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Assessing Structure–Property Relationships of Crystal Materials
using Deep Learning

Zheng Li

(ABSTRACT)

In recent years, deep learning technologies have received huge attention and interest in the

field of high-performance material design. This is primarily because deep learning algorithms

in nature have huge advantages over the conventional machine learning models in processing

massive amounts of unstructured data with high performance. Besides, deep learning models

are capable of recognizing the hidden patterns among unstructured data in an automatic

fashion without relying on excessive human domain knowledge. Nevertheless, constructing a

robust deep learning model for assessing materials’ structure-property relationships remains a

non-trivial task due to highly flexible model architecture and the challenge of selecting appro-

priate material representation methods. In this regard, we develop advanced deep-learning

models and implement them for predicting the quantum-chemical calculated properties (i.e.,

formation energy) for an enormous number of crystal systems. Chapter 1 briefly introduces

some fundamental theory of deep learning models (i.e., CNN, GNN) and advanced analysis

methods (i.e., saliency map). In Chapter 2, the convolutional neural network (CNN) model

is established to find the correlation between the physically intuitive partial electronic den-

sity of state (PDOS) and the formation energies of crystals. Importantly, advanced machine

learning analysis methods (i.e., salience mapping analysis) are utilized to shed light on un-

derlying physical factors governing the energy properties. In Chapter 3, we introduce the

methodology of implementing the cutting-edge graph neural networks (GNN) models for

learning an enormous number of crystal structures for the desired properties.
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(GENERAL AUDIENCE ABSTRACT)

Machine learning technologies, particularly deep learning, have demonstrated remarkable

progress in facilitating the high-throughput materials discovery process. In essence, machine

learning algorithms have the ability to uncover the hidden patterns of data and make appro-

priate decisions without being explicitly programmed. Nevertheless, implementing machine

learning models in the field of material design remains a challenging task. One of the biggest

limitations is our insufficient knowledge about the structure-property relationships for mate-

rial systems. As the performance of machine learning models is to a large degree determined

by the underlying material representation method, which typically requires the experts to

have in-depth knowledge of the material systems. Thus, designing effective feature represen-

tation methods is always the most crucial aspect for machine learning model development

and the process takes a significant amount of manual effort. Even though tremendous ef-

forts have been made in recent years, the research process for robust feature representation

methods is still slow. In this regard, we attempt to automate the feature engineering process

with the assistance of advanced deep learning algorithms. Unlike the conventional machine

learning models, our deep learning models (i.e., convolutional neural networks, graph neural

networks) are capable of processing massive amounts of structured data such as spectrum

and crystal graphs. Specifically, the deep learning models are explicitly designed to learn

the hidden latent variables that are contained in crystal structures in an automatic fashion

and provide accurate prediction results. We believe the deep learning models have huge

potential to simplify the machine learning modeling process and facilitate the discovery of

promising functional materials.
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Chapter 1

Machine learning in functional

material design

1.1 Introduction

An important objective of modern scientists is to discover novel functional materials with

desired characteristics and incorporate the materials into the existing devices to optimize

general performance. Advanced functional materials have wide applications and play an es-

sential role in every historical period of human beings. The development of high-performance

functional materials has helped expand the limits of human endeavor and achievement. In

21st century, we have seen a growing and rapid demand for advanced material in indus-

tries such as aerospace, automotive, electronics, etc. For instance, the composite materials

are increasingly being used in cars and wind turbine blades for lightweight and enhanced

properties.[1] The emergence of Graphene type materials completely revolutionized the mod-

ern industrial design of smartphones. Ceramics are becoming the most in-demand advanced

functional materials for manufacturing capacitors in the application of electrical and elec-

tronic devices. Nanomaterials and conductive composites polymers are considered as one

of the most researched material categories in the domains applications of automotive and

aerospace industries. Energy-related materials including semiconductors and metal-organic

complexes are crucial components in energy conversion and storage devices, thus ensuring

1



2 Chapter 1. Machine learning in functional material design

a sustainable energy economy.[2] Biomolecular materials play an enormous role in a variety

of applications in the healthcare industries such as medical diagnostics, drug delivery, and

etc.[3]

Due to structural versatility and vast anticipated chemical space, designing novel functional

material is always considered as an extremely difficult task. Even though the tremendous

effort has been made by the researchers in the last few decades to push the frontiers of

material properties to more extreme levels to meet the rapidly growing demand for var-

ious applications. Nevertheless, the conventional trial-and-error experimentation relying

on human’s expert knowledge and experiences is still the mainstream approach at present,

which significantly limits the material development speed. Machine learning approaches,

since emerged, have revolutionized a range of traditional mathematical modeling strategies

for material design, which has been adapted for decades. Compared to the conventional

knowledge-based modeling approaches, machine learning algorithms provide the promise to

establish accurate structure-property relationships of a wide range of materials without rely-

ing on extensive human knowledge. In recent years, machine learning methods, namely the

quantitative structure-activity relationships (QSARs) models, are widely used by researchers

to facilitate the discovery process of high-performance materials. As traditional trial-and-

error experiments or computational modeling approaches, i.e., first-principle calculations and

molecular dynamics, often cost tremendous time and resources of researchers. Thus, there is

always growing demand for alternative less expensive approaches that can be applied in the

search of broader materials space for material structures with promising properties. Even

though machine learning methods provide a new means of screening new materials rapidly

and accurately, it still requires some degree of intelligence and thoughts based on expertise in

fundamental material structures. In another word, developing novel material representation

methods is the key to the success of machine learning modeling, however, it remains the
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most challenging step. Therefore, coming up with a robust material representation method

is always the central theorem of current machine learning study.

Recent years have witnessed much important progress in automating the machine learn-

ing modeling process in terms of model selection, hyper-parameter tuning. For instance,

an integrated machine learning framework, namely TPOT is developed to search for most

appropriate models and the corresponding hyper-parameters in an intelligent and efficient

way.[4]  Nevertheless, very little effort has been devoted to automating feature engineering,

which is the most important aspect of probably every machine learning pipeline. In this

regard, we develop a high-level automated feature engineering scheme in the domain appli-

cation of functional material design using deep learning models. More specifically, we apply

a deep learning algorithm to learn latent vectors for representing the material structure in a

fully automatic fashion. The promise of automated feature engineering is to surpass the lim-

itations of manual feature engineering by implementing advanced deep learning algorithms,

which subsequently facilitating the high-throughput material screening process. In this chap-

ter, we briefly introduce some important techniques that are used in the high-throughput

material design and fundamental theory of some advanced deep learning algorithms such as

convolutional neural networks (CNNs) and graph neural networks (GNNs). Understanding

the basic concepts and knowledge are extremely essential for us to have a clear overview of

the concept of automatic feature engineering.

1.2 Quantum chemical simulations

It is noteworthy that the primary research focus of this work is to predict the expensive

quantum-chemical calculated properties using deep learning algorithms. Density functional

theory (DFT),[5] a quantum mechanical simulation method, has attracted wide attention in
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the field of physical science. DFT has gained immense popularity in recent years because it

provides an efficient means for assessing the ground-state electronic structures of materials

prior to the actual experiments. The revolutionary development of the DFT method is largely

attributed to the rapid advancement of high-performance computing (HPC) technology and

the theoretical algorithm. Over the last few decades, the DFT simulation approach has

revolutionized the theoretical research of surface science, which leverages an atomic-scale

understanding of material properties in an extremely efficient manner. In this chapter, we

introduce the essential concepts and the corresponding implementation methodology of DFT

for practical computation.

The modern DFT theory is primarily based on the Kohn-Sham paradigm.[6] Notably, the

Kohn-Sham DFT (KS-DFT) method has made tremendous contributions by representing

the multi-electron wave-function with a non-interaction system. Within the non-interaction

system, the electrons of atoms are affected by a simultaneous effect from the external po-

tential and the Coulomb interactions between the electrons (i.e., exchange and correlation

interactions). Therefore, the Kohn-Sham framework allows us to describe the multi-electron

wave-function with a Slater determinant of orbitals, which makes it possible to approximate

the kinetic energy functional. Note that the explicit rigorous solution for the energy term of

exchange-correlation interactions remains unknown for the KS-DFT method and the Local-

Density Approximation (LDA) based on the uniform electron gas model by Thomas-Fermi

theory[7] is widely applied to approximate the exchange-correlation energy. To data, the

first-principle DFT is becoming a well known computational tool, which provides a trade-off

between computational cost and accuracy. According to the Kohn-Sham scheme, the ground

state energy term can be written as:
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E(n(r)) =

∫
vext(r)n(r)dr + T0[n(r)] +

1

2

∫ ∫
n(r)n(r′)

|r − r′|
drdr′ +

∫
n(r)εxc(n(r))dr, (1.1)

where vext(r) denotes the external potential from the nuclei. In addition, n(r) represents

the electronic density function in 3-dimensional spatial space and εxc(n(r)) denotes the per-

electron exchange and correlation energy. Typically, the exchange and correlation energy can

be approximated by the Local Density Approximation (LDA)[8] or more advanced Gener-

alized gradient approximations(GGA)[9]. The ground state energy term can be understood

as a summation of the energy contributions from the external potential energy, the non-

interacting kinetic energy, the classical Coulomb interaction, and the exchange-correlation

interaction. Therefore, the central theorem of KS-DFT is about finding an appropriate elec-

tron density for the ground state energy. In the practical implementation, DFT solves the

ground state electronic properties of a system with an iterative self-consistency loop. Within

the self-consistency loop, the electron density n(r) is propagated through the process until

the change of electron density is smaller than a specific threshold value. Figure 1.1 shows

the schematic display of the DFT self-consistency mechanism.

1.3 Deep learning models

1.3.1 Artificial neural networks

Feedforward neural networks

Artificial neural network (ANN) is a computational algorithm inspired by the mammalian

biological neurons.[10] Typically, the neural networks are organized by layers. Each layer is
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Figure 1.1: Schematic of DFT self-consistency loop.

implemented with a number of interconnected nodes, which are processing units, namely ac-

tivation functions. The activation functions are a crucial component of an ANN model. The

activation functions have a major effect on model training performance such as convergence

efficiency and prediction accuracy. Essentially, the activation functions are mathematical

equations that calculate the output values corresponding to a series of inputs from the previ-

ous layer. The selection of appropriate activation functions is of vital importance for the ANN

learning. For instance, the nonlinear sigmoid activation function is designed to normalize the

outputs of each neuron to a range between 0 and 1, thus ensuring computationally efficiency

for the regression tasks. Besides, the rectified linear unit (ReLU) activation function,[11]

known as a ramp function, is introduced to enable better training performance for a range

of deep learning models, i.e., ANNs, CNNs. Figure 1.2 below shows an example of simple

feed-forward ANN architecture.
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... ...
...

...

...

...

Input layer Hidden layer Output layer

Figure 1.2: Feed-forward artificial neural network structure. The nodes represent the acti-
vation function and the edges represent the weight parameters.

Recurrent neural networks

Notably, deep learning refers to a branch of machine learning algorithms using different

types of neural network architectures. Other advanced ANN models such as long short term

memory (LSTM),[12] a special category of recurrent neural networks (RNNs), have gained

a lot of popularity in recent years for the application of time-series forecasting. Unlike the

ANN model, one of the appeals of the RNN is that it is explicitly designed to remember

the information for long periods of time enabled by the chain of repeating modules. More

specifically, the repeating modules in RNNs save the output value of a particular neural and

send the output value to another neuron in the same hidden layer during the training process.

Because of this special working mechanism, the RNNs show superior predictive performance

over the other conventional ANNs algorithms in modeling univariate time series forecasting

problems. Figure 1.3 below shows the basic concept of the standard RNN model structure.
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Activation

X0

Y0

Activation

X1

Y1

Activation

X2

Y2

Activation

X3

Y3

Figure 1.3: Schematic of recurrent neural network structure.

Back-propagation

Back-propagation plays an extremely important role in any ANN models. Essentially, back-

propagation is the practice of fine-tuning a large number of weight parameters of ANNs

according to the error rate at each epoch of training iteration. Here, the loss value is calcu-

lated by taking the difference between the model predictions with the true values. The loss

functions are varied according to learning objectives. For instance, the Mean Squared Error

(MSE) is widely used for the regression tasks while the Binary Cross-Entropy (BCE) works

tremendously well for binary classification problems. During the actual training process, the

partial derivative of the error at each epoch is calculated with respect to each individual

weight parameter through a series of chain rules and this procedure is repeated until the

optimal error value is stabilized under a certain threshold value or reaches a constant value.

In brief, the optimal goal of back-propagation is to find a proper set of weight parameters

to ensure a lower loss value, thus improving the generalization performance. To illustrate

the theory of back-propagation, we derive the mathematical equations for a simple network
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structure. Figure 1.4 describes a simple 2-layer multiple output ANN structure. The sigmoid

activation functions are used for all the neurons on both hidden layers (i.e„ h1, h2) and the

output layers (i.e., Out1, Out2). Our objective is to calculate the gradient of the total loss

(i.e., Eout1, Eout2) with respect to the weight w5.

W1

W2

W3

W4

W5

W6

W7

W8

Out1

Out2

Input1

input2

i1

i2

h1

h2

O1

O2

1 1

Figure 1.4: Schematic of multiple-output neural network structure.

Equation 1 shows the RMSE (total error) of the model predictions and the true values.

Etotal = Eout1 + Eout2 =
1

2
(Yout1 − Ytarget1)

2 +
1

2
(Yout2 − Ytarget2)

2, (1.2)

where Yout1 and Yout2 indicate the model prediction outputs and Ytarget1 and Ytarget2 denote

the actual value of the corresponding output values. The sigmoid activation function that is

implemented for the output neuron is shown below:

Yout1 =
1

1 + exp−Ynet1
, (1.3)



10 Chapter 1. Machine learning in functional material design

where Ynet1 indicates the weighted summation of all the weight parameters in the hidden

layer as shown below:

Ynet1 = w5Yout,h1 + w6Yout,h2 + b2. (1.4)

The partial derivative of the Ynet1 corresponding to the weight parameter of w5 is calculated

by ∂Ynet1

∂w5
= Yout,h1. The partial derivative of the Yout1 corresponding to Ynet1 is calculated as

shown below:

∂Yout1

∂Ynet1

= Yout1(1− Yout1) =
1

1 + exp−Ynet1
(1− 1

1 + exp−Ynet1
). (1.5)

Therefore, the overall partial derivative δw5 corresponding to weight w5 is calculated though

the chain rule as shown below:

δw5 =
∂Etotal

∂w5

=
∂Etotal

∂Yout1

∂Yout1

∂Ynet1

∂Ynet1

∂w5

=
Yout1Yout,h1

1 + exp−Ynet1
(1− 1

1 + exp−Ynet1
). (1.6)

By knowing the partial derivative δw5 , we can calculate the overall gradient descent value

ηw5 corresponding to w5 by multiplying a constant ratio, namely learning rate α. Then we

can update the weight parameter of w5 by applying the calculated gradient descent value as

shown below:

w∗
5 = w5 − ηw5 = w5 − δw5α. (1.7)

Note that the learning rate is a free parameter and it is typically determined through a

trial-and-error fashion. Furthermore, all the gradient descent values can be calculated in
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similar manners through the chain rules at each epoch to update all the model parameters.

1.3.2 Convolutional neural networks

In this chapter, we introduce the concept of convolutional neural networks (CNNs). Convo-

lutional neural network (CNN) is an integrated machine learning framework by combining

the conventional artificial neural network with convolutional layers. A common application

of CNN is image recognition and classification.[13, 14, 15] The CNNs are also widely ap-

plied for other mainstream tasks such as signal processing[16, 17] and Natural Language

Processing (NLP).[18, 19] An intuitive explanation of CNNs is the neural network model

with special characteristics of automatic feature extraction. A typical CNN model contains

two essential components, which include a convolutional processing layer and the artificial

neural network model. The convolutional layer contains a number of filters, known as con-

volutional kernels, which are responsible for pooling the information that is contained in the

image in a systematic way. Essentially, a filter is a matrix of randomly generated numeric

matrices, which is responsible for calculating the product value for a subset of image pixels.

As we move the kernel matrix across all the image pixels in either one or two dimensional

(1D or 2D), the matrix multiplication or linear transformation is consistently operated until

the kernel has covered all the pixels in the image. The result of the filtering process is a

generalized squared matrix with a smaller dimension depending on the kernel size. Note

that the number of kernels is a very important free parameter and typically, the generalized

feature map becomes incredibly large as more kernels are applied in the convolutional layer.

Another critical component of CNN model is the pooling layer, where the downsampling

procedure is applied to summarize the complexity of the feature map with the goal to reduce

the over-fitting effect. Two commonly used effective pooling methods are average pooling

and max pooling. The second essential component of CNN is the artificial neural network
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(ANN), which is constructed to learn the correlation between the latent variables from the

convolutional layer and the output values. The weight parameters in the ANN model are

trainable and being optimized during the actual learning process. Figure 1.5 shows the

architecture of the convolutional neural network (CNN) models.

Input matrix Convolutional 
       layer

     Pooling 
       layer

Convolutional 
       layer

        Flat
       layer

ANN Output

Figure 1.5: Schematic of convolutional neural network model.

1.3.3 Graph neural networks

Graph neural networks (GNNs)[20] are a powerful variant of conventional convolutional

neural networks (CNNs) type machine learning algorithms. The GNNs are particularly

designed to operate on graph type objectives and have recently received wide attention for

many scientific types of research and studies. For instance, the GNNs shows promising

prediction performance for semi-supervised node classification tasks in the domain real-

world application of social network study,[20, 21, 22]. Besides, the GNNs are also widely

used in the regression tasks to predict some interesting properties such as Human-Computer

Interaction behaviors,[23] hourly bike-sharing demands,[24], social relationship inference for

user mobility.[25] To date, GNNs have become one of the most successful emerging deep

learning models, which provide leading-edge solutions for a series of challenging problems.

Importantly, the research and study for GNNs is always an ongoing process and a lot of
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research efforts are devoted to improving the model robustness. In this chapter, we briefly

introduce three typical GNN models and the corresponding fundamental theory.

Graph convolutional network model

The graph convolutional network (GCN) model[20] is the most basic graph neural networks

(GNNs) architecture. It was originally developed for semi-supervised node classifications.

The GCN model attempts to learn an appropriate node embedding with a message pass-

ing/graph convolution operation. More specifically, a learned node embedding is obtained

by propagating the graphs’ underlying node feature representations and the corresponding

topological information. The learned node embedding can be further used for different down-

stream tasks such as regression and classification. For a graph object G = (V,E), where

V ∈ RN×F . Here V denotes a set of N nodes with F -dimensional node feature vectors. E

represents a set of interconnected edges within the graph G. The objective of GCN convolu-

tional is to learn a novel node embedding X i+1 over the graph G for ith convolutional layer.

The node embedding X i+1 is calculated as shown below:

X i+1 = D̃−1/2ÃD̃−1/2X iθ, (1.8)

where Ã denotes the graph adjacency matrix and D̃ denotes the graph diagonal degree

matrix. Ã is a binary squared matrix determined by the edges of the graph G. X i ∈ RN×F

is the node feature matrix at ith convolutional layer in the propagation process. θ is the

trainable parameters, which are determined by the supervised learning process. Note that

the propagation process can be repeated as many times as possible and the newly obtained

node embedding matrix X i+1 can be considered as new input for another GCN convolutional

layer.
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Graph attention network model

Graph attention network (GAT)[26] model is an advanced GNN model, which is character-

ized by an intelligent self-attention propagating mechanism. In essence, the processing unit,

namely the graph attention layer, is designed to propagate the node features and the cor-

responding topological information that is contained in the graph. Unlike the GCN model,

GAT model has a more sophisticated form of message passing process. More specifically,

GAT convolutional layer is operated in the following three primary steps: 1) A node from the

graph G is selected as the central node and the corresponding neighbors of the given node

are labeled as neighbor nodes, 2) A linear transformation with weight matrix of W ∈ RF
′×F

is applied to process all the selected nodes one after another, 3) A non-linear operation σ(.)

is applied to aggregate all the convoluted nodes features for the new learned node feature of

the central node. It is noteworthy that the dimension F
′ of the trainable weight matrix of

W is adjustable in the learning process and the attention coefficients eij of the central node

i with respect to the first-order surrounding neighbors is calculated as shown below:

eij = a(WXi,WXj), (1.9)

where a denotes a shared attentional mechanism a : RF ′ × RF ′ → R. Then the attention

coefficient eij is normalized by taking into account all the surrounding nodes, so that the

coefficients are comparable across different nodes. The normalized attention coefficients are

calculated by the softmax function as show below:

αij = softmaxj(eij) =
exp(eij)∑

k∈Ni
exp(eik)

, (1.10)

where Ni denotes the neighborhood nodes of node i in the graph G. The normalized attention
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coefficient eij indicates the importance of node j with respect to node i. The normalized

attention coefficients are used to compute the aggregated features X ∈ RF
′
using a non-linear

activation function σ(.) as shown below:

σ(
∑

j∈N(i)

αijWXj). (1.11)

Figure 1.6 illustrates the concepts of messaging passing of GAT along with the schematics

of some key components such as graph convolution, graph pooling, and graph gathering.

Graph isomorphism network model

The concept of Graph isomorphism network (GIN)[28] model is analogous to the Graph

attention network (GAT). Both GAT and GIN contain the same processing components and

units such as graph convolution, graph pooling, and graph gathering operations. However,

instead of linearly propagating the node features, the GIN transforms the node features X i ∈

RF to novel node features X i+1 ∈ RF ′ with variant dimensions using a much-complicated

multi-layer perceptron (MLP) as shown below:

X i+1 = MLP ((1 + ϵ)X i +
∑

j∈N(i)

Xj), (1.12)

where ϵ denotes a trainable parameter or fixed scalar for taking account of the impact of

central node features toward neighbor nodes Ni. Recent study[28] proves that the GIN

achieves the maximum discriminative power over the other GNN models in the prediction

tasks and is considered as the state-of-the-art GNN model at the moment.
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Figure 1.6: Schematics of GNNs message passing process for learning drug molecules. Figure
is adapted from Altae-Tran et al. (2017)[27]

1.4 Saliency maps

Saliency map,[29, 30], a popular visualization technique, has attracted huge attention in the

field of computer vision. The general goal of the saliency map is to transform the original view

of an image to an intuitive way where the high-impact features (i.e, image pixels, resolutions)

are distinguished from the low-impact feature with respect to the model prediction outputs.

The salience map, as an effective tool, is of particular importance for interpreting complex
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machine learning models such as a convolutional neural network (CNN). More precisely,

it provides a novel means to understand the model by highlighting the important feature

factors, which captures the most neuron activity of interest output and the corresponding

variances. Essentially, a salience map can be viewed as an image segmentation, which is

the process of segmenting the input image into pixels and quantifying the contribution of

individual pixels toward the target variable in the deep learning model using gradient ascent

in the input space. Here, the quantified contribution of a specific input feature or pixel refers

to the corresponding weight vector wT
c . Typically, a large weight vector indicates that the

feature pixel plays a very important role in the model output variance in terms of either

likelihood in the classification model or numeric values in the regression task. To illustrate

the concept of saliency map method, we provide a motivating example as shown below:

Sc(I) = wT
c I + bc, (1.13)

where I denotes the input matrix and Sc(I) denotes the model likelihoods corresponding

to a specific class c. However, in the case of deep convolutional neural network (CNN), the

model output Sc(I) has a highly non-linear relationship with input I, therefore the first-order

Taylor expansion is applied to approximate Sc(I) by establishing a linear relationship with

the neighbourhood of I as shown below:

Sc(I) ≈ wT
c I + bc. (1.14)

The weight vector wc of each individual input feature I0 can be approximated by taking the

derivative of Sc(I) with respect to the input feature as shown below:
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wc =
∂Sc

∂I
|I0 . (1.15)

It is noteworthy that another intuitive interpretation of the magnitude of computed weight

vector wc is the sensitivity of a specific feature input toward the model output variance.



Chapter 2

Convolutional neural network for

crystal formation energy

2.1 Introduction

Crystal (crystalline solid) is a solid material whose constituent atoms are organized with

highly ordered microscopic structure.[31] Typically, the crystal materials are composed of a

number of repeating units, which are the smallest unit cells that contain all the necessary

information toward the entire geometry such as atom types and coordination. A complete

crystal material can be formed by repeating the smallest unit cells in the three dimensions.

Crystal material plays an essential role in the formation of industrial functional substances

such as semiconductors, fuel cells, leading to a series of new fundamental researches. The

assessment of crystal material properties is becoming the primary aspect of modern material

scientists and a large number of research efforts are devoted to understanding the materials

structure-property relationship.

In the last few decades, the first principle methods, i.e., density functional theory (DFT),

have attracted enormous attention. To date, it has become one of the most widely used com-

putational tools in the research and study of physical science. DFT, a quantum mechanical

simulation, is a computer-based simulation approach in the field of solid-state physics based

on the optimization of materials’ many-electron wave-functions. DFT has attracted enor-

19
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mous attention because it offers an accurate and rapid approximation of materials’ properties

at the atomic level. Even though DFT provides a highly accurate computational means to as-

sess a large number of material properties prior to actual experiments, it still consumes a lot

of computational resources. Recently, the data-driven models based on high-speed machine

learning algorithms are considered as surrogate models for the DFT method for fascinating

the material screening process. Machine learning algorithms in nature have huge advantages

over the conventional physical models in processing massive amounts of unstructured data

with high prediction accuracy. Essentially, machine learning provides algorithms the ability

to automatically discover the hidden patterns of data without being explicitly programmed.

Because of this, machine learning models have gained huge successes in applications such as

website recommendation systems, online fraud detection, robotic technologies, image recog-

nition, etc. Nevertheless, implementing machine learning techniques in the field of functional

material discovery remains difficult due to our insufficient knowledge about the structure-

property relationships for diverse material systems. In another word, developing a robust

physically intuitive feature method requests in-depth expert knowledge about the underlying

physics of the material system and it is always a challenging task.

As machine learning models heavily depend on features or representation methods, devel-

oping a robust representation method for material systems is the key to the success of any

machine learning tasks. In recent years, many novel representation methods are developed

to capture the underlying physics of a variety of materials for the desired properties. For

instance, moment-based descriptors according to the knowledge of d-band theory[32] are

used in the machine learning models to predict the metallic alloys and metal oxides’ ad-

sorption properties.[33, 34, 35, 36, 37] Coulomb matrix[38] and the corresponding extended

versions[39, 40] based on the Coulomb repulsion between atoms are developed to capture

the formation energies of a diverse set of organic molecules and crystals. Elemental and
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structural representations (i,e., coordination number, and radial distribution function) are

developed to describe a wide range of crystal structures for predicting the first-principle

properties.[41, 42]

Even though the machine learning models have gained huge success in predicting the proper-

ties of a wide range of materials, the model prediction performance is primarily dependent on

the selected representation method, namely descriptor. Developing a robust descriptor for

given material typically requires experts’ domain knowledge about the material’s underlying

physics. Following are the standard procedures for descriptor design, which have been largely

adopted by the material science community for many years: (1) generate a candidate set of

material feature vectors or descriptors according to domain knowledge, (2) select a subset

of descriptors from the candidate set via the trial-and-error method (i.e, cross-validations).

Nevertheless, the standard descriptor design procedure is an inefficient process because it

requires an extensive amount of human efforts. In this regard, we implement an automated

feature engineering scheme using convolutional neural networks (CNNs). The scheme aims

to extract the latent vectors that are contained in materials’ DFT calculated electronic struc-

ture in an automatic fashion. To evaluate the performance of our CNN model, we evaluate

the model prediction performance using selected data from Material Project[43] database.

We show that the CNN model can capture the DFT calculated formation energies with high

accuracy for a wide range of crystal structures. Importantly, we shed light on the important

molecular orbitals toward the formation of energy using the saliency map technology.
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2.2 Computational method

2.2.1 Data description

The primary research focus of this project is to estimate the DFT-calculated ground state

formation energy of metal oxides’ bulk structure using the deep learning models. ABO3

type metal oxide materials have wide industrial applications such as solid fuel cells, water-

splitting cells, etc. ABO3 metal oxide has a versatile structure with a wide variety of element

choices for the A and B cations. Usually, the A-site cations are rare-earth metals while

the B-site cations are transition metals from the periodic table. According to crystal field

theory,[44] the strong interaction forces between the positively charged transition metals and

the negatively charged oxygen ligands would give rise to an unstable structure. Subsequently,

the metal oxide with the same composition could have multiple coexistence phase structures

due to the static electric field within the crystal structure. As formation energy is of vital

importance in determining the most stable phase state, an enormous research effort has

been made to predict those energy properties with the minimum computational cost. In this

work,  we adapted the 785 ABO3-type metal oxides’ formation energies and the associating

electronic structures from Material Project[43] database. The metal oxide structures have

an enormous compositional and configurational degrees of freedom with 65 unique A-site

cations, 77 unique B-site cations, and 7 common crystal phases (i.e., cubic, hexagonal,

monoclinic, orthorhombic, tetragonal, triclinic, trigonal). Note that the formation energies

are normalized by the total number of atoms in the bulk structures so that the energy

values are comparable between different structures. Figure 2.1 below exhibits the theoretical

computational structure of the CaTiO3 and the corresponding electronic structures.
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(a) (b) (c) (d)

Figure 2.1: CaTiO3 metal oxides and the corresponding electronic structures. The electronic
structures for phase states of (a) cubic, (b) orthorhombic, (c) tetragonal (d) trigonal.

2.2.2 Electronic structure

In this work, the DFT-calculated orbital-resolved Partial Density of States (PDOS) feature

is used as primary features to capture the formation energy for different metal oxide systems.

Here, PDOS can be considered as a degenerated form of the total density of states (DOS).

The density of States (DOS), a property from solid-state physics, is essentially developed for

describing the number of electronic states at specific energy levels, where the electrons are

allowed to occupy. DOS is a very important concept in the context of quantum-mechanically

to describe the properties of a macroscopic system. A DOS graph of a given material contains

much valuable information about the material’s special characteristics. For instance, if a

significant energy gap (energy difference between the conduction band and the valence band)

is observed from the DOS graph, we know that the material is a semiconductor. Furthermore,

according to [32], the electronic structure characteristics (i.e., d-band center, d-band width)

are closely related to the system’s energy properties such as bond formation energy. The d-
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band model has been widely recognized as one of the most successful theoretical frameworks

in understanding a variety of surface adsorption properties.

According to Figure 2.1, we know that DOS is very sensitive to the crystal’s structure,

compositions, and morphology. A slight structure change would give rise to a distinguished

DOS graph. Therefore, a robust feature representation that is capable of capturing all

the detailed information is essential for machine learning models. Nevertheless, obtaining

effective features for a material’s electronic structure is a very challenging task in particular

for metal oxides. According to Figure 2.1, the electronic states are degenerated into separate

main peaks due to the interactions between the transition metals and the ligands within the

structure. Even though the conventional moment-based descriptor introduced by Nørskov

et al.[45] works extremely well in capture the metallic systems’ formation energy, it works

poorly for the metal oxide systems because of the nature of DOS degenerated effect. In this

regard, a robust and powerful representation method for encoding DOS is highly demanded.

2.3 Results and discussion

2.3.1 Feature Representation

Feature engineering plays an essential role in any machine learning models. The general

purpose of feature engineering is to represent the input object with numeric feature vectors

that capture the underlying characteristics. For instance, the image objects can be encoded

as numeric matrices and the matrix values denote the color-intensive in the application of

image recognition. In this study, the orbital-resolved Partial Density of States (PDOS) of

crystal material is used as input for the machine learning model. Our primary objective is to

develop an automatic approach that can encode all the detailed information from the Partial
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Density of States (PDOS) for all the crystal structures. One of the major advancements of

our feature representation approach is that it is fully automatic and doesn’t require any

manual feature engineering process.

The orbital-resolved Partial Density of States (PDOS) as shown in Figure 2.1 can be consid-

ered as a probability distribution of electronic density of states over energy levels. However,

the distribution doesn’t follow the common well-known probability density function (PDF)

such as Gaussian distribution, binomial distribution, and etc. To capture the full information

about the orbital-resolved Partial Density of States (PDOS), we proposed a novel algorithm

that can automatically learn the noisy PDOS distributions by fitting a multiple Gaussian

distributions functions. For a given PDOS graph, our algorithm is capable of determining

the number of significant peaks and assigns the Gaussian functions with respect to the iden-

tified peaks. In brief, we aim to model the noisy PDOS distribution based on the assumption

that the PDOS is fully made up of a set of Gaussian distribution functions. Then we can

obtain the model-predicted PDOS (PDOS spectrum) over a specific range of energy levels

using the fitted mixture Gaussian function. One of the main advantages of our algorithm is

that the PDOS spectrum can be constrained at a fixed range of energy levels so that all the

feature vectors corresponding to different crystals are comparable. The proposed algorithm

for PDOS spectrum contains 5 consecutive steps as shown below,
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Algorithm 1: Fit multiple Gaussian function for PDOS

1. Identify the significant peaks (p1, p2, ..., pn) from the PDOS

2. Initialize the Gaussian parameters [(c1, w1, h1), (c2, w2, h2),...,(cn, wn, hn)]

corresponding to the identified peaks (p1, p2, ..., pn)

3. Construct the multiple Gaussian model G(p1, p2, ..., pn) =
∑n

i=1 hiexp
−(x−ci)

2

2(wi)
2 by

adapting all the peak parameters from the previous step

4. Optimize the Gaussian parameters by minimizing the Least-square error of the

multiple Gaussian model

5. Predict the PDOS values for energy levels [-15, 15] using the fitted multiple Gaussian

function

In practice, we fit 9 multiple Gaussian models for all the molecular orbital density of states

(i.e., dz2 , dx2 , dxy, dxz, dyz, px, py, pz, s) for a given crystal structure. Here the 5-dimensional

dz2 , dx2 , dxy, dxz, dyz and 1-dimensional s orbital correspond to the PDOS spectrum for

B-site transition cations. The 3 px, py, pz corresponds to the PDOS spectrum for oxygen

ligands. The PDOS spectrum for a given crystal has a fixed dimension of 30 by 9, which

describes all the electronic density of states over the energy level from -15 to 15 eV. Figure

2.2 below shows a comparison of model-fitted PDOS and the actual PDOS for the crystal

structure of cubic SrNiO3.

According to Figure 2.2 (a), we observe that the fitted multiple Gaussian functions work

extremely well capturing all the distributions of PDOS with a set of discrete variables.

The model fitted variables, namely the PDOS spectrum, are used as input for learning the

convolutional neural network (CNN) model for predicting the crystal formation energy.
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Figure 2.2: (a) Comparison of the model-fitted DOS and actual PDOS for SrNiO3. (b)
Schematic representation of the model fitted DOS spectrum.

2.3.2 Convolutional neural network configuration

We set up a convolutional neural network (CNN) framework for learning the crystal formation

energy using the open-source Keras library.[46] The CNN framework as shown in Figure 2.3

consists of a regular CNN model and an embedding processing layer. The CNN model is

responsible for processing the PDOS matrix through 2 consecutive convolutional layers with

16 2x2 dimensional kernels. It is noteworthy that each convolutional layer is followed by a

2x2 dimensional max-pooling layer, which is responsible for preventing the over-fitting issues

by reducing the dimensionality of the convoluted feature matrix. Then, we transformed the

pooled feature matrix to a 1-dimensional latent vector as a partial-input for the feedforward

artificial neural network (ANN). To capture the crystal’s composition information, we added

another linear embedding layer to transform the atomic properties to the 1-dimensional latent

vector for the ANN. The 10-dimensional atomic properties are calculated purely based on
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the crystal’s structural composition. Those properties include 2-dimensional A/B cation

electronegativity, 2-dimensional A/B cation oxidation state, tolerance factor and octahedral

factor, 4-dimensional including ionic radii ratios and the differences in electronegativity of A

and B atoms relative to O atom using the literature method.[47] In the final step, the ANN

takes the merged latent vectors from the previous processing layers and maps the merged

latent vectors to the formation energy through 2-layer neural network architecture. The

ANN model contains 2 hidden layers and each hidden layer includes 16 rectified linear units

(ReLU) as a processing engine. Note that all the parameters associated with either CNN or

ANN models are determined through a trial-and-error fashion for the best model prediction

performance.

 Atomic 
Properties
   (AP)

 PDOS

+

 Embedding 
     layers

 Convolutional
      layers    Pooling 

     layers
Formation
   energy

Figure 2.3: Schematic illustration of CNN framework for crystal formation energy.

2.3.3 Model prediction evaluation

We divided the ABO3 dataset into two subsets with 75% for training the convolutional

neural network (CNN) framework and the rest 25% for testing the model performance. To

prevent model overfitting caused by the excessive number of epochs, a validation dataset

(25% of the training dataset) is created internally for terminating the back-propagation
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trainer when the cross-validation root-mean-square error (RMSE) reaches the minimum.

Generally, the cross-validation error shows a volcano relationship with respect to the training

epochs. Therefore, the purpose of the early stop mechanism of deep learning models is to

stop the training process at an appropriate time to prevent overfitting. During the training

process of the CNN model, the 10-fold cross-validation is performed to identify the optimal

network structure (i.e., number of convolutional layers and number of neurons at each layer,

kernel size). To eliminate the sampling bias toward the model prediction performance,

we randomly select the training/testing datasets 16 times and evaluate the overall model

prediction performance by calculating the averaged validation error. According to Figure

2.4, the CNN model trained with 75% data provides testing error around 0.5 eV for the

rest 25 % data while a combined feature set of atomic properties and the PDOS matrix

would give rise to an improved model prediction performance (RMSE=0.34 eV). Therefore,

the CNN model learned both the atomic features and the PDOS features attained the best

results.

Besides the testing error, we also evaluate the model generalization capability corresponding

to the training data size. Here, generalization is termed as the model’s predictive performance

with respect to the unknown data. Theoretically, a robust machine learning model is able to

capture the desired properties of unknown data without the need of training a large number of

data. To evaluate the model’s generalization power, we conduct an experiment by inspecting

the model’s performances for different training data size. More specifically, we split the entire

crystal data with different train/test ratios as shown in Figure 2.5, and evaluate the model

prediction error. Note that we randomly sampled 8 times for each train/test ratio and the

bar heights as shown in Figure 2.5 indicates the averaged value of the errors and the black

bar indicates the standard deviation of the errors. According to Figure 2.5, we observed that

both CNN models exhibit good generalization corresponding to the unknown testing data
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Figure 2.4: CNN model prediction evaluation. DFT-calculated vs. model predicted forma-
tion energies for (a) Partial Density of States (PDOS) features and (b) a combined features
including Partial Density of States (PDOS) and atomic properties. The insert plot shows
the histogram distributions of both training (grey) and testing (blue) errors.

by training on relatively small data (∼50% training data). Thus, the CNN model trained

with PDOS and atomic properties can capture well with the formation energies for a large

amount of crystal structure with a high degree of freedom of configurations and composition.

2.3.4 Saliency map analysis

It is noteworthy that our CNN framework has a number of pros and cons in terms of usability

and interpretability. Following are the benefits (pros) of our model: (1) the latent variables

are extracted from the PDOS in an automatic fashion, (2) PDOS is high-level intuitive feature

within the context of d-band theory, (3) PDOS can capture the crystal formation energies

with good accuracy between 0.3 eV to 0.4 eV. However, the CNN model framework has

huge disadvantages in terms of practical usability. For instance, the CNN model is heavily

relying on the DFT-calculated PDOS, which is an expensive feature resource compared to
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Figure 2.5: CNN model generalization evaluation for different training data ratio. The
green/blue bars indicate the model prediction errors by training different features.

other types of structural information such as atomic properties and the crystal structure

properties. In another word, DFT calculation for the PDOS is required prior to model

prediction, which significantly limits the CNN method’s widespread applications for a large

material space. Even though the PDOS feature has issues in terms of usability, it allows us

to draw valuable molecular orbital insights toward the formation energy using the technique

such as saliency maps. The saliency map approach has gained huge success in the field of

computer vision to visualize the important pixels in the training image corresponding to the

output value in the supervised deep learning model. The saliency score value on the saliency

map is calculated by taking the gradient of the model output value with respect to the input

matrix. Typically, if an image pixel is identified by the saliency map, we know that the pixel

plays a crucial role in the model decision. Figure 2.6 shows the example of saliency heat

maps along with the PDOS features of BaRuO3 and SrIrO3.

According to Figure 2.6, we observe that the saliency maps are varied significantly for the
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Figure 2.6: Saliency maps for crystals. The crystals with structures of (a) BaRuO3 and (b)
SrIrO3.

crystals with distinguished PDOS features. For both BaRuO3 and SrIrO3 crystals, the

d-orbitals PDOS (i.e., dxy, dxz, dyz) on energy levels between -5 to 10 are import toward for-

mation energies for relative large saliency score values. Then, we rationalized the important

molecular orbitals of La-based and Ba-based metal oxides by inspecting the model calcu-

lated saliency scores. The La-based and Ba-based metal oxides are selected because they

are important electrode materials in the water splitting cells. For each crystal structure, we

calculate the sum of the score values across all the energy levels of each molecular orbital.

We assume that the orbital with the largest saliency score is likely to be the key electronic

factor toward formation energy. Figure 2.7 exhibits the heat map distributions of the im-

portant molecular orbitals for a series of La-based and Ba-based metal oxides. According to

Figure 2.7, we know that the B-site metal’s d orbital properties play an extremely important

role toward crystals’ formation energies for both the La-based and Ba-based metal oxides.

While the p-based orbitals have a secondary effect on the formation properties for relatively
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small sums of saliency score values.
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2.4 Conclusions

In summary, we develop a novel CNN framework for predicting the crystal formation energy

using a combined feature set including the DFT-calculated partial electronic density of state

(PDOS), together with the atomic properties of the crystal structure. Compared with the

previous conventional machine learning models based on extensive expert domain knowledge,

our proposed CNN framework leverages an automated feature engineering process. Thus,

a significant amount of manual effort and time is saved because of the automated feature

engineering mechanism. The CNN framework gives us a favorable prediction error of ∼

0.3 eV, which is similar to the DFT system error ∼ 0.2 eV. More importantly, the PDOS

matrix, a high-level intuitive representation method, allows us to draw important molecular

orbital insights toward the crystal formation energy by interpreting the CNN model using

the saliency map approach.



Chapter 3

Graph convolutional neural network

for crystal first-principle property

3.1 Introduction

In this chapter, we investigate the performance of another deep learning model, namely graph

neural network (GNN), and apply the model to predict the first-principle properties (i.e.,

formation energy) of crystal structures. Essentially, GNN is a variant form of a conventional

convolutional neural network (CNN). A common characteristic of CNN and GNN models is

that they both attempt to learn the latent variables that are contained in the objects such as

numeric matrix or graph via a series of convolutional processes. However, the convolutional

process of GNN models is significantly different from the CNN models. More specifically, the

convolutional layers of GNNs are particularly designed to capture the spatial hidden patterns

from the graph objects systematically. In recent years, the GNN model has attracted growing

interest in emerging fields of computational functional material design because GNN outper-

forms the conventional machine learning models by providing state-of-the-art solutions to

many challenge machine learning tasks including both regression and classification problems.

For instance, the GNN models are applied to learn drug molecules and proteins to predict

the drug-target interaction properties.[48] The GNN models are established to predict the

organic chemical reactivity by learning the reactant compounds.[49] GNN models are applied

35
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to extract the circular molecular fingerprints for a number of regression tasks.[50]

3.2 Related work

Previously, Xie et al.[51] presented a graph convolutional neural network (GCNN) model for

predicting a series of crystal material properties. Even though the reported GCNN exhibits

high performance in capturing the material properties, the GCNN model has flexibility issues

with a rigid model structure (i.e, feature representation, and graph convolutional process).

More specifically, the graph representation method of GCNN was designed for the most

basic graph convolutional neural (GCN) model and the method is not generic enough to

compatible with other advanced graph neural network models. In this regard, we introduce

a robust graph-based deep learning framework for learning the crystal material properties

by using the easily accessible crystal’s topological structural characteristics. Compare to the

previous GCNN model, our graph-based framework has a flexible structure with a generic

graph representation method that is compatible with all the newly-developed graph neural

network models (i.e., GCN, GAT, GIN, etc). Besides, our graph-based deep learning models

achieve high accurate prediction results with respect to the DFT-calculated formation en-

ergies, which is attributed to the robust graph representation method. As one of the most

important ingredients, the graph representation method is of vital importance to model per-

formance. In this regard, we primarily focus on addressing the methodology of constructing

graph representations including the node feature vectors, node connectivity, and etc. Be-

sides, we conducted a comprehensive analysis by evaluating the key parameters toward the

model prediction results using the benchmark data involving above 20,000 crystal structures.

Compared to the CNN based model as mentioned in Chapter 2, the GNN model shows ex-

traordinary advantages in terms of applicability and accuracy. In particular, the GNN model
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relies on crystal graphs, which are accessible features compared to the DFT-calculated par-

tial density of state (PDOS). Therefore, the GNN model exhibits extraordinary applicability

and can be easily applied to assess the crystal properties of vast chemical space. Figure 3.1

below illustrates the methodology of the GNN model framework.

 Atomic 
Properties
   (AP)

+

 Embedding 
     layers

 Embedding 
     layers

Figure 3.1: Schematic display of graph neural network framework for crystal properties.

3.3 Computational methods

3.3.1 Data description

In this work, we evaluate the performance of graph neural network models for predicting the

DFT-calculated ground state formation energy along with the bandgap properties using the

benchmark data. We adopted a large number of crystal structures along with their material

properties from the Material Project[43] database for training the deep learning model. The

training data includes 23,029 ABX3-type crystal configurations. ABX3 type inorganic crys-

tals have versatile configurations with a wide variety of element choices for the A, B, and

X elements. Specifically, the A/B site cation contains 65/77 unique elements respectively
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involving the majority elements from s-block, d-block, and f-block elements in the periodic

table. X denotes the ligand substitute including O,S,N, F p-block atoms. Note that the

initial computational structures of the crystals are extracted to build the crystal graphs as

input features for the deep learning model. Here, the initial structure represents the theoret-

ical model structure for the DFT calculated, which is constructed according to the material’s

lattice constant and bulk coordination. Besides the crystal structures, atomic properties are

also calculated based on the crystal structure and the corresponding constituent elements.

The crystal’s formation energy and band gap are the target properties for the machine learn-

ing model. Note that bandgap, an intrinsic property of solid, indicates the energy difference

between the crystal’s valence band of electrons and the conduction band. Typically, insu-

lators have relatively large bandgap values while the bandgap values for transition metals

are 0. Semiconductor usually has an intermediate-sized but non-zero band gap value, which

can be varied by thermal excitation. Therefore, predicting the bandgap property is of vital

importance because bandgap is a major factor determining material functionality such as

electrical conductivity, electro photocatalytic property and etc.

3.4 Results and discussion

3.4.1 Graph representation method

The selection of appropriate feature representation methods is always the key to the success

of the development of machine learning models. In the GNN models, we consider each crystal

structure as a graph representation of interacted nodes. Each graph representation is unique

and contains all the valuable information about the crystal structure such as the node types,

node connectivity, size of edge pairs, and etc. As the convolution performance is closely
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related to the graph representation method, developing appropriate graph representation

methods is one of our primary objectives. For a given crystal structure, we consider all the

atoms as nodes and describe all the node information with a one-dimensional binary vector.

Specifically, the binary vector encodes the node information such as element type, node

degree, and node degree uniqueness. For the element type, we created a library including

83-dimensional most common elements from the periodic table and used this sparse vector

to encode the represent or absence of a specific element. The node degree, an 11-dimensional

binary vector, describes the number of surrounding atoms within a cut-off radius parameter.

The node degree uniqueness (4-dimensional binary vector) describes the number of unique

element types in the surrounding neighborhoods of a central atom. In total, we encode the

information of each atom in the crystal structure using a 98-dimensional binary vector and

those node feature vectors are propagated during the GNN learning process.

Besides the node feature vectors, the graph representation also includes the information

about nodes’ connectivity, i.e., edge indexes and edge weight. The node connectivity features

are based on the crystal’s geometric information. More specifically, we created a set of paired

atom indexes by assuming that the chemical bonds are established between the atoms and

their closet neighbors. In another word, we calculate the Euclidean distance between every

pair of atoms, if the distance values are smaller than the cut-off radius (5 angstroms), we

assume that edges are created between those atom pairs and the edge weight parameters are

calculated by the corresponding Euclidean distances. Note that the edge weight parameter

is used as a normalization factor for the atom’s node feature vector for learning the GNN

model. Furthermore, the cut-off radius is considered as a crucial free parameter and the value

of 5 angstroms is determined in a trial-and-error fashion. Figure 3.2 shows the schematic

of the graph representation for encoding node features and the node connectivity of crystal

structure.



40 Chapter 3. Graph convolutional neural network for crystal first-principle property

R 

R 

Element 
    type

 Node
degree

 Node degree
  uniqueness

Ca  Ag  Fe   La   Sr  Mn  Ti    O     F    N

CaTiO3

1     0    0     0     0     0    0     0     0     0

 0     1     2     3    4     5     6     7     8    9   10

0     0    0     0     0     1    0     0     0     0    0

 1     2     3     

0     1    0    

  Edge
 index

   Edge
 weight

R 

1
23

4

5
6

(1,  2), (2, 1), (1, 3), (3, 1), (1, 4), (4, 1)
(1, 5), (5, 1), (2, 3), (3, 2), (2, 4), (4, 2)
(2, 5), (5, 2), (2, 6), (6, 2), (3, 4), (4, 3)
(4, 5), (5, 4), (4, 6), (6, 4), (5, 6), (6, 5)

R 

1
23

4

5
6

w0
w1

w2

w3 w4  w0 , w1 , w2 , w3 , w4

Figure 3.2: Schematic display of graph representation for crystal structure.

3.4.2 Graph neural network configuration

Graph convolutional network model

In this study, we use PyTorch Geometric[52], an open-source deep-learning library, for learn-

ing the crystal graphs for the desired DFT-calculated formation energy. PyTorch Geometric

builds on top of the well-known PyTorch[53] deep learning library and contains a variety

of cutting-edge graph convolutional methods from recent publications. The graph convolu-

tional network (GCN) model is the most basic GNN model. The theory of GCN was first

introduced by Schlichtkrull et al.[54] in 2017. This model has been proven effective to han-
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dle some standard statistical relation modeling problems such as link prediction and entity

classification. See Chapter 1 for a detailed description of the GCN theory. Here, we invested

the performance of GCN in the regression tasks for the quantum chemical calculations. For

each crystal graph, We build 2 consecutive GCN convolutional layers followed by another 2

linear embedding layers with the purpose of propagating the node information in the crystal

structure. The first GCN layer is responsible for mapping the original 98-dimensional node

feature vector to a 196-dimensional feature vector by propagating the topological informa-

tion of the crystal graph. The second GCN convolutional layer projects the 196-dimensional

feature vector to the high dimension of 392 in the same way. The linear embedding lay-

ers with 196×1024 and 1024×128 dimensional trainable weight parameters are established

with the purpose of improving the discriminative performance of machine learning models.

Besides GCN convolutional layers, we also include 2 16×16 consecutive linear embedding

layers for processing the 10-dimensional composition atomic properties. In the end, all the

extracted latent vectors are merged and fed into the feed-forward neural network (ANN)

for predicting the target property. The ANN contains 3 linear embedding layers with a

dimension of 256×512, 512×256, and 256×1.

Graph attention network model

The graph attention network (GAT) model is an advanced graph neural network model.

Unlike GCN, the convolutional process is achieved by an intelligent self-attention propagat-

ing mechanism. According to Knyazev et al.,[55] the GAT model provides extraordinary

prediction performance than other GNN models under certain conditions such as learning

the noisy graphs. See Chapter 1 for a detailed explanation of the GAT model theory. In

this work, We implement the GAT model for the learning of crystal structures and evaluate

the model performance. The GAT model architecture has an analogy to the GCN model ex-
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cept for the graph convolutional layers. For the GAN model, we implement 2 convolutional

layers with 98×196 and 196×128 dimensions for processing the graph information. Then, a

combined feature set including the latent variables obtained from the graph convolutional

process and the atomic properties are used as input for the 3-layer ANN model. The ANN

model has the exact same model architecture with the GCN model.

Graph isomorphism network model

The graph isomorphism network (GIN) model[28] is a robust variant version of GNN model

frameworks. The GIN model has been widely recognized as one of the state-of-the-art GNN

models. It shows great discriminative power in a range of machine learning tasks, which is

attributed to a recursively aggregating and transforming mechanism. See Chapter 1.3.3 for

detailed information about the GIN theory. In this work, we evaluate the performance of the

GIN model for predicting a diverse set of crystal structures. Unlike GCN and GAT models,

the GIN model is dependent on a series of internal linear processing units (ReLU activation

functions), which are responsible for propagating the information in the neighboring nodes.

Here, we apply 5 GIN convolutional layers for learning on the crystal structure. Each GIN

convolutional layer is implemented with a 2-layer ANN model with 128×128 processing units.

3.4.3 Model training

We split the complete crystal data (∼23029 samples) into two subsets with 75% for training

the graph neural network models and the rest 25 % for testing the model performance. To

prevent model overfitting caused by the excessive number of epochs, we calculate the testing

error at each epoch, and the optimal model parameters are determined at the bottom of

the learning curve as shown in Figure 3.3. Besides the number of training epochs, the free
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parameters such as learning rate (0.001), training batch size (100) are determined in a trial-

and-error fashion. It is noteworthy that all the learning tasks are accomplished on the GPU

servers. The GPU server contains 2 nodes and each node is implemented with 12 processors.

The run time cost for training the GNN models (100 epochs) on GPU server is around 15

minutes  Figure 3.3 displays the learning curve of the 4 investigated GNN models. In Figure

3.3, we observe that the GCN model outperforms other GNN models with the smallest

testing RMSE (0.25 eV). In contract, the GAT model performs the worst among all the

GNN models. Note that the GCN_GIN model is a hybrid GNN model, which includes a

combined graph convolutional layers of GCN and GIN.

0 20 40 60 80 100
Epoch number

0.3

0.4

0.5

0.6

Te
st

in
g 

R
M

SE
 

GIN
GCN
GAT
GAT_GCN

Figure 3.3: Testing RMSE vs. number of training epoch of GNN models.
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3.4.4 Model performance evaluation

Accuracy test

Compared to the CNN model in Chapter 2, most GNN models work extremely well for

capturing the crystal formation energies with small prediction error (∼0.25 eV) except for

GAT. More importantly, the GNN models are capable of processing a large number of ma-

terials, which is attributed to the accessible features (crystal structure). Here, the model

prediction error is used as the evaluation matrix for the model assessment. Specifically, the

GNN models learned by 75% randomly sampled data are applied to make predictions on the

rest of 25% data for testing the model performances. According to Figure 3.4(a)(b)(c)(d),

we know that the GAT model provides the worst training performance while the other GNN

models perform very similarly in terms of root-mean-square error (RMSE) and coefficient of

determination (R2). Besides, we observe many significant outliers in the parity plots. One

of the main causes of the outliers is the badly converged DFT-calculated crystals.

To evaluate the model prediction performance for the crystal structure with different ligand

groups (i.e., O, N, F, S), we trained the GCN models for the subset data containing differ-

ent ligand elements. The primary goal of this particular analysis is to assess the model’s

robustness corresponding to diverse crystal categories. According to Figure 3.5, the training

results are varied significantly with respect to different crystal ligand groups. The GNN

models trained by ABO3 and ABS3 crystal systems perform extremely well with the small-

est root-mean-square error (RMSE) while the GNN models for crystal systems of ABN3 and

ABF3 perform the worst. A general conclusion can be drawn that increasing the training

sample size may have a positive impact on model performance.
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(a) (b)

R2 = 0.91
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R2 = 0.94

(d)

R2 = 0.95

Figure 3.4: GNN model performance evaluation. Parity plots for (a) GCN model trained
by 23021 ABX3 samples, (b) GAT model trained by 23021 ABX3 samples, (c) GAT_GCN
model trained by 23021 ABX3 samples, (d) GIN model trained by 23021 ABX3 samples.
The inserts show the error distributions.

Training sample size effect

Besides the general accuracy test, we also invest in the GNN model generalization power

corresponding to the training data size. Here, generalization power describes the stability of

model prediction results with respect to the unknown data. Usually, a robust deep learning

model has small prediction variance for the target properties without a large amount of

training data. In this work, an empirical experiment test is designed to assess the model’s

generalization power using the entire crystal data. Specifically, we follow a similar procedure

in the Chapter 2.3.3 by inspecting the model prediction performance regarding different
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Figure 3.5: GIN model performance evaluation. Parity plots for (a) GIN model trained by
14592 ABO3 samples, (b) GIN model trained by 3919 ABN3 samples, (c) GIN model trained
by 3553 ABS3 samples, (d) GIN model trained by 2661 ABF3 samples. The inserts show
the error distributions.

training sample size. Note that in the first evaluation test, we didn’t randomly sample the

entire crystal data. Thus, the diversity of structural composition has a linear relationship

with the training data size. While in the second test, we randomly sampled the training

data before training the GNN model, so that both training and testing data contain the

same structural compositions. In other words, the randomization effect of training data is

diminished in the second evaluation test. According to Figure 3.6, we observed that the

prediction error (with randomization effect) of the GCN model is below 0.3 eV after the

training data ratio of 0.4, which indicates that the GCN model exhibits good generalization
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power corresponding to the unknown testing data. On the other hand, the GCN model

shows poor generalization performance for low accuracy values across all the training ratios

(no randomization effect). Therefore, we would strongly recommend increasing the diversity

of crystal compositions in the training data for maximum model performance.
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Figure 3.6: GCN model generalization evaluation for different training data ratio. The
blue/green bar indicates the model prediction error for the training data w/o randomization.

Cut-off radius analysis

In this section, we evaluate the effect of the cut-off radius, as shown in Figure 3.2, for

the model prediction accuracy. The cut-off radius is of vital importance toward crystals’

graph configurations. More specifically, the connectivity information of the crystal graphs

are predominantly influenced by the magnitude of the cut-off radius, thus subsequently

changing the model training process. Typically, a larger cut-off radius parameter indicates

that more atoms are considered as neighbors for a given central atom, which increases the

complexity of the GNN models. In contrast, a smaller cut-off radius parameter would lead
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to under fitted GNN models. In this regard, we conducted an empirical test to determine the

appropriate cut-off radius parameter for training the GNN models. Figure 3.7 describes the

GIN model training performances along with the distributions of connectivity information

(i.e., edge size, number of edges) across all the crystal materials for various sets of cut-off

radius parameters.
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Figure 3.7: Cut-off radius parameter evaluation for GIN model. The distribution of edge
size and number of edges for GIN model trained with (a) R = 2.5, (b) R = 5, (c) R = 7.5,
(d) R = 10, (e) R = 12.5, (f) R = 15.

According to Figure 3.7, we observe that the magnitude of the cut-off radius parameter plays

an important role in GIN model performance. The model RMSE errors show a volcano

relationship with respect to the values of cut-off radius parameters. The optimal cut-off

radius parameter is 10 for the smallest RMSE and Highest R2. In addition, the distributions

of edges are similar for Figure 3.7(d)(e)(f), which indicates that the graph connectivity

information is constant after a specific cut-off radius parameter (R = 10).
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Run-time analysis

We conducted the run-time analysis in this work by comparing the training computation

time of all the proposed deep learning models including a series of CNN and GNN models

trained by different features (i.e., PDOS, AP) for 100 epochs. The available data includes

the formation energies and the structural properties of 785 ABO3-type metal oxides. To

consider the data randomization effect, we randomly select 75% of data for training the

machine learning model and this procedure was repeated for 4 times. The average value

of the 4 measurements indicates the model general computational time. Note that all the

learning tasks in this work were accomplished on the GPU server from Advanced Research

Computing (ARC)[56] of Virginia Tech. The GPU compute engine contains an Intel Skylake

Xeon Gold 3 Ghz-core machine (12-core processors) with an NVIDIA V100 (Volta) GPU for

training the deep learning models. Figure 3.8 shows the averaged training computation time

of all the deep learning models along with their standard deviations with similar computing

resources. According to Figure 3.8, we observe that the deep learning models with diverse

model structures and features have similar training computation costs. Among all the deep

learning models, the GCN model has the smallest computation time while the CNN model

trained by both electronic structure and atomic property features has the highest running

time. Therefore, a general conclusion can be drawn that all the deep learning models (i.e.,

CNNs and GNNs) have efficient computational time for processing a large amount of data.

However, the GNN models are scalable for exploring broad material structures compare to

CNN models because of the easily accessible feature representations (i.e., crystal graphs),

which doesn’t rely on any prior DFT calculations like the PDOS in CNN models.
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Figure 3.8: Averaged training computation time of CNN and GNN models. The black error
bars indicate the standard deviations of the 4 measured training computation time.

3.5 Conclusions

In summary, we develop holistic graph neural network (GNN) frameworks for predicting the

expensive quantum-chemical calculated properties (i.e., formation energy) of crystal struc-

tures. By learning the easily accessible crystal graphs, the GNN models can rapidly inves-

tigate a broad chemical space with enormous compositional and configurational degrees of

freedom. The GNN models exhibit high prediction accuracy for the formation of energy

(∼0.25 eV), which is comparable to the system error (∼0.2 eV) of density functional theory

(DFT). To assess the generalization power of the GNN models, we conduct a series of experi-

ment tests by evaluating the model performance for learning distinguished training samples.

We show that the GNN models are able to capture an enormous amount of crystal properties

by learning a relatively small number of samples. Compared to CNN models in Chapter 1,

the GNN models have the predominant advantages in terms of data accessibility, which is

largely attributed to the special graph feature representation method and advanced message
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passing process. However, the CNN models have an advantage over the GNN models in

the aspect of model interpretability. Future work can focus on the interpretability of GNN

models in the domain application of high-throughput material screening. A detailed empir-

ical comparison of our proposed GNN framework with existing GNN literature in material

science can also be conducted in a future study.
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