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(ABSTRACT)



The impressive kinematic capabilities and structural adaptations presented by bio-locomotion

continue to inspire some of the advancements in today’s small-scaled flying and swimming

vehicles. These vehicles operate in a low Reynolds number flow regime where viscous effects

dominate flow interactions, which makes it challenging to generate lift and thrust. Overcom-

ing these challenges means utilizing non-conventional lifting and flow control mechanisms

generated by unsteady flapping body motion. Understanding and characterizing the aerody-

namic phenomena associated with the unsteady motion is vital to predict the unsteady fluid

loads generated, to implement control methodologies, and to assess the dynamic stability

and control authority of airborne and underwater vehicles. This dissertation presents exper-

imental results for forced oscillations on multi-element airfoils and hydrofoils for Reynolds

numbers between Re = 104 and Re = 106. The document divides the work into four main

sections: The first topic presents wind tunnel measurements of lift forces generated by an

oscillating trailing edge flap on a NACA-0012 airfoil to illustrate the effects that frequency

and pitching amplitude have on lift enhancement. The results suggest that this dynamic

trailing edge flap enhances the mean lift by up to 20% in the stalled flow regime. Using

frequency response approach, it is determined that the maximum enhancement in circula-

tory lift amplitude occurs at stalled angles of attack for lower pitching amplitudes. The

second topic presents wind tunnel measurements for lift and drag generated by a sinusoidal

and non-sinusoidal oscillations of a NACA-0012 airfoil. The results show that ‘trapezoidal’

pitching enhances the mean lift and the RMS lift by up to 50% and 35% in the pre-stall

flow regime, respectively, whereas the ‘reverse sawtooth’ and sinusoidal pitching generate

the most substantial increase of the lift-to-drag ratio in stall and post-stall flow regimes,

respectively. The third topic involves a study on the role of fish-tail flexibility on thrust and

propulsive efficiency. Flexible tails enhance thrust production in comparison to a rigid ones

of the same size and under the same operating conditions. Further analysis indicates that

varying the tail’s aspect ratio has a more significant effect on propulsive efficiency and the



thrust-to-power ratio at zero freestream flow. On the other hand, changing the material’s

property has the strongest impact on propulsive efficiency at non-zero freestream flow. The

results also show that the maximum thrust peaks correspond to the maximum passive tail

amplitudes only for the most flexible case. The final topic aims to assess the unsteady hy-

drodynamic forces and moments generated by a three-link swimming prototype performing

different swimming gaits, swimming speeds, and oscillatory frequencies. We conclude that

the active actuation of the tail’s first mode bending produces the most significant thrust

force in the presence of freestream flow. In contrast, the second mode bending kinematics

provides the most significant thrust force in a zero-freestream flow.
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It is by no surprise that animal locomotion continues to inspire the design of flying and

swimming vehicles. Although nature produces complex kinematics and highly unsteady flow

characteristics, simplified approximations to model bio-inspired locomotion in fluid flows

are experimentally achievable using low degrees of freedom motion, such as pitching airfoils

and trailing edge flaps. The contributions of this dissertation are divided into four primary

foci: (a) wind tunnel force measurements on a flapped NACA-0012 airfoil undergoing forced

pitching, (b) wind tunnel measurements of aerodynamic forces generated by sinusoidal and

non-sinusoidal pitching of a NACA-0012 airfoil, (c) towing tank measurements of thrust

forces and torques generated by a one-link swimming prototype with varying tail flexibilities,

and (d) towing tank measurements of hydrodynamic forces and moments generated by active

tail actuation of a multi-link swimming prototype. From our wind tunnel measurements,

we determine that lift enhancement by a trailing edge flap is achieved under certain flow

regimes and oscillating conditions. Additionally, we assess the aerodynamic forces for a

sinusoidal and non-sinusoidal pitching of an airfoil and show that ‘trapezoidal’ pitching

produces the largest lift coefficient amplitude whereas the sinusoidal and ‘reverse sawtooth’

pitching achieve the best lift to drag ratios. From our towing tank experiments, we note

that the role of tail flexibility enhances thrust generation on a swimming device. Finally, we

conclude that different kinematics on an articulating body strongly affect the hydrodynamic

forces and moments. The results of the towing tank measurements are accessible from an

online public database to encourage research and contribution in underwater vehicle design

through physics-based low-order models that can accommodate hydrodynamic principles and

geometric control concepts.
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Chapter 1

Introduction

The ability of birds to fly or hover by flapping their wings and fish to swim and maneuver

by flapping their tails has generated interest in using flapping wings, control surfaces, and

tails to enhance lift, generate propulsion and improve an operating vehicle’s overall system

efficiency. The biological creatures have inspired an interest in modeling unsteady hydro-

dynamic and aerodynamic forces on pitching, plunging and surging airfoils. The modeling

can be performed at different levels of fidelity. The high-fidelity models yield accurate re-

sults but involve many degrees of freedom, which make them computationally expensive.

Additionally, few simulations may not provide an accurate physical insight into the relative

roles of the different aspects of the flow, and the coupled dynamics between the fluid and

the flapping element. Alternatively, simplified reduced-order models of unsteady loads gen-

erated by such elements can be effective in aeroelastic or hydrodynamic stability analysis,

implementation of a control strategy, and uncertainty quantification and sensitivity analysis

within the context of multi-disciplinary optimization.

Conventional flow control techniques can be impractical to utilize on small-scaled vehicles

due to weight and space constraints. The unsteady aerodynamic phenomena that allow birds

and fish to operate efficiently at low Reynolds numbers are produced by non-conventional

mechanisms such as pitching and flapping. Non-conventional active flow control mechanisms

can be used to utilize the fluid-structure interactions to delay stall, increase lift, and control

separated flow. The intrinsically unsteady characteristic of flapping kinematics is the primary

1



source of force production and distinguishes unsteady-element motion from conventional

rotary and fixed element configurations.

The effects of low Reynolds number on the fluid response of flapping-element motion require

more considerable attention due to flow transition effects from laminar to turbulent flow

regimes. Additionally, flow behavior around airfoils at these low Reynolds numbers can

result in unsteady flow phenomena that include laminar flow separation, vortical flows, and

associated non-linearities such as hysteresis effects; these dynamics can make lift and thrust

generation challenging due to the strong viscous interactions that take place.

It is essential in low Reynolds numbers flow to understand the impact of an element perform-

ing unsteady motion on aerodynamic/hydrodynamic performance in the study of flapping-

wing flights of birds and flapping-tail motions of fish. As such, we can utilize quasi-steady

and unsteady models that can capture general trends of unsteady forces to aid the prelim-

inary design of flow control devices on small Unmanned Ariel Vehicles (UAV), Micro-Air

Vehicles (MAV), and Autonomous Underwater vehicles (AUV). The accuracy and reliability

of the unsteady fluid models rely heavily on the extension of strictly quasi-steady models

that incorporate unsteady flow parameters which are determined from computational and

experimental work.

The complicated wing or tail kinematics presented by animal bio-locomotion is highly dimen-

sional and represent a large number of degrees of freedom. We use pitching airfoils, trailing

edge flaps and, rigid and deformable hydrofoils as simplified models for bio-inspired motion.

This dissertation presents force measurements conducted on elements undergoing forced os-

cillations in flow regimes between Re = 104 and 106. The scope of the work is divided

into several sections. This introductory chapter presents a literature review, discusses the

motivation behind the work, and delivers a statement of motivation and contributed work

for each chapter. The next two chapters present wind tunnel measurements for lift and drag



forces in different flow states and forced oscillatory conditions generated by a pitching trail-

ing edge flap (TEF) of a NACA-0012 airfoil with a fixed leading-element, and a NACA-0012

airfoil undergoing sinusoidal and non-sinusoidal pitching at Re = 2.1 × 104. The following

two chapters present water towing tank measurements for thrust and torque generated by

flapping a deformable tail with varying flexibilities by a one-link pisciform prototype, and by

a multi-link prototype called Modular Biolocomotion Emulator (MBE) performing different

forced swimming gaits. The measurements were taken for a variety of towing speeds corre-

sponding to length-based Reynolds numbers between Re = 1.4 × 105 and Re = 4.8 × 105,

and for a parametric space that covers a wide range of oscillatory inputs.



1.1 Literature Review

Non-conventional lifting mechanisms involving unsteady airfoil motion have been recently

proposed to enhance lift performance, improve flight stability, and provide better control for

flying vehicles. Exploiting these mechanisms requires accurate modeling of the associated

unsteady aerodynamics and control laws. Early into the 20th century, the step and frequency

response functions were used to model the unsteady aerodynamics of maneuvering airfoils.

The analytical representations done by Wagner [1], Prandtl [2], Theodorsen [3] and Gar-

rick [4] provide some fundamental physics of unsteady fluid flows. These representations

in a potential flow framework and small disturbance theory yielded analytical expressions

of aerodynamic forces and moments, and they remain useful to capture general trends in

aerodynamic response for unsteady airfoil motions. In these representations, the forces are

usually split into two components: an added mass term, and a circulatory term. The first is

a non-circulatory component that consists of the pressure-induced forces and moments due

to the element’s acceleration relative to the fluid. The second is a non-circulatory component

associated with the vorticity field in the wake.

In addition to analytical representations, extensions of strictly quasi-steady models were

constructed, and semi-empirical methodologies were implemented to provide an approximate

representation of the unsteady non-linear aerodynamics (Taha et al. [5], Taha and Rezaei

[6], Brunton and Rowley [7], and Leishman [8]). These unsteady models made use of quasi-

steady parameters and static experimental data to account for LEV contribution, rotational

effects, low Reynolds number effects, and time lag in flow response. For instance, Rao et al.

[9] introduced an empirical delay parameter into the effective angle of attack relationship to

extend a viscous-inviscid interaction method to dynamic stall.

Unsteady aerodynamics can result from several independent or combined airfoil motions such



as pitching [10, 11], plunging [12, 13, 14, 15], and surging [16]. The effects of an oscillating

airfoil can lead to delayed flow separation [17, 18, 19], enhanced flow reattachment [20, 21],

and higher lift production [22, 23, 24], giving rise to the formation of passive non-conventional

flow control mechanisms such as dynamic stall [25, 26, 27], leading edge vortex (LEV) [28, 29],

suction, [30, 31], and vortex trapping [32, 33].

1.1.1 Pitching Flapped Airfoils

Movable trailing edge flaps (TEFs) have been proposed for flow control to improve aerody-

namic performance [34, 35, 36]. A statically extended trailing edge flap can indeed achieve

enhanced lift, but that lift is often accompanied by a drag penalty. Oscillating flaps, on

the other hand, serve a beneficial role by increasing lift without a measurable increase in

the drag. More recently, TEFs have been commonly used to mitigate flow separation by

gaining flow authority over the boundary layer usually by disrupting the flow instabilities

in the separated shear layers and near body wake vortices [37]. In specific, the concept of

oscillating a TEF is to enhance the reattachment process of boundary layer separation over

the wing. TEF oscillation can overcome and withstand the adverse pressure gradient by

energizing the boundary layer [38]. Vortices created by oscillating TEF can induce addi-

tional pressure difference that will enhance the momentum transfer from the free stream

flow to the upstream boundary layer. This process leads to a flow reattachment (or in other

words, delays separation), and achieves higher lift production [39]. The further upstream

the reattachment takes place, the higher is the maximum lift coefficient that can be reached

[40]. Flap oscillations can also restrain trailing-edge flow separation and prevent the sepa-

ration point from moving upstream to the airfoil. Figure 1.1 shows dye visualization results

reported by Medina and Hemati [41] on a dynamic deflection of a flap on a NACA-0006 at

Re = 4 × 104. In a nominally separated flow regime, the dynamic flap deflection gives rise



to a dynamic stall event, i.e., LEV roll-up, and the formation of trailing edge vortices.

Figure 1.1: Dye visualization of a static NACA- 0006 airfoil at 20◦ AoA (left) and a NACA-
0006 airfoil at 20◦ AoA with a 2◦ dynamic and downward flap deflection (right). Test
conditions: 6 Hz actuation, convective time, ∆tU∞/c=0.5. (Copyright permission obtained)

Analytical work

Most analytical studies on airfoils are extensions of classical aerodynamic theories developed

by Theodorsen [3], and Wagner [1]. There are a few analytical studies on the lift enhance-

ment generated by flapped airfoils. Leishman [8] derived an unsteady aerodynamic theory

for an airfoil due to an arbitrary motion of a TEF. The theory was derived from Theodorsen’s

solution of the lift force for a rigid and thin airfoil undergoing oscillatory forcing. With the

addition of a TEF hinged at a distance from the airfoil’s mid chord, superimposed forces

and moments as a function of the flap’s size relative to the airfoil’s chord can be formulated.

Leishman further extended the theory in state-space form by employing Duhamel superpo-

sition principle and utilizing an improved exponential approximation to Wagner’s indicial

lift function. Taha et al. [5] constructed a state-space model also by extending Duhamel’s

superposition principle from classical unsteady theory. The state-space model allows a quasi-

steady circulation as a state variable input integrated with Wagner’s step response to output



the non-linear effects of LEV as a result of lift modulation due to the input of an arbitrary

motion.

Numerical work

Xu et al. [42] optimized the configuration of a trailing edge with an additional hinged flap

in motion using an adjoint-based approach to model a flexible/morphing wing in hovering

flight at Re = 100. A 2-D immersed boundary computational method was used to solve the

incompressible Navier Stokes equations on the optimized flapping configuration. Simulations

indicated that the lift enhancement by the trailing edge flapping was due to a change in local

circulation caused by (a) the rotation motion of the flap and (b), the modulation of trailing

edge vortex shedding process as a result of the relative motion between the primary trailing

edge element and the secondary TEF.

Feszty et al. [35] considered a 15%-chord dynamic flap on a NACA-0012 airfoil at Re = 1.46×

105 and reduced frequency, k, of 0.173 oscillating around 15◦ mean AoA, and 10◦ pitching

amplitude. They performed numerical simulations and discovered that the nose-down pitch-

ing moment could be reduced using pulsed TEF motions. Furthermore, the formation of the

trailing edge vortex induced the convection of LEV further downstream towards the trailing

edge and the wake. This flow mechanism was the main effect behind the significant negative

pitch moment and negative aerodynamic damping.

Experimental work

In addition to the numerical and theoretical developments mentioned above, the experiments

by Greenhalgh [43, 44] describes the design of a wing mechanism with an oscillating flap to

improve the lifting capability of the wing for modern aircraft design. The effects of oscillating



the 14.4% chord’s flapped airfoil with pitching amplitudes of 12◦ resulted in an increase in lift

coefficient over a modified reduced frequency range between 0.04 and 0.048. Lift enhancement

of up of 54% was reported for a modified reduced frequency of 0.048 and an 8◦ increase in

the angle at which the maximum lift occurred. The oscillating airfoil produced substantial

lift enhancement in the +10◦ to +20◦ angle-of-attack range without a noticeable increase in

drag. This improved lift to drag ratio was recorded for all tested mean AoAs.

Lee and Gerontakos [45] and Gerontakos and Lee [46] performed surface pressure distribu-

tions and PIV of an oscillating NACA-0015 airfoil with a 25%-chord dynamic TEF executing

a similar pulsed flap motion employed by Feszty et al. [35] at Re = 1.65×105, k = 0.1, and

deep-stall flow condition. A linear ramp-up motion followed by a steady hold then a linear

ramp-down motion was the prescribed pulse motion. The most significant finding from both

studies was the substantial reduction in the nose-down pitching moment during the flap’s

upstroke motion. They also showed that LEV formation and detachment were not affected,

although low-pressure trails of the LEV was the main cause of a loss of dynamic lift during

an upstroke TEF motion. Also, no TEV was observed during the upstroke motion. Neither

did it render any significant changes in the formation and detachment of the LEV during

the downstroke motion. Using the same airfoil profile, Lee [47] considered the impact of

TEF motion on hysteresis effects at k = 0.1 and Re = 1.65 × 105 in attached flow and

light-stall flow conditions. The flap performed a 6◦ pitching amplitude at mean AoA’s of

12◦ and 14◦. The effects of actuation start points relative to the periodic motion played a

significant role in vortex evolution, and discovered that an actuation point from an upstroke

flap position could cause the improved trade-off between reducing the nose-down pitching

moment and maximizing the dynamic lift. The authors asserted that the TEF motion did

not render a strong influence on the initiation, growth, and detachment of the LEV. During

the downstroke motion, positive camber effects caused a measurable increase in maximum



lift coefficient but promoted a large nose-down pitching moment. At all mean angles of

attack, no phase shift in transient the LEV effects were noticed in both attached and light

stall oscillations. Lift coefficient hysteresis was observed during the downstroke TEF motion,

which also created an increase in positive damping.

Medina and Rockwood [48] performed fluorescent dye visualization on a harmonically pitch-

ing 50%-chord TEF of a NACA-006 airfoil at Re = 4× 104 and AoA’s of 10◦ and 20◦. The

results showed that one half stroke motion of the TEF at 1◦ amplitude and 6 Hz presented

a significant roll up of the separated shear layer at α0 = 10◦ and α0 = 20◦. The authors

further investigated the effects of harmonic flap oscillation with a 1◦ pitching amplitude at

0.13, 0.175, 0.21 Strouhal numbers, and 10◦ mean AoA. At these set frequencies and pitching

amplitudes, the influence of the sinusoidal pitching motion did not impose as much flow au-

thority over the shedding pattern in the near wake as was seen for the rapid deflection case.

Between the tested actuation rates, there was a general trend of increasing lift amplitude

with increasing Strouhal number. An increase of Strouhal number from 0.13 to 0.175 and

0.21 caused an increase in lift amplitudes by 10.2% and 16.7%, respectively.

1.1.2 Non-sinusoidal Pitching Airfoils

The most traditional form of pitching with readily available literature is the sinusoidal form.

On the other hand, varying oscillatory parameters to achieve non-sinusoidal oscillations of

airfoils can generate different wing kinematics and is an opportunity to produce complex LEV

and TEV vortex patterns whose fluid-structure interactions are worthy of investigation.



Experimental work

Ol et al. [49] investigated the evolution of vortex shedding on an SD-7003 airfoil undergo-

ing sinusoidal, trapezoidal, and triangular pitching at 20◦ amplitude and Re = 1 × 104.

Their results showed that trapezoidal pitching generated the highest amplitude of lift coef-

ficient and was associated with the largest LEV associated with the three airfoil kinematics.

Additionally, the trapezoidal pitching resulted in a pairing of TEVs in the near wake for

every half stroke of motion. That same double vortex structure was not observed for the

sinusoidal and triangular pitching cases. Sinusoidal and triangular pitching showed similar

vortex structures, although the triangular pitching generated weaker LEVs. Koochesfahani

[50] performed dye visualization on the vortex structure of the wake of a NACA-0012 airfoil

undergoing asymmetrical pitching motion. Flow conditions were set at Re = 1.2×104, with

varying parameters that include reduced frequencies between 0.83 and 10, pitching ampli-

tudes of 2◦ and 4◦, and zero mean angle of attack. The asymmetrical motions were governed

by a symmetry parameter, S, that prescribes the varying pitch up and pitch down rates.

Flow visualization analysis concluded that an enhancement in vortex shedding occurred at

lower pitching rates and the largest pitching amplitude. Among the pitching motions, a

single strong vortex was formed in the wake of the pitching airfoil during the rapid motion

of the pitching cycle, whereas more than one vortex was observed during the slower motion

of the pitching cycle.

Numerical work

Eldredge et al. [51] simulated a large amplitude canonical pitch maneuver with a single linear

pitch up and pitch down motion to examine the role of the LEV in lift generation. The

canonical motion performed pitch amplitudes of 25◦ and 45◦ at Re = 1× 104. During pitch



up motion, lift and drag monastically increased with increasing pitch rate. Higher pitching

rates led to stronger LEVs, and exhibited distinct paired vortices in the wake. Although the

lower pitch rates also generated large LEVs, they yielded relatively weaker vortices shed into

the wake. During the pitch down motion, high pitch rates generated negative lift and positive

thrust, whereas lower pitching rates sustained most of the positive lift and drag generated

during the motion. Zaman et al. [52] investigated the impact of non-sinusoidal pitching

using 2-D Navier-Stokes simulations on a NACA-0012 airfoil at Re = 500 and high reduced

frequencies between 8 and 16. The non-sinusoidal pitching profile was a close resemblance

of a trapezoidal waveform. An effective parameter that combines pitching amplitude and

frequency was derived to characterize the flow as periodic or chaotic, where θo = 1.4k−1/4

and θo = 1.7k−1/4 represent the periodic and chaotic flow regimes, respectively. The authors

reported a maximum increase in mean thrust coefficient of 55% at k = 8 and pitching

amplitude of 30◦ for the non-sinusoidal pitching in the periodic regime. On the other hand,

the sinusoidal pitching was found to be the favorable waveform in the chaotic flow regime and

was able to sustain thrust development. Because the nature of the non-sinusoidal waveform

allows for prolonged periods at maximum amplitudes during the motion cycle, high suction

pressure on the backside of the airfoil has enough time to generate larger TEV, causing a

drop in mean thrust.

Additionally, Xiao and Liao [53] carried numerical simulations using the unsteady Navier-

Stokes simulations to assess the flow around non-sinusoidal pitching of a NACA-0012 airfoil

at Re = 1 × 104. The non-sinusoidal motion was controlled by an asymmetric parameter,

s, to execute asymmetrical motions which vary from triangle to square waveforms. Pitching

amplitudes of 2◦, 4◦ and 6◦, and reduced frequencies between 2 and 8 were considered. Their

results showed that the non-sinusoidal pitching resulted in a stronger reverse Von-Kármán

vortex street that is responsible for an increase in thrust production. The more asymmetric



the airfoil motion was (lower s values), the stronger the reverse Von-Kármán vortices were.

However, the increase in thrust was accompanied by an exponential increase in power input

that resulted in lower propulsive efficiencies. Thrust generation was reported at k = 5 for

lower pitching amplitudes. An increase in pitching amplitude resulted in sustaining that

thrust production across all range of tested reduced frequencies.

K. Lu [54] performed a two-dimensional numerical simulation to examine the effects of non-

sinusoidal large-amplitude pitching of a NACA-0012 airfoil on thrust forces. Flow conditions

of Re = 1.35×105, pitching amplitudes between 5◦ and 30◦, and reduced frequencies between

k = 6 and 18 were considered. The authors of this paper introduced an adjustable parameter

K into an equation that describes the kinematics of the waveform, which can vary between

sinusoidal, triangular, and trapezoidal pitching. For sinusoidal motions, large-amplitude

pitching generated more thrust at higher reduced frequencies. Out of many tested K values,

the authors concluded that a waveform resembling a square wave has the most influence

in wake patterns and induced stronger reverse Von-Kármán vortex street that led to lower

momentum deficits (i.e., lower drag forces). However, they discovered that this choice of

kinematics came with a penalty of lower propulsive efficiency. From an earlier study, K. Lu

[55] revealed that larger values of parameter K (square wave) resulted in flow reattachment

at higher AoA. Increasing parameter K also induced a noticeable increase in maximum lift

and drag coefficients.

Yonghui Cao [56] ran two-dimensional numerical simulations using Navier-Stokes solvers to

investigate the hydrodynamic performance of a flapping NACA-0012 hydrofoil. They con-

sidered the effects of symmetric pitching and non-symmetric pitching at Re = 2.63×104,

pitching amplitude of 30◦ and reduced frequencies between 1 and 6. For the case of asym-

metric motion, the instantaneous thrust and lift generation improved, the average absolute

value of the lift coefficient increased, but the overall propulsive efficiency decreased relative



to the symmetric case. Optimized thrust coefficient and propulsive efficiency were achieved

when parameter K = −0.97, closer to a representation of a square wave input. At k = 4,

the thrust coefficient increased by 25%, and the propulsive efficiency increased by 60% in

comparison to pure sinusoidal pitching.

Finally, Bos et al. [57] modeled the lift and drag forces using two-dimensional time-dependent

Navier–Stokes simulations, and introduced more complex kinematics into a pitching airfoil

by incorporating a mix of trapezoidal and sawtooth amplitudes as a simple representation

of the kinematics of a fruit-fly at Re = 100. They notably discovered that the introduction

of a sawtooth-shaped amplitude resulted in a mean drag increase of 24.3% in cases where

large accelerations of downstroke motion were performed.

Analytical work

Analytical work by Tahmasian et al. [58] optimized input amplitudes for mechanically con-

trolled systems with high frequency, high amplitude inputs. They used geometric control

and averaging theory on non-zero mean periodic functions to investigate the effects of non-

linearities produced by the input waveforms on amplitude and energy system requirements.

As part of their optimization objectives, out of the square, sinusoidal and triangle waveforms,

a square waveform required the least input amplitude to achieve system control. However,

a sinusoidal input was found to be the optimal waveform to minimize energy input.



1.1.3 Applications in Low Reynolds Number

The intrinsic behavior of animal bio-locomotion inspires the design of vehicles such as small

unmanned aerial vehicles (UAV), micro-air vehicles (MAV), and autonomous underwater

vehicles (AUV). Animals and insects are small in size relative to large-scaled rotorcrafts

and fixed wings, yet they can operate with enough agility to perform efficiently within their

respective operational limits. The application of bio-inspired vehicle design in low Reynolds

number gives rise to the importance of understanding the fluid-structure interaction that

takes place during animal bio-locomotion. Figure 1.2 illustrates a range of applications

operating at different Reynolds numbers. The range of applications spans across many orders

of magnitude in the Reynolds number. Each flow regime has significant effects on forces

generated and boundary layer events, and so, scaling conventional aircraft, and macroscopic

animal locomotion becomes an area of focus in research.

Figure 1.2: Overview of a range of applications to which Reynolds number varies across.
(Note: Individual images are copyright free. Credit is extended to I.D. users of shutter-
stock/{AlexHliv, VectorPot, Mrs. Opossum, Black creator 24, vadimmus, Leremy, Barry
Barnes})

1.1.4 Pisciform Locomotion

The ability of a fish to deform its body in order to propel itself with desired speed, agility,

maneuverability, and stability motivates the analysis and design of biomimetic underwater



locomotion devices. There is a wide variety of pisciform (fish-like) morphologies and mo-

tion patterns (“gaits”), which are broadly classified according to how much of the body

undulates to create propulsion. A boxfish, for example, uses “ostraciiform” locomotion in

which the tail oscillates about a pivot point to generate propulsion. Jacks and mackerel

are “carangiform” swimmers, undulating about one-third to one-half of their body length.

Eels use “anguilliform” locomotion, in which nearly the entire body length undulates [59].

Figure 1.3 summarizes the motion seen by pisciform swimmers [60, 61, 62]. The shaded area

represents the part of the body that undulates to generate in propulsion for ostraciiform,

thunniform, carangiform, subcarangiform, and anguilliform swimmers.

Figure 1.3: Kinematic distinction of pisciform swimmers is governed by how much part of
their body undulates. (Note: Individual images are modified from copyright free images.
Credit is extended to I.D. users of shutterstock/{Kuryanovich, Tatsiana, Koshevnyk}).

The notion of biomimetic autonomous underwater vehicles (AUVs) is not new, and re-

searchers have proposed a variety of designs over the years, from the simpler carangiform

concepts [63, 64, 65] to those that more closely resemble snakes or eels [66, 67, 68]. Modeling

efforts generally rely on analytical or semi-empirical quasi-steady hydrodynamic approxi-

mations, even though these models are often inaccurate, particularly when considering the

three-dimensional flow over a low aspect ratio device such as a robotic eel.

Like unsteady aerodynamic forces, the forces on an oscillating hydrofoil are transmitted by

two primary mechanisms: added mass and circulatory effects. The force associated with



added mass is purely a potential flow effect, independent of viscosity, which is a consequence

of the fluid being accelerated around the body as the body moves through it. The circulatory

force is associated with the introduction of vorticity into the flow by the hydrofoil. For a

fish swimming at a high reduced frequency (highly unsteady flow), added mass effects are

the dominant mechanism for force transmission [60, 69].

Detailed analyses of the morphologies and gaits in pisciform swimming and the effects on

the surrounding flow pattern have helped scientists better understand the locomotion of fish.

Consider, for example, a simple articulating hydrofoil which generates a sequence of shed

vortices whose rotational direction is reversed, relative to the familiar Von-Kármán wake.

This phenomenon results in the formation of the so-called “reverse Von-Kármán street” [50].

The pattern formed by the vortices in the wake induces a jet-like push in the direction of

the mean flow. Figure 1.4 compares the Von-Kármán street in a cylinder’s wake with the

analogous “reverse Von-Kármán street” as a result of different tail beat frequencies of a fish

tail. At low non-dimensional reduced frequency, the wake of an oscillating fish tail produces

the classic Von-Kármán vortex street, similar to the top diagram of Figure 1.4. The wake

induces the generation of time-varying mean drag force. On the other hand, at higher reduced

frequencies, the wake generates a reverse Von-Kármán. The street can consist of vortices

in the upper row and lower row that rotate counterclockwise and clockwise, respectively.

This mechanism induces a time-varying mean thrust force in this scenario. The propulsion

force acting on the body is in reaction to this induced fluid momentum. The typical range

of reduced frequencies in which significant thrust force begins to form at low oscillation

amplitudes can be anywhere between k = 0.8 and 2 [50, 70, 71]. In addition, deflected jets

caused by the single and double vortex structure are asymmetric in position and circulatory

strength. As such, the jet will react at an angle relative to the freestream direction, resulting

in a pressure differential in the flow field and asymmetry in the direction where the mean



velocity is acting.

Figure 1.4: Schematic of the familiar Von-Kármán and reverse Von-Kármán streets in the
wake of a cylinder and an oscillating fish tail. The velocity profile represents the resultant jet
created by single and double structure vortex. A reactive force would generate an opposite
and equal reaction. In the case of (a), a resultant drag force will produce. In the case of (b),
a consequent thrust force will generate.

It has also been shown that vortical energy can be recaptured from an incoming flow to

minimize energy use during propulsion [50]. The schematic diagram in Figure 1.5 shows that

body vortices can shed and self-advect downstream to mix with trailing edge vortices that

can potentially provide new fluid mechanisms for thrust enhancement by active or passive

deformations. Fish collect vortical energy from upstream flow by curving their bodies and

shed the vortex downstream by stretching their bodies to propel forward.

The modeling of pisciform locomotion is non-linear, underactuated, and time varying. These

characteristics pose a challenge to implement traditional control methods. A geometric

mechanic derivation of the equation of motion was examined by Kanso et al. [63] in which



Figure 1.5: Body and trailing edge vortices around an articulating body.

they demonstrated the locomotion of articulated bodies in perfect fluids. Their work shows

that articulated bodies in fluids can induce a motion that, in turn, is enough to generate

propulsive forces. Bozkurttas et al. [72] showed that for a general fish specimen that operates

at Re = 2×104, laminar flow over a body most likely retains in a nominally attached flow, but

a transition to turbulence downstream of the appendages is expected in regions where flow

separation is present. Barrett et al. [73] examined the effects of low Reynolds number on drag

reduction of a swimming fish and concluded that the tail beat of a fish controls the vorticity

shedding. Their findings additionally showed that the Strouhal number must be within a

range between St = 0.12 and 0.35 for the specimen to develop thrust. The body flexing in the

form of a traveling wave also has the effect of laminarizing the boundary layer and indicating

the importance of waveform kinematics to control the boundary layer and vorticity shedding

to the benefit of thrust production. In the context of hydrodynamic assessment for eel-like

motion, there have been many efforts to understand the evolution of body shed vortices

generated by the carangiform and anguilliform kinematics to study the effects on forward

and turning locomotion (Tytell and Lauder [74], Triantafyllou et al. [75]). Small alterations

in the kinematics of a pisciform swimmer may cause substantial differences in propulsive

performances (Drucker and Lauder [76]). This justifies the importance of supporting the

continuous exploration of the effects of different modes of swimming on hydrodynamic force



generation. The continuous exploration of the hydrodynamic differences between different

modes of swimming provides an important notice that small differences in kinematics may

cause substantial changes in hydrodynamic effects . There have also been few attempts to

determine the efficiency of carrangiform and anguilliform swimmers, with reported Froude

efficiencies from literature ranging between 43% and 97% (Drucker and Lauder [76], Müller

et al. [77], Schultz and Webb [78]).

Kelly et al. [79] developed a prototype that approximates a carangiform locomotion using

three articulated modules representing the body, the peduncle and the caudal fin. This

approximation was further extended by [65] where a quasi-steady fluid model was proposed

with experimentally determined parameters from a three-link robot performing carangiform-

like swimming. Optimal controllers were developed for the simplified propulsion model by

[80]. Vela et al. [81, 82] employed geometric control theory and averaging of non-linear

time periodic responses of a carangiform swimmer, and incorporated feedback to stabilize

swimming trajectories. The geometric control model analyzed by Vela et al. [81] is provided

by Bullo [83] who demonstrated that open-loop high-frequency forcing can lead to stabilizing

the unstable equilibria. Finally, Morgansen et al. [64] performed an open loop control and

a closed loop feedback stabilization for a free swimming carangiform robot but for a model

with lower order fluid effects derived from quasi-steady assumptions only.

Role of Flexibility on Fluid Forces

Incorporating flexibility in swimming devices has been explored as a mechanism to improve

aerodynamic and hydrodynamic performance [84, 85, 86, 87]. Extensive theoretical, numer-

ical and experimental work on the flapping of rigid foils have shown optimum thrust over

ranges of Strouhal numbers, a non-dimensional frequency, of St = 0.25− 0.4 consistent with

the range observed in nature [88, 89]. Further attention has been recently given to flexible



rectangular panels as propulsors where material stiffness, aspect ratio, and swimming speeds

are the primary driving parameters for achieving higher propulsive efficiency [90]. Addi-

tionally, most literature shows that propulsive performance of heaving and pitching plates

depends strongly on structural resonance. While most experimental studies [86, 91] report

that actuation within 10% of the structure’s resonant frequency achieved the highest Froude

(propulsive) efficiencies, others have found the highest efficiencies within 30-50% of the res-

onant frequencies [92]. Incorporating flexibility into the pitching mechanism on wings of

micro-air vehicles (MAVs) has also been shown to have a profound impact on propulsive effi-

ciency, exhibiting a band of frequencies over which flexible panels produce more thrust than

rigid panels [93]. These observations have led to the rise the role of flexibility in propulsive

performances.

The coupling of biology-inspired aerodynamics with structural dynamics can lead to non-

linear effects. For example, wing/hydrofoil deformation has been proven to be beneficial for

flight performance (Ifju et al. [94], Shyy et al. [95], Rojratsirikul et al. [96]), and swimming

performance (Dewey et al. [85], Quinn et al. [86]). Physically, the membrane deformation re-

sults in a mean camber and large fluctuations that improve aerodynamic and hydrodynamic

forces generated relative to a rigid airfoil/hydrofoil configuration. Force responses generated

from flexible flapping of wings of birds or tails of fish lead to complex fluid structure in-

teraction and can give rise to three-dimensional separation, transition in boundary layers,

vortical patterns, and shear layer effects. Shyy et al. [84] established that local structural

flexibility in a wing can delay stall and enhance aerodynamic performance in fixed wings.

Ericsson and Reding [97] examined the combined roles of bending and pitching motions of

a plate on flow dynamics at Re = 104. Results revealed that aerodynamic damping was a

result of the bending motion whereas the time lag (unsteady effects) in flow response was a

result of the pitching motion. Quinn et al. [86] determined experimentally that the optimum



propulsive efficiencies of heaving flexible panels under freestream flow conditions peaked at

frequencies close to resonant frequencies and maximized trailing edge amplitudes. Enhanced

propulsive efficiencies were also reported for more flexible tails at low swimming speeds for

a chord-based Reynolds numbers ranging between 7.8× 104 to 4.7× 105.



1.2 Motivations and Contributions

It is essential to understand the fluid-structure interaction of flapping elements at low

Reynolds number for design, control, and improvement of small biomimetic UAVs, MAVs,

and AUVs. The objectives of all research efforts are complementary to each other with each

section having its unique contribution to the overall research.

Objective 1

One can view lift enhancement in two ways. The first is the enhancement in the mean lift

generated. This is useful to predict aerodynamic forces in the preliminary design process

of flow control devices. The second is an enhancement in the lift amplitude. The determi-

nation of lift amplitude and local maxima in lift coefficients can be useful in assessing the

dynamic stability and control authority of a flying vehicle. Although lift enhancement and

its association with LEV shedding on oscillating airfoils is well understood, lift enhancement

mechanisms on flapped airfoils is less well studied. In this investigation, we utilize forced

oscillation of a trailing edge flap on a NACA-0012 airfoil at pre-stall and stall angles of

attack to understand the flow physics through force measurements to explore potential lift

enhancements on flapped airfoils. The first objective of this dissertation is twofold. First,

we aim to assess the flowfield response of a NACA-0012 wing to a harmonically oscillating

trailing edge flap (TEF) at a chord-based Reynolds number of Re = 2.1 × 104. Static lift

measurements for all airfoil and deflected flap positions were first obtained in a wind tunnel

to establish a baseline case. In the dynamic cases, the leading element of the airfoil remained

fixed while the TEF was allowed to pitch from the airfoil’s three quarters chord length at

five pitching reduced frequencies. TEF oscillations were examined at two flow states: mean

AoA, α0 = 0◦, corresponding to a nominally fully attached flow, and α0 = 10◦, correspond-



ing to a nominally separated flow. In these comparisons, the TEF executed a sinusoidal

pitching with equal amplitudes of δA = 5◦, 8◦ and 10◦. The lift responses are compared and

validated with a constructed semi-empirical/quasi-steady formulation of Leishman’s model

for unsteady flapped airfoil (Leishman [8]). The second objective is to construct a frequency

response (gain and phase as a function of reduced frequency) for all cases considered. The

approach used here was previously employed by Zakaria et al. [13] with force measurements

on a plunging NACA-0012 airfoil at Re = 9× 104 and by Rezaei and Taha [98] with com-

putational analysis on a pitching NACA-0012 airfoil at Re = 7 × 104. Beyond the two

objectives described above, we also examine the relationship between TEF oscillation and

hysteresis in the corresponding aerodynamic forces and moments.

Objective 2

Previous studies by Ol et al. [49] and Eldredge et al. [51] through (PIV) and computations

justified how wing kinematics can result in unique vortex shedding events that can lead to

potentially new and different force generation mechanisms. The trends in force generation

are connected to the LEV and TEV phenomena during these shedding events. The work here

references PIV results reported by Ol et al. [49] through direct force measurements of lift and

drag forces in a wind tunnel of a NACA-0012 airfoil undergoing different pitching waveforms

at 2.1 × 104 Reynolds number. The second objective of this study is to report wind tunnel

measurements of the forces produced by a NACA-0012 airfoil undergoing sinusoidal, trape-

zoidal, sawtooth and reverse sawtooth waveforms. We will examine flow quantities such as

mean lift, lift amplitude, and the lift-to-drag ratio at mean angles of attack that will nomi-

nally represent pre-stall, near stall, and post-stall flow states. We also report any generated

lift enhancements and flow non-linearities. Finally, we compare the measured unsteady lift

against a quasi-steady and an unsteady state-space model developed by Taha et al. [5].



Objective 3

Current research and design of fish-like locomotion devices primarily focuses on demonstra-

tion of “proof of concept,” and acquires hydrodynamic principles to inform the design of

efficient biomimetic propulsion and control systems. High-performance underwater vehicles

that address the disciplines illustrated in Figure 1.6 brings us a step closer to targeting

challenges in the design and control of autonomous vehicle design.

Figure 1.6: Optimum performance for an autonomous underwater vehicle

Incorporating flexibility on hydrofoils can have a profound impact on the hydrodynamic

characteristics of a flapping fish-tail. The coupling effects of geometric and hydrodynamic

non-linearities on the structure can be responsible for the enhancement of thrust perfor-

mance on a swimming device. Detailed investigations of the effects of flexibility and the role

of structural resonance in enhancing thrust performance are critical for the success of cur-

rent autonomous undersea vehicles. The third objective of the study is to provide detailed

measurements of the thrust forces and servo torques and to determine the effect of fish-tail

flexibility on propulsive performance. The experiments were conducted with and without

forward towing speed to compare the hydrodynamic performance between the two scenarios.

The maximum trailing edge amplitudes were observed using video imagery and a position



tracker Matlab script at specific frequencies to examine briefly the effects of resonant frequen-

cies of the first bending mode on the localized thrust production and propulsive efficiency

peaks. This work also aims to provide data that can be used to validate computational tools.

Finally, this work will use the instrumentation and design concepts to guide the design and

building of the Modular Biolocomotion Emulator (MBE).

Objective 4

Although lower fidelity dynamics models have shown promise in simulating simple system

motions for pisciform swimmers, they generally cannot be accurately useful for the full explo-

ration of system capabilities. Accurate parameterized models and high fidelity simulations to

examine hydrodynamic performances on pisciform swimmers are complicated and computa-

tionally expensive. Several efforts have been attempted experimentally to assess full hydrody-

namic effects on swimmers, but the gap of readily available experimental hydrodynamic data

for a variety of kinematics and locomotion types remains. Prior work has focused primarily

on demonstrating prototypes in free-swimming operation. The fourth objective of this study

is to obtain and archive hydrodynamic force and moment data that can be used to validate

reduced-order computational methods such as the unsteady vortex lattice method (UVLM).

The experimental program focuses on a particular biomimetic device, the modular bioloco-

motion emulator (MBE), which is forced to oscillate periodically while being towed along

a straight line in calm water. This study captures unsteady hydrodynamic forces and mo-

ments generated for a test series in which the MBE was towed at different towing speeds (in

addition to zero speed) while executing four distinct gaits at a variety of frequencies. The

MBE geometry and kinematics are varied further to test a broad range of morphologies and

gaits. The MBE also performs artificial modes of bending through active actuation on each

module to further support the understanding of flexibility effects.



Chapter 2

A Frequency Response Approach to

Measure Lift Enhancement on a

Flapped Airfoil at Low Reynolds

Number

The contents of this chapter are based on the preliminary results of the following conference

paper: Shehata, Hisham, Mohamed Zakaria, Ahmed Hussein, and Muhammad R. Hajj.

”Aerodynamic analysis of flapped airfoil at high angles of attack.” In 2018 AIAA Aerospace

Sciences Meeting, p. 0037. 2018. [99].

The objective of this study is twofold. First, we aim to assess the flowfield response of

a NACA-0012 wing to a harmonically oscillating TEF at a chord-based Reynolds number

of Re = 2.1 × 104. Static lift measurements for all airfoil and deflected flap positions

were first obtained in a wind tunnel to establish a baseline case. In the dynamic cases,

the leading element of the airfoil remained fixed while the TEF located at 75 % chord

length from the airfoil’s leading edge pitches about the airfoil’s mean angle of attack (AoA).

TEF oscillations were examined at two flow states: mean AoA, α0 = 0◦, corresponding

to a nominally fully attached flow, and α0 = 10◦, corresponding to a nominally separated

flow. In these comparisons, the TEF executed sinusoidal pitching amplitudes of δA = 5◦, 8◦

26



and 10◦, and at five reduced frequencies between k=0.02 and 0.12. The lift responses are

compared with a constructed semi-empirical/quasi-steady formulation of Leishman’s model

for unsteady flapped airfoil (Leishman [8]). The second objective is to construct a frequency

response (gain and phase as a function of reduced frequency) for all cases considered. The

approach used here was previously employed by Zakaria et al. [13] with force measurements

on a plunging NACA-0012 airfoil at Re = 9 × 104 and by Rezaei and Taha [98] with

computational analysis on a pitching NACA-0012 airfoil at Re = 7× 104. Beyond the two

objectives described above, we also examine the relationship between the oscillating TEF

and hysteresis in the corresponding aerodynamic forces.

2.1 Experimental Setup

2.1.1 Test Facility and Test Article

The experiments were performed in a suction-type open circuit subsonic wind tunnel at

Virginia Tech. The tunnel has a centrifugal fan powered by a 15 HP Leeson motor that

drives the airflow past a square honeycomb inlet. The inlet is followed by three turbulence

reduction screens to ensure uniform flow with a turbulence intensity of roughly 0.2% at 10

m/s. The test section has dimensions of 120 cm × 52 cm × 52 cm. Figures 2.1 and 2.2 show

a photo and a schematic diagram of the test facility and setup used for the experiments. The

wing model used is a NACA-0012 airfoil profile fabricated from a foam core and reinforced

with carbon fiber casing. The wing’s chord length is c = 7 cm, and the 51 cm span extends

across the width of the wind tunnel test section with 0.5 cm of clearance from the wall on

either side. The airfoil has a flap hinged at 75% chord length from the airfoil’s leading edge.

An aluminum sting is fixed to the airfoil’s quarter chord from one end and attached to the



load cell on the other end by a circular bracket. A fairing holding the digital servo is fixed

on the lower half of the sting to provide smoother streamlines. Figure 2.3 shows a closeup

schematic of the wing actuation mechanism.

Figure 2.1: Wind-tunnel set up at Virginia Tech

2.1.2 Data Acquisition System

Direct force measurements were acquired using an ATI Industrial Automation six-axis Mini40

force/torque sensor, capable of measuring forces up to ±80 N in the x-direction and ±240 N

in the y and z directions, and torques up to ±4 N.m for all three axes. The resolution for force

measurements is 0.02 N for Fx and Fy, and 0.04 N for Fz. Data were collected and processed

using National Instruments’ NIdaq-9172 and NIdaq USB-6210 with a sampling frequency of



Figure 2.2: Schematic for the tested mechanism fixed inside the tunnel

Figure 2.3: Schematic of the tested mechanism



1,000 Hz. The wind tunnel was allowed to run for at least 30 seconds prior to data collection

to ensure a fully developed flow. Additionally, the first five seconds of the time series were

omitted from the measured data to avoid any transient inertial effects sourcing from the

test rig. The measured data were smoothed using a digital fourth-order Butterworth low

pass filter with cut-off frequency of at least twice the driving frequency. The oscillatory

motion of the TEF is provided by a continuous FS90R micro-servo with maximum torque

of 1.5 kg-cm at 6 V. The servo motor is connected to the TEF’s surface by a steel push rod

and controlled using a Pololu Maestro 6-Channel USB servo micro-controller. The leading

element of the airfoil is also supported and held in place by another steel push rod. Finally,

the TEF angular positions were measured by acquiring the analog voltage from the servo’s

potentiometer using an Arduino-Uno R3 sampled at 100 Hz. A calibrated curve fit was used

to determine the relationship between the analog voltage output and the TEF angle. We

performed a free vibration test (strike test) to make certain that the operational frequency

is far from the test article’s natural frequency. The fast Fourier transform determined that

the first natural frequency of the test rig is approximately 17 Hz, which is at least six times

the maximum excitation frequency operated during the experiments.

2.1.3 Uncertainty Analysis

The overall error in force coefficient measurements is found to be 3% accounting for errors in

flow speed, angle of attack, bias error introduced during calibration, and sampling precision.

Wind tunnel boundary corrections are calculated using the the method used by Pope and

Harper [100]. Calculations of the solid two-dimensional blockage factor, wake blockage, and

correction for streamline curvature demonstrated an uncertainty in lift coefficient measure-

ments of ±0.012. The airfoil’s AoA was measured using an analogue protractor with an

uncertainty error of ±0.5◦ degrees. Time delays provided by the Maestro micro-controller’s



input clock resulted in an uncertainty in frequency inputs of ±0.01 Hz. The frequency input

of the TEF is verified by performing a fast Fourier transform (FFT) on the potentiometer’s

output data. The uncertainty from the pitot tube used to measure the flow velocity is ±0.01

m/s resulting in a maximum total uncertainty in reduced frequency of ∆k ≈ ±0.01. The

method suggested by Coleman and Steele [101] is used to estimate the uncertainty in the

calibrated instrumentation system for potentiometer feedback. The maximum uncertainty in

the Analogue-Digital converter (ADC) provided by the Micro-controller’s board is ±0.25%,

or approximately ±0.01 V relative to the Arduino’s reference voltage. With a flap angle

measurement uncertainty of ±0.5 degrees, the uncertainty in the calibration curve fit at 95%

confidence from the potentiometer feedback for TEF positions is δTE ≈ ±0.2◦.

2.1.4 Experimental Test Matrix

Static lift and drag measurements were obtained for the airfoil with and without flap de-

flections for various mean AoA’s at Re = 2.1 × 104. Table 2.1 summarizes the range of

parameters used for static lift and drag measurements. Lift forces were also measured for a

dynamic TEF pitching at amplitudes of δA = 5◦, 8◦, and 10◦, and about the leading element

at two angles of attack. Pitching rates were varied over a range of operating frequencies from

0.5 Hz to 2.5 Hz which correspond to reduced frequencies from k= 0.02 to 0.12. Operating

conditions for the dynamic test cases are summarized in Table 2.2. A schematic diagram in

Figure 2.4 demonstrates the airfoil’s dynamic operation at α0 = 0◦ and α0 = 10◦. Flapped

angles are positive when deflected downwards.

Table 2.1: Tested parameters for static lift measurements

Parameter Range

Reynolds Number, Re 2.1× 104

Mean angle of attack, α0 (deg) 0◦ to 28◦

Flap deflection, δTE (deg) +5◦, +8◦, +10◦, +15◦



Table 2.2: Operating conditions for dynamic lift measurements

Mean Angle of TEF pitching Reduced
Attack, α0 (Deg) amplitude, δA (Deg) frequency, k

0◦, 10◦, with fixed leading element 5◦, 8◦, 10◦ 0.02 - 0.12

Figure 2.4: NACA-0012 dynamic operating configurations - Left : α0 = 0◦ , Right : α0 = 10◦

A sinusoidal pitching waveform δ = δA sin(ωt) was used as the TEF’s motion input. Here,

the TEF’s mean incidence is relative to the airfoil’s leading edge and was set to zero for all

cases, δA is the TEF’s pitching amplitude oscillating equally about δ0, and ω = 2πf where

f the forcing frequency.

The resultant AoA of the airfoil with a TEF deflection relative to the free stream velocity can

be approximated in terms of effective angle of attack, αeff and can be computed geometrically

by measuring the angle of a line joining the leading edge of the airfoil and the trailing edge

of the flap with respect to the freestream flow. The effective AoA for positive flap deflections

δTE = +5◦, +8◦ and +10◦ with leading edge element fixed at α0 = 0◦ are approximately αeff =

1.5◦, 2◦ and 2.5◦, respectively. Similarly, the effective AoA for positive flap deflections of δTE

= +5◦, +8◦ and +10◦ with leading edge element fixed at α0 = 10◦ are approximately 11.5◦,

12◦ and 13◦, respectively. Both the airfoil’s camber and effective angle of attack increase

as a result of the flap deflecting downwards. An increase in camber for a static airfoil will

generally produce additional lift.



2.2 Results and Discussion

2.2.1 Static Lift Measurements

In this section, we present direct force measurements on a static NACA-0012 with and

without flap deflections. Measurements for all static cases were repeated three times, and

the results were averaged. Figure 2.5(a) shows the measured static lift curve slope with

δTE = 0 along with the lift curve slopes published by Laitone [102] and Alam et al. [103].

The static lift curves are in relative agreement, showing lower maximum lift coefficients and

lower stall angles of attack for low Reynolds number flow than the theoretical Cl = 2πα

represented by potential flow theory. Figure 2.5(b) shows the airfoil’s corresponding static

drag coefficient at δTE = 0◦. The experimental drag coefficient of the current airfoil is

compared with experimentally obtained drag coefficients from Mart́ınez-Aranda et al. [104],

Ngo and Barlow [105], and Zakaria et al. [13] for a NACA-0012 with aspect ratios 2, 4, and

7, respectively. Although the wing for the current experiment is assumed to be nominally

two-dimensional, the wing may still generate wingtip vortices that would result in an offset

drag at zero AoA. The static drag coefficient is in agreement with data from the literature,

particularly with results from Zakaria et al. [13] for a wing that is nominally two-dimensional

with the same aspect ratio. Results from Mart́ınez-Aranda et al. [104] depict a higher drag

coefficient since they performed their experiments for a low aspect ratio and finite (three-

dimensional) wing. Figure 2.5(c) shows the measured lift coefficient for various positive static

flap deflections, δTE. The airfoil with δTE = 0 stalls around 10◦ AoA and stalls at lower AoAs

with increasing positive flap deflections. Positive flap deflections on the airfoil produce a

higher maximum CL than the clean airfoil configuration. Figure 2.5(d) shows the measured

static lift coefficient for selected positive flap deflections δTE, with the leading element fixed

at 0◦ and 10◦. These results show that the static lift continues to rise with increasing flap



downward deflection for a constant mean AoA and is indicative of flow remaining attached

over the flapped part of the airfoil. A relevant point of reference would be results from

Gildersleeve et al. [106] who showed that the flow over a flap hinged at 67% chord length of

a NACA-0012 at Re = 7.2× 105 and zero mean AoA separates at a flap deflection angle of

+40◦.
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(a) Lift coefficient curve slope at δTE = 0
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(c) Static lift curves for static flap deflections

0 5 10 15 20 25

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(d) Static lift coefficient δTE at α0 = 0◦, 10◦

Figure 2.5: Static lift measurements for plain and flapped NACA-0012 airfoil.

The static measurements obtained in Figure 2.5 provide a baseline for comparing exper-

imental results involving oscillatory TEF motion. Additionally, the static measurements



obtained will enable us to tailor an existing quasi-steady aerodynamic model (Leishman’s

model [8]) using determined flow parameters such as the static mean lift and static lift curve

slopes. This technique allows us to match initial quasi-steady conditions that would oth-

erwise not be captured by Leishman’s model, which bases assumptions on potential flow

theory. Leishman [8] extended Theodorsen’s [3] solution to predict the unsteady lift on an

airfoil undergoing TEF arbitrary motion. With the addition of a TEF pivoting at a distance

from the mid-chord, there are additional air loads that depend on TEF pitching δ and its

time rate-of-change δ̇. In the absence of plunging motion, the formulation for the total lift

is:

CL =
πb

U2
∞

(
U∞α̇− baα̈

)
+

b

U2
∞

(
− U∞F4δ̇ − bF1δ̈

)
+ 2πC(k)

(
αqs + δqs

)
(2.1)

where α is the time dependent pitching angle, U∞ is the freestream velocity, b is the semi

chord length, a is the airfoil’s pitching axis measured in chord lengths aft of the leading

edge, and C(k) is Theodorsen’s transfer function (also known as the lift deficiency factor),

2παqs and 2πδqs are the theoretical quasi-steady lift coefficients for the airfoil and TEF,

respectively, and F1 and F4 are geometric terms that depend on the size of the TEF relative

to the airfoil’s chord length. The reader is referred to Leishman [8] for detailed derivation

and notations.

Since the TEF motion is sinusoidal (i.e., linear and time invariant in practice), tailoring

Leishman’s formulation with experimentally determined quasi-steady parameters can be ap-

plied within the frequency domain. Instead of the 2π in the geometric term 2π
(
αqs + δqs

)
of Eq. (2.1), the modified Leishman’s formula will adopt the lift curve slope relationships

obtained from Figure 2.5(c). For the clean wing, the lift curve slope (CL/α) yields 5.34 per

radian of angle of attack, where for the TEF cases, the lift curve slopes are (CL/α) 5.41 for



δTE = 5◦, 5.45 for δTE = 8◦ and 5.57 for δTE = 10◦.

2.2.2 Dynamic Measurements

The measured unsteady lift responses generated by the dynamic TEF are presented and

validated with the responses predicted by Leishman’s analytical and quasi-steady formula-

tions. The results are reproduced from Shehata et al. [99] with the additional incorporation

of quasi-steady conditions such as the static mean lift and the lift curve slope characteristics

into Leishman’s analytical formulation. Figures 2.6(a), 2.6(b), and 2.6(c) show the CL time

histories at steady state for a 5◦ TEF pitching amplitude at α0 = 0◦ and reduced frequencies

of k = 0.02, 0.07, 0.12. A solid blue line represents experimental data in Figure 2.6. A

dotted black line and a dashed red line represent the results for analytical and quasi-steady

models, respectively. The static CL results for the airfoil with maximum constant flap de-

flection of δTE (represented by the horizontal green line) are also directly compared with

the dynamic results. Additionally, the static CL value for the airfoil without flap deflection

is represented by the horizontal light blue line. The experimental lift time histories show

relatively good agreement with both analytical and quasi-steady models at k = 0.02 with

the exception for δA = 10◦, and at k = 0.07 for δA = 5◦. Beyond these test cases, dynamic

lift predictions made by the analytical model deviate away from the experimental results. In

contrast, the responses from the quasi-steady model continue to predict the lift amplitudes

accurately. Neither the quasi-steady nor the analytical models respond well beyond k = 0.07

and k = 0.12 for δA = 8◦ and δA = 10◦ indicating that the oscillatory conditions are gen-

erating highly unsteady flow around the airfoil. The combined effects of pitching amplitude

and reduced frequency governs whether a flow is quasi-steady or unsteady. While examining

the peaks of the lift responses at lower TEF pitching amplitudes, the measured CL peaks (of

the solid blue curves) in Figures 2.6(a) to 2.6(e) are closer to their respective static lift at



a maximum constant flap deflection (horizontal green line). This observation helps identify

that the flow at these oscillatory conditions is close to a quasi-steady flow. The measured

CL peaks in Figures 2.6(f) to 2.6(i) demonstrate larger lift deficiency from their respective

static CL values (with a constant flap deflection) with increasing pitching amplitude and

reduced frequency. This behavior is typical for oscillating airfoils and a reflection of Kelvin’s

circulation theorem (Rayleigh [107]): a rise in lift circulation around the airfoil will result in

a drop in the lift circulation within the wake. The effects of the wake due to vortex shed-

ding play a strong role in lift deficiency at higher reduced frequencies, a flow characteristic

that is approximated analytically using Theodersen’s lift deficiency factor C(k) for potential

flow. For all pitching amplitudes at k = 0.12, the lift responses are no longer sinusoidal

as the flow response exhibits stronger non-linear fluctuations. Overall, isolating the effects

of reduced frequency and pitching amplitude, the quasi-steady model provides a reasonable

prediction of the unsteady lift up to k = 0.12. Large pitching amplitudes also limit the valid-

ity of the quasi-steady model even at lower reduced frequencies. The threshold to which the

quasi-steady model can be used accurately also depends on the combined effects of pitching

amplitudes and reduced frequency.

Figure 2.7 shows the CL time histories for all TEF pitching amplitudes at mean AoA of 10◦.

There are two main observations here. First, there is an upward shift in the mean CL mea-

surement at higher reduced frequencies and pitching amplitudes. Second, the instantaneous

peak lift continues to rise with increasing reduced frequency showing no sudden local drop in

CL that would indicate flow separation. For all cases, as the TEF motion sweeps through a

range of pitching amplitudes, the airfoil’s time-varying camber generates a varying effective

angle about the mean AoA that ranges from 8.5◦ to 11.5◦ for δA = 5◦ at α0 = 10◦. Thus,

the TEF motion is equivalent to oscillating the airfoil AoA between pre and post stall AoA

values. Likewise, the varying effective AoA for δA = 8◦ and δA = 10◦ are αeff ∈ [8◦, 12◦] and
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Figure 2.6: Lift coefficient histories at α0 = 0◦. The green line is the static lift measured at
a constant flap deflection of δTE = 5◦, 8◦, 10◦

αeff ∈ [7◦, 13◦], respectively. Referring to Figures 2.7(b) and 2.7(c), the CL time histories

show a monotonic increase in lift amplitudes during every flap’s upstroke motion. Similar

lift response is pronounced at higher reduced frequencies and larger pitching amplitudes for

the CL time histories in Figures 2.7(e), 2.7(f), 2.7(h) and 2.7(i). A boost in lift amplitude is

caused by the TEF’s downstroke motion, and a net positive lift indicates the presence of a

lift enhancement mechanism. This type of lift response can be associated with the presence
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(h) k = 0.07, δA = 10◦
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Figure 2.7: Lift coefficient histories at α0 = 10◦. The green line is the static lift measured
at a constant flap deflection of δTE = 5◦, 8◦, 10◦

of strong vorticity and large pressure differentials encountered in the flow that can gener-

ate additional circulation, thus lift force. Fluorescent dye visualization results from Medina

and Rockwood [48] support the claim that resultant vortex elements within the separation

envelope can be formed. TEF pitching of 1◦ amplitude at mean AoA of 10◦ is sufficient to

induce flow reattachment or roll-up of the separated shear layer into a LEV. The system

of vortices formed in these cases may be responsible for the attenuated lift amplitude at



these conditions. The behavior of the flow around these vortices can result in incremental

lifts as a result of non-linear effects. Finally, predictions made by the quasi-steady model

disagree with the unsteady responses generated at these flow conditions. This disparity is

expected since the quasi-steady model is not tailored to capture changes in lift amplitude

and dynamic mean lift. Predictions by the quasi-steady model are in relative agreement with

experimental data only for low amplitude and low reduced frequency (Figure 2.7(a)). Table

2.3 outlines the percentage difference between the RMS lift amplitude of the predictions

made by Leishman’s model and the experimental data. A positive sign means that the RMS

lift amplitude is greater for the experimental results. The model is limited to capture lift

contributions from additional flow mechanisms such as LEV formation, LEV suction, and

dynamic stall that may occur at higher TEF pitching amplitudes. Although it may not

be clear what could be the primary driving mechanism that produces larger than normal

instantaneous peak lifts at these conditions, the time series still provides some insight on a

possible lift enhancement generated by the TEF’s upstroke motion. Lift enhancement can

be generally associated with increased vortical flow patterns, enhanced circulation, and the

formation of large pressure differentials on the suction side of the airfoil [29, 48, 108].

Reduced
frequency, k

α0 = 0◦ α0 = 10◦

δA = 5◦ δA = 8◦ δA = 10◦ δA = 5◦ δA = 8◦ δA = 10◦

0.02 +6.9% -4.1% -11.8% +7.0% +6.7% +6.8%

0.07 +3.0% -6.0% -16.5% +2.3% +9.6% +9.1%

0.12 -2.3% -8.5% -22.5% +3.4% +10.4%% +15.3%

Table 2.3: Percentage difference in RMS amplitude between experimental data and lift
predictions from Leishman’s model.

Figure 2.8 shows a sample of the measured lift coefficient for a static airfoil with zero flap

deflection in freestream flow at α0 = 10◦ directly followed by an executed TEF pitching

motion at δA = 8◦ at k = 0.07 for the remainder of the time. The data shows an 8%
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Figure 2.8: A shift in mean CL is observed between the static airfoil and an airfoil with a
dynamic TEF. Case: α0 = 10◦, δA = 8◦ at k = 0.07

increase in mean CL as a result of the dynamic TEF relative to the static airfoil with no

flap deflection. Similarly, an increase in mean CL by 12% was observed for the same reduced

frequency at δA = 10◦. The mean lift coefficients for all test cases are presented in Figure

2.9. Figure 2.9(a) shows there are minor variations in mean CL at zero AoA. Figure 2.9(b)

shows that at α0 = 10◦, the dynamic motion of TEF results in a monotonic increase in mean

lift coefficient with both increasing pitching amplitude and increasing reduced frequency.

For nearly all pitching amplitudes at α0 = 10◦, the dynamic TEF produces larger mean lift

coefficients than the corresponding static airfoil with no flap deflection at 10◦ AoA except for

a 5◦ pitching amplitude oscillating at lower reduced frequencies (k = 0.02 and k = 0.05). In

summary, TEF oscillations about a nominally separated angle of attack consistently generate

a higher lift coefficient than a static airfoil with zero flap deflection. An enhanced mean

lift of 12% is generated by the largest TEF pitching amplitude (10◦) at the highest pitching

frequency (k = 0.12), which is also the largest increase in mean lift relative to the static lift

with zero flap deflection over the range of tested frequencies and pitching amplitudes.
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Figure 2.9: Mean lift coefficients for all dynamic test cases
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Figure 2.10: Mean drag coefficients and lift-to-drag ratios for all dynamic test cases.

Direct drag force measurements for all dynamic TEF cases are also examined. Figure 2.10(a)

presents a plot of the drag coefficients, and Figure 2.10(b) presents a plot of the lift-drag

ratios for all tested cases. Figure 2.10(a) shows that no significant variations in drag were

noticed at α0 = 0◦ as a function of reduced frequency. Larger pitching amplitudes appear

to generate a higher increase in mean drag coefficient from the baseline static CD value

at zero flap deflection. The drag coefficient results at α0 = 10◦ also demonstrate minor



variations in CD across the tested reduced frequencies for 5◦ and 8◦ pitching amplitudes. In

contrast, dynamic TEF oscillations at 10◦ introduce additional larger mean drag forces into

the flowfield at lower reduced frequencies but begin to overcome that additional drag beyond

k = 0.07. Physically, the TEF oscillation generates enough wake energy (i.e., negative drag)

to overcome the wake drag. The plot also shows consistency with results at α0 = 0◦ in

that small TEF pitching amplitudes achieve the least drag increase amongst other pitching

amplitudes and that all pitching cases still produce a more considerable mean CD than the

static CD. All pitching amplitudes demonstrate a measurable reduction in drag coefficient

with increasing reduced frequency. The most substantial drop in mean CD reduction was

noticed for a pitching amplitude of 10◦ at α0 = 10◦. These results are analogous to the

formation of a reverse Von-Kármán vortex pattern in the wake of the airfoil, which would

induce a jet-like flow in the opposite direction to the freestream flow, thus lowering the

net drag force by generating thrust [50, 70]. The highest thrust production and arguably

the strongest wake energy appear to be the most pronounced at large pitching amplitudes

and high reduced frequencies only for α0 = 10◦. This type of response is absent for TEF

oscillations about α0 = 0◦.

Figure 2.10(b) combines the mean lift coefficients obtained from Figure 2.9(b) with mean

drag coefficients from Figure 2.10(a). A horizontal blue line is drawn to represent the static

CL/CD = 5.63 at mean AoA of 10◦ with no flap deflection. When comparing the reported

lift-to-drag ratio of 5.63 with literature, the static lift-to-drag ratio is slightly higher than

L/D ≈ 3.2 at 10◦ angle of attack reported by Laitone [109] , who conducted his experiments

at an equivalent Re = 2.07×104 but for a three-dimensional NACA-0012 wing with an aspect

ratio of 6. Both experimental and literature reported values represent a significant drop from

L/D reported at higher Reynolds numbers that are commonly expected for conventional fixed

and rotary aircraft configurations.



The dynamic lift-to-drag ratio continues to increase with increasing reduced frequency mono-

tonically, but only onsets the static lift-to-drag ratio at k = 0.09. Only at k = 0.12, where

the dynamic lift-to-drag ratio overcomes the static lift to drag ratio. An increase in lift-to-

drag ratio of merely 5% was observed relative to the static CL/CD value was observed at the

highest reduced frequency for both 8◦ and 10◦ pitching amplitudes. Although the mean lift

from Figure 2.9(b) is the largest for 10◦ pitching amplitude, TEF dynamics at 10◦ pitching

amplitude provides the lowest lift-to-drag ratio at lower reduced frequencies, mainly due to

the significantly larger mean drag coefficients in produces at high pitching amplitudes. All

data points for α0 = 10◦ are quantified and summarized in Table 2.4. Data for mean α0 = 0◦

do not show significant changes between static and dynamic force quantities.

In summary, the least net drag increase relative to the static CD with no flap deflection was

produced for a dynamic TEF at small pitching amplitude (5◦) and high oscillatory frequency.

Additionally, the most significant increase in the mean lift coefficient is achieved at a large

pitching amplitude (10◦) and high oscillatory frequency. Despite these results, the optimized

lift-to-drag ratio is generated at the intermediate pitching amplitude of 8◦.

Reduced
frequency, k

δA = 5◦ δA = 8◦ δA = 10◦

CL CD CL/CD CL CD CL/CD CL CD CL/CD

0.02 0.518 0.100 5.18 0.534 0.103 5.19 0.544 0.120 4.53

0.05 0.522 0.099 5.31 0.534 0.102 5.25 0.560 0.113 4.97

0.07 0.532 0.100 5.31 0.552 0.102 5.43 0.561 0.105 5.36

0.09 0.532 0.100 5.55 0.555 0.102 5.45 0.561 0.104 5.41

0.12 0.535 0.095 5.61 0.557 0.095 5.89 0.584 0.100 5.84

Table 2.4: Mean lift, drag and lift-to-drag ratio summarized. Case: α0 = 10◦



2.2.3 Frequency Response

When a stable linear time-invariant (LTI) dynamical system is driven by a sinusoidal input,

the steady-state output is sinusoidal with the same frequency, but with magnitude (gain)

and phase components that are modified by the system dynamics. The frequency response is

simply the system’s steady-state response to persistent sinusoidal forcing (i.e., the resulting

magnitude and phase) over the full range of driving frequencies from zero to infinity. It is

typically represented by a complex-valued “sinusoidal transfer function” G(jω), correspond-

ing to a transfer function G(s) that describes the system’s general input/output behavior in

the Laplace domain. Specifically, the transfer function G(s) maps input signals U(s) = Lu(t)

to output signals Y (s) = Ly(t), where L denotes the Laplace transform.

The aerodynamic force and moment response of an airfoil to unsteady motion can also be

represented by a transfer function whose input is the quasi-steady lift and whose output

is the unsteady circulatory lift. We define the gain function of the system as an operator

G(k) = CLcirc/CLQS which maps the (non-dimensional) quasi-steady lift force to the un-

steady, circulatory lift force as a function of reduced frequency k. A frequency response is an

effective way to characterize the aerodynamic response to sinusoidal pitching and plunging

motion.

Theodorsen’s solution of the lift coefficient per unit span on a thin rigid airfoil that is plunging

and pitching harmonically is:

CLTotal
=

πb

U2
∞

(
ḧ+ U∞α̇− baα̈

)
︸ ︷︷ ︸

CLAdded mass

+

CLCirc︷ ︸︸ ︷
2π
( ḣ
U∞

+ α + b(
1

2
− a)

α̇

U∞

)
︸ ︷︷ ︸

CLQS

C(k) (2.2)

where the notations here were previously introduced and described first in (Eq. 2.1). Given



that the airfoil is fixed and does not vary with time (α and α̇ = 0), and since there is no

plunging motion (h=0), Leishman’s formulation of lift coefficient from Eq. (2.2) can be

re-arranged such that:

CLTotal
= − b2

U2
∞
F1δ̈ −

b2

U∞
F4δ̇︸ ︷︷ ︸

CLAdded mass

+

CLCirc︷ ︸︸ ︷
2π
(
α0 + δqs

)︸ ︷︷ ︸
CLQS

C(k) (2.3)

The first group of terms in Eq. (2.3) is the non-circulatory lift components originating from

the added mass forces due to the acceleration of the fluid around the airfoil. The second

group of terms is the circulatory lift components (denoted as ‘circ’) that constitutes a quasi-

steady component (denoted as ’QS’) and a lift deficiency function C(k) that accounts for

the influence of the wake vorticity on the circulation around the airfoil.

Figure 2.11: A representation of a linear dynamic system of unsteady lift.

Figure 2.11 shows a representation of the dynamic system for the generated unsteady lift.

The input motion is a sinusoidal TEF oscillation about zero AoA at a prescribed frequency.

The quasi-steady lift can be considered linear in response with the motion input (Taha et al.

[5]), and as such, the input motion results in a periodic input to the transfer function (i.e.,

a sinusoidal variation in CLQS
). The unsteady aerodynamic response is represented as an



output function with an associated lift deficiency (or enhancement) MG = |G(k)|, and phase

shift φ = ∠G(k). An additional set of non-circulatory forces that includes the fluid’s added

mass force and an inertial load arising from the TEF’s rigid body motion is tared from the

absolute total lift CLTotal
in the frequency domain to obtain the “true” value of the unsteady

circulatory lift. By experimentally determining the relative magnitude MG and phase shift φ

between the TEF’s motion input and unsteady circulatory lift output, we can construct the

frequency response for the combination of flap pitching amplitudes and reduced frequencies.

The lift gain of the system can be determined from force measurements by the left term in

Eq. (2.4) :

MG =
|CLcirc

|
|CLQS

|
and φ = cos−1

( ~δA · ~CL
| ~δA|| ~CL|

)
(2.4)

where |CLcirc
| in the left term of Eq. (2.4) is the circulatory lift amplitude of the periodic

signal, and |CLQS
| is the quasi-steady lift obtained from the static lift slope in Figure 2.5(d).

The right term of Eq. (2.4) is the phase shift φ, and is determined using the dot product

between two vectors in signal space, with one vector being the measured TEF pitching

amplitude from the potentiometer readings, ~δA and the other vector being its respective

lift response, ~CL. The dot product was used on 10 seconds of post-filtered steady-state

lift response and averaged over the three experimental trials. The numerical approach was

applied analytically on Theodorsen’s formulation in Eq. (2.2) and produced similar gain and

phase outputs to the approximations determined by Bisplinghoff et al. [110] on Theodorsen’s

transfer function. In equation form, the circulatory lift coefficient amplitude per unit span

is expressed as:

|CLcirc
| = |CLTotal

| − |CLAdded Mass
|eiφ −

( 1

ρbU2
∞

)
Finertial,maxe

iφ (2.5)



Here, CLAdded Mass
is the fluid’s added mass, and Finertial,max is the maximum inertial force aris-

ing from the TEF’s self-weight executing its motion at a given driving frequency. Both added

mass and inertial force terms are a function of δ̈. The maximum inertial is approximated as

Finertial,max = mA(2πf)2, where m is the mass of the TEF section of the wing (measured at

approximately 18.2 grams), and A is the TEF’s vertical amplitude at its mid-point which is

determined by the pitching amplitude δA. We can use the theoretical prediction of added

mass in the formulation, but for the range of tested reduced frequencies, the circulatory

force dominates the non-circulatory added mass lift by nearly three orders of magnitude.

Additionally, the fluid’s added mass is on the order of O(10−4) N and cannot be accurately

measured due to the load cell’s limitation with resolution. The added mass term is, therefore,

statistically insignificant at the tested reduced frequencies and can be neglected.

In practice, a lag between the build-up of lift response following a TEF motion has to be

present. The maximum instantaneous lift development at the time of the maximum inertial

force is not physically achievable and has to be associated with a phase lag, φ. Precisely, that

lag is the between the total lift response and the TEF motion. We previously defined the TEF

motion as a pure sinusoidal input, as a function of δ. In theory, the maximum inertial force is

a function of the second derivative of a sinusoidal signal, which is also sinusoidal. Therefore,

the instantaneous lift response also lags the TEF’s acceleration (thus the maximum inertial

force) at the maximum upstroke (and downstroke) position by an angle, φ.

Computing the phase shifts

Figure 2.12 shows a sample of one steady-state period of lift response (solid blue line), and

its respective TEF pitching amplitude (dashed red line) for each test case at α0 = 0◦. The

two curves are time-stamped at zero initial conditions, and the results show a lag in the lift

build up that becomes pronounced at higher reduced frequencies. For a handful of cases, the



lift build-up peaks right before the TEF reaches its maximum downstroke position, a typical

lift transient response of a rapidly pitching airfoil. This behavior is observed at k = 0.12 for

all flap deflections in Figures 2.12(c) 2.12(f) and 2.12(i), and is also noticeable at a lower

reduced frequency (k = 0.07) for δA = 10◦ as shown in Figure 2.12(h).

Figure 2.13 shows one steady-state period of the unsteady lift response and its corresponding

TEF motion for all pitching amplitudes at α0 = 10◦. All responses in phase shift at α0 = 10◦

depict similar characteristics to the responses produced at α0 = 0◦ by showing a time lag in

the lift build up, which increases with increasing reduced frequency. The difference is that

the effect of lift transient response almost disappears for TEF oscillations around α0 = 10◦.

Figure 2.14 summarizes the phase shifts obtained for all test cases. The phase shift continues

to increase with increasing reduced frequency for all pitching amplitudes monotonically. The

phase shifts at α0 = 10◦ present no significant variation from responses generated at α0 = 0◦

for δA = 5◦. However, the phase shifts for δA = 8◦ and 10◦ are lower at α0 = 10◦ compared

to their corresponding phase shifts at α0 = 0◦. Larger pitching amplitudes in a nominally

separated flow results in the least phase lag between the system’s input and output. The

relationship between phase shift and reduced frequency is approximately quadratic for all

pitching amplitudes.

The rate of evolution of vorticity in the wake that trails an oscillating airfoil produces a

phase shift between the aerodynamic response and the airfoil’s motion [111]. A phase shift

in lift response is likely to occur at high operational frequencies because of strong viscous

effects in the flow ([6, 112, 113]). Another study conducted by Ericsson and Reding [97]

shows that the phase lag in the unsteady flow response relative to quasi-steady flow can be

categorized as (a) circulation lag, (b) convective viscous flow time lag, which is the effect of

the induced change of Reynolds number, and (c) moving separation point effect caused by the

adversity in pressure gradient. Ericsson and Reding [97] also concluded that boundary layer



characteristics improved as a result of time lags in the accelerated flow around a dynamic

airfoil, causing delays in flow separation and the lift build up in rapid pitching airfoils. It is

clear from Figures 2.13(f) and 2.13(i) that the lift transients that were otherwise noticeable

for flow at α0 = 0◦ are delayed at α0 = 10◦. By the time the TEF executes an upstroke

motion, the flow does not have enough time to catch up with the flap motion. As such, the

flow fails to generate a transient lift response.
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

-0.1

-0.05

0

0.05

0.1

0.15

-10

-8

-6

-4

-2

0

2

4

6

8

(e) k=0.07, δA = 8◦
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(f) k=0.12, δA = 8◦
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(g) k=0.02, δA = 10◦
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(h) k=0.07, δA = 10◦
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(i) k=0.12, δA = 10◦

Figure 2.12: Phase shift : Lift response against TEF motion at α0 = 0◦
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(c) k=0.12, δA = 5◦
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(d) k=0.02, δA = 8◦
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(e) k=0.07, δA = 8◦
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(f) k=0.12, δA = 8◦
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(g) k=0.02, δA = 10◦
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(h) k=0.07, δA = 10◦
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(i) k=0.12, δA = 10◦

Figure 2.13: Phase shift : Lift response against TEF motion at α0 = 10◦

Computing the lift amplitudes

The total lift amplitude generated for each TEF’s lift response is obtained from the peak

of its respective power spectrum density (PSD) as computed from the FFT of the periodic

signal. If only a linear response is considered, the primary component of the PSD is a good

approximation of the unsteady linear lift amplitude. To ascribe a physical meaning to the lift

amplitude at a specific frequency, take the square root of twice the PSD peak value. Figure
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Figure 2.14: Phase shift for all flap deflection amplitudes at α0 = 0◦ and α0 = 10◦

3.14 shows a sample of PSD analysis on the lift coefficient response at k = 0.12 for δA = 8◦

and 10◦ at AoAs α0 = 0◦ and α0 = 10◦. The power peaks (units of 1/s2) show intensified

lift amplitude for dynamic TEF around α0 = 10◦ compared to α0 = 0◦. Non-linear unsteady

aerodynamic behavior is observed as shorter peaks at the second and third harmonics of the

driving frequency, and these are significantly weaker than the primary peaks at these tested

conditions. The presence of lift peaks at the harmonics of the fundamental frequency can be

evidence of a non-linear flow mechanism, possibly due to lift enhancement [13, 114].

Figure 2.16(a) displays the maximum rigid body inertia forces supplied by the TEF motion

and were found to contribute around 4% to 5% of the maximum lift coefficient. Figure 2.16(b)

shows the resultant circulatory lift amplitudes for all test cases after taring the maximum

inertia forces from their respective absolute total lift, |CLTotal
|. Enhanced lift circulation in

post-stalled flow is typically associated with increased vorticity and large pressure differen-

tials in the flow field. Force measurements show that the largest TEF pitching amplitude

produces the largest circulatory lift amplitude when pitching around α0 = 10◦. An increase in

inbound circulation over the airfoil could signal LEV formation and stability. The evolution
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Figure 2.15: A PSD sample on lift coefficient measurements at k = 0.12

of vorticity around the TEF and its wake are unique for every test case. If a LEV is formed,

it could either remain attached to the airfoil’s surface or it could destabilize and detach from

the airfoil’s surface (Zakaria et al. [13], Medina and Rockwood [48]). An attached LEV is

expected to generate more circulation and additional lift. Higher maximum lift coefficients

could also be influenced by the location of the reattachment point of the separated flow. It

is possible that the reattachment process takes place within the tested conditions and that

it occurs farther upstream with increasing reduced frequency.

The lift gain is obtained by normalizing the unsteady circulatory lift gain with the quasi-

steady lift determined at various static flap deflection from 2.5(d). The quasi-steady lift is

quantified as the lift increment between δTE = 0◦ and δTE = 5◦ for all pitching amplitudes.

The lift gain as a function of reduced frequency for α0 = 0◦ and α0 = 10◦ is quantified in Fig-

ure 2.17 and compared with approximations of Theodorsen’s transfer function (Bisplinghoff

et al. [110]). Isolating the effects of reduced frequency and pitching amplitudes, the lift gain

in Figure 2.17(a) agrees with Theodorsen’s model in the sense that the lift gain monotoni-

cally decreases with increasing reduced frequency. The airfoil experiences lift deficiency in
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Figure 2.16: Computing the circulatory lift component
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Figure 2.17: Lift gain |G(k)| - Frequency response for all TEF pitching amplitudes at α0 = 0◦

and α0 = 10◦

junction with Theodorsen’s approximation from potential flow theory. The lift gain also

agrees well with Theodorsen’s gain for lower reduced frequencies at δA = 5◦ (i.e., near quasi-

steady conditions). In contrast, the effect of large pitching amplitudes and higher reduced

frequencies result in additional lift deficiency. Another important observation from Figure

2.17(b) is that the lift gain peaks at reduced frequencies around k = 0.07 and 0.09, and drops

off towards k = 0.12. This behavior is pronounced at higher pitching amplitudes of 8◦ and



10◦ and contradicts the lift responses generated by TEF pitching at α0 = 0◦ 2.17(b). Even

though the largest circulatory lift was produced by a 10◦ pitching amplitude, the largest

lift gain was noticed for pitching amplitude of δA = 5◦. On the other hand, although the

unsteady circulatory lift is deficient from the quasi-steady value (i.e., the lift gain is lower

than 1), the lift contribution increases with increasing frequency. Large pitching amplitudes

does indeed produce the least efficient lift within the dynamic system (input/output). The

optimum lift gain was observed for pitching amplitude of δA = 5◦ compared to 8◦ and 10◦.

In summary, the TEF dynamic system is still lift deficient relative to the quasi-steady condi-

tions. But, the fact that the circulatory lift amplitude continues to increase with increasing

frequency at a nominally separated flow, which isn’t the case in a fully attached flow, implies

that the airfoil experienced an enhancement in circulation in its global flowfield.

2.2.4 Aerodynamic Hysteresis Effects

The investigation of lift hysteresis at low Reynolds number can provide useful information

on how dependent the flow history is on the localized change of TEF amplitude. There are

several distinct characteristics to look for in a hysteresis loop: the gap width, the slope of

the loop, and any shape irregularities in the loop that can signal whether the flow is fully

attached, fully separated, or reattached.

Figures 2.18(a), 2.18(c) and 2.18(e) show one cycle of instantaneous lift developed by the

TEF motion around α0 = 0◦. The shape of the loop at δA = 5◦ indicates that the flow is fully

attached, and a small gap area shows that no significant hysteresis effects take place. Loops

with slightly wider gaps are observed for higher pitching amplitudes and higher reduced

frequencies. The gap widening signals the presence of a phase shift between the lift response

and its respective TEF motion. Significant phase shifts are observed for loops with wider
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Figure 2.18: Dynamic hysteresis for all test cases



gaps. For all reduced frequencies at δA = 5◦, the lift responses trace loops with slightly

steeper slopes than the measured static slope, and wider gaps compared to lower pitching

amplitudes. At δA = 8◦ and 10◦, the lift responses are looping around a slope similar to

the CL static slope. The outliers from the experimental data are the ‘knot-like’ shape that

is displayed by the loops for k = 0.09 and k = 0.11 at all pitching amplitudes at α0 = 0◦.

This behavior was also noticed by Bergami et al. [115] for a pitching amplitude of 5◦ in the

attached flow and might be associated with a transient lift dynamic response that results in

an overshoot during the inception of a rapid pitching maneuver.

Figures 2.18(b), 2.18(d), 2.18(f) show one cycle of instantaneous lift produced by TEF motion

at α0 = 10◦. The lift response in separated conditions gives rise to larger dynamic hysteresis

effects. Because there is no sudden drop in CL with the local change of effective AoA, the

loops show that there is no flow separation that is typically expected at a static stall AoA

of 10◦. The non-constant variation in gap width for cases δA = 8◦ and 10◦ is evidence of a

strong aerodynamic hysteresis effect and can be associated with the enhanced lift as observed

by the significant local CL near larger positive TEF pitching angles. This behavior is also

noticed for δA = 5◦ at k = 0.12. It appears that the cycles at δA = 8◦ and 10◦ present

significant temporally evolving mean lift values that are gradually drifting from the static

mean value at higher reduced frequencies producing less steep slopes compared to the CL

static slope line. Finally, the dynamic hysteresis loops suggest a mean CL variation with

δA that is slightly translated upwards and towards the positive CL axis. This behavior also

agrees with Bergami’s [115] simulations for δA = 5◦ where the hysteresis shows a significant

variation in mean CL for a dynamic TEF oscillating around a statically stalled AoA despite

the difference in flow regimes.



2.3 Summary of Contributions

The lift responses of a dynamic TEF undergoing simple harmonic motion at various fre-

quencies and pitching amplitudes were investigated with the airfoil’s leading element fixed

at two AoAs: α0 = 0◦ corresponding to a fully attached steady flow condition, and α0 = 10◦

corresponding to a separated flow condition. The unsteady lift responses were obtained from

force measurements inside a wind tunnel and compared with lift responses generated by a

quasi-steady model using Leishman’s formulation for a two-element airfoil configuration. A

frequency response was constructed by determining the lift gain and phase shifts between the

quasi-steady and unsteady total lift. The change in unsteady circulation was quantified by

utilizing the frequency response approach. Based on the results of this chapter, the following

was observed:

Experimental results against Leishman’s model

The quasi-steady model accurately captures the general trends of unsteady lift obtained from

the experimental results for the fully attached flow case (α0 = 0◦). Results are validated

for the quasi-steady lift as a result of combined oscillatory pitching amplitudes and reduced

frequency effects. Minor under-predictions of the results by the quasi-steady model were

demonstrated at higher reduced frequencies and pitching amplitudes to which the flow be-

comes relatively unsteady. The quasi-steady model becomes unable to predict unsteady lift

response for the separated flow case (α0 = 10◦) for the majority of the oscillatory parameters

since there was no incorporation of the changes in the lift amplitude and dynamic variations

in the mean lift into the quasi-steady model. However, discrepancies between the experi-

mental results and predictions made by the quasi-steady model provided useful qualitative

insight on how much unsteady and non-linear the flow becomes at a given combined pitching



amplitude and reduced frequency.

Lift enhancement and drag reduction

The flow around an oscillating TEF at a nominally separated AoA (α0 = 10◦) provides

enhanced lift well beyond what would be provided by TEF oscillations in a fully attached

flow (α0 = 0◦). Lift enhancement was observed in two forms: an increase in the generated

mean lift, and an increase in circulatory lift amplitudes, both achieved at the largest TEF

pitching amplitudes and high reduced frequencies at α0 = 10◦. No variation in the mean lift

and no enhancement in lift amplitudes were observed for TEF oscillations around α0 = 0◦.

No significant benefits in drag performance were noted for TEF dynamics at α0 = 0◦ for the

range of tested pitching amplitudes and reduced frequencies. In general, the drag coefficients

generated by the dynamic TEF at α0 = 0◦ are higher than static CD. Results indicated that

the flow around the airfoil with a dynamic TEF at α0 = 10◦ also encountered additional drag

for all tested pitching amplitudes and frequencies. No drag reduction was noticed at any

of the tested conditions. However, the additional drag was overpowered by negative drag

production (thrust) when the TEF oscillated at higher reduced frequencies. The smallest

pitching amplitude resulted in the least drag increase from their respective static CD values.

Although the most substantial drag coefficient increase occurred at 10◦ pitching amplitude,

large amplitude TEF oscillations also generated the strongest wake energy as quantified by

the largest drop in mean CD between k = 0.05 and k = 0.07. The optimum lift-to-drag ratio

is achieved at α0 = 0◦ for 8◦ pitching amplitude.

For TEF oscillations about α0 = 10◦, the lift gain at δA = 5◦ closely matches the lift gain

from Theodorsen’s transfer function at lower reduced frequencies but presented significant

discrepancies at higher reduced frequencies and larger pitching amplitudes. For TEF oscil-



lations about α0 = 10◦, the TEF dynamic system achieved the most significant lift gain at

k = 0.07 and 0.09. Isolating the effects of reduced frequency and pitching amplitudes, the

system outputs the most significant lift gain at the lowest pitching amplitude. The phase lag

between the TEF motion and lift build up monotonically increase with increasing frequency

at both α0 = 0◦ and α0 = 10◦. One significant observation is that the phase shifts for δA = 8◦

and 10◦ pitching amplitudes were significantly lower compared to their corresponding phase

shifts at α0 = 0◦. Viscous effects and transitional flow effects can be reasons that the flow

induces significant phase shifts at higher reduced frequencies at the current Reynolds num-

ber. For the case of δA = 10◦ at α0 = 10◦, increased circulatory lift and reduced phase shifts

between the TEF motion and lift response provide reasonable evidence that the lift lag is

also induced by incremental changes in circulatory lift amplitude.

Aerodynamic Hysteresis

Finally, dynamic hysteresis effects showed that there is a local variation in the mean lift

with changing TEF motion in every lift cycle. Hysteresis effects also show that for both

fixed AoAs, the loop gaps are largest at higher flap deflection reduced frequencies. The

dynamic mean lift exhibits a different slope from the static slope. The ’knot-like’ loops at

α0 = 0◦ are evidence of strong hysteresis effects that occurred at higher reduced frequencies.

Strong aerodynamic hysteresis effects were also observed for δA = 8◦ and 10◦ at α0 = 0◦. No

flow separation was observed for the dynamic TEF at α0 = 10◦.

Beyond these observations, flow through visualization would be of great interest to fully

understand the fundamental physics behind the claims presented in this chapter. The results

from this effort are also aimed to supplement the ongoing activity of semi-empirical modeling

and system identification to represent the unsteady lift of the dynamic system obtained from

the constructed frequency response. An improved low fidelity semi-empirical formulation



that extends viscous effects or a phase lag parameter into the model can be useful to study

the controllability of TEFs in a regime that is commonly known to be transitional in flow.

2.4 Summary of Major Findings

• Leishman’s model compares well with experimental results for low reduced frequencies

and low pitching amplitudes.

• Enhancement in the generated mean lift of up 12% to was observed at TEF oscillations

of 10◦ mean AoA.

• The least drag increase relative to the static drag at zero flap deflection occurred at

10◦ mean AoA for δA = 5◦.

• The most significant increase in lift-to-drag ratio occurred at 10◦ mean AoA for higher

pitching amplitudes.

• The largest circulatory lift gain was achieved at 10◦ mean AoA for δA = 5◦.

• The phase lag between the flap’s motion and the lift response is mitigated for larger

flap pitching amplitudes at 10◦ mean AoA.



Chapter 3

Aerodynamic Response of a

NACA-0012 Airfoil Undergoing

Non-Sinusoidal Pitching Waveforms

The contents of this chapter are based on the preliminary results of the following article:

Shehata, H., Zakaria, M. Y., Hajj, M. R., Woolsey, C. A. (2019). Aerodynamic Response

of a NACA-0012 Airfoil Undergoing Non-Sinusoidal Pitching Waveforms. In AIAA Scitech

2019 Forum (p. 0303). [116].

The forces on a NACA-0012 airfoil undergoing different pitching waveforms were investi-

gated experimentally. Four different pitching trajectories, including sinusoidal, trapezoidal,

sawtooth, and reverse sawtooth waveforms, were considered. The airfoil was set at mean

angles of attack (AoA) of α0= 3.5◦, 7◦, and 12◦ representative of a fully attached, incipient

light-stall, and incipient post-stall flow states. All trajectories execute a nominally identical

pitching amplitude of αA = 3.5◦ and reduced frequencies between k = 0.02 and 0.14. The

chord-based Reynolds number for this experiment is Re = 2.1 × 104. Static lift and drag

coefficients were measured first to provide a baseline for comparison. During the wind tunnel

testing, the critical aerodynamic data that were measured are a) lift coefficient time histories,

b) unsteady lift coefficient amplitudes (magnitudes), and (c) mean lift, mean drag and lift to

drag ratios. Our interest also lies in the assessment of any effects of enhanced lift that may

62



arise from unsteady pitching motions at various frequencies of oscillations and mean angles

of attack. Finally, the validity of utilizing a quasi-steady extension of Theodorsen’s model

and an unsteady state-space model developed by Taha [117] is examined and compared with

the lift from experimental measurements.

3.1 Experimental Setup

Details on the wind tunnel test facility and airfoil test article were previously described in

section 2.1.1. The spanwise gap between the flap and the leading element of the airfoil was

sealed with a smooth thin tape. The NACA-0012 airfoil is connected to a push rod at the

quarter chord point. The push rod connects to a continuous FS90R micro-servo that provides

the pitching motion. The lift, drag, and the airfoil’s angular positions were acquired using

the same data acquisition system described in section 2.1.2.

3.1.1 Experimental Test Matrix

The effects of pitching kinematics are studied for various mean angles of attack and periodic

rates. A simple harmonic motion (a sinusoidal waveform) is first executed as the baseline

test case for all waveforms. The other pitching kinematics utilized for this study are the

trapezoidal, sawtooth and reverse sawtooth waveforms. The airfoil undergoes a pitch-up

and a pitch-down maneuver about a mean angle of attack α0 in a uniform free stream flow,

with an identical nominal mean-to-peak pitching amplitude of ±3.5◦. Figure 3.1 provides a

schematic overview of the airfoil motion with respect to α0.

First, the steady force measurements were gathered for angles of attack between 0◦ and 20◦.

Second, the dynamic operation of the pitching motion was set to undergo pitching in three



Figure 3.1: Schematic of the airfoil

different flow states. One flow state represents a nominally fully attached flow where the

mean angle of attack is set to 3.5◦. Another flow state represents incipient light-stall from

fully attached with a mean angle of attack of 7◦. The third and final flow state represents

incipient post-stall from pre-stall flow condition with a mean angle of attack of 12◦. Both

static and dynamic experiments were conducted at a Reynolds number of Re = 2.1 × 104.

A summary of the dynamic operating conditions is presented in table 3.1.

Table 3.1: Airfoil pitching parameters for all waveforms

Mean AoA, α0 Pitching amplitude, αA Reduced frequency, k Flow Conditions

3.5◦ 3.5◦ 0.02 - 0.14 Fully attached

7◦ 3.5◦ 0.02 - 0.14 Attached,light stall

12◦ 3.5◦ 0.02 - 0.14 Light stall, post-stall

The prescribed inputs of each waveform are demonstrated in Figure 3.2(a). Figure 3.2(b)

shows the equivalent post-filtered angular positions obtained from the servo controller’s

potentiometer. A Chebyshev Type II filter was used to remove excess noise from the poten-

tiometer readings. We used a less aggressive cut-off frequency while applying the filter to



the sawtooth and reverse sawtooth voltage readings in order to preserve the absolute values

of the periodic signal. All analogue voltage readings were transformed to a physical angular

position in degrees using a calibrated linear fit curve.
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(b) Waveforms measured experimentally for present
study

Figure 3.2: Prescribed vs measured pitching waveforms at 3.5◦ mean AoA.

Each waveform is prescribed such that selected segments within one period of motion execute

a pitch-up and pitch-down motion at different rates. The sinusoidal waveform is prescribed

as α(t) = α0 + αA sin (ωt), where ω = 2πf is the angular pitching rate, and f is the forcing

frequency. With T indicating one full period of motion, the remaining three waveforms

initially executed from α0 are prescribed as follows:

• trapezoidal: Impulse pitch-up motion for 0.1 T , hold for 0.3 T , impulse pitch-down

for 0.2 T , hold for 0.3 T , impulse pitch-up for 0.1 T

• Sawooth: Linear pitch-up for 0.4 T , impulse pitch-down for 0.2 T , linear pitch-up for

0.4 T

• Reverse sawtooth: Impulse pitch-up for 0.1 T , linear pitch-down for 0.8 T , impulse

pitch-up for 0.1 T



The three non-sinusoidal waveforms combine low rates of linear motion with high rates of

linear motion, but they remain periodic. The trapezoidal waveform looks like a square wave

where the motion is initiated with an impulse pitch-up motion to an angular position of

α0 + αA, followed by a steady hold, an impulse pitch-down motion to an angular position

of α0 − αA before returning to α0. Because of actuator limitations, the impulse motion is

executed at a rate of 0.1 T per 3.5◦, or equivalently, 1.64 T per radian. The sawtooth and

reverse sawtooth waveforms can be viewed as a “skewed” sinusoidal pitching. The sawtooth

motion executes a gradual pitch-up motion to α0 + αA followed by an impulse pitch down

motion, whereas the reverse sawtooth is initiated by an impulse pitch-up motion to α0 +αA

followed by a gradual pitch-down motion. These three motions present discontinuities in the

rate of the angle of attack at periods whenever there is a sudden change in motion states.



3.2 Results and Discussion

3.2.1 Static Measurements

Static lift and drag measurements were taken independent of the measurements in section

2.2.1. Figure 3.3 shows the measured static lift and static drag obtained for angles of attack

between 0◦ and 20◦. Both the lift and the drag are similar to the static lift curve slope

in Figures 2.5(a) and 2.5(b). The airfoil stalls at 10◦ AoA, and the linear part of the lift

curve has a slope of 0.089 CL/rad versus 0.093 CL/rad as shown in Figure 2.5(a). The

minor discrepancy might be due to human and systematic errors during the re-positioning

process of the test rig as well as the possible difference in ambient pressure and temperature

conditions at the time of the experiment. Both experimental values show discrepancy from

Cl = 2πα that is expected for potential flow theory since potential flow theory only holds

for an ideal fluid.
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Figure 3.3: Static lift and drag measurements for a NACA-0012 at Re = 2.1x104



3.2.2 Dynamic Measurements

A periodic airfoil motion in a uniform freestream flow can generate unsteady flow dynamics

such as leading edge vortex (LEV) formation, leading edge suction, vortex wake shedding,

and dynamic stall characteristics [50, 118, 119]. The strength of an LEV can also vary with

a change in airfoil acceleration (frequency) and a change in pitching mean angle of attack,

which may lead to lift enhancements [38, 120]. A typical response for a quasi-steady flow

following a simple harmonic airfoil motion will show a lift time history that will linearly rise

and drop with an increased or decreased angle of attack, respectively. With the involvement

of complex pitching kinematics, complicated vortex wake structures are expected to form and,

thus, can generate lift and drag responses different from the ones developed by a sinusoidal

input.

Representative snapshots of CL time histories

Figure 3.4 shows the lift coefficient time history for one period of pitching motion for all

four waveforms about a nominally attached flow at 3.5◦ mean AoA. Figures 3.4(a), 3.4(b)

and 3.4(c) demonstrate the lift coefficients for the sub-test cases at reduced frequencies of

k = 0.02, 0.05 and 0.09, respectively. Three horizontal lines in the plots are displayed

to represent the quasi-steady values at the maximum and minimum reachable AoA during

pitching, and mean AoA for a stationary airfoil. That is, the static CL values at α0=7◦,

α0=0◦ and α0=3.5◦, respectively. A typical example of a smooth linear response is observed

for the sinusoidal waveform in Figure 3.4(a), which shows that the lift generated in the

dynamic pitching case increases up to a peak CL value which is equivalent to the CL value

for a stationary airfoil at 7◦. This lift behavior becomes uncommon at higher pitching

frequencies where the dynamic peak is lift deficient relative to the quasi-steady CL. The lift



response of the sine wave behaves almost linearly with the static CL and confirms that the

flow is quasi-steady at k = 0.02 and k = 0.05. The peak lift for the sinusoidal waveform

experiences substantial lift deficiency at k = 0.09 and reveals that the flow can be regarded

as unsteady at that operating frequency. According to Kirchhoff’s law [121], the induced

circulation around the airfoil is accounted for by the shedding of the wake vorticity. As such,

the vortex shedding plays a significant contribution to the resultant lift circulation generated

by the unsteady motion.

Out of the four waveforms, the kinematics associated with higher acceleration rates during

the pitch-up motion of the airfoil are the trapezoidal and the reverse sawtooth waveforms.

The response of the trapezoidal waveform can be characterized by its “shoulders” during the

hold period of the airfoil. At that moment, the force undergoes variation in lift amplitude as

a result of a sudden transition to a steady angle of attack. Similarly, the reverse sawtooth sees

a lift transient response during the pitch-up motion. The time histories show the formation

of a transient lift that surpasses the quasi-steady lift value. The characteristic of the airfoil

motion represented by the trapezoidal and the reverse sawtooth waveforms is consistent

with the large absolute values of instantaneous forces within the lift histories, with local

lift transient responses pronounced at higher frequencies as depicted in Figures 3.4(b) and

3.4(c).

Figure 3.5 demonstrates one period of unsteady lift response undergoing pitching between

a nominally attached flow and a lightly separated flow. Figures 3.5(a), 3.5(b) and 3.5(c)

demonstrate the lift coefficients at reduced frequencies of k = 0.02, 0.05 and 0.09, respec-

tively. Three horizontal lines in the plots represent the quasi-steady lift values at α0=10.5◦,

α0=3.5◦ and α0= 7◦. A stationary airfoil is typically stalled at an angle of attack of 10◦; see

Figure 3.3. At that AoA, the stationary airfoil generates a substantially lower lift coefficient

than the lift generated by the pitch-up motion. The airfoil enters a nominally light stall
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Figure 3.4: Representative snapshots of time histories from experimental data for all four
different pitching waveforms at α0 = 3.5◦.
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Figure 3.5: Representative snapshots of time histories from experimental data for all four
different pitching waveforms at α0 = 7◦.
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Figure 3.6: Representative snapshots of time histories from experimental data for all four
different pitching waveforms at α0 = 12◦.

regime but continues to rise beyond the quasi-steady value at the same angle of attack. The

lift also rises beyond the static stall AoA which suggests that flow separation is delayed.



Likewise, the lift coefficients at 3.5◦ and 7◦ for a stationary airfoil correspond to a lower

lift than the lift responses generated by the pitch-up motion. Even during the pitch-down

motion, the lift responses for all waveforms do not recover back to their corresponding quasi-

steady value at α0 = 3.5◦. To physically interpret the results, an increase in lift response

beyond the quasi-steady value signals the creation of larger pressure differential during a

dynamic stall event. In return, a net lift production following a pitch-up and pitch down

motion becomes a net positive lift, i.e., lift enhancement. One final observation from these

plots is that the instantaneous CL values appear to be unaffected by the rate of the pitch

up motion at all reduced frequencies since the instantaneous lift values for all waveforms are

similar in value.

Figure 3.6 displays one period of aerodynamic response undergoing pitching about a nomi-

nally separated AoA of 12◦. Figures 3.6(a), 3.6(b) and 3.6(c) demonstrate the lift coefficients

at pitching reduced frequencies of k = 0.02, 0.05 and 0.09, respectively. Three horizontal

lines in the plots represent the quasi-steady lift values at α0=15◦, α0=8.5◦ and α0= 12◦. In-

stantaneous lift peaks are the largest for both impulse pitch-up motion (i.e. trapezoidal and

reverse sawtooth) but also for the gradual build-up in motion from the sawtooth motion.

A jump in CL occurs at the discontinuities of a pitch-up airfoil motion. The trapezoidal

waveform is by no surprise an outlier out of the tested waveforms in that it produces the

largest lift values. The relatively gradual drop-off in the lift for the reverse sawtooth con-

trasts sharply with the sudden drop-off for the conventional sawtooth. This disparity may

be due to the creation and retention of a leading edge vortex following the rapid transient in

the reverse sawtooth input. Since most of the LEV formation occurs during the pitch-up of

the airfoil, the sawtooth input, by contrast, is less likely to generate a stronger LEV because

of the gradual build-up in the lift and the relatively low pitch-up rate.

A rapid pitch-up motion in post-stall conditions can lead to the formation of an LEV



[118, 122]. These trends in force measurements compare well with dye visualization results

of Ol [123] on an SD7003 airfoil and a flat plate at Re = 104. Results show that a pitch-up

motion to 25◦ of a trapezoidal waveform shows an emanating leading edge vortex at discon-

tinuities of angle of attack rate. These discontinuities in the angle of attack do promote LEV

shedding during the pitch-up. The strongest LEV was noticed for the trapezoidal pitching

motion. Visualizations also qualitatively show that the case with the largest LEV also has

the highest amplitude of the lift coefficient. The visualization results show a distinction for

the trapezoidal pitch due to the double formation (one positive and one negative) of shed

vortices per single stroke. Results from Ol [123] also reveal that the strength of the LEV is

somewhat greater for the trapezoidal than for the sinusoidal and triangular waveforms as it

forms near the top of the pitch-up stroke. The triangular waveform generated the weakest

LEV, followed by the sinusoidal waveform.

CL time histories against measured angle of attack

The lift and drag responses during the pitch-up and pitch-down motion of the airfoil for

each waveform are shown in greater detail in Figures 3.7, 3.8, and 3.9. The force time

histories are plotted against their corresponding measured airfoil position obtained from the

potentiometer. The plots show the CL time histories as a dashed blue curve, CD time histories

as a solid black curve, and airfoil angular position as a dotted red curve for all waveforms,

as well as mean angles of attack and reduced frequencies. Since data was acquired from

two different data acquisition systems, data was recorded for a stationary airfoil subjected

to freestream flow for ten seconds after which the airfoil executes its pitching motion. The

initiation of the airfoil motion is time-stamped along with the corresponding force reading

recorded by the load cell. Any transient effects during the build-up of the motion as well

as the build-up of the lift response towards steady-state are ignored. The unsteady linear



lift response is presented in these plots to observe the behavior of the flow dynamics in

response to airfoil kinematics. As such, the cut-off frequency for the time series is set at

three times the operating frequency except for the trapezoidal waveform, where a cut-off

frequency of five times the operating frequency is used to capture the transient lift response

at the discontinuities of the waveforms.
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(a) Sine. (Top to bottom: k = 0.02, 0.05, 0.09. Left
to right: CL vs α, CD vs α)
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(b) trapezoidal. (Top to bottom: k =
0.02, 0.05, 0.09. Left to right: CL vs α, CD vs α)
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(c) Sawtooth. (Top to bottom: k = 0.02, 0.05, 0.09.
Left to right: CL vs α, CD vs α)
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(d) Reverse sawtooth. (Top to bottom: k =
0.02, 0.05, 0.09. Left to right: CL vs α, CD vs α)

Figure 3.7: Case A - Lift coefficient time histories for all four waveform inputs against
measured motion kinematics at α0 = 3.5◦

While examining the CL responses at α0 = 3.5◦ in Figure 3.7, the responses at k = 0.02
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0.02, 0.05, 0.09. Left to right: CL vs α, CD vs α)
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(c) Sawtooth. (Top to bottom: k = 0.02, 0.05, 0.09.
Left to right: CL vs α, CD vs α)
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(d) Reverse Sawtooth (Top to bottom: k =
0.02, 0.05, 0.09. Left to right: CL vs α, CD vs α)

Figure 3.8: Case B - Lift coefficient time histories for all four waveform inputs against
measured motion kinematics at α0 = 7◦

is linear with the airfoil’s kinematics. Some time lag in the lift build-up is evident for all

waveforms at all reduced frequencies. For all waveforms, nearly all CD build up responses are

gradual and in-phase with the airfoil’s motion. But while the responses for non-sinusoidal

waveforms behave linearly with motion, larger superposition of non-linear perturbations on

the signal is observed at all reduced frequencies. The drag coefficient at k = 0.02 for the

sinusoidal waveform in Figure 3.7(a) responds out of phase with the airfoil motion. The
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(b) trapezoidal. (Top to bottom: k =
0.02, 0.05, 0.09. Left to right: CL vs α, CD vs α)
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(c) Sawtooth. (Top to bottom: k = 0.02, 0.05, 0.09.
Left to right: CL vs α, CD vs α)
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(d) Reverse sawtooth. (Top to bottom: k =
0.02, 0.05, 0.09. Left to right: CL vs α, CD vs α)

Figure 3.9: Case C - Lift coefficient time histories for all four waveform inputs against
measured motion kinematics at α0 = 12◦

pitch-up of the trapezoidal waveform generates the greatest lift but experiences greater drag

too. Both aerodynamic load histories demonstrate smooth behavior up to the completion of

the pitch up motion, and the same goes for all other waveforms at k = 0.02, and k = 0.05.

For higher reduced frequencies, stronger non-linearities are manifested into the lift and drag

responses. For the waveforms that are associated with an impulse pitch down motion (i.e.,

the trapezoidal and the sawtooth waveforms), the drag decreases beyond what it usually



would be in quasi-steady condition, and in some cases beyond CD = 0, indicating a ”positive

thrust” for a short interval of time before rising steadily again. These short intervals of

positive thrust are being formed again at the discontinuities at the end of the pitch-down

motion. Examples of that flow behavior are distinguished in Figures 3.7(b) at k = 0.05 and

k = 0.09 and in Figures 3.7(c) at k = 0.05 and k = 0.09.

Figure 3.8 presents similar CL and CD characteristics α0 = 7◦ as the responses depicted

in figure 3.7 for α0 = 3.5◦. Responses in Figure 3.8(a) are linear with the airfoil’s motion

for all test cases. Non-linear fluctuations are presented at a higher reduced frequency and

responses are generally in-phase with the airfoil motion with the exception of CD at k = 0.02.

CL responses for the remaining non-sinusoidal waveforms show notable phase lag in the

lift build-up for the trapezoidal waveform compared to the sawtooth and reverse sawtooth

waveforms. Substantial non-linear fluctuations are fostered in the CD responses for non-

sinusoidal waveforms. As for the waveforms with impulse pitch-down motions, only the

trapezoidal waveform at higher reduced frequencies responded with CD peaks close to zero.

Even though the sawtooth waveform presented some negative drag during the pitch-down

motion at α0 = 3.5◦, it does not exhibit similar behavior in CD as seen in the trapezoidal

waveform at α0 = 7◦.

Figure 3.9(a) shows CL responses that are in-phase and almost linear with the airfoil’s

kinematics at α0 = 12◦. CL responses that are slightly out of phase with the airfoil’s

kinematics also exhibit strong non-linear fluctuations in lift responses as seen at k = 0.09 in

Figure 3.9(c) and at all frequencies in Figure 3.9(c). The CD response for the sine waveform

shows as a significant out-of-phase response, and the trapezoidal waveform clearly shows

nearly a 180◦ phase shift in response relative to the motion for all frequencies. Out of phase

responses at higher reduced frequencies diminish for a sawtooth waveform, whereas the CD

responses for a reverse sawtooth provided an in-phase response with the airfoil motion. No



significant reduction in drag during any of the pitch-down motions was noted, although it

appears that the sinusoidal waveform generates the least drag force in post-stall oscillations

compared to the non-sinusoidal waveforms.

In summary, a slower pitch-down airfoil motion generates excessive drag, whereas rapid pitch-

down rates (impulse motion) incurred by the airfoil during the trapezoidal and the sawtooth

waveforms create the least drag, and in some instances negative drag (thrust) although it

does not sustain throughout the periodic motion. The behavior is pronounced at lower mean

angles of attack where the flow is fully attached. The trends in force generation depicted in

Figures 3.7, 3.8, and 3.9 show time histories during pitch-up and pitch-down motions that

are consistent with the observed vortex shedding dye-visualization results reported by Ol

et al. [49]. After matching these results with the current study, the LEV formed contributes

significantly to the lift. LEV is generally associated with an upstroke motion of the airfoil.

Additionally, vorticity fields reported by Eldredge et al. [51] show that during the pitch-

up motion, the LEV is large and remains attached at k = 0.2 but begins to detach and

diffuse away during the pitch down motion. At higher pitch-up rates, the leading edge

vortex is more coherent and larger in radius. The detachment during the downstroke motion

is further delayed. This behavior appears to show that upward lift generation during the

pitch-up motion is enough to overcome the downward lift during the pitch-down motion,

and a net positive lift around the airfoil is created. The likelihood of a dynamic stall taking

place depends on the formation of LEV, and the roll-up of LEV impinging on the airfoil as

a pitch-down motion is initiated. In our current study, a rapid pitch-up motion is presented

by both the trapezoidal and the reverse sawtooth waveforms. Thus, a more significant

lift is generated for these waveforms as a result of the creation and retention of a LEV

that would delay separation and increase lift. In contrast, the sinusoidal and sawtooth

waveforms are associated with a slower pitch-up motion. Therefore, dynamic stall events may



be more gradual, mitigating any possibilities of delaying flow separation, which is why the

lift responses associated with these two waveforms are generally lower than the trapezoidal

and the reverse sawtooth waveforms.



Mean CL and CD results
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Figure 3.10: Time averaged CL vs Reduced frequency for all mean AoA
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Figure 3.11: Time averaged CD vs Reduced frequency for all mean AoA
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Figure 3.12: Time averaged CL/CD vs Reduced frequency for all mean AoA

The force generation shown in the time history plots can be better understood by examining

the mean lift and drag. In this section, mean results for CL, CD, and lift to drag ratios,
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Figure 3.13: RMS CL vs reduced frequency for all mean AoA

CL/CD are presented. Data for k = 0.14 are also included in the analysis to provide a

reasonable statistical comparison with the lower tested frequencies.

Figures 3.10 and 3.11 show the effects of reduced frequencies and mean angles of attack on the

mean lift and drag coefficients for all pitching waveforms. In a nominally fully attached flow

at 3.5◦, the trapezoidal and the reverse sawtooth waveforms generated the most significant

mean lift coefficients but also generated the largest drag coefficients. At 7◦ AoA, we can

observe that the reverse sawtooth waveform consistently produces a marginally higher mean

lift than other waveforms except at k=0.14. The reverse sawtooth waveform also provides

the least drag coefficient at all reduced frequencies. In post-stall oscillations at 12◦, the

trapezoidal and the sawtooth waveforms generate the most significant mean lift coefficients.

No definite conclusion was drawn on how the mean drag varies with reduced frequency.

While comparing all dynamic results with static results, the trapezoidal and the reverse

sawtooth also saw the most significant rise in mean CL values relative to their corresponding

quasi-steady value at α0 = 3.5◦. The mean CL generated by the reverse sawtooth waveform

monotonically decreases with increasing frequency consistently across all mean angles of

attack, in contrast to the behavior seen by the remaining three waveforms. Among all mean

angles of attack, all pitching waveforms generate a more significant dynamic mean CL relative

to the static CL for a stationary airfoil at α0 = 7◦ and α0 = 12◦. Comparing the dynamic



mean CD with static CD, all waveforms across all mean angles of attack produce larger

dynamic mean drag coefficients relative to their corresponding quasi-steady drag coefficient.

The only exceptions appear for the sinusoidal waveform at 3.5◦ AoA, and at lower reduced

frequency at 12◦ AoA with lower dynamic drag coefficients than their corresponding quasi-

steady CD. Consequently, the sinusoidal waveform differs from the other waveforms as it

produces a net thrust to overcome the static drag. Force-time histories in Figure 3.7 show

that the sawtooth, which is associated with an impulse pitch-down motion, produces thrust

at short intervals of time. However, the flow is not able to sustain that for enough time to

create a net positive thrust for the tested frequencies.

The overall aerodynamic performance for each waveform is quantified by computing the lift-

to-drag ratios. The lift-to-drag ratios for all dynamic test cases are determined and presented

in Figure 3.11. The dynamic lift-to-drag ratio is compared directly with the lift-to-drag ratio

at the corresponding static mean AoA. For pitching about α0 = 3.5◦, higher lift-to-drag ratios

are observed at higher reduced frequencies. The combination of an impulse pitch up and a

gradual pitch down airfoil motion represented by the reverse sawtooth waveform gives rise to

the highest lift-to-drag ratio at pitching about 3.5◦ and 7◦ mean AoAs. For pitching about

12◦ mean AOA, the sinusoidal waveform produces the highest lift-to-drag ratios. Table 3.2

summarizes the performance of some of the outliers in the results from Figures 3.10, 3.11

and 3.12.

The root mean square (RMS ) value for each force-time history is computed and presented

in Figure 3.13 for all test cases. The RMS value is a way to represent the magnitude of

the unsteady lift generated. The RMS of a signal is calculated using the standard RMS

definition:



Table 3.2: Dynamic lift vs quasi-steady values quantified

Mean Most significant Most significant Most significant
AoA rise in CL drop in CD rise in CL/CD
3.5◦ 50% by the trapezoidal 25% by the reverse 25% by reverse

at k=0.09 and 0.14 sawtooth at k=0.14 sawtooth at k=0.14

7◦ Not None. But the least 24% by the reverse
noticeable drag reduction occurred for sawtooth at k=0.14

reverse sawtooth at k=0.14

12◦ Not noticeable. But 22% by the 83% by the
the reverse sawtooth consistently sinusoidal at k=0.05 sinusoidal at k=0.05

generated the lowest mean CL

uRMS =

√
1

T

∫ T

0

u(t)2dt (3.1)

where u(t) is the function of the signal, and T is the period. For the sinusoidal waveform,

the RMS is approximately 1/
√

2 times the signal’s (force-time history) peak amplitude.

The RMS value for the trapezoidal waveform is approximately
√

0.733 times the signal’s

peak amplitude [124], and the RMS value for the sawtooth/reverse sawtooth waveforms is

approximately 1/
√

3 times the signal’s peak amplitude [125]. The frequency content of the

force-time history for each waveform is evaluated using the power spectral density (PSD)

analysis to determine the peak CL values for each signal. The trapezoidal waveform at all

mean angles of attack generates the most substantial RMS CL values relative to the other

waveforms. Since the kinematics of the trapezoidal waveform has a prolonged period of ‘hold’

position, it can produce higher and sustained lift force. Lift response of the reverse sawtooth

waveform generates the second-largest RMS lift, but only in a fully attached flow. Beyond

3.5◦ AoA, the RMS lift value produced by the sinusoidal waveform surpasses the RMS lift

produced by the reverse sawtooth waveform at higher mean angles of attack. Among all

mean angles of attack, the generated RMS lift coefficient is the greatest in a fully attached

flow condition at α0 = 3.5◦.



Power Spectra Analysis

The contribution of the linear and non-linear lift responses to the total generated lift is

explored through the power spectral density (PSD). A digital fourth-order Butterworth low-

pass filter is used to smooth the data with a cut-off frequency of at least three times the

operating frequency for all waveforms, except for the trapezoidal waveform where a cut-off

frequency of five times the operating frequency is used. The cut-off frequency was selected

to capture at least non-linearities in the response up to the second harmonic (five times the

fundamental frequency) and to filter out any structural interference from the experimental

setup. Although the structure naturally oscillates at nearly six times the highest operating

frequency (18 Hz) for this experimental program, the second harmonic of the aerodynamic

response is reasonably far from the test rig’s natural frequency.

Figure 3.14 shows the PSD for all test cases and sub-test cases. The frequency content for

each test case is determined by the fast Fourier transform of the periodic time series. The

frequency content displays a linear response in CL at the driving frequencies. Non-linear

responses are also demonstrated by signal content at two and three times the fundamental

frequencies. In all sub-figures, the trapezoidal waveform generates the largest lift amplitude

for the same actuation frequency and pitching amplitude inputs relative to other waveforms.

An important observation to note from these plots is that the PSD peak values monotonically

decrease with an increasing mean angle of attack and frequency of oscillation. The only

exception is displayed in the results for the mean angle of attack of 12◦, where the peak

values monotonically increase with increasing frequency of oscillation.

Figure 3.15 shows the lift amplitude coefficients for all reduced frequencies and pitching

about mean angles of attack of 3.5◦, 7◦, and 12◦. The peak values of the power spectra can

be translated to a physical meaning, (i.e., the unsteady CL amplitude) by taking the square



root of twice the PSD peak value. The peak values of the linear response are presented as

CL amplitude in Figure 3.15.

A reasonable assumption to make is to consider the response of the power spectrum’s primary

component as the unsteady linear lift amplitude. But the non-linearities that are manifested

in the signal from the first and second harmonics can be statistically significant relative

to the primary component. Figure 3.16 presents a close-up plot of the frequency content

for a 0.5 Hz frequency driven system. The PSD analysis shows that the system generates

most of its energy at the primary input frequency of 0.5 Hz. The system also responds

in cascades of harmonics at two and three times the input frequency as a result of non-

linear responses. Considerable harmonics are present when their corresponding linear lift

responses are significant. What this means is that the total lift coefficient is generated as a

superimposition of primary and non-primary frequency content. The peaks that appear at

the harmonics show that non-linear CL response is large relative to the linear CL response,

and indeed, does contribute significantly to the total lift production.
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Figure 3.14: Power spectrum for all waveforms at α0 = 3.5◦ for 0.5 Hz to 3 Hz airfoil pitching
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Figure 3.15: CL peak values from PSD analysis at primary oscillatory frequency
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Figure 3.16: Power spectrum comparison across all waveforms and mean angles of attack at
k = 0.02

Figure 3.17 shows the contribution of non-linear effects from first and second harmonics

relative to the linear unsteady lift for a handful of frequency inputs at all three mean angles

of attack. The superposition of CL responses from the harmonics onto the linear response

adds up to approximately the total lift amplitude generated. The results are consistent

with the force-time histories in that the trapezoidal motion causes the largest lift amplitude.

The reverse sawtooth also produces larger lift amplitudes compared to the sinusoidal and

sawtooth waveforms for all reduced frequencies. The ratios of the lift responses at the

harmonics relative to the response at the fundamental frequency are apparent at the post-

stall angle of attack oscillations for all waveforms. Among all waveforms, Figures 3.17(a) and

3.17(b) show that the trapezoidal waveform gives rise to substantial second harmonic effects.

Figures 3.17(c), 3.17(d), 3.17(e) and 3.17(f) demonstrate significant contribution of the lift

response due to first and second harmonics generated by the reverse sawtooth waveform.

Although the linear response in CL for the sawtooth waveform is comparatively lower than

other waveforms, it is the contribution of non-linear CL response that results in a surge in

the total lift amplitude.

In summary, the effects of harmonics contribute significantly to the overall unsteady lift

amplitude for both the trapezoidal and the reverse sawtooth waveforms. The trapezoidal

and reverse sawtooth are both associated with the highest pitch-up rates. Most of the lift



enhancement generated by these two waveforms is attributable to the harmonics and are

pronounced with increasing AoA. Additionally, the ratio of first and second harmonic peaks

relative to the fundamental peak at the driving frequency increases at higher angles of attack,

and represent evidence of non-linearity.

Computational work by Eldredge et al. [51] confirms the presence of residual effects in the

vorticity fields as a result of leading and trailing edge vortex shedding. These physical

attributes can have a significant impact on force generation as well as on the time history

responses of the aerodynamic loads. As such, non-linearity in the flow arise from these lift

and drag force residuals in the flow measurements.



Sine

Trapezoid

Sawtooth

Reverse sawtooth
0

0.1

0.2

0.3

0.4

0.5

0.6

C
L
 P

S
D

 p
e
a
k
 v

a
lu

e
s

(a) α0 = 3.5◦, k = 0.02

Sine

Trapezoid

Sawtooth

Reverse sawtooth
0

0.1

0.2

0.3

0.4

0.5

0.6

C
L
 P

S
D

 p
e
a
k
 v

a
lu

e
s

(b) α0 = 3.5◦, k = 0.05

Sine

Trapezoid

Sawtooth

Reverse sawtooth
0

0.1

0.2

0.3

0.4

0.5

0.6

C
L
 P

S
D

 p
e
a
k
 v

a
lu

e
s

(c) α0 = 7◦, k = 0.02

Sine

Trapezoid

Sawtooth

Reverse sawtooth
0

0.1

0.2

0.3

0.4

0.5

0.6

C
L
 P

S
D

 p
e
a
k
 v

a
lu

e
s

(d) α0 = 7◦, k = 0.05

Sine

Trapezoid

Sawtooth

Reverse sawtooth
0

0.1

0.2

0.3

0.4

0.5

0.6

C
L
 P

S
D

 p
e
a
k
 v

a
lu

e
s

(e) α0 = 12◦, k = 0.02

Sine

Trapezoid

Sawtooth

Reverse sawtooth
0

0.1

0.2

0.3

0.4

0.5

0.6

C
L
 P

S
D

 p
e
a
k
 v

a
lu

e
s

(f) α0 = 12◦, k = 0.05

Figure 3.17: Primary, 1st, and 2nd harmonic responses summarized.



Validation with the unsteady state-space model

A state-space representation developed by Taha (2014) [117] is used to compare and validate

the unsteady aerodynamic lift responses obtained experimentally. The state-space model is

a physics-based model that is represented by ordinary differential equations and is able to

capture certain physical aspects associated with the aerodynamics of arbitrary wing motion.

Such physical aspects include translation and rotational lift, added mass forces, and dominant

LEV contribution if there are any.

Two parameters determined from the experiments are incorporated into the state-space for-

mulation. The first parameter is the slope of the static lift curve. The second parameter

is the experimental α obtained from the potentiometer readings for each waveform as well

as their derivatives, α̇, and α̈. With these two experimentally determined parameters, the

quasi-steady circulation is obtained. The quasi-steady circulation is used as the aerody-

namic forcing input rather than the prescribed angle of attack. Using the measured angle

of attack, the state-space model can provide predictions of the lift circulation as the sum

of rotating circulation (as a function of α̇ using potential flow formulation), and translation

circulation as determined by the expression 2παeff where 2π is the slope of the static lift co-

efficient curve, and αeff is the effective angle of attack. The first and second-time derivatives

of the measured angle of attack are obtained using the first and second-order central finite

approximation with ∆t= 0.01. In addition to the state-space model, a classical unsteady

aerodynamic model (Theodorsen’s model [3]) is also used for comparison and validation of

the sinusoidal waveform. The current form of Theodorsen’s model does not apply to arbi-

trary pitching motion as it analytically predicts lift in the frequency domain. Theodorsen’s

model is also tailored to accommodate the lift curve slope into its formulation but uses

the prescribed waveform instead of the measured angle of attack. Both Theodorsen’s and

state-space formulations utilized in the validation analysis are presented in Appendix A.



Figures 5.17(c), 5.15(c), and 3.18(e) compare results from Theodorsen’s model and state-

space with experimental data for the sinusoidal waveform at α0 = 3.5◦ and reduced frequen-

cies of k = 0.02, 0.05 and 0.09. At low reduced frequency, the lift response predicted by

Thoedorsen’s and state-space models agrees well with the lift response from experimental

measurements. At higher reduced frequencies, both state-space and Theodersen’s models

overpredict the measured forces. The disparity between the experiment and both models

may be due to viscous and transition effects for low Reynolds number flow that cannot be

predicted. The ability to incorporate the experimental angle of attack readings makes the

state-space model slightly more rigorous than Theodorsen’s model in terms of predicting the

lift amplitudes.

Figures 5.17(b), 5.15(d), and 3.18(f) show the unsteady effects captured by the state-space

models for the trapezoidal pitching at α0 = 3.5◦ and reduced frequencies of k = 0.02, 0.05

and 0.09. Comparisons between the state-space model and experimental results reveal the

under-prediction of the lift force by the state-space model. As observed in Figure 5.17(b),

there is a slight under-prediction in the absolute lift value. The reason for this lies in the

assumption of using the lift curve slope to compute the quasi-steady circulation. During the

impulse pitch-up motion in the trapezoidal waveform, a lift build-up in conjunction with the

high regions of motion acceleration appears to be dictated by added mass effect. Despite

the flow being at low Reynolds number, viscous effects do not even have enough time to

contribute to the overall force production. Large instantaneous added mass forces due to

high acceleration rates are responsible for the surge in lift transient at the end of the pitch-up

motion, which are already accounted in the potential flow theory formulation of added mass

in the state-space model. As such, the state-space model can predict the trend of the lift

response generated by the trapezoidal waveform reasonably well.
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(f) k =0.09, trapezoidal

Figure 3.18: Sine vs trapezoidal at α0 = 3.5◦

Figure 3.19 shows the unsteady effects captured by the state-space models for both the saw-



tooth and reverse sawtooth pitching at α0 = 3.5◦ and reduced frequencies of k = 0.02, 0.05

and 0.09. The state-space captures general trends in the lift response accurately when com-

pared directly to the experimental results for nearly all frequencies. Only minor discrepancies

are presented at instances with high acceleration rates.

In summary comparison made between experimental results and the model reported incon-

sistent transient lift response during high angle of attack rates. Overall, the lift amplitudes

are well captured using the quasi-steady circulation assumption, and the state-space model

predicts general trends in the lift response generated by all waveforms in an attached flow

very well.
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(b) k =0.02, Reverse Sawtooth
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(f) k =0.09, Reverse Sawtooth

Figure 3.19: Sawtooth vs reverse sawtooth at α0 = 3.5◦

The state-space model can be applicable for unsteady motions at higher angles of attack.



Figure 3.20 shows the response of the four waveforms pitching about α0 = 7◦. The state-

space model provides a reliable approach to predict the modulation in lift response due to

both sinusoidal and non-sinusoidal motion. The results provided by the state-space model

justify the importance of utilizing the state-space model to capture unsteady effects at high

angles of attack for waveforms other than sinusoidal.
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(c) k =0.02, sawtooth
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(d) k =0.02, reverse sawtooth

Figure 3.20: Experimental versus lift results from the state-space model at α0 = 7◦



3.3 Summary of Contributions

In this study, we explore the force production as a result of sinusoidal and non-sinusoidal

pitching motions of a NACA-0012. The periodic frequency and mean angles of attack were

varied systematically to assess the lift and drag responses in a nominally attached flow,

incipient stalled flow, and incipient post-stalled flow conditions. The unsteady aerodynamic

responses are assessed at reduced frequencies between 0.02 to 0.14, at mean angles of attack

of 3.5◦, 7◦ and 12◦, and a pitching amplitude of 3.5◦. The kinematics considered are the

sinusoidal, trapezoidal, sawtooth, and reverse sawtooth waveforms. The discontinuities in

acceleration in the trapeoidal, sawtooth and reverse sawtooth waveform generated lift and

drag responses with significant departure from the responses generated by the sinusoidal

pitching motion.

Lift and drag responses

In a fully attached flow at mean AoA of 3.5◦, the results show that the trapezoidal followed by

the reverse sawtooth waveforms achieve the largest lift amplitude relative to the sinusoidal

and sawtooth. Both the trapezoidal and the reverse sawtooth are associated with higher

pitch-up motion rates, which are responsible for generating lift on the suction side of the

airfoil. Impulse pitch-up motions produced lift transients that exceed the quasi-steady value.

Both sawtooth and the sinusoidal waveforms provided peak lifts that are deficient from

the quasi-steady value. Lift enhancement in the generated mean lift was observed for all

waveforms except for the sinusoidal and sawtooth waveforms at lower reduced frequencies

where the flow can be categorized as quasi-steady. At mean AoA of 7◦, the lift time histories

show that lift responses during pitch-up motion generated lift. Drag time histories in cases

for sawtooth and sine wave showed excessive drag generation during a gradual pitch-down



motion. Impulse pitch-down motion by the trapezoidal and the sawtooth generated instances

of negative drag (thrust) but for a short period. All waveforms generated a net positive mean

lift but also produced a net positive drag force. The dynamic lift-to-drag ratios are the largest

at this mean angle of attack when compared with lift-to-drag ratios at 3.5◦ and 12◦. Only

the reverse sawtooth waveform generated lift-to-drag ratio values beyond the quasi-steady

lift-to-drag ratio. At mean AoA of 12◦, An impulse upstroke motion of the airfoil generated

a transient lift response that compliments a large lift force amplitude where most of the

LEV’s strength is created. Drag time histories show, for some cases, excess drag production

during slow pitch-down motions. All four waveforms observed lift enhancement in both the

lift amplitude and the generated mean lift. Additionally, all waveforms did generate larger

lift-to-drag ratios beyond the quasi-steady lift-to-drag ratio. The most significant increase in

the lift-to-drag ratio relative to its quasi-steady counterpart was observed by the sinusoidal

waveform at k=0.05. During a gradual pitch-up motion, the lift and drag both steadily

increase. During the reciprocating gradual pitch-down motion, a slow rate generates lower

lift and drag, but sustained both lift and drag relative to the quasi-steady lift and drag for

a given angle of attack. Only airfoil pitching about 12◦ provided excessive drag during the

gradual pitch-down motion. An impulse pitch-up motion, which is associated with a high

angle of attack rates, generate a lift transient response that surges beyond quasi-steady value

mainly because of significant added mass effects. In contrast, an impulse pitch-down rates

incurred by the airfoil during the trapezoidal and the sawtooth waveforms generates a lower

lift, but also lower drag. In some instances, negative drag (thrust) is produced for an impulse

pitch-down motion but is not sustained throughout the periodic motion.



Power spectra Analysis

Power spectra analysis shows that the non-linearity in the lift response plays a significant

role in lift production. The trapezoidal and the reverse sawtooth consistently generated

large unsteady lift amplitudes across all angles of attack, which is strongly supported by the

double vortex formation from Ol et al. [49]. Non-linear effects are the most dominant at 12◦

AoA, and the contributions of first and second harmonics reached up to 52% of the total lift

generated for the reverse sawtooth waveform at 12◦ AoA.

Measured lift vs state-space model

Experimental measurements are also compared with Theodorsen’s model and a state-space

representation in a fully attached flow. The results show that Theodorsen’s model captures

the unsteady lift well in fully attached flow, but slightly over-predicts the lift amplitude at a

higher reduced frequency of k = 0.09. This disparity may be possibly due to the significant

presence of viscous effects at low Reynolds number. General trends of the lift force from

the state-space model for the trapezoidal waveform compares well with the experiment, but

over-predicts general lift amplitudes of the trapezoidal waveform due to the formation of lift-

transients during high acceleration rates within the periodic motion. Responses for sawtooth

and reverse sawtooth are in good agreement with the responses from the state-space model

with only minor discrepancies at large angle of attack rates. Overall, the state-space model

is a reasonable tool to capture the unsteady effects of an arbitrary pitching motion other

than sinusoidal.



3.4 Summary of Major Findings

• For low reduced frequencies, in attached and semi-attached flow, a reverse sawtooth

waveform generates the greatest mean lift.

• In a separated flow, a sine waveform produces the most substantial lift-to-drag ratio.

• The CL responses due to harmonics provide evidence of a lift enhancement mechanism

at post-stall angles of attack.

• The state-space model is reliable to predict general trends in the unsteady lift for

arbitrary pitching motion.



Chapter 4

Effects of Flexible Propulsors on

Hydrodynamic Forces

The contents of this chapter are based on the preliminary results of the following article: She-

hata, H. M., Hajj, M. R., Woolsey, C. A., Ragab, S. (2019). Effects of Flexible Propulsors

on Hydrodynamic Forces. IFAC-PapersOnLine, 52(21), 14-20 [126].

The use of oscillatory actuation of a deformable hydrofoil trailing edge for rigid and flexible

bodies as a potential mechanism for improved thrust performance of swimming vehicles

was investigated by performing force measurements in a water towing tank. This chapter

provides detailed measurements of the thrust forces and servo torques and determines the

effect of tail flexibility, actuation frequencies, amplitudes and forward swimming forces on

overall propulsive performance.

4.1 Experimental Setup

4.1.1 Test facility

Measurements were obtained by towing the device from an instrumented towing carriage

within the Virginia Tech Towing Basin. The basin is 30 m long, 1.8 m wide and 1.2 m deep.

The carriage is driven by a 400 VDC motor and is capable of reaching towing speeds up to

99



3 m/s. The carriage speed, as indicated by a tachometer, is logged by the data acquisition

system along with force and moment components from the 6DOF force balance and various

signals of interest within the prototype. Elements of the test facility are shown in Figure 4.1.

Figure 4.1: From left to right: Towing carriage and control panel unit, and towing tank

4.1.2 Test Article

The physical device used for the experimentation is shown in figure 4.2. The forebody and

the tail piece were 3-D printed using Abs-M30 material. The forebody of the swimming

prototype (light blue part in figures 4.2 (b) and 4.2 (c)) has the shape of a NACA-0024

airfoil truncated at 75% of its chord length. The rest of the body consists of an attached

tailpiece (the purple and circular swiveling bracket in Figure 4.2) that is connected to the

back end of the forebody by a hinge that allows for smooth rotation. From the top view, the

tailpiece itself is semi-elliptical in shape that extends into a rectangular planform with two

side drill holes and a cavity to which the tail panels of any shape, length, and material are

attached to. The total length of the forebody from its leading edge is 45 cm with the tailpiece



and 41 cm without the tailpiece. The height of the prototype, i.e., the span, is 10 cm. The

sting onboard the carriage that holds the prototype in place was set at full extension making

the distance between the top surface of the prototype roughly 0.31 m under the surface of

the water, and 0.76 m away from the end walls.

(a) CAD drawing of the model (b) Swimming model

(c) Assembled model

Figure 4.2: Physical Device used for experimentation

The forebody compartment contains the waterproof L-shaped sting balance with wires run-

ning from the strain gauge up to the onboard box converter. The aft compartment (tailpiece)

contains the servo motor. The tail joint was actuated using a waterproof Hitec WPHS-55

high torque high voltage servo to provide the oscillatory motion with a range of ±20◦ relative

to the hinge point. Figure 4.3 shows a detaied and transparent view of the swimming device.



Figure 4.3: CAD model - transparent view

4.1.3 Data Acquisition System

The load cell used is a sting balance SB-100 model from Modern Machine & Tool Co. Inc.

as shown in figure 4.4. The load cell has load limits of 445 N in the axial direction (direction

of the flow, x), and 90 N in the normal and lateral (y and z) directions. The load cell is

connected to a box converter (Figure 4.4) that converts the strain gauge voltages to axial,

normal and side forces, and yaw, roll and pitch moments. The strain signals are then fed to a

Vishay Micro-Measurements 2310 signal conditioning amplifier. All signals are conditioned

using analog electronics and logged using LabVIEW. Data are acquired at 1000 Hz from

a National Instruments (NI) myDAQ, and a LABVIEW interface was used to display and

record the time histories of forces and torques.

The measurements for servo torque are based on the properties of the servo used. As with

motor systems, the output torque for the servo was approximated by correlating the input

current with the output torque. To find this relationship, calibrations were performed using

a microcontroller, PWM driver, test servo, torque measuring circuit, C++ program, and a

MATLAB script to sample and log real-time servo current draw at different applied torques.



Figure 4.4: 6DOF Sting Balance SB-100 model (left), strain gauge box converter (right)

The microcontroller used for control and acquisition is a Teensy 3.5 microcontroller. The

PWM driver is a PCA965 and is used to control the servo using I2C commands from the

Teensy directly. The torque circuit consisted of an analog current sensor (ACS712), bias

remover, single pole RC filter, and external 16-bit analog to digital converter (ADS1115).

The output torque measurements for the prototype experiments were found by converting

the analog voltage output of the torque measuring circuit to servo output torque in N-m

using servo torque calibration tests.

4.1.4 Uncertainty Analysis

To estimate the uncertainty in signal measurements obtained from the strain gauges, and

servo torque current sensors, a method similar to the one employed in Alam et al. [103]

is used. The load cell signal was captured for 10 seconds for three trials, corresponding

to 1,500 samples of data, and the distribution of the sample averages was obtained. The

corresponding standard deviation (σ) was approximately 3.9% of the mean value. The 2σ

value of ±7.8% indicates the Fx strain gauge measurement uncertainty at the 95% confidence

level. The same technique are applied to estimate the sensor uncertainties in Fy, Mz and

the servo torque, and the servo angles; these are ±3.6%, ±8.4%, and ±1.4% respectively.



Each servo’s angular position is acquired from the wiper voltage of the servoactuator’s po-

tentiometer, sampled at 50 Hz. The analog voltage is converted to angular position (in

degrees) using a previously calibrated curve fit. A time delay is set by the microcontroller’s

clock input which commands a signal to drive the servo at a given frequency, producing an

uncertainty in frequency inputs of ±0.005 Hz. The frequency input to each servo is verified

by examining the Fourier transform of the potentiometer measurements.

4.1.5 Experimental Test Matrix

The input waveform to the flap had the form θ(t) = θA sin(ωt) with both forebody and tail

panel’s mean angle of attack set to zero degrees. Here θA is the leading edge amplitude (the

rotation angle at the leading edge) of the oscillating tail with respect to the x direction and

ω = 2πf where f is the forcing oscillatory frequency. Three tail panels were used for the

current experiment. Their dimensions and material properties are listed in Table 4.1. The

dimensions for each panel are expressed as chord length, c by tail Span, S by thickness, h.

Table 4.1: The tail panels used for testing on the fish prototype. ∗ Values for β are computed
with Uref of 0.35 m/s.

Panel Relative Dimensions Flexural Mass
thickness h/c (cm) Rigidity β∗ ratio, µ

a 22.2 ×10−3 9 × 9 × 0.2 8.7 0.026

b 1.7 ×10−3 9 × 9 × 0.015 2.8 0.004

c 0.8 ×10−3 18 × 9 × 0.015 0.3 0.002

The flexural rigidity, β, is a non-dimensional term that represents the tail stiffness:

β =
Eh3

12
(
1− ν

)
ρfU2

refc
3

(4.1)

where Uref is the reference flow velocity relative to the forebody, f is the tail oscillating



frequency, c is the chord (panel) length of the tail, h is the thickness of the tail panel, ρf is

fluid density, and E and ν are the Young’s modulus and Poisson ratio of the tail’s material

respectively. The values of β for the tested panels at freestream velocity of 0.35 m/s are also

presented in Table 4.1. Based on these values, tail ‘a’ is termed as the most rigid and tail

‘c’ is termed as the most flexible.

The non-dimensional mass ratio µ [127, 128, 129] is defined as:

µ =
ρsh

ρfc
(4.2)

Here, ρs and ρf are the material’s and fluid densities respectively. This ratio is the product

of the specific gravity ρs / ρf and effective thickness h/c. The materials used were acrylic for

tail ‘a’ with a density of 1, 190 kg/m3 and a Young’s Modulus of 3.2 GPa, and a carbon fiber

for tail panels ‘b’ and ‘c’ with a density of 2, 276 kg/m3 and Young’s Modulus of 29 GPa.

The tail panel’s aspect ratio is the ratio of the panel’s span to its chord length, AR = S/c.

The aspect ratios for panels ‘a’, ‘b’ and ‘c’ are 1, 1 and 0.5 respectively.

The axial force and torque measurements were obtained for two test cases. In case A, the

forward speed was set to zero, and all forces and torques generated were influenced primarily

by the fluid’s added mass effects. Case B included tests performed at a forward speed of

0.35 m/s where all forces and torques are generated by added mass effects, circulation and

vorticity effects.

4.2 Results and Discussion

Because in case A, the mean swimming velocity Ū cannot be predetermined, an appropriate

scaling parameter for velocity would be the tail peak velocity defined by Up = 2πfAp,



where Ap is the maximum amplitude of the tip of the tail panel [85, 130, 131]. The tail’s

peak to peak amplitude of the motion generated by the trailing edge of the panels is a

function of system response and is dependent on inertial, elastic and hydrodynamic forces.

Peak amplitudes were determined by observing the trailing edge of the panels during the

oscillations using a position tracker Matlab script applied to video imagery acquired by a

GoPro Hero5 at 120 frames per second and 1080p resolution. Instant image shots of the

deforming panels can be found in Appendix B.

4.2.1 Case A: Measurements Without Towing Speed

Table 4.2 shows the range of parameters used for testing at zero forward speed. For all

results presented in Figures 4.5, 4.6 and 4.7, the thrust forces and servo torques increase

monotonically with amplitude and frequency with a tendency to flatten at higher forcing

frequencies for the less flexible tails. Tails ‘a’ and ‘b’ both generate larger thrusts at higher

frequency of oscillations and amplitudes. Figure 4.7 shows that over the range of tested

frequencies, thrust peaks were observed at around 0.7 and 0.8 Hz for all amplitudes for

panel ‘c’. Thrust peaks occur at lower frequencies for panels with lower flexural rigidity

(more flexible). The results may indicate that operating at frequencies close to structural

resonance can increase peak thrust.

Table 4.2: Range of operating conditions without towing speed

Parameter Range

Free stream velocity, U∞ (m/s) 0

Frequency of excitation, f (Hz) 0.5− 3.0

Leading edge amplitude, θA 6◦, 8◦, 10◦, 12◦ and 15◦

Mean angle of attack, θ0 0◦

Figure 4.8 shows the relative peak amplitudes Ap for panels ‘a’, ‘b’ and ‘c’ obtained as a result

of the tail’s fluid-elastic response. The peaks were obtained for four successive half strokes,
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Figure 4.5: Thrust (N) and total torque, τT (N-m) measurements at various leading edge
amplitudes and frequencies for tail panel ‘a’ (most rigid).
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Figure 4.6: Thrust (N) and total torque, τT (N-m) measurements at various leading edge
amplitudes and frequencies for tail panel ‘b’

where three trials of Ap measurements were taken for every half a stroke and averaged. A

maximum peak amplitude typically occurs around the panel’s first bending mode. Panel ‘b’

shows an increase in peak amplitudes of approximately 5 to 40% relative to the rigid panel,

panel ‘a’, whereas panel ‘c’ shows an increase in peak amplitudes of approximately 40 to

240 % relative to panel ‘a’ but only for a selected range of input frequencies between 0.5 Hz

and 1.5 Hz. Beyond that range of frequencies, the structural response of panel ‘c’ yields peak

amplitudes lower than panel ‘a’, which suggests that the beam may be exhibiting another
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Figure 4.7: Thrust (N) and total torque, τT (N-m) measurements at various leading edge
amplitudes and frequencies for tail panel ‘c’ (most flexible).
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Figure 4.8: Dimensional peak amplitude (left) and normalized peak amplitudes (right)

mode of bending or a coupled mode between bending and torsion.

The relative peak amplitude, Ap/Aprigid
, is strongly dependent on input frequency. The max-

imum deflections are observed for panel ‘b’ at 1 Hz and for panel ‘c’ at 0.75 Hz. Comparing

these values with the theoretical natural frequencies computed using the Euler-Bernoulli’s

beam theory in vacuum suggests that added mass effects, and potentially viscous and vortic-

ity effects, can lower the structure’s first natural frequency. One analytical effort to determine

the effect of water damping on the free vibration response of a rectangular cantilever beam



was described by Kramer et al. [132]. The study found that the added mass generated as

a result of the fluid-structure interaction caused the natural frequencies of their composite

plate to drop by 50% to 70% in water compared to in air. The water acts as a source of

damping on the panel, thus the natural frequency is reduced. The natural frequency changes

significantly with material density (specific density) and geometric ratio (h/c). As the den-

sity of the fluid increases, the natural frequency reduces. Consequently, the added mass

effects are larger for materials with lower density. For example, the added mass effects for

a composite material would be larger than for steel because the density of the composite is

approximately 3-4 times lower than the density of steel.

An analytical estimate to determine the natural frequency of an immersed cantilever beam

is expressed as (Kramer et al. [132]):

ωfluid

ωair

=

√
ms

ms +ma

=
1√

1 + π
4
c
h
ρf
ρs

(4.3)

where, ma and ms are the added mass of the fluid displaced and the mass of the material,

respectively, and ωair and ωfluid are the material’s natural frequency in air and water, re-

spectively. We assume here that the discrepancy between the natural frequency in air and

vacuum is negligible. Equation 4.3 can be re-written in terms of the non-dimensional mass

ratio µ:

ωfluid

ωair

=
[
1 +

π

4µ

]−1/2
(4.4)

Note that this expression is derived from two-dimensional potential flow theory [133]. The

approximate analytical solution accounts for the added mass of the fluid that is displaced

by the deforming beam. However, the solution does not account for viscous effects, and



therefore, an overestimate (or underestimate) of the added mass is expected. Despite these

limitations, the solution still provides a reasonable estimate of the frequency ratios given

that there is no coupling between the bending and twisting modes (i.e., no warping). An

analytical estimate for the first natural frequency of panels ‘b’ and ‘c’ is presented in Table

4.3 alongside the first natural frequency determined by the Euler-Bernoulli beam theory

and by qualitative experimental observation. The analytical estimate shows that water

reduces the natural frequency by about 93% and 95% for panels ‘b’ and ‘c’, respectively,

whereas observation from the experiment shows that the natural frequency in water reduces

by approximately 97% and 91% for panels ‘b’ and ‘c’, respectively.

Table 4.3: Theoretical vs experimentally obtained first mode natural frequencies.

Panel Natural frequency: Vacuum Natural frequency: Water Natural frequency: Water
(Euler-Bernoulli) (Experiment) (Analytical [132])

a 49 Hz N/A N/A

b 35 Hz 1 Hz ± 0.25 Hz 2.42 Hz

c 8.7 Hz 0.75 Hz ± 0.125 Hz 0.43 Hz

In Figure 4.9, we plot the thrust force generated as a function of the tail peak amplitudes.

Tail panel ‘a’ assumes a constant peak amplitude as expected since its rigidity properties

restrict any large tip deformations. The thrust generation for panel ‘a’ under the stated test

conditions is independent of the peak amplitude. No direct correlation between tail peak

amplitude and the maximum thrust force is observed for tail panel ‘b’ since the most signif-

icant thrust production does not correspond to the largest tail peak amplitude. For panel

‘c’, a strong correlation between thrust production and tail peak amplitudes is observed.

The larger the tail peak amplitude, the higher the thrust production. The results shown in

Figure 4.9 demonstrates that oscillating panel ‘c’ near structural resonance can enhance the

effect on the coupled elastic, inertia and fluid forces generated by the tail. This behavior is

not observed for panel ‘b’.

Figure 4.10 shows the thrust-force time histories for all tail panels. The responses were
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Figure 4.9: Thurst versus peak amplitudes

generated for the same leading edge amplitude input of θA= 8◦ at oscillatory frequencies

of 0.5 Hz, 0.75 Hz and 1 Hz. Panel ‘c’, which is the most flexible panel, generates at

least five times the instantaneous thrust force (absolute value) in comparison to panels

‘a’ and ‘b’ at 0.5 Hz. Panels ‘a’ and ‘b’, with the same aspect ratio, generate similar

responses in thrust force at the tested frequencies. Likewise, the thrust peak values for panel

‘c’ are approximately three times the thrust peak values of panels ’a’ and ‘b’ at 0.75 Hz,

and two times the thrust peak values of panels ’a’ and ‘b’ at 1 Hz. The absolute thrust

values for panel ‘c’ relative to panels ‘a’ and ‘b’ start to drop with increased frequency of

oscillations. Additionally, both panels ‘a’ and ‘b’ begin to generate larger thrust forces at

higher frequencies of oscillation as previously portrayed in Figures 4.5 and 4.6.

The value of the thrust peaks at 0.5 Hz for every half a stroke of flapping motion are identical

in absolute value. This behavior is dependent on the initial conditions of the flapping motion.

Referring to the conventional notation of an inertial coordinate system (see Figure 4.3), the

initial execution of the flap motion goes from zero angle of incidence to +8◦, which in
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Figure 4.10: Time series for instantaneous thrust force for frequency of oscillation of 0.5 Hz
(top left) , 0.75 Hz (top right), and 1 Hz (bottom). Panel ‘a’: blue dashed, panel ‘b’: solid
red, panel ‘c’: green diamond.

turn, can generate vorticity effects that would register on the load cell as a higher (or lower)

magnitude relative to its consecutive peak. If you reverse the initial execution of the flapping

motion (i.e., from zero angle of incidence to −8◦), the peaks for each consecutive half a stroke

of flapping motion will reverse. This explains why the thrust-time history for panel ‘c’ at

0.5 Hz produces identical absolute values at every other peak. The thrust-time history for

panel ‘c’ might reveal that panel ‘c’ is generating substantially large scale vortices at the first

half stroke of the flapping due to a strong non-linear coupling of the fluid-elastic response.

This behavior in thrust-time history is not observed for the other two panels. We also notice



from the thrust-time histories that the relative height of the alternating peaks at higher

frequencies is attenuated at 0.75 Hz and almost disappears at 1 Hz. At lower frequencies, we

can claim that vorticity effects from potential shed vortices have enough time to significantly

contribute to the global flow field around the tail. In contrast, at higher flapping rates, any

vortex being formed does not have enough time to self-sustain between every full flapping

motion.

Figure 4.11 shows a comparison of the propulsive efficiency for all panels at zero freestream

velocity. The propulsive efficiency is expressed as the Froude efficiency defined by:

ηprop =
CT

CP

=
TUref

P
(4.5)

where CT and CP are respectively the thrust and power coefficients and expressed as:

CT =
T

1
2
ρU2

refSc
CP =

P
1
2
ρU3

refSc
(4.6)

where T is the mean of the measured thrust (axial force) and P is the mean power input

required by the servo to oscillate the panels from the leading edge. The mean power is

computed as the mean of the product of the instantaneous hydrodynamic torque, τH and the

tail’s prescribed angular velocity ω.

P = τHω (4.7)

The hydrodynamic torque, τH is obtained by subtracting the panel-free torque τPF from the

total servo torque τT. The panel-free torque τPF is the torque required to move the tailpiece

only (without a panel) in the water at all frequency points. In specific, the mechanical torque



is the total of mechanical friction and hydrodynamic torque required to move the tailpiece

only. The total servo torque is the torque measured at all frequency points in the presence of

a tail panel. In equation 4.7, ω is the angular velocity obtained from the first time derivative

of the prescribed simple harmonic motion of the tail panels.

The velocity Uref that can be used for this set of results is Up, which can be obtained using

the peak amplitudes presented in Figure 4.8 to compute the propulsive efficiency. Although

the scaling approach used here is an appropriate one, it does not apply to a device that is not

moving and is not necessarily directly comparable with the propulsive efficiencies obtained

for the case with freestream flow; i.e., case B. Instead of using the conventional definition

of propulsive efficiency at zero freestream velocity, another way to measure performance

is to use a thrust-to-power-input ratio [131]. The results in Figure 4.11 reveal that the

thrust-power input ratio is greater for the flexible panels than for the rigid panel.

0.5 1 1.5 2 2.5

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Figure 4.11: Thrust-to-power ratio for all three panels at zero freestream flow. Panel ‘a’:
blue star panel ‘b’: red diamond, panel ‘c’: green circle,



4.2.2 Case B: Measurements With Towing Speed

In this subsection, forces and torques were measured and recorded when the prototype was

towed at a speed of 0.35 m/s. Table 4.4 shows the range of input parameters used for this

test condition. In the case of forward speed, the net thrust force is the force generated due to

the addition of flow circulation, and viscous body drag. The thrust force, T generated due to

these effects was determined by taring the static body drag measured when the prototype was

towed unactuated, Dbody, from the net thrust force obtained from direct force measurements

when actuated and towed, Tnet. The fish prototype is forced to swim at the speed of the

towing carriage to represent a steady current of speed U∞.

Table 4.4: Range of operating conditions with towing speed

Parameter Range

Free stream velocity, U∞ (m/s) 0.35

Frequency of excitation, f (Hz) 0.5− 3

Leading edge amplitude, θA 8◦

Tail’s mean angle of attack, θ0 0◦

T = Tnet −Dbody (4.8)

Figure 4.12 shows the true body drag values generated by towing the prototype (unactuated

and with a detached panel) at speeds of 0.35 m/s, 0.51 m/s and 0.68 m/s. The corresponding

Reynolds numbers are 1.6× 105, 2.5× 105 and 3.3× 105. The drag forces have a quadratic

relationship with flow velocity, and are directly proportional to the velocity squared, a be-

havior typically expected. The drag coefficients of the forebody at the three non-zero speeds

are 0.062, 0.059 and 0.063 respectively. The averaged drag coefficient over the three speeds

is 0.061. The results from drag measurements are in relative agreement with results from

Sogukpinar [134] for a three-dimensional NACA-0024 with a drag coefficient value of 0.057



at zero angle of attack and Re= 6× 106. Body drag force is possible because of the creation

of three-dimensional tip vortices coming off both ends of the prototype.
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Figure 4.12: Body drag force vs freestream velocity and freestream velocity squared

Two additional non-dimensional frequency parameters are introduced. These are the reduced

frequency, k, and Strouhal number St :

k =
2πfc

Uref

and St =
fAp

Uref

(4.9)

where, Ap is the peak amplitude which is the recommended scaling parameter extensively

used in literature. Since the peak amplitude varies as a function of the experimental pa-

rameters, the Strouhal number is a measured output, rather than a prescribed parameter.

Measurements are therefore presented as a function of the reduced frequency, which is an

experimental input parameter.

The coupling effect between aspect ratio and stiffness on propulsive performance can be

isolated in this set of results. Panels ‘a’ and ‘b’ have the same aspect ratio and only vary

in material type and hence flexibility, whereas panels ‘b’ and ‘c’ are the same material, but
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Figure 4.13: Thrust and power coefficients for tail panels ‘a’ and ‘b’
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Figure 4.14: Thrust and power coefficients for tail panel C

vary in aspect ratio. Figures 4.13 and 4.14 show that at higher reduced frequencies, tail

panels ‘a’ and ‘b’ generates higher thrust coefficient values than panel ‘c’. However, for the

range of reduced frequency between k =3.5 and k =5, panel ‘c’ generates higher dimensional

thrust forces prior to converting the results to non-dimensional form. Out of the three tail

panels, panel ‘c’ also requires the least amount of power input into the fluid to generate the



0 1 2 3 4 5 6 7 8 9

0

5

10

15

20

25

30

35

40

45

Figure 4.15: Full comparison of propulsive efficiencies

flapping motion.

When directly comparing tail panels ‘a’ and ‘b’, panel ‘b’ generates higher thrust forces

for nearly the same servo torque requirements. At reduced frequencies beyond k = 4, it is

clear that some degree of the fluid-elastic response exhibited by panel ‘b’ enhances thrust

production.

Optimal propulsive performance is generally expected over a band of frequency where the flow

exhibits favorable vortex behavior to the benefit of thrust production. Figure 4.15 compares

the propulsive efficiency curves for all three tail panels. Tail panel ‘c’ shows propulsive

efficiencies up to 45%, nearly three times that of panel ‘b’. Panel ‘b’ is nearly eight times the

flexural rigidity of panel ‘c’, and panel ‘a’ is nearly three times the flexural rigidity of panel ‘b’.

While panels ‘a’ and ‘b’ maintain the same aspect ratio and only differ in material property,

tail ‘b’ was able to generate about a 35% increase in propulsive efficiency. The results

show that flexibility enhances propulsive efficiency, although both geometric and material



properties tend to have different effects at different operating frequencies. Figure 4.15 also

shows that the maximum peaks were observed at a range reduced frequency somewhere

between k = 4 and k = 5 for tail panels ‘b’ and ‘c’, and at lower reduced frequency of

k = 3.8 for tail panel ‘a’. The propulsive efficiency peaks presented by Dewey et al. [85] are

observed at around k = 6 to 7 for their panels P4 and P5 with flexural rigidity values close to

our panel ‘b’. The difference in results is due to several factors; the dominant one of them is

that Dewey et al. [85] presented their results at a Reynolds number of Re=7,200. Reynolds

number can have drastic effects on skin friction and pressure drag acting on the panel which

as a result can alter thrust generation and power input to the fluid by the panels.

Effects of varying swimming speed (Reynolds number)

In this subsection, we briefly examine the effects of towing speed on the thrust forces gen-

erated by panel ‘b’ as a sample case study on the effects of Reynolds number on the force

production of a flexible beam. For rigid foils, larger forward forces can be achieved at higher

Reynolds number [135]. However, these forces are strongly dependent on both geometric

and material properties. Ashraf et al. [136] determined in their study that the thickness of

the airfoil plays a significant role in the propulsive performance for a rigid pitching airfoil at

different Reynolds number. At higher Reynolds number, thick airfoils with small pitching

amplitudes outperform thin airfoils. In contrast, at lower Reynolds numbers, thin airfoils

can achieve substantially better propulsive performance.

Figure 4.16 shows the mean thrust force and the total torque required by panel ‘b’ at different

actuation frequencies and pitching amplitudes of θA = 4◦ and 8◦. The forces presented in

this section are the total axial force minus the steady drag force incurred by the forebody

with the tail centered. In addition to a flow speed of 0.35 m/s, the resultant thrust forces are

determined for two forward towing speeds: 0.51 m/s, and 0.68 m/s. With a forebody chord



of 45 cm and a tail panel chord of 9 cm, the corresponding Reynolds numbers at 0.35 m/s,

0.51 m/s and 0.68 m/s are Re=1.9 × 105, Re=3.0 × 105 and Re=4.0 × 105, respectively.

We observe from the plots that across both pitching amplitudes, the most substantial thrust

forces were generated at Re=1.9 × 105, which is the lowest Re among the three Reynolds

numbers. Similarly, the torque requirements to oscillate the tail at any given frequency are

the lowest for Re=1.9×105 across both pitching amplitudes. Despite the body force at each

corresponding flow speed being tared from the dynamic results, the three-dimensional effects

are likely to produce an additional source of drag at higher swimming speeds.

The results imply that thrust forces are more significant at lower Reynolds numbers and

higher pitching amplitudes. Despite running the experiment at three different Reynolds

numbers, the range of the selected Reynolds numbers is not spread out such that the dy-

namics of the flow alters significantly. This means that there is no extreme flow state change

from laminar to turbulent flow. The selected Reynolds numbers are a dominantly turbulent

flow regime since flow transition usually takes place around the range Re = 104. For this

reason, it is believed that the swimming speed alone is a significant underlying factor in

changing how thrust forces are generated. This observation is consistent with the findings

of (Quinn et al. [86]) that a varying flow speed produces a significant change in forces on

a flexible flapping panel. Also, with the tail panel taking the shape of a rectangle with a

relatively low thickness to chord length ratio, the conclusion by Ashraf et al. [136] agrees

with the results here.

The flapping of the tail in freestream flow can not only generate added mass forces but

can also incur large scale vortex shedding that generates wake energy to overcome drag and

develop thrust [137]. The concept of deformable bodies and wake energy can be related to the

findings of Beal et al. [137], where if the panel resonates at some harmonic or sub-harmonic

of the shedding frequency of a bluff body, thrust production can be enhanced as a result
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Figure 4.16: Effect of swimming speed on mean thrust forces and torques.

of an energy extraction mechanism. One way of physically interpreting our experimental

results is to revisit the underlying mechanism that generates thrust for flapping foils. That

is, the flapping of a fish-tail can generate a reverse Von-Kármán vortex street, which in turn,

induces a jet in the direction of the swimming. Triantafyllou et al. [89] additionally reveals

that the strength of the reverse Von-Kármán vortices generated by the flapping fish-tail

is substantial when the flapping occurs within the suction region (low pressure region) of

the flow downstream of its forebody. The strength of these vortices is an essential source

of forward propulsion. Nevertheless, the larger the flow speed, the quicker these vortices

dissipate further downstream of the flow, leaving behind a flow field with a weak resultant

net jet force in the direction of the swimming, and a large flow momentum deficit (drag).

4.2.3 Comparing Case A and Case B

Figures 4.17, 4.18, and 4.19 directly compare the thrust generated in zero flow speed (case

A) and 0.35 m/s flow speed (case B) for the three panels with a tail pitching amplitude of 8◦.

The comparison is made for all three panels. We reiterate that the thrust forces presented in



these plots for case B are determined by the difference between the net axial force recorded

and the drag of the forebody measured (un-actuated with the panel detached). The results

are consistent across all panels, showing the thrust generated in zero freestream are generally

larger than the thrust generated in freestream flow. However, the advantage illustrated by

case B over case A is that the servo in case B acquires less torque to actuate the tail panels

at any given input frequency. In zero freestream, we argue that the flow around the flapping

tail may incur vorticity effects in addition to added mass effects. With freestream flow,

the combination of added mass, vorticity, viscosity, and circulation (both rotational and

translational) can contribute to the overall resultant thrust force.
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Figure 4.17: Panel ‘a’ : Thrust and servo torque comparisons between 0 m/s (case A) and
0.35 m/s (case B) flow speeds.

One other source of the force that is generated in freestream flow is the hydrodynamic lift

induced thrust. This force mainly occurs because of the net circulation generated by large

pressure differentials in the flow. Large pressure differentials are responsible for the fomration

of vortices. The role of vorticity energizes the flow around the swimming body that allows the

generation of thrust due to circulation. The results from Figures 4.17, 4.18, and 4.19 show

that thrust generated due to circulation does not contribute significantly to the resultant
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Figure 4.18: Panel ‘b’ : Thrust and servo torque comparisons between 0 m/s (case A) and
0.35 m/s (case B) flow speeds.
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Figure 4.19: Panel ‘c’ : Thrust and servo torque comparisons between 0 m/s (case A) and
0.35 m/s (case B) flow speeds.

thrust as it does not overcome the excess drag produced while towing the prototype. The

additional source of drag could also come from circulatory effects from the flapping motion

(Patil [138]).

We note in figure 4.19(a) a shift in peak thrust from 0.7 Hz, when panel ‘c’ flaps in zero

freestream flow, to 1 Hz, when panel ‘c’ flaps in 0.35 m/s freestream flow. We also know



from this study that the peak amplitude in zero freestream corresponds with the maximum

thrust peak value for panel ‘c’. The results indicate that the effect of freestream flow (an

inertial dominated flow regime) plays a role in raising the first natural frequency of panel

‘c’ in water by approximately 25%. As such, added mass effects in freestream flow are lower

than in a zero freestream flow. In the same plot, we observe the same inflection point around

2 Hz for both zero freestream and non-zero freestream flow. Although we could not observe

the peak amplitude and determine the second mode natural frequency of panel ‘c’ in water,

the second natural frequency using the Euler-Bernoulli beam theory is 54 Hz. If we assume

that the frequency ratio between water and air for panel ‘c’ persists at 91% as determined

in Table 4.3, the second natural frequency of panel ‘c’ would be approximately 4.9 Hz. The

inflection point we see at 2 Hz could very well be within a range of the second natural

frequency of panel ‘c’ in water. Non-linear structural effect caused by large deformations

of long tail panels is the dominant mechanism in driving the coupled structural and fluid

non-linear responses. In specific, the resultant aeroelastic behavior is caused by changes in

the frequencies and mode shapes of the system Patil and Hodges [139]).

4.3 Summary of Contributions

A single link swimming device has been designed, fabricated and tested in a towing basin.

The results show that for the same oscillatory amplitudes and flow speed, an increase in

frequency of oscillations results in a monotonic increase in thrust coefficients up to a peak

frequency. This behavior is the same regardless of tail material flexibility.

At zero forward speed, thrust-to-power ratio peaks showed significant differences between

three panels. Panel ‘c’ produced approximately 68% higher maximum thrust-to-power ratio

value than panel ‘b’ (varying aspect ratio). Panel ‘b’ produced nearly 100% higher maximum



thrust-to-power ratio value than panel ‘a’ (varying material property).

At a speed of 0.35 m/s, the propulsive efficiency is more affected by changes in geometric

properties (aspect ratio) rather than material properties. The results show that by incorpo-

rating three times the flexibility on rigid tail, panel ‘a’, the propulsive efficiency was enhanced

by 35%. In addition, incorporating eight times the flexibility on panel ‘b’ resulted in panel ‘c’

generating nearly three times the propuslive efficiency. Increasing the material’s flexibility

tends to shift the propulsive peaks to higher reduced frequencies. Isolating the effects of

aspect ratio, lowering the aspect ratio for the same material generated larger differences in

propulsive efficiency peaks, but produced no notable shift in efficiency peaks to a different

frequency. Finally, it is determined that the overall flexibility of a material provides better

peak propulsive efficiency values.

Structural resonance plays an active role in thrust enhancement for panel ‘c’ but not for panel

‘b’ despite exhibiting similar material properties. We also conclude that flapping the tails in

water reduces the theoretical (Euler-Bernoulli theory) first natural frequency of panels ’b’

and ‘c’ by 97% and 93% due to large added mass and damping effects. These comparisons are

in statistical agreement with an analytical model obtained from the literature. Additionally,

a sample case study on the effects of swimming speeds on panel ‘b’ suggests that larger

thrust forces are produced at lower swimming speed and larger pitching amplitudes. Finally,

zero freestream flow generates more thrust forces, but requires more power input to oscillate

the panels at any given frequency and amplitude compared to a non-zero freestream flow.

By observing the peak thrusts for panel ‘c’, we also claim that the first natural frequency of

panel ‘c’ increased by 25% while flapping the tail in a freestream flow.



4.4 Summary of Major Findings

• All panels produce larger thrust forces at lower towing speeds, but also require sub-

stantial torque for the same input parameters.

• The effects of material property have a considerable impact on propulsive performance

(thrust-to-power ratio) in zero freestream flow.

• The effect of aspect ratio is substantial on propulsive efficiency in a non-zero freestream

flow.

• The natural frequency in water is reduced substantially relative to the natural fre-

quency in the air due to large added mass effects

• Resonance plays a significant role in the thrust peaks generated for panel ‘c,’ the most

flexible panel among the tested panels.



Chapter 5

Hydrodynamic Performance of an

Articulating Body: The Modular

Biolocomotion Emulator (MBE)

The contents of this chapter are based on the preliminary results of the following article:

Shehata, H.M., Woolsey, C.A. and Hajj, M.R., 2019. Hydrodynamic Performance of a

Modular Biolocomotion Emulator. IFAC-PapersOnLine, 52(21), pp.1-7 [140].

This chapter presents experimental measurements of the internal and external forces and

moments generated during forced oscillation of a modular biolocomotion emulator (MBE).

The MBE was towed at three different steady towing speeds (in addition to zero speed)

while executing four distinct tail kinematics at various waveform frequencies. The MBE

geometry and tail kinematics can be varied further to test a broader range of morphologies

and “gaits”. The tested tail kinematics considered were (a) sine wave, (b) leading edge

pitching, (c) 1st mode bending, and (d) 2nd mode bending. The purpose of the experimental

program is to develop a database of hydrodynamic force measurements that can be used to

validate low-order computational methods, such as the unsteady vortex lattice method, and

to provide preliminary results on the hydrodynamic forces and torques as a result of different

tail kinematics.
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5.1 Experimental Setup

5.1.1 Test Facility

The towing basin and test facility used for the experimentation of the MBE prototype was

previously described in section 4.1.1.

5.1.2 Test Article

The test apparatus used in this work is the MBE described by Beardsley et al. [141]. The

MBE comprises a series of rigid components called modules. The device allows for the

addition or removal of modules to represent various morphologies. In its simplest configura-

tion, with a forebody and a single rigid fin, the MBE generates ostraciiform motion. With

an additional link between the forebody and the fin, the MBE can generate a carangiform

motion. The locomotion modality varies from oscillatory to undulatory as the number of

modules grows, eventually approximating anguilliform locomotion. For the experiments de-

scribed here, the MBE is configured to support experiments at the carangiform end of the

locomotion spectrum. It comprises four modules: a forebody, two faired actuator modules,

and a single rigid fin or tail.

The forebody of the MBE, which contains some of the MBE control electronics, is fixed to an

immersible six degree-of-freedom (6DOF) balance suspended below a towing carriage. Each

module contains a servo-actuator capable of applying a control moment to the subsequent

module. Specifically, each module houses a waterproof SAVOX SW1210SG high torque servo,

powered by a 7.4 VDC supply, to provide the oscillatory motion required of each module in

order to effect a desired gait. These servos are capable of producing 800.0 N-cm of torque

and slewing 60◦ in 0.13 seconds.



The fairings are 3-D printed using Abs-M30 material, and are designed to allow each module

to rotate relative to its neighbors while preserving a nearly continuous external shape. The

forebody geometry is the leading 70% of a NACA-0024 hydrofoil. The modules between the

forebody and tail have a constant span of 10 cm. The tail fairing geometry is the trailing

30% of the NACA 0024 hydrofoil. A CAD model of the MBE can be seen in Figure 5.1

and a top view schematic of the MBE as configured for these experiments can be seen in

Figure 5.2. Additionally, photos of the prototype anchored to the sting on the water carriage

are presented in Figure 5.3. The force and moment components Fx, Fy and Mz are measured

using the 6DOF balance. The angles θ1, θ2 and θ3 represent relative orientations for each

module, which are affected by the servo control torques τ1, τ2 and τ3. For additional details

concerning the design of the MBE, its electronic instrumentation, or data acquisition, see

[141].

Figure 5.1: Rendering of the assembled, multi-link MBE.

5.1.3 Data Acquisition System

The load cell used is the 6DOF SB-100 sting balance manufactured by Modern Machine &

Tool Co. as previously shown in section 4.1.3 (Figure 4.4). The sensor is connected to a box

converter, also shown in Figure 4.4, which processes the strain gauge voltages to produce



Figure 5.2: Schematic of the MBE as tested (top view).

measurements of axial, normal, and side forces and of yaw, roll, and pitch moments. Only

the horizontal plane components are recorded in these experiments: axial and side force and

yaw moment. The load cell’s calibration limits are 445 N in the axial force direction (x),

90 N in the lateral force direction (y), and 4,500 N-cm in the yaw moment direction (about

z).

The axial force Fx, lateral force Fy, and yaw moment Mz on the MBE forebody are obtained

from the 6DOF balance. Strain signals are then fed to a Vishay Micro-Measurements 2310

signal conditioning amplifier. All signals are conditioned using analog electronics and logged

using LabVIEW. Data are acquired at 50 Hz from two devices: a National Instruments (NI)

myDAQ and a Teensy 3.2 microcontroller. The NI myDAQ acquires axial force, side force,

and yaw moment data from the balance while the Teensy 3.2 acquires position and torque

measurements from each of the servos. Each module on the MBE contains its own Teensy 3.2

microcontroller, programmed using the Arduino integrated development environment (IDE).

The Teensy microcontroller delivers command signals to the servo and reads two analog

voltages from it. The first analog voltage, measured at the wiper of the servo’s feedback

potentiometer, indicates the servo’s angular position. The second analog voltage, obtained

from an ACS712 current sensor connected in series with the servo, provides a measurement



Figure 5.3: Photos of the MBE anchored and submerged in water.

of servo torque. Table 5.1 summarizes the input commands and output measurements for

the experimental program.

Inputs Outputs

Towing speed, U∞ (m/s) Axial and side forces, Fx and Fy
Tail frequency, f (Hz) Yaw Moment Mz

Tail amplitude, AP Servo torques, τ1,net, τ2,net, τ3,net

Gaits, θ1(t), θ2(t), θ3(t) Motion histories

Table 5.1: Experimental inputs and outputs

Within each module, the servo is powered directly from an 8.4 VDC bus while a voltage



regulator provides 5.0 VDC to power the microcontroller and current sensor. All Teensy 3.2

microcontrollers within the MBE share a single I2C communication bus, which requires only

two serial communication lines (clock and data). The microcontroller in the forebody serves

as a master on the communication bus. This device communicates separately via USB with

a LabVIEW script running on a laptop computer aboard the towing carriage. All data

acquired are smoothed using a digital fourth-order Butterworth low-pass filter to attenuate

high frequency noise above a cut-off frequency that is 4 times the frequency of the kinematic

waveform.

5.1.4 Uncertainty Analysis

The method to determine the uncertainty in force measurements from the sting balance

was previously mentioned in section 4.1.4. The load cell signal was captured for 10 seconds

for three trials, corresponding to 1500 samples of data, and the distribution of the sample

averages was obtained. The corresponding standard deviation (σ) was approximately 3.9% of

the mean value. The 2σ value of±7.8% is the Fx strain gauge measurement uncertainty at the

95% confidence level. The same technique was applied to estimate the sensor uncertainties

in Fy, Mz, the servo torques, and the servo angles; these were ±3.6%, ±8.4%, ±0.9% and

±3.4% respectively.

Each servo’s angular position is acquired from the wiper voltage of the servoactuator’s poten-

tiometer. The analog voltage is converted to angular position (in degrees) using a previously

calibrated curve fit. A time delay is set by the microcontroller’s clock input which commands

a signal to drive the servo at a given frequency, producing an uncertainty in frequency in-

puts of ±0.005 Hz. The frequency input to each servo is verified by examining the Fourier

transform of the potentiometer measurements.



5.1.5 Experimental Test Matrix

The particular motion exhibited by the device, as defined by the periodic waveforms that

each of its actuators generates, is referred to as the “gait.” The gait is defined by the

fundamental waveform shape (sinusoidal, triangular, etc.), the frequency of oscillation of the

modules, and the amplitude of oscillation of the MBE ’s trailing edge.

To attain a desired gait, the servo-actuator within each module executes a prescribed motion

history. Briefly, one determines the servo angle histories that best approximate the given

gait for a given number of modules (three, in this case) by solving a system of nonlinear

algebraic equations for the position of each servo. We consider four gaits: a sinusoidal wave,

a “rigid pitching” gait, and two gaits which approximate a simple 1st and 2nd bending mode,

respectively. For the sinusoidal wave, the angle input for each servo is determined by the

amplitude of the sine function. For the rigid pitching gait, in which the modules all move

in rigid unison, every servo outputs the same angle relative to the first module. As for the

1st and 2nd bending modes, the servo angles are determined by solving the Euler-Bernoulli

beam equation. A schematic of these four gaits is shown in Figure 5.4. The prescribed servo

angles (relative to the x-axis frame) for each waveform are presented in Figure 5.5.

Two test cases are considered:

• Case A - The MBE modules oscillate without forward motion (Uref = 0). In this case,

the measured forces and moment are purely those generated by the lateral accelerations

of the components, that is, the apparent mass.

• Case B - The MBE modules oscillate while the apparatus moves forward in the x-

direction at a steady speed (Uref = U∞ > 0).

The forces and moment for Case A are direct measurements. For Case B, the force Fy and



Figure 5.4: Schematic representation of the four swimming gaits for MBE testing.

moment Mz are also direct measurements, but the axial force Fx is the computed difference

between the measured axial force Fx,net and the drag force Dbody for the unactuated device

at the given steady towing speed:

Fx = Fx,net −Dbody (5.1)

The two intermediate modules and tail, together with the forebody, yield an overall body

length of 88 cm. The vertical tail amplitude Ap is measured from the tip of the tail’s

maximum stroke position relative the centerline of the forebody; Ap is predetermined by

measuring the tail peak amplitude against gait inputs provided by LabVIEW. The tail peak

amplitudes for all four gaits are tuned so that they measure 4 cm. A summary of the various

MBE configurations and dynamic operations is given in Table 5.2.
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Figure 5.5: Servo angle inputs for sine wave (top left), rigid pitching (top right), 1st bending
mode (bottom left) and 2nd bending mode (bottom right). θ1: solid blue, θ2: red dashed, θ3:
orange dashed-dot.

Parameter Value(s)

Towing speed, U∞ (m/s) 0.13, 0.23

Reynolds No, Re (×105) 1.40, 2.33

Reduced Frequency k 5.2, 7.7, 10.2

Frequency, f (Hz) 0.25, 0.38, 0.42, 0.5, 0.63, 0.83

Tail peak amplitude, AP ≈ 4.0 cm ±1.25%

Waveforms (gaits) sine wave, rigid pitching
1st and 2nd bending modes

Table 5.2: Experiment conditions for testing



5.2 Results and Discussion

The experiments outlined in Table 5.2 were performed in April 2019, yielding data sets for

three distinct trials. While it would be impractical to present a comprehensive review of

the experimental results, this section provides (1) a discussion of the data associated with

representative subsets of test conditions and (2) summary plots of axial force data for all

test conditions. All experimental data have been archived and are publicly accessible.1

5.2.1 Static Force Measurements

Figure 5.6 shows the body drag force generated when towing the unactuated MBE at three

different towing speeds. When actuated, the device produces a net axial force that is the

thrust minus the body drag. It is difficult or impossible to separate these two components,

in practice. Regardless, it is most appropriate to compare the net thrust that is generated

by the oscillating MBE with the unactuated drag force, as the latter is the least resistance

that would be encountered when propelling the device by more conventional means.

5.2.2 Dynamic Force Measurements - Cases A and B

The selected test conditions that are plotted in Figures 5.7, 5.8 and 5.9 correspond to an

MBE waveform frequency of 0.42 Hz and three Reynolds numbers: 0, 1.4 × 105, and 2.3 ×

105. Figure 5.7 shows the time histories of axial force, side force, and yaw moment for

Case A. Recall that there is no forward motion, in this case; the results show the force and

moment components generated primarily by the added mass of the displaced fluid around

the oscillating members. Figures 5.8 and 5.9 show the time histories of axial force, side

1https://sites.google.com/a/vt.edu/biomimetic-locomotion/
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Figure 5.6: Body drag force vs freestream velocity

force, and yaw moment for Case B. In this case, the freestream velocities are U∞ = 0.13 m/s

and U∞ = 0.23 m/s. The resultant force and moment components in freestream flow are

generated by added mass, and can also include the effects of vorticity and circulation. For

all Reynolds numbers, the sine wave gait generates force and moment components with

the lowest force amplitude. The rigid pitching gait produces the most significant force

amplitude, which is consistent for all test conditions. Between the 1st and 2nd bending mode

kinematics, the amplitudes of the responses show little difference in Case A. Still, larger

response amplitudes were noted for the 2nd bending mode kinematics in Case B. All gaits

at Re = 2.3× 105 result in instantaneous force responses larger than those at Re = 0 and

Re 1.4× 105, except for the 1st bending mode. The amplitude response for the 1st bending

mode appears to be the largest at Re = 0. Since the flow dynamics in Case B involve

a combination of added mass, circulation, rotation and three-dimensional effects, the time

histories in Case B exhibit stronger non-linear fluctuations. When the flow becomes unsteady,

moderate changes of flow velocity around the articulating MBE with respect to time at a



given point give rise to (temporal) flow acceleration. In the case where there are sudden

changes in flow velocity, a non-linear characteristic known as convective acceleration builds

up. In theory, the convective acceleration is non-linear as the velocity becomes associated

with spatial gradients in the flow field. Non-linear fluctuations in the force response are large

when the spatial velocity gradients are significant.Besides, at the tested Reynolds numbers,

disorderly perturbations in the turbulent flow are superimposed on the force responses, which

induce more substantial non-linearity in the flowstream. For those reasons, we notice more

significant non-linear force responses in freestream flow than at zero freestream.

In this study, we define the non-dimensional reduced frequency

k =
πfc

Uref

(5.2)

where Uref is a reference speed (the tail tip velocity Utip for Case A, and the free stream

velocity U∞ for Case B), f is the tail oscillating frequency, and c is a characteristic length,

the overall length of the MBE (88 cm).
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Figure 5.7: Force response for four gaits at flapping frequency f=0.42 Hz. Case A: Reynolds
number, Re = 0

In the left of Figure 5.10, where the towing speed is zero, note that the mean thrust mono-
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Figure 5.8: Force response for four gaits at flapping frequency f=0.38 Hz. Case B: Reynolds
number, Re = 1.4× 105 (left)

0 1 2 3 4 5 6 7 8

-0.5

0

0.5

0 1 2 3 4 5 6 7 8

-0.4

-0.2

0

0.2

0.4

0 1 2 3 4 5 6 7 8

-50

0

50

0 1 2 3 4 5 6 7 8

-0.5

0

0.5

0 1 2 3 4 5 6 7 8

-0.4

-0.2

0

0.2

0.4

0 1 2 3 4 5 6 7 8

-50

0

50

Figure 5.9: Force response for four gaits at flapping frequency f=0.42 Hz. Case B: Reynolds
number, Re = 2.3× 105 (left)

tonically increases with increased forcing frequency for the sine wave and the 2nd bending

mode kinematics over the range of frequencies tested. For the rigid pitching and 1st bending

mode gaits, however, the thrust appears to peak within the range of excitation frequencies.

In the right of Figure 5.10, the mean thrust is determined for three frequency inputs at

each freestream speed (0.13 m/s and 0.23 m/s). The 1st and 2nd bending mode kinematics

generate lower mean thrust forces at higher Reynolds numbers and lower frequencies. In

general, at lower frequencies for Case B (nonzero mean flow), the 1st and 2nd bending modes



produce negative thrust. A negative thrust indicates another source of drag in addition to

the drag created by the forebody itself. The circulatory effects due to the characteristic of

the flapping motion are one reason for the additional source of drag Patil [138]). The excess

drag may also be due to wake drag created by large lateral excursions of MBE modules for

particular gait parameters. The rigid pitching gait should also yield low thrust forces for

Case B compared with Case A, as this gait creates the most extensive lateral excursions.

However, this gait also produces added mass forces sufficient to overcome the additional

drag created in freestream flow. Additionally, regions around the bluff body (faired mod-

ules) are susceptible to flow separation due to adverse pressure gradient flow in cases where

the faired modules pitch at large amplitudes. Despite the variations between cases A and B,

for any given waveform, tail oscillations in zero freestream produce higher mean thrust than

in freestream flow.
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Figure 5.10: Mean axial forces for all test conditions. Case A: Reynolds number, Re = 0
(left) and Case B: Both nonzero Reynolds numbers (right). In the right figure, the solid
markers represent the results at Re = 1.4 × 105 while the hollow markers represent the
results at Re = 2.3× 105.

As discussed earlier in chapters 1 and 4, the shedding of a vortex by an oscillating hydrofoil,

within a particular range of reduced frequencies, reverses the rotational direction of the



Von-Kármán vortices and induces a jet-like flow in the direction of the free stream. This

mechanism is one of the primary sources of forward propulsion. Thrust production by a

fish also depends on its morphology and swimming movements. The trailing edge vortices

created by the flapping tail during swimming are usually accompanied by a leading-edge

vortex of some strength to generate a unique vortex pattern in the wake of the fish. The

leading-edge vortex is typically created when the forebody of the fish is at high angles of

attack. Since the forebody of the MBE is fixed at a zero angle of attack, it is unlikely to

generate a leading edge vortex.

However, for particular gait parameters, the leading edge of the faired module can reach up

to 10◦ relative to freestream flow while executing a waveform. A 10◦ leading edge amplitude

is sufficient to produce leading edge vortices at low Strouhal numbers (frequencies) [88].

Furthermore, some of the gait parameters execute a motion where the relative angle between

two adjacent faired modules reaches beyond 10◦. An example of this gait would be the sine

wave, where the relative angle between servos 2 and 3 can reach up to 18◦ (see Figure 5.5).

Also, larger angles between adjacent modules can result in sudden changes in local freestream

velocity, which may cause substantial pressure differentials over the faired module that may

suggest the formation of body vortices [142].

For this reason, the lateral excursions of the faired modules downstream of the forebody may

yield additional shed vortices which serve a similar role to a leading edge vortex in helping

to generate forward thrust. The strength of the flow momentum created by the jet produced

by a flapping hydrofoil also depends on the incoming flow speed and the strength of the

vortices. The incoming flow speed significantly affects the flow-induced force on an object

[86]. The effects of the vortices are determined by the proximity of shed vortices to the aft

body of the flapping device. The higher the flow speed is, the quicker these vortices advect

downstream, resulting in a weaker jet and a lower propulsive reaction force. Nevertheless,



that mechanism is primarily applicable in the presence of freestream flow (Case B).

For the case where a freestream flow is absent, the generation of vorticity is usually the result

of viscosity. Vorticity formation is also be dependent on the kinematics of the oscillating

members and waveform frequency inputs. As such, the articulating motion of the faired

modules can be enough on its own to generate propulsive forces with no freestream [137, 143].

The MBE utilizes viscous induced vorticities and is capable of extracting energy from the

fluid passively [142].
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Figure 5.11: Mean side forces (left) and yaw moments (right) for Case A test conditions.
Sine wave: blue circle; rigid pitching: red diamond; 1st bending mode: green square; 2nd

bending mode: black star.

Figures 5.11, 5.12 and 5.13 present the mean values for the measured side force and yaw

moment generated by the MBE at Reynolds numbers of 0, 1.4×105 and 2.3×105, respectively.

We can conclude from Figure 5.12 that the side forces monotonically increase with increased

frequency, and that the yaw moment monotonically decreases with increased frequency.

However, for the most part, the resultant mean side forces and yaw moments for the tested

cases in Figures 5.11, 5.12, and 5.13 are relatively close to zero, which is expected when

all the gaits are performing symmetric oscillation around a zero mean angle of incidence.
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Figure 5.12: Mean side forces and yaw moments for Case B test condition at Re = 1.4×105.
Sine wave: blue circle; rigid pitching: red diamond; 1st bending mode: green square; 2nd

bending mode: black star.
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Figure 5.13: Mean side forces and yaw moments for Case B test condition at Re = 2.3×105.
Sine wave: blue circle; rigid pitching: red diamond; 1st bending mode: green square; 2nd

bending mode: black star.

Although the results show non-zero forces, we can compute the coefficient forms of side and

yaw moments to understand better if the registered non-zero mean forces are physical or

based on asymmetrical imperfections.

Figure 5.14 reveals a linear relationship between thrust coefficients and reduced frequency



for both speed of Case B. The effect of waveform frequency input is the most substantial for

the 2nd mode bending even when the gait initially produces drag at lower frequencies. Still,

the thrust generated increases drastically to overcome the excess drag at higher frequencies.

It is important to note that the coefficient of thrust is generated purely by the tail kine-

matics in freestream flow after taring the body drag. The body drag coefficients noticed at

U∞= 0.13 m/s and U∞= 0.23 m/s are 0.26 and 0.21, respectively. Statistically, comparisons

between the mean thrust and the body drag coefficient reveal that none of the waveforms

produce enough thrust to overcome the body drag if the prototype was to swim freely in a

flow current of U∞. I.e., the net axial force is negative.
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Figure 5.14: Coefficient of axial forces vs reduced frequency for Case B at Re = 1.4 × 105

and Re = 2.3× 105.

Figure 5.15 presents the side forces, as well as the yaw moments in coefficient form against

reduced frequency for case B only. We can conclude from these sub-figures that there are

minute variations in the mean side force and mean yaw moments at Re = 2.3×105 as nearly

all data points display negligible coefficient values. The results at Re = 1.4×105 show mean

side forces larger than the ones produced at Re = 2.3 × 105, but they too are statistically

small in coefficient value. Theoretically, we do not expect any substantial shift in mean side

forces. But even the slightest deviation from the center point will force the flow on one side,
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Figure 5.15: Coefficient of side forces and yaw moments vs reduced frequency for Case B at
Re = 1.4× 105 and Re = 2.3× 105.

resulting in a suction peak (low pressure region).

On the other hand, the presence of relatively sizeable non-zero coefficient mean values can

also provide some insight concerning the resultant motion of a freely swimming biological

or biomimetic agent. The results also suggest that non-zero coefficients may be a result of

a physical flow phenomenon. Even though the device flaps symmetrically in the “upstroke”

and “downstroke,” some gaits may exhibit significant asymmetric force response. Over a

range of frequencies, the vortex street generated can deviate away from the centerline of



the forebody [50, 88], resulting in non-zero side forces and yaw moments. An asymmetric

flow response is also possible as the initial conditions of the point of execution may result

in uneven body-fluid force interactions between the “upstroke” and “downstroke motions”

even if the response reaches steady-state. As a result, a net positive (or negative) side force

is possible. The same principle applies to the generated yaw moment.

We further examine the RMS values for a few test cases. Figure 5.16 quantifies the RMS

amplitudes of the forced response generated by all gaits with varying freestream flow. All

waveforms produce larger thrust amplitudes with increasing Reynolds number. The results

show that the largest thrust amplitudes are caused by the 2nd bending mode and the rigid

pitching gaits at Re = 2.3 × 105. The results contradict the results for the mean thrust,

where a higher mean thrust was observed at lower freestream speeds.

Similarly, the rigid pitching gait generates the highest side force amplitude. Although the

rigid pitching and 2nd bending mode produce large force amplitudes, they provide signifi-

cantly large yaw moments too. In contrast, both 1st mode bending and the sine gaits produce

the least yaw moment magnitude at Re = 2.3 × 105. For all gaits, a substantial mean yaw

moment arises for Re = 2.3 × 105 Reynolds numbers. With regards to yaw vehicle stabil-

ity, the consequence of substantial yaw moments requires considerable autonomous vehicle

dynamics and control strategies to deal with extreme out-of-plane maneuvers produced.

Figure 5.17 quantifies the RMS amplitudes of the forces and moment responses generated

by all gaits with varying waveform frequencies for a given Reynolds number. Among the

input frequencies, the rigid pitching produces the most considerable axial force magnitude

at f = 0.5 Hz, while the 2nd bending mode provides the least axial force magnitude. When

comparing between the 1st and 2nd bending modes, the 2nd bending mode produces signif-

icantly larger amplitudes of axial force, but provides little differences in the side force and

yaw moment with the 1st bending mode except for at f = 0.36 Hz. The least substantial
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Figure 5.16: Comparison of RMS Fx, Fy, and Mz at Reynolds numbers, Re = 1.4× 105 and
Re = 2.3× 105 for the same frequency input (0.4 Hz)

yaw moment is consistently generated by the 1st bending mode at lower frequencies.

Figure 5.18 shows the total servo torque measurements for the three MBE modules aft of the

forebody for all four gaits at an oscillation frequency of 0.42 Hz. These torque measurements

are instantaneous and represent the net torque, τinet , required to move the module fairings

against hydrodynamic resistance loads. The torques exerted by servos 1 and 2 are generally

commensurate and larger than that exerted by servo 3. Rigid flapping is an exception, where

servo 1 exerts a far larger control torque, consistent with intuition. When we examine the
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Figure 5.17: Comparison of RMS Fx, Fy, and Mz with frequency of oscillation at Reynolds
numbers, Re = 1.4× 105.

magnitudes of the torque responses closely, we notice that out of the four gaits, the sinusoidal

gait acquires the lowest torque.

5.3 Summary of Contribution

This chapter provides initial preliminary results on the generated hydrodynamic forces of

an articulating body. A modular biolocomotion emulator (MBE ) designed to generate val-
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Figure 5.18: Servo torque outputs for sine wave (top left), rigid pitching (top right), 1st

bending mode (bottom left) and 2nd bending mode (bottom right). τ1: solid blue, τ2: red
dashed, τ3: orange dashed-dot. Test case: U∞=0 m/s, f=0.42 Hz.

idation data for reduced order computational models of unsteady hydrodynamic forces and

moments in biological and biomimetic swimmers has been tested in the Virginia Tech Tow-

ing Basin. The experimental program provides quantitative information about the hydrody-

namic forces and moments generated as a result of particular waveforms (gaits) and Reynolds

numbers over a range of steady towing speeds.

Beyond simply collecting and archiving data for future use, these experiments also provide

some insight concerning the hydrodynamic force and moment response of a biomimetic device



to different gaits, with implications for the design analysis of multibody underwater robots.

We isolate the effects of the tail kinematics by taring the body drag from the net axial

force measured by the load cell. We found that the gaits without the forebody produce

a considerable amount of thrust force. However, these thrust forces were not enough to

overcome the body drag. To create a positive net thrust, one would consider scaling down

the size of the prototype, forebody, apply more power to achieve higher frequencies or tow

at higher speeds.

There are substantial differences between the results presented in zero and non-zero freestream.

With no freestream flow, the oscillating tail does not generate the same pattern of shed vor-

tices that would be observed in a steady, non-zero freestream. The rigid pitching gait pro-

duces the largest thrust force and peaks within the range of test frequencies. The behavior

of axial thrust against frequency is nearly quadratic for the 1st and 2nd bending modes. The

thrust force is substantial for the 2nd bending mode at higher frequencies. With freestream

flow, between Re = 1.4 × 105 and Re = 2.3 × 105, the 2nd bending mode gait is the most

susceptible to excessive drag production while executing its motion. Higher mean thrust

values are achieved at Re = 1.4 × 105 flow for a given gait and frequency input. However,

large magnitudes of thrust force response is achieved at Re = 2.3× 105.

Since the rigid pitching gait produces the most significant axial force, it is also associated

with large instantaneous yaw moment, and large RMS. In terms of energy expenditure, the

sine wave appears to offer considerably lower torque requirements and provide the least yaw

instability. From the RMS plots, the sine wave behaves inversely to the increasing frequency

at Re= 2.3×105, which means that a considerable amount of thrust can be achieved at lower

frequencies. The large thrust and side forces accompany significant yaw moments. Finally,

at higher Reynolds number, the waveform produces substantial magnitudes of yaw moment.



Dye visualization or particle image velocimetry (PIV) results would be a great supplement

to the efforts of the current study. To illustrate the applicability of the results in an engineer-

ing context, an optimized waveform can be achieved by compromising power requirements,

thrust production, and yaw stability control. Understanding the trade-off between the forces

and moment components generated can help inform the design and control of autonomous

underwater vehicles. The experimental program also offers an exploratory set of results

to guide the development of low-order physics-based models for the design of devices and

model-based control and estimation algorithms.

5.4 Summary of Major Findings

• The highest generated mean thrust is produced at lower towing speeds, whereas the

greatest RMS thrust is produced at higher towing speeds.

• Significant mean thrust production can sustain forward swimming operations. In con-

trast, significant instantaneous thrust production over short time intervals can be uti-

lized for operations that require agility and extreme maneuvering.

• The most substantial mean thrust is generated by the rigid pitching gait at zero

freestream flow.

• Both rigid pitching and 2nd bending mode gaits produce the most significant thrust

amplitude at large non-zero freestream flow.

• The most significant yaw moment amplitudes are generated by the rigid pitching and

2nd bending mode gaits.



Chapter 6

Conclusion and Future work

6.1 Conclusion

This dissertation presents a parametric repository of experimental data (force and motion

time histories) from direct force measurements on single and multi-element airfoils/hydrofoils

undergoing unsteady motion. The motive in all chapters is to investigate non-conventional

mechanisms that can produce sufficient aerodynamic/hydrodynamic forces for flying and

swimming vehicles to perform efficiently at low-to-moderate Reynolds number flow regimes.

From chapter 2, we observed enhancement in the generated mean lift and the lift amplitude

for trailing-edge flap oscillations about the airfoil’s stall angle of attack. In chapter 3, we

assessed the aerodynamic forces for sinusoidal and non-sinusoidal angle of attack oscillations

of an airfoil. We showed that the ‘trapezoidal’ pitching generates the largest RMS lift

coefficient amplitude, and the ‘sinusoidal’ pitching produced the most substantial increase in

the lift to drag ratios. We determined from our third focus in chapter 4 that the effects of tail

flexibility on a bio-inspired swimming prototype enhance thrust generation and propulsive

efficiencies. The work also briefly investigated the impact of structural resonance on localized

propulsive performance and showed that the peak of the thrust force is associated with

maximum tail peak amplitude for a flexible tail with a lower aspect ratio (Tail ‘c’). We

examined in chapter 5 the effects of different tail kinematics (gaits) on hydrodynamic forces

and moments generated by an undulating three-link bio-inspired prototype called Modular

152



Biolocomotion Emulator (MBE). We conclude that mean and RMS forces and moments

respond differently at different towing speeds.

In the first part of chapter 2, we assessed the frequency response on the lift and drag per-

formance of a simple harmonic motion of a trailing edge-flap. A quasi-steady formulation

derived from Leishman’s model [144] was used to validate the force-time history response

from experimental data. Lift predictions from the quasi-steady model agree well with the

experimental data for low pitching amplitudes and low reduced frequencies in a fully at-

tached flow. The results revealed that the lift enhancement was observed in two ways: (1)

higher generation of mean lift, and (2) improved lift amplitude with increasing frequency.

Both events of lift enhancement occurred for TEF oscillations about a nominally stalled 10◦

mean AoA. Additionally, the lift-to-drag ratios for a dynamic TEF exceeds the quasi-steady

lift-to-drag ratio for larger pitching amplitudes at reduced frequencies beyond k = 0.09. The

frequency response revealed that although higher pitching amplitudes generate the most sig-

nificant circulatory lift amplitude at higher frequencies, the circulatory lift gain (the dynamic

lift amplitude normalized by the quasi-steady lift) is the highest for smaller pitching ampli-

tudes. Hysteresis effects also show no signs of flow separation with TEF pitching around the

10◦ mean AoA.

Results from chapter 3 determined that an impulse pitch-up airfoil motion of the trapezoidal

waveform generates the largest unsteady lift amplitude, and also exceeds the quasi-steady

lift value. For the reciprocating motion, an impulse pitch-down airfoil motion produces

instantaneous negative drag for short time intervals but does not sustain the negative drag

to produce net (mean) drag lower than the quasi-steady value. The enhanced mean lift was

observed for all waveforms and is pronounced at higher mean AoAs. An increase in the

mean lift was also accompanied by significant jump in the dynamic mean drag relative to

the quasi-steady value. The main observation from this research effort is that the trapezoidal



pitching waveform consistently generates the most substantial RMS lift amplitude across all

mean AoAs, whereas the sinusoidal waveform produces the most significant increase (83%) in

the dynamic lift-to-drag ratio relative to the quasi-steady lift-to-drag ratio. This is achieved

at post-stall oscillation at 12◦ mean AoA. Finally, power spectra analysis shows that non-

linearity in the lift response contributes significantly to the total lift generated and is a

source of lift enhancement at high AoAs. Non-linear fluctuations in the lift response are

pronounced for airfoil pitching at 12◦ mean AoA. The largest contributions of lift from the

first and second harmonics are noticed for the reverse sawtooth waveform, which constitute

52% of the total measured lift.

We presented in chapter 4 hydrodynamic forces and torques generated by the tail with

varying flexibility on a one-link swimming prototype. The tail executed various frequency

inputs and angular leading edge oscillations in zero and non-zero freestream flow. Force and

servo torque measurements show that the overall flexibility of the tail enhances the propulsive

efficiency. Isolating the effects of aspect ratio and material stiffness, changes in aspect ratio

show substantial variation in propulsive efficiencies and the thrust-to-power ratio in zero

freestream flow. In contrast, changes in the tail’s material stiffness produces a significant

effect in propulsive efficiency in non-zero freestream flow. More flexible tails produces thrust

peaks at a relatively lower frequency of oscillation whereas a more rigid panel produces

greater thrust values at higher frequency inputs. The tail’s tip peak amplitudes were observed

for panels ‘b’ and ‘c’ using video imagery and a motion tracker script. The maximum tail

peak amplitude, which is representative of the 1st bending mode, was reported at frequencies

of approximately 90% lower than the natural frequency reported by the Euler-Bernoulli beam

theory. Finally, the design and instrumentation process of the one-link swimming prototype

was aimed to guide the design process of the modular swimming prototype, the (MBE ).

Chapter 5 presents hydrodynamic forces as well as external and internal moments of the



MBE prototype towed at three different towing speeds, including zero. In addition to the

forebody, the three-link modular prototype currently approximates a carrangiform swimmer

by executing different tail gaits motion (waveforms) and oscillatory parameters. We con-

cluded that the generated mean thrust is the greatest at lower towing speeds, whereas the

RMS thrust is the greatest at higher towing speeds for a given gait parameter. Overall, the

rigid pitching gait creates the largest mean and RMS thrust forces. Because added mass

forces dominate the dynamics of the fluid flow at the currently tested towing speeds, intu-

itively, the kinematics of rigid pitching gait generates the largest added mass force relative

to the other kinematics. The results from this chapter present sufficient preliminary data to

understand the hydrodynamic principles of pisciform locomotion. The experimental effort

collected over 1,200 data of forces and torque measurements. All data are archived and are

publicly accessible through the following link: https://sites.google.com/a/vt.edu/biomimetic-

locomotion/ .

There are two ways to utilize the result from this dissertation. The first is by extending quasi-

steady models to obtain accurate and reliable empirical models to predict unsteady forces

and moments that can aid the design process of flying or swimming vehicles. The second

is to utilize control strategies from frequency response data to design linear and non-linear

closed feedback control systems. Flow visualization techniques and computational efforts are

welcomed to further support the contributions and the interpretations of the results.

6.2 Future Work

The limitation of the quasi-steady model used for validation in chapter 2 does not incorpo-

rate the dynamically varying mean lift and lift amplitude at stalled mean AoAs. As such, a

state-space model that captures the changes in the dynamic mean lift is one proposed area



of development. Along with a frequency response that was constructed, a system identified

model can also be developed, and a lift deficiency function can be determined to accurately

predict the variations in lift amplitude and phase angles between the quasi-steady and un-

steady lift responses. Examples of state-space approaches that can incorporate the dynamic

flow quantities for unsteady airfoil motion are provided by Leishman and Nguyen [144], and

Brunton et al. [145]. The improvement of these methods are essential to support the contin-

uing efforts of low fidelity empirical modeling of unsteady aerodynamics for flapped airfoils

at low Reynolds numbers.

There are two mainstreams for future work on the efforts discussed in chapter 3. The first is

waveform optimization. By combining more than one waveform into the pitching mechanism,

we can utilize the benefits of pitch-up and pitch-down rates during a pitching cycle to achieve

improved lift and drag performances. The second is the utilization of averaging theorems

on non-sinusoidal lift responses as employed by Bullo and Lewis [146] and Tahmasian et al.

[58]. One could explore the use of high-order averaging theory to capture full non-linearities

of the unsteady aerodynamic response to determine optimum mean lift to drag coefficient

ratios accurately [147].

Results from chapter 4 along with the findings made by Gursul et al. [114] and Wang et al.

[148] confirmed that a material’s structural resonance plays an important role on thrust

enhancement. Other researchers concluded that the resonant frequency of a rectangular

panel has no strong implication on thrust production for a given material stiffness and aspect

ratio [85]. This hypothesis appears to be interchangeable for different oscillatory parameters,

material types and flow regimes. There is no clear conclusion on how the role of structural

resonance contributes to the overall thrust production. The disparity in the findings gives

rise to another area of future work: to further investigate the effects of structural resonance

on the propulsive performance of flexible hydrofoils for a wide spectrum of frequency inputs,



aspect ratios, material stiffness and Reynolds numbers.

There are several potential avenues for future work on the efforts demonstrated in chapter 5.

For example, the MBE can be extended to include more modules, enabling the simulation

of gaits at the anguilliform end of the locomotion spectrum. Also, using feedback control

of the internal torques within the MBE, one can artificially produce various hydroelastic

properties, so that the device can support the study of flexibility effects and hydroelastic

tailoring. One can further utilize geometric control theory to improve closed-loop feedback

stabilization systems for underwater vehicles. Geometric control and averaging theory can

be used to study time-invariant approximations that capture the controlled system’s motion

over time scales longer than the period of oscillation [149].

An experimentally identified and validated state-space model for unsteady fluid dynamic

forces and moments can be determined by first, expressing the 3-D equations of motion

for a four-body system (three independently actuated modules/links and the forebody).

Secondly, one can accommodate experimental hydrodynamic forces and moments as state

variable inputs. Finally, the equation of motions and unsteady hydrodynamic model can be

incorporated into a geometric control framework. Geometric control theory that uses open-

loop controls for motion generation and closed-loop feedback stabilization can be applied to

the final model to determine the control authority of the system.

One can use the experimental data to develop an unsteady hydrodynamic model and examine

the control authority of the MBE. Explicitly, we can write the equation of motion as:

M
(
q
)
q̈ + C

(
q, q̇
)
q̇ = QH +QC (6.1)

where q is a system of generalized coordinates in uniform flow, M is the mass matrix that

includes translation and rotation rigid body, and added mass inertia, and C matrix represents



the Coriolis and centripetal effects. The generalized external forces include the control inputs,

QC, and the hydrodynamic force responsesQH that are determined from experimental results.

The reader is referred to Appendix C for more details.

Raw data from the experiments were made accessible to the public for continued research

activity in the areas of hydrodynamic modeling and control. The experiments were recom-

mendation made by prior efforts on gait morphology (Allen [150]), and geometric control

of underwater autonomous vehicle (Kelasidi et al. [67] and Morgansen et al. [80]). De-

tailed hydrodynamic analysis and validation of unsteady vortex lattice method (UVLM) are

continuing research efforts. Currently, a second version of the MBE is under design and

construction at the Non-linear System (NSL) Laboratory in Virginia Tech and anticipates

testing at the Davidson Laboratory’s towing tank facility in Stevens Institute of Technology

around Spring 2020 to accommodate for higher swimming speeds and improved fidelity of

system actuation.
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Appendix A

Formulation of Theodorsen’s and

state-space models

Theodorsen’s model [3]

The total unsteady lift (L) per unit span can be categorized as non-circulatory and circulatory

forces:

L(t) = LNC(t) + LC(t) (A.1)

where subscripts ’NC’ and ‘c’ denote Non-circulatory and Circulatory forces respectively.

The lift force can be written as:

L = πρb2

(
ḧ+ U∞α̇− baα̈

)
︸ ︷︷ ︸

Non−circulatory

+ 2πρU∞b

(
ḣ+ U∞α + b(

1

2
− a)α̇

)
︸ ︷︷ ︸

Quasi−steady

C(k) (A.2)

Using CL = L/1
2
ρU2
∞c, the non dimensional lift coefficient per unit span can be written as:

CL = CLNC
+ CLQS

C(k) (A.3)

Here CLQS
is the quasi-steady lift coefficient, and C(k) is the Theordorsen’s transfer function

that accounts for the influence of the shed wake vorticity. The transfer function C(k) is a
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complex number that represents a deficiency (or enhancement) in magnitude and a phase

shift as a result of vortex shedding that varies with a change in oscillatory frequency (reduced

frequency k).

The prescribed motion α(t) = α0 + αAsin(ωt) is used in Thodorsen’s analytical expression

for lift coefficient:

CL =
πb

U2
∞

(
ḧ+ U∞α̇− baα̈

)
︸ ︷︷ ︸

Non−circulatory

+ 2π

(
ḣ

U∞
+ α + b(

1

2
− a)

α̇

U∞

)
C(k)︸ ︷︷ ︸

Circulatory

(A.4)

The first group of terms is the non-circulatory component that accounts for the inertia forces

due to the unsteady motion of the wing in the fluid. These forces are a function of pitching

rate and acceleration α̇ and α̈, as well as plunging rate and acceleration ḣ and ḧ. The second

group of terms is the circulatory forces generated due to the quasi-steady lift in addition to

the lift generated by circulation around the airfoil, and these forces are a function of α̇, and

α, or alternatively, the effective angle of attack, αeff . For a pure pitching case and in the

absence of plunge motion (h = 0), αeff is expressed as:

αeff =
( ḣ
U∞

+ α + b(
1

2
− a)

α̇

U∞

)
(A.5)

Eq. (A.4) can be written as :

CL =
πb

U2
∞

(
U∞α̇− baα̈

)
+ 2π

(
α + b(

1

2
− a)

α̇

U∞

)
C(k) (A.6)

In simpler form, the unsteady lift is:



CL = CLNC
+ 2παeffC(k) (A.7)

where CLNC
is the non-circulatory lift coefficient, and the the term 2παeffC(k) is the circu-

latory lift coefficient. The full expression in Eq. A.6 is modeled and compared with the

experimental results. Instead of the 2παeff from potential flow theory, the slope of the ex-

perimental static lift curve was used to formulate the quasi-steady model. Secondly, the

transfer function C(k) in the circulatory lift term was implemented using the magnitude

and the phase approximations from potential flow theory (Bisplinghoff et al. [110]). The

non-circulatory component of lift remains was computed also with potential flow theory.

State-space model [5]

In addition to Theodorsen’s model, building a state space-model for the given problem

to predict the unsteady lift for an arbitrary motion can be formulated. The state-space

formulation developed by Taha et al. [5] applies Duhamel’s principle in linear unsteady flows

for non-conventional lift curves to capture the transient effects, and predict the lift from

unsteady airfoil motions.

The state-space model is applied using the measured positions, α(t), for each waveform

determined by the potentiometer. With these measurements, a quasi-steady circulation is

computed as a state variable input, and integrated with Wagner’s step response to output

the non-linear effects of LEV as a result of lift modulation due to the input of arbitrary

motion. To obtain approximations for α̇ and α̈, we applied the central difference scheme for

the first and second-order time derivative with a time step of = 0.01, equal to the sampling

frequency used in acquiring the potentiometer readings.

Duhamel’s superposition principle is extended to accommodate an arbitrary static CL−α



curve and free stream velocity U(s). An integral written in s-domain (Laplace transform) is:

l(s) = ρU(s)
(
ΓQS(0)W (s) +

∫ s

0

dΓQS(σ)

dσ
W (s− σ)dσ

)
(A.8)

where ΓQS = 1
2
cU(s)CL(s) represents the quasi-steady circulation , and CL(s) is the quasi-

steady lift obtained from the experimental static lift curve at our operating flow regime of

Re= 2.1x104.

For a constant free stream velocity, Eq. (A.8) can be written in state-space form. A finite-

state approximation for Wagner’s function, W (s), as suggested by Jones [151] is:

W (s) = 1− A1e
−c1s − A2e

c2s (A.9)

where the constants in Eq. (A.9) are A1 = 0.0355, A2 = 0.06, c1 = 0.044, c2 = 0.043.

ẋi(t) =
2biU(t)

c

(
− xi(t) + AiΓQS(t)

)
i = 1,2 (A.10)

The solution to the linear differential equation Eq. (A.10) is given by

xi(t) =

∫ t

0

U(τ)Ai
2bi
c
U(τ)e

−2bi
c

∫ t
0 U(τ)dτdτ (A.11)

The circulatory lift per unit span finally becomes:

l(t) = ρU(t)
[
(1− A1 − A2)ΓQS(t) + x1(t) + x2(t)] (A.12)



Appendix B

Snapshots Of Passive Tail Responses

In this section, we display top-view snapshots of the tail’s deformation as a result of leading

edge oscillations. The maximum tail tip amplitude for panel ‘b’ was observed at 1 Hz. The

maximum tail tip amplitude for panel ‘c’ was observed at 0.75 Hz. You will also notice that

panel ‘c’ responds beyond the first bending mode at frequency inputs above 1 Hz. Both

panels are subjected to an 8◦ leading edge angular amplitude.
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(a) 0.5 Hz (b) 0.75 Hz (c) 1 Hz

(d) 1.5 Hz (e) 2 Hz

Figure B.1: Tail deformations generated by panel ‘b’ subjected to various frequency inputs.



(a) 0.5 Hz (b) 0.75 Hz (c) 1 Hz

(d) 1.5 Hz (e) 2 Hz

Figure B.2: Tail deformations generated by panel‘c’ subjected to various frequency inputs.



Appendix C

An Initial Guide To Geometric

Control On The MBE

Figure C.1: Dynamic representation of the MBE.

The modeling of an N-link proto-

type involves several steps. The

first is to express the 3-D equation

of motions for a 3-link prototype.

The second is to develop a hydro-

dynamic model based on the quasi-

steady assumption and experimen-

tal data. Third, is to use tools from

geometric control theory [83] to as-

sess control authority and design

time-varying control laws for pisci-

form locomotion. A free-body dia-

gram of the current MBE is shown

in Figure C.1. The dynamics of the

MBE can be derived using the La-

grangian:
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d

dt

∂L

∂q̇
− ∂L

∂q
= Q (C.1)

Here, qT =
[
x θ1 θ2 θ3

]
are the generalized coordinates in a uniform flow, and Q represents

the external forces due to hydrodynamic effects (forces and torques), and control inputs. The

MBE is restricted in motion in y and z directions, and the MBE tail can be actuated using

three independently controlled servos with angles θ1, θ2, θ3 relative to the inertial frame,

each generating torques τ1, τ2 and τ3. Explicitly, we can write the equation of motion as:

M
(
q
)
q̈ + C

(
q, q̇
)
q̇ = QH +QC (C.2)

Where M is the mass matrix that includes translation and rotation rigid body, and added

mass inertia, and C matrix represents the coriolis and centripetal effects. The generalized

forces include the control inputs, QC and the hydrodynamic force responses QH . We can

denote the control inputs as ux, uθ1 , uθ2 , uθ3 and hydrodynamic effects as Hx, Hy, Hz, Hθ1 ,

Hθ2 , Hθ3 . The hydrodynamic effects can be determined experimentally from the axial force,

CT , lateral force, CL, yaw moment CN , and hydrodynamic torques τ1, τ2, τ3 at each link.

We now have





Qx

Qy

Qz

Qθ1

Qθ2

Qθ3


=



Hx

Hy

Hz

Hθ1

Hθ2

Hθ3


+



ux

0

0

uθ1

uθ2

uθ3


One can further explore the development of hydrodynamic models by initially assuming

quasi-steady hydrodynamics. The quasi-steady hydrodynamic model can be formulated us-

ing the thrust, force, lateral force, and yaw moment coefficients determined from the exper-

imental data as state-space variables.

The geometric control of the pisciform can utilize averaging theories for mechanically con-

trolled systems using tools and techniques from Vela et al. [81, 82], Bullo [83] and Morgansen

et al. [64].

In the context of underwater vehicles, for a mechanically controlled system, Vela et al. [81, 82]

describes Bullo’s work, [83] by relaxing some assumptions. Vela et al. [81] represents the

dissipation term in the dynamic model as:

E
(
q, q̇)= E0

(
q, q̇) +R(q)q̇ (C.3)

C.3 defines the effects of generalized coordinates that are linear and quadratic in velocity. The

term E0 can represent axial, lateral, and yaw moments that can have non-linear dependence

on the generalized coordinates.

Given the configuration of the system here (one forebody, two faired modules, and one trailing



edge hydrofoil), the set of external forces on the system can be divided into a lift and drag

acting on each link. The two peduncles can be approximated as ellipsoids with forces acting

on their center of mass, and the tail can be modeled as an airfoil, with forces acting from

the quarter chord. The added mass in the direction of the accelerated object is one source

of fluid force transmission. The other mechanism of force transmission is through the lift

and drag, which are resolved in orthonormal components as a result of pressure differential.

Forces can be expressed as a lump sum on the body and each link. The hydrodynamic model

can initially be assumed to be inviscid, irrotational, and incompressible. These assumptions

place limits on the accuracy of the behavior of the model, which represents a finite space

where 3-D fluid effects are significant.
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