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CHAPTER FOUR

4.  WING-BODY JUNCTION RESULTS

This chapter discusses measurements of p beneath the three-dimensional flow away from a

wing-body junction.  All measurement stations are outside the horseshoe vortex that forms about

the wing-body junction.  The present flow is referred to as a “wing-body junction” flow only to

distinguish it from the flow about a 6:1 prolate spheroid that is the subject of chapter 5.

The complexity of the skewed 3-D boundary layer (figure 3) necessitates the use of

multiple coordinate systems.  The Tunnel coordinate system is right-handed with the x-axis

parallel to the tunnel centerline pointing downstream and the y-axis perpendicular to the tunnel

floor pointing up.  The Wall-Shear-Stress coordinate system is right-handed with the x-axis in the

shear-stress direction at the wall as approximated by the measured mean-flow angle closest to the

wall (Ölçmen and Simpson, 1995a; Ölçmen et al., 1996, 1999b).  The y-axis is normal to the wall,

pointing up.

Relevant boundary layer parameters of the present flow are given in tables 4 and 5.  For

comparison, data measured in 2-D, zero-pressure gradient boundary layers with a Reynolds

number comparable to the present flows are also included in tables 4 and 5.  The velocity field

measurements of the lower Re  (= 5940) boundary layer are reported by Ölçmen and
2

Simpson (1996).  The velocity field measurements of the higher Re  (= 23200) boundary layer are
2

reported by Ölçmen et al. (1998).  The u  at each measurement station was calculated by fitting
J

the U data in Wall-Shear-Stress coordinates to a near-wall approximation of Spalding’s (1961)

law-of-the-wall (equation 48).  Profiles of the mean velocity components are shown in

figures 41 - 44 and profiles of the Reynolds normal stresses are shown in figures 45 - 50.  Details

of the velocity field are given in the following sections as they relate to p.
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4.1.  RMS Surface Pressure Fluctuations and Features of the Velocity Field

Each of the p spectra was integrated to obtain the p'²' values given in table 6.  For the

lower Re  flow (table 6) p’/J  and p’/Q  are higher than beneath a 2-D flow and increase with
2 w e

station number for stations 0-3 due to adverse pressure gradient effects on the lower frequencies

(Simpson et al., 1987).  Also, table 6 indicates that most of the p’ is due to low frequency

(f < 1 kHz) fluctuations which increase in magnitude with station number.  The p'²' from low

frequencies at station 3 is double the low frequency p'²' at station 0.  The high frequency

(f > 1 kHz) contribution to p’ at stations 0-3 is nearly constant.

 The lateral pressure gradient in wall-shear-stress coordinates (table 4)  pushes the flow

away from the wing at stations 0-3.  Ölçmen and Simpson (1996) report that at stations 0-3 the

mean flow angle changes monotonically from near the wall to the free stream by

4.4° < |$  - $ | < 25° (figure 3).  Examination of table 6 and the dimensional p spectraFS W

(figure 51) suggest that the monotonic (in y) turning of the mean flow at stations 0-3 has little

effect on high frequency p (which have a lower spectral level than the 2-D at comparable Re ),
2 

but increase the low frequency p substantially.

The lateral pressure gradient in wall-shear-stress coordinates (table 4) changes sign

between stations 3 and 4.  At stations 4-9 the lateral pressure gradient pushes the mean flow back

toward the wing.  Ölçmen and Simpson (1996, p. 7) observed that “At station 4 the W/u  values
J

are close to zero up to y  . 40.  Above this y location, values monotonically increase.  At stations+

further downstream the effect of the sign change of the lateral pressure gradient is felt most near

the wall.  This results in negative W/u  values ... The pressure force is most effective on the near-
J

wall flow where the momentum of the flow is lowest.”  Figures 43 and 44 show the W/u  mean
J

velocity profiles in wall-shear-stress coordinates.  Note that the location of maximum W

propagates outward from the wall at successive downstream stations.

For stations 4-8 the mean velocity at the boundary layer edge accelerates (table 4).  The

magnitude displacement thickness, * , decreases as well as the p'²' contribution from low *

frequency fluctuations (f < 1 kHz) (table 6).  While the details of the above p'²' discussion is

confined to the Re  = 5940 flow, similar trends are present in the Re  = 23200 data.
2 2
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4.2.  Features of the Dimensional Power Spectra

The most significant feature of the spectral power density spectrum of surface pressure

fluctuations (figures 51 and 52) at stations 4-9 is the constant (or nearly constant) spectral levels

in the frequency range 2 kHz < f < 5 kHz.  A flat mid-frequency spectral region has also been

observed in the 3-D flow on the lee-side of a prolate spheroid at angle of attack (chapter 4).  In

that flow the flat mid-frequency spectral region is believed to due to the lack of overlapping

frequency structure between the large-scale motions of the outer layer and the viscous-dominated

near-wall region.  A similar situation exists in the present flow.  The lateral pressure gradient

imposed by the presence of the wing skews the near-wall, low momentum mean flow.  The larger

near-wall velocity gradients associated with the skewed flow presumably produce high frequency

pressure fluctuations as prescribed by the Poisson integral (equation 25).

The effect of the flat spectral region on p'²' is significant.  Table 6 shows the effect on p'²'

of removing the spectral contribution that makes the region flat.  Figure 53 shows the p spectrum

at station 8, Re  = 23200 as an example.  At station 8 the flat spectral region accounts for 40% of
2

the p'²' integral (table 6).  The method used to remove the flat spectral region was to first find the

frequency at which the p spectrum departs from a constant power law decay.  At station 8 this

frequency is 889 Hz (figure 53).  Then, the power law was determined.  At station 8, 20 spectral

values (166 Hz < f < 889 Hz) were used to determine that the power law, M(f ) = 2.332 f .  -0.928

Next, the end of the flat spectral region was located.  Here, the end of the flat spectral region is

defined as the frequency at which the p spectrum is parallel to the power law just determined.  At

station 8 this frequency is 6456 Hz.  Finally, the spectral levels at higher frequencies

(f > 6456 Hz) were attenuated by a constant factor in order to match up with the spectral level

given by the previously determined power law at the end of the flat spectral region.  At station 8,

Re  = 23200, the three parts of the “non-flat” p spectrum (M ) are,
2 NF 

M  = data for f < 889 HzNF

M  = 2.332 f for 889 Hz # f < 6456 HzNF
 -0.928

M  = 0.3(data) for f $ 6456 HzNF

The physical mechanism that produces the flat spectral region appears to be independent

of, or at least slowly varying with, Reynolds number.  As station number increases from 0-3 the p
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spectral level beneath the lower Re  flow approaches the p spectral level beneath the higher Re
2 2

flow at middle frequencies.  The p spectra generally overlap at stations 4-9 for

300 Hz < f < 3 kHz.  An example of this is station 7 (figure 53) where the overlap extends to

7 kHz.  Ölçmen et al. (1999b) discuss Reynolds number effects for the flows studied here.  They

found that while the magnitude of the shear stresses (normalized on u ) increase with Reynolds
J 

number, below y  = 100 the stresses tend to overlap.  The sources of high frequency p are located+

within the near-wall flow.

4.3.  Spectral Scaling of Surface Pressure Fluctuations

The p spectra of the present study do not collapse when normalized using boundary layer

scales that collapse the p spectra in 2-D flows.  The p spectra were normalized using the

candidate boundary layer scales given in table 7.  The first nine candidate scaling combinations in

table 7 (figures 54 - 71) are all permutations of the boundary layer scales that have been shown to

scale the p spectra beneath equilibrium flows within various frequency ranges.  The motivation for

the next four candidate scaling combinations in table 7 (figures 72 - 79), which use ) as the length

scale, was the assertion of Rotta (1962) which is supported by Fernholtz and Finley (1995a) that

) is the proper length scale for the outer layer.  The last two scaling combinations in table 7

(figures 80 - 83) were attempted based on the assumption that the source of unique features in the

p spectra (i.e. the flat spectral region) are unique features in the velocity field.  The only scalings

which even remotely collapse the p spectra in any frequency range are the time and pressure scale

combinations: * /U , Q  at T  > 25 (figure 59); * /u , Q  at T  > 700 (figure 63); and ) /U , *  * 
e e O1 J e O2 e 

Q  at T  > 600 (figure 79).  Each scaling combination was only successful for the higher Ree O6 2 

flow.  However, a scaling combination based on outer boundary layer variables that collapses the

p spectra at high frequency does not make physical sense since the source of high frequency p is

small-scale, near-wall turbulence.

The lack of scaling parameters that collapse the p spectra is not surprising given the

complexity of these 3-D flows.  In 2-D equilibrium boundary layers similarity parameters exist

that scale the velocity (e.g. law-of-the-wall, defect law).  In the 3-D flows of the present study,

the only scaling which collapses any part of the velocity profile is U  = y  near the wall (y  < 5)+ + +

when the velocity is expressed in wall-shear-stress coordinates.  Additionally, the
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frequency/wavenumber dependence of the wave speed of p is exacerbated in this 3-D flow

because turbulent structures travel in different directions depending on the distance from the wall

(Ha and Simpson, 1993).  In order to be successful, scaling parameters for p beneath 3-D flows

must incorporate more detailed velocity field information through the Poisson equation.

Previous analysis of 2-D flows (Bradshaw, 1967; Panton and Linebarger, 1974;

Blake, 1986) have shown that the Poisson integral is dominated by the mean-shear-turbulence

term in the form

(52)

For the present flow, it is assumed that the high frequency p is generated by small-scale velocity

fluctuations near the wall.  In a study of three-dimensional boundary layers, Ölçmen and

Simpson (1992) showed that the near-wall mean region of the boundary layer follows a two-

dimensional wall law reasonably well.  Therefore, it is assumed here that, as with 2-D boundary

layers, high frequency contributions to the Poisson integral are dominated by the mean-shear-

turbulence term and that derivatives of the mean velocity in the x- and z-direction are negligible. 

Since the y-derivative of the W-component of velocity is not always negligible in the present flow,

the 2-D approximation of the Poisson integral (equation 52) is modified here, in the form

(53)

Consider the variation of equation (53) from station to station with the goal of collapsing the high

frequency end of the p spectra beneath the 3-D flows of the present study.

Some simplifying assumptions must be made in order to evaluate equation (53) with the

data available.  Similar to a recent model for the p spectrum under a 3-D boundary layer that was

proposed by Panton (1998), it is assumed that the small-scale turbulent structures near the wall

are homogenous in planes parallel to the wall and behave as traveling waves.  Therefore,
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v = v cos (T t - k x - k z), where k =T /U  and k =T /U  are the wavenumbers in the x- and z-1 3 1 c1 3 c3

direction, respectively.  The traveling wave model results in

(54)

where v  is v at a particular frequency.  High frequency contributions to the p spectrum primarily
T

originate in the near-wall region where the flow roughly scales on the wall variables < /u  and u . 
J J

Rewriting equation (53) with the above considerations in mind results in

(55)

Since near-wall turbulent structures have small spatial extent and in light of the 1/r  dependence+
S

of equation (55), it is assumed that the variation of p/J  at a particular high frequency resultsW

mainly from the variation of the integrand of equation (55).  Furthermore, it is assumed that the

variation of the integrand of equation (55) at a particular frequency may be approximated by the

variation of v''²'(MU /My  + MW /My )² at a particular distance from the wall.+ + + + +

Modification of the inner variable scaling shown in figures 54 and 55 is required to

account for the variation of the Poisson integrand (approximated by v''²'(MU /My  + MW /My )²)+ + + + +

near the wall from station to station. To this end, a Poisson Equation Term Ratio (A ) is formedR

as

(56)

Two issues must be addressed in order to evaluate A  with velocity data.  First is the coordinateR

system to use to express the velocity terms.  Ideally, A  would be coordinate system independent,R

however, A  is not.  In the present study, the wall-shear-stress coordinate system was used sinceR

it is aligned with the near wall flow.  Therefore, phase errors that are introduced by the

approximations of the turbulent velocity structure in the x and z-direction are minimized.  The
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second issue is where (distance from the wall) to evaluate the velocity terms.  In the present

study, a spectral ratio (M ) of M (T =1) at each measurement station in the 3-D flow toR 
+ +

M (T =1) in the 2-D flow at comparable Re  is used as a measure of the variation of the high+ +
2

frequency pressure spectral levels.  The variation of A  closely tracks the change in M  fromR R

station to station.  Figures 84 and 85 show A  as a function of M  with each ratio expressed inR R

decibels.  The candidate y  locations shown in figures 84 and 85 where selected based on the +

following criteria.  The locations 10 # y  # 50 where selected because they are near the wall.  +

Small-scale fluctuations that are near the wall are sources of high frequency p.  The locations

y  $ 50 were selected by assuming several values for the convection velocity, +

10 # (U  = U /u ) # 18 and usingC C J 
+

(57)

to calculate the y  values at T  = 1 for the various U  values.  If A  at some y  tracked the +  + +  +
C R

variation of M  from station to station perfectly, all points in figures 84 and 85 for that y  wouldR
 +

lie along a line with a slope of 1 and passing through the origin (solid line in figures 84 and 85).

Two quantities are used to measure which A (y ) best fit the ideal linear relationship withR 
 + 

M (T ).  The first measure is the range of M (T =1) / A (y ) at the different stations.  In otherR R R 
+ +  + 

words the scatter in values of 10 logM  / A  at T  = 1 with A  evaluated at the various10 � R � R
+ +

candidate y  locations (figures 86 and 87).  The second measure is the correlation coefficient +

between M / A  and y .  The correlation coefficient is unity if a linear relationship exists betweenR R
 +

the two, but gives no information concerning the slope.  Figures 86 and 87 indicate that the best

fit is at y  = 50 for both Re .  The high frequency p spectral collapse (figures 88 and 89), where +
2 

A  is evaluated at y =50, show that the variation of the high frequency spectra in the present non-R
+

equilibrium 3-D flows result from features of the near-wall velocity field which change A  fromR

station to station.  It is significant that the complex variations in the high frequency p spectrum are

tracked by a relatively simple term (A ) which only requires mean velocity and Reynolds stressR

data.


