
Design and Analysis of Four Architectures for
FPGA-Based Cellular Computing

Kenneth J. Morgan

Thesis submitted to the faculty of the

Virginia Polytechnic Institute and State University

in partial fulfillment of the requirements for the degree of

Master of Science

in

Electrical Engineering

James R. Armstrong, Chair

Peter M. Athanas

Mark T. Jones

October 19, 2004

Blacksburg, Virginia

Keywords: FPGA, Single-Chip Computer, Parallel Computer,

Bit-Serial, Booth Algorithm, Cellular Computing

© 2004 Kenneth J. Morgan

Design and Analysis of Four Architectures for
FPGA-Based Cellular Computing

Kenneth J. Morgan

Abstract

The computational abilities of today’s parallel supercomputers are often quite

impressive, but these machines can be impractical for some researchers due to prohibitive

costs and limited availability. These researchers might be better served by a more

personal solution such as a “hardware acceleration” peripheral for a PC. FPGAs are the

ideal device for the task: their configurability allows a problem to be translated directly

into hardware, and their reconfigurability allows the same chip to be reprogrammed for a

different problem.

Efficient FPGA computation of parallel problems calls for cellular computing,

which uses an array of independent, locally connected processing elements, or cells, that

compute a problem in parallel. The architecture of the computing cells determines the

performance of the FPGA-based computer in terms of the cell density possible and the

speedup over conventional single-processor computation.

This thesis presents the design and performance results of four computing-cell

architectures. MULTIPLE performs all operations in one cycle, which takes the least

amount of time but requires the most chip area. BIT performs all operations bit-serially,

which takes a long time but allows a large cell density. The two other architectures,

SINGLE and BOOTH, lie within these two extremes of the area/time spectrum.

The performance results show that MULTIPLE provides the greatest speedup

over common calculation software, but its usefulness is limited by its small cell density.

Thus, the best architecture for a particular problem depends on the number of computing

cells required. The results also show that with further research, next-generation FPGAs

can be expected to accelerate single-processor computations as much as 22,000 times.

Acknowledgments

This work exists because of Dr. James Armstrong’s vision, and he is responsible

for the ideas behind the different computing architectures. I thank him for suggesting this

work as a thesis topic, for becoming my advisor and guiding this research, and for

providing me access to all the tools necessary for completing this project.

I would like to thank Dr. Jones for serving on my committee and taking the time

to review this thesis. I would also like to thank Dr. Athanas for joining my committee on

such short notice and for reviewing this thesis.

This work began as a project during the fall 2003 semester of ECE 5514. I would

like to thank the fine members of team “Beta” for the professional job they did and for

helping to lay the groundwork for this research.

I owe my education to my father who made a lot of sacrifices to pay for the

college of my choice. I will always be indebted to him for the incredible gift of

knowledge.

Finally, I would like to express my gratitude to my wonderful wife Erin for taking

care of me and everything else during our time in Blacksburg.

 iii

Table of Contents

Abstract ...ii

Acknowledgments...iii

Table of Contents ... iv

List of Figures...vi

List of Tables ..viii

Glossary .. ix

Chapter 1 Introduction ..1

Background ...3

Related Work ..7

Thesis Outline ...9

Chapter 2 Case Study: Heat Transfer in a Matrix with Embedded Particles 10

Explicit Model... 13

Arrhenius Approximation.. 16

What this Test Case Demonstrates... 18

Chapter 3 Design Flow and Development Tools ... 20

FPGA Design Flow ... 21

Supporting Design and Development Platform .. 24

Chapter 4 Four Architecture Designs ... 28

Common Top-Level Design .. 28

MULTIPLE... 32

SINGLE .. 35

BOOTH... 37

 iv

BIT.. 42

Chapter 5 Results and Analysis ... 46

Design Verification ... 46

Results and Comparisons... 50

Analysis .. 53

Alternative Designs Considered... 59

Chapter 6 Conclusions ... 61

Extending the Designs to Other Problems.. 61

Future Work.. 62

Summary... 64

Appendix Design Flow Details... 65

VHDL ... 65

Compilation and Mapping with Synplify ... 67

Place and Route with ISE 5.1 .. 71

Bit File Download Over Multi-ICE.. 72

Core Module Code Generation with ADS and AFS ... 74

Matlab User Interface .. 80

References.. 81

Vita... 84

 v

List of Figures

Figure 1-1. Typical FPGA structure ...4

Figure 1-2. Fixed-point scaled integer conversion example with W and6 8= 4=S

Figure 2-1. Thermal lag effect using the model in [35] with an applied temperature
of +2.6 K ... 10

Figure 2-2. Idealized sectional used for analysis .. 11

Figure 2-3. Same setup as Figure 2-1 but with the addition of the curing effect 12
Figure 2-4. Discretization of space and time for numerical analysis 14

Figure 2-5. Parabolic approximation of an exponential function................................. 18
Figure 2-6. Dataflow diagram showing the heat flow computation............................. 18

Figure 3-1. Flow diagram of the major design development steps 20
Figure 3-2. Structure of a Virtex-E CLB .. 22
Figure 3-3. CLB interface with the routing matrix.. 23

Figure 3-4. ARM Integrator/AP motherboard layout .. 25
Figure 3-5. ARM LM-XCV600E+ logic module layout ... 26

Figure 3-6. Host PC’s link to the FPGA system ... 27
Figure 4-1. Tasks performed by the FPGA design.. 30

Figure 4-2. Structure of the top-level FPGA design.. 31
Figure 4-3. Cell row structure .. 32

Figure 4-4. Heat flow equations reformulated for the MULTIPLE architecture 33

Figure 4-5. Scaled integer multiplies.. 34

Figure 4-6. Cell structure for the MULTIPLE architecture... 34
Figure 4-7. Heat flow equations partitioned for the SINGLE architecture................... 36

Figure 4-8. Cell and controller structures for the SINGLE architecture 37
Figure 4-9. Hardware for Booth’s algorithm .. 39

Figure 4-10. Booth’s algorithm for two’s complement multiplication 39
Figure 4-11. Heat flow equations partitioned for the BOOTH architecture 40

Figure 4-12. Cell and controller structures for the BOOTH architecture....................... 42
Figure 4-13. First four lines of the BIT architecture’s partitioning of the heat flow

equations ... 43

 vi

Figure 4-14. Cell and controller structures for the BIT architecture.............................. 45
Figure 5-1. Simulation waveforms for each architecture... 47

Figure 5-2. Comparison of results computed with real numbers and with scaled
integers.. 49

Figure 5-3. Two methods of quantifying the accuracy of the scaled integer
computation... 49

Figure 5-4. Total synthesis time for each architecture .. 51

Figure 5-5. Maximum number of cells that fit in the FPGA for each architecture 51

Figure 5-6. Worst-case and actual maximum clock frequency for each architecture ... 52
Figure 5-7. Number of clock cycles required for one iteration for each architecture ... 52

Figure 5-8. Calculation rate of the entire cell row for each architecture 53

Figure 5-9. Time required to compute and transfer the results of 200,000
time steps... 53

Figure 5-10. Performance index that gives more weight to cell density 54

Figure 5-11. Each architecture’s speedup over Mathematica and three calculation
methods in Matlab ... 55

Figure 5-12. Maximum clock frequencies estimated by Synplify 56
Figure 5-13. Speedups possible if Synplify’s frequency estimates can be achieved 56

Figure 5-14. Speedups possible with next-generation FPGAs from Xilinx 57
Figure 5-15. Performance/cost ratios for each architecture and for a cluster

supercomputer ... 58
Figure 5-16. Each architecture’s comparison to optimized C code................................ 58
Figure 5-17. FPGA design layout with and without floorplanning................................ 60

Figure A-1. VHDL source file hierarchy... 65

Figure A-2. Project options in Synplify... 68

Figure A-3. SCOPE timing constraints ... 69
Figure A-4. FPGA resource usage for each architecture.. 70

Figure A-5. Project options for Xilinx ISE.. 72
Figure A-6. Typical ISE command lines for the synthesis processes 72

Figure A-7. Example .brd file used for downloading configuration files to
LM flash.. 74

Figure A-8. Core module program flow .. 75
Figure A-9. CodeWarrior file and target settings... 78

Figure A-10. CodeWarrior project settings ... 79
Figure A-11. Example usage of the Matlab FPGA interface function............................ 80

 vii

List of Tables

Table 5-1. Verification of 10 simulated time steps for each architecture 47

Table 5-2. Verification of 10 hardware-executed time steps for each architecture....... 48
Table 5-3. PC setup used for design and testing ... 50

Table A-1. Source file order for Synplify .. 67
Table A-2. LM switch settings for selecting a flash image .. 74

 viii

Glossary

ADS The ARM Developer Suite (ADS) is a set of software tools that target ARM
hardware.

AFS The ARM Firmware Suite (AFS) is a set of libraries and source code for
software that runs on ARM hardware.

AHB The ARM High-performance Bus (AHB) is a simple bus standard developed
by ARM.

ASIC An Application Specific Integrated Circuit (ASIC) is a chip that is designed
and manufactured to perform a specific function.

CA Cellular Automata (CA) are systems that evolve discrete cells according to
simple rules.

CAD Computer-Aided Design.

CLB A Configurable Logic Block (CLB) is a common array element in FPGAs and
contains programmable logic.

DIMM A Dual In-line Memory Module (DIMM) is a standard RAM form factor in
computer hardware.

DIP A Dual In-line Package (DIP) is a standard shape for electronic components.
DRAM A Dynamic RAM (DRAM) is digital storage that must be refreshed to

maintain its storage.

EDIF The Electronic Data Interchange Format (EDIF) is a standard file format for
hardware netlists.

FF A Flip-Flop (FF) is a one-bit digital storage element.

Flash Flash memory is non-volatile digital storage on a chip.
FPGA A Field-Programmable Gate Array (FPGA) is a chip that can be programmed

to perform a specific logical function.
FSM A Finite State Machine (FSM) is an abstract machine that transitions among a

set of states that produce a set of outputs.
GUI A Graphical User Interface (GUI) is a visual front end to a computer program.

IDE An Integrated Development Environment (IDE) is a software application that
includes a suite of development tools.

I/O Input/Output.
LC A Logic Cell (LC) is part of a CLB and contains combinational logic followed

by a flip-flop.

 ix

LED A Light-Emitting Diode (LED) is an electronic visual indicator.
LM A Logic Module (LM) is an ARM development board that contains a large

FPGA.
LUT A Look-Up Table (LUT) is a small memory used in FPGAs for generating an

arbitrary logic function.
MAC A Multiply-Accumulate (MAC) unit is hardware that performs a multiplication

followed by an addition and is often used in digital signal processors.
MPGA A Mask Programmable Gate Array (MPGA) is a chip with a regular array of

transistors and custom wire connections.

PAR Place And Route (PAR) is a step during the translation of a hardware
description to an FPGA configuration file.

PC Personal Computer.

PCI The Peripheral Component Interconnect (PCI) is a bus specification that is
commonly implemented on computer motherboards.

RAM A Random Access Memory (RAM) is digital storage that does not have to be
accessed sequentially.

RISC Reduced Instruction Set Computing (RISC) is a processor architecture that
uses simplified instruction encoding and execution.

ROM A Read-Only Memory (ROM) is digital storage that is meant to be read and
not written.

RTR Run-Time Reconfiguration (RTR) is a method for dynamically changing an
FPGA’s configuration.

SDRAM Synchronous DRAM (SDRAM) is read and written on clock edges rather than
asynchronously.

SRAM A Static RAM (SRAM) is digital storage that retains its contents as long as
power is applied.

SSRAM Synchronous SRAM (SSRAM) is read and written on clock edges rather than
asynchronously.

VHDL The Very High Speed Integrated Circuit Hardware Description Language
(VHDL) is a textual language for describing electronic hardware.

 x

Chapter 1
Introduction

In his book A New Kind of Science, Stephen Wolfram demonstrates a fluid flow

simulation that is computed using cellular automata, a system in which the state of each

of its discrete cells is updated according to a few simple rules. Remarkably, the

simulation shows eddies and complex patterns that are seen in actual streamline

experiments. Wolfram goes on to suggest that most real-world systems can be modeled

successfully only through methods like cellular automata, thus underscoring the

importance of these methods and the machinery used to compute them efficiently. This

fluid flow example and cellular automata in general are part of an important class of

computational problems that can be discretized into cells that can be computed

simultaneously. Other common problems in this class include finite element analysis and

digital image processing.

Computing these kinds of parallel problems on a single-processor machine can

quickly become impractical as the problems become large and execution times increase.

The traditional approach to reducing execution time has been to compute the problem

with an array of general-purpose processors connected together with a high-speed

interconnection network. A notable example of this kind of parallel machine at Virginia

Tech is the “X” terascale cluster [36]. Built using 1,100 Power Mac G5s and an

InfiniBand network, this supercomputer cost $5.2 million, occupied 280 square meters,

and achieved a computation rate of 10 trillion operations per second.

While supercomputers like the Virginia Tech “X” are able to offer impressive

parallel performance, they are costly, they are usually quite large, and they often can only

be used on a time-shared basis making them inappropriate for some researchers working

on parallel problems like those discussed above. The computational needs of these

researchers could be better met with a more personal solution such as a “hardware

acceleration” expansion card that could be inserted into the researcher’s personal

computer and called upon to handle any cellular parallel problem.

 1

Contrary to traditional parallel computers that use general-purpose processors

combined with software to solve a problem, such a device would need its hardware to be

configured specifically for a particular problem in order to minimize size and maximize

performance. Additionally, the device hardware would need to be reconfigurable to

allow the user to use the same device for a different problem. Such a parallel computing

device is realizable because of today’s high-performance, high-density field-

programmable gate arrays (FPGAs). Using the programmable logic in an FPGA, a cell in

a cellular parallel problem can effectively become a small-scale processor, and when

cells are replicated throughout the chip, an FPGA can effectively become a parallel

computer. The topic of this thesis involves the analysis of a prototype FPGA-based

cellular computing system.

The purpose of this thesis is to present the design and analysis of four different

computing-cell architectures in an FPGA. The architectures vary in the degree of

parallelism within a cell, and they vary with respect to the methods used for basic

arithmetic operations. The goal of the analysis is to determine how the architectures

compare in terms of the speedup they provide over single-processor machines and the

number of computing cells they allow in a single chip. Since the target user of the system

is a researcher who may not be familiar with lower-level programming languages like C,

the speedups compare the FPGA to higher-level languages, namely Matlab and

Mathematica. The following list is an overview of the four cell architectures considered.

• MULTIPLE: All cell operations1 are performed in a single clock cycle. It is

referred to as MULTIPLE because each cell instantiates multiple adders and

multipliers. It takes the least number of clock cycles to complete an iteration, but

each cell consumes a large area on the chip.

• SINGLE: All cell operations are performed using a single adder and a single

multiplier. It is referred to as SINGLE for that reason. It takes more clock cycles

than MULTIPLE to complete an iteration because the single adder/multiplier

resource must be time-shared among all operations.

1 In this list, “cell operations” means additions and multiplications.

 2

• BOOTH: All cell operations are performed using a single full-width adder.

Multiplies are performed by following the Booth algorithm, and it is referred to as

BOOTH for that reason.

• BIT: All cell operations are performed using a single bit-serial adder. It is

referred to as BIT because all operations are executed one bit at a time. Like

BOOTH, it uses the Booth algorithm to perform multiplies, but the algorithm is

bitwise in this case. Each cell consumes a very small chip area, but it takes the

most number of clock cycles to complete an iteration.

The contributions made by the thesis author include a synthesizable VHDL

description of each of the architectures described above, a synthesizable VHDL interface

between the FPGA and the development platform used for this research, and a Matlab/C

interface for directing computed results from the FPGA to a host computer over serial

links. Also, a particularly interesting achievement was the implementation of a bit-serial

comparator for two’s complement integers.

Background

This section gives a brief overview of FPGAs and an explanation of the numerical

representation used in the architecture designs. More in-depth information on FPGAs

can be found in [45] and [11].

Overview of FPGAs

Field-programmable gate arrays are chips that can be programmed to perform

virtually any logic operation. They can be used in place of multiple smaller components

such as glue logic, or they can contain large designs such as processors or graphics

controllers. Many FPGAs can be reconfigured any number of times making them ideal

for design prototyping, and they have recently been replacing ASICs and MPGAs in low-

volume productions due to the high initial cost and long turnaround time of these custom

manufactured chips. Their high logic capacity and abundance of flip-flops distinguish

FPGAs from other kinds of programmable logic devices.

 3

Many different architectures exist, but Figure 1-1 shows the basic structure of a

typical FPGA: a matrix of configurable logic blocks (CLBs) and interconnection

resources surrounded by I/O blocks. The CLBs are often complex but are likely to

contain one or more function generators followed by flip-flops. Made using either look-

up tables (LUTs) or multiplexers, function generators are capable of producing any k-

input Boolean function where k is usually four. LUTs are 1-bit wide memories and

essentially store the truth table of the Boolean function they generate. They often can be

used for general storage when not acting as a function generator. The output of a

function generator can serve as part of combinational logic or can be directed to a flip-

flop to create a latched signal. Interconnection resources are composed of horizontal and

vertical wires that can form connections with each other through the programmable

switches. There are also programmable switches that connect wires to CLBs. I/O blocks

can be programmed to allow their associated pin to operate as either an input or an

output. Current FPGAs often include additional components such as clock managers,

RAM, and dedicated circuitry for common arithmetic operations.

I/O Block

CLB

Wires

Programmable Switch
Figure 1-1. Typical FPGA structure

Due to the size and complexity of FPGAs, CAD tools must be used to take a

design from its initial description to a bit stream that can be programmed on a device.

Three processing steps are required: mapping, placement, and routing. During mapping,

 4

a design’s description in terms of logic gates is translated to a form suitable for function

generators. During placement, CLB sites on the chip are chosen, and during routing, the

necessary connections between CLBs are formed. A programming file can be generated

and downloaded into the device once these steps are completed, which can take several

hours for large, highly-constrained designs. The physical mechanism for

programmability varies for different FPGAs with the main methods being static RAMs

and antifuses.

Numerical Representation

The purpose of the FPGA-based system discussed in this thesis is to aid

researchers working on scientific problems, so it must support real numbers that have

both integer and fractional parts. Floating-point hardware could be used, but a fixed-

point number representation is used instead in order to conserve chip area. In an effort to

make each computing cell as lightweight as possible, the fixed-point numbers are scaled

so that the arithmetic hardware need only deal with integers.

Given a W-bit number in this fixed-point system, a certain number of bits, S, are

reserved for the integer part and sign bit, and the remaining bits, W , make up the

number’s fractional part. Using the scaled integer scheme, a real number

 can be represented to a resolution of by a two’s complement

integer , which can be converted back to a discrete real number

S−

11 22 −− <≤− SS x

2 1 ≤− −W

(SW −−= 2ε)

12 1 −≤ −Wy

22 1 ε−−S22 1 ε ≤≤+− −S z . The formulas used for converting to and from fixed-point

scaled integers are

 SWx −⋅2 to convert a real number x to a scaled integer, and

22
ε+−SW

y to convert a scaled integer y to a real number.

The conversion to a scaled integer simply shifts all fractional bits to the left of the

binary point and rounds down. The conversion back to a real number shifts the fractional

bits back to their original positions. Although not strictly necessary, the 2ε addition

keeps the range of discrete real numbers centered on zero and guarantees that the

 5

maximum quantization error is instead of ε . An example of a conversion to and

from scaled integer form is shown in Figure 1-2 for the number 2.57823 assuming W

and . The figure shows how continuous ranges are mapped to single integers and

how the conversion process adds quantization error.

 41257823.2 8⋅ −4 =

59375.

2.56

) x

x=

2ε

conversion to scaled integer

conversion back to a real number

Continuous reals

Scaled integers

Discrete reals

 C

on
ve

rs
io

n

42 43

2.44 2.50 2.63 2.69 2.75

...

...

... ...

...

...

-8.0 8.0

-128 127

-7.97 7.97

39 40

8=

4=S


()

2
2

2
2
41 48

48 =+
−−

−

2.59

2.57823

41

2.47 2.53 2.66 2.72

Figure 1-2. Fixed-point scaled integer conversion example with W and S 8= 4=

There is a caveat associated with how multiplies are performed with scaled

integers: If two real numbers x and y are scaled and multiplied2, the result is

()(()SWSWSW yyx −−− ⋅=⋅⋅ 2222 ,

which is no longer a correctly scaled number because the scale factor’s exponent is

doubled. Thus, for each multiply operation that is performed, one scale factor must be

eliminated. Doing so gives a correctly scaled result:

()() SW
SW

SWSW

yyx −
−

−−

⋅⋅⋅ 2
2

22 .

2 In the following derivations, the floor operation is omitted for clarity.

 6

It turns out that this correction is easily applied in the VHDL design descriptions

and adds virtually no extra hardware. There is no such correction needed for additions

since

() SWSWSW yxyx −−− ⋅+=⋅+⋅ 222

gives a correctly scaled number.

There are at least two disadvantages to this fixed-point scaled integer scheme.

First, a fixed-point representation does not allow numbers to vary over a wide range like

floating-point does, which may prevent the computation of certain scientific problems.

Second, choosing the number of integer bits, S, presupposes knowledge of the range of

numbers that will occur in all intermediate calculations, but this information may not be

available before the calculations have been performed. It is assumed, however, that most

researchers can provide an accurate estimate of the range of values that occur for a given

problem. S can also be given 1 or 2 extra “buffer bits” to avoid calculation overflow, but

this comes at the expense of precision in the fractional part.

Related Work

Sipper gives an excellent introduction to cellular computing in his 1999 article

[31] in IEEE Computer. He defines the three principles of cellular computing as

simplicity, vast parallelism, and locality, and he outlines several application areas

including fast solutions to NP-complete problems and high-quality random number

generators.

Armstrong, Vick, and Scott recently published a paper [8] that included results

obtained using an earlier version of the BOOTH architecture discussed in this thesis.

Since the publication, the BOOTH model’s calculation rate and cell density have both

improved. Also referenced in [8] are results of models similar to the MULTIPLE and

SINGLE architectures discussed in this thesis, but those models were not integrated into

the development platform in the same way as MULTIPLE and SINGLE. Additionally,

MULTIPLE and SINGLE have been redesigned from scratch using design styles similar

 7

to those used for BOOTH and BIT so that the four architectures can be equitably

compared.

Although not an FPGA-based system, an interesting example of a single-chip

parallel computer at Virginia Tech is the Single-Chip Message-Passing (SCMP) [9]

computer. In this architecture, RISC3 processors are tiled in a regular array throughout

the chip and communicate with each other by sending messages to neighboring nodes.

Messages are forwarded using wormhole routing until they reach their intended

recipients. The advantage of this setup is that wire lengths are kept short, allowing clock

frequencies to increase beyond what is possible using longer, higher resistance wires.

Also, the architecture tries to exploit thread-level parallelism by giving each node its own

set of 16 thread contexts that can be quickly switched.

Researchers have been using FPGAs to accelerate discretized parallel problems,

although the usual approach has been to use the FPGA to solve systems of equations

instead of using explicit solutions as discussed in this thesis. Frank et al. [15] suggested

an FPGA implementation to provide real-time virtual reality simulation of soft tissue

models. Vuilleman [37] discusses the computation of problems in heat transfer, high-

energy physics, and RSA cryptography using reconfigurable systems, which combine a

standard processor with an FPGA and SRAM. Ramachandran [29] implemented an

FPGA-based computer similar to the system discussed in this thesis but used floating-

point multiply-accumulate or MAC units to compute a matrix multiplication solution.

The size and complexity of the MAC units as well as the size of the FPGAs available at

the time limited the system to only a few processing elements. Paar [27] implemented a

multi-FPGA cellular system for simulating heat transfer with one FPGA per cell. The

cell architecture in the system was similar to the SINGLE architecture used in this

research, but it used floating-point rather than fixed-point arithmetic. Schneider et al.

[30] demonstrated the transfer of a computationally intensive finite-difference time-

domain algorithm used in electromagnetics onto an FPGA-based computing system.

Similar to the BIT architecture for this research, they used bit-serial integer arithmetic

and were able to achieve a substantial speedup over single-processor computers.

3 Reduced Instruction Set Computing

 8

Researchers have also used FPGAs for computing cellular automata (CA).

D’Antone [13] discusses the use of CA in FPGAs for random test-pattern generation, a

useful component of built-in self-test for complex chip designs, and Hartka [17] used CA

in FPGAs for structural analysis. Miwa et al. [26] used genetic algorithms and neural

networks to model the function of the human cerebellum, and they achieved significant

speedup over a conventional processor by using an FPGA implementation.

Thesis Outline

Chapter 2 describes the test problem that the FPGA system computes and explains

how its features make it representative of a typical scientific problem.

Chapter 3 gives an overview of the main steps in the design flow of the

architectures as well as all of the supporting design needed to make the FPGA computer

an accessible system. This chapter also describes the development platform on which the

system is implemented.

Chapter 4 gives a general description of the four architecture designs:

MULTIPLE, SINGLE, BOOTH, and BIT. Also described is the FPGA’s interface to the

development board.

Chapter 5 presents the performance of each architecture as determined by testing

of an actual implementation of the system. Also discussed are some of the alternative

designs that were considered.

Chapter 6 suggests some possibilities for further research and ways to improve the

system and extend it to other problems. It concludes with a summary of this thesis.

An Appendix is included to provide a more detailed view of the steps required for

implementing the system. It also discusses some details of the VHDL descriptions.

 9

Chapter 2
Case Study: Heat Transfer in a Matrix with
Embedded Particles

An objective of this research is to design a system that computes a problem by

translating it to machine hardware, so a prerequisite of the design is to select a test

problem. Ideally, this problem should be representative of a typical real-life problem so

that the usefulness of the system can be demonstrated. The test problem used for this

design is, in fact, a real-life problem that researchers are currently studying. This chapter

discusses the problem, the derivation of its model, the steps required for FPGA

implementation, and some of the useful things it demonstrates.

The problem used as a case study is based on work presented by Vick and Scott in

their paper [35] on heat transfer in a heterogeneous material. In this paper, they give a

thermal model for a solid material with a uniform density of particles of a different

material. The heat capacity of the particle material can be chosen such that the particle

temperature lags the matrix material temperature (Figure 2-1). One possible use for such

a material is in protective suits used in firefighting where the thermal lag effect can keep

the inside cooler than the outside, which may be exposed to extreme heat.

0 0.5 1 1.5 2
Time, s

0

0.5

1

1.5

2

2.5

T
em

pe
ra

tu
re

ch
an

ge
,K

Matrix
Particles

Figure 2-1. Thermal lag effect using the model in [35] with an applied temperature of +2.6 K1

1 This figure was generated using the thermal model in MULTIPLE. Temperatures of cell 25 of 50 are
shown for 12,000 time steps. A temperature of +2.6 is applied to both ends of the material, and . 0=Γ

 10

A derivation of the thermal model begins by considering a volume of a bulk

material containing a uniform density of particles of another material, as shown in Figure

2-2. The behavior of interest is the dynamics of , the matrix material temperature, and

, the particle temperature. The analysis is considered one-dimensional, meaning that

heat flows only in the x dimension. A temperature gradient,

mT

pT

xTm ∂∂ , at the volume slice

shown in Figure 2-2 will cause heat to flow at that point, and a change in the temperature

gradient, 22 xTm ∂∂ , due to the heat flow indicates a change in the overall temperature of

the slice. Thus, heat flow into the slice is given by

 2

2

x
T

K m

∂
∂

, (2-1)

where the thermal conductivity, K, quantifies the ability of heat to flow through the

matrix material. In general, the matrix material will have a different temperature than the

particles, and this difference, , causes heat to flow from the material into the

particles. The ability of heat to cross the interface between the matrix and the particles is

characterized by a heat transfer coefficient, H, and this heat flow is given by

pm TT −

 ()pm TTH − . (2-2)

Applied
heat

dx
x

Figure 2-2. Idealized sectional used for analysis

The thermal model in [35] has been extended for this analysis to include the

effects of curing, a heat-induced chemical change that alters the material’s thermal

properties. A model [8] of the heat generated by this curing process is given by

 11

t

Γ
∂
∂α , (2-3)

where

 ()(αα)α −+=
∂
∂ 121 KK

t
 and (2-4)

 () 2,1, == − ieAK mi TRE
ii . (2-5)

As an example of the effect of curing on the temperature dynamics of a material,

Figure 2-3 uses the same setup as Figure 2-1 but includes curing. It can be seen that

curing causes a heat spike to occur once the matrix material has reached a certain

temperature. The spike peaks and then quickly returns to a stable temperature.

0 0.5 1 1.5 2
Time, s

0

1

2

3

4

T
em

pe
ra

tu
re

ch
an

ge
,K

Matrix
Particles

Figure 2-3. Same setup as Figure 2-1 but with the addition of the curing effect2

All the heat sources and sinks with respect to the matrix material add together to

give

t

TC m
m ∂

∂ , (2-6)

the rate of heat storage in that part of the material, where the heat capacity, , is the

ability of the matrix material to store heat energy. Invoking the law of conservation of

energy, expressions (2-1), (2-2), (2-3), and (2-6) can be combined to give

mC

2 This figure has . 6.2=Γ

 12

 ()
t

ΓTTH
x
T

K
t

T
C pm

mm
m ∂

∂+−−
∂

∂
=

∂
∂ α

2

2

. (2-7)

Equation (2-7) is the basic model for determining how the matrix temperature changes

over time. Heat is added to the matrix material through an applied temperature and

through the curing process, and heat is removed from the material by flowing into the

particles. The particles are considered small enough that heat flow within them can be

ignored, and it is assumed that the curing effect does not occur for the particle material.

Thus, the particle temperature changes only due to the heat flowing through the

matrix/particle interface, suggesting that the particle temperature dynamics can be

characterized by

 (pm
p

p TTH)
t

T
C −=

∂
∂

, (2-8)

where is the heat capacity of the particle material. pC

Explicit Model

Equation (2-7) cannot be solved analytically, but a numerical solution can be

obtained by using the finite difference method described by Patankar [28]. The approach

is to divide the material into N discrete cells and to divide the duration under analysis into

T discrete time elements, as depicted in Figure 2-4. The differential elements of time and

space in the equations can be approximated by and , respectively, allowing forms

like

t∆ x∆

tTm ∂∂ to be written as

t
TT i

jm
i

jm

∆
− −1

,, ,

where the j subscript specifies the cell and the i superscript specifies the time step.

 13

1

2

i

T-1
T

j

tim
e

space

1 2

t∆
x∆

N-1 N

Figure 2-4. Discretization of space and time for numerical analysis

In discrete form, the second derivative in (2-1) represents a difference of

differences of adjoining cell temperatures where each cell, j, considers the temperatures

of its left and right neighbors. There is a question, however, as to the time step at which

these differences are taken. An implicit method uses the current time step, i, and an

explicit method uses the previous time step, i . Equations (2-4) and (2-8) are the same

when rewritten using either method and are given by

1−

()(111
,2

1
,1

1

1 −−−−
−

−+=
∆
− i

j
i
j

i
j

i
j

i
j

i
j KK)

t
αα

αα
 and

 ()1
,

1
,

1
,, −−
−

−=
∆
− i

jp
i

jm

i
jp

i
jp

p TTH
t
TT

C ,

which can be rearranged to give

 and (2-9) ()(1111
,2

1
,1 1 −−−−− +−+∆= i

j
i
j

i
j

i
j

i
j

i
j KKt αααα)

 1
,

1
,, 1 −− ∆+









 ∆−= i
jm

pp

i
jp

i
jp T

C
tH

C
tHTT . (2-10)

Rewriting equation (2-7) using the implicit method gives

()
t

ΓTTH
x
TT

x
TT

x
K

t
TT

C
i
j

i
ji

jp
i

jm

i
jm

i
jm

i
jm

i
jm

i
jm

i
jm

m ∆
−

+−−










∆
−

−
∆
−

∆
=

∆
− −

−−−+
− 1

1
,

1
,

1,,,1,
1

,, αα
,

 14

which can be rearranged to give

 , (2-11) () i
j

i
j

i
jm

i
jm

i
jm cΓTTbaT =−++ +− α1,1,,

where

 , bCa m 2−=

 2x
tKb

∆
∆−= , and

() 11
,

1
,

1
,

−−−− −−∆−= i
j

i
jp

i
jm

i
jmm

i
j ΓTTtHTCc α .

Equation (2-11) sets up a system of j simultaneous equations that does not render itself to

FPGA-based cellular computing because its solution requires expensive matrix

multiplication, and the complexity of the computation increases with the number of cells.

Rewriting equation (2-7) using the explicit method gives

()
t

ΓTTH
x
TT

x
TT

x
K

t
TT

C
i
j

i
ji

jp
i

jm

i
jm

i
jm

i
jm

i
jm

i
jm

i
jm

m ∆
−

+−−










∆
−

−
∆
−

∆
=

∆
− −

−−
−

−
−−−

+
− 1

1
,

1
,

1
1,

1
,

1
,

1
1,

1
,, αα

,

which can be rearranged to give

 , (2-12) (i
j

i
jm

i
jm

i
jm

i
jm cTTbTaT +++= −

+
−

−
− 1

1,
1

1,
1

,,)
where

 , ba 2−=

 2xC
tKb

m ∆
∆= , and

() ()11
,

1
,

1
,

−−−− −+−∆−= i
j

i
j

m

i
jp

i
jm

m

i
jm

i
j C

ΓTT
C

tHTc αα .

Equation (2-12) gives an explicit solution for the matrix material temperature that can be

calculated from previously computed values, and the entire set of cells can be updated in

parallel. This makes the explicit solution ideal for an FPGA-based cellular computing

system and is used in the design discussed in this thesis.

 15

One caveat with the explicit solution that does not exist for the implicit case is a

restriction on the size of . The temperature solutions given in equations (2-10) and

(2-12) will remain numerically stable only if the coefficients of T and are greater

than or equal to zero, or

t∆
1

,
−i

jm
1

,
−i
jpT









∆+
∆

≤∆
H
C

HxK
xC

t pm ,
2

min 2

2

.

The analysis is simplified for this research by assuming that ,

, and

21 KK =

1==== pm CCHK Nx 1=∆ . With these assumptions, equations (2-9), (2-10),

and (2-12) become

 , (2-13) ()() 1111 11 −−−− +−+⋅∆= i
j

i
j

i
j

i
j

i
j Kt αααα

 , and (2-14) () ,,, 1 ⋅∆+∆−= jmjpjp TttTT 11 −− iii

) , (2-15) (i
j

i
jm

i
jm

i
jm

i
jm cTTbTaT +++= −

+
−

−
− 1

1,
1

1,
1

,,

where

 2x
tb

∆
∆= ,

() (11
,

1
,

1
,

−−−− −+−∆−= i
j

i
j

i
jp

i
jm

i
jm

i
j ΓTTtTc αα),

and a is the same as for the explicit case above. The time step constraint becomes

12
1

2 +∆
≤∆

x
t ,

and for this analysis,

12
99.0

2 +∆
=∆

x
t .

Arrhenius Approximation

The Arrhenius equation (2-5) involves an exponential function, which must be

approximated in some way so that it can be computed using the basic arithmetic

 16

operations available in an FPGA. A common approach to approximating a complicated

function is to use some number of terms from the beginning of its Taylor series

expansion, which works well for exponentials in the form of . The Arrhenius form,

however, involves an exponential in the form of

xe−

xe 1− with its independent variable in the

denominator of the exponent, and an accurate Taylor series approximation can require a

large number of terms, which in turn requires a large number of costly multiplications.

A better approach is a parabolic approximation, which can be used in this case

because the matrix temperature is not expected to span a large range of values. Equation

(2-5) with values used in this analysis is mTeK 20
2,1 000,10 −= and is shown in Figure 2-5

over the range of expected temperatures. It can be seen that over this range, the function

is close to zero for temperatures less than about two, so for temperatures below this

value, the function is taken to be zero, and for higher temperatures, the function is

approximated with a parabola. Determined by using a least-squares fit3, this parabolic

approximation is given by

 (2-16)
()







<

≥−
=

−

−−

37.2,0

37.2,37.299.25
1

,

1
,

21
,

,2,1
i

jm

i
jm

i
jm

approx
T

TT
K

and is shown along with the original function in Figure 2-5. The parabolic approximation

parameters will be referred to as

99.25=aC and

 . 37.2=bC

Each of the four cell architectures generates new temperatures by computing

equations (2-13), (2-14), (2-15), and (2-16). The operations required for this calculation

are depicted in the dataflow diagram shown in Figure 2-6, and the only variables in the

computation are α , T , and T . m p

3 Least-squares fit to 2632 data points between 2.37 and 5

 17

0 1 2 3 4 5
Temperature change, K

0

25

50

75

100

125

150

175

Fu
nc

tio
n

va
lu

e Arrhenius function

Parabolic approximation

Figure 2-5. Parabolic approximation of an exponential function

+×

+

<

1−iα 1−iα

1−

bC− 1−i
mT

×

×

aCt ⋅∆−

×

bC 1−i
mT

0

×

2 1−i
mT

+

1
1,

−
−

i
jmT

1
1,

−
+

i
jmT

−

×

2xt ∆∆

×

Γ

+

+

1−i
mT

−

1−i
pT 1−i

mT

×
t∆

−

1−i
pT

+
i
mT

i
pT

+

1−iα

iα

yn

Figure 2-6. Dataflow diagram showing the heat flow computation

What this Test Case Demonstrates

The heat flow test case is useful not only because it demonstrates the application

of the FPGA system to a real-life problem, but for other reasons as well. The variable

coefficients like those in (2-12) are sometimes constant values that will not change, but

 18

they are more often parameters that a researcher would like to adjust in order to see their

effect on the model’s behavior. In order to demonstrate the ability to quickly change a

parameter without requiring an FPGA reconfiguration, the coefficient of the curing term,

Γ , in (2-3) is set up to be sent as an input parameter to the FPGA. Additionally, the

externally applied temperatures are input parameters that can be changed without

reconfiguration.

Many problems require more complex operations than additions and

multiplications, and an example of this in the heat flow test case is the less-than test

required for the parabolic approximation in (2-16). To address this need, additional

hardware is included in the design to realize a less-than test and its inclusion is a useful

example of the implementation of a complex operation.

 19

Chapter 3
Design Flow and Development Tools

The design work required for this research includes describing the four

architectures in a hardware description language, transforming the description into an

FPGA-suitable form, defining interfaces between the FPGA and the development

platform, and, finally, defining an interface between the development platform and a host

PC where a user interacts with the system. This chapter gives an overview of the main

development steps performed and the tools used throughout the design process.

The development process can be divided into two major steps: the FPGA design

and the supporting design. These steps are shown in the flow diagram of Figure 3-1

along with the major sub-steps.

Design Entry

Simulation

Synthesis
Stage 2

Synthesis
Stage 1

FPGA/
Development

Board Interface

Development
Board/Host PC

Interface

User Interface

V
H

D
L

C
ad

en
ce

S
yn

pl
ify

IS
E

Virtex-E FPGA

C
 L

an
gu

ag
e

M
at

la
b

Iterate until
correct

Verification

ARM Development
Board

FPGA Design Flow Supporting Design Flow
Begin

End

Figure 3-1. Flow diagram of the major design development steps

 20

FPGA Design Flow

This section discusses the design flow required to realize the initial concept in an

FPGA, and it gives an overview of the particular FPGA used in this research.

Design entry was done using VHDL [19], a textual language for describing digital

hardware. Although a VHDL description is mainly used for simulation, it can also be

used for synthesis, but a subset of the language [20] must be used if a design is meant to

be synthesized. Synthesis is the process of taking an input form like VHDL to a device-

specific form such as a programming file.

A design must be verified for correctness before it is synthesized because the

synthesis process can take a very long time. Verification of this design was done by

simulating waveforms using Cadence tools, which was preceded by the construction of a

VHDL testbench. VHDL simulation requires three steps: analysis, elaboration, and

simulation. Analysis, done using ncvhdl, parses the text input and places design units in

libraries. Elaboration, done using ncelab, creates a set of processes that can be executed

to simulate the hardware. Simulation, done using ncsim, executes the processes and

allows signals to be viewed as a waveform. These tools were used from inside the

NCDesktop v03.20 IDE.

A design is ready for synthesis once it simulates correctly. All synthesis steps can

be done using software from Xilinx, the manufacturer of the FPGA used in this design,

but the initial compilation and mapping steps were done using Synplify Pro 7.1 because it

is capable of giving better results for large designs [12]. During this initial synthesis step,

the VHDL description is interpreted and logic is assembled and mapped to FPGA

components.

With the required components defined, they can be assigned to actual chip

locations and connections can be made between them. Because of the interconnection

architecture in the device used for this research, these place and route steps can take

several hours to complete as the software tries to find routes that meet timing constraints.

Once the design is placed and routed, a binary file can be generated that contains all the

information needed for programming the FPGA with the design. For this research,

placement, routing, and programming-file-generation were all done using ISE 5.1i.

 21

There are generally two ways to program an FPGA with a binary file: directly or

indirectly through flash memory. For the Xilinx FPGA, either the iMPACT software

along with the Parallel Cable IV from Xilinx or Multi-ICE can be used to program the

chip directly through the Multi-ICE connector on the ARM development board, but this

method is unfavorable because the design remains programmed only while the FPGA is

powered. A better method is to store the binary programming file in a flash memory that

is set up to download the programming information into the FPGA on power-up. Using

Multi-ICE 2.2 and the progcards utility from ARM, the flash memory programming

method was used for this research.

The particular FPGA used for this research was a Xilinx Virtex-E XCV2000E.

This chip is made up of an array of CLBs surrounded by I/O blocks and

interconnected with various routing resources similar to the structure shown in Figure

1-1, and configuration is achieved by loading static RAM cells. Each CLB (Figure 3-2)

has 2 slices, each of which has two logic cells (LCs). An LC contains a 4-input LUT-

based function generator followed by a flip-flop (FF). Additional logic is included in the

CLB to allow function generators to be combined to produce higher-input functions. A

LUT can be used as a 16 -bit synchronous RAM and can be combined with other

LUTs to produce larger memories, or it can be used as a shift register.

12080×

1×

LUT FF

LC 1

LUT FF

LC 2

SLICE 2

CLB

LUT FF

LC 1

LUT FF

LC 2

SLICE 1

Figure 3-2. Structure of a Virtex-E CLB

 22

Horizontal and vertical routing channels run between the rows and columns of

CLBs, and at the intersection of these channels are routing switches. These switches

allow CLBs to interconnect by interfacing with the CLBs as shown in Figure 3-3. CLBs

are also able to form direct connections to their left and right neighbors so that delays

incurred by going through the programmable switches can be avoided. Global clocks

must avoid switch delays, so they are distributed throughout the chip using special

resources that minimize clock skew.

Switch

CLB

To adjacent
switch

To adjacent
switch

To adjacent
switch

To adjacent
switch

To adjacent
CLB

To adjacent
CLB

Figure 3-3. CLB interface with the routing matrix1

The Virtex-E XCV2000E FPGA also has extra features to support designs that

use the chip. In addition to the distributed RAM contained in LUTs, the chip has 160

512-byte block RAMs spread across the chip for a total of 80KB of extra memory. The

chip has 8 digital delay-locked loops that allow clocks to be multiplied or divided, or they

can be used to eliminate skew on the clock lines. The horizontal routing channels contain

dedicated lines that allow for tri-state busses. There is also additional arithmetic logic in

the CLBs that helps to speed up add and multiply operations. The synthesis software

uses many of these resources automatically whenever a design can benefit from them.

1 Adapted from a figure in [44]

 23

Supporting Design and Development Platform

This section introduces the development platform on which the design was

implemented and discusses the design flow of those parts of the design not specifically

included in the FPGA design flow.

For the FPGA-based computing system to be useful, there should be a convenient

way to communicate with the chip and retrieve the results it generates. An ideal

arrangement would be the FPGA attached to a PC where computing software such as

Matlab or Mathematica could accelerate the computation of certain problems by sending

them to the FPGA. The ARM Integrator/AP platform provides a good environment for

developing a PC/FPGA setup. As shown in Figure 3-4, the Integrator/AP is a

motherboard that provides basic system resources such as memory and I/O to modules

that can be attached to the system. Up to five core or logic modules can be added to the

system by stacking them on one another, but only one of each module was used for this

research. Core modules contain a processor and logic modules contain a configurable

FPGA, and all modules can communicate over a common bus. The motherboard has a

simple boot monitor that can configure the system and execute images stored in on-board

flash memory, but switch settings allow flash images containing user programs to execute

on power-up. I/O resources include serial ports, PCI slots, and keyboard and mouse

connectors.

 24

Flash memory

SRAM

PCI slots

Boot ROM

Reset button

Logic module
connector

Logic module
connector

Alphanumeric
display

Core module
connectors

CompactPCI
connector

Power
connector

Serial portsKeyboard/mouse
connectors

DIP switches

A B

System
controller FPGA

1 4

Figure 3-4. ARM Integrator/AP motherboard layout2

The core module used for this design, CM720T, has an ARM720T chip, which is

a 32-bit RISC processor that executes the ARM and Thumb instruction sets. The module

has a DIMM slot for up to 256MB of SDRAM that can be accessed by other modules on

the motherboard, and it has 256KB of local SSRAM. The logic module used for this

design, LM-XCV600E+ (Figure 3-5), has a Xilinx XCV2000E FPGA, 4MB of local flash

memory used for storing FPGA configurations, and 1MB of SSRAM for general-purpose

memory. The module also has general-purpose LEDs and input switches as well as

switches for selecting the configuration data to be loaded into the FPGA on power-up.

2 Adapted from a figure in [6]

 25

Xilinx Virtex-E
XCV2000E

FPGA

SSRAM

Flash memory

Multi-ICE
connector

Motherboard
connector

Motherboard
connector

Prototyping grid

General-purpose
switches Mode switches

General-
purpose LEDs

Status LEDs

14

Figure 3-5. ARM LM-XCV600E+ logic module layout3

The Integrator/AP motherboard is not set up to support full-scale operating

systems that can run calculation software like Matlab or Mathematica, so to gain this

functionality, the motherboard is connected to a host PC where FPGA-computed results

can be manipulated. This presents the problem of how to quickly transfer FPGA-

computed results that are stored on the logic module to the PC’s calculation software,

since a goal of this research is to demonstrate that the FPGA system can give results more

quickly than a typical PC system. While not an ideal solution to the data transfer

problem, an adequate solution for this research has been to use both Integrator/AP serial

links at full speed. These serial links are also used for problem setup, which includes

sending input parameters to the FPGA.

A core module attached to the Integrator/AP motherboard acts as an ideal

intermediary between the host PC and the FPGA since it frees the FPGA from requiring

serial communication hardware and leaves more space for the computing cells. Thus, the

host PC’s link to the FPGA system is set up as shown in Figure 3-6. The interface

program that runs on the core module’s processor was compiled from C code using

3 Adapted from a figure in [7]

 26

CodeWarrior for the ARM Developer Suite (ADS) v1.2 in conjunction with libraries

from the ARM Firmware Suite (AFS) v1.4.1. The AXD Debugger was used to download

the program’s binary into the motherboard’s flash memory.

AHB BusMatlab

Dual Serial
Links

Core Module Logic Module

Integrator/AP Motherboard

FPGA

Figure 3-6. Host PC’s link to the FPGA system

As a demonstration of the FPGA system’s use from common calculation software,

a Matlab interface was written to allow a user to provide input parameters to and receive

results from the FPGA. A similar interface could be written for Mathematica or another

calculation system.

 27

Chapter 4
Four Architecture Designs

The main purpose of this chapter is to describe the four computing-cell

architectures implemented for this research, but this chapter also describes the common

top-level FPGA hardware used by each architecture to facilitate interaction with the

surrounding system. The four architectures MULTIPLE, SINGLE, BOOTH, and BIT

differ in the way they compute the test problem by using different degrees of parallelism

and by performing arithmetic operations differently. The hardware is designed

specifically for the test problem, so each architecture includes only the minimum number

of arithmetic units required to compute the problem. Therefore, each arithmetic unit1 is

used in every clock cycle making the duty cycle of each architecture 100%. The logic

required for system interaction is kept to a minimum in an effort to reserve as much chip

area as possible for the computing cells. Except for the logic that controls the FPGA’s

clock frequency, the system interface logic is identical for all four architectures.

Common Top-Level Design

This section describes the tasks performed by the FPGA and the hardware

implemented to carry out these tasks. Only the parts of the FPGA design common to

each architecture are discussed in this section.

The steps performed by the FPGA during a complete calculation cycle are shown

in Figure 4-1. Immediately after power-up, configuration data from the Logic Module

(LM) flash memory is downloaded to the FPGA. At the same time, the Core Module

(CM) initializes the Integrator/AP motherboard and then waits for input parameters to be

sent from the host PC. After the CM receives these parameters, it sends them over the

motherboard’s Advanced High-performance Bus (AHB) to the LM. At this time, writes

1 Adders and multipliers

 28

to the LM address space are forwarded to the LM SSRAM by the FPGA. Before the

FPGA begins computing, it expects all input parameters to reside at the beginning of the

LM SSRAM in the following order: iterations, result cell, and the rest of the input

parameters. Iterations is the number of iterations to calculate, which are time steps for

the heat flow test case. If the FPGA is configured with N computing cells, then result

cell is a number between 1 and N and is the cell number whose data will be stored in

SSRAM. For the heat flow problem, the cell data stored is the matrix temperature at each

time step. The remaining input parameters are problem-specific, and for the heat flow

problem, they are the temperature applied to Cell 1, the temperature applied to Cell N,

and the curing parameter Γ . Because of the number scheme used in this design, these

input parameters must be given as fixed-point scaled integers. After the CM sends these

parameters, it sends the FPGA a start signal indicating that the calculation is ready to

proceed. After the FPGA receives this signal, it gains control of the LM SSRAM and

reads the input parameters described above. With the input parameters in place, the row

of computing cells is instructed to begin calculating, and when an iteration has

completed, the result in result cell is written to SSRAM starting immediately after the

input parameters at the beginning of the memory space. Iteration results continue to be

written to SSRAM until iteration results have been stored. At this point, the FPGA

releases control of the SSRAM and allows the CM to read the computed results over the

AHB bus. Initial values are then reset, and the FPGA is ready to begin a new calculation

cycle. If a second calculation cycle is started, the FPGA overwrites the stored results

from the first cycle.

The VHDL that implements the procedure described above is set up to be

extensible to any cellular parallel problem that is similar to the heat flow test case. There

can be any number of input parameters following iterations and result cell, and the

number of cells is limited only by the available space in the FPGA. Changes to the

number of input parameters or the number of cells requires resynthesis of the design and

reconfiguration of the FPGA, but the number of iterations calculated is limited only by

the size of the SSRAM where results are stored.

 29

Receive iterations

Receive result cell

Receive remaining
parameters

Power-on

Receive from CM
and forward to LM

SSRAM

Wait for
start signal

Fetch iterations

Fetch result cell

Fetch remaining
parameters

Get these from
LM SSRAM

Instruct cell row to
begin calculating

Wait until iteration
completes

Write result to LM
SSRAM

Iterations
remain?Yes No

Serve SSRAM
read requests

from CM

Set done
signal

Figure 4-1. Tasks performed by the FPGA design; dashed tasks are not required for a calculation cycle

Figure 4-2 shows the structure of the top-level FPGA design that implements the

procedure in Figure 4-1. The cell row controller is a Finite State Machine (FSM) that

waits for a start signal, reads SSRAM input parameters, starts the row computation and

sends results to SSRAM, and keeps track of the number of iterations that have completed.

A single cell-controller FSM controls all cells in the row and is different for each

 30

architecture. The SSRAM controller provides the memory chip’s control signals and

facilitates the timing of reads and writes. Control and data lines from both the AHB bus

and the row controller are multiplexed onto the SSRAM, and data from the row controller

and the SSRAM are multiplexed onto the AHB bus. Although not shown in Figure 4-2,

there is also logic that decodes addresses from the AHB bus. All addresses in the LM

address space except one will address the SSRAM. A write from the CM to the single

address 0x0DDC0DE in the LM’s address space writes the FPGA’s start signal, and a read

of the same address reads the row controller’s done signal, which indicates when the CM

can begin reading the calculated results from SSRAM. Also not shown in the figure is

logic that controls the FPGA’s programmable clock and the LM’s indicator LEDs.

1 N

Cell Controller

Cell Row Controller

Cell Row

Result Cell

SSRAM
Controller

AHB Bus

SSRAM

Inside FPGA

Unique to each
architecture

Figure 4-2. Structure of the top-level FPGA design

 31

The computing cells in the FPGA run on a separate clock from the AHB bus

clock so that they are not constrained to the bus frequency. Data must be transferred

between these two asynchronous clock domains, however, so a handshaking sequence is

performed to ensure proper data delivery. The handshaking is set up to allow any

combination of bus and cell clock frequencies.

A detailed view of the cell row structure is shown in Figure 4-3. The explicit

solution given in equation (2-15) dictates this structure, and it requires that each cell

connect to its left and right neighbors and that it have access to the values computed in its

previous iteration. Each cell computes equations (2-13), (2-14), (2-15), and (2-16) and

stores the matrix and particle temperatures for a single time step. Collectively, the values

stored represent the temperature distribution across the section of material partitioned by

the cells. All cells are updated in parallel, and the speed of the computation does not

depend on the number of cells, N. An effort is made to make the computing cells as

small as possible by moving most of the control outside of the cell despite the fact that a

centralized controller is contrary to the cellular computing model described in [31].

These cells are replicated until the entire FPGA area is utilized.

N-1 N21Left Applied
Temperature

Right Applied
Temperature

Figure 4-3. Cell row structure

MULTIPLE

This section discusses the cell controller and computing cell structures of the

MULTIPLE architecture.

The MULTIPLE architecture is given this name because each computing cell

instantiates multiple adders and multipliers: one for each add and multiply that occurs in

the underlying equations being computed. The computation is done completely with

combinational logic, so new values could be generated every clock cycle. However, due

to the handshaking needed to write results to SSRAM, each iteration takes two clock

 32

cycles. Thus, the cell controller is an extremely simple FSM that toggles between two

states. During one state, a value is computed, and during the other state, the value is

stored in memory. The MULTIPLE architecture consumes a large amount of chip area,

so its usefulness is mainly as a basis of comparison for the other architectures.

VHDL supports standard arithmetic operations, so the equations that need to be

computed can almost be written directly in the hardware description. However, it is

desirable to first put the equations into forms that minimize the number of multiplies,

since multiply hardware consumes more area than addition. Thus, the heat flow

equations for the MULTIPLE architecture are implemented as shown in Figure 4-4. The

temporary variables , , and 1t 2t α∆ are used to ensure that the synthesis software does

not instantiate unnecessary logic. To implement the less-than test, the MULTIPLE

architecture instantiates full-width comparator hardware.

 ()b
i

jm CTt −+= −1
,1

 ∆
()

() ()() ()





−−≥−+××⋅∆−××

−−<
=

−−−

−

b
i

jm
i
j

i
ja

b
i

jm

CTCttt

CT
1

,
11

11

1
,

,1

,0

αα
α

 ()1
,

1
,2

−− −×∆= i
jm

i
jp TTtt

 ααα ∆+= −1i
j

i
j

() α∆×+−+×
∆
∆++= −−

+
−

−
− ΓTTT

x
ttTT i

jm
i

jm
i

jm
i

jm
i

jm
1

,
1

1,
1

1,22
1

,, 2

 T 2
1

,, tT i
jp

i
jp −= −

Figure 4-4. Heat flow equations reformulated for the MULTIPLE architecture

All variables and parameters in Figure 4-4 are fixed-point scaled W-bit integers,

so results of multiply operations must be scaled accordingly. First, a standard VHDL

multiply is performed, which produces a 2W-bit result. The scaled integer result of the

multiply operation resides within this 2W-bit result as shown in Figure 4-5 assuming S

 33

integer bits. For this and the other architectures, W and . W was chosen by

overlaying temperature plots made using floating-point and fixed-point calculations, and

W was increased until the fixed-point plot “looked” accurate.

25= 5=S

W1+W

VHDL multiply result

Scaled integer multiply result

W2

SW −2 SW −

1

Figure 4-5. Scaled integer multiplies

The cell structure for the MULTIPLE architecture is shown in Figure 4-6. The

number of add and multiply units in the figure shows why each cell consumes so much

chip area. Each multiply unit performs the operation shown in Figure 4-5. The enable

signal allows new results to latch into the registers and is generated by the 2-state FSM in

the cell controller.

Registers

Y

N

Cell

To
neighbors

Clock Reset Enable W

W

W

+

×scaled

+

×scaled

×scaled

0

×2

+

<

+

×scaled

×scaled
+ +

−

−

×scaled

+

−

×scaled

1, −jmT

Γ

1−

aCt ⋅∆−

bC−
bC

2xt ∆∆

t∆

pT

mT

α

1, +jmT

Figure 4-6. Cell structure for the MULTIPLE architecture

 34

SINGLE

This section discusses the cell controller and computing cell structures of the

SINGLE architecture.

The SINGLE architecture is given this name because each cell time-shares a

single multiplier and adder among a sequence of operations that implement the heat flow

equations. Thus, it uses less area than MULTIPLE but more clock cycles, although the

clock rate may be able to be higher for SINGLE because signals only have one multiplier

level to travel through instead of the multiple levels in MULTIPLE. Each single-cycle

operation consists of a consecutive multiply and add. Time-sharing the arithmetic

resources is achieved through a many-state FSM, so the cell controller for SINGLE is

much more complex than the controller for MULTIPLE. The SINGLE architecture is

useful as a first attempt at decreasing area at the expense of time.

If an add does not need to be performed during an operation, then the adder

resource is idle and is effectively wasted for that clock cycle. A similar situation holds

whenever a multiply is not needed. Thus, it is desirable to partition the equations into

sub-operations that include both a multiply and an add, as shown in Figure 4-7. The

temporary variables and t are essential and add to the number of register bits required

by each cell, although this is not usually a problem for flip-flop-rich FPGAs. Some

special operations are done in order to maximize cell performance. Lines 5 and 11 in

Figure 4-7 make two concurrent assignments for the purpose of saving one clock cycle.

Two numbers A and B can be subtracted by performing an operation such as

, but the hardware does not support direct subtraction as in .

1t 2

BAAB −=+×−1 CBA −×

 35

 1 ()b
i

jm CTt −+×= −1
,1 1

 2 0111 +×= ttt

 3
()

() (





−−≥+×⋅∆−

−−<
=

−

−

b
i

jma

b
i

jm

CTtCt

CT
t

1
,1

1
,

1
,0

,0

)
 4 ()111

2 −+×= −− i
j

i
jt αα

 5 211
1

21 , ttttt i
j

i
j ×=+×= −αα

 6 011 +×= tΓt

 7 1
1

,1 tTtt i
jp +×∆= −

 8 1
1,

1
1,2 1 −

+
−

− +×= i
jm

i
jm TTt

 9 1221 tt
x
tt +×

∆
∆=

10 1
1

,21 21 tTt
x
tt i

jm +×





 ∆−

∆
∆−= −

11 1,
1

,1 ,0 tTTtt i
jm

i
jm =+×∆= −

12 () 1
1

,, 1 tTtT i
jp

i
jp +×∆−= −

Figure 4-7. Heat flow equations partitioned for the SINGLE architecture

The cell and controller structures for the SINGLE architecture are shown in

Figure 4-8. The add and multiply units are the same as those used by MULTIPLE, but

there is only one of each for this architecture. Each state in the cell controller’s 12-state

FSM determines the inputs applied to the adder and multiplier as well as the destination

register that will latch the result of the multiply/add operation. The controller also

distributes constant parameter inputs to all cells. Although not shown in Figure 4-8, each

cell includes the same comparator hardware as MULTIPLE.

 36

Destination Selector

scaled

Registers

Multiplier
Source Selector

Adder
Source Selector

Multiplier Source Parameter

Adder Source Parameter

Cell

Cell Controller

12-State FSM

To neighbors

WW

W

1, −jmT 1, +jmT

×
+

pT mT α 1t 2t

Figure 4-8. Cell and controller structures for the SINGLE architecture

BOOTH

This section discusses the cell controller and computing cell structures of the

BOOTH architecture.

The strategy of decreasing size at the expense of time can be taken further by

eliminating the large multiplier unit in SINGLE and doing all operations with a single W-

bit adder. One way to perform signed-number multiply operations using a single adder is

the Booth algorithm [10], which is the method used for this architecture and the reason

for the name BOOTH. Using this method, each multiply operation takes W clock cycles,

but full-width add operations can still be done in one cycle. The clock frequency may be

able to be higher than for SINGLE since signals in the BOOTH architecture go through

 37

one adder rather than a multiplier followed by an adder. Like SINGLE, the BOOTH

architecture requires complex control in order to spread operations out over time in the

correct order.

A string of W bits represents a two’s complement integer by 0121 aaaa WW K−−

()∑∑
−

=
−

−

=

−
− ⋅−=⋅+⋅−=

1

0
1

2

0

1
1 222

W

i

i
ii

W

i

i
i

W
W aaaaA

if [38]. Therefore, if A is multiplied by another two’s complement integer B,

then

01 =−a

()∑
−

=
− ⋅⋅−=⋅

1

0
1 2

W

i

i
ii BaaBA ,

where each addend effectively adds B, subtracts B, or adds 0 to each partial sum term

depending on if is 10, 01, or 00/11, respectively. Booth’s algorithm uses this fact

and the fact that multiplication by 2 can be done by shifting a bit sequence. The Booth

algorithm and the required hardware are shown in Figure 4-10 and Figure 4-9,

respectively. A and B are the two operands to the multiplication, and C accumulates the

partial sums. The multiplication by is done by shifting C and A to the right. The

adder contains additional hardware for subtracting B and for adding 0. The usual result

of the multiplication is a two’s complement integer that resides in the concatenation of

registers C and A, but since scaled integers are being used, the result lies within C and A

at the position shown in Figure 4-5.

ii aa 1−

i

i2

 38

C

B

A

Can add B, -B or 0

Result after W cycles

Multiplier

Multiplicand

W

W

+
ia 1−ia

Figure 4-9. Hardware for Booth’s algorithm

Result in C A

01 10

00/11

YN

Multiply Operation

Multiplier←A
ndMultiplica←B

0←C
01 ←−ia
Wi ←

BCC −← ii aa 1− BCC +←

1rightshiftarithmetic −iaAC
1−← ii

0=i

Figure 4-10. Booth’s algorithm for two’s complement multiplication

 39

Like the MULTIPLE architecture, it is advantageous to compute the heat flow

equations using the least number of multiply operations, but unlike MULTIPLE, the

reason is not because of size but because of time: multiply operations are W times longer

than add operations in the BOOTH architecture. Thus, the heat flow equations for the

BOOTH architecture are partitioned as shown in Figure 4-11. Lines 11 and 12

implement and are done using two single-cycle add operations rather than a

multiply, which would take W clock cycles. As with SINGLE, temporary variables

and are essential and add to the register count of each cell.

1
,2 −− i
jmT

1t

2t

 1 ()b
i

jm CTt −+= −1
,1

 2
()
()





−−≥×

−−<
=

−

−

b
i

jm

b
i

jm

CTtt

CT
t

1
,11

1
,

1
,

,0

 3 ()aCttt ⋅∆−×= 11

 4 11
2

−− ×= i
j

i
jt αα

 5 ()122 −+= tt
 6 211 ttt ×=

 7 1
1

−+= i
j

i
j t αα

 8 Γtt ×= 11

 9 1
,11
−+= i

jmTtt

10 1
1,

1
1,2

−
+

−
− += i

jm
i

jm TTt

11 1
,22
−−= i

jmTtt

12 1
,22
−−= i

jmTtt

13 222 x
ttt

∆
∆×=

14 211 ttt +=

15 1
,

1
,2

−− −= i
jm

i
jp TTt

16 ttt ∆×= 22

17 21, ttT i
jm +=

18 2
1

,, tTT i
jp

i
jp −= −

Figure 4-11. Heat flow equations partitioned for the BOOTH architecture

 40

The cell and controller structures for the BOOTH architecture are shown in Figure

4-12. Each cell uses a single adder, but the C and A registers needed for the Booth

algorithm increase the register count of the cell. The B register of the Booth algorithm is

not explicitly included but is effectively the cell register that passes through the input-2

select logic. This requires the cell controller to hold the proper select lines until a

multiplication completes. Each state in the cell controller’s 18-state FSM determines

both of the adder’s inputs and the destination register that will latch an operation’s result.

The controller also distributes a constant parameter input to all cells and selects the

operation to be either an add or a multiply. The cell controller has the ability to select a

subtraction operation so that operations like can be performed. Although not

shown in Figure 4-12, each cell includes a bitwise less-than unit and is instructed to do

the test during line 2 in Figure 4-11, which is a multiply operation that takes the same

number of clock cycles as the less-than test. This dual use of the W clock cycles saves

area that would be consumed by using a full-width less-than unit. The counter in the cell

controller counts W cycles for multiply operations and is implemented with a simple shift

register rather than an incrementer in order to save area and increase speed. In this

implementation, multiply operations take W cycles due to required initializations, but

it may be possible to construct a design such that they take W cycles. Rather than

generating with a negation unit,

BA −

2+

B− B is provided and is generated in the carry

logic, which add together to produce a properly negated B.

1+

 41

C

0

A

Input 1
Select
Logic

Input 2
Select
Logic

Carry
Logic

Multiplier

W

Input Parameter

Source Selector

Destination Selector

Cell

WW

Other Control
Signals

Result Selector

Cell Controller

18-State FSM

Counter i

To neighbors

pT mT α 1t 2t

ia 1−ia

+

1, −jmT 1, +jmT

Figure 4-12. Cell and controller structures for the BOOTH architecture

BIT

This section discusses the cell controller and computing cell structures of the BIT

architecture.

The MULTIPLE architecture can be thought of as the extreme in terms of

requiring the least amount of time at a very high size expense. At the other end of the

spectrum is an architecture that requires the least amount of space at a very high time

expense. The way to achieve this extreme is by performing all operations one bit at a

 42

time, which is what the BIT architecture does, hence the reason for its name. Like

BOOTH, the BIT architecture uses the Booth algorithm to perform multiplies, but each

add operation is bit-serial. Thus, multiplies take W cycles and additions take W cycles,

although the clock frequency may be able to be higher than for BOOTH because signals

in the BIT architecture go through a 1-bit adder rather than a full-width adder. Although

the BIT architecture consumes the least amount of area per cell, its VHDL description is

the most complex of the four architectures due to the complicated timing control

required.

2

Because of the BIT architecture’s similarities to BOOTH, the heat flow equations

are partitioned in nearly the same way as they are for the BOOTH architecture. The only

differences between the BOOTH partitioning shown in Figure 4-11 and the BIT

partitioning are the first four lines. The BIT architecture’s first four operations are shown

in Figure 4-13. The reason for the differences in these lines is due to an important

constraint on the way in which multiply operations can be performed in the BIT

architecture. The two operands to a multiply operation are shifted through the hardware

one bit at a time but at different rates: the right operand rotates every clock cycle while

the left operand rotates with the destination register every W cycles. Thus, the right

operand cannot be the same as the destination register, which is the reason why both t

and are assigned in line 1 and why is set in line 3: so that the operations in lines 2

and 4 can be performed. As with SINGLE and MULTIPLE, t and are essential

temporary variables.

1

2t 2t

1 2t

1
()

() (





−−≥−+

−−<
=

−−

−

b
i

jmb
i

jm

b
i

jm

CTCT

CT
tt

1
,

1
,

1
,

21
,

,0
,

)
2 211 ttt ×=

3 () 1
211 , −=⋅∆−×= i

ja tCttt α

4 1
22

−×= i
jtt α

Figure 4-13. First four lines of the BIT architecture’s partitioning of the heat flow equations

 43

The cell and controller structures for the BIT architecture are shown in Figure

4-14. All registers are shift registers so that they can be read and written one bit at a

time, but only the C and registers are implemented with flip-flops. The other registers

are implemented as LUT shift registers, otherwise they would quickly consume all FPGA

flip-flops due to the large number of cells that can fit on the chip. Like BOOTH, the B

register of the Booth algorithm is excluded, but the A register is also excluded in the BIT

architecture because result bits can be shifted into their destination register as they are

generated. Unlike BOOTH, selecting the correct result bits requires complex timing

control in the cell controller. Because the B register is excluded, the cell controller must

also hold the input-2 select lines throughout a multiplication and rotate the multiplicand a

total of W times. The required timing is achieved using two W-cycle counters, each

implemented as a simple shift register to save area and increase speed. In this

implementation, multiply and add operations take W and W cycles,

respectively, due to required initializations, but it may be possible to construct a design

such that they take W and W cycles. Each state in the cell controller’s 19-state FSM

determines both of the adder’s 1-bit inputs and the destination register that will rotate in

result bits as they are generated. The controller also distributes a constant parameter

input one bit at a time to all cells and selects the operation to be either an add or a

multiply. The cell controller has the ability to select a subtraction operation so that

operations like can be performed. The BIT architecture requires 19 states instead

of the 18 for BOOTH because the bitwise less-than test requires a separate operation,

which occurs just before line 1 in Figure 4-13. There are also other states required for

initialization and synchronization with SSRAM, but some of them occur only once at the

beginning of a calculation cycle.

mT

2

W+2 1+

2

BA −

 44

0
Input 1
Select
Logic

Input 2
Select
Logic

Carry
Logic

Multiplier

Input Parameter

Source Selector

Destination Selector

Cell

Other Control
Signals

Cell Controller

19-State FSM
Counter i

Shift
Logic

Counter j

C

Rotate Enables

11

1

1

To neighbors

pT mT α 1t 2t

1, −jmT 1, +jmT

+

ia 1−ia

Figure 4-14. Cell and controller structures for the BIT architecture

 45

Chapter 5
Results and Analysis

Each architecture described in Chapter 4 was implemented using the procedures

outlined in Chapter 3. This chapter gives the performance results of each architecture

followed by a brief analysis and discussion of the results. Also included in this chapter is

a simple verification of each architecture’s computations as well as some of the

alternative designs considered in an effort to increase performance.

Design Verification

As a way of verifying that the designs operate as intended, Matlab scripts

containing each architecture’s sequence of operations were written. These scripts

perform fixed-point scaled integer arithmetic and are expected to produce results

identical to those computed by the FPGA-system. The results produced by executing the

scripts are shown in Table 5-1 next to the values produced by simulating the VHDL

descriptions using Cadence tools. Additionally, simulation waveforms are shown in

Figure 5-1. For each architecture, the scaled integer matrix temperature of cell 1 of 50 is

shown for the first 10 time steps with W , , and T . It

can be seen that the VHDL descriptions behave as expected. The SINGLE architecture

computes values that are slightly different than the other three architectures because of

the differences in its partitioning of the heat flow equations. Each architecture simulation

in Figure 5-1 uses the same clock frequency making it apparent that for a given clock

rate, decreasing parallelism in each cell increases the computation time.

25= 5=S 6.2,, === ΓT rightmleftm

 46

Table 5-1. Verification of 10 simulated time steps for each architecture

MULTIPLE SINGLE BOOTH BIT
Matlab VHDL Matlab VHDL Matlab VHDL Matlab VHDL

0 0 0 0 0 0 0 0
1349246 1349246 1349246 1349246 1349246 1349246 1349246 1349246
1362739 1362739 1362737 1362737 1362739 1362739 1362739 1362739
1693341 1693341 1693338 1693338 1693341 1693341 1693341 1693341
1703256 1703256 1703252 1703252 1703256 1703256 1703256 1703256
1865335 1865335 1865330 1865330 1865335 1865335 1865335 1865335
1873433 1873433 1873426 1873426 1873433 1873433 1873433 1873433
1972797 1972797 1972791 1972791 1972797 1972797 1972797 1972797
1979742 1979742 1979735 1979735 1979742 1979742 1979742 1979742
2047997 2047997 2047989 2047989 2047997 2047997 2047997 2047997

Discrepancies: 0 Discrepancies: 0 Discrepancies: 0 Discrepancies: 0

FE

Cursor1 = 682 ns

Gr

Gr

Gr

Gr

FE

FE

FE

so

th

MULTIPLE
HCLK = 1

CLK1 = 1

Result[24:0] 0 1349246 1362739 1693341 1703256 1865335 1873433 1972797 1979742

682 800 1000 1200 1400 1600 1800 200

oup: A

o

o

o

R

Cursor1 = 682 ns

E

R

R

 v

e

SINGL
up: A

u

u

HCLK = 1

CLK1 = 1

esult[24:0] 0 1349246 1362737 1693338 1703252 1865330 1873426 1972791 1979735

682 1000 1500 2000 2500 3000 3500 4000 4500

e

Cursor1 = 682 ns

B H

e

OOT
p: A

p:

HCLK = 1

CLK1 = 1

sult[24:0] 0 1349246 1362739 1693341 1703256 1865335 1873433 1972797 1979742

682 10,000 20,000 30,000 40,000 50,000 60,000 70,

su

Cursor1 = 1802 ns
CurB

a

M

IT
 A

HCLK = 0

CLK1 = 1

lt[24:0] 0 1349246 1362739 1693341 1703256 1865335 1873433 1972797 1979742

1802 500,000 1,000,000 1,500,000

Figure 5-1. Simulation waveforms for each architecture

A hardware implementation may not always function as predicted by simulation,

lues produced by the FPGA system were verified by comparing them to values from

atlab scripts as shown in Table 5-2. The input parameters are the same as those

47

used for Table 5-1, but each architecture uses the maximum number of cells that can fit in

the FPGA. It can be seen that the hardware implementations behave as expected. While

only 10 time steps are shown in Table 5-2, the results of over 200,000 time steps were

verified in the laboratory.

Table 5-2. Verification of 10 hardware-executed time steps for each architecture

MULTIPLE
Cell 1 of 10

SINGLE
Cell 1 of 37

BOOTH
Cell 1 of 76

BIT
Cell 1 of 424

Matlab FPGA Matlab FPGA Matlab FPGA Matlab FPGA
0 0 0 0 0 0 0 0

1342800 1342800 1349022 1349022 1349399 1349399 1349511 1349511
1356231 1356231 1362511 1362511 1362894 1362894 1363009 1363009
1682151 1682151 1692948 1692948 1693608 1693608 1693805 1693805
1691959 1691959 1702857 1702857 1703528 1703528 1703727 1703727
1850262 1850262 1864801 1864801 1865698 1865698 1865965 1865965
1858226 1858226 1872890 1872890 1873800 1873800 1874072 1874072
1954394 1954394 1972141 1972141 1973245 1973245 1973573 1973573
1961187 1961187 1979075 1979075 1980194 1980194 1980528 1980528
2026658 2026658 2047230 2047230 2048520 2048520 2048904 2048904

Discrepancies: 0 Discrepancies: 0 Discrepancies: 0 Discrepancies: 0

Because the FPGA system uses limited-precision fixed-point numbers, it is

important to verify the accuracy of the computed results by comparing them to higher-

precision results. Figure 5-2 shows 7000 FPGA-computed time steps using the same

setup used in Figure 2-3 but converted from scaled integers to real numbers. Overlaying

these are the results of the same computation using machine-precision arithmetic on a PC.

Relative percent error, as shown in Figure 5-3, is commonly used to quantify the

accuracy of measured results, but in this case, relative error is not very useful because it

generates high-magnitude transient error spikes at early time steps due to comparisons

between very small numbers. Therefore, Figure 5-3 also shows an alternative method of

quantifying the error that uses

)min()max(
)()(100

ff
nfng

−
−× ,

which can be interpreted as the “visual” percent error. This is effectively the percentage

of the range of f that each value in g is different than the corresponding value in f, where f

is the set of accepted values. Figure 5-3 shows that “visual” error is similar to relative

 48

error but that it does not have the transient problem. The fixed-point scaled integer

results are accurate to within 4%, which is acceptable since input parameters to the heat

flow test case are usually only known to within 5% to 20%. The error occurs to the

greatest extent around the curing spike and is essentially zero everywhere else indicating

that nearly all of the error is due to the computations associated with the curing effect.

0 1000 2000 3000 4000 5000 6000 7000
Time step

0

1

2

3

4

5

T
em

pe
ra

tu
re

ch
an

ge
,K

Real number analysis
Scaled integer analysis

Figure 5-2. Comparison of results computed with real numbers and with scaled integers

0 1000 2000 3000 4000 5000 6000 7000
Time step

�4

�3

�2

�1

0

R
el

at
iv

e
pe

rc
en

te
rr

or

0 1000 2000 3000 4000 5000 6000 7000
Time step

�4

�3

�2

�1

0

�
V

is
ua

l�
pe

rc
en

te
rr

or

Figure 5-3. Two methods of quantifying the accuracy of the scaled integer computation

 49

Results and Comparisons

The number of cells was increased for each architecture until the design could no

longer fit on the FPGA or until it became difficult for the synthesis tools to operate

efficiently. Using the procedure described in the Appendix, the synthesis tools were set

up to achieve a near-optimal clock frequency. As a reference for the synthesis times

below and the speedups reported in the next section, Table 5-3 is a description of the PC

used for design and testing.

Table 5-3. PC setup used for design and testing

Model: Dell Inspiron 5100
CPU: Intel Pentium 4 2.66GHz

RAM: 512MB
Operating System: Windows XP Professional SP2

The following graphs show various performance results of each architecture.

Figure 5-4 shows the total synthesis time, which is the time required by Synplify to

compile the VHDL and perform the first synthesis stage added to the time required by

ISE to perform the second synthesis stage and generate a programming file added to the

time required to load the LM flash with configuration data. Figure 5-5 shows the

maximum number of cells, , that fit in the chip for each architecture. Figure 5-6

shows the worst-case maximum clock frequency at which the computing cells can run.

This value is reported by ISE after synthesis as an estimate of the maximum clock

frequency that should remain valid through acceptable device tolerances and operating

conditions. Figure 5-6 also shows the actual maximum clock frequency, , achieved

in the laboratory. This was determined by stepping up the clock frequency by 1MHz

until the FPGA produced erroneous results. Figure 5-7 shows the number of clock

cycles, , required to complete one iteration as determined by the number of states

in the cell controller’s FSM and by the type of operation performed in each state. Figure

5-8 shows each architecture’s calculation rate, which is given by

maxN

maxf

cyclesN

 50

cycles

maxmax

N
fN .

Figure 5-9 shows the time required to compute 200,000 iterations and send the 32-bit

results to Matlab over two 460,800 baud serial links.

Total Synthesis Time

4 7
13

42

26
31

32

3

2

2

2

2

0

10

20

30

40

50

60

MULTIPLE SINGLE BOOTH BIT

Ti
m

e
(m

)

Stage 1 Stage 2 Configuration

47

32

40

47

Figure 5-4. Total synthesis time for each architecture

Maximum FPGA Cell Density

10

424

37
76

0

75

150

225

300

375

450

MULTIPLE SINGLE BOOTH BIT

N
um

be
r o

f C
el

ls

Figure 5-5. Maximum number of cells that fit in the FPGA for each architecture1

1 38 cells fit for SINGLE and 77 cells fit for BOOTH, but synthesis becomes difficult in both cases.

 51

Maximum Clock Frequency

32.86

20.01
14.95

7.14

41

27

1411

0

10

20

30

40

50

MULTIPLE SINGLE BOOTH BIT

Fr
eq

ue
nc

y
(M

H
z)

Worst-Case Actual

Figure 5-6. Worst-case and actual maximum clock frequency for each architecture2

Clock Cycles Per Iteration

200

12
2

4863

1

10

100

1000

10000

MULTIPLE SINGLE BOOTH BIT

N
um

be
r o

f C
yc

le
s

Figure 5-7. Number of clock cycles required for one iteration for each architecture

2 Actual maximum frequencies measured to 1MHz precision

 52

Results Produced Per Second

55.00
43.17

10.26
3.57

0

15

30

45

60

75

MULTIPLE SINGLE BOOTH BIT

C
al

cu
la

tio
n

R
at

e
(M

H
z)

Figure 5-8. Calculation rate of the entire cell row for each architecture

Computation Time for 200,000 Iterations

11.55 11.54 11.54 11.50

23.72

1.480.170.04

0

10

20

30

40

MULTIPLE SINGLE BOOTH BIT

Ti
m

e
(s

)

Data Transfer Computation

11.59 11.71 13.02

35.22

Figure 5-9. Time required to compute and transfer the results of 200,000 time steps

Analysis

Figure 5-8 shows that the MULTIPLE architecture has the highest calculation

rate, although its usefulness is severely limited by the small number of cells that fit in the

FPGA. Conversely, the BIT architecture has the lowest calculation rate but permits a

very large cell density. In order to stress the importance of a large number of cells,

 53

Figure 5-10 shows a performance measurement that gives more weight to the cell density

by squaring to give maxN

()
cycles

maxmax

N
fN 2

.

Using this index, the SINGLE and BIT architectures show the best performance.

Architecture Performance Measurement

550

1516

780

1597

0

500

1000

1500

2000

MULTIPLE SINGLE BOOTH BIT

P
er

fo
rm

an
ce

Figure 5-10. Performance index that gives more weight to cell density

While the performance measurements given above are interesting, the most

important measurement is the architecture’s ability to accelerate calculations done with a

single-processor machine. Figure 5-11 shows the speedups obtained over four common

methods that researchers might use to do computations on a PC. The four methods are:

• Mathematica: This method uses the Nest function in Mathematica 5.0.1.

• Matlab 1: This method uses nested loops in Matlab 6.5 but simulates how the

computation would take place in a pre-6.5 version without Performance

Acceleration.

• Matlab 2: This method uses vector operations as recommended in the Matlab 6.5

documentation [24].

• Matlab 3: This method also uses nested loops in Matlab 6.5 but takes advantage

Matlab’s Performance Acceleration feature. Introduced in version 6.5, this

feature accelerates certain loops by translating them into highly optimized code.

 54

Each method was used to compute 200,000 time steps of the heat flow equations shown

in Figure 4-4 using standard real number machine arithmetic. Figure 5-11 shows that the

BIT architecture is actually slower than two Matlab methods and that the MULTIPLE

architecture provides the greatest speedup. It should be emphasized, however, that the

computation times for MULTIPLE are relatively short on both the FPGA and the PC, so

the real benefit of the FPGA-based MULTIPLE architecture would be seen when doing

repetitive calculations such as the temperature dynamics of all cells over time.

Speedup Over Common Calculation Software

1021.2

19.0
14.0

147.1

643.5

55.8

239.6
347.8

6.5

50.5

0.8

196.7

1.7

7.7
12.7

0.6

0.1

1

10

100

1000

10000

MULTIPLE SINGLE BOOTH BIT

Sp
ee

du
p

Mathematica Matlab 1 Matlab 2 Matlab 3

Figure 5-11. Each architecture’s speedup over Mathematica and three calculation methods in Matlab3,4

The Synplify synthesis tool reports estimated maximum clock frequencies after

the mapping process that are usually fairly accurate, but they are significantly

overestimated for some of the architectures in this design. This may be due to the high

routing delays, which, among other things, can be caused by the near-maximum device

utilization. The Xilinx documentation [42] suggests that a typical design’s total delay

should be 40% logic and 60% routing delay, but for this design, the total delay is around

20% logic and 80% routing. Different synthesis techniques may be able to reduce the

3 The FPGA’s execution time does not include the time required to transfer computed results to a host PC.
4 Performance results were obtained using the PC system in Table 5-3.

 55

routing delay and achieve Synplify’s estimated frequencies. Figure 5-12 shows

Synplify’s maximum clock frequency estimates and Figure 5-13 shows the speedups

possible if these frequencies can be realized.

Actual and Estimated Clock Frequency

11 14
27

41

11.9

28.6
47.6

76.8

0

15

30

45

60

75

90

MULTIPLE SINGLE BOOTH BIT

Fr
eq

ue
nc

y
(M

H
z)

Actual Synplify

Figure 5-12. Maximum clock frequencies estimated by Synplify

Possible Speedups with Synplify's Frequency Estimates

1104.7

35.6
26.3

259.4

1314.6

98.3

489.4376.3

11.4

103.2

1.6

212.7

3.1

15.813.7

1.1
1

10

100

1000

10000

MULTIPLE SINGLE BOOTH BIT

Sp
ee

du
p

Mathematica Matlab 1 Matlab 2 Matlab 3

Figure 5-13. Speedups possible if Synplify’s frequency estimates can be achieved

 56

Next-generation FPGAs from Xilinx will have 4.6 times as many logic cells and

will operate 3.8 times as fast as the XCV2000E device [43]. Figure 5-14 shows the

speedups possible with these next-generation FPGAs assuming that the computing cells

can operate 3.8 times as fast as the maximum frequencies reported by Synplify and that

PC execution times remain the same.

Possible Speedups with Next-Generation FPGAs

15409

486

1249

22101

1679

82595767

623

78

560

21

1004

52

253180

19

1

10

100

1000

10000

100000

MULTIPLE SINGLE BOOTH BIT

Sp
ee

du
p

Mathematica Matlab 1 Matlab 2 Matlab 3

Figure 5-14. Speedups possible with next-generation FPGAs from Xilinx

Figure 5-15 shows the performance/cost ratios possible with next-generation

FPGAs for each architecture assuming an FPGA cost of $500. The ratio is given by

FPGA
cycles

maxmax

N
fN $.

For comparison, Figure 5-15 also shows the performance/cost ratio achieved by the

Virginia Tech “X” cluster supercomputer, which is given by 2.5$ops1012×10 million.

It can be seen that at least two of the architectures are expected to compare favorably to

this large, expensive supercomputer.

 57

Performance/Cost Ratio

1.922.08

3.08

0.63
0.23

0

0.75

1.5

2.25

3

3.75

MULTIPLE SINGLE BOOTH BIT Virginia
Tech "X"

M
op

s/
$

Figure 5-15. Performance/cost ratios for each architecture and for a cluster supercomputer

Although the FPGA-based system is aimed at accelerating calculation software

like Matlab and Mathematica, it is informative to compare the FPGA to more efficient

PC execution methods. Figure 5-16 shows each architecture’s speedup over an optimized

C program that calculates the heat flow equations using floating-point arithmetic on the

PC system in Table 5-3. Only floating-point is shown because integer arithmetic in C is

only slightly faster than the efficient Matlab 3 method discussed above. Figure 5-16

shows that the single-chip FPGA-based computer discussed in this thesis is currently not

able to outperform C code on a PC.

Speedup Over Optimized C

1.10

0.20
0.07

0.88

0

0.5

1

1.5

MULTIPLE SINGLE BOOTH BIT

Sp
ee

du
p

EVEN

Figure 5-16. Each architecture’s comparison to optimized C code

 58

Alternative Designs Considered

A few alternative designs were implemented in an attempt to increase the cell

clock rates, although none of them succeeded in providing any significant improvement.

Most of the alternatives were attempted for the BIT architecture, but the results apply to

the other architectures as well.

The control signals generated by the cell controller in the BIT architecture have

an extremely high fanout because they must drive hundreds of cells, and this high fanout

can limit the maximum clock frequency. In an attempt to reduce the fanout, the cell

controllers were replicated using an algorithm in VHDL that evenly distributes C

controllers over N cells so that the number of cells that each controller must drive is

reduced to at most   2+CN . In a separate attempt to reduce fanout, the changeable

input parameter Γ , which also must be distributed to all cells, was eliminated by making

it a constant parameter. Neither of these attempts made any improvement, which is

probably due to the synthesis tool’s own fanout reduction by logic replication and buffer

insertion. Replicating cell controllers actually has a negative effect on performance

because it reduces the number of cells that fit in the chip.

The ability to observe the results of any cell is achieved by using a large

multiplexer that collects the output of every cell in the chip. This multiplexer is

especially large for the BOOTH architecture because of the large number of full-width

cell results that must be selected. To observe its effect on performance, the multiplexer

was removed by hard-coding the number of the cell under observation. No performance

increase resulted from the removal, which could be due to routing delays being much

higher than the multiplexer delay or to an efficient multiplexer implementation by the

synthesis tools.

An FPGA containing an array of computing cells brings to mind a regular matrix

of well-defined cell boundaries. However, the synthesis tools actually spread a particular

cell across the chip in a semi-random layout. Because cells communicate only with their

nearest neighbors, it seems logical that placing cells next to their neighbors could

increase performance by minimizing the distance that signals must travel. The synthesis

tools allow a design to be floorplanned, which constrains selected logic to specific chip

 59

areas, and Mathematica was used to generate area constraints that tile the row of cells in a

snake-like pattern throughout the chip. Figure 5-17 shows the chip layout with and

without these area constraints and with one cell darkened. Surprisingly, floorplanning

does not increase the maximum clock frequency, and it has the negative side effect of

decreasing the number of cells that fit in the chip. Also surprising is that even without

floorplanning, decreasing the number of cells to make the design easier to synthesize

does not seem to give better performance.

With Floorplanning Without Floorplanning

Figure 5-17. FPGA design layout with and without floorplanning

 60

Chapter 6
Conclusions

This chapter outlines the procedure necessary for adapting the FPGA computing

system to problems beyond the heat flow case study. It also recommends areas that need

improvement and suggests possibilities for future research. The chapter concludes with a

summary of the work presented in this thesis.

Extending the Designs to Other Problems

While the VHDL design descriptions are written to allow any number of

computing cells, the code is deliberately problem-specific in order to maximize the

computation rate of the particular problem. As a result, extending the descriptions to

other problems requires considerable code modification. The code describing the

interface between the FPGA and the development board is problem-independent and

requires no modification, but extending the design requires the following changes to the

problem-specific code.

• The problem’s equations must be partitioned appropriately for the target

architecture, and the resulting operations must be listed as states in the cell

controller.

• Control signals generated by each state must be set to perform the associated

operation.

• The controller’s state variable must be modified to accommodate the required

number of states.

• Enumerations for the source and destination selectors should be given proper

names, and register rotate enables must be listed when targeting the BIT

architecture.

 61

• Input parameters must be distributed as needed to the row of cells.

• The cell structure must include all required registers, and these registers must be

interfaced to the arithmetic resources according to the source and destination

selectors from the cell controller.

• The common definitions file must be given the fixed-point parameters W and S,

the number of cells N, and any constant parameters used by the calculation.

Future Work

The foremost problem with the FPGA-based system discussed in this thesis is the

large amount of synthesis time required. The system cannot be a viable desktop

computation accelerator if it takes an hour to set up the problem in the FPGA, and as

FPGAs increase in size, the synthesis time will only increase. Thus, the next important

step in this research should be finding ways to reduce or eliminate the synthesis time.

One way to do this would be to make the hardware slightly more general so that it can

apply to a larger range of problems. Another approach is Run-Time Reconfiguration

(RTR) using a system like the JBits system [16] being developed by Xilinx [41]. JBits is

a programming interface that provides access to all programmable resources in supported

FPGAs. Using RTR, the FPGA could be quickly configured for a new problem by

modifying its configuration stream directly without requiring a lengthy synthesis cycle.

A problem with the particular implementation for this research is the large routing

delay in the FPGA, which severely limits the maximum attainable clock frequencies,

especially for the BOOTH and BIT architectures. The focus of this research was on

implementing the four architectures and not on tailoring them to a particular FPGA, so

with a better understanding of the FPGA architecture and synthesis tools, it may be

possible to reduce or eliminate the excessive routing delays. Alternatively, there are

FPGAs available with routing architectures that have more predictable delays, which can

increase the synthesis tool’s ability to route a design efficiently.

The development platform used for this design is intended to serve as a proof-of-

concept, but the usefulness of the FPGA-based system could be better demonstrated if

 62

computed results could be transferred more quickly to the host PC. The dual serial links

provide an adequate transfer rate, but they take several seconds to transfer the results of a

large number of iterations. Another solution would be to use Ethernet or another protocol

through the PCI slots on the Integrator/AP motherboard. This method may require an

operating system such as eCos [14], which is freely available and has been ported to the

Integrator/AP motherboard.

The concept of an FPGA-based computing system can be extended past the

objective of a desktop PC accelerator to a much larger parallel computer. Any number of

FPGAs, each with several hundred or more cells, could conceivably be joined to provide

massive computational power for cellular parallel problems, although a few issues would

need to be addressed. The FPGAs in the array would have to remain synchronized with

each other in order to keep the row of cells in lock-step. This would reduce the

maximum clock frequency compared to the frequency possible with a single FPGA. The

maximum frequency might be further reduced due to the requirement for cells to send

their data off-chip. The FPGA array would require a high-speed interconnection network

to reduce this negative effect on the clock frequency.

The BOOTH and BIT architectures are actually special cases of a more general

digit-serial architecture. A digit-serial architecture uses a D-bit adder, so BOOTH is

digit-serial with and BIT is digit-serial with . Such an architecture requires

the same complex control as BIT but uses fewer cycles per iteration, and more cells can

fit on a chip than for BOOTH because the adders are smaller. It may be possible that a

digit-serial architecture with 1 can provide a better calculation rate than both

BOOTH and BIT.

WD = 1=D

WD <<

Researchers using an FPGA-based cellular computing system cannot be expected

to know how to transform their problems for computation on the FPGA. This

transformation should be completely automated so that a researcher can formulate a

problem in Matlab or Mathematica and transparently receive results computed by the

FPGA. Therefore, another step in this research should be to construct an automated

process that partitions equations from Matlab or Mathematica into operations suitable for

the particular FPGA architecture, inserts those operations into a configuration that can be

 63

programmed on an FPGA, and retrieves the results generated after running the FPGA

computer.

Summary

This thesis has presented the design of four cell architectures for FPGA-based

cellular computing as well as the application of the design to a real-life heat flow

problem. Each architecture was implemented and tested on a development board, and

performance results obtained were used to compare cell densities and speedups over PC

calculation software.

The four architectures vary in the way they utilize chip area and execution time in

order to compute a problem. Two architectures operate at the extremes of the area/time

spectrum: one takes a very short time but consumes a large chip area, and the other uses a

very small chip area but takes a long time to execute. The other two architectures lie

between these two extremes.

The structure of the FPGA computer is a row of computing cells under the control

of a central controller. Each cell in the row is connected only to its left and right

neighbors and has access to its data from the previous iteration. This structure limits the

FPGA computer to certain types of parallel problems like cellular automata and like

discretized differential equations with an explicit solution as in the heat flow case study.

The analysis shows that the MULTIPLE architecture provides the highest speedup

and that PC calculation software outperforms the current implementation of the BIT

architecture. However, with next-generation FPGAs, all four architectures can be

expected to accelerate cellular parallel problems with speedups as high as 22,000. Due to

the widely varying cell densities, no single architecture is the best choice for every

problem: problems that require a large number of cells can benefit from architectures like

BIT, and problems that need only a few cells would benefit more from architectures like

MULTIPLE.

With additional research and development, an FPGA-based cellular parallel

computer could substantially accelerate scientific problems as a PC peripheral or even as

a component in a much larger supercomputer.

 64

Appendix
Design Flow Details

The purpose of this appendix is to expand on Chapter 3 by giving the details

necessary for implementing the FPGA-based system discussed in this thesis. Also

included is some specific information about the VHDL descriptions.

VHDL

Figure A-1 shows the hierarchy of the VHDL source files for this design as well

as the files used only for simulation. The top_test.vhd testbench simulates the

actions taken by the Core Module (CM) including the Logic Module (LM) SSRAM

transactions.

top_test.vhd

top.vhd ssram_sim.vhd

ram_controller.vhd row_controller.vhd

cell_row.vhd cell_controller.vhd

cell.vhd

bit_multipiler.vhd booth_multipiler.vhd

Simulation Only

Not in MULTIPLE

BIT Only BOOTH Only

common_pack.vhd
Common Definitions

Figure A-1. VHDL source file hierarchy

 65

The VHDL descriptions written for this design adhere to the language standard

[19] as well as the synthesis subset of the standard [20]. It is common practice for VHDL

designers to include std_logic_arith and related arithmetic libraries in their designs.

However, these libraries are not the standard and are proprietary to Synopsys. The

numeric_std library was used instead because it is the standard and its documentation

[21] is readily available from IEEE [22].

The source code is completely general in terms of the fixed-point parameters W

and S as well as the number of cells N. For this research, W is limited to 32-bits by the

width of the SSRAM where results are stored, and S must be less than W and greater than

1. The number of cells is generalized by using VHDL’s generate statement, a loop-

like construct that allows logic to be replicated any number of times. These design

parameters as well as input parameters to the heat flow problem are contained in the

definitions file common_pack.vhd. While supported by VHDL, the synthesis subset of

the language does not allow real numbers in design descriptions. As a result, the scaled

integer input parameters to the heat flow problem must be calculated outside the VHDL

and manually inserted into common_pack.vhd. The definitions file also allows clock

frequencies to be assigned to switch settings on the logic module. These switches can

then change the frequency at which the computing cells operate.

For the MULTIPLE, SINGLE, and BOOTH architectures, implementing scaled

integer arithmetic is trivial because the bit slice shown in Figure 4-5 can be written

directly in VHDL. It is more complicated for the BIT architecture, however, because the

result of a multiply operation is spread out over time. Thus, result bits must be carefully

picked out of the bit stream generated by the Booth multiplier.

Due to the large number of cells that fit in the FPGA for the BIT architecture,

some of the cell’s shift registers must be implemented in LUTs to keep from exhausting

the FPGA’s flip-flop supply. The synthesis tools will infer LUT shift registers rather

than flip-flop registers if the VHDL is coded in a certain way. According to the Synplify

documentation [33], LUT shift registers will be inferred if a register does not have a

synchronous reset and if only the register output bit is directly utilized.

Xilinx offers design tips in [42] that suggest registering module outputs so that

routing delays need not be affected by paths through combinational logic. This technique

 66

is used for the cell controller outputs and does cause a moderate increase in the maximum

clock frequency.

Compilation and Mapping with Synplify

Synplify does not automatically recognize hierarchy in VHDL source files, so the

synthesis files must be added to a Synplify project in the order shown in Table A-1.

Table A-1. Source file order for Synplify

File Applicable Architecture
1. common_pack.vhd All
2. bit_multiplier.vhd BIT
3. booth_multiplier.vhd BOOTH
4. cell_controller.vhd All except MULTIPLE
5. cell.vhd All
6. cell_row.vhd All
7. row_controller.vhd All
8. ram_controller.vhd All
9. top.vhd All

Figure A-2 shows the project options that must be set. Everything remains as the

default except for the part selection, the “Write Vendor Constraint File” checkbox, and

the “Top Level Entity” name. The constraint file checkbox is unchecked so that the place

and route (PAR) step is free of timing constraints, which will enable Automatic

Timespecing as discussed in the next section.

 67

Figure A-2. Project options in Synplify

 68

With the source files in place and the options set, the design should be compiled

(but not mapped). A SCOPE constraint file should be entered as shown in Figure A-3. It

is important to assign the two clocks to different groups so that the software does not treat

them as synchronous clocks. Frequency goals are given for each clock so that the

software can insert buffers and replicate logic in order to meet the constraints. The value

for HCLK is the Integrator/AP AHB bus frequency, and the value for CLK1 should be

slightly above the maximum frequency reported by the ISE PAR software.

Figure A-3. SCOPE timing constraints

The options dialog box should list the SCOPE constraints file and the checkbox

should be checked. At this point, the design can be mapped using the GUI interface or by

executing the Tcl command project -run synthesis.

After its synthesis stage, Synplify generates a report that includes the FPGA’s

resource utilization. This information is often useful, so it is shown in Figure A-4 for

each cell architecture.

 69

MULTIPLE
Cell usage:
FDP 32 uses
FDC 6 uses
GND 12 uses
VCC 11 uses
MUXCY_L 31007 uses
XORCY 30030 uses
MULT_AND 11600 uses
MUXCY 721 uses
FDCE 821 uses
MUXF5 50 uses
MUXF6 25 uses
FDE 99 uses
FDPE 36 uses

I/O primitives:
IBUF 41 uses
IOBUF 65 uses
OBUFT 2 uses
OBUF 62 uses

BUFGP 2 uses

I/O Register bits: 68
Register bits not including I/Os: 926 (2%)

Global Clock Buffers: 2 of 4 (50%)

Mapping Summary:
Total LUTs: 33808 (88%)

SINGLE
Cell usage:
FDP 34 uses
FDC 55 uses
GND 40 uses
MUXCY_L 23226 uses
XORCY 22701 uses
MUXCY 667 uses
MULT_AND 10508 uses
FDRE 925 uses
MUXF5 1153 uses
FDE 1000 uses
FDCE 2852 uses
FDS 55 uses
FDRS 3 uses
FD 44 uses
MUXF6 53 uses
FDPE 38 uses
VCC 1 use

I/O primitives:
IBUF 41 uses
IOBUF 65 uses
OBUFT 2 uses
OBUF 62 uses

BUFGP 2 uses

I/O Register bits: 68
Register bits not including I/Os: 4938 (12%)

Global Clock Buffers: 2 of 4 (50%)

Mapping Summary:
Total LUTs: 34849 (90%)

BOOTH
Cell usage:
FDP 33 uses
FDC 118 uses
GND 2 uses
MULT_AND 1824 uses
MUXCY_L 1851 uses
XORCY 1920 uses
FDR 1940 uses
FD 1907 uses
FDRE 988 uses
FDSE 912 uses
FDCE 5963 uses
FDE 1975 uses
FDS 26 uses
FDRS 41 uses
FDPE 40 uses
MUXF5 506 uses
MUXF6 125 uses
MUXCY 1 use
VCC 1 use

I/O primitives:
IBUF 41 uses
IOBUF 65 uses
OBUFT 2 uses
OBUF 62 uses

BUFGP 2 uses

I/O Register bits: 68
Register bits not including I/Os: 13875 (36%)

Global Clock Buffers: 2 of 4 (50%)

Mapping Summary:
Total LUTs: 34692 (90%)

BIT
Cell usage:
FDP 34 uses
FDC 169 uses
GND 427 uses
VCC 425 uses
FDRS 10186 uses
FDRE 424 uses
FDRSE 424 uses
MUXF5 2590 uses
FDE 2220 uses
FD 502 uses
MUXF6 460 uses
FDCE 11583 uses
FDR 69 uses
FDS 228 uses
FDPE 39 uses
MUXCY_L 27 uses
XORCY 20 uses
MUXCY 1 use

I/O primitives:
IBUF 41 uses
IOBUF 65 uses
OBUFT 2 uses
OBUF 62 uses

BUFGP 2 uses

SRL primitives:
SRL16E 3392 uses

I/O Register bits: 68
Register bits not including I/Os: 25810 (67%)

Global Clock Buffers: 2 of 4 (50%)

Mapping Summary:
Total LUTs: 28262 (73%)

Figure A-4. FPGA resource usage for each architecture

 70

Place and Route with ISE 5.1

A goal of this research is to run the computing cells at the highest possible clock

frequency, but this rate is typically unknown until after the synthesis process. To address

this problem, the ISE software provides Automatic Timespecing, which will attempt to

place and route the design to achieve a near-optimal clock frequency without requiring

multiple synthesis passes. According to the Xilinx documentation [40], Automatic

Timespecing is enabled if no timing constraints are found and if the Overall Effort Level

is Normal or higher.

The PAR synthesis step starts by adding an EDIF file produced by Synplify to an

ISE project. It is very important to also add a constraint file (pinout.ucf) that assigns

signals to pin locations, because all FPGA pins are predefined by the chip’s placement on

the LM. Settings in the “Place and Route Properties” box should be entered as shown in

Figure A-5. All other settings can remain at their defaults. Double-clicking on “Generate

Programming File” in the process window starts a sequence of processes that ends with a

bit file (top.bit) used for programming the FPGA. The typical command lines of the

intermediate steps should be similar to Figure A-6, although they do not have to be

entered directly when the ISE GUI is used.

Timing constraints can be used to further increase the maximum clock frequency,

but this method only provides a few megahertz improvement and can add several hours to

the synthesis time.

 71

Figure A-5. Project options for Xilinx ISE

ngdbuild -quiet -dd _ngo -uc pinout.ucf -p xcv2000e-fg680-6 top.edf top.ngd

edif2ngd –quiet "top.edf" "./_ngo/top.ngo"

map -quiet -p xcv2000e-fg680-6 -cm area -pr b -k 4 -c 100 -tx off -o
top_map.ncd top.ngd top.pcf

par -w -ol 3 -t 1 -detail top_map.ncd top.ncd top.pcf

trce -quiet -e 3 -l 3 -a -xml top top.ncd -o top.twr top.pcf

bitgen -f top.ut top.ncd

Figure A-6. Typical ISE command lines for the synthesis processes

Bit File Download Over Multi-ICE

The following is a list of the steps required for programming the FPGA with the

bit file produced by the ISE software. Refer to Figure 3-5 for a diagram of the LM

layout.

 72

1. Turn off power to the Integrator/AP motherboard.

2. Connect the Multi-ICE cable between the Multi-ICE connector on the LM and the

Multi-ICE unit and connect the Multi-ICE unit’s parallel cable to a PC.

3. Fit a jumper to the CONFIG link on the LM.

4. Turn on power to the Integrator/AP motherboard.

5. On the host PC, start the Multi-ICE Server and click “Auto-Configure,” which

should detect the XCV2000E FPGA. The Multi-ICE Server opens portmap in

the background and requires the program to stay open.

6. Execute the progcards utility with a .brd and a .bit file in the same directory

as the executable. The .bit file is the programming file generated by ISE. The

.brd file contains the actions requested of progcards as shown in Figure A-7.

If there are multiple .brd files in the same directory, progcards allows one to

be selected by providing a menu. The LM flash can hold up to two FPGA

configuration files located at flash addresses 0x000000 and 0x200000, and one

of these addresses must be specified in the .brd file. The .brd file shown in

Figure A-7 is set up to first configure the FPGA to allow the .bit file to pass

through to the flash memory. It does this through another .bit file (available

from the LM documentation CD) that must also be in the same directory. The

.brd file then instructs progcards to send the .bit file containing the design

to flash and then verifies the flash contents.

7. Turn off power to the Integrator/AP motherboard.

8. Remove the CONFIG link jumper and set the mode switches on the LM

according to Table A-2. S1[3] must be open to allow the switches to select the

flash image and S1[1] selects which flash data will configure the FPGA.

9. On Integrator/AP power-up, the LM configures the FPGA with the selected flash

data.

 73

[General]
Name = top AHB XCV2000E -> flash (addr 0x200000)
Priority = 1

[ScanChain]
TAPs = 2
TAP0 = XCV2000E
TAP1 = XC9572XL

[Program]
SequenceLength = 3
Step1Method = Virtex
Step1TAP = 0
Step1File = lmxcv600e_72c_xcv2000e_via_reva_build0.bit
Step2Method = IntelFlash
Step2Address = 200000
Step2TAP = 0
Step2File = top@0x200000.bit
Step3Method = IntelFlashVerify
Step3Address = 200000
Step3TAP = 0
Step3File = top@0x200000.bit

Figure A-7. Example .brd file used for downloading configuration files to LM flash

Table A-2. LM switch settings for selecting a flash image

Flash Image Image Base Address S1[1] S1[2] S1[3] S1[4]
0 0x000000 Closed1 x Open x
1 0x200000 Open x Open x
Motherboard selects image x x Closed x

Core Module Code Generation with ADS and AFS

The program that runs in the CM is the first thing executed when the

Integrator/AP motherboard is turned on, so it is responsible for all motherboard

initializations. This is done through the ARM Firmware Suite (AFS) µHAL library,

which also provides access to the serial ports. The CM program executes as shown in

Figure A-8. After initialization, the program enters an infinite loop that receives

parameters from the host PC, starts the FPGA calculation, sends FPGA-computed results

to the host PC, and then returns to the loop’s beginning to start a new calculation cycle.

1 “Closed” is down and “Open” is up.

 74

Initialize
motherboard

and serial ports

From Host PC over Serial A
Receive iterations
Receive result cell

Receive input parameters

To LM SSRAM over AHB
Send iterations
Send result cell

Send input parameters

Send FPGA start signal

Wait for FPGA done signal

To Host PC over Serial A
Send one computed result

To Host PC over Serial B
Send one computed result

iteration
results sent?

Program entry

N Y

Figure A-8. Core module program flow

The simplest way to generate the CM binary is to create a CodeWarrior project

based on an example project from AFS v1.4.1. For this research, the hello example was

used as a starting point because it uses the µHAL library and performs serial I/O. The

following is a list of the steps required to build the CM binary and download it to the

Integrator/AP motherboard.

1. Copy fpga_execute.c, the source code file for the CM program, to

$AFS/Source/uHALDemos/Sources2.

2 $AFS is the directory where the ARM Firmware Suite is installed.

 75

2. Make a copy of $AFS/Source/uHALDemos/Build/Integrator720T.b/

hello.mcp and rename it to fpga_execute.mcp. It should remain in the same

directory as hello.mcp.

3. The line in $AFS/Source/uHALDemos/Build/Integrator720T.b/

scatter.txt that reads LR_1 0x24800000 should be changed to LR_1

0x24000000. This allows the CM image to run when the Integrator/AP is turned

on.

4. Open fpga_execute.mcp in CodeWarrior and change the File, Link Order, and

Targets as shown in Figure A-9.

5. The settings for the standalone target should be changed as shown in Figure

A-10. All other settings can remain unchanged. The post-linker is set to “ARM

fromELF” and the output format is set to “Plain binary” because the image is not

meant to be executed from an operating system or a debugger.

6. Click “Make” to generate the binary image.

7. Turn off power to the Integrator/AP motherboard.

8. Connect the Multi-ICE cable between the Multi-ICE connector on the CM and the

Multi-ICE unit and connect the Multi-ICE unit’s parallel cable to a PC.

9. Turn on power to the Integrator/AP motherboard.

10. Start the Multi-ICE Server and click “Auto-Configure,” which should detect the

ARM720T processor. The Multi-ICE Server opens portmap in the background

and requires the program to stay open.

11. Open the AXD Debugger.

12. Click the Options→Configure Target… menu item. The first time AXD is run,

the Multi-ICE DLL must be made known to the debugger. Click Add and select

the file $MULTIICE/Multi-ICE.dll3. Choose “Multi-ICE” in the “Choose

Target” dialog box and click Configure. The software will try to locate the Multi-

3 $MULTIICE is the directory where Multi-ICE is installed.

 76

ICE Server, which can also be running on a remote computer. When the

ARM720T processor shows up in the “Device selection” box, click Ok.

13. AXD will connect to the ARM720T processor through Multi-ICE. Click “Flash

Download.” In the “Image to load” box, enter or browse to $AFS/Source/
uHALDemos/Build/Integrator720T.b/fpga_execute_Data/standalo

ne/fpga.bin and click Ok. A console window will show the download’s

progress. Enter ‘y’ at both prompts. At this point, the CM image resides in the

motherboard flash.

14. Turn off power to the Integrator/AP motherboard.

15. Referring to Figure 3-4, set switch S1[1] to the off position to allow code

execution to begin at 0x24000000.

16. On Integrator/AP power-up, the CM image will begin executing.

 77

Figure A-9. CodeWarrior file and target settings

 78

Figure A-10. CodeWarrior project settings

 79

Matlab User Interface

The Matlab user interface to the FPGA system is a simple function that opens two

serial ports, sends input parameters to the Integrator/AP over one port, and retrieves

FPGA-computed results over both ports. Two serial ports are used to collect the results

in order to maximize the data transfer rate. Figure A-11 is an example Matlab session

showing the function usage. The example shows the retrieval of 10 time steps of the

matrix temperature for cell 1 of 424 with T using the BIT

architecture. The function arguments are the number of time steps, the result cell, a

vector of the input parameters, and the names of two serial ports over which results will

be transferred. The vector of input parameters must be the left applied temperature, the

right applied temperature, and

6.2,, === ΓT rightmleftm

Γ . The first serial port name given must be connected to

Serial A on the Integrator/AP motherboard.

>> fpga_execute(10,1,[2.6 2.6 2.6],'com6','com7')

ans =

 0
 1349511
 1363009
 1693805
 1703727
 1865965
 1874072
 1973573
 1980528
 2048904

Figure A-11. Example usage of the Matlab FPGA interface function

Due to a bug in the serial handling code for Matlab 6.5, a patch must be

downloaded from the MathWorks website [23] before the function can be used.

 80

References

[1] ARM Ltd., AMBA Specification, IHI 0011A, 1999.

[2] ARM Ltd., ARM Developer Suite AXD and armsd Debuggers Guide, DUI 0066D,
2001.

[3] ARM Ltd., ARM Developer Suite Linker and Utilities Guide, DUI 0151A, 2001.
[4] ARM Ltd., ARM Firmware Suite Reference Guide, DUI 0102G, 2002.

[5] ARM Ltd., ARM Firmware Suite User Guide, DUI 0136D, 2002.
[6] ARM Ltd., Integrator/AP User Guide, DUI 0098B, 2001.

[7] ARM Ltd., Integrator/LM-XCV600E+ Integrator/LM-EP20K600E+ User Guide,
DUI0146C, 2001.

[8] J. Armstrong, B. Vick, E. Scott, “Platform Based Physical Response Modeling,”
High-Performance Computing Symposium, 2004, pages 91-100.

[9] J. M. Baker Jr., S. Bennett, M. Bucciero, B. Gold, R. Mahajan, “SCMP: A Single-
Chip Message-Passing Parallel Computer,” International Conference on Parallel
and Distributed Processing Techniques and Applications, 2002, pages 1485–
1491.

[10] A. D. Booth, “A Signed Binary Multiplication Technique,” Quarterly Journal of
Mechanics and Applied Mathematics, volume 4, 1951, pages 236-240.

[11] S. Brown, J. Rose, “FPGA and CPLD Architectures: A Tutorial,” IEEE Design &
Test of Computers, volume 13, number 2, summer 1996, pages 42-57.

[12] Several postings to the <comp.arch.fpga> newsgroup, <www.fpga-faq.com>.
[13] I. D’Antone, “FPGA Implementation of One-Dimensional and Two-Dimensional

Cellular Automata,” Nuclear Instruments & Methods in Physics Research Section
A-Accelerators Spectrometers Detectors & Associated Equipment, volume 430,
number 1, June 1999, pages 127-142.

[14] “eCos,” 2004, <sources.redhat.com/ecos>.

[15] A. O. Frank, I. A. Twombly, T. J. Barth, J. D. Smith, “Finite Element Methods for
Real-Time Haptic Feedback of Soft-Tissue Models in Virtual Reality Simulators,”
Proceedings IEEE Virtual Reality 2001, 2001, pages 257-263.

[16] S. A. Guccione, D. Levi, “XBI: A Java-Based Interface to FPGA Hardware,”
Proceedings of the International Society for Optical Engineering, volume 3526,
1998, pages 97-102.

[17] T. Hartka, Cellular Automata for Structural Optimization on Recongfigurable
Computers, master’s thesis, Virginia Tech, 2004.

 81

http://www.fpga-faq.com/
http://sources.redhat.com/ecos

[18] IEEE, IEEE Standard Multivalue Logic System for VHDL Model Interoperability
(Std_logic_1164), IEEE Std 1164-1993.

[19] IEEE, IEEE Standard VHDL Language Reference Manual, IEEE Std 1076-2002.
[20] IEEE, IEEE Standard for VHDL Register Transfer Level (RTL) Synthesis, IEEE

Std 1076.6-1999.
[21] IEEE, IEEE Standard VHDL Synthesis Packages, IEEE Std 1076.3-1997.

[22] IEEE, “IEEE Xplore,” 2004, <ieeexplore.ieee.org>.
[23] The MathWorks, Inc., “Technical Solutions,” 2004, <www.mathworks.com/

support/solutions/data/1-1AQN3.html>.
[24] The MathWorks, Inc., Using Matlab, part of the Matlab 6.5 documentation, 2002.

[25] Micron Technology, Inc., 8Mb: 512K x 18, 256K x 32/36 Flow-Through ZBT
SRAM, datasheet, 2002.

[26] M. Miwa, T. Furuhashi, M. Matsuzaki, S. Okuma, “CMAC Modeling Using
Bacterial Evolutionary Algorithm (BEA) on Field Programmable Gate Array
(FPGA),” 21st Century Technologies and Industrial Opportunities, volume 1,
2000, pages 644-650.

[27] K. Paar, A Custom Computing Machine Solution for Simulation of Discretized
Domain Physical Systems, master’s thesis, Virginia Tech, 1996.

[28] S. V. Patankar, Numerical Heat Transfer and Fluid Flow, Hemisphere Publishing
Corporation, 1980.

[29] K. Ramachandran, Unstructured Finite Element Computations on Configurable
Computers, master’s thesis, Virginia Tech, 1998.

[30] R. N. Schneider, L. E. Turner, M. M. Okoniewski, “Application of FPGA
Technology to Accelerate the Finite-Difference Time-Domain (FDTD) Method,”
Tenth ACM International Symposium on Field-Programmable Gate Arrays, 2002,
pages 97-105.

[31] M. Sipper, “The Emergence of Cellular Computing,” IEEE Computer, volume 32,
issue 7, July 1999, pages 18-26.

[32] Synplicity, Inc., Synplicity-Xilinx High Density Methodology, application note,
2000.

[33] Synplicity, Inc., Synplify Pro Reference Manual, part of the Synplify Pro 7.1
documentation, April 2002.

[34] Synplicity, Inc., Synplify Pro User Guide, part of the Synplify Pro 7.1
documentation, April 2002.

[35] B. Vick, E. P. Scott, “Heat Transfer in a Matrix with Embedded Particles,”
Proceedings of the 1998 IMECE, volume 4, 1998, pages 193-198.

[36] Virginia Tech, “Virginia Tech Terascale Computing Facility,” 2004,
<www.tcf.vt.edu>.

 82

http://ieeexplore.ieee.org/
http://www.mathworks.com/support/solutions/data/1-1AQN3.html
http://www.mathworks.com/support/solutions/data/1-1AQN3.html
http://www.tcf.vt.edu/

[37] J. Vuillemin, “Reconfigurable Systems: Past and Next 10 Years,” Vector and
Parallel Processing 1998, 1999, pages 334-354.

[38] R. Wang, “Fast Multiplication—Booth’s Algorithm,” 2004, <jingwei.eng.hmc.
edu/~rwang/e85/lectures/arithmetic_html/node10.html>.

[39] S. Wolfram, A New Kind of Science, Wolfram Media, 2002, pages 376-382.
[40] Xilinx, Inc., Development System Reference Guide—ISE 5, part of the ISE 5

documentation, 2002.
[41] Xilinx, Inc., “The JBits SDK,” 2004, <www.xilinx.com/products/jbits>.

[42] Xilinx, Inc., Synthesis and Simulation Design Guide, part of the ISE 5
documentation, 2002.

[43] Xilinx, Inc., “Virtex-4 FPGAs,” 2004, <www.xilinx.com/virtex4>.
[44] Xilinx, Inc., Virtex-E 1.8 V Field Programmable Gate Arrays, DS022-{1,2,3,4},

datasheet, 2002.
[45] Xilinx Inc., “Xilinx,” 2004, <www.xilinx.com>.

 83

http://jingwei.eng.hmc.edu/~rwang/e85/lectures/arithmetic_html/node10.html
http://jingwei.eng.hmc.edu/~rwang/e85/lectures/arithmetic_html/node10.html
http://www.xilinx.com/products/jbits
http://www.xilinx.com/virtex4
http://www.xilinx.com/

Vita

Ken Morgan was born in 1980 and grew up in Waterford, Michigan. After

graduating from Waterford Mott High School in 1998, he received college scholarship

offers from Rensselaer Polytechnic Institute and Calvin College. He chose to attend

Calvin College in Grand Rapids, Michigan and graduated with an Engineering degree in

2002. During his time as an undergraduate, he had summer internships at General

Motors and Delphi. After college graduation, he received graduate assistantship and full

tuition scholarship offers from Iowa State University and Virginia Tech. This thesis is

the final step towards achieving his master’s degree in Electrical Engineering from

Virginia Tech.

 84

	Abstract
	Acknowledgments
	Table of Contents
	List of Figures
	List of Tables
	Glossary
	Introduction
	Background
	Overview of FPGAs
	Numerical Representation

	Related Work
	Thesis Outline

	Case Study: Heat Transfer in a Matrix with Embedded Particles
	Explicit Model
	Arrhenius Approximation
	What this Test Case Demonstrates

	Design Flow and Development Tools
	FPGA Design Flow
	Supporting Design and Development Platform

	Four Architecture Designs
	Common Top-Level Design
	MULTIPLE
	SINGLE
	BOOTH
	BIT

	Results and Analysis
	Design Verification
	Results and Comparisons
	Analysis
	Alternative Designs Considered

	Conclusions
	Extending the Designs to Other Problems
	Future Work
	Summary

	Design Flow Details
	VHDL
	Compilation and Mapping with Synplify
	Place and Route with ISE 5.1
	Bit File Download Over Multi-ICE
	Core Module Code Generation with ADS and AFS
	Matlab User Interface

	References
	Vita

