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Abstract. We investigate and contrast the differences between the discretize–then–differentiate and
differentiate–then–discretize approaches to the numerical solution of parameter estimation problems. The
former approach is attractive in practice due to the use of automatic differentiation for the generation of
the dual and optimality equations in the first-order KKT system. The latter strategy is more versatile,
in that it allows one to formulate efficient mesh-independent algorithms over suitably chosen function
spaces. However, it is significantly more difficult to implement, since automatic code generation is no
longer an option. The starting point is a classical elliptic inverse problem. An a priori error analysis for
the discrete optimality equation shows consistency and stability are not inherited automatically from the
primal discretization. Similar to the concept of dual consistency, We introduce the concept of optimality
consistency. However, the convergence properties can be restored through suitable consistent modifica-
tions of the target functional. Numerical tests confirm the theoretical convergence order for the optimal
solution. We then derive a posteriori error estimates for the infinite dimensional optimal solution error,
through a suitably chosen error functional. This estimates are constructed using second order derivative
information for the target functional. For computational efficiency, the Hessian is replaced by a low
order BFGS approximation. The efficiency of the error estimator is confirmed by a numerical experiment
with multigrid optimization.

1. Introduction.

1.1. Background and objectives. Inverse problems use a priori measurements
to determine approximate values of one or more important parameters in a given

model. They are most frequently formulated as numerical optimization problems

[27], where the optimal parameter values, i.e., the inverse solution, correspond to
the minimum point of a carefully selected cost functional. This target functional in-

corporates both the model and measurement information. The optimization prob-
lems are constrained by the model equations. Often, inequality-type constraints

apply to both the inversion variables and the model state, to ensure feasibility of

the inverse solution. Regularization terms may also be added to the cost functional
to guarantee that the resulting constrained problem is well posed.

It is important to make the distinction between two types of inverse problems.
Solvers for model calibration problems [8] seek to minimize the target functional J .

This is the case in aerospace applications, where one aims to find wing shapes that
maximize the lift coefficient, or minimize drag [18]. Note that here the objective J is

considered to depend on inversion parameters only indirectly. The optimal control

of functional-type objectives, with PDE constraints using the finite element method,
is a well developed field of research (see, e.g., the excellent review [6], and references

therein). In parameter estimation problems, the objective is to explicitly retrieve the

optimal values of the parameters. The control of errors in inverse problem solution
itself through a posteriori error estimation for the primal and dual solutions, is not

well developed. Note that the objective functional depends on the optimal solution
only indirectly, through the model constraint equation. Hence, the theory for model
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calibration problems cannot be applied directly for parameter identification [7].

This paper considers parameter identification problems. We start from the first
order necessary conditions for a local minimum of the continuous and discrete

optimization problems. The dual consistency framework given in [16] is then ex-
tended to the discrete optimality condition. This equation, part of the discrete KKT

set, is obtained by linearization of the primal model along the inverse variables.

Consistency and stability are both essential for convergence of the discrete optimal
solution to its continuous counterpart. Similar to dual consistency, consistency of

the discrete optimality equation does not hold for all discretizations. However, the

analysis shows that consistent modifications [16] to the target functional, may be
used to restore stability and consistency of the linearized discretization. The consis-

tency analysis results are confirmed by the numerical experiments.

The second major contribution of this paper concerns error analysis and esti-

mation for adaptive mesh refinement in parameter identification problems. Energy

norm estimates for the control error have been derived for a rather general class of
elliptic inverse problems [10, 11]. However, such estimates are of very limited use

in practice, since they rely on problem dependent stability constants, and coercivity
estimates for the saddle–point problems stemming from the KKT equations [23].

Another approach is proposed by Becker and Vexler in [7]. The error estimates are

constructed using dual–weighted residuals [23], and apply to a modified problem
defined in terms of an error functional. This error functional may be chosen to be a

weighted average of the optimal solution. The authors of [7] assume that the param-
eter space is finite dimensional. We follow [7], and generalize their approach to the

case of an infinite dimensional control space. For high computational efficiency, the

exact Hessian of the modified problem is replaced by a quasi-Newton approxima-
tion. Numerical results demonstrate the efficiency of the error estimation strategy,

when used in a multigrid inversion algorithm.

We consider only time independent inverse problems. However, the results
presented here can be extended to the time-dependent problems, by leveraging

dual consistency results of Runge–Kutta DG discretizations [1, 26].

1.2. Organization. The outline for this paper is as follows. Section 2 gives the

general continuous and discrete formulations of parameter identification problems,
together with the associated first order necessary conditions. The model problem

and cost functional used in our numerical experiments are given in section 3, while

section 4 discusses their discrete counterparts. Equations are given for the reduced
gradients of the target functional with respect to the control variables, to be later

used in the optimization procedure. Section 3 also contains a consistency proof for
the discrete optimality condition, and the associated reduced gradient. The frame-

work for a posteriori error estimation for infinite dimensional controls, based on a

suitably chosen error functional, is discussed in detail in section 7. The numerical
results for the multigrid optimization, the error adaptation strategy, and the consis-

tency tests for the discrete optimality equation, are all given in section 9. Finally,
section 10 discusses the conclusions, and summarizes directions of future research.

2. Continuous and discrete formulations of parameter identification prob-

lems. Given the model state u ∈ U , the inversion parameters q ∈ Q, and the

real-valued target functional J , the general continuous formulation of an inverse

2



problem reads as follows:

Find q∗ = arg min
q∈Q,u∈U

J [u, q] ,(2.1)

subject to A [u, q] (χ) = 0 , ∀ χ ∈ U .

Here Q and U are appropriate function spaces, and A[·, ·](·) is a semi-linear form
(linear in the test functionals χ). We use square brackets for the nonlinear argu-

ments, and round parentheses for the linear arguments.

2.1. The continuous optimality system. The numerical solution of (2.1) is the

objective of the differentiate–then–discretize approach [2]. Here, one leverages the first
order necessary conditions for a local optimum [22] to obtain a linearized system of

optimality equations that are satisfied by all local solutions to (2.1). Given the opti-

mal solution pair {u∗, q∗} for (2.1), constrained optimization theory [22] guarantees,
under suitable a priori assumptions on J and A [21], the existence of Lagrange mul-

tipliers λ∗ such that the following Karush–Kuhn–Tucker (KKT) first order necessary

conditions hold for the triplet ξ∗ := {u∗, λ∗, q∗} ∈ X := U × U ×Q:

A [u∗, q∗] (ψλ) = 0 , ∀ψλ ∈ U ,(2.2a)

Au [u∗, q∗] (ψu,λ∗) = Ju [u∗, q∗] (ψu) , ∀ψu ∈ U ,(2.2b)

Aq [u∗, q∗] (ψq,λ∗) = Jq [u∗, q∗] (ψq) , ∀ ψq ∈ Q .(2.2c)

The subscripts of the semi-linear form A denote partial derivatives. The small

subscripts of the test functions denote the components of ψ = {ψu,ψλ,ψq} ∈ X .

These analytical optimality equations are obtained using the duality theory
of differential operators, and Fréchet differentiation over suitable function spaces.

Once derived, the analytical KKT system (2.2) is solved numerically as a set of

coupled PDEs, using a suitable space-time discretization. The discretization step
comes after the analytical differentiation of the primal model, hence the name of

the differentiate - first approach.

Assumption. For any admissible parameter function q ∈ Qadm the forward sys-

tem has a unique solution. The cost functional J and the primal weak–form PDE
are compatible [1]. Hence, the adjoint system is well posed and has a unique solu-

tion as well. We denote the primal and dual solutions by

u = U[q] , λ = Λ(q) ,(2.3)

respectively. The reduced cost functional depends only on q as follows:

j[q] = J [U[q], q] .(2.4)

Consider the Lagrangian functional L : X → R [22] associated with the con-

strained problem (2.1):

L[ξ] := J [u, q]−A [u, q] (λ) .(2.5)

The KKT system (2.2) can be written compactly as:

Lξ [ξ∗] (ψ) = 0 , ∀ψ ∈ X .(2.6)
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Here Lξ : X ×X → R denotes the first variation of the Lagrangian, and is equal to

Lξ [u, λ, q] (ψu,ψλ,ψq) = Ju[u, q](ψu) + Jq[u, q](ψq)

−A [u, q] (ψλ)−Au [u, q] (ψu,λ)−Aq [u, q] (ψq,λ)

= −A [u, q] (ψλ) + {Ju[u, q]−Au [u, q] (λ)} (ψu)

+
{
Jq[u, q]−Aq [u, q] (λ)

}
(ψq) .

Consider a second test function φ = {φu,φλ,φq} ∈ X . The second variation of the

Lagrangian reads:

Lξ,ξ [u, λ, q] (φu,φλ,φq ; ψu,ψλ,ψq)

= Ju,u[u, q](φu,ψu) + Ju,q[u, q](φq,ψu)

+ Jq,u[u, q](φu,ψq) + Jq,q[u, q](φq,ψq)

− Au [u, q] (φu,ψλ)−Aq [u, q] (φq,ψλ)

− Au [u, q] (ψu,φλ)−Au,u [u, q] (φu,ψu,λ)−Au,q [u, q] (φq,ψu,λ)

− Aq [u, q] (ψq,φλ)−Aq,u [u, q] (φu,ψq,λ)−Aq,q [u, q] (φq,ψq,λ) .

This equation can be rearranged as follows:

Lξ,ξ [ξ] (φ,ψ) = {Ju,u[u, q]−Au,u [u, q] (λ)} (φu,ψu)(2.7)

+
{
Ju,q[u, q]−Au,q [u, q] (λ)

}
(φq,ψu)

+
{
Jq,u[u, q]−Aq,u [u, q] (λ)

}
(φu,ψq)

+
{
Jq,q[u, q]−Aq,q [u, q] (λ)

}
(φq,ψq)

−Au [u, q] (φu,ψλ)−Au [u, q] (φλ,ψu)

−Aq [u, q] (φq,ψλ)−Aq [u, q] (φλ,ψq) .

The primal, dual, and optimality equations are often solved simultaneously (all–

at–once), to yield a new search direction for the nonlinear solution algorithm. For

example, the Newton update with the solution increment δξk at iteration k reads:

Lξ,ξ[ξk](δξk , ψ) = −Lξ[ξk](ψ) , ∀ψ ∈ X ,(2.8)

ξk+1 = ξk + δξk .(2.9)

In the continuous approach (the “differentiate–then–discretize” strategy) to solving the

inverse problem the KKT equations (2.6) are first derived analytically in an infinite
dimensional setting, and then are discretized with a numerical method of choice,

resulting in a system of nonlinear equations. The “optimize–then–discretize” approach
goes one step further, in that the full iterative solution algorithm for the optimality

system is derived in an infinite dimensional setting (2.8); the iterations (2.8) are then

discretized with the method of choice.
The advantage of the continuous formulation lies in its flexibility. The complete

solution algorithm, i.e., both the model equations, and the nonlinear minimization
algorithm for J , can be formulated in function spaces [2]. This allows arbitrary

choices of finite-element type discretizations once the problem has been fully speci-

fied in a functional space setting. Space-time meshes can be changed between non-
linear iterations, and convergence can be quantified in a mesh-independent fashion.

There are also few restrictions on the mesh types and trial function spaces [2, 4].
The main drawback of this method is its additional complexity in both derivation

and implementation, since it is not amenable to automatic code generation.
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2.2. The discrete optimality equations. The discrete approach (the “discretize–

then–differentiate” strategy) to solving the inverse problem starts from the discrete
counterpart of (2.1), obtained using the discontinuous Galerkin finite element method

[17]:

Find qh
∗ = arg min

qh∈Qh,uh∈U h
J h[uh, qh] ,(2.10)

subject to Ah[uh, qh] (χh) = 0 , ∀ χh ∈ U h .

The discrete operators, variables , and function spaces are denoted by the su-

perscript h. The discrete function spaces are U h ⊂ U , and Qh ⊂ Q. The weak
form Ah is linear in χh, but may be nonlinear in both qh and uh. The discrete weak

formulation of the primal model is a priori assumed to be a consistent and stable

discretization of the original weak-form PDE in (2.1).
Assumption. The primal discretization is convergent, and the solution uh is

unique for any given set of admissible inversion variables qh.
Again, we assume there exists at least one locally unique solution to (2.10).

Such a solution ξh
∗ := {uh

∗, λh
∗, qh

∗} ∈ X h = U h ×U h ×Qh is required to satisfy the

discrete KKT necessary conditions:

Ah[uh
∗, qh

∗](ψ
h
λ
) = 0 , ∀ψh

λ
∈ U h ,(2.11a)

Ah
uh [u

h
∗, qh

∗](ψ
h
u ,λh

∗) = J h
uh [u

h
∗, qh

∗](ψ
h
u ) , ∀ψh

u ∈ U h ,(2.11b)

Ah
qh [u

h
∗, qh

∗](ψ
h
q ,λh) = J h

qh [u
h
∗, qh

∗](ψ
h
q ) , ∀ ψh

q ∈ Qh ,(2.11c)

or, in a more compact notation

Lh
ξh [ξ

h
∗ ](ψ

h) = 0 , ∀ψh ∈ X h ,

with the discrete Lagrangian functional Lh : X h → R [22]

Lh[ξh] := J h[uh, qh]−Ah[uh, qh](λh) .(2.12)

The subscripts denote partial derivatives with respect to the discrete variables.

While the discretize–first approach lacks the flexibility of its differentiate–first
counterpart, it has the important advantage that the KKT system can be gener-

ated with relatively low human effort using automatic differentiation [12]. The

grid transfer operators used for mesh refinement and coarsening operations in dis-
continuous Galerkin are also amenable to automatic differentiation [1]. This can

significantly reduce the software development time required for a full implemen-
tation. Moreover, many practical problems require the reuse of legacy software;

and for many applications the solution algorithm needs to interface with existing

numerical optimization or ODE solvers that require the inputs to be discrete mesh
variables. In such cases discretize–first is the only feasible approach to solving the

inverse problem. Finally, we mention that the discrete adjoint approach is a natural
fit for multigrid optimization [7, 20], which compensates for its inability to adapt

the mesh between consecutive nonlinear iterations.

As previously indicated in the literature (see, e.g., [14, 16]), the linearization and
discretization steps do not generally commute. In the limit of the discretization, one

hopes for convergence of the discrete optimal solution, but this happens only if the
discretize–first approach yields a set of discrete KKT equations that are stable and

consistent discretizations of their continuous counterparts.
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2.3. Consistency of the discretizations. We now define consistency for the pri-

mal, dual, and optimality equation discretizations (2.11a)–(2.11c). The primal and
dual consistency definitions follow the ones given in [16]. In addition, we propose

to consider the consistency of the optimality equation discretization (definition 2.3);
this type of consistency will prove to be a crucial requirement for the convergence

of the discrete optimal solution qh to its analytical counterpart q.

Definition 2.1 (Primal consistency). The primal discretization (2.11a) is consistent
if the exact solutions u and q of the weak form primal equation (2.2a) satisfy:

Ah[u, q](ψλ) = 0 , ∀ ψλ ∈ U .

Definition 2.2 (Dual consistency). The primal discretization (2.11a) is dual consis-

tent, if any triplet ξ = {u,λ, q} ∈ X that verifies the weak-form primal and dual equations

(2.2a)–(2.2b), also satisfies:

Ah
uh [u, q](ψu,λ) = J h

uh [u, q](ψu) , ∀ ψu ∈ U .

Definition 2.3 (Optimality equation consistency). The discretization (2.11c) is

said to be consistent, if any triplet ξ = {u,λ, q} ∈ X that verifies (2.2c), also satisfies the
equation:

Ah
qh [u, q](ψq,λ) = J h

qh [u, q](ψq) , ∀ ψq ∈ Q .

The definitions above can be extended to time–dependent problems, where the

time dimension is discretized using a Runge–Kutta quadrature [1].

3. The model problem. Let Ω ⊂ Rd be a closed convex polyhedral domain
with d ∈ {2, 3}. Γ is the boundary of Ω. Consider the following elliptic boundary-

value problem, henceforth referred to as the primal model:

−∇ · (q ∇u) = f , x ∈ Ω ,(3.1)

u = g , x ∈ Γ .

Smoothness assumptions. Let the volume forcing f ∈ L2(Ω), and the Dirichlet

boundary data g ∈ H3/2(Γ). Also, assume the inversion variables q ∈ H2(Ω). The
formulation of the primal problem requires that q ≥ 0, a.e. on Ω. Also, assume that

any additional conditions on the domain boundary Γ [13] are satisfied, such that

the smoothness of the exact primal solution is u ∈ U ⊂ H2(Ω).
The smoothness of the solution space U guarantees existence and boundedness

of the following trace operators for any function v ∈ U [24]:

γ0 : H2(Ω) → H3/2(Γ) , γ0(v) = v|Γ ,(3.2a)

γ1 : H2(Ω) → H1/2(Γ) , γ1(v) = ∇v ·~n|Γ .(3.2b)

Inner products of functions in U on Ω and Γ are defined as follows:

〈u, v〉Ω :=
∫

Ω
u v dx , 〈u, v〉Γ :=

∫

Γ
γ0(u) γ0(v) ds , ∀ u, v ∈ U .
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They induce the corresponding norms on U and on the space of traces of functions

in U :

‖u‖L2(Ω) :=
√
〈u, u〉Ω , ‖u‖L2(Γ) :=

√
〈u, u〉Γ , ∀ u ∈ U .

Inner products on the space Q, and on the product space U × Q, are defined in a
similar fashion.

The target functional reads:

J [u, q] =
1

2
‖Hu − o‖2

L2(Ω) +
1

2
‖∇(q − qB)‖

2
L2(Ω) +

β

2
‖q − qB‖

2
L2(Ω) .(3.3)

The background control qB ∈ Q is positive a.e. on Ω. H : U → O ⊂ L2(Ω)
is a linear and continuous observation operator. The exact choice of regularization
parameter β > 0 depends on the discretization, as well as on the properties of

primal model and cost functional, and is the topic of current research: see, e.g., [15,

19, 29], and references therein. We will assume a constant regularization parameter.
With this choice of model and cost functional, the inverse problem (2.1) has the

following form:

Find q∗ = arg min
q∈Q

J [u, q] , subject to (3.1) .(3.4)

Note that there are no explicit bound constraints on the inversion variables q.

Rather, the positivity of the diffusion coefficient is enforced indirectly, by solving
(3.4) in a sufficiently small neighborhood of the reference profile. Another approach

to guarantee positivity is to explicitly enforce the bounds for the discrete parameter
values as constraints in the optimization; this will be the topic of future work.

3.1. The continuous KKT system for the model problem. In what follows,

adjoint operators will be denoted by a ∗ superscript. Assume no boundary terms
arise in the definition of the adjoint operator H∗ (compatibility condition 1 in [1]):

〈Hu, o〉Ω = 〈u,H∗o〉Ω , ∀ u ∈ U , o ∈ O .

With this, the adjoint system (2.2b) associated with the model problem (3.1)

reads:

−∇ · (q ∇λ) = H∗(Hu − o) , x ∈ Ω(3.5)

λ = 0 , x ∈ Γ .

Remark. With the smoothness assumptions on q, o, and u, the exact dual solu-
tion is λ ∈ H2(Ω).

The optimality equation (2.2c) associated with the model problem (3.1) reads:

〈∇q, ∇z〉Ω − 〈∇qB, ∇z〉Ω + β 〈q − qB, z〉Ω + 〈∇ · (z ∇u), λ〉Ω = 0 , ∀z ∈ Q .

The strong form of the optimality equation is then obtained through an integration
by parts:

−∆ q + β (q − qB) = −∆qB +∇u · ∇λ , x ∈ Ω ,(3.6)

∇q ·~n = ∇qB ·~n , x ∈ Γ .
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Remark. Using the strong maximum principle [24], this Helmholtz boundary

value problem can be shown to be well posed. Since the volume forcing
(
−∆qB +

∇u · ∇λ
)
∈ L2(Ω), and the Neumann boundary data ∇qB ·~n ∈ H1/2(Γ), the exact

solution q∗ ∈ H2(Ω). By the Sobolev imbedding theorem [24], q∗ is bounded
and continuous on Ω for d ∈ {2, 3}. Furthermore, in a small neighborhood of a

sufficiently large qB, the solution q∗ > 0 a.e. on Ω.

3.2. The reduced gradient. This section illustrates in detail the derivation of

the gradient of the reduced cost functional (2.4). Consider an arbitrary function

δq ∈ Q, and let δu :=
∂U

∂q
[q](δq), with δu ∈ U . The reduced gradient ∇qJ is

defined through identification from the following equality:

〈
∇qJ , δq

〉
Ω

:=
∂J

∂q
[u, q](δq) +

∂J

∂u
[u, q](δu) , ∀ δq ∈ Q .(3.7)

We make use of the tangent linear equation, which is obtained from the primal
model by differentiation in the direction (δu, δq) ∈ U ×Q:

−∇ · (δq ∇u)−∇ · (q ∇ δu) = 0 , x ∈ Ω(3.8)

δu = 0 , x ∈ Γ .

Using integration by parts, the adjoint equation (3.5), and the tangent linear

model (3.8), the reduced gradient formula becomes:

〈
∇qJ , δq

〉
Ω

=
∫

Ω
H∗(Hu − o) δu dx +

∫

Ω
∇q ∇δq dx(3.9)

−
∫

Ω
∇qB ∇δq dx + β

∫

Ω
(q − qB) δq ds

= −
∫

Ω
∇λ · ∇u δq dx −

∫

Ω
∆q δq dx +

∫

Ω
∆qB δq dx

+β
∫

Ω
(q − qB) δq dx +

∫

Γ
∇q ·~n δq ds −

∫

Γ
∇qB ·~n δq ds

:=
〈
∇qJ

∣∣
Ω

, δq
〉

Ω
+
〈
∇qJ

∣∣
Γ

, δq
〉

Γ
.

We can immediately see that the gradient is identically zero at the optimal
solution q∗, which satisfies (3.6).

4. A priori error analysis for the discrete optimality system. This section in-
vestigates the consistency properties of the optimality system for the discrete coun-

terpart of problem (3.4). The discontinuous Galerkin method [17] is used for the

spatial discretization.

4.1. Notation and preliminaries for the discrete problems. Assume the dis-
crete domains cover exactly the analytical ones, i.e., Ωh ≡ Ω, and Γh ≡ Γ. Let

U h
p = span{χj(x)}j=1...P ⊂ U denote (for any integer p ≥ 1) the discrete solution

space consisting on discontinuous piecewise polynomial functions of degree less
than or equal to p ≥ 1. Similarly, Qh

r = span{χ
q
i (x)}i=1...R ⊂ Q is the space of

piecewise polynomials of maximal degree r ≥ 1.

Following the notation in [16], the domain Ω is divided into shape-regular

meshes T h =
J⋃

j=1

κj, and T h
q =

I⋃

i=1

κ
q
i , comprised of polyhedral elements. The
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primal and dual discrete variables uh and λh are defined on the mesh T h, while

the triangulation T h
q holds the discrete inversion variables qh. Let ΓI and Γ

q
I be the

union of all distinct interior edges of T h and T h
q , respectively.

From the definition of U h
p , the restriction of any mesh function vh defined on

T h to an arbitrary element κ can be written as follows:

vh(x)
∣∣∣
κ
=

P

∑
j=1

v
j
κ χj(x) , ∀ uh ∈ U h

p , ∀ κ ∈ T h .(4.1)

The coefficients {v
j
κ}, j = 1 . . . P, fully determine the numerical solution inside κ.

Similarly, for arbitrary mesh functions zh ∈ Qh
r defined on the triangulation T h

q , one

has:

zh(x)
∣∣∣
κq

=
R

∑
i=1

zi
κq χ

q
i (x) , ∀ zh ∈ Qh

r , ∀ κq ∈ T h
q .(4.2)

Let hκ denote the diameter of κ ∈ T h:

hκ := max
x,y∈κ

‖x − y‖2 .

The area (or volume) of the element κ is |κ|, and its boundary is denoted by ∂κ.

Furthermore, h := maxκ∈T h hκ , and hmin := minκ∈T h hκ , with the assumption that
the ratio h/hmin is a constant independent of h. Given two neighboring elements κ−

and κ+ (with a common edge e = κ− ∩ κ+), we let uh
± := uh

∣∣∣
∂κ±

denote the trace of

uh on e, taken from the interior of κ±, respectively.
Let e = κ+ ∪ κ− denote an edge (or face) between two neighboring elements κ+

and κ−. We denote by |e| the length (or area) of e. Furthermore, the jump in the

solution over e is given by:

JuhK := uh
+~n+ + uh

−~n− ,

whereas the solution average at xh ∈ κ− ∩ κ+ is

{uh} :=
uh
− + uh

+

2
.

On a boundary edge e ⊂ Γ the definitions become {uh} := uh
+ and JuK := uh

+~n+.

Define the following two discrete inner product functionals over the space U h
p :

〈
uh, vh

〉
κ

:=
∫

κ
uh vh dx , ∀ κ ∈ T h ,

〈
uh, vh

〉
e

:=
∫

e
uh vh ds , ∀ e ∈ Γ ∪ ΓI .

They are valid for any mesh functions uh, vh ∈ U h
p . Inner products on Ω and

inner/outer boundaries are defined by extending the definitions above:

〈
uh, vh

〉
Ω
= ∑

κ∈T h

〈
uh, vh

〉
κ

,
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〈
uh, vh

〉
Γ
= ∑

e∈Γ

〈
uh, vh

〉
e

,

〈
uh, vh

〉
ΓI

= ∑
e∈ΓI

〈
uh, vh

〉
e

, ∀ uh, vh ∈ U h
p .

The inner products induce corresponding L2 norms on mesh elements (‖ · ‖κ) and

on mesh edges (‖ · ‖e) .

Assume that the mesh T h is regular enough such that, for some α1, α2 > 0,

α1h−1
κ ≤

|e|

|κ|
≤ α2h−1

κ , ∀κ ∈ T h .

Then the following trace inequalities hold for polynomial functions on κ [9, 17, 25]

‖uh‖∂κ ≤ C1(p) h−1/2
κ ‖uh‖κ ,(4.3a)

‖∇uh ·~n‖∂κ ≤ C2(p) h−1/2
κ ‖∇uh‖κ , ∀ uh ∈ U h

p .(4.3b)

Here the constants C1(p) and C2(p) depend only on the polynomial basis order p.

Let Hs(T h) denote the broken Sobolev space, for any real number s:

Hs(T h) :=
{

v ∈ L2(Ω) | ∀ κ ∈ T h, v|κ ∈ Hs(κ)
}

.

This broken space is endowed with the following norm:

‖v‖Hs(T h) :=

(

∑
κ∈T h

‖v‖2
Hs(κ)

)1/2

.(4.4)

We have that U h
p ⊂ Hs(T h) for any s ≥ 0.

Remark. Similar assumptions, definitions, and notations hold for mesh func-

tions in Qh
r defined on the triangulation T h

q .

4.1.1. Nested meshes and combined inner products. To be able to use different

meshes for the parameters and primal/dual variables, we make some simplifying

assumptions on the structure of the triangulations T h and T h
q [2]. Specifically, we

assume that T h can be obtained from T h
q by hierarchical mesh refinement, and

that p ≥ r. This implies that the basis functions for Qh
r can be written as linear

combinations of the bases for U h
p :

χ
q
ℓ
=

P

∑
j=1

Mℓj χj , ℓ = 1, . . . , R .

With (4.1) and (4.2), we define the combined inner product of a function uh ∈ U h
p

with a function zh ∈ Qh
r on an arbitrary element κ ∈ T h as follows:

〈
uh, zh

〉
κ

:=
∫

κ
uh zh ds =

P

∑
i=1

R

∑
ℓ=1

P

∑
j=1

ui
κ zℓκq Mℓj

〈
χi, χj

〉
κ

.
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Remark. A similar definition holds on any element κq ∈ T h
q , using the reverse

mapping Mq ∈ RP×R.

These definitions can be extended to cover the entire discrete domain Ω, bound-

ary Γ, or inner faces ΓI , and Γ
q
I , respectively. To do so, it suffices to note that since

T h
q can be obtained by coarsening T h, the set of inner edges for the parameter mesh

T h
q is included in that of the primal/dual

Γ
q
I ⊂ ΓI .(4.5)

Equation (4.5) will also be useful in defining and analyzing the discrete weak for-

mulations discussed in later sections.

4.2. The discrete KKT system. Consider the primal problem (3.1). Its symmet-

ric interior penalty discontinuous Galerkin (SIPG) discretization reads [16]:

Find uh ∈ U h
p such that:(4.6a)

N h[uh, qh](wh) =
∫

Ω
fh wh dx + Bh[gh, qh](wh) , ∀ wh ∈ U h

p ,

with

N h[uh, qh](wh) :=
∫

Ω
qh (∇uh · ∇wh) dx +

∫

ΓI∪Γ
φ JuhK JwhK ds(4.6b)

−
∫

ΓI∪Γ
JuhK

{
qh (∇wh ·~n)

}
ds

−
∫

ΓI∪Γ

{
qh (∇uh ·~n)

}
JwhK ds ,

Bh[gh, qh](wh) := −
∫

Γ
qh gh (∇wh ·~n) ds +

∫

Γ
φ gh wh ds .(4.6c)

Recall that ΓI denotes the union of all interior edges. The penalty parameter is

φ = φ̂ h−1
e , he := |e|1/(d−1) ,(4.7)

for any edge e, and dimension d ∈ {2, 3}. From (4.3)

|e| ≤ α2h−1
κ |κ| ≤ α2hd−1

κ ≤ α2hd−1 ⇒ he ≤ α
1/(d−1)
2 h , ∀κ ∈ T h ,(4.8)

where the constant depends on the regularity of the mesh but not on the particular

element κ.
Using the notation above, the energy norm (or natural DG norm) [17, 25] is

defined as:

‖v‖DG :=

(

∑
κ∈T h

∫

κ
q ∇v · ∇v dx + ∑

e∈ΓI∪Γ

φ̂ h−1
e

∫

e
JvK · JvK ds

)1/2

, ∀ v ∈ U .(4.9)

With this, we have the following result.

Theorem 4.1. Assume the exact solution to (3.1) belongs to Hs(Ω), s ≥ 2. For
sufficiently a large penalty parameter φ̂ > 0, there exists a constant C independent of h

such that

‖u − uh‖DG ≤ C hmin(p+1,s)−1‖u‖Hs(T h) ,(4.10)
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and

‖u − uh‖L2(Ω) ≤ C hmin(p+1,s)‖u‖Hs(T h) ,(4.11)

Proof. See [25, Chapter 2].

It is useful to note that (4.9) and (4.8) imply:

‖v‖DG ≥

(

∑
e∈ΓI∪Γ

φ̂ h−1
e

∫

e
JvK · JvK ds

)1/2

≥ φ̂1/2 α
−1/(2d−2)
2 h−1/2

(

∑
e∈ΓI∪Γ

∫

e
JvK · JvK ds

)1/2

,

and therefore

h−1/2

(

∑
e∈ΓI∪Γ

∫

e
Ju − uhK · Ju − uhK ds

)1/2

≤ C
∥∥∥u − uh

∥∥∥
DG

.(4.12a)

From (4.12a) we have that

h−1/2
∥∥∥u − uh

∥∥∥
L2(Γ)

≤ C(p)
∥∥∥u − uh

∥∥∥
DG

,(4.12b)

h−1/2
∥∥∥ Ju − uhK

∥∥∥
L2(ΓI )

≤ C(p)
∥∥∥u − uh

∥∥∥
DG

.(4.12c)

The discrete counterpart of J (3.3) reads:

J h[uh, qh] =
1

2

∫

Ω
(Hhuh − oh)T(Hhuh − oh) dx(4.13)

+
β

2

∫

Ω
(qh − qh

B)
T(qh − qh

B) dx

+
1

2

∫

Ω
(∇qh −∇qh

B)
T (∇qh −∇qh

B) dx

+Rh[uh, qh] .

The additional term Rh [16] is a consistent modification of the cost functional
which allows to establish the consistency of the discrete dual and optimality equa-

tions. We have the following definition [16]

Definition 4.2 (Consistent modification of the objective functional). The term
Rh[uh, qh] indicates a modification to the discrete functional J h. Rh must be Fréchet

differentiable in both of its arguments. This modification is said to be consistent if Rh

cancels when evaluated at the exact solutions u, q of (2.2a)–(2.2c):

Rh[u, q] = 0 .
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Remark. Any nontrivial consistent modification in (4.13) does impact both the

value and the gradient of the discrete cost functional J h. The modification term Rh

can only be expected to vanish in the limit of the discretization. Both Rh and its

Fréchet derivative are nonzero for fixed values of h > 0.

As shown in [16] consistent function modifications are required for certain in-

verse problems to guarantee dual consistency (of the primal discretization). This

concept is extended here to the optimality equation. Specifically, for the model
problem (3.4), consistent modifications to J h are used to introduce the stabilization

terms necessary for convergence of the optimality equation discretization (2.11c).

Given (4.13) and (4.6), we can formulate the discrete inverse problem as:

Find qh
∗ = arg min

qh∈Qh
r

J h[uh, qh] , subject to (4.6) .(4.14)

The discrete Lagrangian functional for (4.14)–(4.6) reads:

Lh[uh,λh, qh] := J h[uh, qh]−N h[uh, qh](λh)(4.15)

+
〈

fh, λh
〉

Ω
+ Bh[gh, qh](λh) .

Then, the discrete adjoint problem corresponding to (4.13)–(4.6) is:

Find λ ∈ U h
p such that:(4.16)

∂N h

∂uh
[uh, qh](wh,λh) =

∂J h

∂uh
[uh, qh](wh) , ∀wh ∈ U h ,

where, due to the special structure of N h

∂N h

∂uh
[uh, qh](wh,λh) := N h[wh, qh](λh)(4.17)

:=
∫

Ω
qh ∇wh · ∇λh dx +

∫

ΓI∪Γ
φ JwhK · JλhK ds

−
∫

ΓI∪Γ

(
JwhK · {qh ∇λh}+ {qh ∇wh} · JλhK

)
ds

:= N h[λh, qh](wh) ,(4.18)

and

∂J h

∂uh
[uh, qh](wh) :=

∫

Ω
(Hh wh)T(Hhuh − oh) dx +

∂Rh

∂uh
[uh, qh](wh) .(4.19)

The SIPG discretization (4.6) applied to (3.5) gives the following equation, which
defines the continuous adjoint variables λ

Find λ
h
∈ U h

p such that:(4.20)

N h[λ
h
, qh](wh) =

∫

Ω
(Hh wh)T(Hu − o)h dx , ∀ wh ∈ U h

p .

It is shown in [16] that SIPG is dual consistent with no modification of the cost

function (Rh = 0 in (4.13)), i.e., its discrete adjoint (4.16) represents a consistent
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discretization of the continuous adjoint PDE (3.5). Given that the strong form of

the adjoint equation (3.5) is also an elliptic problem, and the dual discretization is
of SIPG form, the L2-error bound in Theorem 4.1 transfers immediately to the dual

problem. Specifically, we have the following corollary:
Corollary 4.3. Consider the case where the modification of the cost function does not

depend on uh, i.e., Rh[uh, qh] = Rh[qh].
For a sufficiently large penalty parameter φ̂ > 0, the dual discretization (4.16) is a

consistent and stable discretization of the adjoint PDE. Moreover, the following a priori

error bounds hold:

‖λ− λh‖DG ≤ C hmin(p+1,s)−1‖λ‖Hs(T h) ,(4.21)

and

‖λ− λh‖L2(Ω) ≤ C hmin(p+1,s)‖λ‖Hs(T h) .(4.22)

Here C is a constant independent of the mesh size h.
Proof.

Theorem 4.1 applied to (4.20) gives

‖λ− λ
h
‖DG ≤ C hmin(p+1,s)−1‖λ‖Hs(T h) ,

‖λ− λ
h
‖L2(Ω) ≤ C hmin(p+1,s)‖λ‖Hs(T h) ,

with C a constant independent of the mesh size h.

∂Rh

∂uh
[uh, qh](wh) = 0 .

Subtracting (4.20) from (4.16) leads to the equation

N h[λh − λ
h
, qh](wh) = obs. discretization residual+

∂Rh

∂uh
[uh, qh](wh) .

which allows to bound the difference between the discrete and the continuos adjoint

solutions as follows.

Remark. The discrete adjoint solution may be superconvergent in practice. How-

ever, we shall use the conservative error bounds (4.21)–(4.22) throughout our deriva-
tions.

It remains to be determined whether the discrete optimality condition (2.11c) is
a stable and consistent discretization of the strong form optimality condition (2.2c).

The optimality equation in the discrete KKT system of the problem (4.14) reads:

∂N h

∂qh
[uh, qh](zh,λh)−

∂Bh

∂qh
[gh, qh](zh,λh) =

∂J h

∂qh
[uh, qh](zh) , ∀ zh ∈ Qh

r .(4.23)

Noting that the admissible test functionals zh ∈ Qh
r represent directions of differen-

tiation, one has:

∂N h

∂qh
[uh, qh](zh,λh) :=

∫

Ω
zh ∇uh · ∇λh dx
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−
∫

ΓI∪Γ

(
JuhK {zh ∇λh ·~n}+ JλhK {zh ∇uh ·~n}

)
ds ,

∂Bh

∂qh
[gh, qh](zh,λh) := −

∫

Γ
zh gh ∇λh ·~n ds ,

and from (4.13)

∂J h

∂qh
[uh, qh](zh) = β

∫

Ω

(
qh − qh

B

)
zh dx +

∫

Ω

(
∇qh −∇qh

B

)
· ∇zh dx

+
∂Rh

∂qh
[uh, qh](zh) .

The discrete optimality condition (4.23) reads:

∫

Ω
∇
(

qh − qh
B

)
· ∇zh dx + β

∫

Ω
(qh − qh

B) zh dx +
∂Rh

∂qh
[uh, qh](zh)

=
∫

Ω

(
∇uh · ∇λh

)
zh dx −

∫

ΓI

(
JuhK

{
zh (∇λh ·~n)

}
+ JλhK

{
zh (∇uh ·~n)

})
ds

−
∫

Γ

(
uh − gh

)
zh (∇λh ·~n) ds −

∫

Γ
λh zh (∇uh ·~n) ds , ∀ zh ∈ Qh

r .

We recast this as an equation for

q̂h := qh − qh
B ,

to get

∫

Ω
∇q̂h · ∇zh dx + β

∫

Ω
q̂h zh dx +

∂Rh

∂q̂h
[uh, qh](zh)(4.24)

=
∫

Ω

(
∇uh · ∇λh

)
zh dx

−
∫

ΓI

(
JuhK

{
zh (∇λh ·~n)

}
+ JλhK

{
zh (∇uh ·~n)

})
ds

−
∫

Γ

(
uh − gh

)
zh ∇λh ·~n ds −

∫

Γ
λh ∇uh ·~n zh ds , ∀ zh ∈ Qh

r .

4.3. A priori analysis of the discrete optimality equation. The SIPG discretiza-

tion of the continuous optimality equation (3.6) reads [25]:

Find q̃h ∈ Qh
r such that, for all zh ∈ Qh

r :(4.25) ∫

Ω
∇q̃h · ∇zh dx + β

∫

Ω
q̃h zh dx

−
∫

Γ
q
I

(
Jq̃hK {∇zh ·~n}+ JzhK {∇q̃h ·~n}

)
ds +

∫

Γ
q
I

φq Jq̃hK JzhK ds

=
∫

Ω
(∇u · ∇λ)h zh dx .

Here the penalty parameter φq is defined for any edge eq ∈ Γ
q
I , and dimension

d ∈ {2, 3}:

φq := φ̂q
∣∣eq

∣∣1/(d−1)
,
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and φ̂q > 0 sufficiently large for the discretization to be convergent (see, e.g., [25]).

Comparing the SIPG discretization (4.25) of the strong form optimality problem
(3.6) against the discrete equation (4.24), we note that the stabilization terms, as well

as the fluxes on interior faces, are not present in the linearized discretization (4.24).
Hence, despite being consistent according to Definition 2.3, the discrete optimality

equation (4.24) is not stable, and cannot be expected to yield useful results.

To add the necessary terms back into (4.24), a consistent modification of the
functional (4.13) J h is needed. More precisely, let:

Rh[uh, q̂h] :=
1

2

∫

Γ
q
I

φq Jq̂hK Jq̂hK ds −
∫

Γ
q
I

Jq̂hK {∇q̂h ·~n}ds .(4.26)

For q, qB ∈ H2(Ω), the consistency of the functional J h is preserved. Note that

the jump in qh over any edge e ∈ ΓI\Γ
q
I is zero. This follows from the continuity of

the discrete optimal solution inside any element κq ∈ T
q

h .

Remark. The modification (4.26) does not depend on u. Consequently

∂Rh

∂uh
[uh, q̂h] = 0 ,

and this modification does not contribute to (4.19), therefore it does not change

the dual equation (4.16). The dual consistency property is maintained, and the
conclusions of the Corrolary 4.3 remain valid.

Remark. The residual Rh in (4.26) is directly computable from the discrete ap-

proximations uh and qh, and it does not depend on the dual variable λh. Moreover,
its Fréchet derivative with respect to qh along zh ∈ Qh

p introduces suitable interior

edge and penalty terms in the discrete optimality equation (4.24), while leaving the
discrete adjoint equation (4.16) unmodified:

∂Rh

∂qh
[uh, qh](zh) =

∫

Γ
q
I

φq Jq̂hK JzhK ds(4.27)

−
∫

Γ
q
I

(
JzhK {∇q̂h ·~n}+ Jq̂hK {∇zh ·~n}

)
ds .

With (4.26) the discrete optimality equation (4.24) reads:
∫

Ω
∇q̂h · ∇zh dx + β

∫

Ω
q̂h zh dx(4.28)

−
∫

Γ
q
I

(
Jq̂hK {∇zh ·~n}+ JzhK {∇q̂h ·~n}

)
ds +

∫

Γ
q
I

φq Jq̂hK JzhK ds

=
∫

Ω
(∇uh · ∇λh) zh dx −

∫

Γ
λh zh (∇uh ·~n) ds

−
∫

ΓI

JuhK {zh (∇λh ·~n)}ds −
∫

ΓI

JλhK {zh (∇uh ·~n)}ds

−
∫

Γ
(uh − gh)zh (∇λh ·~n) ds , ∀ zh ∈ Qh

r .

Note that (4.28) is linear in zh, and is valid under any scaling of the test variables.

Without loss of generality we can consider only test functions with
∥∥∥zh
∥∥∥
L∞(ΓI∪Γ)

=

1.
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We regard (4.28) as a numerical scheme applied to solve the continuous opti-

mality equation (3.6), and seek to derive error bounds for its solution. For this,
consider the following integral termsI1

Γ :=
∫

Γ
(uh − gh) zh (∇λh ·~n) ds ,I2

Γ :=
∫

Γ
λh zh (∇uh ·~n) ds ,

and I1
ΓI

:=
∫

ΓI

JuhK {zh (∇λh ·~n)}ds ,I2
ΓI

:=
∫

ΓI

JλhK {zh (∇uh ·~n)}ds ,

defined for arbitrary zh ∈ Qh
r . We have the following a priori estimates for the

magnitude of these integral terms.

Lemma 4.4. Assume u, λ ∈ Hs(Ω), and g ∈ Hŝ(Γ), with ŝ = s − 1/2. The
following upper bounds hold:

∣∣∣I1
Γ

∣∣∣ ≤ C(p)
(

h1/2 .
∥∥∥u − uh

∥∥∥
DG

+ hmin(p+1,ŝ) |g|H ŝ(Γ)

)

·
∥∥∥∇λh ·~n

∥∥∥
L2(Γ)

∥∥∥zh
∥∥∥
L∞(ΓI∪Γ)

,

∣∣∣I2
Γ

∣∣∣ ≤ C(p) h1/2 .
∥∥∥λ− λh

∥∥∥
DG

∥∥∥∇uh ·~n
∥∥∥
L2(Γ)

‖zh‖L∞(ΓI∪Γ) ,

∣∣∣I1
ΓI

∣∣∣ ≤ C(p)
∥∥∥u − uh

∥∥∥
DG

∥∥∥∇λh
∥∥∥
L2(T h)

‖zh‖L∞(ΓI∪Γ) ,(4.29a)

∣∣∣I2
ΓI

∣∣∣ ≤ C(p)
∥∥∥λ− λh

∥∥∥
DG

∥∥∥∇uh
∥∥∥
L2(T h)

‖zh‖L∞(ΓI∪Γ) .(4.29b)

The constants C(p, r), Ĉ(p, r), C1(p, r), and C2(p, r) depend only on the orders p and r of
the polynomial bases.

Proof.

We can write:I1
Γ =

∫

Γ

[
(uh − u) + (u − g) + (g − gh)

]
zh ∇λh ·~n ds

=
∫

Γ
(uh − u) zh ∇λh ·~n ds

︸ ︷︷ ︸I1,1
Γ

+
∫

Γ
(g − gh) zh ∇λh ·~n ds

︸ ︷︷ ︸I1,2
Γ

.

It follows from (4.12b) that:

∣∣∣I1,1
Γ

∣∣∣ =
∣∣∣∣
∫

Γ
(u − uh) zh (∇λh ·~n) ds

∣∣∣∣

≤
∥∥∥u − uh

∥∥∥
L2(Γ)

∥∥∥zh (∇λh ·~n)
∥∥∥
L2(Γ)

≤
∥∥∥u − uh

∥∥∥
L2(Γ)

∥∥∥∇λh ·~n
∥∥∥
L2(Γ)

∥∥∥zh
∥∥∥
L∞(Γ)

by (4.12b) ≤ C(p) h1/2 .
∥∥∥u − uh

∥∥∥
DG

∥∥∥∇λh ·~n
∥∥∥
L2(Γ)

∥∥∥zh
∥∥∥
L∞(Γ)

.
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The integral I1,2
Γ can be bounded using classical results from polynomial approxi-

mation theory for finite element methods. Given that the boundary data g ∈ Hs(Γ),
the following upper bound holds for the interpolation error on Γ [9]:

∥∥∥g − gh
∥∥∥
L2(Γ)

≤ Cg(p) hmin(p+1,ŝ) |g|H ŝ(Γ) ,(4.30)

with a mesh-independent constant Cg. The functional | · | is the broken Sobolev
semi–norm on Γ. The Cauchy–Schwartz inequality gives:

∣∣∣I1,2
Γ

∣∣∣ ≤
∥∥∥g − gh

∥∥∥
L2(Γ)

∥∥∥∇λh ·~n
∥∥∥
L2(Γ)

∥∥∥zh
∥∥∥
L∞(Γ)

≤ Cg(p) hmin(p+1,ŝ) |g|H ŝ(Γ)

∥∥∥∇λh ·~n
∥∥∥
L2(Γ)

∥∥∥zh
∥∥∥
L∞(Γ)

.

This proves inequality (4.29a). Note that (4.29a) follows immediately from an

identical argument by reversing the roles of u and λ, since λ|Γ = 0, by equation

(3.5).

Consider now the integral I1
ΓI

. Since the jump operator J·K is linear, and JuK = 0

(for any u ∈ U ), we can write:

∣∣∣I1
ΓI

∣∣∣ =
∣∣∣∣
∫

ΓI

Juh − uK {zh ∇λh ·~n}ds

∣∣∣∣

≤
∫

ΓI

∣∣∣Juh − uK {zh ∇λh ·~n}
∣∣∣ ds

≤
∫

ΓI

∣∣∣h−1/2Juh − uK h1/2 {zh ∇λh ·~n}
∣∣∣ ds

≤
∥∥∥h−1/2Juh − uK

∥∥∥
L2(ΓI )

h1/2
∥∥∥{zh ∇λh ·~n}

∥∥∥
L2(ΓI )

≤
∥∥∥h−1/2Juh − uK

∥∥∥
L2(ΓI )

h1/2
∥∥∥{∇λh ·~n}

∥∥∥
L2(ΓI )

∥∥∥{zh}
∥∥∥

L∞(ΓI )

≤
∥∥∥h−1/2Juh − uK

∥∥∥
L2(ΓI )

(
h ∑

e∈ΓI

∥∥∥{∇λh ·~n}
∥∥∥

2

L2(e)

)1/2 ∥∥∥{zh}
∥∥∥

L∞(ΓI )

Since

(
a + b

2

)2

≤
a2

2
+

b2

2

and therefore

∥∥∥{∇λh ·~n}
∥∥∥

2

L2(e)
=
∫

e

(
(∇λh ·~n)+ + (∇λh ·~n)−

2

)2

ds

≤
1

2

∫

e

(
(∇λh ·~n)+

)2
ds +

1

2

∫

e

(
(∇λh ·~n)−

)2
ds

=
1

2

∥∥∥(∇λh ·~n)+
∥∥∥

2

L2(e)
+

1

2

∥∥∥(∇λh ·~n)−
∥∥∥

2

L2(e)
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we have

h ∑
e∈ΓI

∥∥∥{∇λh ·~n}
∥∥∥

2

L2(e)
≤

h

2 ∑
κ∈T h

∥∥∥∇λh ·~n
∥∥∥

2

L2(∂κ)

(trace) ≤ C(p) h ∑
κ∈T h

h−1
∥∥∥∇λh

∥∥∥
2

L2(κ)

≤ C(p)
∥∥∥∇λh

∥∥∥
2

L2(T h)

≤ C(p)
∥∥∥λh

∥∥∥
2

Hs(T h)
.

Consequently

∣∣∣I1
ΓI

∣∣∣ ≤ C(p)
∥∥∥h−1/2Juh − uK

∥∥∥
L2(ΓI )

∥∥∥∇λh
∥∥∥
L2(T h)

∥∥∥{zh}
∥∥∥

L∞(ΓI )

by (4.12c) ≤ C(p)
∥∥∥u − uh

∥∥∥
DG

∥∥∥∇λh
∥∥∥
L2(T h)

∥∥∥{zh}
∥∥∥

L∞(ΓI )
.

Thus (4.29a) holds. Since the SIPG discretization is dual consistent, (4.29b) follows

by reversing the roles of u and λ,.

An immediate consequence of the lemma is the following corollary:

Corollary 4.5. For all p ≥ 1 and s > 3/2, the discrete optimality equation associated
to the problem (4.14) is asymptotically consistent.

Remark. With our specific smoothness assumptions (s = 2, ŝ = 3/2), the inte-

grals (4.29a)–(4.29b) are O(h1/2).

A priori convergence order. Let eh
q = q̂h − q̃h, eu = u − uh, and eλ = λ− λh.

Subtracting (4.25) from (4.28) gives the following equation for eh
q:

SIPG discretization of the continuous KKT system. The SIPG discretization

of the forward problem:

N h[ũh, q̃h](wh) =
∫

Ω
q̃h (∇ũh · ∇wh) dx +

∫

ΓI∪Γ
φ JũhK JwhK ds

Re f .(4.6) : −
∫

ΓI∪Γ
JũhK

{
q̃h (∇wh ·~n)

}
ds

−
∫

ΓI∪Γ

{
q̃h (∇ũh ·~n)

}
JwhK ds

N h[ũh, q̃h](wh) =
∫

Ω
fh wh dx −

∫

Γ
q̃h gh (∇wh ·~n) ds +

∫

Γ
φ gh wh ds .

The SIPG discretization of the continuous adjoint equation is:

Re f .(4.20) N h[λ̃h, q̃h](wh) =
∫

Ω
(Hh wh)T(Hũ − o)h dx , ∀ wh ∈ U h

p .

The SIPG discretization of the continuous optimality equation:

Re f .(4.25)
∫

Ω
∇q̃h · ∇zh dx + β

∫

Ω
q̃h zh dx
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−
∫

Γ
q
I

(
Jq̃hK {∇zh ·~n}+ JzhK {∇q̃h ·~n}

)
ds +

∫

Γ
q
I

φq Jq̃hK JzhK ds

=
∫

Ω
(∇ũ · ∇λ̃)h zh dx .

Discrete KKT system. The discrete forward problem reads:

N h[ûh, q̂h](wh) =
∫

Ω
q̂h (∇ûh · ∇wh) dx +

∫

ΓI∪Γ
φ JûhK JwhK ds

Re f .(4.6) : −
∫

ΓI∪Γ
JûhK

{
q̂h (∇wh ·~n)

}
ds

−
∫

ΓI∪Γ

{
q̂h (∇ûh ·~n)

}
JwhK ds

N h[ûh, q̂h](wh) =
∫

Ω
fh wh dx −

∫

Γ
q̂h gh (∇wh ·~n) ds +

∫

Γ
φ gh wh ds .

The discrete adjoint problem is:

Re f .(4.16) N h[λ̂h, q̂h](wh) =
∫

Ω
(Hh wh)T(Hhûh − oh) dx

The discrete optimality condition reads:

Re f .(4.28)
∫

Ω
∇q̂h · ∇zh dx + β

∫

Ω
q̂h zh dx

−
∫

Γ
q
I

(
Jq̂hK {∇zh ·~n}+ JzhK {∇q̂h ·~n}

)
ds +

∫

Γ
q
I

φq Jq̂hK JzhK ds

=
∫

Ω
(∇ûh · ∇λ̂h) zh dx + RI
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SIPG of continuous forward eqn:

N h[uh, qh](wh) =
∫

Ω
fh wh dx

−
∫

Γ
qh gh (∇wh ·~n) ds

+
∫

Γ
φ gh wh ds .

Discrete forward problem:

N h[ûh, q̂h](wh) =
∫

Ω
fh wh dx

−
∫

Γ
q̂h gh (∇wh ·~n) ds

+
∫

Γ
φ gh wh ds .

SIPG of continuous adjoint eqn:

N h[λ
h
, qh](wh) =∫

Ω
(Hh wh)T(Hu − o)h dx

Discrete adjoint problem:

N h[λ̂h, q̂h](wh) =∫

Ω
(Hh wh)T(Hhûh − oh) dx

SIPG of continuous optimality eqn:

∫

Ω
∇qh · ∇zh dx + β

∫

Ω
qh zh dx

−
∫

Γ
q
I

JqhK {∇zh ·~n}ds

−
∫

Γ
q
I

JzhK {∇qh ·~n}ds

+
∫

Γ
q
I

φq JqhK JzhK ds

=
∫

Ω
(∇u · ∇λ)h zh dx

Discrete optimality condition:

∫

Ω
∇q̂h · ∇zh dx + β

∫

Ω
q̂h zh dx

−
∫

Γ
q
I

Jq̂hK {∇zh ·~n}ds

−
∫

Γ
q
I

JzhK {∇q̂h ·~n}ds

+
∫

Γ
q
I

φq Jq̂hK JzhK ds

=
∫

Ω
(∇ûh · ∇λ̂h) zh dx + RI

5. A priori convergence order. Let eh
q = q̂h − q̃h, eu = u−uh, and eλ = λ−λh.

Subtracting (4.25) from (4.28) gives the following equation for eh
q:

Find eh
q ∈ Qh

p such that, for all zh ∈ Qh
r :

∫

Ω
∇eh

q · ∇zh dx + β
∫

Ω
eh

q zh dx −
∫

Γ
q
I

(
Jeh

qK {∇zh ·~n}+ {∇eh
q ·~n} JzhK

)
ds +

∫

Γ
q
I

φq Jeh
qK JzhK ds

=
∫

Ω
(∇uh · ∇λh −∇u · ∇λ) zh dx

−
∫

Γ
λh zh (∇uh ·~n) ds −

∫

Γ
(uh − gh)zh (∇λh ·~n) ds

−
∫

ΓI

JuhK {zh (∇λh ·~n)}ds −
∫

ΓI

JλhK {zh (∇uh ·~n)}ds

=
∫

Ω
(∇uh · ∇λh) zh dx −

∫

Ω
(∇u · ∇λh) zh dx +

∫

Ω
(∇u · ∇λh) zh dx −

∫

Ω
(∇u · ∇λ) zh dx

−I1
Γ − I2

Γ − I1
ΓI

− I2
ΓI

.

= −
∫

Ω
(∇eu · ∇λh) zh dx −

∫

Ω
(∇u · ∇eλ) zh dx

−I1
Γ − I2

Γ − I1
ΓI

− I2
ΓI

.
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= −
∫

Ω
(∇eu · ∇λh) zh dx −

∫

Ω
(∇uh · ∇eλ) zh dx −

∫

Ω
(∇eu · ∇eλ) zh dx

−I1
Γ − I2

Γ − I1
ΓI

− I2
ΓI

Consider the following elliptic error equation defined over the broken Sobolev space

Hs(T h):

−∆ eq + β eq = −∇eu · ∇λh −∇uh · ∇eλ −∇eu · ∇eλ , x ∈ Ω ,(5.1)

∇eq ·~n = 0 , x ∈ Γ .

Under our solution regularity assumptions, the Lax–Milgram theorem [25, The-

orem 2.8] guarantees the existence of a constant C independent on h, such that:

‖eq‖Hs(T h) ≤ C
∥∥∥∇eu · ∇λh +∇uh · ∇eλ +∇eu · ∇eλ

∥∥∥
L2(T h)

≤ C ∑
κ∈T h

∣∣∣∣
∫

Tk

(
∇eu · ∇λh +∇uh · ∇eλ +∇eu · ∇eλ

)
dx

∣∣∣∣

≤ C ∑
κ∈T h

(
‖∇eu‖L2(κ) ‖∇λ

h‖L2(κ) + ‖∇eλ‖L2(κ) ‖∇uh‖L2(κ)(5.2)

+ ‖∇eu‖L2(κ) ‖∇eλ‖L2(κ)

)
.

Now, from the discrete Cauchy inequality, and Theorem 4.1, one has:

∑
κ∈T h

‖∇eu‖L2(κ) ‖∇λ
h‖L2(κ) ≤

(

∑
κ∈T h

‖∇eu‖
2
L2(κ)

)1/2 (

∑
κ∈T h

‖∇λh‖2
L2(κ)

)1/2

= ‖∇eu‖L2(T h) · ‖∇λ
h‖L2(T h)

≤ Cu(p) hmin (p+1,s)−1 ‖u‖Hs(T h) ‖∇λ
h‖L2(T h) .

Similarly, using the convergence result for the dual problem (Corollary 4.3), we
obtain:

∑
κ∈T h

‖∇eλ‖L2(κ) ‖∇uh‖L2(κ) ≤ Cλ(p) hmin (p+1,s)−1 ‖λ‖Hs(T h) ‖∇uh‖L2(T h) ,

and

∑
κ∈T h

‖∇eu‖L2(κ) ‖∇eλ‖L2(κ) ≤ Cu(p) Cλ(p) h 2 min (p+1,s)−2 ‖u‖Hs(T h) ‖λ‖Hs(T h) .

Substituting these upper bounds in equation (5.2), it follows that:

‖eq‖Hs(T h) ≤ C hmin(p+1,s)−1
(
‖uh‖Hs(T h) + ‖λh‖Hs(T h)

)
.(5.3)

The unperturbed SIPG discretization of (5.1) is:

Find eh
q ∈ Qh

p such that, for all zh ∈ Qh
r :(5.4)

∫

Ω
∇eh

q · ∇zh dx + β
∫

Ω
eh

q zh dx

−
∫

Γ
q
I

(
Jeh

qK {∇zh ·~n}+ {∇eh
q ·~n} JzhK

)
ds +

∫

Γ
q
I

φq Jeh
qK · JzhK ds

= −
∫

Ω
∇eu · ∇λh zh dx −

∫

Ω
∇uh · ∇eλ zh dx −

∫

Ω
∇eu · ∇eλ zh dx .
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The discrete solution eh
q of (5.4) verifies the a priori error estimate given in Theorem

4.1, hence:

‖eq − eh
q‖DG ≤ C hmin(p+1,s)−1‖eq‖Hs(T h)

≤ C h 2 min(p+1,s)−2
(
‖uh‖Hs(T h) + ‖λh‖Hs(T h)

)
.

One obtains:

‖eh
q‖DG ≤ ‖eq‖DG

+ ‖eq − eh
q‖DG

≤ C hmin(p+1,s)−1
(
‖uh‖Hs(T h) + ‖λh‖Hs(T h)

)
.

The equation for the discrete optimal solution error, denoted by eh
q, obtained by

subtracting (4.25) from (4.28), is a perturbed SIPG discretization. The perturbation

is given by the sum of the boundary and inner face integrals

RI := I1
Γ + I2

Γ + I1
ΓI

+ I2
ΓI

.

Subtracting the SIPG discretization of the error equation from the equation for eh
q,

leads to:

Neq

(
eh

q − eh
q, zh

)
=
∫

Ω
∇
(

eh
q − eh

q

)
· ∇zh dx + β

∫

Ω

(
eh

q − eh
q

)
zh dx(5.5)

−
∫

Γ
q
I

(
Jeh

q − eh
qK · {∇zh}+ {∇

(
eh

q − eh
q

)
} · JzhK

)
ds

+
∫

Γ
q
I

φq Jeh
q − eh

qK · JzhK ds

= −RI .

The bilinear form Neq(e
h
q − eh

q, zh) : RN ×RN → R is of SIPG form. Thus, it

is continuous and coercive [25]. The right hand side of equation (5.5) is linear in
the test functionals zh. By the Lax–Milgram theorem applied on RN , and (4.29a)–

(4.29b), we obtain the following a priori bound:

‖eh
q − eh

q‖Hs(T h
q )

≤ C |I1
Γ + I2

Γ + I1
ΓI

+ I2
ΓI
|(5.6)

≤ C(r, p) hmin(p+1,s)−3/2
(
‖u‖L2(T h) + ‖λ‖L2(T h)

)
.

6. Solution of the optimization problem. We seek to solve the optimization

problem by a gradient based method such as quasi-Newton on nonlinear conjugate
gradients. Such methods are well suited for large scale optimization problems. In a

discrete framework we need to compute the reduced gradient ∇qhJ h of the discrete

cost functional (4.26). The application of this approach requires only the forward
and the adjoint models, but not the explicit optimality equation.

6.1. The discrete reduced gradient. The gradient ∇qhJ h of (4.26) is defined by

the following identity:

〈
∇qhJ h, δqh

〉
Ω

:= J h
qh [u

h, qh](δqh) + J h
uh [u

h, qh](δuh) , ∀ δqh ∈ Qh
r ,(6.1)
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where

δuh :=
∂uh

∂qh
[qh](δqh) ∈ Qh

r .

The discrete adjoint solution λh is a valid test function for the primal model (4.6).

The Fréchet derivative of (4.6), tested with λh, in the direction (δuh, δqh) ∈ U h
p ×Qh

r ,
gives the discrete tangent linear model:

∂N h

∂qh
[uh, λh](δqh) +

∂N h

∂uh
[uh, λh](δuh)(6.2)

−
∂Bh

∂qh
[gh, λh](δqh)−

∂Bh

∂uh
[gh,λh](δuh) = 0 .

From the adjoint equation (4.16) we get:

N h, ∗(δuh,λh) = J h
uh [u

h, qh](δuh) .(6.3)

Then, using (6.3) and (6.1), and the integration by parts formula on T h
q ,

∫

Ω
∇qh · ∇δqh dx = −

∫

Ω
∆qh δqh dx

+
∫

Γ
q
I∪Γ

{∇qh} · JδqhK ds +
∫

Γ
q
I

J∇qhK · {δqh}ds ,

we find that:
〈
∇qhJ h, δqh

〉
Ω

:=
∫

Ω
∇qhJ h

∣∣∣
Ω
δqh dx +

∫

Γ
∇qhJ h

∣∣∣
Γ
δqh ds(6.4)

+
∫

Γ
q
I

∇qhJ h
∣∣∣
Γ

q
I

δqh ds .

The cell, boundary and interior face contributions to the gradient, are computed,

respectively, through the following equations:
∫

Ω
∇qhJ h

∣∣∣
Ω
δqh dx := −

∫

Ω
∆qh δqh dx +

∫

Ω
∆qh

B δqh dx

+β
∫

Ω
(qh − qh

B)δqh dx −
∫

Ω
∇uh · ∇λh δqh dx ,

∫

Γ
∇qhJ h

∣∣∣
Γ
δqh ds :=

∫

Γ

(
uh (∇λh ·~n) + (∇uh ·~n)λh

)
δqh ds

+
∫

Γ
(∇qh ·~n − ∇qh

B ·~n) δqh ds −
∫

Γ
gh ∇λh ·~n δqh ds ,

∫

Γ
q
I

∇qhJ h
∣∣∣
Γ

q
I

δqh ds :=
∫

Γ
q
I

J∇qhK · {δqh}ds +
∫

Γ
q
I

φ JδqhK · JqhK ds

+
∫

Γ
q
I

{∇qh} · JδqhK ds −
∫

Γ
q
I

{∇qh
B} · JδqhK ds

+
∫

ΓI

(
JuhK · {δqh ∇λh}+ {δqh ∇uh} · JλhK

)
ds .

Lemma 6.1. If we have convergence of the discrete primal and dual solutions, then

lim
h→0

∇qhJ h = ∇qJ ,
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i.e., the reduced discrete gradient is asymptotically consistent.

Proof. Use equations (3.9), (6.4), and Lemma 4.4.

Remark. In addition to cell and boundary components, which are present in
the continuous gradient equation (3.9), the discrete gradient (6.4) is also influenced

by traces on the interior element faces. Even though the contribution defined on

interior faces ∇qhJ h
∣∣∣
Γ

q
I

vanishes in the limit of the discretization, it is nonzero for

fixed h > 0.

6.1.1. Computation of the discrete gradient. We now discuss the computation

of the reduced gradient from an implementation perspective. The more straightfor-
ward, albeit significantly less efficient approach is the component–wise calculation

of gradient entries. Let N be the total number of degrees of freedom (DoFs) for the
mesh T h

q , and the size of the discrete solution qh. It follows that N = I × R, where

I is the total number of elements defined on T h
q , and the constant R denotes the

number of degrees of freedom per element.

Assume the following ordering in the components of the discrete reduced gra-

dient: the
(
(i − 1)× R + j

)
-th entry corresponds to the j-th DoF defined in the i-th

mesh element κ
q
i . Note that all the discontinuous Galerkin DoFs are defined in-

side the mesh elements, given that the numerical solution is discontinuous at the

inter-element boundaries.

Let

δqh(x) :=

{
χ

q
j (x) , x ∈ κ

q
i

0 , x 6∈ κ
q
i

,(6.5)

in (6.4), and any indices i = 1 . . . I, and j = 1 . . . R. Then

〈
∇qhJ h, δqh

〉
Ω
=
(
∇qhJ h

)
(i−1)×R+j

.

With this observation, I × R evaluations of the functionals (6.4) are needed for

a complete gradient computation. For practical values of I, we need a significantly

better approach.

The sparse structure of the test functional (6.5) can be exploited to dramatically
increase the efficiency of the gradient computation. To see this, use equation (6.5)

in (6.4), to get:

(∇qhJ h)(i−1)×R+j := GΩ + GΓ + GΓI
,(6.6)

where the volume and boundary integrals reduce to

GΩ :=
∫

κ
q
i

∇qhJ h
∣∣∣
Ω

χ
q
j dx ,

and

GΓ := ∑
e∈Γ∩∂κ

q
i

∫

e
∇qhJ h

∣∣∣
Γ

χ
q
j ds .
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The inner face integrals warrant further examination. Consider for brevity only the

integral below (the rest of the inner face terms in (6.4) are treated similarly):
∫

Γ
q
I

J∇qhK · {δqh}ds = ∑
e∈Γ

q
I

∫

e
J∇qhK · {δqh}ds

= ∑
e∈Γ

q
I

1

2

∫

e

(
∇qh

+ ·~n −∇qh
− ·~n

)
(δqh

+ + δqh
−) ds ,

where we let the edge e = κ+ ∩ κ−. Let κ
q
i ≡ κ+. Then the integral above reduces to

∫

Γ
q
I

J∇qhK · {δqh}ds = ∑
e∈∂κ

q
i ∩Γ

q
I

∫

e

(
∇qh

+ ·~n −∇qh
− ·~n

)
δqh

+ ds .

This locality implies that all three integrals in (6.6) can be assembled in parallel over
all DoF indices 1 . . . N. Hence, the cost of a reduced gradient computation becomes

comparable to that of evaluating a single gradient component on the triangulation
T h

q using equation (6.4).

7. Targeted a posteriori error estimation. Aposteriori estimates are important

in practical computations, in order to steer the grid adaptation such as to obtain
the target accuracy with small computational effort. In the inverse problem setting

one needs to adjust the grids for the forward problem, the adjoint problem, and the

optimality equation, in order to control the error in the inverse problem solution.
Note that controlling the local errors in each of the problems (primal, dual, and

optimal) is likely to be an inefficient strategy, since only the impact of these local
errors on the accuracy of the inverse solution is of interest.

Our approach to posterior error estimation follows Becker and Vexler [7]. We

generalize their work to cover the case where the parameter space Q is infinite
dimensional. From this we derive a computational procedure applicable to our

formulation using discrete adjoints. Our derivation of the error estimates uses an
approach based on perturbations of the KKT system, and better explains the impact

and of different numerical errors and the magnitude of different error estimation

terms.

7.1. Aposteriori error estimation based on an error functional. Consider an

error functional

E [q] : Q → R .(7.1)

We assume an infinite dimensional parameter space Q. The gradient of E is defined

by identification from
〈
∇qE , δq

〉
= Eq[q](δq) , ∀ δq ∈ Q .

As in [7], we seek a error representation of the type:

E [qh]− E [q] ≈ Eh + h.o.t. ,

where Eh is computable in practice, and the higher order terms (h.o.t) are ignored.
This representation captures one aspect of the difference between q and qh; the

adaptivity will target a reduction in this aspect of the error.
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Consider now a perturbation of the optimality system (2.6) in the form of a

small added residual ρ. The perturbed optimality conditions have the solution ξ
ρ
∗ ,

(
Lξ

[
ξ
ρ
∗
]
+ ρ

)
(ψ) = 0 , ∀ψ ∈ X .(7.2)

For the unperturbed case ρ = 0 we obtain the solution ξ0
∗ = ξ∗ of (2.6).

Let Mρ denote the Lagrangian associated with the functional E and with the
perturbed optimality conditions [7]:

Mρ[ξ,σ] = E [ξ]−
(
Lξ [ξ] + ρ

)
(σ) .(7.3)

The Lagrange multipliers associated with the constraints posed by the perturbed
optimality conditions (7.2) are σ. Let (ξ∗,σ∗) be a stationary point of M0[ξ,σ] =
E [ξ]−Lξ [ξ] (σ) for the unperturbed case ρ = 0. We have that

M0
ξ[ξ∗,σ∗](ψ) = Eξ[ξ∗](ψ)−Lξ,ξ [ξ∗] (ψ,σ∗) = 0 , ∀ψ ∈ X ,(7.4a)

M0
σ [ξ∗,σ∗](φ) = −Lξ [ξ∗] (φ) = 0 , ∀φ ∈ X .(7.4b)

Equation (7.4b) states that if (ξ∗,σ∗) is a stationary point of M0, then ξ∗ is a sta-

tionary point of L, since the first order optimality conditions for L are imposed as
constraints in M0.

Consider now the residual ρh for which the optimal solution of the continuous

problem equals the optimal solution of the discrete problem, ξ
ρ
∗ = ξh

∗ :

ρh = Lξ [ξ∗]−Lξ

[
ξh
∗

]
= −Lξ

[
ξh
∗

]
(7.5)

⇒
(
Lξ

[
ξh
∗

]
+ ρh

)
(ψ) = 0 , ∀ψ ∈ X .

The error in the cost functional (7.1) reads:

E [ξ∗]− E [ξh
∗] = M0[ξ∗,σ∗]−Mρ[ξh

∗,σ∗]

= E [ξ∗]− E [ξh
∗]−

(
Lξ[ξ∗]−Lξ

[
ξh
∗

]
− ρh

)
(σ∗)

= Eξ[ξ∗](ξ∗ − ξ
h
∗)−Lξ,ξ[ξ∗](ξ∗ − ξ

h
∗ ,σ∗) + 〈ρ,σ∗〉+ h.o.t.

=
〈
ρh,σ∗

〉
+ h.o.t. ,

where the first two terms disappear due to the stationarity of M0 condition (7.4a).
Combining the equations we are lead to the following error estimate:

E [ξh
∗]− E [ξ∗] = Lξ

[
ξh
∗

]
(σ∗) + h.o.t.

= A[uh, qh](∆σu
∗)

+Ju[u
h, qh](∆σλ

∗ )−Au[u
h, qh](∆σλ

∗ ,λh)

+Jq[u
h, qh](∆σq

∗)−Aq[u
h, qh](∆σq

∗,λh) + h.o.t.

A more accurate estimator is obtained as follows. Define

e = ξh
∗ − ξ∗

N(s) = E [ξ∗ + s e]−
(
Lξ[ξ∗ + s e] + sρh

)
(σ∗)

Mρ[ξh
∗,σ∗]−M0[ξ∗,σ∗] = N(1)− N(0) =

∫ 1

0
N′(s) ds
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Therefore we have that

E [ξh
∗]− E [ξ∗] = Mρ[ξh

∗,σ∗]−M0[ξ∗,σ∗]

=
∫ 1

0

(
Eξ[ξ∗ + se](e)−Lξ,ξ[ξ∗ + se](e,σ∗)−

〈
ρh,σ∗

〉)
ds

= −
〈
ρh,σ∗

〉
+

1

2

(
Eξ[ξ∗](e)−Lξ,ξ[ξ∗](e,σ∗)

)

+
1

2

(
Eξ[ξ

h
∗ ](e)−Lξ,ξ[ξ

h
∗](e,σ∗)

)
+ R(e, e, e)

= −
〈
ρh,σ∗

〉
+

1

2

(
Eξ[ξ

h
∗ ](e)−Lξ,ξ[ξ

h
∗](e,σ∗)

)
+ R(e, e, e)

where the residual of the trapezoidal integration method is of order three with

respect to e. Using the fact that ξh
∗ = ξ∗ + e, expanding Eξ[ξ

h
∗] and Lξ,ξ[ξ

h
∗ ] in

Taylor series about ξ∗, and using the stationarity condition (7.4a), we obtain:

E [ξh
∗]− E [ξ∗] = −

〈
ρh,σ∗

〉
+

1

2
Eξ,ξ[ξ∗](e, e)−

1

2
Lξ,ξ,ξ[ξ∗](e, e,σ∗) + h.o.t.

where the higher order terms are at least of order three. This analysis reveals the

structure of the second order error terms. It also shows that the additional terms
considered by Becker are the second order terms. These second order terms are

the residual of the optimality equation (7.4a) for the optimal discrete solution. This

residual is weighed against the error e.
Remark. We note the following:

1. All the residuals in the above equation are for the continuous operators.
2. By performing the integration by parts in reverse order, we arrive at the

strong form (high derivatives of the polynomials inside each element) dot

product with the σ.
3. Each residual can be written as a sum of residuals within each element.

Similarly, each element-wise residual can be computed in strong form, by
differentiating the polynomials, to arrive at polynomial residuals.

7.2. The first order posterior estimator. Using the general residual formula
(7.5) the first order posterior error estimator reads

Eh = −
〈
ρh,σ∗

〉

=
〈
Lξ

[
ξh
∗

]
,σ∗

〉

=
〈
Lλ

[
ξh
∗

]
,σλ

∗

〉
+
〈
Lu

[
ξh
∗

]
,σu

∗

〉
+
〈
Lq

[
ξh
∗

]
,σq

∗

〉

= ρu[ξ
h
∗] (σ

λ

∗ ) + ρλ[ξ
h
∗ ] (σ

u
∗) + ρq[ξ

h
∗] (σ

q
∗) .

The residuals ρ are given by the continuous Lagrangian derivatives evaluated at

the discrete solutions. Specifically, ρu, ρλ, ρq, represent the residuals in the primal
equation, dual equation, and optimality equation, respectively:

ρu[ξ
h
∗] (·) := −A[uh, qh](·) ,

ρλ[ξ
h
∗] (·) := Ju[u

h, qh](·)−Au[u
h, qh](·,λh) ,

ρq[ξ
h
∗] (·) := Jq[u

h, qh](·)−Aq[u
h, qh](·,λh) .
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For example, consider the weak form of our elliptic model problem (3.1)

A[q, u](φ) = a[q](u,φ)− ℓ(φ) , ∀φ ∈ U ,

where a is bilinear, and ℓ is linear. The corresponding residuals are

ρu[ξ
h
∗](·) = −a

[
qh
∗

]
(uh

∗, ·) + ℓ(·) ,

ρλ[ξ
h
∗](·) = Ju

[
uh
∗, qh

∗

]
(·)− au

[
qh
∗

]
(·,λh

∗) ,

ρq[ξ
h
∗](·) = Jq

[
uh
∗, qh

∗

]
(·)− aq

[
qh
∗

]
(·, uh

∗,λh
∗) .

Explain here why ∆σ and not just σ The multipliers σ that weigh the residuals
are estimated through local higher–order interpolation [23]. Consider, for example,

the error weight

∆σλ

∗ := σλ

∗ − Ihσ
λ

∗ .

Here Ih : U → U h denotes the projection operator onto the discrete solution space.
We can approximate the weight ∆σλ

∗ through a patch-wise higher–order interpola-

tion of σh
λ onto a coarser mesh. Suppose σh

λ is defined on a regular mesh T
q

h (see

section 4 for details on the notation). The higher-order interpolant σH
λ is defined

on a coarser mesh T
q

H that is obtained directly from T
q

h through pure hierarchical

coarsening (e.g., H := 2h). Then, for all mesh elements κ ∈ T h
q , we set:

∆σλ

∗

∣∣
κ
≈
(
(σλ

∗ )
H − (σλ

∗ )
h
)∣∣∣

κ
.

Similar computations are done for the other weights ∆σu
∗, ∆σ

q
∗, etc.

7.3. Calculation of the multipliers σ∗. We are now left with the task of calcu-

lating σ∗ from the stationarity condition (7.4a). These additional multipliers have
components for the forward, dual, and optimality problems, σ∗ = {σu

∗,σλ

∗ ,σq
∗}.

The Lagrangian M0 (7.3) has the form

M0[ξ,σ] = E [q]−Lq [ξ] (σ
q
∗)−Lu [ξ] (σ

u
∗)−Lλ [ξ] (σλ

∗ )

= E [q]−Lq [ξ] (σ
q
∗)−Lu [ξ] (σ

u
∗)

where the last equality holds true if u = U[q]. The first variation of this Lagrangian

M0 (7.4a) about the optimal point ξ∗ = {u∗, λ∗, q∗} can be expanded as follows

M0
ξ[ξ∗,σ∗](δξ) = Eq[q∗](δq)

−Lq,q [ξ∗] (δq , σ
q
∗)−Lq,u [ξ∗] (δu , σ

q
∗)−Lq,λ [ξ∗] (δλ , σ

q
∗)

−Lu,q [ξ∗] (δq , σu
∗)−Lu,u [ξ∗] (δu , σu

∗)−Lu,λ [ξ∗] (δλ , σu
∗)

=
{
Eq[q∗]−Lq,q [ξ∗] (σ

q
∗)−Lu,q [ξ∗] (σ

u
∗)
}
(δq)(7.6)

−
{
Lq,u [ξ∗] (σ

q
∗) + Lu,u [ξ∗] (σ

u
∗)
}
(δu)

−
{
Lq,λ [ξ∗] (σ

q
∗) +Lu,λ [ξ∗] (σ

u
∗)
}
(δλ)
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Using (2.7), and a compact notation for the nonlinear arguments, we have for the

elliptic equation

M0
ξ[ξ∗,σ∗](ψ) =

{
Eq [ξ∗]−Ju,q [ξ∗] (σ

u
∗)−Jq,q [ξ∗] (σ

q
∗)

+Aq,q [ξ∗] (σ
q
∗) +Aq [ξ∗] (σ

λ

∗ ) +Au,q [ξ∗] (σ
u
∗)
}
(ψq)

−
{
Ju,u [ξ∗] (σ

u
∗) + Jq,u [ξ∗] (σ

q
∗)

+Au [ξ∗] (σ
λ

∗ ) +Au,u [ξ∗] (σ
u
∗) +Aq,u [ξ∗] (σ

q
∗)
}
(ψu)

+
{
Au [ξ∗] (σ

u
∗) +Aq [ξ∗] (σ

q
∗)
}
(ψλ)

where the components of the test function ψ = (ψu,ψλ,ψq) appear explicitly within
different terms. The variation (7.6) of the Lagrangian M0 is zero at its stationary

points. The equation for ψq reads

0 = Eq [ξ∗]−Ju,q [ξ∗] (σ
u
∗)−Jq,q [ξ∗] (σ

q
∗) +Aq [ξ∗] (σ

λ

∗ )(7.7)

+Aq,q [ξ∗] (σ
q
∗) +Au,q [ξ∗] (σ

u
∗) .

The equation for ψλ is the tangent linear model evaluated at the optimal solution

0 = Au [ξ∗] (σ
u
∗) +Aq [ξ∗] (σ

q
∗) ⇔ σu

∗ = U′[q∗]σ
q
∗ .(7.8)

The equation for ψu is the second order adjoint model evaluated at the optimal

solution:

0 = Ju,u [ξ∗] (σ
u
∗) + Jq,u [ξ∗] (σ

q
∗)(7.9)

−Au [ξ∗] (σ
λ

∗ )−Au,u [ξ∗] (σ
u
∗)−Aq,u [ξ∗] (σ

q
∗) .

To derive the computational procedure we revisit the reduced cost function,

which is equal to the reduced form of the Lagrangian (2.5) for any q and for any λ:

j[q;λ] = L [ξ2] = J [U[q], q]−A [U[q], q] (λ) ,

ξ2[q,λ] = (q, U[q],λ) , ∀q ∈ Q , λ ∈ U .

The notation ξ2 reminds that this ξ depends on only two parameters, q and λ. The
reduced gradient is

jq[q;λ](φ) = Lq[ξ2](φ) + Lu[ξ2]
(
U′[q]φ

)
+ Lλ[ξ2]

(
Λ′[q]φ

)
(7.10)

= Lq[ξ2](φ) + Lu[ξ2]
(
U′[q]φ

)
, φ ∈ Q .

The term Lλ is the forward equation and vanishes identically since u = U[q] in ξ2.

Note that

jq,λ[q;λ](ψλ, φ) = Lq,λ[ξ2](ψλ, φ) + Lu,λ[ξ2]
(
ψλ, U′[q]φ

)
.(7.11)

The reduced Hessian is

jq,q[q;λ](ψ,φ) = Lq,q[ξ2](ψ,φ) + Lq,u[ξ2](U
′[q]ψ,φ)

+Lu,q[ξ2]
(
ψ, U′[q]φ

)
+ Lu,u[ξ2]

(
U′[q]ψ, U′[q]φ

)

+Lu[ξ2]
(
U′′[q](ψ,φ)

)
, ψ,φ ∈ Q .
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With λ = Λ(q) the adjoint equation Lu = 0 makes the last term vanish identically.

Let ξ1[q] = (q, U[q], Λ(q)), which depends on just one parameter, q. The reduced
Hessian reads

jq,q[q](ψ,φ) = Lq,q[ξ1](ψ,φ) + Lq,u[ξ1](U
′[q]ψ,φ)

+Lu,q[ξ1]
(
ψ, U′[q]φ

)
+Lu,u[ξ1]

(
U′[q]ψ, U′[q]φ

)
, ψ,φ ∈ Q .

Consider the variation of the Lagrangian M0
ξ (7.6) along the direction ψ ∈ X with

the following components: ψq ∈ Q arbitrary, ψu = U′[u∗]ψq, and ψλ = 0. Using
(7.8) we replace σu

∗ = U′[q∗]σ
q
∗. Note that ξ1[q∗] = ξ∗. With these substitutions,

the variation of the Lagrangian (7.6) reads

M0
ξ[ξ∗,σ∗] (ψ) = Eq[q∗] (ψq)−Lq,q [ξ∗] (ψq,σ

q
∗)−Lu,q [ξ∗] (ψq, U′[q∗]σ

q
∗)

−Lq,u [ξ∗]
(
U′[u∗]ψq,σ

q
∗
)
−Lu,u [ξ∗]

(
U′[u∗]ψq, U′[q∗]σ

q
∗
)

= Eq[q∗] (ψq)− jq,q[q∗] (ψq,σq
∗) .

The variation of the Lagrangian M0 (7.6) along the direction ψ must be zero for
any ψq, which leads to the following equation for the multiplier σq

∗

jq,q[q∗] (φ,σ
q
∗) = Eq[q∗] (φ) , ∀φ ∈ Q .(7.12)

Equation (7.12) can be solved approximately by using a quasi-Newton approxi-

mation of the reduced Hessian. This approximation is based on the sequence of
reduced gradients obtained during the optimization. The computational procedure

is given in Algorithm 7.1.

Algorithm 7.1 Error estimation using the second order adjoint solution

1: Solve equation (7.12) for σ
q
∗ using a quasi-Newton approximation of jq,q.

2: Given σq
∗, solve the tangent linear model (7.8) to obtain σu

∗.

3: Given σ
q
∗ and σu

∗, solve the second order adjoint model (7.9) to obtain σλ

∗ .

8. Numerical results for a distributed control test problem. Consider the case

where the inversion variable is the volume forcing f of the primal problem. Assume
the discrete variables fh ∈ Qh

r ≡ U h
p . We define the cost functional J as follows:

J :=
1

2
‖Hu − o‖2

L2(Ω) dx +
β

2
‖f − fB‖

2
L2(Ω) dx .(8.1)

The primal and adjoint equations remain unchanged. However, the optimality con-

dition (3.6) becomes

β f = −λ , x ∈ Ω ,(8.2)

whereas (4.23) now reads:

β
〈

fh, δfh
〉

Ω
+
〈
λh, δfh

〉
Ω
= 0 , ∀ δfh ∈ U h

p .(8.3)

For this problem the discrete optimality condition is obviously a consistent dis-
cretization of the continuous formulation. We analyze the convergence of the prob-

lem for an adaptive discretization. Let H be the identity operator, o := Hu∗,
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Fig. 8.1. L2 (left), and L∞ (right) convergence for the distributed control problem (3.1)–(8.1), with r = p = 2.

β = 100, and

q(x) := (1 + x2 + y2)/10

u∗(x) := 10 exp

(
−
(10x − 5)2

4

)
exp

(
−
(10y − 5)2

4

)
,

f∗(x) = fB := −∇ · (q ∇u∗)(x) , ∀ x = (x, y) ∈ Ω = [0, 1]2 .

The analytical cost functional is then zero at the optimal solution: J (u∗, q∗) = 0.
Figure 8 shows the convergence of the discrete primal, dual, and optimal so-

lutions to their exact values, upon mesh refinement. All variables are discretized
on the same mesh, using a quadratic Lagrange basis (p = 2), with square elements,

and hierarchical mesh refinement. The theoretical estimate O(h3) is verified numer-

ically. The dual solution is super-convergent: ‖λh − λ‖L∞(T h) ≤ C h6.

9. Numerical results for the coefficient identification problem. Let H be the
identity operator, o := Hu∗, β = 100, and Ω := [0, 1]× [0, 1]. The first numerical

test makes use of

Test A: qB(x) := 1 + x2 + y2 ,(9.1)

u∗(x) := 10 exp

(
−
(10x − 5)2

4

)
exp

(
−
(10y − 5)2

4

)
,

and the initial guess

q0(x) := 1 + 7x + 7y , x ∈ Ω .(9.2)

The second set of experiments uses the following functions:

Test B: qB(x) := 5 + sin
(πx

2

)
cos(2πy) ,(9.3)

u∗(x) := 10 exp

(
−
(10x − 5)2

4

)
exp

(
−
(10y − 5)2

4

)
,

and a constant initial guess

q0 := 1 .(9.4)
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Fig. 9.1. Asymptotic consistency test for the discrete gradient ∇qhJ h using the first order Taylor approxi-
mation (9.5), and the functions (9.1)–(9.2).

For both experiments we choose

f(x) := −∇ · (qB ∇u∗)(x) , ∀ x ∈ Ω .

Then, q∗ = qB, and J (u∗, q∗) = 0. The discrete solver uses the deal.II library

[3] for finite element computations. The spaces
(
U h
)p

and Qh
r are spanned by the

second order Lagrange basis functions (p = r = 2). Moreover, T h ≡ T h
q . Note that

for the first set (9.1)–(9.2), the exact optimal solution q∗ can be represented exactly
by the polynomial basis spanning Qh

r .

9.1. Consistency of the discrete gradient. An important step in adjoint code
development is validation of the discrete gradient (6.4). The classic approach to

adjoint code validation is through the numerical verification of a truncated Taylor
expansion [28]. For smooth Jh, and small perturbations ε δqh around a reference

state qh, the Taylor theorem gives:

J h(qh + ε δqh) = J h(qh) + ε
〈
∇qhJ h, δqh

〉
Ω
+O(ε2) .

We verify numerically the following limit for small values of ε:

lim
ε→0

Gh(ε) := lim
ε→0

J h(qh + ε δqh)−J h(qh)

ε
〈
∇qhJ h, δqh

〉
Ω

= 1 .(9.5)

As shown in figure 9.1, the discrete reduced gradient is found to be numerically

consistent. For ε < 10−11, truncation errors start to degrade the quality of the finite
difference approximation (9.5).

9.2. The numerical behavior of the discrete optimality condition. We now
consider the solution of equation (4.24). Figure 9.2(a) shows the decrease with

h ∼ DoF−1/2 of the integrals I1
Γ, I2

Γ, I1
ΓI

, and I2
ΓI

in (4.29a)–(4.29b). For p = r = 2,

and the C∞(Ω) exact solutions (9.1)–(9.2), the integrals vanish asymptotically at
least as fast as h3/2, verifying the analytical bounds. Similar results are reported in

figure 9.2(b) for the problem (9.3)–(9.4).
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Fig. 9.2. Asymptotic behavior of the integrals (4.29a)–(4.29b) for test A (left), and test B (right).

9.3. Multigrid optimization and solution convergence. The multigrid opti-
mization procedure is described in Algorithm 9.1. The subscript k indicates the

current multigrid iteration. On each mesh level, we keep iterating until there is a
sufficient reduction in the cost functional Jh. A practical stopping criterion for the

multigrid iterations can be based on the value of the target functional J h at the

current solution, or some reduced gradient norm.

The algorithm requires the constant relative and absolute tolerance vectors
ATOL and RTOL, which decide if there has been sufficient decrease in the cost

functional value on the current mesh level. In practice, one may also want to limit

the number of optimization iterations on a given mesh, to prevent excessively long
run times.

Algorithm 7.1 is used for the error estimation at step 9 of Algorithm 9.1. The
mesh adaptation is performed at step 12, which get executed once per multigrid

iteration. The exact choice of error functional is problem dependent. We will choose
E to be a weighted average of the optimal solution over Ω:

E(x) =
∫

Ω
w q dx .(9.6)

The weight function w ∈ H2(Ω) is positive a.e. on Ω.

Figure 9.3 shows the convergence of multigrid optimization algorithm on sev-

eral mesh levels. We plot both the decrease in the cost functional, and in the optimal
solution error for the problem (9.1)–(9.2). For this experiment the mesh refinement

process is guided by a simple element–wise error estimator based on the scaled gra-

dient ∇qh. The order of convergence is consistent with the theoretical expectations:
the optimal solution shows cubic convergence with the mesh size h (for p = r = 2).

We chose ATOL = 10−10, and RTOL = 10−2 on all iteration levels.

Remark. The meshes T
q

h and T h may also be locally coarsened in step 12 of
Algorithm 9.1. The coarsening operation is analogous to that of refinement. Care

must be taken to maintain the mesh nesting property for T
q

h and T h.
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Algorithm 9.1 Multigrid optimization with error–driven AMR

Require: ATOL[maxit], RTOL[maxit].
1: Define the initial guess qh on (T h

q )0, and calculate uh, λh on (T h)0.

2: Define the error functional E[q].

For example, E[q] :=
∫

Ω
w(x)q(x) dx, for some positive weight function w.

3: for k = 0 to maxit − 1 do

4: Solve the primal model on (T h)k to get J h
0 = J h(uh, qh).

5: while J h/J h
0 > RTOL[k] and J h > ATOL[k] do

6: Run the optimization iterations on (T h)k and (T h
q )k, and update the current

approximation qh, and cost functional J h.

7: Construct approximation to the reduced Hessian ∇2
qhJ

h from the optimiza-

tion iterates qh and gradients ∇qhJ h.
8: end while

9: Calculate the element-wise error indicators for all κq ∈ T h
q using Algorithm

7.1.
10: Flag the cells with highest estimated error on (T

q
h )k for refinement.

11: For any element κq ∈ (T h
q )k flagged for refinement, flag for refinement all

elements κ ∈ (T h)k such that κ ⊆ κq. This is required to maintain the mesh
nesting property.

12: Refine the triangulations to obtain (T h)k+1 and (T
q

h )k+1.

13: Transfer the current optimal solution approximation qh to the new parameter

mesh (T
q

h )k+1.

14: end for
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Iteration 3 Iteration 4

Fig. 9.5. Optimization meshes generated by algorithm 9.1 on numerical test B.
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Fig. 9.6. Asymptotic behavior of the integrals (4.29a)–(4.29b) for the a posteriori numerical experiments with
test B.

Figure 9.5 illustrates the sequence of meshes generated by algorithm 9.1 with
the numerical test B. The observed numerical orders of convergence for qh, uh, and

λh, are consistent with the theoretical bounds. Note that the perturbation integrals
(4.29a)–(4.29b) - shown in figure 9.3 - are sufficiently small to not affect the con-

vergence of the optimization process (figure 9.7). However, if the optimal solution

error is reduced further, the perturbations may impact the convergence process -
see equation (5.6).
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Fig. 9.7. Solution convergence for the multigrid optimization algorithm 9.1 using the a posteriori estimation
procedure 7.1: optimal solution (left), primal solution (center), and dual solution convergence (right).

10. Conclusions. This work considers consistency and mesh adaptivity for dis-

crete parameter estimation problems. The discrete, or discretize – first approach is
very attractive in practice, because the dual and optimality equations in the KKT

set, as well as the reduced gradient of the target functional, can be generated with
low effort by automatic differentiation. However, the discrete approach introduces

several complications in the inverse solution algorithm. A consistency analysis of

the full set of KKT equations is needed before convergence of the discrete optimal
solution can be established. Investigating consistency and stability of the discrete

KKT system is one of the main objectives of this paper. While the discretization of
the primal equation is a priori assumed to be convergent, the consistency of the dual

and optimality equations does not automatically follow. We extend the dual consis-

tency framework given in [16] to cover the third equation in the KKT set, namely,
the discrete optimality condition. While consistency and stability may not hold a

priori for this equation, the analysis shows that they can be restored through suit-
able consistent modifications of the discrete target functional. The theoretical results

are supported by the numerical experiments with a symmetric DG discretization of

the primal problem. Discontinuous Galerkin is chosen as the discretization method
because of its amenability to parallel computations, and h/p-adaptivity.

A crucial ingredient in any adaptive algorithm is the error estimation step, that
guides the mesh refinement process. Previous results in error estimation are either

of limited practical use (because of their unfavorable dependence on the regular-
ization parameter, or on unknown stability constants), or are valid under the as-

sumption that the control parameter space is finite dimensional. We explain the

construction of a practical error estimator for parameter estimation problems, in
the more general case of infinite dimensional controls. The estimation process is

based on dual–weighted residuals of first and second order sensitivity equations.
The Hessian of the reduced cost functional is replaced by a low–order BFGS ap-

proximation. The use of a BFGS Hessian, obtained virtually at no cost from the

optimization algorithm, keeps computational costs of the error estimation process
sufficiently low to make it feasible in practice. The practical computations of the a

posteriori estimator is demonstrated on an elliptical problem. We will also explore
other choices of error functionals, and their impact on the quality of the inversion

process.
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