
Recycling Preconditioners for Sequences of Linear Systems and

Matrix Reordering

Ming Li

Dissertation submitted to the Faculty of the

Virginia Polytechnic Institute and State University

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

in

Mathematics

Eric de Sturler, Chair

Christopher A. Beattie

Serkan Gugercin

Tao Lin

December 8, 2015

Blacksburg, Virginia

Keywords: sequence of linear systems, updating preconditioners, inexact Krylov subspace

methods, matrix reordering

Copyright 2015, Ming Li



Recycling Preconditioners for Sequences of Linear Systems and Matrix

Reordering

Ming Li

(ABSTRACT)

In science and engineering, many applications require the solution of a sequence of linear

systems. There are many ways to solve linear systems and we always look for methods that

are faster and/or require less storage. In this dissertation, we focus on solving these systems

with Krylov subspace methods and how to obtain effective preconditioners inexpensively.

We first present an application for electronic structure calculation. A sequence of slowly

changing linear systems is produced in the simulation. The linear systems change by rank-one

updates. Properties of the system matrix are analyzed. We use Krylov subspace methods to

solve these linear systems. Krylov subspace methods need a preconditioner to be efficient and

robust. This causes the problem of computing a sequence of preconditioners corresponding

to the sequence of linear systems. We use recycling preconditioners, which is to update and

reuse existing preconditioner. We investigate and analyze several preconditioners, such as

ILU(0), ILUTP, domain decomposition preconditioners, and inexact matrix-vector products

with inner-outer iterations.

Recycling preconditioners produces cumulative updates to the preconditioner. To reduce

the cost of applying the preconditioners, we propose approaches to truncate the cumulative

preconditioner updates, which is a low-rank matrix. Two approaches are developed. The

first one is to truncate the low-rank matrix using the best approximation given by the

singular value decomposition (SVD). This is effective if many singular values are close to

zero. If not, based on the ideas underlying GCROT and recycling, we use information from

an Arnoldi recurrence to determine which directions to keep. We investigate and analyze



their properties. We also prove that both truncation approaches work well under suitable

conditions.

We apply our truncation approaches on two applications. One is the Quantum Monte Carlo

(QMC) method and the other is a nonlinear second order partial differential equation (PDE).

For the QMC method, we test both truncation approaches and analyze their results. For the

PDE problem, we discretize the equations with finite difference method, solve the nonlinear

problem by Newton’s method with a line-search, and utilize Krylov subspace methods to solve

the linear system in every nonlinear iteration. The preconditioner is updated by Broyden-

type rank-one updates, and we truncate the preconditioner updates by using the SVD finally.

We demonstrate that the truncation is effective.

In the last chapter, we develop a matrix reordering algorithm that improves the diagonal

dominance of Slater matrices in the QMC method. If we reorder the entire Slater matrix,

we call it global reordering and the cost is O(N3), which is expensive. As the change is

geometrically localized and impacts only one row and a modest number of columns, we

propose a local reordering of a submatrix of the Slater matrix. The submatrix has small

dimension, which is independent of the size of Slater matrix, and hence the local reordering

has constant cost (with respect to the size of Slater matrix).

This material is based upon work supported by the National Science Foundation under

Grant No. NSF 1025327 and NSF 1217256. Any opinions, findings, and conclusions or

recommendations expressed in this material are those of the author(s) and do not necessarily

reflect the views of the National Science Foundation.

iii



Dedication

To my loving parents, Xiujuan and Jinyu.

iv



Acknowledgments

I would very much like to express my deepest gratitude to my advisor, Dr. Eric de Sturler.

His vast knowledge and consistent guidance have helped me greatly in my entire study for the

past five years. He patiently assisted me in my writing, financially supported my research,

and inspired me through challenging problems. I would never have been able to finish my

dissertation without him.

Besides my advisor, I would like to thank the rest of my committee, Dr. Christopher Beattie,

Dr. Serkan Gugercin, and Dr. Tao Lin. Their time, encouragement, and suggestions are

very important and mean a lot to me. I would also like to thank Dr. Tao Lin for teaching

me numerical analysis.

It has been a great pleasure to study and work in the Math department. I am grateful to

all the wonderful teachers and mentors I have had in the Math Department. I would like to

thank Eileen Shugart, Rachel Arnold, Jessica Schmale for their time, advice, and suggestions

that greatly helped me on my teaching. Many thanks to Nicole Sutphin, Tammi Johnston,

Ken Hinson, Bill Reilly and Benjamin Williams for their time and generous help through my

study program. I am also thankful to Dr. Peter Haskell for the teaching assistant support

and for providing me travel fund for conferences.

All my fellow students and friends make my life in Blacksburg pleasant and colorful. I would

like to express my special thanks to my fellow students and friends, Arielle McNally and

Vishwas Rao, for the discussions that inspire me on my research and for the time that we

v



were working together before the deadlines. I thank my fellow students Guangyue Gao, Shuo

Wang for the friendship and suggestions. I also thank Chen-Chi Shing, Steven, Sheng Xie,

Jianxiang Zhang, and Sheng Zhou for the wonderful time we have spent together.

Finally, I would like to thank my parents, two elder brothers. They were always supporting

me and encouraging me with their best wishes.

vi



Contents

List of Figures ix

List of Tables xii

1 Introduction 1

2 The Quantum Monte Carlo Method 8

2.1 Wave Function and Slater Matrix . . . . . . . . . . . . . . . . . . . . . . . . 9

Computation of the Acceptance Probability . . . . . . . . . . . . . . . . . . 10

2.2 Properties of the Slater Matrix . . . . . . . . . . . . . . . . . . . . . . . . . 12

Largest Singular Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

Smallest Singular Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

Lower Bounds on Smallest Singular Values . . . . . . . . . . . . . . . . . . . 17

3 Preconditioned GMRES for QMC 25

3.1 Preconditioned GMRES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2 ILU Preconditioner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

vii



3.3 Domain Decomposition Preconditioner . . . . . . . . . . . . . . . . . . . . . 34

3.4 Inexact Matrix-vector Products by Inner-outer GMRES . . . . . . . . . . . . 42

4 Truncation of Preconditioner Updates 49

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

Truncation by SVD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

Truncation Based on Canonical Angles . . . . . . . . . . . . . . . . . . . . . 57

4.2 Application to a Nonlinear Convection-diffusion Problem . . . . . . . . . . . 61

Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.3 Application to the Quantum Monte Carlo Method . . . . . . . . . . . . . . . 69

Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5 Slater Matrix Reordering 73

5.1 Slater Matrix and Bipartite Graph . . . . . . . . . . . . . . . . . . . . . . . 74

5.2 Our Reordering with Diagonal Cutoff . . . . . . . . . . . . . . . . . . . . . . 76

Maximizing the Minimum Absolute Value of the Diagonal . . . . . . . . . . 76

Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.3 Global and Local Reordering . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

Comparison of the Two Reordering Schemes . . . . . . . . . . . . . . . . . . 85

Bibliography 88

viii



List of Figures

2.1 Partial particles and orbitals demonstration . . . . . . . . . . . . . . . . . . 11

2.2 The sparsity pattern of a Slater matrix for a 3D system with N = 1024, K = 1 14

2.3 The spectrum of a Slater matrix for a 3D system with N = 1024, K = 1 . . . 15

2.4 The value of
σ̃n−1
σmax

with row i removed for i = 1, 2, · · · , N , for a Slater matrix

with N = 1024, K = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.5 The value of σ̃n−1 with row i removed for i = 1, 2, · · · , N , for a Slater matrix

with N = 1024, K = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.6 The value of the product,
∏n−1

i=2 γi, when γi’s are uniformly distributed . . . 21

2.7 Frequency histogram of the product,
∏n−1

i=2 γi, when γi’s are uniformly dis-

tributed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.8 The value of the product,
∏n−1

i=2 γi, when σ
(k)
i , σ

(k+1)
i is uniformly distributed 23

2.9 Frequency histogram of the product,
∏n−1

i=2 γi, when σ
(k)
i , σ

(k+1)
i is uniformly

distributed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.10 Smallest singular values of 600 Slater matrices for a 3D system with N = 1024,

K = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.11 Condition number and smallest singular values . . . . . . . . . . . . . . . . . 24

ix



3.1 Spectrum comparison for Slater matrix with or without preconditioning . . . 32

3.2 Number of GMRES iterations with ILU(0) preconditioner and reordering . . 33

3.3 Stability of ILU(0) preconditioners . . . . . . . . . . . . . . . . . . . . . . . 33

3.4 Spectrum of Slater matrix with and without preconditioner . . . . . . . . . . 39

3.5 Number of GMRES iterations . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.6 Inner tolerance demonstration and number of iterations (1) . . . . . . . . . . 47

3.7 Inner tolerance demonstration and number of iterations (2) . . . . . . . . . . 47

3.8 Number of total inner GMRES iterations per Monte Carlo step . . . . . . . 48

4.1 Spectrum of H` and H` − Ẽ . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.2 Singular values of the first 50 preconditioner updates product . . . . . . . . 65

4.3 Difference between X and X̃m,p every time we truncate . . . . . . . . . . . . 66

4.4 Comparison of different preconditioners. ILUJ0 means we compute an initial

ILU(0) preconditioner and use it for all the remaining Newton steps. ILUJk

means we compute a new ILU(0) preconditioner for each new Jacobian every

Newton step. In ‘Cumulative Rank-1’, the preconditioner is updated with

rank-1 update every Newton step. In SVD-T, the preconditioner update is

truncated into 20 vectors whenever the number of rank-1 updates hits 50 and

the SVD-based truncation approach is used . . . . . . . . . . . . . . . . . . . 66

4.5 Comparison of different truncation size when the threshold of number of rank-

1 updates is 50 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.6 Comparison of different truncation size when the threshold of number of rank-

1 updates is 100 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.7 Singular values of the first 50 preconditioner updates product in QMC problem 70

x



4.8 Singular values of the first 50 preconditioner updates product in QMC problem 71

4.9 Comparison of number of iterations of GMRES for different truncation ap-

proaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.10 Comparison of number of GMRES iterations in 4000 steps . . . . . . . . . . 72

5.1 Demonstration of a bipartite graph of particles and orbitals . . . . . . . . . . 74

5.2 Comparison of diagonal dominance before and after our reordering with a

diagonal cutoff . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.3 Comparison of diagonal dominance . . . . . . . . . . . . . . . . . . . . . . . 81

5.4 Spectrum of a Slater matrix with different reordering algorithm (1) . . . . . 82

5.5 Spectrum of a Slater matrix with different reordering algorithm (2) . . . . . 82

5.6 Spectrum of a Slater matrix with different reordering algorithm (3) . . . . . 83

5.7 Number of iterations with accumulate local reordering . . . . . . . . . . . . . 84

5.8 Comparison between global and local reordering (1) . . . . . . . . . . . . . . 86

5.9 Comparison between global and local reordering (2) . . . . . . . . . . . . . . 87

xi



List of Tables

3.1 Results of accuracy of the test. Use the average expected number of errors in

the test to define the effectiveness of approximations. For all three systems,

K = 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2 Test results of 50K Monte Carlo steps for different systems with K = 1 . . . 40

3.3 Test results of 50K Monte Carlo steps for different systems with K = 0.5 . . 41

5.1 Comparison between global and local reordering. The overlap means the

number of shared permutations between global and local reordering in each

reordering step. The size of local or global reordering is the dimension of the

squared matrix that we reorder . . . . . . . . . . . . . . . . . . . . . . . . . 86

xii



Chapter 1

Introduction

In science and engineering, many applications require the solution of a sequence of linear

systems of the form

Aixi = bi, i = 0, 1, 2, . . . , (1.1)

where the Ai’s are N × N nonsingular matrices, bi’s are right-hand side vectors and Ai, bi

change from one system to the next as the physical system evolves. Some examples of these

applications include nonlinear partial differential equations [11, 78], large scale electromag-

netism [36], quantum Monte Carlo methods [2, 4, 6, 65], optimization problems, topology

optimization and other optimal design problems, applications involving one or more pa-

rameters, and inverse problems. To solve the sequence of linear systems, Krylov subspace

methods especially with recycling, have become a popular technique and people might adapt

the Krylov solver according to the problem at hand [66, 68]. In order to be efficient and

robust, Krylov subspace methods need to be preconditioned. This causes the problem of

computing a sequence of preconditioners corresponding to the sequence of linear systems.

For example, an initial preconditioner P0 needs to be computed for solving A0x0 = b0. In

general, a preconditioner Pi needs to be obtained for solving Aixi = bi.

However, computing preconditioners P0, P1, P2, . . . for every single system separately can

be very expensive and impractical. There is a strong need to reduce the overall cost of

1



Ming Li Chapter 1. Introduction

preconditioning these linear systems. Using the same preconditioner for all the linear systems

is an alternative. However, this hampers the convergence process and also may increase the

total cost. Therefore, most effective approaches adopt a middle ground by updating the

existing preconditioner and reusing it for successive linear systems [36, 11, 2, 66], which we

can call recycling preconditioners.

In Ahuja et al. [2, 1], preconditioners are multiplied by cumulative inverses of rank-one

updates. Sherman–Morrison formula is used to obtain the inverse of rank-one or low-rank

updates. Similarly in Bergamaschi et al. [11], Broyden-type rank-one updates are used to

update the preconditioners. These are two common ways to update the existing precondi-

tioner and reuse it for successive linear systems. The advantage of these approaches is that

they are cheaper than computing a new preconditioner for each system and more effective

than using the same preconditioner for all linear systems. However, due to the cumulative

updates to the preconditioner, the cost of applying the preconditioner increases. At some

point, the cost of applying a preconditioner is even higher than computing a new precondi-

tioner. Therefore, in Ahuja et al. [2, 1] and Bergamaschi et al. [11], a new preconditioner is

computed from scratch periodically.

One of our contribution is to reduce the cost of multiplying by preconditioners by truncating

low-rank preconditioner update into a smaller rank matrix. We develop two truncation

approaches to reduce or even bound the cost of applying the preconditioners. Therefore, we

can postpone or even avoid the recomputation of a new preconditioner.

Another contribution in this dissertation is focused on the application of this approach to

a Markov Chain Monte Carlo (MCMC) method. We analyze the properties of the singular

values of Slater matrices occurring in the QMC method. We also test and analyze the effect

of several new preconditioning techniques for this application, such as domain decomposi-

tion preconditioners and inexact matrix-vector product by inner-outer GMRES iterations.

Although these preconditioners are effective they appear to be too expensive for QMC, pro-

ducing fast convergence with relatively high cost. The goal of recent works on the QMC

2



Ming Li Chapter 1. Introduction

method is to obtain O(N2) cost.

The last contribution is the accumulated local reordering scheme to improve the diagonal

dominance of system matrices. We develop a new reordering algorithm that is a combination

of popular algorithms. This dissertation is structured as follows.

In Chapter 2, we introduce and explain the application for simulating electronic structure

systems with QMC methods, and analyze a few properties of the Slater matrices arising in

the QMC method. In Chapter 3, three preconditioners are analyzed and tested.

In Chapter 4, we propose and analyze two approaches to reduce the cost of applying pre-

conditioners with a sequence of low-rank updates.

In Chapter 5, a reordering algorithm is developed to improve the diagonal dominance of the

Slater matrix. To obtain a cheap and effective reordering, we also develop a local reordering

scheme.

A Few Preconditioners for the Quantum Monte Carlo Method

QMC method is a large class of computational algorithms. The QMC method produces a

sequence of linear systems. The system matrix is called a Slater matrix. The main cost

of many QMC methods, for example, the variational Monte Carlo (VMC) method, consists

of two parts. The first part is to construct a sequence of Slater matrices. In Alfé and

Gillian [4, 5], William [86], the Slater matrix is optimally sparse by optimizing the orbitals

of the physical system (for insulators). An appropriate type of basis functions is chosen

to construct the Slater matrix [34, 35]. Therefore only a linear number of elements of the

Slater matrix is filled and updated, and the cost of constructing a Slater matrix is O(N).

These methods are referred to as linear scaling methods. The second part is to compute

determinant ratios of successive Slater matrices (we explain why we need to compute this

in Chapter 2). Historically, the cost is O(N3) by using the exact inverses of Slater matrices

[17]. In Ahuja et al. [2], the cost is reduced to O(N2.19) by introducing iterative solvers,

3



Ming Li Chapter 1. Introduction

approximate preconditioning technique, and updates as well as regular reorderings. But still,

the cost of computing determinant ratios dominates.

To obtain effective and cheap approaches, we investigate several new preconditioners. First,

the popular incomplete LU preconditioner is tested. The second preconditioner is a domain

decomposition preconditioner. When the Slater matrix is updated by a rank-one update,

only one row of the Slater matrix changes. The change is a small and local change to both

physical system and the Slater matrix. So, we consider the entire domain divided into two

subdomains and employ domain decomposition preconditioner. Since we attempt to move

a particle at every Monte Carlo step, the first subdomain consists of the neighbor particles

and orbitals of the moving particle. The second subdomain is the remaining particles and

orbitals. We mainly test two-level domain decomposition preconditioner.

The last preconditioner is Schur complement based domain decomposition method with

inexact matrix-vector products. Generally, inexact preconditioning is a scenario when the

preconditioner requires a linear solution with a second iterative method. In our case, the

Slater matrix A is divided as

A11 A12

A21 A22

 using domain decomposition methods. GMRES

is used twice. As an outer iteration, we use GMRES to solve the Schur complement system:

(
A11 − A21A

−1
22 A12

)
z1 = b1,

where further details are explained in Chapter 3. An inner iteration with GMRES is used

to approximate A−122 . A theoretical analysis shows that the inexact matrix-vector products

with inner and outer GMRES work well under conditions that are generally easy to satisfy.

Truncation of Preconditioner Updates

In this dissertation, we are concerned about successive solutions to the linear systems where

the matrices are updated by low-rank updates [26]. In other words, the system matrices

are updated by multiplying with I + UV T , where I is an identity matrix, and U and V are

4



Ming Li Chapter 1. Introduction

low rank matrices. Using a single preconditioner for all the linear systems causes significant

deterioration in convergence. The aforementioned systems can be effectively preconditioned

by constructing a good initial preconditioner and subsequently performing low rank updates

to it based on the Sherman-Morrison-Woodbury formula [3, 63, 69].

This idea of ‘recycling’ preconditioners is used by Ahuja et al. [2] and Bergamaschi et al.

[11].

At every Monte Carlo step, we solve the system Aixi = bi iteratively by GMRES. From one

system to the next, one row of the Slater matrix A is changed. Let the row index be ik and

the difference vector is qi. The change is a rank-one update and the relationship between

two consecutive Slater matrices is

Ai+1 = Ai + eikq
T
i ,

= Ai(I + A−1i eikq
T
i ), i = 0, 1, 2, · · · . (1.2)

Because the Slater matrix changes by rank-one updates, the preconditioner needs to be

updated by inverses of rank-one updates [44]. Let P0 be a good initial preconditioner and

we subsequently update P0 by multiplying it with the inverse of each low-rank update,

Pi+1 = (I + A−1i eikq
T
i )−1Pi, i = 0, 1, · · · . This produces the accumulated updates of the

preconditioner, Pi+1 =
∏i

j=0(I+A−1i eikq
T
i )−1P0. As a result, this sequence of preconditioners

is such that

A0P0 = A1P1 = · · · = AiPi = · · · . (1.3)

Since P0 is a good preconditioner, the same convergence is maintained for all systems as

a result of (1.3). However, a cost issue arises when applying the preconditioners. Because

Pi+1 =
∏i

j=0(I + A−1i eikq
T
i )−1)−1P0, the total cost of multiplying Pi+1 is 4iN per precondi-

tioned matrix-vector product. So, the cost over i steps in the QMC method or i Newton

iterations for nonlinear system, even with good preconditioners resulting in a roughly con-

stant number of iterations, is O(i2N). If we can bound the rank of “the total preconditioner

update”, the cost will be O(irN), where r is fixed. Therefore, we propose to truncate the

5



Ming Li Chapter 1. Introduction

accumulated updates to reduce the rank and hence reduce the cost of applying the precondi-

tioner. In other words, if the number of linear systems becomes significant, we will truncate∏i
j=0(I + A−1i eikq

T
i )−1)−1 into a lower rank matrix. If we truncate at k-th system (Monte

Carlo step), we have AkPk ≈ A0P0. The convergence of the preconditioned system AkPk

may not be as good as that of A0P0. So, we aim to truncate such that the convergence is not

affected drastically and the cost of applying the preconditioners is reduced, and we provide

theoretical analysis.

We propose two approaches for truncating the accumulated updates. The main goal of both

approaches is to reduce the cost of applying the preconditioners to O(N) while keeping rel-

atively good convergence. The first approach is to truncate the accumulated preconditioner

update using the best approximation given by the singular value decomposition (SVD). This

is effective if many singular values are close to zero. Unfortunately, this is not always the

case. The second approach, based on the ideas underlying GCROT and recycling, uses the

Arnoldi (or Lanczos) recurrence to determine which directions to keep [22]. Details of these

procedures follow in the subsequent sections.

Numerical results have demonstrated the effectiveness of the truncation approaches.

Matrix Reordering

Some preconditioners require diagonal dominance of the system matrix [39, 58, 40]. For

example, the incomplete LU (ILU) preconditioner works well when the matrix is diagonally

dominant or close to diagonal dominant [80]. Further, if the matrix is far from diagonal

dominant, the ILU algorithm is unstable.

There are many heuristic techniques to improve the diagonal dominance of a matrix [2, 9,

10, 24, 25]. Some approaches are to maximize the diagonal and some are to maximize the

trace. This leads to an interesting problem in graph theory and combinatorial optimization,

that is, we want to find the maximum matching or the maximum weighted matching. The

6



Ming Li Chapter 1. Introduction

most popular algorithm to find the maximum matching is max–flow method. There are a

couple of options for maximum weighted matching, such as linear programming, the Ford-

Fulkerson algorithm, the Edmonds-Karp algorithm, the Hungarian algorithm, and the push-

relabel algorithm. In our experiments, we use the Hungarian algorithm and the push-relabel

algorithm.

However, simply maximizing the diagonal or trace may still lead to matrices with one or

even more zeros on the diagonal. Zeros on the diagonal may deteriorate the incomplete

LU preconditioner. Therefore, we develop a reordering algorithm which is a combination of

maximizing both the diagonal and the trace. We first maximize the minimum absolute value

for all diagonal elements, and then maximize the trace while maintaining a lower bound

based on the minimum absolute value. In practice, we preset a cutoff value on the diagonal

to be the lower bound.

We test our reordering on Slater matrices arising in the QMC method. Due to the local

changes in the Slater matrix, we have two options. We can apply this reordering algorithm

either locally or globally. We prefer frequent local reordering because it is very cheap, that

is, O(1) cost per reordering. The global reordering is carried out much less often, normally

a few times or just once for every N linear systems. We also present the results of our

reordering.

For simplicity, in this dissertation, ‖ · ‖ refers to the 2-norm, unless otherwise stated.

7



Chapter 2

The Quantum Monte Carlo Method

QMC is a class of computational algorithms. Each algorithm employs, in one way or another,

the Monte Carlo method to handle the many-dimensional integrals that arise. The origins

of QMC methods are often attributed to Fermi and Richtmyer, who developed a mean

field particle interpretation of neutron-chain reactions [27]. However, the first generic type

particle algorithm for estimating ground state energies of quantum systems (in reduced

matrix models) is due to Jack Hetherington [46]. Now QMC methods are commonly used in

condensed matter physics [79, 71], molecular chemistry [45, 70], and computational biology,

etc. In our main application problem, the QMC method is utilized to solve a quantum many-

body problem [2, 1, 30, 14]. We first explain the main problem formulation. Our discussion

is based on [2, 14].

Let N be the number of particles (electrons) in the system, which also equals the number

of orbitals (nuclei). Then N is the size of the many-body system. Suppose all particles and

orbitals are spaced in a body centered cubic (b.c.c.) lattice, positions of particles are given by

ri’s, and positions of orbitals are given by Oj’s, 1 ≤ i, j ≤ N . We represent the coordinates

of all particles and orbitals in the system by a vector R. For simplicity, we ignore the spin.

The main goal of QMC here involves sampling over configurations R with the probability

8



2.1. Wave Function and Slater Matrix

density induced by the many-body wave function. Because the wave function is highly

localized, direct sampling is not efficient. Therefore we utilize Markov Chain Monte Carlo

algorithm (MCMC) with Metropolis algorithm [8, 17, 60, 30]. The MCMC algorithm samples

configurations as follows. At every step, the current configuration R is changed by moving

one particle with a random displacement, generating a trial configuration R′. By Metropolis

algorithm, we accept the trial configuration with a transition probability. The transition

probability needs to be computed at every step, which is called acceptance/rejection test.

For each independent configuration R generated from the Markov Chain, the local energy is

calculated and averaged. In the rest of this section, we will further detail the separate pieces

of this process.

2.1 Wave Function and Slater Matrix

We denote the many body trial wave function as Ψα(R), where α is a vector of variational

parameters that needs to be optimized, α = [α1, α2, · · · , αs]. Since the optimization of these

parameters is not our main concern, we will ignore α in later sections in this dissertation.

Each orbital is a single particle wave function, and the specific details of the single particle

wave functions depend sensitively on the exact material being simulated. There are many

choices to represent the single particle wave function [16, 4, 49]. In our experiments, we

use a set of Gaussian functions as representative insulator single particle orbitals [17]. We

also ignore spin for simplicity. For any orbital (nucleus) located at Oj, its wave function is

presented by

φj(r) = e−K‖r−Oj‖2 , j = 1, · · · , N,

where r is a particle (electron) position, and K is parameter of the Gaussian functions.

K describes the decay rate of the Gaussian functions and we typically set K = 1. With

Gaussian functions as basis functions, we get the following system matrix which is called

9



2.1. Wave Function and Slater Matrix

Slater matrix. Let particles positions be r1, r2, · · · , rN . We define the Slater matrix as

A =



φ1(r1) φ2(r1) φ3(r1) . . . φN(r1)

φ1(r2) φ2(r2) φ3(r2) . . . φN(r2)

φ1(r3) φ2(r3) φ3(r3) . . . φN(r3)

...
. . .

...

φ1(rN) φ2(rN) φ3(rN) . . . φN(rN)


.

Various forms can be used to represent the system wave function and the most popular form

is

Ψ(r1, r2, . . . , rn) = J (r1, r2, . . . , rn) det (A(r1, r2, . . . , rn)) , (2.1)

where A is the Slater matrix and J (r1, r2, . . . , rn) is the Jastrow factor. The Jastrow factor

is not expensive to compute, and we do not consider it in this thesis. The square of the

wave function, Ψ2, provides the probability density. Therefore, the transition probability

from one configuration R to the next is the squared ratio between two wave functions, which

is

∣∣∣∣Ψ(R′)

Ψ(R)

∣∣∣∣2. Therefore, in the acceptance/rejection test, the probability to accept a particle

move is determined by min

(
1,

∣∣∣∣Ψ(R′)

Ψ(R)

∣∣∣∣2
)

.

Computation of the Acceptance Probability

Because the transition probability (the probability to accept a particle move) is given by

min

(
1,

∣∣∣∣Ψ(R′)

Ψ(R)

∣∣∣∣2
)

, we need to calculate

∣∣∣∣Ψ(R′)

Ψ(R)

∣∣∣∣2 at every Monte Carlo step. By (2.1),

we have ∣∣∣∣Ψ(R′)

Ψ(R)

∣∣∣∣2 =

∣∣∣∣det(A′)

det(A)

∣∣∣∣2 .
So the computation of the transition probability is converted to calculate the squared deter-

minant ratio,

∣∣∣∣det(A′)

det(A)

∣∣∣∣.
10



2.1. Wave Function and Slater Matrix

Figure 2.1: Partial particles and orbitals in a 2D system. The domain is a periodic Cartesian

grid with 5 orbitals on each edge.
Orbitals

Particles

In every step, we attempt to move one particle. Suppose at at Monte Carlo step k, we

attempt to move particle ik from position rik to r′ik and the attempt is accepted.

Ak =



φ1(r1) φ1(r1) · · · φN(r1)

· · · · · · · · ·

φ1(rik) φ2(rik) · · · φN(rik)

· · · · · · · · ·

φ1(rN) φ2(rN) · · · φN(rN)


;

11



2.2. Properties of the Slater Matrix

Ak+1 =



φ1(r1) φ1(r1) · · · φN(r1)

· · · · · · · · ·

φ1(r
′
ik

) φ2(r
′
ik

) · · · φN(r′ik)

· · · · · · · · ·

φ1(rN) φ2(rN) · · · φN(rN)


.

The only difference between Ak and Ak+1 is row ik. Let uk be a column vector such that

(uk)j = φj(r
′
ik

)− φj(rik), for j = 1, . . . , N.

Then we have

Ak+1 = Ak + eiku
T
k

= Ak(I + A−1k eiku
T
k )

Therefore the determinant ratio satisfies∣∣∣∣det(Ak+1)

det(Ak)

∣∣∣∣ =
∣∣det(I + A−1k eiku

T
k )
∣∣

=
∣∣1 + uTkA

−1
k eik

∣∣ .
So now, we must find A−1k eik at every Monte Carlo step. We compute A−1k eik by solving

Akzk = eik (2.2)

with preconditioned GMRES rather than using an explicit inverse of Ak.

Algorithm 1 shows the MCMC process.

2.2 Properties of the Slater Matrix

In this section, we analyze some properties of Slater matrices occurring in the QMC method

for our setup. We store Slater matrix as a sparse matrix and a typical sparsity pattern of a

12



2.2. Properties of the Slater Matrix

Algorithm 1 Markov Chain Monte Carlo with Metropolis algorithm

1: Evaluate the energy E(R) with density Ψ2(R).

2: for k = 1 to totalSteps do

3: Generate a random step d, R′ = R + d.

4: Calculate the squared ratio

∣∣∣∣Ψ(R′)

Ψ(R)

∣∣∣∣2 and generate a random number p ∈ (0, 1).

5: if (

∣∣∣∣Ψ(R′)

Ψ(R)

∣∣∣∣2 > p) then

6: Accept the new configuration R′ and evaluate E(R′) with new configuration R′

7: else

8: Reject the particle move. E(R) is counted again.

9: end if

10: end for

specific Slater matrix ordered to have each orbital paired with a nearby particle is shown in

Figure 2.2.

The Slater matrices in our MCMC process are generally nonsingular. If a proposed particle

move would result in the Slater matrix being singular, the acceptance probability would be

zero because the determinant ratio would be zero. We always reject this move attempt, and

thus the Slater matrix is always nonsingular.

The Slater matrix after appropriate reordering is close to a circulant matrix [39, 58, 40].

Each row of the Slater matrix has large elements around the orbital where the Gaussian is

centered at. Any circulant matrix is normal, but the Slater matrix is generally not normal.

The spectrum or pseudospectrum are important in analyzing the iterative methods [88].

Figure 2.3 shows the spectrum of a Slater matrix. Notice that this spectrum is under our

reordering algorithm that improves the diagonal dominance (see Section 5.2). The singular

values are also important. For example, the bounds on the largest and smallest singular val-

ues are important for the analysis of convergence of Krylov subspace methods. So, we will

analyze the bounds on smallest and largest singular values of the Slater matrix. In general,

13



2.2. Properties of the Slater Matrix

Figure 2.2: The sparsity pattern of a Slater matrix in a specific Monte Carlo step for a 3D

system with N = 1024, K = 1. The Slater matrix is reordered by our reordering algorithm

that improves the diagonal dominance (see Section 5.2).

0 200 400 600 800 1000

0

100

200

300

400

500

600

700

800

900

1000

N = 1024, nz = 46505

Sparsity partter of Slater matrix A

for smallest singular value, it is hard to obtain a practical lower bound. However, due to the

acceptance/rejection test in QMC, Slater matrices are ill-conditioned with very low proba-

bility and singular with probability zero. Therefore, we try to bound the smallest singular

value from below based on the distribution of singular values in equilibrium configuration

and the transition probability.

Largest Singular Value

Assume a Slater matrix A has singular values σ1 ≥ σ2 ≥ · · · ≥ σn > 0. A simple upper

bound of σ1(A) is given in

σ1(A) ≤
√
‖A‖1‖A‖∞. (2.3)

On the right side of the inequality (2.3), ‖A‖1 is the largest column sum. Since each column

relates to an orbital, the column with largest sum corresponds the orbital which has most

14



2.2. Properties of the Slater Matrix

Figure 2.3: The spectrum of a Slater matrix in a specific Monte Carlo step for a 3D system

with N = 1024, K = 1. The Slater matrix is reordered by our reordering algorithm that

improves the diagonal dominance (see Section 5.2).

−0.05 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08
Spectrum of a Slater matrix. N = 1024. K = 1.

particles near it. ‖A‖∞ is the largest row sum. Since each row relates to a particle and the

orbitals are evenly distributed, we can obtain a bound on the row sum.

Let φj(r) = e−K‖r−Oj‖2 , j = 1, · · · , N, and thus aij = e−K‖ri−Oj‖2 . Let I be the domain of

all particles and orbitals. Then

‖A‖∞ = max
i

n∑
j=1

|aij| = max
i

n∑
j=1

e−K‖ri−Oj‖2

= max
ri

n∑
j=1

e−K‖ri−Oj‖2 ≤ max
r∈I

n∑
j=1

e−K‖r−Oj‖2 . (2.4)

Because the orbitals are evenly distributed in the entire domain I, the maximum does not

change if we restrict r from I into a smaller subinterval I0 which covers the distance between

two adjacent orbitals. We can even restrict r onto a smaller subinterval because Gaussian

functions are symmetric and the domain is periodic. For example, in 1D case, if I =

[0, (n−1)h] where h is the distance between two adjacent orbitals, then we can take I0 = [0, h].

In 2D case, if I = [0, (n−1)h]2, then we can take I0 = [0, h]2. Generally, if I = [0, (n−1)h]n,

15



2.2. Properties of the Slater Matrix

then I0 = [0, h]n. Hence,

‖A‖∞ ≤ max
r∈I0

n∑
j=1

e−K‖r−Oj‖2

= max
r∈I0

n∑
j=1

φj(r). (2.5)

We don’t normally have a similar bound on ‖A‖1. However, when the system is in equi-

librium, we expect particles are evenly distributed and the row sums should not be much

different. So the bound for the largest singular value is

σ1(A) ≤

√√√√‖A‖1 max
r∈I0

n∑
j=1

φj(r).

In our experiments for a 3D system with N = 1024, K = 1, we calculate the bound of

largest column sum is ‖A‖∞ ≤ 1.4632. For ‖A‖1, it is always less than 2.6587 for all

Monte Carlo steps. Therefore, the resulting bound for the largest singular value is σ1(A) ≤√
‖A‖1‖A‖∞ =

√
2.6587 ∗ 1.4632 = 1.9724. In our experiments, σ1(A) is always less than

1.2, so 1.9724 is not very accurate but still a good bound.

In our experiments, we have σ1 ≈ 1.

Smallest Singular Values

For an arbitrary matrix, there are various lower bounds on the smallest singular values [15,

50, 84, 89]. For example, the following bound is based on Frobenius norm and determinant:

σn(A) ≥
(
n− 1

‖A‖2F

)(n−1)/2

| det(A)|. (2.6)

16



2.2. Properties of the Slater Matrix

By (2.4) and (2.5), we can rewrite the Frobenius norm. Then

‖A‖2F =
n∑
i=1

n∑
j=1

|aij|2 =
n∑
i=1

n∑
j=1

(e−K‖ri−Oj‖2)2

=
n∑
i=1

n∑
j=1

e−2K‖ri−Oj‖2 ≤ n ·max
i

n∑
j=1

e−2K‖ri−Oj‖2

= n ·max
r∈I0

n∑
j=1

e−2K‖r−Oj‖2 = n ·max
r∈I0

n∑
j=1

φj(r)
2.

Substituting this back into (2.6), we get

σn(A) ≥

(
n− 1

n ·maxr∈I0
∑n

j=1 φj(r)
2

)n−1
2

| det(A)|.

≈

(
1

maxr∈I0
∑n

j=1 φj(r)
2

)n−1
2

| det(A)|.

= β| det(A)|,

where β = (maxr∈I0
∑n

j=1 φj(r)
2)−

n−1
2 is a constant. This is a new lower bound on the

smallest singular values. However, it is not a practical bound because the parameter β and

the determinant of A are not cheap to compute and may also be very small. Since it is hard

to get a practical lower bound on the smallest singular value a priori, we can examine how

much a smallest singular value can change by analyzing the ratio of two successive smallest

singular values.

Lower Bounds on Smallest Singular Values

In this section, we try to develop a lower bound on the smallest singular value by making

use of the distribution properties of singular values and the acceptance/rejection test in our

QMC problem. The acceptance/rejection test tends to accept those particle moves with high

probability. Therefore, we expect the smallest singular value would not become smaller and

smaller.

17



2.2. Properties of the Slater Matrix

Now we explain how we obtain the bound on the smallest singular value. We first introduce

a well-known result in the book of Topics in matrix analysis by Horn and Johnson [48].

Notice that Mm,n represents the set of m× n matrices.

Theorem 1. Let A ∈Mm,n be given, and let Ar denote a submatrix of A obtained by deleting

a total of r rows and/or columns from A. Then

σk(A) ≥ σk(Ar) ≥ σk+r(A), k = 1, . . . ,min{m,n},

where for X ∈Mp,q, we set σj(X) = 0 if j > min{p, q}.

Proof. See the proof of Corollary 3.1.3 in Horn and Johnson [48].

In QMC method, the Slater matrix A is updated by cumulative rank-1 updates. Assume at

some Monte Carlo step k, we attempt to move the particle j. Therefore, the j-th row of Ak

will be updated if the move is accepted. Let Ãk be the submatrix of Ak obtained by deleting

the j-th row. Let Ak+1 be the matrix with updated j-th row when the move is accepted.

Suppose the singular values of Ak, Ãk, Ak+1 are σ
(k)
i , σ̃i, σ

(k+1)
i , i = 1, 2, . . . , n, respectively.

It follows from theorem 1 that

σ
(k)
1 ≥ σ̃1 ≥ σ

(k)
2 ≥ σ̃2 ≥ · · · ≥ σ

(k)
n−1 ≥ σ̃n−1 ≥ σ(k)

n , (2.7)

σ
(k+1)
1 ≥ σ̃1 ≥ σ

(k+1)
2 ≥ σ̃2 ≥ · · · ≥ σ

(k+1)
n−1 ≥ σ̃n−1 ≥ σ(k+1)

n (2.8)

With (2.3) and (2.5), we have an upper bound on the largest singular values of the Slater

matrices

σ1(A) ≤
√
‖A‖1‖A‖∞ ≤

√√√√‖A‖1 max
r∈I0

n∑
j=1

φj(r).

Let the upper bound be σmax. Then (2.7) and (2.8) can be rewritten as

σ̃1 ≤ σ
(k)
1 , σ

(k+1)
1 ≤ σmax, (2.9)

18



2.2. Properties of the Slater Matrix

σ̃i+1 ≤ σ
(k)
i , σ

(k+1)
i ≤ σ̃i, i = 2, 3, . . . , n− 1. (2.10)

Further, if we look at the ratio of
σ
(k+1)
i

σ
(k)
i

, i = 1, 2, . . . , n− 1, we get

σ̃1
σmax

≤ σ
(k+1)
1

σ
(k)
1

≤ σmax

σ̃1
(2.11)

σ̃i+1

σ̃i
≤ σ

(k+1)
i

σ
(k)
i

≤ σ̃i
σ̃i+1

, i = 2, 3, . . . , n− 1. (2.12)

By the property of the determinants, we have∣∣∣∣det(Ak+1)

det(Ak)

∣∣∣∣ =
σ
(k+1)
1

σ
(k)
1

σ
(k+1)
2

σ
(k)
2

· · ·
σ
(k+1)
n−1

σ
(k)
n−1

σ
(k+1)
n

σ
(k)
n

.

Define γi :=
σ
(k+1)
i

σ
(k)
i

, i = 1, 2, . . . , n− 1. Then

∣∣∣∣det(Ak+1)

det(Ak)

∣∣∣∣ =
n−1∏
i=1

γi
σ
(k+1)
n

σ
(k)
n

. (2.13)

By (2.11) and (2.12), we have

σ̃1
σmax

σ̃2
σ̃1

σ̃3
σ̃2
· · · σ̃n−1

σ̃n−2
≤
∏n−1

i=1 γi ≤
σmax

σ̃1

σ̃1
σ̃2

σ̃2
σ̃3
· · · σ̃n−2

σ̃n−1
,

⇔ σ̃n−1
σmax

≤
∏n−1

i=1 γi ≤
σmax

σ̃n−1
. (2.14)

It follows from (2.13) and (2.14) that

σ̃n−1
σmax

σ
(k+1)
n

σ
(k)
n

≤
∣∣∣∣det(Ak+1)

det(Ak)

∣∣∣∣ ≤ σmax

σ̃n−1

σ
(k+1)
n

σ
(k)
n

.

Suppose the acceptance probability is pk =

∣∣∣∣det(Ak+1)

det(Ak)

∣∣∣∣2. Then we have

σ̃n−1
σmax

σ
(k+1)
n

σ
(k)
n

≤ √pk ≤
σmax

σ̃n−1

σ
(k+1)
n

σ
(k)
n

,

19



2.2. Properties of the Slater Matrix

⇒ √
pk
σ̃n−1
σmax

≤ σ
(k+1)
n

σ
(k)
n

≤ √pk
σmax

σ̃n−1
. (2.15)

Also it follows from (2.13) that

√
pk =

n−1∏
i=2

γi
σ
(k+1)
n

σ
(k)
n

,

⇒ σ
(k+1)
n

σ
(k)
n

=

√
pk∏n−1

i=2 γi
. (2.16)

Finally, we get to the bounds on
σ
(k+1)
n

σ
(k)
n

, where
σ
(k+1)
n

σ
(k)
n

is the ratio between two consecutive

smallest singular values. It tells us how the smallest singular values changes. By looking

into the values of
√
pk
σ̃n−1
σmax

,
√
pk
σmax

σ̃n−1
, and

√
pk∏n−1

i=2 γi
, we could know how much the smallest

singular values changes and its lower bound. In our experiments, for example, Figure 2.4

and 2.5 show that the value of
σ̃n−1
σmax

is between 4.5e-3 and 8e-3 for a system with N = 1024,

K = 1. Let α =
σ̃n−1
σmax

. Therefore, with (2.15) we have

√
pkα ≤

σ
(k+1)
n

σ
(k)
n

≤ √pk
1

α
,

where α ∈ [4.5e− 3, 8e− 3].

For the bound (2.16), we consider two cases, one is when γi’s are uniformly distributed, and

the other is when σ
(k)
i ’s, σ

(k+1)
i ’s are uniformly distributed.

Figure 2.4: The value of
σ̃n−1
σmax

with row i removed for i = 1, 2, · · · , N , for a Slater matrix

with N = 1024, K = 1. The x coordinate is the row index.

0 200 400 600 800 1000 1200
4

4.5

5

5.5

6

6.5

7

7.5

8
x 10

−3 Different σ
n−1

/C
sup

 for i−th row deletion, i=1,2,...,N.

N = 1024.

20



2.2. Properties of the Slater Matrix

Figure 2.5: The value of σ̃n−1 with row i removed for i = 1, 2, · · · , N , for a Slater matrix

with N = 1024, K = 1.

0 200 400 600 800 1000 1200
1.8

2

2.2

2.4

2.6

2.8

3

3.2

3.4
x 10

−3 Different σ
n−1

 for i−th row deletion, i=1,2,...,N.

Bounds when γi’s are Uniformly Distributed

Suppose each γi is uniformly distributed on the subinterval of

[
σ̃i+1

σ̃i
,
σ̃i
σ̃i+1

]
, i = 1, 2, . . . , n−1.

For a 3D system with N = 1024 and K = 1, the product of
∏n−1

i=2 γi and its distribution are

shown in Figure 2.6 and 2.7. The mean value of
∏n−1

i=2 γi is very close to 1. The range in

this experiment is [0.3, 5.5]. Therefore, the ratio between two consecutive smallest singular

values is not expected to change much because of (2.16). pk would have to be very small.

Figure 2.6: The value of the product,
∏n−1

i=2 γi, when γi’s are uniformly distributed. Every

single blue dot is a value at a specific Monte Carlo step. The total steps is 10000.

0 2000 4000 6000 8000 10000
0

1

2

3

4

5

6
The value of

∏
n−1
i=2 γi when γi is uniformly distributed.

Monte Carlo step. N = 1024, K =1.

21



2.2. Properties of the Slater Matrix

Figure 2.7: Frequency histogram of the product,
∏n−1

i=2 γi,when γi’s are uniformly distributed.

The mean of the product is 1.3750 and the total Monte Carlo steps is 10000.

0 1 2 3 4 5 6
0

50

100

150

200

250

300

350

400
Frequency histogram of the product,

∏
n−1
i=2 γi.

The value of the product. The mean is 1.3750

F
re

qu
en

cy

Bounds when σ
(k)
i ’s, σ

(k+1)
i ’s are Uniformly Distributed

Suppose as an alternative σ
(k)
i , σ

(k+1)
i , i = 2, 3, . . . , n − 1, are independent and uniformly

distributed on the subinterval [σ̃i+1, σ̃i]. For the same system with N = 1024 and K = 1, the

product of
∏n−1

i=2 γi and its distribution are shown in Figure 2.8 and 2.9. Similarly,
∏n−1

i=2 γi

is in the range of [0.35, 3.5], which is even better than the case when γi’s are uniformly

distributed. As a result, the ratio between two consecutive smallest singular values can only

be small with very low probability pk.

Figure 2.10 and 2.11 shows the statistical result of smallest singular values of the Slater

matrix in these experiments. The smallest singular value is around 1e − 3 and does not

change much when the system is in equilibrium. The statistical result has justified our

assumption.

22



2.2. Properties of the Slater Matrix

Figure 2.8: The value of the product,
∏n−1

i=2 γi, when σ
(k)
i , σ

(k+1)
i is uniformly distributed.

0 2000 4000 6000 8000 10000
0

0.5

1

1.5

2

2.5

3

3.5
The value of the product,

∏
n−1
i=2 γi

Monte Carlo steps. N = 1024, K = 1.

Figure 2.9: Frequency histogram of the product,
∏n−1

i=2 γi, when σ
(k)
i , σ

(k+1)
i is uniformly

distributed. The mean of the product is 1.3750 and the total Monte Carlo steps is 10000.

0 0.5 1 1.5 2 2.5 3 3.5 4
0

100

200

300

400

500

600

700

The value of the product. The mean is 1.0527.

Frequency histogram of the product,
∏

n−1
i=2 γi.

F
re

qu
en

cy

23



2.2. Properties of the Slater Matrix

Figure 2.10: Smallest singular values in 600 Monte Carlo steps for a 3D system with N =

1024, K = 1.

0 100 200 300 400 500 600
1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3
x 10

−3 Smallest singular values.

600 Monte Carlo steps. 3D. N = 1024. K = 1.

Figure 2.11: Condition number and smallest singular values of Slater matrix for a 2D system

with N = 169, K = 0.5. Total Monte Carlo steps is 1000 and acceptance ratio is 54%.

0 100 200 300 400 500 600
−5

−4

−3

−2

−1

0

1

2

3

4

5
cond(A) and smallest singular values. K=0.5, 2D, N=169

Accepted Monte Carlo steps

lo
g 10

 

 
cond(A)
smallest singular value
cond(A)*smallest

24



Chapter 3

Preconditioned GMRES for QMC

The convergence of Krylov subspace methods depends on the spectrum of the system matrix,

and can be significantly improved with preconditioners. In order to be efficient and robust,

Krylov subspace methods need to be preconditioned. Preconditioners modify the spectrum of

the system matrix in order to reduce the number of iterative steps required for convergence.

In this dissertation, we employ generalized minimal residual (GMRES) method. We choose

full GMRES because it is an optimal Krylov subspace method for nonsymmetric matrices,

and its effect is simple to analyze. It is easy to interpret the number of iterations to converge.

If we change preconditioners, the change in iterations counts tells us if we are doing well. We

can also use simple convergence bounds to present an analysis of convergence choices, and

to present potential users with a “framework” to understand how to make preconditioning

choices.

In Section 3.1, we introduce the preconditioned GMRES and provide some well-know results

on its convergence. Three preconditioners are tested and analyzed on the application to

the QMC method presented in Chapter 2. Section 3.2 discusses ILU(0) and ILUTP pre-

conditioners. A domain decomposition preconditioner is introduced and tested in Section

3.3. The last section introduces preconditioning for Schur complement system based domain

decomposition method with inexact matrix-vector products. All experiments are done in

25



3.1. Preconditioned GMRES

Matlab.

3.1 Preconditioned GMRES

GMRES [83, 82, 72] is an iterative method for solving linear systems. It is a Krylov subspace

method that generates a sequence of orthogonal vectors. While CG and MINRES are suitable

for symmetric systems, GMRES is suitable for nonsymmetric systems [83, 75].

Suppose we need to solve

Ax = b.

Let r0 be the initial residual. The Krylov subspace associated with A and r0 is Km(A, r0) =

span{r0, Ar0, A2r0, · · · , Am−1r0}. At each iteration, GMRES seeks the unique solution that

minimizes the least squares problem

min
x∈x0+Km

‖b− Ax‖2.

Since the basis vectors r0, Ar0, A
2r0, · · · , Am−1r0 may be almost linearly dependent, we use

the Arnoldi recurrence to find an basis Vm for Km [57],

AVm = Vm+1Hm,

where Hm ∈ R(m+1)×m is an upper Hessenberg matrix. The Arnoldi recurrence uses the

(modified) Gram-Schmidt orthogonalization. The iterate xm is defined as

xm = x0 + Vmy,

where column vectors of Vm are basis of Km, and y is a column vector. Let β = ‖r0‖2 and

e1 = (1, 0, . . . , 0)T ∈ Rm+1. We have

‖rm‖2 = ‖r0 − A(xm − x0)‖2

= ‖Vm+1(βe1 −Hmy)‖2

= ‖βe1 −Hmy‖2.

26



3.1. Preconditioned GMRES

Setting

ym = arg miny‖βe1 −Hmy‖2

yields the minimal residual. The minimizer ym is inexpensive to compute, since it requires

the solution of an (m+1)×m least squares problem, where m is typically small (for restarted

GMRES, m is chosen).

GMRES with Preconditioner

Any preconditioner P is a nonsingular matrix that approximates A in some way such that

P−1A or AP−1 is better conditioned than A. There are a few different ways to apply the

preconditioner, left preconditioning, right preconditioning, and split preconditioning.

GMRES with Right Preconditioning

Instead of solving the original system, we solve the right preconditioned system

AP−1Px = b

via solving AP−1y = b for y first, and then Px = y for x. The algorithm is shown in

Algorithm 2.

GMRES with Left Preconditioning

Alternatively, we can solve the left preconditioned system

P−1Ax = P−1b.

27



3.1. Preconditioned GMRES

Algorithm 2 GMRES wiht left preconditioning

Choose an initial guess x0. r0 = b− Ax0. β = ‖r0‖2. a = β. k = 0.
v1 = r0/‖r0‖2.
while a > ε‖b‖2 and k < kmax do

k = k + 1
Compute z = P−1vj
Compute w = Az
for j = 1, . . . , k do

hjk = wHvj
w = w −

∑k
j=1 hjkvj

end for
hk+1,k = ‖w‖2
vk+1 =

w

‖w‖2
e1 = (1, 0, . . . , 0)T ∈ Rm+1.
Minimize ‖βe1 −Hmy‖ over Rm to obtain ym.
a = ‖βe1 −Hmym‖.

end while
xk = x0 + P−1Vkyk.

Convergence Results on GMRES

Before we discuss preconditioners in detail and analyze their effect on convergence, we intro-

duce some (well-known) GMRES convergence results that will be used in this dissertation.

The first result is when a nonsingular matrix A has decomposition A = I−C. The following

theorem shows that when ‖C‖ ≤ ρ < 1, GMRES converges for Ax = b. Further, GMRES

converges fast if ρ is small, for instance, ρ <
1

2
. Related analysis and results can be found

in Kerkhoven and Saad [54], Gmati [38], and Nevanlinna [64].

Theorem 2. For any matrix A, suppose Ax = b is being solved by GMRES. If A = I − C

and ‖C‖ ≤ ρ < 1, then the residual rk at k-th step satisfies

‖rk‖ ≤ ρk‖r0‖,

where r0 is the initial residual.

Proof. Consider the polynomial pk(A) = (I − A)k, which is in the set of all k-degree poly-

28



3.1. Preconditioned GMRES

nomial, Pk, and pk(0) = (I − 0)k = I. Therefore pk is a residual polynomial for Krylov

subspace methods. By the optimality of GMRES (see also Theorem 3.1.1 in Kelley [52]),

the residual rGMRES
k satisfies

‖rGMRES
k ‖ = min

p∈Pk,p(0)=1
‖p(A)r0‖ ≤ ‖pk(A)r0‖. (3.1)

Because A = I − C, we get I − A = C and thus pk(A) = Ck. Substitute Ck into (3.1):

‖rGMRES
k ‖ ≤ ‖Ckr0‖ ≤ ‖Ck‖‖r0‖ ≤ ‖C‖k‖r0‖ ≤ ρk‖r0‖.

The second bound is obtained by the field of values. When the field of values of a nonsingular

matrix A is contained in an ellipse or disk that excludes the origin, GMRES converges for

Ax = b. Greenbaum [41] gives an error bound though the bound can be pessimistic. In this

dissertation, F(A) is used to represent the field of values of A.

Lemma 3. Suppose the field of values of A is contained in the disk D = {z ∈ C : |z − c| ≤ s, s < |c|},

which excludes the origin. Let ‖E‖ ≤ ε such that s+ε < |c|. Then the field of values of A+E

is contained in a new disk Dε = {z ∈ C : |z − c| ≤ s+ ε, s+ ε < |c|} , and Dε excludes the

origin.

Proof. Since ε < |c|−s, we have s+ε < |c| and thus Dε excludes the origin. For an arbitrary

z in F(A+E), it follows from the definition of field of values that there exists a unit vector

x such that z = xH(A+ E)x. Since F(A) ⊂ D, ‖x‖ = 1 and ‖E‖ ≤ ε, we get

|z − c| = |xH(A+ E)x− c|

= |xHAx+ xHEx− c|

≤ |xHAx− c|+ |xHEx|

≤ s+ ε.

Therefore z ∈ Dε. Since z is an arbitrary value in F(A + E), it follows that F(A + E) ⊂

Dε.

29



3.2. ILU Preconditioner

Theorem 4. Let F(A) ⊂ D = {z ∈ C2 : |z − c| ≤ s, s < |c|} and E with small 2-norm

such that ‖E‖ = ε < |c| − s. If we are solving (A+E)x = b with GMRES, then the residual

rGMRES
k at k-th iteration satisfies

‖rGMRES
k ‖/‖r0‖ ≤ 2

(
s+ ε

|c|

)k
. (3.2)

Proof. Since A is perturbed by a matrix E such that ‖E‖2 = ε < |c| − s, it follows from

lemma 3 that F(A+E) ⊂ Dε = {z ∈ C2 : |z − c| ≤ s+ ε, s+ ε < c}. Then for the system

(A + E)x = b, by (3.18) in p.56 in Greenbaum [41], the GMRES residual rGMRES
k at k-th

iteration satisfies (3.2).

Another similar result is when the spectrum of A is contained in a disk that excludes the

origin. Such a disk with small radius guarantees fast convergence of GMRES. Actually, if

the center and radius are c and r, the polynomial

pk(z) =

(
c− z
c

)k
can be used to bound the residual. For any z in the disk, there exists

|pk(z)| ≤
∣∣∣r
c

∣∣∣k .
This gives similar bound as in the field of values case:

‖rk‖/‖r0‖ ≤ κ(V )
∣∣∣r
c

∣∣∣k , (3.3)

where κ(V ) = ‖V ‖‖V −1‖ and A = V ΛV −1 is the spectral decomposition. For more informa-

tion about GMRES, see Saad [72, 73]. In the next subsections, we discuss our two truncation

approaches and provide some theoretical analysis.

3.2 ILU Preconditioner

For large sparse system matrices, incomplete LU (ILU) factorizations are among of the most

useful and popular preconditioners. An incomplete LU factorization of a matrix is a sparse

30



3.2. ILU Preconditioner

approximation to the LU factorization [72]. For example, given any Slater matrix Ak. Let

Pk be its incomplete LU factorization. Then Pk = LkUk ≈ Ak, where Lk and Uk are lower

and upper triangular matrices.

In Ahuja et al. [2], incomplete LU decompositions with threshold and pivoting (ILUTP)

preconditioners are used [72, 73]. Further, the preconditioner is updated by cumulative

rank-one updates until a new preconditioner needs to be computed due to the instability.

In our case, we still employ the cumulative rank-one updates approach. However, instead

of ILUTP, we think about using incomplete LU factorization with no/zero fill-in, denoted

by ILU(0). ILU(0) is cheaper to compute and apply than ILUTP. The reason we could

use ILU(0) is because our reordering algorithm makes the Slater matrix close to diagonal

dominant (see Section 5.2), and thus ILU(0) algorithm is stable. ILU(0) factorization can be

defined in general as follows: any pair of matrices L and U such that the elements of A−LU

are zeros in the locations of NZ(A), where NZ(A) is the set of nonzero elements of A.

Numerical Results

ILU(0) is cheaper than ILUTP, and turns out to be effective as well. However, for some

large system with K = 0.5, ILU(0) may fail because of zeros in the diagonal. If that is the

situation, we need either use ILUTP to replace zeros in the diagonal by pivoting, or reorder

the Slater matrix to make it closer to diagonal dominant. This is one of the reasons why we

need to reorder the Slater matrix to improve its diagonal dominance.

We look at the spectrum of preconditioned system, number of GMRES iterations, and the

accuracy of the acceptance/rejection test. When K = 0.5, the convergence is not as good

as that in the case when K = 1. This is expected because the Slater matrix is more ill-

conditioned when K = 0.5. The spectrum of preconditioned system and number of GMRES

iterations tell us how good our preconditioner is for the convergence. The accuracy of the

acceptance and rejection test tells us how accurate our approximation is compared to the

standard algorithm that uses exact inverse of Slater matrix.

31



3.2. ILU Preconditioner

First, we look at the spectrum with and without ILU preconditioning for Slater matrices.

Figure 3.2(a) and 3.2(b) demonstrate the effectiveness of the ILU(0) preconditioner. The

spectrum is very much improved by ILU(0) preconditioners. Because the spectrum of pre-

conditioned system is around (1, 0), we know the preconditioned system is of the form I+C.

Therefore, it follows from theorem 2 that the preconditioned GMRES will convergence fast.

This is demonstrated in Figure 3.3(a) and 3.3(b). The number of GMRES iterations is very

small for the system with K = 1.

Figure 3.1: Spectrum comparison for Slater matrix with or without preconditioning. The

preconditioner is ILU(0). This Slater matrix is related to a 3D system with N = 1024.

−0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5
Spectrum comparison for N=1024 system with K = 1.

 

 
Spectrum without preconditioning
Spectrum with ILU(0) preconditioning

(a) K = 1

−0.5 0 0.5 1 1.5 2 2.5 3 3.5 4
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6
Spectrum comparison for N=1024 system with K = 0.5.

 

 

Spectrum without preconditioning
Spectrum with ILU(0) preconditioning

(b) K = 0.5

Next, we evaluate the stability of our ILU(0) preconditioner [9, 10, 20], which can be repre-

sented by ‖AU−1L−1− I‖F . Figure 3.3 shows the stability of ILU(0). This is another reason

why GMRES converges fast.

32



3.2. ILU Preconditioner

Figure 3.2: Number of GMRES iterations with ILU(0) preconditioner and reordering. See

Chapter 5 for detailed information about the reordering.

0 50 100 150 200 250 300 350 400 450 500
4

4.5

5

5.5

6

6.5

7

7.5

8
GMRES with ILU(0). N = 1024, K = 1.

N
um

be
r 

of
 it

er
at

io
ns

Monte Carlo step

(a) Number of GMRES iterations for a sys-

tem with N = 1024, K = 1

0 50 100 150 200 250 300 350 400 450 500
4

4.5

5

5.5

6

6.5

7
GMRES with ILU(0). N = 2000, K = 1.

N
um

be
r 

of
 it

er
at

io
ns

Monte Carlo step

(b) Number of GMRES iterations for a sys-

tem with N = 2000, K = 1

Figure 3.3: Stability of ILU(0) preconditioners for a system with N = 1024, K = 1.

0 10 20 30 40 50 60 70

10
1.52

10
1.54

10
1.56

10
1.58

10
1.6

10
1.62

10
1.64

10
1.66

Stability of ILU(0) preconditioner. N = 1024, K =1.

Monte Carlo step with recomputation of ILU(0)

lo
g 10

||A
U

−
1 L−

1 −
I||

Finally, we evaluate the accuracy of the acceptance and rejection test in the MCMC simula-

tion. Table 3.1 shows that the iterative methods end up with very good approximation for

different systems. The results for all systems are 100% good and at least 99.15% extremely

good.

This method is based on Ahuja [2]. It produces a value f that tells how close the determinant

ratio computed by our process is to the exact value by using exact inverses of Slater matrices.

This value f also gives the probability of a wrong decision in the acceptance/rejection test.

Let q be the square of the exact determinant ratio and qz is the approximate one. Then

33



3.3. Domain Decomposition Preconditioner

f = |min(q, 1)−min(qa, 1)| gives the probability of a wrong decision. The average value of

f over a random walk gives the expected number of errors in the test. The approximation

is defined as

• extremely good: f < 1e− 04

• very good: f < 1e− 03

• good: f < 1e− 02

Table 3.1: Results of using the average expected number of errors in the test to define the

effectiveness of approximations. For all three systems, K = 1.

System size 1024 1458 2000

Extremly Good % 99.35 99.15 99.39

Very Good % 99.99 99.99 99.98

Good % 100 100 100

Acceptance Ratio % 0.5780 0.5878 0.5980

3.3 Domain Decomposition Preconditioner

Originally, the domain decomposition method is proposed to prove the existence of solutions

of partial differential equations for non-standard domains [74, 77, 81]. The idea is to divide

the entire domain into many possibly overlapping simpler subdomains, and to solve the

partial differential equation alternatively on those subdomains. The boundary condition for

each subdomain is based on the latest available approximation of the global solution and

every new local solution is used to update the approximation of the global solution.

Now this method becomes popular in many fields and one application is as a preconditioner

for Krylov subspace methods. The domain decomposition preconditioner is still based on

the decomposition of the entire domain. The first step is to decompose the domain into

34



3.3. Domain Decomposition Preconditioner

a couple of subdomains. Suppose the domain is Ω. We first decompose Ω into k non-

overlapping subdomains Ω1,Ω2, . . . ,Ωk. Notice that Ω = ∪ki=1Ωi and Ωi ∩ Ωj = Ø, for any

1 ≤ i, j ≤ k. The next step is to decompose the matrix accordingly. This can be done by

defining restriction operators Ri’s for each subdomain. Formally, Ri can be expressed as

Ri = [Ii|O] πi,

where Ii is the identity matrix that has the same dimension as the cardinality of Ωi, πi is

the permutation on Ωi. Another way to define the same Ri is to use delta function:

(Ri)ij := δωi,j =

 1, ωi = j

0, otherwise
for 1 ≤ i, j ≤ m,

where ωi ∈ Ωi. We view Ri’s as restriction operators and RT
i ’s as prolongations. Then we

can define a restriction of the operator A on Ωi as

Ai = RiAR
T
i .

Now we can obtain domain decomposition preconditioners [74, 77, 33]. One option is additive

Schwarz preconditioner PAS, that is

P−1AS =
k∑
i=1

RT
i A
−1
i Ri. (3.4)

Another popular option is multiplicative Schwarz preconditioner [81, 33]. Define Q0 = I and

Qi = (I−RT
i A
−1
I RiA)Qi−1, for i = 1, . . . , k. Then the multiplicative Schwarz preconditioner

PMS is

P−1MS = (I −Q)A−1. (3.5)

In our experiments, we need to solve Akzk = eik iteratively by preconditioned GMRES at

every Monte Carlo step. When the Slater matrix is updated by a rank-one update, only one

row of the Slater matrix changes. The change is a small and local change to both physical

system and the Slater matrix. So, we think about dividing the domain into two subdomains

and employ domain decomposition preconditioner [77, 81]. Since we attempt to move a

35



3.3. Domain Decomposition Preconditioner

particle at every Monte Carlo step, the first subdomain consists of the neighbor particles

and orbitals of the moving particle. The second subdomain is the remaining particles and

orbitals.

Two-level Multiplicative Schwarz Preconditioner

We will focus on one specific Monte Carlo step in this section and thus we skip the subscript

k in Ak and zk for simplicity. We are solving

Az = eik (3.6)

at a Monte Carlo step, where A is the Slater matrix and eik is the unit vector with 1 at the

ik-th component. Notice that we attempt to move particle ik at this Monte Carlo step.

We build and test two-level multiplicative Schwarz preconditioner (see (3.5)) on the appli-

cation to the QMC method. The preconditioner P is P1 +P2−P2AP1, where P1 and P2 are

derived in below.

We now explain how to obtain the preconditioner. First, divide the domain (all particles

and orbitals) into two subdomains. One is the local domain around the moving particle and

the other consists of remaining orbitals and particles. A straightforward greedy algorithm is

used to divide the domain. Following is the greedy algorithm.

1. Pick all those orbitals near the moving particle ik within a cutoff radius. In details, we

make the coordinates of the moving particle ik as the center, and then find all orbitals

that are within the preset radius. The moving particle moves from an old position to

a new position and we use the old position because A−1 is the inverse of the Slater

matrix for current system not the next system.

2. For each orbital that’s found in step 1, pick the closest particle from remaining particles.

3. Check if the moving particle ik is among the selected particles which forms the local

domain. If not, simply replace any particle with the moving particle.

36



3.3. Domain Decomposition Preconditioner

4. All the remaining particles and orbitals form the second domain.

Let `p be the set of local particles, `q be the set of local orbitals. Suppose the number of

particles (orbitals) is m. So, the cardinality of `p and `q is m. Construct R1 and I1 to be

row and column permutation matrix. R1 permutes rows and I1 permutes columns. Since

particles and orbitals are corresponding to rows and columns respectively, R1 is related to

local particles `p and I1 is related to `q.

R1(i, `pj) =

 1, i = `pj

0, otherwise
for 1 ≤ i, j ≤ m;

I1(`oi , j) =

 1, `oi = j

0, otherwise
for 1 ≤ i, j ≤ m. (3.7)

For instance, if local particles are 1, 3, 4, 6 within a 2 × 2 × 2 system(8 particles in total),

then R1 would be

R1 =


1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0

 .

We define R2 and I2 similarly for the second domain of the remaining particles and orbitals.

Then we can decompose A by multiplying A from the left by the row permutation matrixR1

R2

, and from the right by the column permutation matrix
(
I1 I2

)
.

R1

R2

A
(
I1 I2

)
=

A11 A12

A21 A22

 .

37



3.3. Domain Decomposition Preconditioner

So, we can rewrite system (3.6)

Az = eik

⇔

R1

R2

A
(
I1 I2

)IT1
IT2

 z =

R1

R2

 eik

⇔

A11 A12

A21 A22

 z̃ = ẽik , (3.8)

where Aij = RiAIj, for 1 ≤ i, j ≤ 2, z̃ =

IT1
IT2

 z, and ẽik =

R1

R2

 eik .

Define Pi = Ii(RiAIi)
−1Ri = Ii(Aii)

−1Ri, i = 1, 2. Then the iteration process with two-level

domain decomposition preconditioner is

1. z(k+
1
2
) = z(k) + I1A

−1
11 R1(eik − Az(k)),

2.

z(k+1) = z(k+
1
2
) + I2A

−1
22 R2(eik − Az(k+

1
2
))

= z(k) + (I1A
−1
11 R1 + I2A

−1
22 R2 − I2A−122 R2AI1A

−1
11 R1)(eik − Az(k))

= z(k) + (P1 + P2 − P2AP1)(eik − Az(k))

.

Let P = P1 + P2 − P2AP1. Then P is the preconditioner.

Numerical Results

Before we present detailed numerical results, we have to say that the two-level domain de-

composition preconditioner is expensive because a new preconditioner has to be computed

for each moving particle. This is because the domain decomposition is closely related to the

particle that is moving, which makes the recomputation of preconditioners necessary. We

cannot apply cumulative rank-one updates for the two-level domain decomposition precon-

ditioner.

We use left preconditioning, that is, we solve PAz = Peik instead of solving Az = eik . There

comes a problem in respect to A−122 in P2. In the following experiments, we use incomplete

38



3.3. Domain Decomposition Preconditioner

LU factorization of A−122 . The ILUTP produces good approximation of A22. This is relatively

expensive and we consider replacing ILUTP with an iterative solver in section 3.4. We run

tests for systems with different size N and k. The values of N are 686, 1024, 1458, 2000,

and 2662. For parameters of GMRES, the maximum number of iteration is set to be equal

to the system size and tolerance is 1e− 6 for ‖r‖/‖r0‖.

As an example when N = 1024 and K = 1, Figure 3.4 demonstrates the effect of the

preconditioner on the spectrum of a specific Slater matrix. The spectrum of preconditioned

system is very well improved. The effectiveness is also demonstrated by the low number

of the iterations of GMRES. In Figure 3.5, the average number of iterations is constantly

around 5 after the system transits into equilibrium.

Figure 3.4: Spectrum of a Slater matrix with and without two-level multiplicative Schwarz

preconditioner. The Slater matrix is picked randomly from the sequence of linear systems

and the system is with N = 1024 and K = 1 in three dimensional space.

−0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2
Spectrum of the Slater matrix A.

System parameters: N = 1024, K = 1.

 

 

(a) Spectrum of the Slater matrix at some

step

−1 −0.5 0 0.5 1 1.5 2
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

System parameters: N = 1024, K = 1.

Spectrum of the Slater matrix.

 

 
Spectrum of A
Spectrum of A with two−level preconditioner.

(b) Spectrum of the same Slater matrix

with two-level multiplicative Schwarz precon-

ditioner

39



3.3. Domain Decomposition Preconditioner

Figure 3.5: Number of GMRES iterations

0 0.5 1 1.5 2

x 10
4

1

2

3

4

5

6

7

8

9

10

11
nr of iterations; N=1024, k =1

MC steps

(a) Number of iterations

0 0.5 1 1.5 2

x 10
4

4.7

4.8

4.9

5

5.1

5.2

5.3

5.4

5.5

5.6

5.7
average nr of iterations; N=1024, k =1

MC steps

(b) Average number of iterations

For more systems and parameters, we use the same value in Section 3.2 to evaluate the

accuracy of the simulation results. Table 3.4 shows the effectiveness for systems of different

size with K = 1. For K = 0.5, the result of simulation is still good, though not as good

as that with K = 1. The ‘Extremely good’ percentages are not very satisfactory when K

= 0.5. This is because the Slater matrix becomes more ill-conditioned with small Gaussian

parameter K.

Table 3.2: Test results of 50K Monte Carlo steps for different systems with K = 1

Size of system 1024 1458 2000 2662 3456

Extr. Good % 98.71 94.00 95.46 93.46 93.66

Very Good % 99.10 97.69 96.35 95.56 94.87

Good % 99.87 99.26 99.33 98.75 98.18

Acc. Ratio 0.5925 0.5732 0.6275 0.5620 0.6237

40



3.3. Domain Decomposition Preconditioner

Table 3.3: Test results of 50K Monte Carlo steps for different systems with K = 0.5

Size of system 1024 1458 2000 2662

Extr. Good % 83.25 81.49 71.46 73.66

Very Good % 91.04 89.71 91.56 84.87

Good % 99.78 97.82 98.02 96.18

Acc. Ratio 0.6753 0.5879 0.5982 0.4877

41



3.4. Inexact Matrix-vector Products by Inner-outer GMRES

3.4 Inexact Matrix-vector Products by Inner-outer GM-

RES

In Section 3.3, we divide the entire domain of particles and orbitals into two subdomains.

The Slater matrix A is divided into

A11 A12

A21 A22

 accordingly. In this section, we solve a

Schur complement system with an inexact preconditioning by inner-outer GMRES.

At every Monte Carlo step, we need to compute the squared determinant ratio∣∣∣∣detAk+1

detAk

∣∣∣∣2 =
∣∣1 + uTkA

−1
k eik

∣∣2 ,
where A−1k eik = zk. For simplicity, we skip the index k that stands for the Monte Carlo

step. Consider I1 and I2 given in (3.7). Because
(
I1 I2

)IT1
IT2

 = I, we can rewrite the

determinant ratio as

∣∣1 + uTA−1eik
∣∣ =

∣∣∣∣∣∣1 + uT
(
I1 I2

)IT1
IT2

 z

∣∣∣∣∣∣
=

∣∣∣∣∣∣1 +
(
uT I1 uT I2

)IT1 z
IT2 z

∣∣∣∣∣∣
=

∣∣1 + uT1 z1 + uT2 z2
∣∣ , (3.9)

where u1 = uT I1, u2 = uT I2, z1 = IT1 z, z2 = IT2 z. By properties of Gaussian functions,

we know the component of u becomes smaller when the corresponding orbital is further

from the moving particle. Therefore, we can truncate out the last term in (3.9) by setting

a cutoff radius. In other words, we can select our local domain such that the product of

uT2 z2 is neglectable. For example when ‖u2‖ ≤ 1e − 8, we have |uT2 z2| ≤ 1e − 5. Because

the acceptance probability is the squared determinant ratio and the square of 1e − 5 is

1e− 10, the MCMC simulation is rarely affected (the probability error due to truncation of

|uT2 z2| is 1e − 10 per Monte Carlo step). In practice, we choose our local domain such that

‖u2‖ ≤ 1e− 6.

42



3.4. Inexact Matrix-vector Products by Inner-outer GMRES

So, we only concern about u1 and z1 because
∣∣1 + uT1 z1

∣∣ is a practical approximation to∣∣1 + uTA−1eik
∣∣ with the truncation. By (3.8), the new system related to the partitioned

Slater matrix is A11 A12

A21 A22

 z̃ = ẽik , (3.10)

where z̃ =

IT1
IT2

 z, and ẽik =

R1

R2

 eik .

Let z̃ =

IT1 z
IT2 z

 =

z̃1
z̃2

 , and ẽik =

R1eik

R2eik

 =

ei
0

 . Then we can rewrite (3.10) into

A11 A12

A21 A22

z̃1
z̃2

 =

ei
0

 . (3.11)

Instead of solving for

z1
z2

, we only look for the first component z1, which equals I1z̃1. This

can be done by solving the Schur complement system with respect to z̃1, which is

(A11 − A12A
−1
22 A21)z̃1 = −A21A

−1
11 ei.

Denote S := (A11 − A12A
−1
22 A21) and b := −A21A

−1
11 ei. Then the Schur complement system

can be rewritten as

Sz̃1 = b. (3.12)

We solve this system with GMRES, which is an outer loop. To approximate A−122 , we utilize

GMRES again, which is an inner loop. The inner-outer GMRES method is very cheap. If we

use ILU or ILUTP to deal with A−122 , it is more expensive (especially if we need to compute

a new ILUTP for A22 at each Monte Carlo step). Further, because A22 may or may not be

close to diagonal dominant, ILU and ILUTP may not be a good preconditioner.

43



3.4. Inexact Matrix-vector Products by Inner-outer GMRES

Analysis and Discussion

The outer GMRES in (3.12) yields Arnoldi relation

SVm = Vm+1Hm, (3.13)

where Vm = [v1, v2, . . . , vm], vi’s are basis vectors of the Krylov subspace Km(S, b), and

Hm is an (m + 1) × m upper Hessenberg matrix. Inexact preconditioning involves inner

GMRES iterations to approximate the inverse of A22. This produces inexact matrix-vector

products at every iteration of outer GMRES. In other words, an error matrix Ei is generated,

i = 1, . . . ,m.

[(S + E1)v1 (S + E2)v2 · · · (S + Em)vm] = Vm+1Hm

⇔ SVm + [E1v1 E2v2 · · · Emvm] = Vm+1Hm.

Instead of real (exact) residual ri, we obtain computed residual r̃i, i = 0, 1, . . . ,m. Suppose

Vmym is the approximate solution to (3.12). Then

r̃m = r0 − SVmym

= (r0 − Vm+1Hmym) + [E1v1, E2v2, . . . , Emvm] ym

= rm + [E1v1, E2v2, . . . , Emvm] ym.

Before we continue, we introduce some results on the bounds of residual and convergence of

inexact GMRES. Theorem 5 and 6 are from Simoncini and Szyld [76].

Theorem 5. Assume we solve Sz̃1 = b with inexact inner-outer GMRES. Vmym is the

approximate solution and where Vm = [v1, v2, . . . , vm], vi’s are basis of the Krylov subspace

Km(S, b). Let δm be the difference between r̃m and rm. At k-th outer iteration of GMRES,

an error matrix Ek is introduced. This can be represented by Arnoldi relation

SVm + [E1v1 E2v2 · · · Emvm] = Vm+1Hm.

Suppose ym =
[
η
(m)
1 , η

(m)
2 , . . . , η

(m)
m

]
. Then δm satisfies

δm = ‖rm − r̃m‖ ≤
m∑
k=1

|η(m)
k |‖Ek‖.

44



3.4. Inexact Matrix-vector Products by Inner-outer GMRES

Proof. See Simoncini and Szyld [76] for proof.

In practice, our goal is to make δm small. Theorem 6 provides conditions that makes δm

meet our need.

Theorem 6. Let ε > 0. Let rm be the GMRES residual after m iterations of the inex-

act Arnoldi method. Let σm(Hm) be the smallest singular value of Hm. Under the same

hypotheses and notation of Theorem 5, if for every k ≤ m,

‖Ek‖ ≤
σm(Hm)

m

1

‖r̃k−1‖
ε, (3.14)

then the difference between real residual rm and computed residual r̃m is less than ε, that is

‖rm − r̃m‖ ≤ ε. (3.15)

Proof. See Simoncini and Szyld [76] for proof.

Therefore, to make δm ≤ ε, we need ‖Ek‖ to satisfy (3.14). Let `m =
σm(Hm)

m
. Then (3.14)

becomes

‖Ek‖ ≤ `m
1

‖r̃k−1‖
ε.

According to Simoncini and Szyld [76], setting `m = 1 is usually not harmful.

Consider our Schur system Sz̃1 = b, where S = (A11 − A12A
−1
22 A21). At k-th iteration of

outer GMRES, the matrix-vector product is computed as

Svk = (A11 − A12A
−1
22 A21)vk (3.16)

= A11vk − A12A
−1
22 (A21vk) (3.17)

= A11vk − A12z
(k)
inner. (3.18)

where z
(k)
inner is the approximation solution to A22z = A21vk with inner GMRES. The com-

puted residual of inner GMRES is r
(k)
inner = A21vk−A22z

(k)
inner. The exact solution isA−122 (A21vk).

Therefore

z
(k)
inner = A−122 (A21vk)− A−122 r

(k)
inner.

45



3.4. Inexact Matrix-vector Products by Inner-outer GMRES

Then the computed matrix-vector product of outer GMRES is

A11vk − A12z
(k)
inner = A11vk − A12A

−1
22 (A21vk) + A12A

−1
22 r

(k)
inner

= Svk + A12A
−1
22 r

(k)
inner

=

(
S + A12A

−1
22 r

(k)
inner

vTk
‖vk‖2

)
vk.

Therefore at k-th iteration of outer GMRES, the backward error matrix generated by inexact

inner GMRES is

Ek = A12A
−1
22 r

(k)
inner

vTk
‖vk‖2

.

From Arnoldi recurrence, ‖vk‖ = 1. To obtain (3.15), we need ‖E‖ to satisfy

‖Ek‖ ≤
σm(Hm)

‖A12A
−1
22 ‖m

1

‖r̃k−1‖
ε,

where r̃k−1 is the computed residual from (k − 1)-th iteration of outer GMRES.

Therefore, similarly to set `m = 1 in Simoncini and Szyld [76], we can assume
σm(Hm)

‖A12A
−1
22 ‖m

=

1. We can also use an approximation of
σm(Hm)

‖A12A
−1
22 ‖m

to obtain tolerance on the residual of

inner GMRES. In our experiments, we choose the former option.

Numerical Results

Although the convergence for the outer GMRES iteration is rapid, the number of iterations

for inner GMRES is higher than it is with ILU preconditioned GMRES for almost the same

size system as the original Slater matrix. Therefore, this inexact preconditioning is not a

very cost efficient preconditioner.

As we can see from Figure 3.8, the number of total iterations for inner GMRES isn’t sat-

isfactory. This is one result when A22 may not be close to diagonal dominance. Figure 3.6

and 3.7 show the number of iterations for inner GMRES and the relationship between inner

tolerance and residuals.

46



3.4. Inexact Matrix-vector Products by Inner-outer GMRES

Figure 3.6: (1) Number of iterations for a system with N = 1024, K = 1 at a representative

Monte Carlo step. Figure (a) is using dynamic inner tolerance.

1 2 3 4 5 6 7 8 9
−7

−6

−5

−4

−3

−2

−1

0

1

2

iterations of outer GMRES

lo
g 10

 (
 r

es
id

ua
ls

 )
 , 

lo
g 10

 (
in

ne
r 

to
l)

Comparison between computed and true residuals

 

 

inner tolerance
computed resi.
true resi.

(a) Comparison between computed and

true residuals

1 2 3 4 5 6 7 8 9
0

2

4

6

8

10

12

14

16

18
Number of inner GMRES iterations

iterations of Outer GMRES
N

um
be

r 
of

 in
ne

r 
G

M
R

E
S

 it
er

at
io

ns

(b) Number of inner GMRES iterations

for each outer GMRES iteration

Figure 3.7: (2) Number of iterations for a system with N = 1024, K = 1 at a representative

Monte Carlo step. Figure (a) is using dynamic inner tolerance.

1 2 3 4 5 6 7 8 9 10
−7

−6

−5

−4

−3

−2

−1

0

1

iterations of outer GMRES

lo
g 10

 (
 r

es
id

ua
ls

 )
 , 

lo
g 10

 (
in

ne
r 

to
l)

Comparison between computed and true residuals

 

 
inner tolerance
computed residual
true residual

(a) Comparison between computed and

true residuals

1 2 3 4 5 6 7 8 9 10
0

2

4

6

8

10

12

14

16

18
Number of inner GMRES iterations

iterations of Outer GMRES

N
um

be
r 

of
 in

ne
r 

G
M

R
E

S
 it

er
at

io
ns

(b) Number of inner GMRES iterations

for each outer GMRES iteration

47



3.4. Inexact Matrix-vector Products by Inner-outer GMRES

Figure 3.8: Number of total inner GMRES iterations per Monte Carlo step for a system with

N = 1024, K = 1.

6000 6100 6200 6300 6400 6500 6600 6700 6800 6900 7000
10

0

10
1

10
2

10
3

Monte Carlo steps. N = 1024, K = 1.

Number of total inner GMRES iterations.

48



Chapter 4

Truncation of Preconditioner Updates

Many applications require the solution of a sequence of linear systems of the form

Aixi = bi i = 0, 1, 2, · · · , (4.1)

where Ai’s are nonsingular matrices, bi’s are right-hand sides. To solve the sequence of lin-

ear systems, Krylov subspace methods especially with recycling preconditioners have become

popular techniques and people might adapt the Krylov solver according to the problem at

hand [76, 68]. In order to be efficient and robust, Krylov subspace methods need to be precon-

ditioned. This causes the problem of computing a sequence of preconditioners corresponding

to the sequence of linear systems. For example, when i = 0, an initial preconditioner P0

needs to computed for solving A0x0 = b0. In general, for system i, a preconditioner Pi needs

to be obtained for solving Aixi = bi.

However, computing preconditioners P0, P1, P2, . . . for every single system separately can

be very expensive and impractical. There is a strong need to reduce the overall cost of

preconditioning these linear systems. Therefore, most effective approaches adopt a middle

ground by updating the existing preconditioner and reusing it for successive linear systems

[36, 11, 2, 66], which we can call recycling preconditioners.

In Ahuja et al. [2, 1], preconditioners are multiplied by cumulative inverses of rank-one

49



4.1. Introduction

updates. Sherman–Morrison formula is used to obtain the inverse of rank-one or low-rank

updates. Similarly in Bergamaschi et al. [11], Broyden-type rank-one updates are used to

update the preconditioners. These are two common ways to update the existing precondi-

tioner and reuse it for successive linear systems. The advantage of these approaches is that

they are cheaper than computing a new preconditioner for each system and more effective

than using the same preconditioner for all linear systems. However, due to the cumulative

updates to the preconditioner, the cost of applying the preconditioner increases. At some

point, the cost of applying a preconditioner is even higher than computing a new precondi-

tioner. Therefore, in Ahuja et al. [2, 1] and Bergamaschi et al. [11], a new preconditioner is

computed from scratch periodically.

However, as the number of linear systems increases, the cost of applying the preconditioner

becomes too expensive. In this chapter, we propose to overcome this shortcoming by ef-

fectively truncating the preconditioner updates and hence reducing the cost for performing

preconditioner updates. We will propose two approaches for truncating the accumulated

updates. Details of these procedures follow in the subsequent Sections.

This chapter is organized as follows. In Section 4.1, we explain the aforementioned trunca-

tion methods in detail. Section 4.2 demonstrates the effectiveness of these methods for the

application in discretized nonlinear partial differential equations, such as convection-diffusion

problems. Section 4.3 presents the results for a large number of steps in the quantum Monte

Carlo problem.

4.1 Introduction

In this thesis we will consider sequences of nonsymmetric linear systems. We are mainly

interested in addressing two issues associated with recycling the preconditioners: First, how

can we make the updated preconditioner as powerful as the originally computed one? Second,

how can we update and apply the preconditioners inexpensively?

50



4.1. Introduction

Consider a sequence of linear systems (4.1). Suppose initially we compute a preconditioner

P0 for A0. Notice that A0, P0 ∈ Rn×n. The system matrices change by rank-1 updates

[26, 64]. For example, the matrix A0 is modified by the rank-one update p1q
T
1 ,

A1 = A0 + p1q
T
1

= A0(I + A−10 p1q
T
1 )

= A0(I + z1q
T
1 ),

where z1 := A−10 p1 and I is the identity matrix that has the same dimension as A0. Note

that we aim to maintain preconditioned matrices such that A0P0 = A1P1 = · · · . As a result,

for the next system A1x1 = b1, we want to update P0 accordingly. This produces a new

preconditioner P1.

P1 = (I + z1q
T
1 )−1P0. (4.2)

Using Sherman-Morrison formula, we get

(I + z1q
T
1 )−1 = I − (1 + qT1 z1)

−1z1q
T
1 .

Then we could rewrite P1 as

P1 = (I − (1 + qT1 z1)
−1z1q

T
1 )P0 = (I − w1q

T
1 )P0,

where w1 = (1 + qT1 z1)
−1z1. The preconditioned system for A1 is A1P1x̃1 = b1. After m

rank-1 updates to the matrix, we have the following relationship:

Am = A0(I + z1q
T
1 )(I + z2q

T
2 ) · · · (I + zmq

T
m). (4.3)

Correspondingly, the new preconditioner Pm is obtained by multiplying P0 with inverses of

rank-one updates to the identity as

Pm := (I − wmqTm) · · · (I − w2q
T
2 )(I − w1q

T
1 )P0. (4.4)

The preconditioner update is a product of inverses of rank-one updates to the identity which

we can denote as Tm.

Tm := (I − wmqTm) · · · (I − w2q
T
2 )(I − w1q

T
1 ) (4.5)

= I +WmBmQ
T
m.

51



4.1. Introduction

where Bm is a rank-m m × m lower triangular matrix, Wm = [w1, w2, . . . , wm]n×m, and

Qm = [q1, q2, . . . , qm]n×m. For simplicity, let

Xm = WmBmQ
T
m. (4.6)

Xm is a low-rank matrix that contains the information of the rank-one updates to the

preconditioner.

So Pm = TmP0 and the preconditioned system after m rank-one updates is AmPmx̃m = bm.

The newly obtained preconditioners P1, P2, . . . , Pm are as good as the originally computed

preconditioner P0 because the relation (1.3) is obtained. This approach maintains the qual-

ity of the original preconditioned matrix. However, applying these preconditioners is not

cost effective. In every linear system or nonlinear step, multiplying a vector with the pre-

conditioner becomes increasingly expensive because of the cumulative cost of multiplying by

the preconditioner updates. In other words, the cost of multiplying a vector by a precondi-

tioner Pm with m preconditioner updates (the rank of Xm is m) is O(4mN) plus the cost of

multiplying P0 [53]. Over m Monte Carlo or nonlinear steps, the cost is O(m2N). At some

point the cost of multiplying vectors by the preconditioner update Tm is higher than that

of computing a new preconditioner. For that reason, in Ahuja et al. [2] and Bergamaschi

et al. [11] a new preconditioner is computed from scratch periodically. However, computing

a (very) good new preconditioner from scratch is quite expensive too; therefore, we propose

two methods for truncating the accumulated preconditioner updates. Therefore the cost of

applying the preconditioner is reduced or even bounded to O(N). Further, the computa-

tion of a new preconditioner is postponed or even avoided. This can be fulfilled by making

truncation whenever the rank of T is larger than or equal to a preset threshold.

However, due to truncation, the number of iterations of GMRES may not be as low as

that without truncation. Assume we discard some directions from Xm. This produces the

truncated preconditioner P̃i, where P̃i = Pi − ∆Pi, where ∆Pi is the part we discard from

Pi. As a result, instead of (1.3), the preconditioned system matrix AmP̃m satisfies

A0P0 = · · · = Am−1Pm−1 = AmPm = Am(P̃m + ∆Pm) ≈ AmP̃m. (4.7)

52



4.1. Introduction

Our goal is to perform a truncation without drastically impacting the rate of convergence.

We consider two approaches to truncate Xm. The first approach is based on the SVD of

Xm. This approach is effective if the SVD has relatively many small singular values. In

other words, SVD based truncation will work well if the matrix can be approximated by

using a small number of singular triplets. This turns out to be case for the nonlinear PDE

problem discussed in Section 4.2. If there are few relatively small singular values, an SVD

based truncation may lead to a substantial increase in the number of iterations. In that case,

we consider an alternative strategy. Given Tm = I + WmBmQ
T
m, we consider the canonical

angles between Range(QmP0) and a previous Krylov space (see below for more details), and

we truncate directions that are associated with large canonical angles. The main idea behind

this approach is that in an Arnoldi recurrence

Am(I +WmBmQ
T
m)P0V` = V`+1H`, (4.8)

directions in Range(Qm) that have a large (near π/2) angle with Range(P0V`) have little

effect on the Arnoldi recurrence.

In the next subsections, we discuss our two truncation approaches and provide some theo-

retical analysis.

Truncation by SVD

This approach is used to obtain a rank-p approximation from a rank-m update of the pre-

conditioner by using singular value decompositions, where p < m. For example, in the QMC

problem in Section 4.3, we set p = 30 and m = 50. Consider the update matrix Tm of the

preconditioner Pm after m rank-one updates

Tm = I +WmBmQ
T
m. (4.9)

53



4.1. Introduction

To simplify the notation, define Xm := WmBmQ
T
m. Xm is a rank-m matrix. We first obtain

the singular value decomposition of Xm.

Xm = ΦΩΨT (4.10)

=
m∑
i=1

σiuiv
T
i ,

where ui’s and vi’s are the left and right singular vectors, and σ1 ≥ σ2 ≥ · · · ≥ σm > 0. The

idea of truncation by SVD is to truncate Xm into a smaller rank matrix. Therefore, we keep

the first p largest singular values and their corresponding singular vectors, and discard the

remaining. By doing so, we get rank-p approximation of Xm, which can be represented by

X̃m =

p∑
i=1

σiuiv
T
i , (4.11)

For simplicity, define

E :=
m∑

i=p+1

σiuiv
T
i = Xm − X̃m. (4.12)

Then rank(E) = m − p and ‖E‖2 = σp+1. By discarding E from Xm, we convert Xm into

X̃m. Further, the new preconditioner update with X̃m is

T̃m = I + X̃m, (4.13)

and the new preconditioner after truncation equals

P̃m = T̃mP0. (4.14)

The resulting preconditioned system after truncation is

AmP̃mx̃m = bm. (4.15)

54



4.1. Introduction

Analysis of SVD-based Truncation

Consider the preconditioned system (4.15) after SVD based truncation at step m. From

(4.9)-(4.14) it follows that

AmP̃m = AmT̃mP0

= Am

(
Tm −

m∑
i=p+1

σiuiv
T
i

)
P0

= AmTmP0 − Am

(
m∑

i=p+1

σiuiv
T
i

)
P0

= AmPm − AmEP0. (4.16)

In some cases, people compute one exact inverse for generating preconditioners, say A0P0 =

I. For example, in Meerbergen and Bai [61], an initial preconditioner K−1σ = (K − σM)−1

is used to precondition a system Ax = f , where A = K − ω2M and K, M are large

sparse symmetric matrices. Note that for matrices that change exactly by rank-one updates,

starting with A0P0 = I and no truncation leads a direct method [53, 65]. This becomes too

expensive if we need to handle many (nonlinear) steps. Hence our truncation plus a cheap

iteration can be a good alternative. For the system (4.15) after our truncation, the following

theorem shows that GMRES will converge fast if the initial preconditioner P0 is such that

A0P0 = I.

Theorem 7. Let Pm given by (4.4), P̃m given by (4.14), and E given by (4.12). Let Am ∈

RN×N and P̃m be nonsingular, and A0P0 = I. Then GMRES converges at most d + 1 steps

for the system (4.15), where d is the rank of E.

Proof. Since Am and P̃m are nonsingular, AmP̃m is nonsingular and thus GMRES converges

for AmP̃mx̃m = b by Theorem 3.1.2. in Kelley [52]. A0P0 = I implies P0 is nonsingular and

thus rank(P0) = N . Since Am is also nonsingular and rank(E) = d < N , it follows that

rank(AmEP0) ≤ min {rank(Am), rank(E), rank(P0)}

= rank(E) = d.

55



4.1. Introduction

This further implies rank((AmEP0)
`) ≤ rank(E) = d for ` = 1, 2, · · · . Consider the

Krylov subspace K`(AmEP0, r0) = span
{
r0, (AmEP0)r0, · · · , (AmEP0)

`−1r0
}

.

Since rank((AmEP0)
`) ≤ d and r0 may or may not be in Range(AmE), it follows that

dimK`(AmEP0, r0) ≤ d+ 1. (4.17)

With (4.15), (4.16), and A0P0 = I, we have AmP̃m = AmPm − AmEP0 = I − AmEP0. For

any Krylov subspace K`(B, r), it follows from the definition that K`(I − B, r) = K`(B, r).

Therefore,

dimKN(AmP̃m, r0) = dimKN(I − AmEP0, r0)

= dimKN(AmEP0, r0)

≤ d+ 1. (4.18)

So KN(AmP̃m, r0) ⊂ Kd+1(AmP̃m, r0) (see Proposition 6.1 in Saad [72]). Because GMRES

is guaranteed to converge, the solution lies in KN(AmP̃m, r0) ⊂ Kd+1(AmP̃m, r0). It follows

that GMRES converges within at most d+ 1 steps for the system (4.15).

In most cases, it is sufficient to compute a preconditioner such that A0P0 = I +C with ‖C‖

small (see Theorem 2). In this situation, since AmPm = A0P0 and (4.16), truncation by SVD

produces

AmP̃m = I + C − AmEP0. (4.19)

Because ‖C‖ is determined by the choice and quality of the preconditioner, we can make

‖C‖ small such that ‖C‖ ≤ δ < 1. By (4.12), we have ‖E‖ ≤ σp+1. If δ + σp+1 < 1, then

theorem 2 applies and GMRES is guaranteed to converge for the system (4.15).

When A0P0 = I+C, we could also make use of theorem 3 and error bound (3.2) to prove the

convergence of GMRES. Still, let ‖C‖ ≤ δ < 1. Then the field of values of AmPm is included

in a small disk, F(AmPm) ⊂ {z ∈ C : |z − 1| ≤ δ, δ < 1}. Based on (4.19): AmP̃m =

(I + C) − AmEP0, if ‖AmEP0‖ = ε < 1 − δ, it follows from theorem 3 that F(AmP̃m) ⊂

56



4.1. Introduction

{z ∈ C : |z − 1| ≤ δ + ε, δ + ε < 1} . This guarantees the convergence of GMRES and gives

a bound on the residual rk at k-th iteration:

‖rk‖/‖r0‖ ≤ 2 (δ + ε)k . (4.20)

‖AmEP0‖ is closely related to the singular values we discard. If ‖AmEP0‖ follows directly

from the singular values, truncation by SVD is expected to work very well. This is demon-

strated by the following application of nonlinear partial differential equations in Section

4.2.

Truncation Based on Canonical Angles

In some applications, the singular values decrease drastically and we discard the small ones.

So the truncation by SVD works well. Unfortunately, this is not always the case. For

example, in the Quantum Monte Carlo problem in Section 4.3, the singular values of Xm

do not change much and we have very few small singular values to discard (see Figure 4.2).

This is why we propose the second truncation approach by canonical angles.

Consider the system we need to truncate: AmPmx̃m = bm. With Krylov subspace methods

(GMRES), we have the Arnoldi relationship

AmPmV` = V`+1H`. (4.21)

The residual r` of GMRES is r0−AmPmV`y`, where y` is a column vector such that x`−x0 =

V`y`. With (4.4) (4.5), and (4.10), r` can be rewritten as

r` = r0 − Am
(
I +WmBmQ

T
m

)
P0V`y` (4.22)

= r0 − Am

(
I +

m∑
i=1

σiuiv
T
i

)
P0V`y`.

Consider when vTi0P0V` = 0. We have

Am

(
I +

m∑
i=1

σiuiv
T
i

)
P0V` = Am

(
I +

m∑
i=1,i 6=i0

σiuiv
T
i

)
P0V`. (4.23)

57



4.1. Introduction

If we discard σi0 , ui0 , and vi0 , it follows from (4.23) that

r` = r0 − Am

(
I +

m∑
i=1,i 6=i0

σiuiv
T
i

)
P0V`y` (4.24)

= r̃`,

where r̃` is the residual with respect to the truncated system (4.15). Therefore the residual

does not change with the truncation of σi0 , ui0 , and vi0 . This example motivates our second

truncation approach.

If we look into the angles between each direction of Range(Qm) and Range(P0Vl), those

directions orthogonal or nearly orthogonal to P0V` have less impact on the residual. This

suggests us discard those directions as an alternate truncation approach. In other words,

those directions with the angle ∠(·, P0V`) equal or close to π/2 are discarded.

Now we explain the second truncation step by step. Our goal is to truncate rank-mWmBmQ
T
m

into rank-p W̃mŨ
T
m. We first orthonormalize Qm and P0Vl by QR-factorization, Qm = ÛmR̂m,

P0V` = Ŷ Ŝ. Then QT
mP0V` = R̂T

mÛ
T
mŶ Ŝ and we compute the singular value decomposition

of ÛT
mŶ .

Ûm
T
Ŷ = ΦΩΨT , (4.25)

where the diagonal of Ω consists of all singular values ω1 ≥ ω2 ≥ · · · ≥ ωm > 0. We keep p

dominant singular values and their corresponding vectors and thus the truncation of Ûm is

Ũm = ÛmΦp, where Ũm ∈ RN×p and Φp corresponds to the vectors we keep. Let Φc be the

part we throw away in Φ. Then it follows that ΦpΦ
T
p + ΦcΦ

T
c = Im and ‖ΦT

c Û
T
mŶ ‖ ≤ ωp+1.

Therefore ‖WmBmQ
T
mP0V`‖ can be written as

‖WmBmQ
T
mP0V`‖ = ‖WmBmR̂

T
m

(
ΦpΦ

T
p + ΦcΦ

T
c

)
ÛT
mŶ Ŝ‖

= ‖WmBmR̂
T
mΦpŨmŶ Ŝ +WmBmR̂

T
mΦcΦ

T
c Û

T
mŶ Ŝ‖ (4.26)

≤ ‖WmBmR̂
T
mΦpŨmŶ Ŝ‖+ ωp+1‖WmBmR̂

T
mΦc‖. (4.27)

By discarding the second term in (4.27), WmBmR̂
T
mΦcΦ

T
c Û

T
m, the new truncation ofWmBmQ

T
m

is
(
WmBmR̂

T
mΦp

)
ŨT
m, where Ũm = ÛmΦp. Define W̃m := WmBmR̂

T
mΦp and thus W̃mŨ

T
m is a

58



4.1. Introduction

rank-p update. At last, the new preconditioner after truncation is

P̃m = (I + W̃mŨ
T
m)P0. (4.28)

The resulting preconditioned system is the same as (4.15) with the SVD-based truncation:

AmP̃mx̃m = bm. (4.29)

Analysis of Truncation by Canonical Angles

We know that WmBmQ
T
m is truncated into W̃mŨ

T
m. Let WmBmQ

T
m = W̃mŨ

T
m +E. By (4.28),

we have

AmPm = AmP̃m + AmEP0. (4.30)

As we mentioned before (see (4.23)), if EP0V` = 0, our truncation produces the same con-

vergence because the Arnoldi recurrence and the residual do not change. If EP0V` 6= 0, our

truncation introduces approximate Arnoldi recurrence and residual. However, it is reason-

able to assume EP0V` is small due to our truncation by canonical angles. We consider using

the same basis vectors of the Krylov subspaces from the original system, that is V`.

(AmP̃m + AmEP0)V` = V`+1H` (4.31)

⇔ AmP̃mV` = V`+1H` − AmEP0V` (4.32)

⇔ AmP̃mV` = V`+1H` − (I − V`+1 + V`+1)AmEP0V` (4.33)

⇔ AmP̃mV` = V`+1(H` − AmEP0V`) + (I − V`+1)AmEP0V` (4.34)

Suppose (I − V`+1)AmEP0V` = 0. Then for the truncated system, we have

AmP̃mV` = V`+1H̃`, (4.35)

and

H̃` = H` − AmEP0V`. (4.36)

59



4.1. Introduction

Let Ẽ := AmEP0V`. Then H` = H̃` + Ẽ and Ẽ can be seen as a perturbation matrix to the

Hessenburg matrix H` because of the truncation. Based on the same notation and assump-

tion, we could get the following theorem, which gives bound between the two residuals. The

bound also provides the condition for GMRES convergence.

Theorem 8. Let ε > 0. Let r` be GMRES residuals for the system without truncation. Let

r̃` be the residual for the truncated system under same Krylov subspaces. Let σ(H`) be the

smallest singular value of H` and ‖AmPm‖ ≤ 1 + δ. If

‖EP0V`‖ ≤
σ(H`)

‖Am‖‖r0‖
ε,

then ‖r` − r̃`‖ ≤ γε, where γ = (1 + δ)α + 1 +
σ(H`)

‖r0‖
ε.

Proof. By (4.21) and (4.24), we have

r` − r̃` = (r0 − AmPmV`y`)−
(
r0 − AmP̃mV`ỹ`

)
(4.37)

=
(
AmP̃m + AmEP0

)
V`y` − AmP̃mV`ỹ` (4.38)

= AmP̃mV` (y` − ỹ`) + AmEP0V`y`, (4.39)

where y` minimizes ‖e1β−H`y‖, β = ‖r0‖, and ỹ` minimizes ‖e1β−H̃`ỹ‖. y` =
(
HT
` H`

)−1
H`e1β.

It follows from (4.36) that(
HT
` H` +HT

` Ẽ + ẼTH` + ẼT Ẽ
)
ỹ` =

(
H` + Ẽ

)
e1β. (4.40)

If we subtract
(
HT
` H`

)
y` = H`e1β from (4.40), we have

HT
` H` (y` − ỹ`) =

(
−HT

` Ẽ − ẼTH` − ẼT Ẽ
)
ỹ` + Ẽe1β. (4.41)

By Lemma 5.1 in Simoncini and Szyld [76], we have ‖y`‖ ≤
1

σ(H`)
‖r0‖ and ‖ỹ`‖ ≤

1

σ(H̃`)
‖r0‖.

As a result, if ‖EP0V`‖ ≤
σ(H`)

‖Am‖‖r0‖
ε, it follows that

‖y` − ỹ`‖ ≤

(
1

σ(H`)
+

2

σ(H`)2σ(H̃`)‖r0‖

)
ε. (4.42)

60



4.2. Application to a Nonlinear Convection-diffusion Problem

Let α :=
1

σ(H`)
+

2

σ(H`)2σ(H̃`)‖r0‖
. Then ‖y` − ỹ`‖ ≤ αε. Therefore,

‖r` − r̃`‖ ≤ ‖AmP̃mV`‖‖y` − ỹ`‖+ ‖AmEP0V`y`‖

= ‖AmPmV` + AmEP0V`‖‖y` − ỹ`‖+ ‖AmEP0V`y`‖

≤
(

1 + δ + ‖Am‖
σ(H`)

‖Am‖‖r0‖
ε

)
αε+ ‖Am‖

σ(H`)

‖Am‖‖r0‖
1

σ(H`)
‖r0‖ε

= ((1 + δ)α + 1)ε+
σ(H`)

‖r0‖
ε2.

Let γ = (1 + δ)α + 1 +
σ(H`)

‖r0‖
ε. Then ‖r` − r̃`‖ ≤ γε.

Further, it follows from (4.27) that ‖EP0V`‖ ≤ ωp+1‖WmBmR̂
T
mΦc‖. Let ω̃p+1 := ωp+1‖WmBmR̂

T
mΦc‖.

Then as long as ω̃p+1 ≤
σ(H`)

‖Am‖‖r0‖
ε, we have ‖r` − r̃`‖ ≤ γε.

Theorem 8 shows that when ‖EP0V`‖ is small, the truncation by canonical angles has com-

petitive convergence as the original system without truncation. For example, in the quantum

Monte Carlo problem in Section 4.3, the spectrum of the Hessenburg matrix does not change

much (see Figure 4.1) and thus the truncation by canonical angles works well.

4.2 Application to a Nonlinear Convection-diffusion Prob-

lem

We consider a convection-diffusion equation on [0, 1]2:

−∇ · (d(η + γu2)∇u) + rux + suy + tu = f,

where d is the diffusion coefficient, f is the source (or sink). The boundary condition is

u(0, y) = 0.2 + y(1− y2); u(1, y) = u(x, 0) = u(x, 1) = 0.

This problem is a combination of the diffusion and convection equations. It describes physical

phenomena where particles, energy, or other physical quantities are transferred inside a

61



4.2. Application to a Nonlinear Convection-diffusion Problem

Figure 4.1: Spectrum of H` and H` − Ẽ in a specific truncation step for a system with

N = 1024, K = 1, and m = 60. H` is the Hessenburg matrix. Ẽ is the perturbation matrix

to H`, Ẽ = V T
` AmEP0V`. In this figure, we discard 40 vectors that are orthogonal or close

to orthogonal to P0V`.

0.94 0.96 0.98 1 1.02 1.04 1.06
−0.06

−0.04

−0.02

0

0.02

0.04

0.06

Spectrum of perturbed H
l
. m = 60. Discard 30.

 

 
Spectrum of H

l

Spectrum of H
l
 − E

physical system due to two processes: diffusion and convection. We use finite difference

method to get the system matrix A(u) and apply Newton-Line search method to solve the

discretized equation.

F (u) = A(u) · u− f = 0.

The diffusion part A(u) · u is nonlinear. Therefore, the preconditioner needs to be updated

when solving every Newton equation iteratively. Work in [11, 23, 29] has showed that

Broyden-type rank-one update for quasi-Newton preconditioners is useful. However, there is

still a need to reduce the cost of applying preconditioners if there are many nonlinear steps.

Truncation by SVD

Initially we compute a preconditioner P0. Every Newton step we solve

Jk(xk+1 − xk) = −F (xk), k = 0, 1, . . . ,

62



4.2. Application to a Nonlinear Convection-diffusion Problem

iteratively with a preconditioner Pk, where Jk is the Jacobian at this step. Let sk = xk+1−xk
be the update to the solution and yk = F (xk+1)− F (xk) be the change of values of F .

Based on the Broyden-type rank-1 updates and Sherman-Morrison formula [11, 29], Pk

comes from multiplying P0 by Broyden-type rank-one updates

Pk = (I − wk−1vTk−1)(I − wk−2vTk−2) · · · (I − w0v
T
0 )P0, (4.43)

where vk =
sk
‖sk‖

, wk =
P−1k yk − sk

‖sk‖+ vTk (P−1k yk − sk)
, and (I − wivTi )’s are rank-1 updates to the

preconditioner. Assume we truncate whenever the number of rank-1 updates hits m. Then

the first time we truncate is at m-th nonlinear step. Similar to (4.5), the preconditioner

update is

Tm = I +Xm, (4.44)

where Xm ∈ RN×N is a rank-m matrix. We apply the truncation by SVD on Xm. After

computing singular value decomposition Xm =
∑m

i=1 σiuiv
T
i , we keep p dominant singular

values and Xm is truncated into X̃m.

X̃m =

p∑
i=1

σiuiv
T
i . (4.45)

The newly truncated preconditioner is P̃m = T̃mP0 = (I + X̃m)P0, and the m-th Newton

step after truncation is

JmP̃ms̃m = −F (xm).

Analysis

First, we introduce a bound from Bergamaschi et al. [11]. This bound is on the preconditioner

with Broyden-type rank-one updates and is given in the following theorem.

Theorem 9. Suppose J(x) is Lipschitz continuous and J(x∗) is nonsingular. Let α =

1/‖J(x∗)−1‖. Fixed constants 0 < δ < α and 0 < δ1. Then there exist ε, such that ‖P0J0‖ < ε

63



4.2. Application to a Nonlinear Convection-diffusion Problem

and

‖I − JkPk‖ <
δ1α

1− δα
. (4.46)

Theorem 9 shows that the spectrum of JkPk is included in a disk that is around (1, 0) in

the complex plane. The radius is
δ1α

1− δα
. α = 1/‖J(x∗)−1‖ and δ depends on the choice of

initial preconditioner. By (4.46), the field of values of JkPk is also included in a disk around

(1, 0).

With (4.45), we have Xm − X̃m =
∑m

i=p+1 σiuiv
T
i . Let E :=

∑m
i=p+1 σiuiv

T
i . Then E =

Xm − X̃m and rank (E) = m − p. Since p dominant singular values are kept in X̃m,p, we

expect the low-rank matrix E is a small perturbation to Xm.

With E = Xm − X̃m and P̃m given in Section 4.2, we have

JmP̃m = Jm(I + X̃m)P0

= Jm(I +Xm)P0 − JmEP0

= JmPm − JmEP0.

By theorem 9, the field of values of JmPm is included in a disk that excludes the origin

and the radius is
δ1α

1− δα
. It follows from theorem 3 that if ‖JmEP0‖2 < 1 − δ1α

1− δα
, the

field of values of JmX̃m,pP0 is included in a disk that excludes the origin and thus GMRES

converges.

Numerical Results

In our experiments, η = 0.1, γ = 1, and r = s = 1. The Newton-Line Search method takes

about 210 steps to converge. Figure 4.2 shows the singular values of X50. The singular

values decay very fast and SVD-based truncation turns out to work very well. Figure 4.3

demonstrates the norm of the difference between Xm and X̃m, namely, ‖E‖. Therefore, if

we truncate 50 rank-1 updates into 20, ‖E‖ is always less than 1e − 4. We could further

obtain ‖AmEP0‖ ≤ 4e − 3 by simple computation. Therefore by theorem 2, the bound on

64



4.2. Application to a Nonlinear Convection-diffusion Problem

Figure 4.2: Singular values of the first 50 preconditioner updates product.

0 10 20 30 40 50
10

−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

Singular values of X
50

.

the residual is

‖rk‖/‖r0‖ ≤ 2 (δ + (4e− 3))k , (4.47)

where δ is determined by the initial ILU(0) preconditioner. So, GMRES is expected to

converge very fast, which is proved in Figure 4.4.

In comparison, we test several ways to handle the preconditioner. First, people compute an

initial ILU preconditioner with zero fill-in [72] and use this preconditioner for the remaining

Newton steps. Secondly, people compute a new ILU preconditioner for the recomputed

Jacobian at every Newton step. Thirdly, based on the initial ILU preconditioner, people

update the preconditioner with continuous rank-1 updates for the remaining Newton steps.

Last, when the number (size) of the rank-1 updates hits a threshold, we apply SVD-based

truncation. As Newton method progresses, whenever the number of rank-1 updates hits the

threshold, we truncate the preconditioner update accordingly.

Figure 4.4 demonstrates the comparison between various preconditioning. The SVD-based

truncation maintains good number of iterations of GMRES. While cheaper to apply the

preconditioner, the truncation approach arrives at similar and competitive convergence.

We also test different threshold to truncate the preconditioner update. It turns out that he

65



4.2. Application to a Nonlinear Convection-diffusion Problem

Figure 4.3: The norm of difference betweenX and X̃m every time we truncate. E = Xm−X̃m.

In this experiment, we use SVD-based truncation to discard 30 singular values out of 50.

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
10

−7

10
−6

10
−5

10
−4

||Xm − X̃m,p ||

Truncation steps.

Figure 4.4: Comparison of different preconditioners. ILUJ0 means we compute an initial

ILU(0) preconditioner and use it for all the remaining Newton steps. ILUJk means we com-

pute a new ILU(0) preconditioner for each new Jacobian every Newton step. In ‘Cumulative

Rank-1’, the preconditioner is updated with rank-1 update every Newton step. In SVD-

T, the preconditioner update is truncated into 20 vectors whenever the number of rank-1

updates hits 50 and the SVD-based truncation approach is used.

0 50 100 150 200 250
5

10

15

20

25

30

35

40

45

Nonlinear steps

n
r 

o
f 

it
 o

f 
G

M
R

E
S

Comparison of different ways to handle preconditioner

 

 
ILU J

0

ILU J
k

Cumulative Rank−1
SVD−T

66



4.2. Application to a Nonlinear Convection-diffusion Problem

Figure 4.5: Comparison of different truncation size when the threshold of number of rank-1

updates is 50. ‘Trun. 50 into 40’ means we keep 40 rank-1 updates out of 50 when we

truncate the preconditioner update.

0 50 100 150 200 250
5

10

15

20

25

30

Nonlinear steps

nr
 o

f i
t o

f G
M

R
E

S

SVD Truncation every 50 rank−1 updates

 

 

Trun. 50 into 40
Trun. 50 into 30
Trun. 50 into 20

number of iterations of GMRES is not very sensitive to the number of vectors we discard

during truncation. This is mainly because most of the singular values are very small (see

Figure 4.2). The results are in Figure 4.5 and 4.6.

Figure 4.5 shows the result when the threshold of truncation is 50, and Figure 4.6 is when the

threshold is 100. In both cases, the truncation approach works well and the convergence is not

very sensitive to the number of vectors we discard. As shown in the figures, the preconditioner

update can be truncated into 40% of its own size with still good approximation (from 50 to

20, or 100 to 40). In further tests, the preconditioner update can be truncated into 20% of

its own size with almost the same approximation.

67



4.2. Application to a Nonlinear Convection-diffusion Problem

Figure 4.6: Comparison of different truncation size when the threshold of number of rank-1

updates is 100. ‘Trun. 100 into 80’ means we keep 80 rank-1 updates out of 100 when we

truncate the preconditioner update.

0 50 100 150 200 250
5

10

15

20

25

30

35

Nonlinear steps

nr
 o

f i
t o

f G
M

R
E

S

SVD Truncation every 100 rank−1 updates

 

 

Trun. 100 into 80
Trun. 100 into 60
Trun. 100 into 40

68



4.3. Application to the Quantum Monte Carlo Method

4.3 Application to the Quantum Monte Carlo Method

At every step, we need to evaluate∣∣∣∣detAk+1

detAk

∣∣∣∣ =
∣∣1 + uTkA

−1
k eik

∣∣ .
We compute A−1k eik by solving Akzk = eik iteratively.

Ak+1 = (I + zku
T
k )Ak,

where zku
T
k is the rank-one update. The preconditioner is

Pk = (I +Xk)P0,

where Xk is given as before. We apply our truncation approaches onto Xi.

Numerical Results

Figure 4.7 shows the singular values of X50 in a specific linear system with N = 1024 and

K = 1. The singular values of preconditioner update does not decay fast so we have very few

singular values to discard. If we discard 30 vectors out of 50 vectors, we have ‖E‖ ≤ 0.32

and ‖AmEP0‖ ≤ 4, which ends up with a very large bound for the residuals by theorem 2.

Therefore, the truncation by SVD may probably not produce a good approximation and it

turns out that SVD-based truncation does not work well.

As we mentioned before, this is why we propose the truncation by canonical angles. Since

we know in advance all the moving particles in these experiments, we happen to know the

right-hand side vector of any future linear system. Therefore, when we apply the truncation

by canonical angles, instead of using previous linear systems, we integrate the future ` right-

hand side vectors together and then use it to obtain the space V`. Figure 4.8 shows the

comparison of singular values for two truncation approaches in a same Monte Carlo step. As

we can see, the truncation by canonical angles produces smaller singular values. Although

69



4.3. Application to the Quantum Monte Carlo Method

Figure 4.7: Singular values of X50, the product of first 50 rank-1 updates for a 3D system

with N = 1024, K = 1.

0 10 20 30 40 50
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

Singular values of the product of 50 rank−1 updates

N = 1024, K = 1.

 

 

Sing. val. of X
50

for example if we discard 30 vectors out of 50 vectors, we have ‖E‖ ≤ 8.72e − 1, which is

still not a very small bound. Therefore, we expect the convergence is improved by canonical

angles based truncation, but still not very fast. This is justified in our experiments. See

Figure 4.9 and 4.10 for more details.

We test our two truncation approaches for several different systems. The preconditioner

is ILU(0) or ILUTP [9, 10, 72]. Figure 4.9 shows the comparison between two truncation

approaches. Truncation by canonical angles turns out to be better than that by SVD.

In a short run, both truncation approaches work well. For example, in Figure 4.9, the number

of GMRES iterations changes from 4 to 17 during 250 Monte Carlo steps after we compute a

new ILUTP preconditioner. In a long run, we need to recompute the ILUTP preconditioner

when the number of iterations of GMRES hits some threshold. In both Figure 4.9 and 4.10,

the truncation by canonical angles is better than the SVD-based truncation.

70



4.3. Application to the Quantum Monte Carlo Method

Figure 4.8: Singular values of X50, the product of first 50 rank-1 updates for some system

in QMC problem. The system size is 1024 and the Gaussian parameter K = 1.

0 10 20 30 40 50
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

N = 1024, K = 1.

Comparison of singular value distribution.

 

 

Singular values of X
50

 w/ truncation by SVD

Singular values of Q
50

P
0
V

l
 w/ truncation by canonical angles

Figure 4.9: Comparison of number of iterations of GMRES for different truncation ap-

proaches. In both truncation, we discard 30 rank-1 updates out of 50. This is the result for

N = 1024 system with K = 1.

0 50 100 150 200 250
2

4

6

8

10

12

14

16

18

Monte Carlo steps. N = 1024, K = 1.

N
um

be
r 

of
 G

M
R

E
S

 it
er

at
io

ns

Comparision between two truncation methods. 

 

 
Trunc. by SVD
Trunc. by canonical angles

71



4.3. Application to the Quantum Monte Carlo Method

Figure 4.10: Comparison of number of iterations of GMRES in 4000 steps. This is for

N = 1024 system with K = 1. Notice that we recompute ILUTP with respect to the blue

curve. The mean of blue curve (SVD-based truncation) is 16.72 while the mean of red curve

(truncation by canonical angles) is 13.57.

0 500 1000 1500 2000 2500 3000 3500 4000 4500
0

5

10

15

20

25

30

35

40

Recomputation of ILUTP determined by blue curve.

N
um

be
r 

of
 G

M
R

E
S

 it
er

at
io

ns

Comparison between two truncation methods.

 

 
Trun. by SVD
Trun. based on canonical angles

72



Chapter 5

Slater Matrix Reordering

Some preconditioners require diagonal dominance of the system matrix. For example, the

ILU preconditioner works well when the matrix is diagonally dominant or close to diagonal

dominant. Further, if the matrix is far from diagonal dominant, the ILU algorithm is unstable

[80, 72, 59, 18]. In this chapter, we develop and test our reordering schemes on Slater matrix.

Because the Slater matrix keeps changing during the MCMC process, it is very important to

prevent the diagonal dominance from deteriorating. We reorder the Slater matrix regularly

by permuting rows or columns to improve its diagonal dominance.

In Section 5.1, we introduce a few popular methods and algorithms that improves the diag-

onal dominance. However, the disadvantage of these algorithms is that they cannot prevent

zeros from the diagonal. We build an reordering algorithm with diagonal cutoff to avoid

zeros in Section 5.2. In Section 5.3, we explain and test two reordering schemes, global and

local reordering.

We demonstrate the effectiveness of our reordering algorithm to improve the diagonal dom-

inance. Further, the cumulative local reordering turns out to be as competitive as global

reordering. In this chapter, all algorithms are tested on Slater matrix but they could also be

applied to improve the diagonal dominance of other matrices.

73



5.1. Slater Matrix and Bipartite Graph

Figure 5.1: Demonstration of a bipartite graph of particles and orbitals

Particles Orbitals

5.1 Slater Matrix and Bipartite Graph

The Slater matrix represents the relationship between particles and orbitals in QMC method.

Each element of the Slater matrix relates to a particle and an orbital. If we see from the

graph way, any element is a weighted edge that connects the particle and orbital. Because

the system has same number of particles and orbitals, the counterpart of Slater matrix in

graph theory is a bipartite graph [12, 85]. Slater matrix is the biadjacency matrix of the

bipartite graph. Note that the graph is undirected because there is no direction or order in

the physical system. Figure 2.1 shows the particles and orbitals in a 2D system. Figure 5.1

shows the bipartite graph that consists of two subsets, particles and orbitals.

Different Reordering

Our goal is to improve the diagonal dominance of Slater matrix by permuting rows and

columns. There are two straightforward and general methods, one is to maximize the diago-

nal and the other is to maximize the trace. Both methods are optimization problems, that is,

we want to maximize either the diagonal or the trace over all possible row/column permuta-

tions. For the bipartite graph, this is a combinatorial optimization problem [31, 42, 43, 51].

74



5.1. Slater Matrix and Bipartite Graph

If we want to maximize the diagonal of the Slater matrix, it means to find the maximum

matching for the bipartite graph [32, 55, 21]. Notice that the maximum matching may or

may not be unique. Also, maximizing the trace is equivalent to find the maximum weighted

matching [19, 47]. Therefore, we can make use of matching algorithms, obtain the matching

information, and then reorder the Slater matrix.

We explain both methods as follows.

1. Maximizing the diagonal. This method aims to make the Slater matrix close to

diagonal dominant as much as possible. Take one particular row for example. This

method maximizes the diagonal element column permutations.

This method is easy to implement with Greedy algorithm [67]. In practice, we start

from one particular row, maximize the diagonal element, and then fix this row and its

corresponding column. We keep maximizing the diagonal elements for the remaining

rows and columns till a single diagonal element is left. The more rows and columns

we have fixed, the less choices are left for the remaining steps. Sometimes the choices

are so few that no permutation will prevent zero on the diagonal. Greedy algorithm is

cheap to implement but the diagonal dominance may possibly deteriorate for the later

rows.

Because maximizing the diagonal means to find maximum matching for the bipartite

graph, we can utilize the max-flow method. There are a few algorithms available. In

our experiments, we use the push-relabel algorithm [19, 47].

2. Maximizing the trace. Another idea is to maximize the trace, that is, the sum of

the absolute values of all diagonal entries. Because any element of the Slater matrix

is positive, we can skip absolute values. As mentioned before, we convert the problem

of maximizing the trace to finding the maximum weighted matching. There are quite

a few options available, such as linear programming, the Hungarian algorithm, the

Ford-Fulkerson algorithm, and the Edmonds-Karp algorithm. In practice, we choose

the Hungarian algorithm [31, 42, 43, 51].

75



5.2. Our Reordering with Diagonal Cutoff

Algorithm 3 Greedy Algorithm to Maximize the Diagonal

1: for i = 1 to n− 1 do

2: Find the largest element among i-th to n-th elements in i-th row and column.

3: if the diagonal element is less than the largest element then

4: Swap the largest element and diagonal element by permuting corresponding rows

or columns.

5: end if

6: end for

5.2 Our Reordering with Diagonal Cutoff

The diagonal and trace maximization both improves the diagonal dominance to some extent.

However, it is possible that we get zero(s) on the diagonal for both methods. In our experi-

ments on Slater matrices, we do often get zeros on the diagonal for both methods. Zero(s) in

the diagonal will make ILU algorithm unstable or break down. Therefore, we need to fix the

issue by making the minimum of diagonal entries nonzero. This can be done by maximizing

the minimum of the diagonal. For Slater matrix, this is always applicable because physically

no particle is isolated (so we can always find a matching to maximize the smallest diagonal

element). In graph language, we find the optimal matching such that the longest path is

minimized.

Maximizing the Minimum Absolute Value of Diagonal Entries

We use bisection method and the push-relabel algorithm to maximize the minimum of the

diagonal. The optimal value is unique. However in practice, instead of finding the exact

value that maximizes the smallest diagonal element, we always look for a larger cutoff value

that allows much more matchings. This gives more freedom to operate other optimization

algorithm, such as maximum weighted matching algorithm. Following are main steps of the

algorithm.

76



5.2. Our Reordering with Diagonal Cutoff

1. Initialization. Convert A into a bipartite graph G (we want to convert the maximum

matching problem to a max-flow problem). Construct a directed graph G′ from G. We

obtain G′ by adding a source vertex s and a sink vertex v. Further, for any edge in

G, we change it into a directed edge in G′. We store the biadjacency matrix of G′ as

a sparse matrix. The form of G′ is

G′ =



0 1 · · · 1 0 · · · 0 0
... O A 0

0 · · · 0 0 · · · 0 1
... · · · · · · ...

· · · · · · 1

0 · · · · · · 0


.

2. Suppose the maximal element in A is b, b = sup{aij : aij ∈ A, 1 ≤ i, j ≤ N}. Notice

that b is positive since all elements of A are positive. Implement bisection method on

the interval [a, b], where a = 0. Terminate with cutoff ε.

• c =
a+ b

2
. Change all elements of A smaller than c into zeros and update G′

accordingly.

• Use the push-relabel algorithm to see if there exists a perfect matching in G′.

– If yes, a = c.

– If no, b = c.

This algorithm reminds a method to optimize the diagonal. Every time we obtain an ε,

we extract the max-flow matching information, reword it into row permutations, and then

transform A accordingly. Next we fix rows and columns whose diagonal elements are equal

to or very close to ε. We remove these rows and columns from A to obtain a smaller size

matrix A′. We then apply the algorithm of maximizing the minimum of the diagonal to the

new A′. We get a new ε′ for A′, extract matching information, and reword the information to

fix more rows and columns in the original Slater matrix A. We keep doing this until enough

77



5.2. Our Reordering with Diagonal Cutoff

Algorithm 4 Maximizing the minimum of the diagonal

1: Initialization. Convert the Slater matrix A to a bipartite graph G. Construct a directed

graph G′ by adding a source vertex s and a sink vertex v to G.

2: Initial cutoff ε =
start + terminal

2
.

3: for i = 1 to max do

4: Use the push-relabel algorithm to find the maximum matching

5: if (the maximum matching exists) then

6: Start = ε;

7: else(the maximum matching does not exist)

8: Terminal = ε;

9: end if

10: if (ε < tol1) or (|start - terminal| < tol2) then

11: Break;

12: end if

13: end for

(even all) rows and columns are fixed. However, this method is too expensive. We need to

implement O(N) times bisection method and O(N) times push-relabel algorithm.

Our Reordering with a Cutoff on the Diagonal

To reduce the cost, we propose a reordering which plays at middle ground. We mix both

the trace maximization and the minimum of the diagonal maximization. We maximize

the smallest element in the diagonal first, and then maximize the trace. This procedure

prevents zeros on the diagonal, and only employs one time bisection method and push-

relabel algorithm. The diagonal cutoff value ε we obtain from the bisection method prevents

zero from the diagonal. We call this reordering with a cutoff on the diagonal.

1. Maximize the minimum of the diagonal elements. Use both bisection method and the

78



5.2. Our Reordering with Diagonal Cutoff

push-relabel algorithm to find a cutoff ε.

2. Extract the max-flow information and reword it into row permutations for A. Permute

A.

3. Penalty step. Change elements of A that are smaller than ε into some negative value.

Construct graph G.

4. Use the Hungarian Algorithm to find the maximum weighted matching for G. Reword

the matching information and permute A accordingly.

Remark:

1. Notice that every time we swap two rows, we need to reindex (update) the particle that

is not in the diagonal. For example, if (1, 3), (2, 4), (3, 5) are three matching pairs we

obtain. Suppose we swap row 1 and row 3 first, which means we assign particle 1 to

orbital 3. After we have swapped the two rows, we need change the pair (3, 5) into (1,

5). This is because particle 1 and 3 are swapped in the first row permutation.

2. Since the matching is in terms of rows (particles), only row permutations will be

performed. Because the set of all row permutations is equivalent to the set of all column

permutations, it does not make any difference if we allow column permutations.

3. For more information about max-flow method and the Hungarian algorithm, see [13,

28, 56, 87]. For detailed code package, see also Melin [62] and David Gleich [7, 37].

Numerical Results

In this section, we test different reordering algorithms on Slater matrices. The first two

algorithms are to maximize the diagonal and the trace. The third is our reordering with a

cutoff on the diagonal. To maximize the diagonal, we use Greedy Algorithm. To maximize

the trace, we use the Hungarian algorithm.

79



5.2. Our Reordering with Diagonal Cutoff

It is shown that our reordering with a cutoff on the diagonal works best to improve both the

diagonal dominance and the spectrum of Slater matrix. Figure 5.2 shows that our reordering

with a diagonal cutoff improves the diagonal dominance significantly for most rows of the

Slater matrix. In Figure 5.3, it is shown that our reordering with a diagonal cutoff produces

much less ratios that are close to zero than the trace maximization reordering. This means

our reordering with a diagonal cutoff produces better diagonal dominance. Notice that we

order the ratios monotonic to make them more observable in Figure 5.2 and 5.2.

Figure 5.2: Comparison of diagonal dominance before and after our reordering with a diag-

onal cutoff for a 3D system with N =1024, K =1. The cutoff is 0.02. We compute the ratio

between the diagonal entry and the absolute row sum minus diagonal entry for each row.

0 200 400 600 800 1000
0

0.5

1

1.5

2

Different row of Slater matrix. Cutoff is 0.02

R
at

io
 o

f d
ia

go
na

l/(
ro

w
 s

um
 −

 d
ia

go
na

l)

Comparison of diagonal dominance. N = 1024, K = 1.

 

 
Ratios without reordering
Ratios after our reordering with a diagonal cutoff 

80



5.2. Our Reordering with Diagonal Cutoff

Figure 5.3: Comparison of diagonal dominance with different reordering for a 3D system

with N =1024, K =1. The cutoff is 0.02. We compute the ratio between the diagonal entry

and the absolute row sum minus diagonal entry for each row.

0 100 200 300 400 500 600
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Different row of Slater matrix. Cutoff is 0.02

R
at

io
 o

f d
ia

go
na

l/(
ro

w
 s

um
 −

 d
ia

go
na

l)

Comparison of diagonal dominance. N = 1024, K = 1.

 

 
Ratios without reordering
Ratios after our reordering with a diagonal cutoff 
Ratios after maximizing the trace

We also look into the effect of reordering on the spectrum. In Figure 5.4, we compare

between the Greedy Algorithm and our algorithm. The spectrum of a Slater matrix at a

specific Monte Carlo steps is shown. Figure 5.5 shows the result for a Slater matrix from

different Monte Carlo step. All results demonstrate that our reordering works better than

the Greedy Algorithm.

In Figure 5.6, we compare the trace maximization algorithm and our reordering algorithm

with a diagonal cutoff. Because there is no minimum requirement on the diagonal, the trace

maximization ends up with many eigenvalues around the origin. Therefore, our reordering

with a diagonal cutoff is better with less eigenvalues around the origin.

We also test different cutoffs on the diagonal, such as 0.02, and 0.5 in Figure 5.5(b) and

5.7(b). The spectrum are similar and not sensitive to the cutoff. Therefore in practice, we

are flexible on determining the cutoff of the diagonal.

81



5.2. Our Reordering with Diagonal Cutoff

Figure 5.4: Spectrum of a Slater matrix with different reordering algorithm (1).

−0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2
Spectrum of Slater matrix at a Monte Carlo step.

N = 1024, k = 1, 3D.

 

 
Spectrum of A without reordering
Spectrum of A with Greedy alg.

(a) Spectrum of a Slater matrix with greedy

algorithm to maximize the diagonal. The sys-

tem is in 3D and N = 1024, K = 1.

−0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2
Spectrum of Slater matrix at a Monte Carlo step.

cutoff of diagonal is 0.02. N = 1024, k = 1, 3D.

 

 
Spectrum of A without reordering
Spectrum of A with our reordering with a diagonal cutoff

(b) Spectrum of a Slater matrix with our

reordering algorithm with a diagonal cutoff

0.02. The system is in 3D and N = 1024, K

= 1.

Figure 5.5: Spectrum of a Slater matrix with different reordering algorithm (2).

−0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2
Spectrum of Slater matrix at a Monte Carlo step.

N = 1024, k = 0.5, 3D.

 

 
Spectrum of A with Greedy alg.
Spectrum of A without reordering

(a) Spectrum of a Slater matrix with greedy

algorithm to maximize the diagonal. The sys-

tem is in 3D and N = 1024, K = 0.5.

−0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2
Spectrum of Slater matrix at a Monte Carlo step.

cutoff of diagonal is 0.02. N = 1024, k = 0.5, 3D.

 

 
Spectrum of A without reordering
Spectrum of A with our reordering with a diagonal cutoff

(b) Spectrum of a Slater matrix with our

reordering algorithm with a diagonal cutoff

0.02. The system is in 3D and N = 1024, K

= 0.5.

82



5.3. Global and Local Reordering

Figure 5.6: Spectrum of a Slater matrix with different reordering algorithm (3).

−0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2
Spectrum of Slater matrix at a Monte Carlo step.

N = 1024, k = 1, 3D.

 

 
Spectrum of A without reordering
Spectrum of A with maximizing the trace reordering

(a) Spectrum of a Slater matrix with the al-

gorithm to maximize the trace. The system

is in 3D and N = 1024, K = 1.

−0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2
Spectrum of Slater matrix at a Monte Carlo step.

cutoff of the diagonal is 0.5. N = 1024, k = 1, 3D.

 

 
Spectrum of A without reordering
Spectrum of A with our reordering with a diagonal cutoff

(b) Spectrum of a Slater matrix with our re-

ordering algorithm with a diagonal cutoff 0.5.

The system is in 3D and N = 1024, K = 1.

5.3 Global and Local Reordering

If we apply our reordering onto the entire Slater matrix, we call it global reordering. The

cost of max-flow method and the Hungarian algorithm is O(N3), which is very expensive.

When we implement global reordering, we observe that only a few rows need to be permuted.

This suggests the possibility to reorder only a small part of the Slater matrix. As described

in Section 3.3 of Chapter 3, the Slater matrix A can be divided into

A11 A12

A21 A22

 by domain

decomposition methods. Therefore, we can apply our reordering with a diagonal cutoff onto

the submatrix A11 based on the factorization of A. We call this local reordering. If we

are using domain decomposition preconditioner or inexact preconditioning with inner-outer

GMRES, the factorization is immediately available. If we are using other preconditioners,

we need to first obtain A11 by domain decomposition method, and then apply our reordering.

Because A11 has much smaller dimension, the local reordering reduces the cost significantly,

that is, from O(N3) to O(1) per reordering.

Since a particle always moves locally, the Slater matrix changes locally and thus we expect

the local reordering is effective. Whenever a particle move is accepted, we perform local

83



5.3. Global and Local Reordering

reordering and store the matching information for the Slater matrix. When we need to

recompute a preconditioner or perform global reordering, we extract all accumulate local

reordering information and make the permutations. We call this accumulate local reordering.

In Figure 5.7, the number of iterations stays low as we recompute a new ILUTP every 200

Monte Carlo steps. This demonstrates the effectiveness of accumulate local reordering.

Figure 5.7: Number of iterations with accumulate local reordering for a 3D system with N

=1024 and K =1. We also perform global reordering once per sweep. The preconditioner

is ILUTP, updated by cumulative rank-one updates, and computed every 200 Monte Carlo

steps.

0 200 400 600 800 1000 1200 1400 1600 1800 2000
4

4.5

5

5.5

6

6.5

7

7.5

8
Accumulate local reordering plus one global reordering per sweep.

N
um

be
r 

of
 G

M
R

E
S

 it
er

at
io

ns

Monte Carlo steps. N = 1024, K = 1.

84



5.3. Global and Local Reordering

Algorithm 5 Local Reordering Algorithm

1: Maximize the minimum of the diagonal of A11, a small part of the Slater matrix corre-

sponds to the neighborhood of the moving particle. The solution give us the cutoff ε of

the minimum on the diagonal.

2: Penalty: change elements of A11 that are smaller than ε into some negative value. Con-

struct graph G.

3: Use the Hungarian Algorithm to find the maximum weighted matching for G. Permute

A11 accordingly.

4: Recover the reordering information for A and store it.

Comparison of the Two Reordering Schemes

In our experiments, we always perform an initial global reordering because it produces a

good initial matrix. Then we apply local reordering whenever there is a rank-one update

to the Slater matrix. To reduce the cost and also for simplicity, we do not reorder the

resulting Slater matrix instantly. Instead, we store the local reordering information till we

do next global reordering. So, we do cumulative local reordering and reorder the matrix

when necessary.

In general, when the smallest diagonal element becomes larger than the threshold, we perform

a global reordering. In practice, the global reordering is performed a couple of times every

sweep for all systems with K = 1. For systems with K = 0.5, it may take more times global

reordering every sweep. For example, four times global reordering are necessary for a 3D

system with N = 2000, and K = 0.5.

Table 5.3, Figure 5.8 and 5.9 show that the local reordering contains most information of

the global reordering for every rank-one update in the Slater matrix. This demonstrates

why we can perform cheaper local reordering with almost the same effect on the diagonal

dominance.

85



5.3. Global and Local Reordering

Figure 5.8: Number of row permutations in global and local reordering for a 3D system with

N =1024 and K =1.

0 5 10 15 20 25 30 35
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Reordering steps

lo
g e N

Number of permuted rows.

 

 

Global reord.
Local reord.

Table 5.1: Comparison between global and local reordering. The overlap means the number

of shared permutations between global and local reordering at each reordering. The size of

local or global reordering is the dimension of the squared matrix that we reorder.

Number of permutations in each reordering

Global reordering 4 24 5 3 20 10 14

Local reordering 2 3 2 3 3 11 2

Overlap percent.
2 3 2 3 3 9 2

100% 100% 100% 100% 100% 81.8% 100%

Size of local reordering 58 60 57 62 58 70 58

Size of global reordering 1024 1024 1024 1024 1024 1024 1024

86



5.3. Global and Local Reordering

Figure 5.9: Number of row permutations for the 3D system with N =1024 and K =1. The

red curve is the number of row permutations in the local reordering and the blue curve is

the number of overlapped row permutations between global and local reordering.

0 5 10 15 20 25 30 35
0

2

4

6

8

10

12

14

Reordering steps

Number of row permutations.

 

 

Shared row permutations
Row permut. of local reord.

87



Bibliography

[1] K. Ahuja. Recycling Krylov subspaces and preconditioners. PhD thesis, Department of

Mathematics, Virginia Polytechnic Institute and State University, 2011. Advised by E.

de Sturler.

[2] K. Ahuja, B. K. Clark, E. de Sturler, D. M. Ceperley, and J. Kim. Improved scaling for

quantum Monte Carlo on insulators. SIAM J. Sci. Comput., 33(4):1837–1859, 2011.

[3] M. A. Akgun, J. H. Garcelon, and R. T. Haftka. Fast exact linear and non-linear struc-

tural reanalysis and the Sherman-Morrison-Woodbury formulas. International Journal

for Numerical Methods in Engineering, 50(7):1587–1606, 2001.

[4] D. Alfé and M. J. Gillan. An efficient localized basis set for quantum Monte Carlo

calculations on condensed matter. Phys. Rev. B, 70:161101, 2004.

[5] D. Alfé and M. J. Gillan. Linear-scaling quantum Monte Carlo with non-orthogonal

localized orbitals. J. Phys.: Condensed Matter, 16:L305–L311, 2004.

[6] Z. Bai, W. Chen, R. Scalettar, and I. Yamazaki. Numerical Methods for Quantum

Monte Carlo Simulations of the Hubbard Model, in MultiScale Phenomena in Complex

Fluids. Higher Education Press, China, 2009.

[7] M. Bayati, M. Gerritsen, D. F. Gleich, A. Saberi, and Y. Wang. Algorithms for large,

sparse network alignment problems. Ninth IEEE International Conference on Data

Mining, pages 705–710, 2009.

88



Bibliography

[8] I. Beichl and F. Sullivan. The Metropolis algorithm. Computing in Science & Engi-

neering, 2000.

[9] M. Benzi. Preconditioning techniques for large linear systems: A survey. J. Comput.

Phys. 182, 2002.

[10] M. Benzi, D. B. Szyld, and A. van Duin. Orderings for incomplete factorization pre-

conditioning of nonsymmetric problems. SIAM J. Sci. Comput., 20:1652–1670, 1999.

[11] L. Bergamaschi, R. Bru, A. Martinez, and M. Putti. Quasi-Newton preconditioners for

the inexact Newton method. Electron. Trans. Numer. Anal., 23:76–87, 2006.

[12] J. A. Bondy and U. S. R. Murty. Graph Theory with Applications. North-Holland, 1976.

[13] Y. Boykov and V. Kolmogorov. An experimental comparison of min-cut/max- flow

algorithms for energy minimization in vision. Pattern Analysis and Machine Intelligence,

26:1124 – 1137, 2004.

[14] E. W. Brown, B. K. Clark, J. L. Dubois, and D. M. Ceperley. Path-integral Monte Carlo

simulation of the warm-dense homogeneous electron gas. Phys. Rev. Letts., 110(146405),

2013.

[15] J. F. Cai, E. J. Candes, and Z. Shen. A singular value thresholding algorithm for matrix

completion. SIAM J. Optim., 20:1956–1982, 2010.

[16] D. M. Ceperley and B. Alder. Quantum Monte Carlo, volume 231. American Association

for the Advancement of Science, 1986.

[17] D. M. Ceperley, G. V. Chester, and M. H. Kalos. Monte Carlo simulation of a many

fermion system. Phys. Rev. B, pages 3081–3099, 1977.

[18] T. Y. Chen. Preconditioning Sparse Matrices for Computing Eigenvalues and Solving

Linear Systems of Equations. PhD thesis, MIT, 2001.

89



Bibliography

[19] B. V. Cherkassky and A. V. Goldberg. On implementing the push-relabel method for

the maximum flow problem. Algorithmica, 19(4):390–410, 1997.

[20] E. Chow and Y. Saad. Experimental study of ILU preconditioners for indefinite matrices.

J. Comput. Appl. Math, 86(2):387–414, 1997.

[21] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms,

3rd Edition. MIT Press, 2009.

[22] E. de Sturler. Truncation strategies for optimal Krylov subspace methods. SIAM J.

Numer. Anal., 36(3):864–889, 1999.

[23] R. S. Dembo, S. C. Eisenstat, and T. Steihaug. Inexact Newton methods. SIAM J. on

Numerical Analysis, 19(2):400–408, 1982.

[24] I. S. Duff and J. Koster. The design and use of algorithms for permuting large entries

to the diagonal of sparse matrices. SIAM J. Matrix Anal. Appl., 20:889–901, 1999.

[25] I. S. Duff and J. Koster. On algorithms for permuting large entries to the diagonal of a

sparse matrix. SIAM J. Matrix Anal. Appl., 22:973–996, 2001.

[26] T. Eirola and O. Nevanlinna. Accelerating with rank-one updates. Linear Algebra and

its Applications, 121:511–520, 1989.

[27] E. Fermi and R. Richtmyer. Note on census-taking in Monte Carlo calculations. De-

classified report Los Alamos Archive, 805, 1948.

[28] G. W. Flake, S. Lawrence, C. L. Giles, and F.M. Coetzee. Self-organization and iden-

tification of web communities. Computer, 35(4):66–70, 2002.

[29] D. R. Fokkema, G. L. G. Slejipen, and H. A. van der Vorst. Accelerated inexact Newton

schemes for large systems of nonlinear equations. SIAM J. Sci. Comput., 19:657–674,

1997.

90



Bibliography

[30] W. M. C. Foulkes, L. Mitas, R. J. Needs, and G. Rajagopal. Quantum Monte Carlo

simulations of solids. Rev. Mod. Phys., 506:73–89, 2001.

[31] A. Frank. On Kuhn’s Hungarian method-A tribute from Hungary. Naval Research

Logistics, 2005.

[32] A. M. Frieze. An algorithm for algebraic assignment problems. Discrete Applied Math-

ematics, 1979.

[33] D Fritzsche, A. Frommer, S. D. Shank, and D. B. Szyld. Overlapping blocks by growing

a partition with applications to preconditioning. SIAM J. Sci. Comput., 35(1):A453–

A473, 2013.

[34] P. E. Gill and W. Murray. Modification of Matrix Factorizations after a Rankone

Change. Number 55-83 in The State of the Art in Numerical Analysis,. Academic

Press, New York, 1977.

[35] P. E. Gill, W. Murray, and M. A. Saunders. Methods for computing and modifying the

LDV factors of a matrix. Math. Comp., 29:1051–1077, 1975.

[36] L. Giraud, S. Gratton, and E. Martin. Incremental spectral preconditioners for se-

quences of linear systems. Applied Numerical Mathematics, 57:1164–1180, 2007.

[37] D. Gleich. MatlabBGL. Mathworks file exchange, 2006.

[38] N. Gmati and B. Philippe. Comments on the GMRES convergence for preconditioned

systems. Large-Scale Scientific Computing Lecture Notes in Computer Science, 4818:40–

51, 2008.

[39] G. H. Golub and C. F. Van Loan. Matrix Computations. The Johns Hopkins University

Press, Baltimore, MD, 2nd edition, 1989.

[40] R. M. Gray. Toeplitz and circulant matrices: A review. Now Publishers Inc, 2006.

91



Bibliography

[41] A. Greenbaum. Iterative Methods for Solving Linear Systems. SIAM, Philadelphia,

1997.

[42] D. M. Greig, B. T. Porteous, and A. H. Seheult. Exact maximum a posteriori estimation

for binary images. Journal of the Royal Statistical Society, 51(2):271–279, 1989.

[43] M. Grotschel, L. Lovász, and A. Schrijver. The ellipsoid method and its consequences

in combinatorial optimization. Combinatorica, 1(2):169–197, 1981.

[44] W. W. Hager. Updating the inverse of a matrix. SIAM Review, 31(2):221–239, 1989.

[45] B. Hammond, W. A. Lester, and P. J. Reynolds. Monte Carlo methods in ab initio

quantum chemistry. World Scientific, Singapore, 1994.

[46] J. H. Hetherington. Observations on the statistical iteration of matrices. Phys. Rev. A,

30, 1984.

[47] J. E. Hopcroft and R. M. Karp. An n5/2 algorithm for maximum matchings in bipartite

graphs. SIAM J. Comput., 2(4):225–231, 1973.

[48] R. A. Horn and C. R. Johnson. Topics in Matrix Analysis. Cambridge University Press,

1994.

[49] K. W. Gildersleeve J. P. Boyd. Numerical experiments on the condition number of

the interpolation matrices for radial basis functions. Applied Numerical Mathematics,

61:443–459, 2011.

[50] C. R. Johnson. Further lower bound for the smallest singular value. Linear Algebra and

its Applications, 272:169–179, 1998.

[51] R. Jonker and T. Volgenant. Improving the Hungarian assignment algorithm. Operations

Research Letters, 5(4):171–175, 2003.

[52] C. T. Kelley. Iterative Methods for Linear and Nonlinear Equations. SIAM, Philadel-

phia, 1995.

92



Bibliography

[53] C. T. Kelley. Solving Nonlinear Equations with Newtons Methods. SIAM, Philadelphia,

2003.

[54] T. Kerkhoven and Y. Saad. On acceleration methods for coupled nonlinear elliptic

systems. Numer. Mathematics., 60:525–548, 1991.

[55] S. Koziel and X. S. Yang. Computational Optimization, Methods and Algorithms, volume

356 of Studies in Computational Intelligence. Springer, 2011.

[56] H. W. Kuhn. The Hungarian method for the assignment problem. Naval Research

Logistics quarterly, 1955.

[57] R. B. Lehoucq, D. C. Sorensen, and C.Yang. ARPACK users’ guide: solution of large-

scale eigenvalue problems with implicitly restarted Arnoldi methods. SIAM, Philadel-

phia, 1998.

[58] H. Lütkepohl. Handbook of Matrices. John Wiley&Sons, 1996.

[59] J. Mayer. Alternative weighted dropping strategies for ILUTP. SIAM J. Sci. Comput.,

27:1424–1437, 2006.

[60] W. McMillan. Ground state of liquid helium. Physical Review, 138(2A), 1965.

[61] K. Meerbergen and Z. J. Bai. The Lanczos method for parameterized symmetric linear

systems with multiple right-hand sides. SIAM. J. Matrix Anal. & Appl, 31:1642–1662,

2010.

[62] A. Melin. Hungarian algorithm: An algorithm to find the minimum edge weight match-

ing for an arbitrary bipartite graph. Mathworks file exchange, 2006.

[63] R. Myers. Classical and Modern Regression with Applications. Duxbury Press, 1986.

[64] O. Nevanlinna. Convergence of Iterations for Linear Equations. Springer, 1993.

93



Bibliography

[65] P. K. V. V. Nukala and P. R. C. Kent. A fast and efficient algorithm for Slater deter-

minant updates in quantum Monte Carlo simulations. J. Chem. Phys., 130(20):204105,

2009.

[66] D. Osei-Kuffuor and Y. Saad. Preconditioning Helmholtz linear systems. Applied Nu-

merical Mathematics, 60:420–431, 2010.

[67] C. H. Papadimitriou and K. Steiglitz. Combinatorial Optimization Algorithms and

Complexity. Dover publications, 1998.

[68] M. L. Parks, R. Sampath, and P. Nukala. Efficient simulation of large-scale 3D fracture

networks via Krylov subspace recycling (in preparation).

[69] K. S. Riedel. A Sherman-Morrison-Woodbury identity for rank augmenting matrices

with application to centering. SIAM. J. Matrix Anal. & Appl., 13:659–662, 1992.

[70] M. Rosenbluth and A. Rosenbluth. Monte Carlo calculations of the average extension

of macromolecular chains. J. Chem. Phys., 23, 1955.

[71] A. N. Rubtsov, V. V. Savkin, and A. I. Lichtenstein. Continuous-time quantum Monte

Carlo method for fermions. Phys. Rev. B, B 72(3):035122, 2005.

[72] Y. Saad. Iterative Methods for Sparse Linear Systems. SIAM, Philadelphia, 2nd edition,

2003.

[73] Y. Saad and M. H. Schultz. GMRES: A generalized minimal residual method for solving

nonsymmetric linear systems. SIAM J.on Scientific and Statistical Computing, pages

856–869, 1986.

[74] H. A. Schwarz. Ueber einen Grenzübergang durch alternirendes Verfahren. 1870.

[75] J. R. Shewchuk. An introduction to the conjugate gradient method without the agoniz-

ing pain. Carnegie Mellon University, 1994.

94



Bibliography

[76] V. Simoncini and D. B. Szyld. Theory of inexact Krylov subspace methods and appli-

cations to scientific computing. SIAM J. Sci. Comput., 25(2):454–477, 2003.

[77] B. Smith, P. Bjorstad, and W. Gropp. Domain Decomposition: Parallel Multilevel

Methods for Elliptic Partial Differential Equations. Cambridge University Press, 2004.

[78] J. D. Tebbens and M. Tuma. Efficient preconditioning of sequences of nonsymmetric

linear systems. SIAM J. Sci. Comput., 29:1918–1941, 2007.

[79] J. Thijssen. Computational Physics. Cambridge University Press, 1999.

[80] E. Toczylowski. A perfect matching algorithm for sparse bipartite graphs. Discrete

Applied Mathematics, 9:263–268, 1984.

[81] A. Toselli and O. Widlund. Domain Decomposition Methods-Algorithms and Theory.

Springer, 2005.

[82] H. A. van der Vorst. GMRESR: A family of nested GMRES methods. Technische

Universiteit Delft, Faculteit der Technische Wiskunde en Informatica, 1991.

[83] H. A. van der Vorst. Iterative Krylov Methods for Large Linear Systems, 1st Edition.

Cambridge Monographs on Applied and Computational Mathematics. Cambridge Uni-

versity Press, 2009.

[84] J. M. Varah. A lower bound for the smallest singular value of a matrix. Linear Algebra

and its Applications, 11:3–5, 1975.

[85] D. B. West. Introduction to Graph Theory, 2nd Edition. University of Illinois, 2001.

[86] A. J. Williamson, R. Q. Hood, and J. C. Grossman. Linear-scaling quantum Monte

Carlo calculations. Phys. Rev. Lett., 87:246–406, 2001.

[87] W. L. Winston and J. A. B. Goldberg. Operations Research: Applications and Algo-

rithms. Philadelphia University, 2004.

95



Bibliography

[88] T. G. Wright. Eigtool. http://www.comlab.ox.ac.uk/pseudospectra/eigtool/, 2002.

[89] Y. S. Yu and D. H. Gu. A note on a lower bound for the smallest singular value. Linear

Algebra and its Applications, 253:25–28, 1997.

96


