
remote sensing  

Article

Assessing Deep Convolutional Neural Networks and Assisted
Machine Perception for Urban Mapping

Yang Shao 1,*, Austin J. Cooner 1 and Stephen J. Walsh 2

����������
�������

Citation: Shao, Y.; Cooner, A.J.;

Walsh, S.J. Assessing Deep

Convolutional Neural Networks and

Assisted Machine Perception for

Urban Mapping. Remote Sens. 2021,

13, 1523. https://doi.org/10.3390/

rs13081523

Academic Editor: Garik Gutman

Received: 12 March 2021

Accepted: 13 April 2021

Published: 15 April 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Geography, Virginia Tech, 238 Wallace Hall, Blacksburg, VA 24060, USA;
austincooner@gmail.com

2 Department of Geography, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3220, USA;
swalsh@email.unc.edu

* Correspondence: yshao@vt.edu

Abstract: High-spatial-resolution satellite imagery has been widely applied for detailed urban
mapping. Recently, deep convolutional neural networks (DCNNs) have shown promise in certain
remote sensing applications, but they are still relatively new techniques for general urban mapping.
This study examines the use of two DCNNs (U-Net and VGG16) to provide an automatic schema
to support high-resolution mapping of buildings, road/open built-up, and vegetation cover. Using
WorldView-2 imagery as input, we first applied an established OBIA method to characterize major
urban land cover classes. An OBIA-derived urban map was then divided into a training and testing
region to evaluate the DCNNs’ performance. For U-Net mapping, we were particularly interested
in how sample size or the number of image tiles affect mapping accuracy. U-Net generated cross-
validation accuracies ranging from 40.5 to 95.2% for training sample sizes from 32 to 4096 image tiles
(each tile was 256 by 256 pixels). A per-pixel accuracy assessment led to 87.8 percent overall accuracy
for the testing region, suggesting U-Net’s good generalization capabilities. For the VGG16 mapping,
we proposed an object-based framing paradigm that retains spatial information and assists machine
perception through Gaussian blurring. Gaussian blurring was used as a pre-processing step to
enhance the contrast between objects of interest and background (contextual) information. Combined
with the pre-trained VGG16 and transfer learning, this analytical approach generated a 77.3 percent
overall accuracy for per-object assessment. The mapping accuracy could be further improved given
more robust segmentation algorithms and better quantity/quality of training samples. Our study
shows significant promise for DCNN implementation for urban mapping and our approach can
transfer to a number of other remote sensing applications.

Keywords: deep convolutional neural networks; U-Net; VGG16; urban mapping

1. Introduction

Urban mapping techniques have been rapidly evolving through advances in com-
puter algorithms and integration of a wide range of satellite data. High-resolution urban
mapping typically involves characterizing important features such as individual buildings,
roads, open built-up, and urban trees and associated vegetation [1,2]. These small-scale
urban features can be best mapped using very high-resolution (VHR, <5 m spatial resolu-
tion) satellite data such as those from IKONOS, QuickBird, and the WorldView series of
sensors [3–5]. For mapping tasks using VHR data, object-based image analysis (OBIA) is
preferred over traditional per-pixel classification [6–10], because pixels of a homogeneous
land-cover patch often have heterogeneous spectral responses or high information content.
Combined with various classification algorithms, OBIA has been routinely used to map
detailed urban features with some success [4,11,12]. Previous studies also demonstrated
the advantage of data fusion of VHR and LiDAR or synthetic aperture radar (SAR) images
for urban-mapping applications [13–15].
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Performance of VHR-based urban mapping depends on the choice of image clas-
sification algorithms. Currently, the most commonly used algorithms include support
vector machines, random forests, feed-forward artificial neural networks, and radial basis
function neural networks [16]. While each of these approaches show promise for automatic
urban mapping, they often require a diverse set of input data for the given algorithm to
properly function. For example, in addition to the original spectral bands of VHR data,
a rich set of textural and structural features, such as gray-level co-occurrence matrix and
wavelet textures, have been examined to improve urban mapping accuracy [2,16]. Relying
on hand-crafted features requires additional processing time and remote sensing expertise
and can potentially confuse other landscape features. It is also unclear whether the textural
features from each study can be applied with similar results to other study areas.

Deep convolutional neural networks (DCNNs) have recently shown great promise in
the field of computer vision after the landmark paper by Krizhevsky et al. [17]. DCNNs
work by learning convolutions (or features) that best represent image classes through
error minimization via backpropogation. For example, one of the famous DCNNs, the
VGG16, was designed by researchers from the Visual Geometry Group Lab of Oxford
University and the 16-layer network architecture achieved 92.7 percent test accuracy in
ImageNet [18]. The automated feature engineering is particularly appealing compared
to traditional, hand-crafted features using domain knowledge [19]. While DCNNs were
originally designed for large-scale image recognition [17,18,20], recent work has shown
that fully convolutional networks (FCN) and Markov conditional random fields (CRF) can
be used for effective semantic segmentation or pixel-wise classification [21,22]. The U-Net,
a specific type of convolutional network with creative design of contracting and expanding
architecture, shows great potential in biomedical image segmentation or pixel labeling [23].

DCNNs have only recently transitioned into the field of remote sensing. Researchers
are increasingly interested in using DCNNs or other deep learning models for scene
classification, object detection, and land use and land cover classification [24]. For example,
Zou et al. [25] applied transfer learning to VHR remote sensing imagery for classifying
400 × 400 pixel samples into seven distinct scene types. Sun et al. [26] modified three
DCNNs (i.e., AlexNet, VGG16, and ResNet50) to classify tree species, and they found that
VGG16 performed best. Full scene classification has also been applied using SVMs on
DCNN features [27], DCNN-CRF [28], and DCNN-FCN [29]. More recently, several studies
evaluated U-Net for vegetation mapping and obtained very accurate map products [30–32].
The U-Net allows for end-to-end training at the pixel level and it is less demanding on the
training sample size [23].

Although DCNNs showed high potential for scene classification and object detec-
tion, their overall effectiveness in pixel-wise land use and land cover mapping is still
unclear. Several recent articles suggested that the application of DCNNs for pixel-wise
land cover mapping remains sparse, and the potential is not fully explored [24,31]. For
DCNNs and many other machine learning algorithms, it is also important to investigate
machine perception that imitates human perception to improve learning and predictive
performance. For a given image/scene, the object of interest and background or contextual
information can be rapidly identified by humans. It is thus potentially beneficial to enhance
or synthesize observations that may improve computer understanding of remotely sensed
images. Within the DCNNs, image tiles are commonly used as input, and the object of
interest (e.g., building) is mixed with other background features or integrated pixels. We
propose using contextual Gaussian blurring to reduce the impact from background features,
an assisted machine perception method that has not been thoroughly examined in the
literature, especially within the DCNN framework.

The main objective of this study is to investigate two DCNNs, U-Net and VGG16, for
urban land cover mapping using VHR data. To support the training and validation, we
developed an urban land cover map product through a commonly used OBIA classification
of WorldView-2 imagery. For U-Net mapping, we were particularly interested in how
classification performance varies with respect to training sample sizes. For the VGG16
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mapping, we designed a new object-based image classification approach that involves
image segmentation, framing, and object recognition. For each image segment, we in-
corporated contextual Gaussian blurring to assist machine perception. The experiments
are implemented for urban mapping of San Cristobal Island, one of the Islands of the
Galapagos archipelago of Ecuador.

2. Materials and Methods
2.1. Study Area and Data

The Galapagos Islands are a chain of islands known for their natural beauty, history,
diverse wildlife, and conservation efforts. Over the last several decades, the growing
tourism and human migration have been exerting increasing pressure on the fragile and
sensitive island ecosystems [8,33]. San Cristobal is one of the four populated islands
in the archipelago and has an area of 558 km2. Total population for San Cristobal is
around 7000. Most residents live in the port city, Puerto Baquerizo Moreno, although the
smaller upland town of El Progreso, close to the agricultural zone, accounts for under
1000 residents. The port community is bounded by the Pacific Ocean, and land is managed
and controlled by the Galapagos National Park. As such, the community has limited space
for urban development, with hard borders occurring with the park that limit peripheral
growth; hence, most new development occurs through urban in-filling and through land
swaps with the park. The urban structures are relatively small in size, although two-story
residential units are common. Generally, residential units are less than 30 square meters
in area, although larger structures, primarily hotels and associated commercial buildings,
occur, but they are generally close to the water’s edge, where most tourist facilities are
concentrated. Streets are relatively narrow in the town. Most roads are paved, although
dirt roads persist in the town.

The image used for this study was acquired by the WorldView-2 satellite on 1 Decem-
ber 2016. The multispectral product (2.4 m resolution) was converted to TOA reflectance
and then the subtractive resolution merge process was applied to create a pan-sharpened
image consisting of four spectral bands. Figure 1 shows the study area and WorldView-2
image used for this research.
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2.2. OBIA Image Classification

To support the DCNN-based urban mapping, we first implemented OBIA image
classification to derive a land use and land cover reference. This OBIA-derived land use
and land cover map served as the primary benchmark dataset for DCNN training and
validation. Using the WorldView-2 image as input, we applied the multiresolution seg-
mentation algorithm within the eCognition Essentials software package to generate image
objects. Among several adjustable parameters (scale, shape, and compactness), the scale
factor is the most important parameter for image object size [34,35]. We examined a range
of scales (75, 100, and 125) through a trial-and-error approach to determine the optimum
scale factor. The weighting between color and shape was set to 0.7/0.3 based on previous
studies showing the relative importance of color components [4,6]. The compactness and
smoothness were assigned equal weights. After each segmentation, we visually assessed
the image objects, using the original WorldView-2 image as a reference. We found that a
scale of 75 was adequate to separate buildings and road objects from surrounding areas,
while minimizing over-segmentation. A small building was typically represented by one
image object, while a large building was divided into several homogenous patches.

Following the image segmentation, we conducted the object-based image classifica-
tion using a random forest algorithm. The mean value of each spectral band was used to
represent each object to support the classification. Six land cover classes were considered:
building, road/open built-up, vegetation, beach, volcanic lava/soil, and water. A few loca-
tions with obvious cloud/shadow were manually masked out. Minimal post-classification
manual editing was conducted to remove the obvious classification errors. For example,
some buildings were misclassified as roads and vice versa. Classification accuracy was as-
sessed using 50 randomly selected image objects (polygons) per class for three major urban
classes of building, road/open built-up, and vegetation. The other three classes, beach,
volcanic lava/soil, and water, were not significant components of urban land cover. We
visually interpreted each polygon using the WorldView-2 image and Google Earth’s very
high-resolution imagery archive as references. Reference polygons contain heterogeneous
land cover types, and the dominant land cover was used as the label. Error matrix and
accuracy statistics were generated by comparing the OBIA classification result and visually
interpreted land cover references.

2.3. Image Classification Using U-Net

The U-Net was developed by Ronneberger et al. [23] for localized pixel classification
for biomedical image segmentation. The U-Net architecture (Figure 2) features a contracting
path, where convolution and max pooling operations are used to extract image context, and
an expanding path, where up-sampling and convolution are used for sequential localization.
The localization is enhanced by integrating the extracted features from the contracting path
at each spatial scale. This U-Net design allows for end-to-end training at the pixel level
and shows very good performance on many image segmentation tasks [23,36]. The U-Net
design is particularly appealing for the remote sensing community, because it provides a
class label for individual pixels, instead of focusing on scene labeling. The localization is
the key for land cover mapping and change detection tasks.

The four-band WorldView-2 image was divided into two parts of northern (50%) and
southern (50%) sub-regions. The northern and southern sub-regions were used as the
training and testing sets, respectively. These areas were chosen to balance the need to
provide the network with sufficient training data, while ensuring that the network can be
tested for overall generalization. The classification map derived from the OBIA method
(Section 2.2) was used as the labeled image (or target) to support U-Net training and testing.
The original classification scheme included six land cover classes of building, road/open
built-up, vegetation, beach, volcanic lava/soil, and water. We masked out land cover
classes of beach, volcanic lava/soil, and water for U-Net classification, because they are
either not significant components of urban land cover or they have very limited spatial
coverage (i.e., beach).
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From the training set, the northern sub-region, we randomly extracted image tiles
of varying sample sizes from 32 to 4096 to evaluate how sample size affects classification
performance. Each tile has four spectral bands with 256 by 256 pixels for each layer. For a
given training set, the image tiles were further divided into image batches (batch size = 32)
during U-Net training. The final layer of U-Net includes a pixel-wise softmax activation
combined with the cross-entropy loss function. The U-Net was trained using the stochastic
gradient descent with momentum (SGDM) optimization. The initial learning rate was
specified as 0.05 and the gradient clipping threshold was set as 0.05 to improve the stability
of network training. The maximum training epoch was set as 10, because the training
accuracy typically became saturating after 3–5 epochs. To reduce potential overfitting, we
recorded cross-validation (20% hold-out) accuracy for each training epoch. The trained
U-Net with the best cross-validation accuracy was then applied to the southern sub-region
of the study area to generate pixel labels.

2.4. Image Classification Using VGG16

The data preparation of the VGG16 urban mapping included three basic steps: segmen-
tation, framing, and labeling. The WorldView-2 image was previously segmented using the
multiresolution segmentation algorithm within the eCognition Essentials software package
(scale factor is 75, Section 2.2). Once the image was segmented, an image database was
created by framing an individual scene around each object, regardless of image object
size. Frame dimension was determined by considering natural image perception: smaller
objects required larger frames to place in context, while larger objects (such as roads, large
vegetation patches, etc.) required little to no framing for identification (see Table 1). Ob-
ject size was considered by averaging width and height in the spatial x and y domain.
Objects with size less than 50 pixels were assigned a window size of 75 × 75 pixels, the
smallest resolution at which objects can be placed in context and identified by the human
eye. Objects with size between 50 and 500 pixels were given a frame dependent on their
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size; a scale factor was developed that provides linear interpolation between a 50 pixels
object being given a window size of 75 × 75 and a 500 pixels object being given a window
size of 500 × 500. Objects larger than 500 pixels were given framing equal to their width
and height.

Table 1. Object frame size. W is object width, H is object height, S is scale factor, AvgBox is defined
by averaging width and height in the spatial x and y domain.

Object Size
(Average of Width and Height, Pixels) Frame Size

≤50 75 × 75

50–500 S*W × S*H
S = (−0.0011 × AvgBox ) + 1.555

≥500 W × H

To test our hypothesis that machine perception could be assisted by highlighting the
pertinent object, two separate image databases were produced, one where each object’s
background was blurred using a Gaussian filter (σ = 1, 5 × 5 filter size) and one with no
augmentation. Figure 3 shows a comparison of a chipped image example of an object
with/without the Gaussian assistance.
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Finally, the image database was labeled according to the class labels from the OBIA
classification results.

Training was accomplished on the VGG16 architectures using the deep learning
package from Matlab2020a. To capitalize on the millions of images that these networks
have already been exposed to, transfer learning was performed on the image databases
using the network pre-trained for the ImageNet challenge. The network architectures used
were identical to the original networks, except that the networks’ last layer’s output was
reduced from 1000 to 3 to classify three distinct object types (building, road/other built-up,
and vegetation). Because the shallower layers contain basic image feature information such
as edge or color detection, which are shared between the ImageNet and remote sensing
datasets, the learning rates for the earlier network layers were set to zero, thus freezing the
weights of these layers during transfer learning [37]. For the last fully connected layer, the
network’s learning rate was set to 1 × 10−5. This enabled fine-tuning of the deep network
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layers, while more dramatically altering the weights of the last fully connected layer that
assigns class probabilities.

The original VGG16 uses 3-band RBG images as input. For our study, we selected
near-infrared, red, and green bands as input channels, because certain land cover classes
(i.e., vegetation cover) can be best mapped by including the near-infrared band. Similar
to the U-Net urban mapping, the northern portion of the WorldView-2 image was used
as the training data. Once the network was trained, the VGG16 network predicted the
label for the segmented test dataset from the southern portion of the image. The spatial
location of each object was retained so that object labels could be mapped directly onto the
georeferenced scene.

3. Results
3.1. OBIA

Figure 4 shows the OBIA-derived land cover map and a highlighted area focusing
on the detection of buildings. Overall, the well-preserved shapes of buildings and roads
suggested good classification performance using OBIA. The OBIA image classification
results were assessed using visual interpretation of the WorldView-2 image and the Google
Earth’s very high-resolution imagery archive as references. For 150 randomly selected
OBIA objects for building, road/open built-up, and vegetation classes, the overall accuracy
was 86.7 percent (n = 150) with a Kappa coefficient of 0.80 (Table 2). The user’s accuracies
of building and road/open built-up were 84.0 percent. Certain roofing materials and
roads/open built-up parcels may have similar spectral characteristics so the confusion
between these two classes was expected. The producer’s accuracies for building, road/open
built-up, and vegetation were 85.7, 84.0, and 90.2 percent, respectively. We note that
per-object accuracy assessment was used here to maintain the consistency with OBIA’s
analytical unit. The main advantages of using per-object over per-pixel accuracy assessment
include reducing positional errors and difficulty in interpreting edge pixels. However,
the associated accuracy statistics cannot be directly generalized to areas of agreement and
disagreement due to the varying size of OBIA objects.

Table 2. Error matrix for OBIA image classification was generated using reference data derived from visual interpretation
of WorldView-2 image and the Google Earth’s very high-resolution imagery archive. A total of 150 OBIA-derived polygons
were randomly selected for the accuracy assessment. UA and PA denote user’s and producer’s accuracy, respectively.

Building Road/Open Built-Up Vegetation Total UA

Building 42 5 3 50 84.0

Road/open built-up 6 42 2 50 84.0

Vegetation 1 3 46 50 92.0

Total 49 50 51

PA 85.7 84.0 90.2 Overall = 86.7% Kappa = 0.80

3.2. U-Net Mapping

The training sample size or the number of randomly extracted image tiles had large
impacts on U-Net classification performance. Figure 5 compares cross-validation accuracies
of U-Net classification across various training sample sizes (32 to 4096 image tiles). At each
training sample size, the boxplot shows the variation in overall accuracy across training
epochs from one to ten. Using 32 randomly selected image tiles in training, the overall
accuracies varied from 40.5 to 83.0 percent. The variation in overall accuracy across training
epochs decreased when more image tiles were used in training. With 2048 image tiles, the
overall accuracies were above 92 percent across all training epochs. The further increase in
image tiles in training did not result in improved cross-validation accuracy. The highest
cross-validation accuracy (95.3 percent) was obtained after three training epochs using 2048
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image tiles as input. The resultant U-Net was applied to the testing region of the image to
obtain the final classification map.
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Figure 6 shows the U-Net classification result for the testing region. Visually, the
buildings and road/open built-up areas match well with the visual interpretation of the
WorldView-2 image for the test site: objects marked as buildings are scattered around
residential areas and objects marked as roads follow the city’s transport network. A
close visual evaluation indicated a high level of agreement of building outlines. There
were apparent classification errors in areas close to the airport and track/soccer complex.
Some “salt-and-pepper” noise was observed within the vegetation patches located in the
southeast corner of the testing image. Pixel-wise accuracy assessment was conducted for U-
Net classification results. The following error matrix (Table 3) presents U-Net classification
accuracy statistics using a total of 90 randomly selected points. The overall accuracy was
87.8 percent (Kappa = 0.82). For building class, the user’s and producer’s accuracies were
86.7 and 92.9 percent, respectively. Road/open built-up class had a lower user’s accuracy
of 80.0 percent. The error is attributed to confusion between open built-up (with sparse
vegetation cover) and vegetation classes.

Table 3. Error matrix for U-Net image classification was generated using reference data derived from visual interpretation
of WorldView-2 image and the Google Earth’s very high-resolution imagery archive. A total of 90 points were randomly
selected for the accuracy assessment. UA and PA denote user’s and producer’s accuracy, respectively.

Building Road/Open Built-Up Vegetation Sum UA

Building 26 3 1 30 86.7
Road/open built-up 2 24 4 30 80.0

Vegetation 0 1 29 30 96.7
Sum 28 28 34
PA 92.9 85.7 85.3 OA = 87.8 Kappa = 0.82
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3.3. VGG16 Mapping

Using the image database with Gaussian assistance as input, the highest cross-
validation accuracy (85.3 percent) was obtained at five training epochs. Figure 7a shows
the classification result for the testing region. Classification errors are shown as image
objects, because an object-based classification approach was used. For example, some large
vegetation patches were misclassified as road/open built-up classes. A few road/open
built-up segments on the runway of the airport were labeled as buildings. Compared to
the U-Net mapping results, there was a higher level of confusion between the building
and road/open built-up classes. Using 150 randomly selected image objects as a reference,
the VGG16 resulted in an overall accuracy of 77.3 percent (Kappa = 0.66). The user’s accu-
racies for building, road/open built-up, and vegetation were 76.0, 74.0, and 82.0 percent,
respectively (Table 4).

Table 4. Error matrix for VGG16 mapping (with Gaussian assistance) was generated using reference data derived from
the visual interpretation of a WorldView-2 image and the Google Earth’s very high-resolution imagery archive. A total
of 150 image objects were randomly selected for the accuracy assessment. UA and PA denote user’s and producer’s
accuracy, respectively.

Building Road/Open Built-Up Vegetation Total UA

Building 38 10 2 50 76.0
Road/open built-up 8 37 5 50 74.0

Vegetation 3 6 41 50 82.0
Total 49 53 48
PA 77.6 69.8 85.4 Overall = 77.3% Kappa = 0.66

Using the image database without Gaussian assistance as input, we obtained the
highest cross-validation accuracy of 76.5 percent for the training data. The trained VGG16
network was then applied to the testing region to generate the classification map (Figure 7b).
Classification errors were apparent for all three classes of building, road/open built-up,
and vegetation cover. Overall, the VGG16 mapping without Gaussian assistance performed
far worse compared to those with Gaussian assistance. For the same set of validation image
objects, the overall accuracy decreased to 67.3 percent.
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4. Discussion

Currently, the major challenge and opportunity for remote sensing researchers in-
volves developing image analytical approaches that can take full advantage of DCNNs
designed for computer vision or other pattern recognition fields. Our study serves as
one of these experiments. The U-Net network, combined with an OBIA-derived land
cover map as training data, performed very well at high-resolution urban mapping. The
buildings, road/open built-up, and vegetation were identified with an overall accuracy of
87.8 percent. The classification result from OBIA showed errors. For example, the class-
specific accuracies for building and road/open built-up objects were close to 85 percent.
Building boundaries in certain residential areas were not well defined because of combined
limiting factors of sensor data, segmentation procedure, and classification algorithms. It
is interesting to note that U-Net generated accurate building and road products using
the OBIA-derived reference with reasonable accuracy, rather than using reference data
acquired by visual interpretation or manual digitizing [31,38]. This points to the utility
of traditional, shallow machine learning methods to efficiently generate training data,
particularly for the express purpose of evaluating various deep learning schemas.

With an OBIA-derived reference map, image tiles can be easily extracted for U-Net
training. With a relatively small training sample size (e.g., 32–256 tiles), U-Net generated a
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detailed urban map with acceptable accuracy. However, it may require multiple trials to
generate acceptable results, and it is difficult to know which training tiles lead to acceptable
generalization performance. For this study, a sample size of 2048 image tiles generated
consistent cross-validation performance across various training epochs. This suggests that
trial-and-error learning can be significantly reduced by increasing training samples. The
actual pixel counts for 2048 image tiles (256 by 256 pixel) were approximately 12.5 times the
total pixels within the training image (2300 by 4649 pixels). For computational efficiency,
the U-Net training can be best accomplished through the use of GPU. We used GeForce
GTX1080 GPUs from the advanced research computing facility of the University of North
Carolina at Chapel Hill. With multiple GPUs, the training, validation, and testing could
be accomplished within tens of minutes. The availability of GPUs is clearly important if
a large amount of U-Net training and testing needs to be implemented. Currently, this is
still a limiting factor for incorporating the U-Net as a routine tool for the general remote
sensing community.

For VGG16-based urban mapping, an OBIA approach using pre-training segmentation
and Gaussian assistance was used as a shortcut for scene classification. Our experiment
suggested that the pre-trained VGG16 and transfer learning were not as good as U-Net for
detailed urban land cover mapping. For example, this paradigm produced more errors of
commission for road/open built-up than both OBIA and U-Net classification. The spatially
clustered error of commission was most obvious in a testing area with dominant vegetation
cover, where the WorldView-2 image has sufficient resolution to distinguish them. There are
several possible explanations. We relied on pre-trained VGG16 and transfer learning. Some
image segments in the vegetation class may have very similar VGG16-derived features
compared to those of the open built-up class. The fine-tuning appeared to be insufficient
in separating those image segments. We conducted additional experiments to re-train
the entire VGG16. However, the limited training samples (i.e., several thousand of image
objects) did not warrant full network training. It should be noted that the DCNN, such
as VGG16, typically requires a large amount of meticulously labeled reference imagery in
training. Larger image databases could lead to improved classification accuracy.

With this paradigm of VGG16 mapping, performance is dependent on the objects
derived through segmentation, representing real objects in space. For this study, we used
the multiresolution segmentation algorithm within the eCognition Essentials software
package (scale factor is 75, Section 2.2) to generate image segments. A more representative
pre-DCNN segmentation algorithm may result in better accuracies for VGG16 mapping.
Apparently, the selection of segmentation algorithm and associated parameters call for
future research. The OBIA-derived land cover map has approximately 87 percent of object-
level accuracy. The direct use of such a noisy product for VGG16 training may generate
high uncertainties in prediction. Therefore, the availability of high quality/quantity of
training data remains a major challenge for the application of DCNNs for detailed urban
mapping. For our experiment, the VGG16 could not generate usable urban map products
without Gaussian blurring. This indicates that Gaussian blurring was essential to DCNN
performance as it assisted machine perception in the same way that it guides the human
eye; thus, machine perception is limited (for the present) to at least what the human brain
can visually distinguish.

5. Conclusions

This paper examined the application of two DCNNs, U-Net and VGG16, for urban
land cover mapping, using VHR WorldView-2 imagery as input. The use of traditional
OBIA land cover mapping was an important first step to generate a reference map in
supporting DCNN training and testing. We evaluated U-Net performance using a range
of training sample sizes or image tiles (32–4096). U-Net yielded high performance in
pixel-wise classification (overall accuracy 87.8 percent) when more than 2000 image tiles
were used as input. The main advantage of U-Net included reducing data requirements
and eliminating the need for hand-crafted feature extraction. For VGG16-based urban
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mapping, we developed a sequential image processing paradigm that includes image
segmentation, framing, and VGG16 transfer learning. Although the VGG16-derived urban
map was not as good as maps derived from U-Net, our study demonstrated an alternate
solution in linking OBIA and DCNNs designed for computer vision tasks. With Gaussian
assistance, the pre-trained VGG16 and transfer learning of VGG16 generated moderately
accurate urban maps. Urban mapping accuracy could be further improved with more
robust segmentation algorithms and better quality/quality of training samples.
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