  4
5
** NStacks
 10
** stack flush

** # zone type edge xloc yloc #layers j
1 1 A RIGHT 114.0 48.0 12
                                                                                   #panels panels
1 1 20
2 1 29
3 1 30
4 1 31
5 1 32
6 1 33
7 1 34
8 1 35
9 1 36
10 1 37
11 1 38
                                                                                                                     orientation
                                                                                                                                  38
48
51
                                                                                     11
                                   RIGHT 114.0 48.0
                                                                                                          21
22
                         Α
                                   RIGHT 330.0 48.0
                                                                                                          42
39
                                                                                                          40
41
43
54
                                                                                                          49
50
44
57
59
45
60
                                                                                     10
11
12
13
14
                                                                                     15
                                                                                                          46
61
                                                                                     16
                                   RIGHT 330.0 48.0
                2
                                                                                                          47
62
63
52
53
2
3
24
55
56
58
71
72
                                                                                                                                  1
2
2
3
3
2
2
2
1
2
2
2
2
                2
                                   LEFT 330.0 90.0
                                   RIGHT 546.0 88.0
```

L5-2: Pro	oposeo	d algori	thm							
7	3	В	LEFT	546.0	130.0	3	1	2	4 5	3 3
8	4	A	RIGHT	762.0	88.0	14	2 3 1 2 3 4	1 1 1 1 1	7 6 25 26 64 65	1 2 2 2 1 1
9	5	A	RIGHT	892.0	88.0	14	5 6 7 8 9 10 11 12 13 14 1 2 3 4 5 6 7 8		66 74 67 77 68 78 73 69 79 80 27 28 13 14 15 16 17 18	1 2 1 1 1 1 2 1 1 1
10	5	A	RIGHT	892.0	88.0	6	9 10 11 12 13 14 1 2 3 4 5	1 1 1 1 1 1 1 1 1 1 1 1 1	19 8 9 10 12 11 75 76 81 82 83 84 70	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

L5-3

	L5-3: Panel Designer	
	25 (12′ 0″)	277
	26 (12' 0")	
	27 (12′ 0″)	0000
2	28 (12' 0")	ZZZ.
=	29 (12′ 0″)	
	30 (11' 5-1/2")	2
		_
	18 (12' 0")	
	19 (12' 0")	
	20 (12' 0")	
	21 (12' 0")	
	22 (12' 0")	
	23 (12' 0")	
	24 (12' 10")	
	16 (6' 2")	
522	11 (12' 6")	~~~
	12 (12' 0")	
	13 (12' 0")	Z.
	14 (12'0")	Δ.
	15 (12' 0")	
2	17 (12' 3")	
L		
520	10 (6' 1-1/2") 6 (5' 4")	
	5 (11' 10")	
	7 (12' 0")	2
0000	8 (12' 0")	17
	9 (12' 0")	Ξ
		1
	4 (6' 2")	
	1 (11' 6")	
	2 (12' 0")	000
	3 (12'0")	**
	needote 555%	_

L5-3: IntelliBuild
25 (12' 0")
26 (12'0")
27 (12' 0")
21 (12'0")
22 (12' 0")
23 (12′0″)
24 (12′ 10")
28 (12′0″)
29 (12'0")
30 (11' 5-1/2")
15 (12' 0")
16 (6' 2")
17 (12' 3")
11 (12' 6")
12 (12' 0")
13 (12' 0")
14 (12' 0")
18 (12' 0")
19 (12' 0")
20 (12' 0")
5 (11' 10")
6 (5' 4")
7 (12' 0")
1 (11' 6")
2 (12' 0")
3 (12' 0")
4 (6' 2")
8 (12' 0")
9 (12'0")
10 (6' 1-1/2")

L5-3: IntelliBuild				
7	'3 (4' 7-1/2")			
	61 (12' 0") 62 (12' 0")			
63 (1' 9-1/2")	02 (12 0)			
AST COSCORATO	64 (12 0")			
	65 (10' 8")			
66 (2' 0")				
	56 (12' 0")			
	57 (12' 0") 58 (12' 0")			
	59 (12'0")			
	60 (6' 8")			
	67 (12' 0")			
	68 (12' 0")			
	69 (9' 4")			1
74 /41 48\	70 (12' 0")			
71 (4' 4")	72 (12' 0")			
	72(120)			
	43 (12' 0")			
	44 (10' 8")			
45 (2' 5-3/4")	100, 100, 100			1
	46 (12' 0")	į		
47 (4' 4")				
	48 (8' 9-1/4")			
	38 (12' 0") 39 (10' 11-3/4")	ž		_
	40 (12' 0")	i		
	41 (10' 8")			
42 (2' 4")	70 L 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
	49 (12' 0")			
	51 (7' 3-1/2")		50 (4' 5-3/4")	
	52 (12' 0")			
	53 (12' 0") 54 (10' 5-1/2")			
	55 (12' 0")			
	35 (12' 0")			
	36 (12' 0")			
	37 (12° 0°) 31 (12° 0°)			
	32 (10' 8")			
	34 (8' 4")		33 (2' 4")	1
1	The second secon			-

```
L5-3: Proposed algorithm
** Nzones
5
**zone
               left edge X coordinate
            6.0
226.5
446.9
667.4
779.5
 2
 4 5
** NStacks
9
                           flush
** # zone type edge xloc yloc #layers j
1 1 A RIGHT 116.2 57.3 12
                                                                          #panels panels
                                                                                                       orientation
                                                                                              17
                                                                                             24
25
26
27
28
29
30
31
40
                                                                                                                  1
2
2
2
3
2
1
2
                                                                          11
                                                                                             43
                                                                          12
                              RIGHT 336.7 57.3
                                                                                              18
                                                                                             19
                                                                            2
3
4
5
6
7
                                                                                             35
                                                                                             32
                                                                                             34 33
                                                                                                                 12
                                                                                             36
                                                                                                                  \begin{array}{c} 1\\2\\2\\1\\2\end{array}
                                                                                             41
                                                                          8
9
10
                                                                                             42
37
51
38
52
39
53
54
44
45
2
3
20
                                                                          11
12
13
14
15
                                                                                                                  1
                                                                                                                  1
                                                                                                                  1
                                                                                                                 16
      3
4
              2
                      A
B
                               RIGHT 336.7
                                                    57.3
99.3
                              LEFT
                                          336.7
                                                                            1
2
1
2
3
      5
              3
                               RIGHT 557.1 87.3
                      A
                                                                                             46
47
                                                                                             48
                                                                                             49
                                                                                             50
                                                                                             61
                                                                                             62
      6
                      В
                              LEFT 557.1 129.3
                                                                                               46
                                                                                             5
21
22
55
56
                               RIGHT 777.6 87.3
                                                                                             64
57
67
58
68
                                                                                             63
59
                                                                          10
                                                                          11
12
```

L5-3: Pr	oposed	l algori	thm							
8	5	A	RIGHT	889.8	87.3	13	1 2 3 4 5 6 7 8 9 10 11 12 13	1 1 1 1 1 1 1 1 1 1 1 1 1 1	23 11 12 13 14 15 16 7 8 9 10 65 66	2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2
9	5	A	RIGHT	889.8	87.3	5	1 2 3 4 5	1 1 1 1 1	70 71 72 73 60	2 2 2 2 1 2

References

- Ahuja, V., Thiruvengadam, V., 2004, "Project scheduling and monitoring: current research status," *Construction Innovation*, 4, 19-31.
- Annual Builder Practices Survey, NAHB Research Center, 2000.
- Astrokettle (2009). "Astrokettle Algorithms." http://www.astrokettle.com/ (April 1, 2009).
- Automated builder, Page 8, edition No.427, January 2007
- Beary, T.M., and Abdelhamid, T.S., 2005, "Production planning process in residential construction using lean construction and six sigma principles", Construction Research Congress 2005.
- Chantawit, D., Hadikusumo, B. Charoenngam, C. and Rowlinson, S., 2005, "4D CAD-Safety: visualizing project scheduling and safety planning," *Construction Innovation*, 5, 99-114.
- Cheng, H.C., Chiang, T.C., and Fu, L.C., 2009, "Multiobjective job shop scheduling using memetic algorithm and shifting bottleneck procedure", *Computational Intelligence in Scheduling*, IEEE Symposium on Apr, 2009, 15-21.
- Cheng, T.M., Feng, C.W., and Hsu, M.Y., 2006, "An integrated modeling mechanism for optimizing the simulation model of the construction operation," *Automation in Construction*, 15, 327-340.
- Cheng, M.Y., Tsai, M.H., and Xiao, Z.W., 2006, "Construction management process reengineering: Organizational human resource planning for multiple projects," *Automation in Construction*, 15, 785-799.
- Choo, H.Y., Tommelein, I.D., Ballard, G., & Zabelle, T.R. (1999), "WorkPlan: Constraint-based database for work package scheduling", *Journal of Construction Engineering and management*, 125(3), 151-160.
- David, G.C., 2005, "Ergonomic methods for assessing exposure to risk factors for work-related musculoskeletal disorders", *Occupational Medicne-Oxford*, *55*, *3*, 190-199.
- Fadier, E., Garza, C.D.L., 2006, "Safety design: Towards a new philosophy," *Safety Science*, 44, 55-73.
- Fourer, R., Gay, D.M., and Kernighan, B., 2003, "AMPL A Modeling Language for Mathematical Programming," 2nd Ed. Brooks/Cole Thomson Learning, Pacific Grove, CA.
- Gambatese, J. and Hinze, J., 1999, "Addressing construction worker safety in the design phase

- Designing for construction worker safety," Automation in Construction, 8, 643-649.
- Gomar, J.E., Haas, C.T. and Morton, D.P., 2002, "Assignment and Allocation Optimization of Partially Multiskilled Workforce," *Journal of Construction Engineering and Management*, 128, 103-109
- Guo, C., and Shewchuk, J.P., 2009, "Panel Stacking In Residential Construction Using Prefabricated Panels: A Lean Approach", *submitted to Journal of Construction Engineering and Management*.
- Hegazy, T., and Elbeltagi, E., 1999, "EvoSite: Evolution-based model for site layout planning", *Journal of Computing in Civil Engineering*, 13 (3), 198–206.
- Hifi, M., and M'Hallah, R., 2006, "Strip generation algorithms for constrained two-dimensional two-staged cutting problems", *European Journal of Operations Research*, 172, 515-527.
- Hu, W., 2005, "Automatic construction process of prefabricated buildings on geometric reasoning", *Construction Research Congress* 2005.
- Jang, H., Lee, S., and Choi, S., 2007, "Optimization of floor-level construction material layout using Genetic Algorithms", *Automation in Constructions*, 16, 531-545.
- Lndow E.S., and Jasinski, J.F., 2003, "Performance of Exterior Building Walls", *Book series:* American Society for Testing and Material Special Technical Publication. Volume: 1422, 231-241.
- Louis, M.J., 1999, "Prefabricated brick wall panels: Economy or nightmare?", *Book series:* American Society for Testing and Material Special Technical Publication. Volume: 1352, 215-226.
- Kim, S., Jia, B. & Nussbaum, M.A., 2009, "Perceived physical demands during residential construction using panelized walls", *Proceedings of the Industrial Engineering Research Conference (IERC)*, Miami, FL, May 30 June 2, 931-936.
- Kim, S., Seol, H., Ikuma, L.H., and Nussbaum, M.A., 2008, "Knowledge and Opinions of Designers of Industrialized Wall Panels Regarding Incorporating Ergonomics In Design", *International Journal of Industrial Ergonomics*, 38, 150-157.
- Nguyen, T.H., 2005, "Automated construction planning for multi-story buildings", *Construction Research Congress* 2005.
- Nguyen, T.H., and Oloufa, A.A., 2001, "Computer-generated building data: topology information", *Journal of Computing In Civil Engineering*, 2001 Oct., 268-274.

- Nussbaum, M.A., Shewchuk, J.P., Kim, S., Seol, H. and Guo, C., 2009, "Development of A Decision Support System For Residential Construction Using Panellised Walls: Approach and Preliminary Results", *Ergonomics*, 52, 1, 87-103.
- O'Brien, M., Wakefield, R., Belivean, Y., 2000, "Industrializing the Residential Construction Site", *Prepared for the Department of Housing and Urban Development. Office of Policy Development and Research*, Washington, DC.
- Sharma, V., Al-Hussein, M., and AbouRizk, S.M., 2006, "Residential Construction Lot Grading Approval Process Optimization: Case Study of City of Edmonton", *Journal of Construction Engineering and Management*, 132, 12, 1225-1233.
- Shewchuk, John P., June 2008, "Lean stacking and construction in residential panelized housing", *Working Paper*, Virginia Tech.
- Shewchuk, J.P., Guo, C., and Sarkar, S., 2009, "Ergonomic Design and Planning for Panelized Residential Construction", *Proceeding of the 2009 Industrial Engineering Research Conference*, Miami, FL, May 30-Jun 2.
- The Home Plan Group, 2009, "Home Plan Database", http://www.homeplangroup.com, (April 1, 2009)
- Vedder, J., and Carey, E., 2005, "A multi-level systems approach for the development of tools, equipment and work processes for the construction industry," *Applied Ergonomics*, 36, 471-480.
- Wang, W.C., Liu, J.J., and Chou, S.S., 2006, "Simulation-based safety evaluation model integrated with network schedule," *Automation in Construction*, 15, 341-354.
- Wang, W.C., Liu, J.J., and Liao, T.S., 2006, "Modeling of design iterations through simulation," *Automation in Construction*, 15, 589-603.
- Waters, T.R., et al. 1993, "Revised NIOSH equation for the design and evaluation of manual lifting tasks", *Ergonomics*, 36, 749-776.
- Watkins, M., Mukherjee, A., Onder, N., and Mattila, K., 2009, "Using Agent Based Modeling to Study Construction Labor Productivity as an Emergent Property of Individual and Crew Interactions", *Journal of Construction Engineering and Management*, Posted ahead of print 27 March 2009.
- Zhang, J., Eastham, D.L., and Bernold, L.E., 2005, "Waste-Based Management in Residential Construction", *Journal of Construction Engineering and Management*, 131, 4, 423-430.