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Abstract

Future land use projections are needed to inform long-term planning and policy. However,

most projections require downscaling into spatially explicit projection rasters for ecosystem

service analyses. Empirical demand-allocation algorithms input coarse-level transition quo-

tas and convert cells across the raster, based on a modeled probability surface. Such algo-

rithms typically employ contagious and/or random allocation approaches. We present a

hybrid seeding approach designed to generate a stochastic collection of spatial realizations

for distributional analysis, by 1) randomly selecting a seed cell from a sample of n cells, then

2) converting patches of neighboring cells based on transition probability and distance to the

seed. We generated a collection of realizations from 2001–2011 for the conterminous USA

at 90m resolution based on varying the value of n, then computed forest area by fragmenta-

tion class and compared the results with observed 2011 forest area by fragmentation class.

We found that realizations based on values of n� 256 generally covered observed forest

fragmentation at regional scales, for approximately 70% of assessed cases. We also dem-

onstrate the potential of the seeding algorithm for distributional analysis by generating 20

trajectories of realizations from 2020–2070 from a single example scenario. Generating a

library of such trajectories from across multiple scenarios will enable analysis of projected

patterns and downstream ecosystem services, as well as their variation.

Introduction

Land use choices have modified landscapes across the United States (US) and the world ([1,

2]). As societal needs change, the priorities underlying these choices can shift, yielding a land

use change system that is driven by socioeconomic values. There are abundant examples of

developed land uses displacing other rural land uses such as forest and agriculture (e.g., [3,4])

and likewise shifting rural land uses (e.g., [5,6]) as different rural land use choices become

more or less economically attractive. These land use changes alter the lands’ ability to provide
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ecosystem services, so projecting land use change informs potential land use policies and eco-

system services [7].

The scale at which land use change can be modeled depends in part upon the scale of the

response and explanatory data available. In the US, Alig et al. [8], Wear [9], and Mihiar and

Lewis [10] estimated econometric models of land use change at the county scale (counties are

political or administrative division of states). This choice of scale arises because key observed

or estimated variables such as land use change, population, income, and rural land rents are

often only available in a consistent fashion at that county scale. Further variables needed for

projections, such as population and income, are also generally available at the county or

broader scale.

For example, land use change models and projections developed in support of the US Forest

and Rangeland Renewable Resources Planning Act (RPA) of 1974 are developed at the county

scale [9]. The RPA requires a periodic assessment of the current and potential future condi-

tions of forest and rangelands of the US, and land use change defines a critical mechanism that

influences both economic and ecological characteristics of forests and associated ecosystem

services. Fifty-year, county-level land use projections for the US were used in the RPA 2010

assessment [11]. While this scale can appropriately inform the analysis of potential shifts in

some ecosystem services (e.g., carbon sequestration), the analysis of other ecosystem services

(e.g., water quantity [12]) and ecological indicators (e.g., forest fragmentation [13]; biodiver-

sity [6,14]) requires finer scale information (e.g., 30–90 meter rasters). Our goal is to develop a

technique to translate coarse-scale land use change projections to a finer spatial grain in sup-

port of the RPA assessment. We focus on applications in the US but expect the results of this

research to be applicable globally.

While there are a wide variety of land use change models available as the result of broad

interest and research, which can be categorized along economic/non-economic, spatially-

explicit/aggregated, and empirical/process-based lines [15,16]; demand-allocation methods

[17–21] are particularly well-suited to situations where a projected land use change is available

at a coarse scale and the intent is to downscale the projection. Demand-allocation models tend

to input exogenously generated transition quantities (or quotas) for a given area (e.g., county),

for example via socioeconomic models [10,18]; then allocate those quotas within the study

area [22]. This allocation can be driven by empirically estimated transition probability models

(e.g., [18,19]), or it can be the result of process-based models such as cellular automata or

related hybrids [21,23–25]. Such models can be employed using fuzzy or crisp logic [26].

The RPA county-scale land use projections are well-suited for demand-allocation

approaches, but the continental scope of the assessment and fine grain of the spatial output (in

this case, 30–90 meters) make process-based models difficult to parameterize consistently over

large areas. We therefore focus on empirical approaches, which typically blend contagion-

based processes that allocate transitions to a new land use class near areas where that land use

class currently exists [27]), with random processes that ignore spatial structures altogether.

Seeding algorithms, a subset of demand-allocation algorithms, make use of use both conta-

gious and random processes [18,27,28]. In seeding, the underlying land use change probability

surface is randomly sampled, and the cell (pixel of a raster) with the highest conversion proba-

bility of the sample is chosen as a ‘seed’ cell. A patch of cells is then grown semi-contagiously

from the seed (e.g., [18]), so that patch properties (such as patch sizes for the realized popula-

tion of patches) correspond to empirical distributions of those properties. Seeding algorithms

such as FORE-SCE [28] have been used to model land cover change at national scales, both

historically [29] and into the future [19,30].

We recognize the high level of uncertainty in identifying the specific locations of change.

Ahmed et al. [31] noted that pixel by pixel comparisons do not necessarily capture the
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qualitative similarities, such as pattern, between rasters. Aguejdad et al. [17] observed that

when the spatial configuration of the landscape is of interest to the end user, the simulation of

the landscape pattern is crucial. Additionally, while scenario-based projections make it possi-

ble to attribute inter-scenario variation to the differences in the exogenous transition quotas

[32], the stochastic nature of seeding algorithms implies a distribution of landscape patterns

and metrics based on the varying realizations [18]. Accounting for this within-scenario vari-

ability is necessary when assessing the impact of fine-grain landscape projections on ecosystem

services. Hence, there is a need to generate not one, but a suite of outputs corresponding to the

realizations of both multiple scenarios and multiple possible futures within any given scenario.

To our knowledge, no one has accomplished this in support of a large-scale (i.e., national)

project. These multiple realizations would support distributional analyses so that uncertainty

can be adequately displayed, but they require their parent land use change models to flexibly

input multiple similar data streams, yet generate outputs at a fast-enough rate to meet project

timelines.

In this study, we introduce and demonstrate an empirical seeding demand-allocation algo-

rithm by making 90m spatial realizations of RPA county-level land use change projections.

This seeding algorithm is designed specifically to 1) model a continuum from simple random

allocation to contagious allocation, allowing an end user to influence how strictly the conver-

sions should follow the underlying probability surface; and 2) efficiently generate a broad col-

lection of spatial realizations to fuel distribution-based analyses of projected scenarios. The

seeding algorithm employs a data-driven process for growing contiguous land use change

patches from initial seed cells, which allows for more realistic land use change propagation pat-

terns. Generating a library of multiple realizations yields both projections of fine-scale future

land use patterns and a distribution-based metric of confidence (or susceptibility) for given

areas to undergo land use change. Although our assessment focus is on forest fragmentation,

the interdependency of forest land use with urban, agriculture, and other land uses requires

the simultaneous projection of each of these land use classes. We generate fine scale rasters

because we are primarily interested in their ability to mimic the aggregate landscape pattern;

therefore, the assessment of our algorithm’s performance is by comparing its outputs with

observations in terms of forest fragmentation at county, state, and regional scales.

Methods

Overall framework

In the following methods subsections, we detail our methodology for creating spatial realiza-

tions of projected land use from county-level projections (Fig 1). We begin with a description

of our reference datasets and other ancillary data used, as well as a description of datasets

derived from this initial data. Next, we briefly review the random forests algorithm before

describing its use to model land use transition probabilities. Then we describe our specific

demand-allocation algorithm, in particular, 1) seed cell selection and 2) patch conversion.

Once the algorithm is described, we focus on analyzing the efficacy of the resultant spatial real-

izations when varying a key tuning parameter, followed by a demonstration of the algorithm

through multiple time steps.

Our study area is the conterminous US (CONUS), represented in this study by a 90m raster

with dimensions 51,393 x 32,426 pixels. The raster was partitioned into 3,075 unique county

units based on an overlay with US Census data, and grouped into eight regions conforming to

RPA conventions (Fig 2). Each county is identified by its Federal Information Processing Stan-

dard (FIPS) numeric code. Pixels outside the collective county boundaries were treated as

background and excluded from this study.
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Fig 1. Methodology framework. Key components of the demand-allocation algorithm presented in this study.

https://doi.org/10.1371/journal.pone.0240097.g001

Fig 2. Study area. The conterminous United States (CONUS), as divided into the eight regions used by the Resource Planning Act (RPA) assessments. State

boundaries are based on data freely available through the US Census Bureau (https://www.census.gov/geographies/mapping-files/time-series/geo/tiger-line-file.html).

https://doi.org/10.1371/journal.pone.0240097.g002
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Initial data

For our baseline land use data, we adapted the National Land Cover Datasets (NLCD) [33–35]

for 2001, 2006, and 2011 into a classification of Developed, Forest, Agriculture, Water, and

Other land use classes. To better approximate forested land use from land cover products, we

assigned to the Forest class any pixels which were observed to have a forested land cover (i.e.,

NLCD classes 41, 42, 43, or 90) in any of 2001, 2006, or 2011, while the NLCD land cover in

other years was either grassland/herbaceous (NLCD class 71) or shrub/scrub (NLCD class 52).

This approach was intended to mimic the successional stages of a replanted forest stand after

harvest, which may not have been classified as forest cover in a given year [36]. We treated the

resulting 2001 (designated as time 1, or T1) and 2011 (T2) land use rasters as the reference

data for all subsequent analysis.

In total, there were 25 possible T1-T2 transitions among the five land use classes. Of these,

we only considered a subset (Table 1) based on simplifying assumptions that excluded rare

transitions (e.g., Developed to Forest) and transitions prohibited by regulation (e.g., a pro-

tected status or federally owned land). Using the reference T1 and T2 rasters, we collated the

reference transition patches in tables of total converted area and patch size [37], with one such

table per land use transition type (e.g., Agriculture to Developed) per county. We used these

tables to both estimate patch size per transition type via a fitted negative binomial distribution,

as well as to obtain county-level transition quotas for generating the spatial realizations, to

ensure that the projected gross land use areal changes from T1 to T2 would match the observed

areal changes. Also, because land use patterns are not the sole driver of land use change deci-

sions, we also assembled a collection of ancillary datasets in raster form, to be used when esti-

mating the transition probability models (Table 2). In addition to land use pattern data

derived from the reference T1 raster, these ancillary data included topographic, hydrologic,

and legal variables with expected impacts on land use change decisions.

Different areas of the US have historically exhibited different patterns of land use and land

use change due to variable geographical, climatic, cultural, and socioeconomic factors. Because

those factors do not necessarily follow political boundaries, such as the eight RPA regions of Fig

2, we also partitioned the CONUS into groups of counties (denoted for this study as groupings,
as opposed to the RPA subregions used to aggregate and summarize results) with similar charac-

teristics when estimating land use transition models. The groupings were developed via a k-

means cluster analysis that considered similarity of land use distribution, mean elevation and

slope (in a 3x3 pixel window), population and income (using 2015 projected data as a proxy, to

harmonize with later future projections), and geographic coordinates. We selected a 10-group-

ing partition (Fig 3), treating each such grouping as a self-contained unit for purposes of model-

ing transition probabilities. We held the groupings fixed in this study, but for the RPA 2020

assessment, the trajectories of the population and income projections will allow counties which

undergo changes (e.g., increased urbanization) to be accordingly reassigned to new groupings.

Table 1. Transitions between land uses in this study. Only those marked with an X were considered when generating the transition probability model or the spatial

realizations.

Time 2

eveloped Forest Agriculture Water Other

Time 1 Developed X

Forest X X X X

Agriculture X X X X

Water X

Other X X X X

https://doi.org/10.1371/journal.pone.0240097.t001
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Transition modeling

We modeled observed land use class transitions independently for each grouping, using a ran-

dom forest model. The random forest is an ensemble machine learning approach based on

classification and regression tree (CART; [40]) outputs. In general, given a response variable,

Table 2. Ancillary datasets used to model transition probabilities.

Variable Type Scale(s) (90m raster pixels) Description

Geophysical 1x1 Elevation

3x3, 9x9, 27x27 Maximum slope

3x3, 9x9, 27x27 Compound topographic index [38]

1x1 Distance to nearest waterbody

Legal 1x1 Protected Areas Database GAP status [39]

T1 Land use 3x3, 9x9, 27x27 Percent Developed

3x3, 9x9, 27x27 Percent Forest

3x3, 9x9, 27x27 Percent Other

3x3, 9x9, 27x27 Percent Agriculture

3x3, 9x9, 27x27 Percent Water

1x1 T1 land use

https://doi.org/10.1371/journal.pone.0240097.t002

Fig 3. Probability model groupings. The conterminous United States (CONUS) was partitioned into 10 groupings of similar land use

patterns for purposes of transition probability modeling. The groupings were derived from a k-means cluster analysis based on per-county

land use distribution, elevation and slope, population and income, and geographic location. County feature data is freely available upon

request from the USDA Forest Service Forest Inventory and Analysis program (https://data.fs.usda.gov/geodata/edw/datasets.php).

https://doi.org/10.1371/journal.pone.0240097.g003
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yN×1, and a corresponding collection of V predictor variables, XN×V, CART generates a series

of recursive partitions, based on splits along the variables in X that emphasize within-node

purity: that is, each node on the resulting tree is as homogeneous in y as possible.

One shortcoming of CART is that it tends to overfit the data, sacrificing model interpret-

ability for explanation of variance in the data. A random forest, an ensemble of T CART mod-

els (or trees), remedies this through bootstrap aggregating (or bagging). Following the

bootstrap notation in Coulston et al. [41], for the bth tree, let y�bn�1
be the portion of the original

response sampled, where we sample n times with replacement from {1, 2, . . ., N}, and let y�−b

be the portion of y not included in the sample. Because we sample with replacement, y�−b does

not necessarily have N − n elements. Define X�bn�v and X�−b similarly, by additionally sampling

without replacement v times from the V variables in X. Then, construct the corresponding bth

tree via CART and use it to predict the response for the omitted portion, denoted ŷ�� b. Repeat-

ing this process B times results in a random forest where, for any given yi 2 yN×1, the predicted

value for yi is the out-of-bag (OOB) mean: ŷi ¼ 1

Ni

P
fb:yi2y�� bg

ŷ�� b, where Ni ¼
P
fb:yi2y�� bg

1 is

the number of trees not trained with yi. When y is categorical, this mean can be replaced by a

majority vote from the trees or, as we did in this study, the proportion of votes for each cate-

gory can be calculated to obtain the probabilities for selecting those categories. The bagging

approach used in random forest also allows for robust error estimation (e.g., OOB error) and

measures of variable importance, related to the preponderance of key variables across the for-

est. We refer the interested reader to [42,43] for more complete details regarding random

forests.

In this study, we constructed random forest models to obtain the probabilities of each non-

water land use (Agriculture, Developed, Forest, and Other) transitioning into the others, with

the exception of Developed, which we assumed not to transition to anything else. Using transi-

tion type (Table 1) as the response, we constructed by compiling 500 randomly sampled obser-

vations of each transition type within each county grouping; each element of y was a

categorical gross transition type (i.e., Agriculture to Forest was a distinct transition type from

Agriculture to Developed, or Other to Forest). For the explanatory variables, X, we used the T1

land use state, as well as a collection of geophysical, T1 land use pattern, and legal variables

(Table 2). We then constructed a random forest model and predicted the probabilities associ-

ated with each type of land use conversion, for each cell in the grouping: P ¼ fpil1 l2g, where i
indexes the cells, l1 is the given T1 land use class, and l2 is the target T2 land use class. Taken

together across all 10 groupings, these probabilities can be interpreted as a wall-to-wall, multi-

layered raster with each layer corresponding to the probability of cells undergoing a particular

transition. (In practice, we applied the random forest models to each county separately.).

Demand-allocation

Let C ¼ fc1; c2; . . . ; cNg denote the N non-water cells of a given county, classified into the

land uses of L ¼ fd; f ; a; og so that C comprises Nd developed, Nf forest, Na agriculture, and

No other cells; for example, if the first indexed cell of the county is developed, then c1 = d. Simi-

larly, let Q ¼

qdd qdf qda qdo
qfd qff qfa qfo
qad qaf qaa qaf
qod qof qoa qoo

8
>>>><

>>>>:

9
>>>>=

>>>>;

be the collection of given gross transition quotas per

class for the county. For this study, we were only interested in transitions into developed, as

well as transitions between the other classes, simplifying Q to

Q ¼ fqfd; qad; qod; qaf ; qof ; qfa; qoa; qfo; qafg. Note that the county may also be partitioned
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such that C ¼ Cd [ Cf [ Ca [ Co, where, for example, Cd ¼ fcd1
; cd2

; . . . ; cdNd g represents the

collection of developed pixels in the county at time 1. Additionally, let P ¼ fpil1l2g denote the

transition probabilities for the ith cell from that county’s associated random forest model; for

example, p1df is the probability for the first indexed cell to transition from developed into forest

at time 2. As pil1 l2 ¼ 0 trivially whenever l1 6¼ ci, let P̂ ¼ fp̂ilg, where p̂il ¼
P

l12L
pil1 l. Thus,

p̂il2
represents the generalized probability of converting the ith cell to class l at time 2.

For a target time 2 class l, consider the target quotas fqmlg 2 Q, where m can be any valid

time 1 donor class (e.g., forest, agriculture, or other, provided the donor is not the same as the

target class). From fp̂ilg, sample n times without replacement with equal probability, and select

the seed cell, i0, such that p̂i0 l is the maximum such value in the sample. (If multiple values tie

for the maximum, randomly sample a single cell from these.) Then, note the value of ci0, denot-

ing it as m0, and reference the negative binomial distribution fitted from the corresponding

patch sizes in the reference transition data for the county. For example, if m0 = f and l = d, ref-

erence the negative binomial distribution fitted from all observed patch sizes from forest to

developed land use in the reference dataset. From the appropriate negative binomial distribu-

tion, generate a random number, k, to be the patch size surrounding the seed cell, i0. In prac-

tice, we require the patch size to be an odd number of cells for computational simplicity; if k is

even, adjust its value upward by adding 1. Also note that in the event there was no negative

binomial distribution fitted for the transition in question (i.e., no such transitions were

observed in the reference data), we set k = 1 and proceeded.

Denote the patch window, K, as the collection of cells within the county such that their

annular distance to the seed cell is less than or equal to the radius, r ¼ k� 1

2
, where annular dis-

tance between cell j and cell i0 is defined as dist(i0,j) = max(abs(xj − xi0),abs(yj − yi0)), where x
and y represent the northing and easting of the cell locations within the county. For ease of

notation and without loss of generality, we can reindex the cells in the patch window more

geographically, as

Kk�k ¼

cð� rÞr � � � c0r � � � crr

..

. . .
. ..

.
⋰ ..

.

cð� rÞ0 � � � ci0 ¼ c00 � � � cr0

..

.
⋰ ..

. . .
. ..

.

cð� rÞ� r � � � c0ð� rÞ � � � crð� rÞ

2

6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
5

; ð1Þ

so that dist((0,0),(i,j)) = max(abs(i),abs(j)).
Then, for all viable cells in the patch window that might transition to class l at time 2, that

is, all cells K̂ ¼ cij 2 K such that cij 2 L fl; dg (since pidl = 0 for all i and l), consider their

generalized probabilities of converting to class l, reindexing for convenience as P̂K̂ ¼ fpijg,

where pij ¼ p̂�l for the �th cell corresponding to cij 2 K̂. That is, each cell within the patch win-

dow that is not currently in the target class, l, and has a nonzero probability of converting to

class l, has both an associated probability of converting to class l and an annular distance to the

seed cell at the center of the patch window. From these candidate cells, K̂, we select k cells to

convert to class l. To ensure that we concentrate converted cells near the seed cell (and thus

avoid converting only cells not adjacent to the seed cell), we modify the values of P̂ K̂ according
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to the corresponding cells’ annular distance to the seed cell:

P̂
0

K̂ ¼ p0ij
n o

; where p0ij ¼ pij þ 1 �
distij
r

� �

1 � sð Þ; ð2Þ

where σ is the standard deviation of the generalized transition probabilities in P̂ K̂ . This modifi-

cation raises the generalized transition probabilities for cells geographically near the seed pixel,

relative to the window patch’s edge (Fig 4). When the underlying probabilities are more con-

stant (e.g., all else is equal within the patch window), the distance modifier dominates and cells

nearest the seed cell are favored for conversion. Where the probabilities are highly variable

(e.g., there are features in the patch window which drive the viability of candidate cells for con-

version), the original probability surface retains a stronger influence on the resulting converted

patch.

Finally, given P̂ 0

K̂
, we select a number of cells corresponding to k0 ¼ minðk; k P̂ 0

K̂
k; q�lÞ,

chosen in descending order of their corresponding probabilities, and convert these cells to

class l: CK
0 ¼ l, where K

0

is the first k0 elements of K̂ according to descending order of P̂ 0

K̂
.

These k0 cells are then removed from consideration of further conversion by setting PC
K0
¼ 0,

the corresponding quotas, q�l, are updated, and the seeding process begins anew within the

Fig 4. Distance modifier. Distance modifier to pixel transition probabilities, as a function of distance to center and local standard deviation of transition probabilities.

Note how as the standard deviation increases, the impact of the distance modifier is lessened.

https://doi.org/10.1371/journal.pone.0240097.g004
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target time 2 class, l. Once the conversion quota is achieved, we iterate through the remaining

target time 2 classes until all quotas for the county are achieved; we then iterate through all

counties in the CONUS.

Assessing choice of seeding sample size

The choice of seeding sample size influences the allocation of converted cells and, conse-

quently, the location of the resulting T2 predicted land use. Because seeding with n = 1 is simi-

lar to random allocation (aside from growing patches from the seeds) and seeding with n equal

to the population size is similar to contagious allocation, we expected that forest fragmentation

metrics from a range of seeding realizations would encompass the observed forest fragmenta-

tion. However, preliminary testing revealed that values of n greater than 200 produced highly

similar outcomes. Therefore, we generated six CONUS-wide realizations of T2 land use rasters

for each case of n = 2, 4, 8, 16, 32, 64, 128, and 256, for a total of 6 x 8 = 48 realizations. We

compared forest fragmentation for these realizations with the observed T2 land use raster. We

used the same underlying transition probability models, based on the county groupings, for all

realizations.

Irrespective of the method used to generate a raster, forest fragmentation depends on the

spatial scale at which it is measured. To measure fragmentation at multiple spatial scales, we

computed on each realized raster the percent Forest within windows of 3x3, 9x9, and 27x27

90m cells (7.3, 65.6, and 590.5 hectares, respectively) and assigned the result to the cell at the

center of the window. Using a classification framework (Table 3, Fig 5) similar to that of [44],

we then compared areas of each forest fragmentation class with respect to the reference T2

fragmentation, against the corresponding areas from the realizations. In each case, we checked

whether the observed forest area within each class was covered by the distribution of areas

from the various realizations. Because we were interested in focal-class forest fragmentation

and not landscape-scale fragmentation, we only considered forest fragmentation metrics for

pixels classified as forest at each date. For example, a developed pixel entirely surrounded by

forests was not considered, but a forested pixel entirely surrounded by developments was.

While results were produced at the county level, for simplicity we aggregated results according

to the eight RPA subregions (Fig 2).

Demonstrating multiple projected time steps

As an additional demonstration, we generated projected land use rasters in decadal time steps.

These test realizations were based on a land use raster representing a 2020 starting point; the

base raster was constructed from NLCD data from 2001–2016, as well as data developed by the

US Department of Agriculture Forest Service in support of the RPA 2020 assessment [45].

County-level quotas for the land use transitions were independently provided for 2030–2070,

covering each county across the CONUS, using econometric models similar to those of Mihiar

and Lewis [10]. These models treat land use decisions as a function of comparative rent values

Table 3. Forest fragmentation classes used, based on percent forest within various window sizes.

Fragmentation Class Percent Forest

Interior (including intact) 90–100%

Dominant 60–89%

Transitional 40–59%

Patchy 10–39%

Rare (including none) 0–9%

https://doi.org/10.1371/journal.pone.0240097.t003
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for each available land use. The rent values are dependent on socioeconomic factors as well as

climate factors, so that as these factors change, the proportion of land in a given county dedi-

cated to each use will change accordingly. For the current demonstration, we used a baseline

model that held climate inputs fixed and employed a single socioeconomic storyline, as down-

scaled by Wear and Prestemon [46]. We generated 20 spatial realizations according to these

quotas via the process described in the preceding subsections, varying the value of the seeding

sample size, n, between 20 and 200, then computed forest fragmentation classes and areas

using the same methods as the previous subsection. We summarized the results by RPA region

as before, then produced trajectories through time for each forest fragmentation class and

RPA region.

Results

Transition modeling

We generated a probability model for each of the county groupings using the random forest

approach. OOB classification error varied by grouping, ranging from 25.9% to 41.9%. Explana-

tory variable importance was generally similar for all groupings, with T1 land use (1x1 pixels),

percent land use in 3x3 windows, and elevation consistently ranking among the four most

important variables for each model. Fig 6 shows rasterized results generated from such proba-

bility models, where each color corresponds to the probability of going from a specific land

use class to Developed; in this case, the relationship of transition probability to the predictor of

local percent Developed is demonstrated.

Assessing choice of seeding sample size

We compared the T2 forest fragmentation from the seeding realizations to the observed T2

forest fragmentation. In most cases, we found clear trends relating forest fragmentation classes

to the seeding sample size, n, at multiple scales of aggregation (Fig 7): modeled values started

Fig 5. Forest fragmentation classes. (a) Land use around Charlotte, North Carolina, United States, and

corresponding forest fragmentation classes for (b) 3x3, (c) 9x9, and (d) 27x27 pixel windows. See Table 3 for

definitions for the specific classes.

https://doi.org/10.1371/journal.pone.0240097.g005
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near one percentage, then shifted toward a different percentage with a relatively stable variance

between choices of n. Generally, larger values of n in this range produced similar results, a

finding consistent with our preliminary tests which yielded little variation in classified forest

area between realizations using n larger than 200.

Aggregating across the six realizations from each of eight choices of n, the distribution of

seeding-derived fragmentation (48 realizations total) covered the observed time 2 fragmenta-

tion at the RPA subregional level and fragmentation window size for 83 of the 120 cases

(~70%; Fig 8). Excluding the rare forest cases, coverage was ~83%. In cases where the 48 reali-

zations did not cover the observed time 2 fragmentation for a given window size and subre-

gion, the minimum deviation between observed and one of the realizations was typically less

than 0.5% of the observed time 2 area. Thus, generating a distribution of realizations, with var-

iable adherence to contagious seeding, enabled coverage of the observed forest fragmentation

with good confidence.

Demonstrating multiple projected time steps

We also demonstrated the utility of having multiple realizations over time, drawing from a sin-

gle scenario. This approach enables comparison of regional effects, with realization-based

uncertainty included. For example, Fig 9 shows trajectories of percent change (relative to the

2020 baseline) of the five forest fragmentation classes, across each of the eight RPA subregions.

Inter-realization variation is given in the shaded polygons, representing the first and third

quartiles of values from across the 20 realizations used. A rich variety of regional differences

and patterns is immediately evident; for example, the amount of dominant forest (60–90% for-

est in the forested pixel’s neighborhood) in the Pacific Northwest is projected to increase

between 6–10% by 2070 under this scenario, with the majority of that increase occurring by

2040. This relative increase is notably greater than that of any other RPA subregion, and based

on the other panels in Fig 9, it is clear this increase is coming from a corresponding decrease

in interior forest (90–100% forest in the forested pixel’s neighborhood). As another example,

in the Southeast the increase to rare forest (a proxy indicator of increased urbanization in that

Fig 6. Transition probability rasters. Example probability rasters of transitions to the Developed land use class from Developed (red), Forest (green), and

Agriculture (blue) land use classes. The probability of transitioning from Developed to Developed is set at 1, so the red pixels are intended here as a

convenient reference to previously existing Developed area.

https://doi.org/10.1371/journal.pone.0240097.g006
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heavily forested subregion) is approximately 60% with low variation, implying with the other

panels that (in this scenario) the Southeast is expected to undergo deforestation (loss of domi-

nant and interior forest on the order of 5–10% each) to fuel this transition.

Discussion

Our goal was to develop and assess a hybrid demand-allocation algorithm for translating

county-level land use projections into fine-grain realizations. We demonstrated our approach

by evaluating projections of forest fragmentation derived from gross land use projections. We

Fig 7. Coverage of observed forest patterns. Differences between the total observed forest fragmentation and that derived from realizations, with respect to choice of

the seeding size, n, and the scale of aggregation for results. Three example forest fragmentation classes (Table 3; Fig 5) are shown here. The green line represents a

difference of 0 acres between the observed forest area and realized forest area, for forested pixels of the given fragmentation class at the given scale. Each boxplot

represents six realizations per choice of n.

https://doi.org/10.1371/journal.pone.0240097.g007
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Fig 8. Coverage of forest patterns by RPA region. Coverage of observed forest areas by fragmentation class, by window

size (when determining percent forest) and RPA region. Values shown represent the minimum deviation of the forest

area from the 48 realizations, as compared to the observed time 2 forest area. Values of 0 indicate that the observed time 2

forest area was contained within the distribution of the realized forest areas.

https://doi.org/10.1371/journal.pone.0240097.g008
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acknowledge the uncertainty in predicting future locations of land use change [17,31] and

hence employ a multiple-realization approach where the distribution of potential future condi-

tions can be assessed. Because our focus was not on pixel-specific accuracy, we note that our

algorithm’s realizations may best be used when pixel-based pattern metrics are aggregated to

county- or coarser-level summaries, as in our results (Figs 7–9).

Because of the obvious links between land use decisions and climate change [47–49], land

use projection efforts such as the RPA 2020 assessment are intextricably tied to climate change

projections [11,19,50–52]. These projection studies are most typically based on the Intergov-

ernmental Panel on Climate Change (IPCC) scnearios, which combine radiative forcing and

socioeconomic trajectories [53]. Scenario-based projections are desirable because the range of

futures is simultaenously simplified yet vetted, allowing the end user to focus on the impacts of

the various scenarios in their field of interest without devising and defending those scenarios

from scratch. Similarly, scenario-based analyses allow separation of variability between the sce-

nario and the analysis [32]. Additionally, the widespread use of the IPCC scnearios permits a

common reference framework, by which disparate studies may be compared and synthesized

[53]. In this study we used empirical observations to inform our land use transitions, but we

also demonstrated the potential of our algorithm to generate within-scenario and between-sce-

nario variability through projected trajectories.

The most important distinction of our seeding algorithm from other contemporary seeding

algorithms (e.g., [18,19]) is that we specifically designed it to generate multiple realizations, via

a tunable stochastic process, to create a library of projected allocations, as opposed to a single

or small number of outcomes (e.g., one per scenario). This distributional capability has

immense utility. When projecting across multiple time steps, we are interested not only in the

Fig 9. Forest pattern trajectories. Projected change in forested area from 2020–2070, by forest fragmentation class (Table 3; Fig 5) and RPA subregion

(Fig 2). Change is given as a percentage of the 2020 area. The lines represent the median value across 20 realizations; the polygons represent the

corresponding inter-quartile ranges.

https://doi.org/10.1371/journal.pone.0240097.g009
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spatial patterns of land use change but the timing and variability of those patterns. What loca-

tions are most susceptible to change? Are there multiple storyline paths to similar future pat-

terns? What is the likelihood of significant or substantial change in fragmentation over time?

A distributional approach addresses these questions by generating multiple, equally plausible

realizations as a foundation for hypothesis testing. Accordingly, our seeding algorithm makes

simplifying assumptions (e.g., a basic probability model generated from a short list of com-

mon, spatially explicit drivers of change, such as elevation and slope) in exchange for the

greater computational efficiency to produce libraries of rasters at the finer scales (e.g., 30–90

meters) needed for many ecological service and indicator analyses (e.g., [6,12–14,54]).

For example, in support of the RPA 2020 assessment, our algorithm is used to generate spa-

tial realizations from county-level land use projections made by methods similar to Mihiar and

Lewis [10]. The RPA 2020 assessment is focused on 20 curated scenarios [55], each one repre-

senting a particular combination of climate influence [56] and downscaled socioeconomic

storylines from the IPCC [46]. Each realization represents a five-raster trajectory (2030–2070,

in decadal steps) from a 2020 CONUS-wide baseline raster at 90m spatial resolution. By vary-

ing the seeding sample size randomly from 20 to 200, our algorithm produces a collection of

20 realizations (100 rasters) per scenario, analogous to the data generated to support Fig 9.

With available computing resources, it takes our algorithm approximately three days to pro-

duce one such collection. The end result will be 420 realizations (20 realizations per 20 scenar-

ios, plus one comparative scenario holding climate effects fixed), enabling distribution-based

analyses of landscape pattern projections with the capacity to compare climate-, socioeco-

nomic-, and allocation-based effects on ecosystem indicators and services.

One aspect of this distribution-oriented approach is controlling for the variation of the

resulting spatial realizations. Aquilué et al. [18] assessed the interaction between the tuning

parameters in their seeding algorithm; these parameters were more focused on patch growth

after the initial seeding. The primary tuning parameter in our seeding algorithm is n, the seed-

ing sample size, which impacts the spatial distribution of seed cells. The choice of n can be con-

ceptualized as placing the realizations on a continuum between contagious and random

allocation. If n = 1, then seed selection is randomly allocated; if n is the number of cells in the

study area, then seed selection is contagious. While this conceptualization has limits (in our

seeding algorithm, contiguous pathces are grown around the seed cells), one may intuit that

larger values of n tend to produce more contagiously-allocated realizations than small values

of n. In practice, this effect is constrained to lower values of n: we found that values of n less

than 256 were generally sufficient to obtain the range of parameter-based variation (Fig 7),

and preliminary tests with n greater than 256 suggested negligible additional variation with

respect to projected forest fragmentation. However, the impact of varying n produced more

variation in the resulting forest fragmetnation projections than did replicates using the same

value (Fig 7). Thus, in generating multiple realizations within a scenario, we can also let those

realizations vary according to allocation pattern, further increasing our ability to capture

observed variation (Figs 7–9).

In this study, of the 120 combinations of forest fragmentation, window size, and RPA sub-

region, the distribution of forest areas the 48 spatial realizations captured the observed time 2

value approximately 70% of the time (Fig 8). However, of the combinations where the

observed value lay outside the distribution, over half were for the rare forest class, seemingly

independent of the window size used when defining that fragmentation class (Table 3). We

speculate that this may have had to do with the algorithm and how it allocated patch size: we

modeled patch size with a negative binomial distribution, but to cover the cases where no tran-

sitions were observed in a county, we inserted a single pseudo-transition of patch size 1 into

each transition table. This would have skewed the resulting patch size distirbutions to smaller
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values, especially in cases where the patch sizes were generally larger, which might explain the

general tendency for our distributions of rare forest areas to miss the observed areas. From a

different perspective, of the 37 cases in which the distribution of realized forest areas did not

cover the observed area, 8 cases (21%) were from the Great Plains subregion, a considerably

higher proportion than the 12.5% one might expect from an even distribution of misses across

the subregions. This higher proportion may be accounted for by the relatively nonforested

nature of the Great Plains.

Numerous avenues of future research stem from our results, many of which focus on

adjustments to the algorithm. For example, all realizations in this study were based on the

same transition probability models (one per grouping (Fig 3), from observed 2001 to 2011

transitions), but the stability of such empirically-based transition models over time is

unknown at best [19]. With the recent release of the NLCD 2016 dataset [57], it is now possible

to prepare additional land use data and compare models estimated from the decadal time steps

of 2001–2011 (as used in this study) and 2006–2016, to get a better sense of transition model

stability. As another example, with regard to patch size selection, we have replaced our nega-

tive binomial distributions (originally modeled from empirically observed transition patch

sizes) by directly sampling from the observed patch sizes. This bootstrapping approach has

reduced the number of small patches and is expected to improve the allocation of small-area

land use transitions. A third area of future research could be exploring data-driven ways to

select the value of n; for example, by overlaying empirically observed transitions against the

transition modeled probability surface, then estimating which value of n is most likely to pro-

duce the observed raster. Such a procedure could be done independently by county, and it

could possibly be used as an explanatory variable when determining initial groupings to esti-

mate transition probability models. Finally, we used the random forests approach to estimate

our transition probability models because random forests can easily and robustly combine dis-

parate data types into a common predictive framework for land use transitions [21]. In this

study, we used one transition probability model per county grouping (Fig 3), effectively limit-

ing the variation in projected landscape pattern due to choice of the underlying probability

model. In support of a broader, distribution-focused approach, we could explore the use of

multiple random forest models estimated from different training datasets, through an

approach similar to [41] to add a transition probability model-specific variation component to

the scenario- and allocation-based variation.

Conclusion

Typically, econometric and other land use change models provide projections at relatively

coarse scales [9,10,58]. In this study, we presented a stochastic seeding approach to allocat-

ing land use transitions at fine-grain scales based on coarser-scale land use projections. This

approach was tunable, allowing exploration along the contagious-random allocation contin-

uum. The seeding approach produced time 2 rasters with similar forest fragmentation to

that in the observed time 2 rasters. We found that lower rates of seed sampling (n� 256)

produced a collection of rasters that typically captured the observed fragmentation across

multiple fragmentation scales. Such findings were consistent across the conterminous US,

suggesting that our seeding method is well-suited for allocation of projected county-level

land use transitions at national scales. We used relatively simplified models and coarse land

use classes to keep the overall process computationally tractable, because our seeding algo-

rithm was designed to generate libraries of spatial realizations and temporal trajectories to

support sensitivity (e.g., vulnerability to/stability against land use change) and other distri-

bution-based analyses.
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