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Abstract 

The computational abilities of today’s parallel supercomputers are often quite 

impressive, but these machines can be impractical for some researchers due to prohibitive 

costs and limited availability.  These researchers might be better served by a more 

personal solution such as a “hardware acceleration” peripheral for a PC.  FPGAs are the 

ideal device for the task: their configurability allows a problem to be translated directly 

into hardware, and their reconfigurability allows the same chip to be reprogrammed for a 

different problem. 

Efficient FPGA computation of parallel problems calls for cellular computing, 

which uses an array of independent, locally connected processing elements, or cells, that 

compute a problem in parallel.  The architecture of the computing cells determines the 

performance of the FPGA-based computer in terms of the cell density possible and the 

speedup over conventional single-processor computation. 

This thesis presents the design and performance results of four computing-cell 

architectures.  MULTIPLE performs all operations in one cycle, which takes the least 

amount of time but requires the most chip area.  BIT performs all operations bit-serially, 

which takes a long time but allows a large cell density.  The two other architectures, 

SINGLE and BOOTH, lie within these two extremes of the area/time spectrum. 

The performance results show that MULTIPLE provides the greatest speedup 

over common calculation software, but its usefulness is limited by its small cell density.  

Thus, the best architecture for a particular problem depends on the number of computing 

cells required.  The results also show that with further research, next-generation FPGAs 

can be expected to accelerate single-processor computations as much as 22,000 times. 
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Glossary 

ADS The ARM Developer Suite (ADS) is a set of software tools that target ARM 
hardware. 

AFS The ARM Firmware Suite (AFS) is a set of libraries and source code for 
software that runs on ARM hardware. 

AHB The ARM High-performance Bus (AHB) is a simple bus standard developed 
by ARM. 

ASIC An Application Specific Integrated Circuit (ASIC) is a chip that is designed 
and manufactured to perform a specific function. 

CA Cellular Automata (CA) are systems that evolve discrete cells according to 
simple rules. 

CAD Computer-Aided Design. 

CLB A Configurable Logic Block (CLB) is a common array element in FPGAs and 
contains programmable logic. 

DIMM A Dual In-line Memory Module (DIMM) is a standard RAM form factor in 
computer hardware. 

DIP A Dual In-line Package (DIP) is a standard shape for electronic components. 
DRAM A Dynamic RAM (DRAM) is digital storage that must be refreshed to 

maintain its storage. 

EDIF The Electronic Data Interchange Format (EDIF) is a standard file format for 
hardware netlists. 

FF A Flip-Flop (FF) is a one-bit digital storage element. 

Flash Flash memory is non-volatile digital storage on a chip. 
FPGA A Field-Programmable Gate Array (FPGA) is a chip that can be programmed 

to perform a specific logical function. 
FSM A Finite State Machine (FSM) is an abstract machine that transitions among a 

set of states that produce a set of outputs. 
GUI A Graphical User Interface (GUI) is a visual front end to a computer program. 

IDE An Integrated Development Environment (IDE) is a software application that 
includes a suite of development tools. 

I/O Input/Output. 
LC A Logic Cell (LC) is part of a CLB and contains combinational logic followed 

by a flip-flop. 
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LED A Light-Emitting Diode (LED) is an electronic visual indicator. 
LM A Logic Module (LM) is an ARM development board that contains a large 

FPGA. 
LUT A Look-Up Table (LUT) is a small memory used in FPGAs for generating an 

arbitrary logic function. 
MAC A Multiply-Accumulate (MAC) unit is hardware that performs a multiplication 

followed by an addition and is often used in digital signal processors. 
MPGA A Mask Programmable Gate Array (MPGA) is a chip with a regular array of 

transistors and custom wire connections. 

PAR Place And Route (PAR) is a step during the translation of a hardware 
description to an FPGA configuration file. 

PC Personal Computer. 

PCI The Peripheral Component Interconnect (PCI) is a bus specification that is 
commonly implemented on computer motherboards. 

RAM A Random Access Memory (RAM) is digital storage that does not have to be 
accessed sequentially. 

RISC Reduced Instruction Set Computing (RISC) is a processor architecture that 
uses simplified instruction encoding and execution. 

ROM A Read-Only Memory (ROM) is digital storage that is meant to be read and 
not written. 

RTR Run-Time Reconfiguration (RTR) is a method for dynamically changing an 
FPGA’s configuration. 

SDRAM Synchronous DRAM (SDRAM) is read and written on clock edges rather than 
asynchronously. 

SRAM A Static RAM (SRAM) is digital storage that retains its contents as long as 
power is applied. 

SSRAM Synchronous SRAM (SSRAM) is read and written on clock edges rather than 
asynchronously. 

VHDL The Very High Speed Integrated Circuit Hardware Description Language 
(VHDL) is a textual language for describing electronic hardware. 

 x



Chapter 1  
Introduction 

In his book A New Kind of Science, Stephen Wolfram demonstrates a fluid flow 

simulation that is computed using cellular automata, a system in which the state of each 

of its discrete cells is updated according to a few simple rules.  Remarkably, the 

simulation shows eddies and complex patterns that are seen in actual streamline 

experiments.  Wolfram goes on to suggest that most real-world systems can be modeled 

successfully only through methods like cellular automata, thus underscoring the 

importance of these methods and the machinery used to compute them efficiently.  This 

fluid flow example and cellular automata in general are part of an important class of 

computational problems that can be discretized into cells that can be computed 

simultaneously.  Other common problems in this class include finite element analysis and 

digital image processing. 

Computing these kinds of parallel problems on a single-processor machine can 

quickly become impractical as the problems become large and execution times increase.  

The traditional approach to reducing execution time has been to compute the problem 

with an array of general-purpose processors connected together with a high-speed 

interconnection network.  A notable example of this kind of parallel machine at Virginia 

Tech is the “X” terascale cluster [36].  Built using 1,100 Power Mac G5s and an 

InfiniBand network, this supercomputer cost $5.2 million, occupied 280 square meters, 

and achieved a computation rate of 10 trillion operations per second. 

While supercomputers like the Virginia Tech “X” are able to offer impressive 

parallel performance, they are costly, they are usually quite large, and they often can only 

be used on a time-shared basis making them inappropriate for some researchers working 

on parallel problems like those discussed above.  The computational needs of these 

researchers could be better met with a more personal solution such as a “hardware 

acceleration” expansion card that could be inserted into the researcher’s personal 

computer and called upon to handle any cellular parallel problem. 
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Contrary to traditional parallel computers that use general-purpose processors 

combined with software to solve a problem, such a device would need its hardware to be 

configured specifically for a particular problem in order to minimize size and maximize 

performance.  Additionally, the device hardware would need to be reconfigurable to 

allow the user to use the same device for a different problem.  Such a parallel computing 

device is realizable because of today’s high-performance, high-density field-

programmable gate arrays (FPGAs).  Using the programmable logic in an FPGA, a cell in 

a cellular parallel problem can effectively become a small-scale processor, and when 

cells are replicated throughout the chip, an FPGA can effectively become a parallel 

computer.  The topic of this thesis involves the analysis of a prototype FPGA-based 

cellular computing system. 

The purpose of this thesis is to present the design and analysis of four different 

computing-cell architectures in an FPGA.  The architectures vary in the degree of 

parallelism within a cell, and they vary with respect to the methods used for basic 

arithmetic operations.  The goal of the analysis is to determine how the architectures 

compare in terms of the speedup they provide over single-processor machines and the 

number of computing cells they allow in a single chip.  Since the target user of the system 

is a researcher who may not be familiar with lower-level programming languages like C, 

the speedups compare the FPGA to higher-level languages, namely Matlab and 

Mathematica.  The following list is an overview of the four cell architectures considered. 

• MULTIPLE:  All cell operations1 are performed in a single clock cycle.  It is 

referred to as MULTIPLE because each cell instantiates multiple adders and 

multipliers.  It takes the least number of clock cycles to complete an iteration, but 

each cell consumes a large area on the chip. 

• SINGLE:  All cell operations are performed using a single adder and a single 

multiplier.  It is referred to as SINGLE for that reason.  It takes more clock cycles 

than MULTIPLE to complete an iteration because the single adder/multiplier 

resource must be time-shared among all operations. 

                                                
1 In this list, “cell operations” means additions and multiplications. 
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• BOOTH:  All cell operations are performed using a single full-width adder.  

Multiplies are performed by following the Booth algorithm, and it is referred to as 

BOOTH for that reason. 

• BIT:  All cell operations are performed using a single bit-serial adder.  It is 

referred to as BIT because all operations are executed one bit at a time.  Like 

BOOTH, it uses the Booth algorithm to perform multiplies, but the algorithm is 

bitwise in this case.  Each cell consumes a very small chip area, but it takes the 

most number of clock cycles to complete an iteration. 

The contributions made by the thesis author include a synthesizable VHDL 

description of each of the architectures described above, a synthesizable VHDL interface 

between the FPGA and the development platform used for this research, and a Matlab/C 

interface for directing computed results from the FPGA to a host computer over serial 

links.  Also, a particularly interesting achievement was the implementation of a bit-serial 

comparator for two’s complement integers. 

Background 

This section gives a brief overview of FPGAs and an explanation of the numerical 

representation used in the architecture designs.  More in-depth information on FPGAs 

can be found in [45] and [11]. 

Overview of FPGAs 

Field-programmable gate arrays are chips that can be programmed to perform 

virtually any logic operation.  They can be used in place of multiple smaller components 

such as glue logic, or they can contain large designs such as processors or graphics 

controllers.  Many FPGAs can be reconfigured any number of times making them ideal 

for design prototyping, and they have recently been replacing ASICs and MPGAs in low-

volume productions due to the high initial cost and long turnaround time of these custom 

manufactured chips.  Their high logic capacity and abundance of flip-flops distinguish 

FPGAs from other kinds of programmable logic devices. 
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Many different architectures exist, but Figure 1-1 shows the basic structure of a 

typical FPGA: a matrix of configurable logic blocks (CLBs) and interconnection 

resources surrounded by I/O blocks.  The CLBs are often complex but are likely to 

contain one or more function generators followed by flip-flops.  Made using either look-

up tables (LUTs) or multiplexers, function generators are capable of producing any k-

input Boolean function where k is usually four.  LUTs are 1-bit wide memories and 

essentially store the truth table of the Boolean function they generate.  They often can be 

used for general storage when not acting as a function generator.  The output of a 

function generator can serve as part of combinational logic or can be directed to a flip-

flop to create a latched signal.  Interconnection resources are composed of horizontal and 

vertical wires that can form connections with each other through the programmable 

switches.  There are also programmable switches that connect wires to CLBs.  I/O blocks 

can be programmed to allow their associated pin to operate as either an input or an 

output.  Current FPGAs often include additional components such as clock managers, 

RAM, and dedicated circuitry for common arithmetic operations. 

I/O Block

CLB

Wires

Programmable Switch  
Figure 1-1. Typical FPGA structure 

Due to the size and complexity of FPGAs, CAD tools must be used to take a 

design from its initial description to a bit stream that can be programmed on a device.  

Three processing steps are required: mapping, placement, and routing.  During mapping, 
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a design’s description in terms of logic gates is translated to a form suitable for function 

generators.  During placement, CLB sites on the chip are chosen, and during routing, the 

necessary connections between CLBs are formed.  A programming file can be generated 

and downloaded into the device once these steps are completed, which can take several 

hours for large, highly-constrained designs.  The physical mechanism for 

programmability varies for different FPGAs with the main methods being static RAMs 

and antifuses. 

Numerical Representation 

The purpose of the FPGA-based system discussed in this thesis is to aid 

researchers working on scientific problems, so it must support real numbers that have 

both integer and fractional parts.  Floating-point hardware could be used, but a fixed-

point number representation is used instead in order to conserve chip area.  In an effort to 

make each computing cell as lightweight as possible, the fixed-point numbers are scaled 

so that the arithmetic hardware need only deal with integers. 

Given a W-bit number in this fixed-point system, a certain number of bits, S, are 

reserved for the integer part and sign bit, and the remaining bits, W , make up the 

number’s fractional part.  Using the scaled integer scheme, a real number 

 can be represented to a resolution of  by a two’s complement 

integer , which can be converted back to a discrete real number 

S−

11 22 −− <≤− SS x

2 1 ≤− −W

( SW −−= 2ε )

12 1 −≤ −Wy

22 1 ε−−S22 1 ε ≤≤+− −S z .  The formulas used for converting to and from fixed-point 

scaled integers are 

 SWx −⋅2  to convert a real number x to a scaled integer, and 

22
ε+−SW

y  to convert a scaled integer y to a real number. 

The conversion to a scaled integer simply shifts all fractional bits to the left of the 

binary point and rounds down.  The conversion back to a real number shifts the fractional 

bits back to their original positions.  Although not strictly necessary, the 2ε  addition 

keeps the range of discrete real numbers centered on zero and guarantees that the 
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maximum quantization error is  instead of ε .  An example of a conversion to and 

from scaled integer form is shown in Figure 1-2 for the number 2.57823 assuming W  

and .  The figure shows how continuous ranges are mapped to single integers and 

how the conversion process adds quantization error. 

 41257823.2 8⋅ −4 =

59375.

2.56

) x

x=

2ε

conversion to scaled integer 

conversion back to a real number 
 

Continuous reals

Scaled integers

Discrete reals

   
 C

on
ve

rs
io

n

42 43

2.44 2.50 2.63 2.69 2.75

...

...

... ...

...

...

-8.0 8.0

-128 127

-7.97 7.97

39 40

 

8=

4=S


( )

2
2

2
2
41 48

48 =+
−−

−

2.59

2.57823

41

2.47 2.53 2.66 2.72

Figure 1-2. Fixed-point scaled integer conversion example with W  and S  8= 4=

There is a caveat associated with how multiplies are performed with scaled 

integers:  If two real numbers x and y are scaled and multiplied2, the result is 

( )( ( )SWSWSW yyx −−− ⋅=⋅⋅ 2222 , 

which is no longer a correctly scaled number because the scale factor’s exponent is 

doubled.  Thus, for each multiply operation that is performed, one scale factor must be 

eliminated.  Doing so gives a correctly scaled result: 

( )( ) SW
SW

SWSW

yyx −
−

−−

⋅⋅⋅ 2
2

22 . 

                                                
2 In the following derivations, the floor operation is omitted for clarity. 
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It turns out that this correction is easily applied in the VHDL design descriptions 

and adds virtually no extra hardware.  There is no such correction needed for additions 

since 

( ) SWSWSW yxyx −−− ⋅+=⋅+⋅ 222  

gives a correctly scaled number. 

There are at least two disadvantages to this fixed-point scaled integer scheme.  

First, a fixed-point representation does not allow numbers to vary over a wide range like 

floating-point does, which may prevent the computation of certain scientific problems.  

Second, choosing the number of integer bits, S, presupposes knowledge of the range of 

numbers that will occur in all intermediate calculations, but this information may not be 

available before the calculations have been performed.  It is assumed, however, that most 

researchers can provide an accurate estimate of the range of values that occur for a given 

problem.  S can also be given 1 or 2 extra “buffer bits” to avoid calculation overflow, but 

this comes at the expense of precision in the fractional part. 

Related Work 

Sipper gives an excellent introduction to cellular computing in his 1999 article 

[31] in IEEE Computer.  He defines the three principles of cellular computing as 

simplicity, vast parallelism, and locality, and he outlines several application areas 

including fast solutions to NP-complete problems and high-quality random number 

generators. 

Armstrong, Vick, and Scott recently published a paper [8] that included results 

obtained using an earlier version of the BOOTH architecture discussed in this thesis.  

Since the publication, the BOOTH model’s calculation rate and cell density have both 

improved.  Also referenced in [8] are results of models similar to the MULTIPLE and 

SINGLE architectures discussed in this thesis, but those models were not integrated into 

the development platform in the same way as MULTIPLE and SINGLE.  Additionally, 

MULTIPLE and SINGLE have been redesigned from scratch using design styles similar 
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to those used for BOOTH and BIT so that the four architectures can be equitably 

compared. 

Although not an FPGA-based system, an interesting example of a single-chip 

parallel computer at Virginia Tech is the Single-Chip Message-Passing (SCMP) [9] 

computer.  In this architecture, RISC3 processors are tiled in a regular array throughout 

the chip and communicate with each other by sending messages to neighboring nodes.  

Messages are forwarded using wormhole routing until they reach their intended 

recipients.  The advantage of this setup is that wire lengths are kept short, allowing clock 

frequencies to increase beyond what is possible using longer, higher resistance wires.  

Also, the architecture tries to exploit thread-level parallelism by giving each node its own 

set of 16 thread contexts that can be quickly switched. 

Researchers have been using FPGAs to accelerate discretized parallel problems, 

although the usual approach has been to use the FPGA to solve systems of equations 

instead of using explicit solutions as discussed in this thesis.  Frank et al. [15] suggested 

an FPGA implementation to provide real-time virtual reality simulation of soft tissue 

models.  Vuilleman [37] discusses the computation of problems in heat transfer, high-

energy physics, and RSA cryptography using reconfigurable systems, which combine a 

standard processor with an FPGA and SRAM.  Ramachandran [29] implemented an 

FPGA-based computer similar to the system discussed in this thesis but used floating-

point multiply-accumulate or MAC units to compute a matrix multiplication solution.  

The size and complexity of the MAC units as well as the size of the FPGAs available at 

the time limited the system to only a few processing elements.  Paar [27] implemented a 

multi-FPGA cellular system for simulating heat transfer with one FPGA per cell.  The 

cell architecture in the system was similar to the SINGLE architecture used in this 

research, but it used floating-point rather than fixed-point arithmetic.  Schneider et al. 

[30] demonstrated the transfer of a computationally intensive finite-difference time-

domain algorithm used in electromagnetics onto an FPGA-based computing system.  

Similar to the BIT architecture for this research, they used bit-serial integer arithmetic 

and were able to achieve a substantial speedup over single-processor computers. 

                                                
3 Reduced Instruction Set Computing 
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Researchers have also used FPGAs for computing cellular automata (CA).  

D’Antone [13] discusses the use of CA in FPGAs for random test-pattern generation, a 

useful component of built-in self-test for complex chip designs, and Hartka [17] used CA 

in FPGAs for structural analysis.  Miwa et al. [26] used genetic algorithms and neural 

networks to model the function of the human cerebellum, and they achieved significant 

speedup over a conventional processor by using an FPGA implementation. 

Thesis Outline 

Chapter 2 describes the test problem that the FPGA system computes and explains 

how its features make it representative of a typical scientific problem. 

Chapter 3 gives an overview of the main steps in the design flow of the 

architectures as well as all of the supporting design needed to make the FPGA computer 

an accessible system.  This chapter also describes the development platform on which the 

system is implemented. 

Chapter 4 gives a general description of the four architecture designs: 

MULTIPLE, SINGLE, BOOTH, and BIT.  Also described is the FPGA’s interface to the 

development board. 

Chapter 5 presents the performance of each architecture as determined by testing 

of an actual implementation of the system.  Also discussed are some of the alternative 

designs that were considered. 

Chapter 6 suggests some possibilities for further research and ways to improve the 

system and extend it to other problems.  It concludes with a summary of this thesis. 

An Appendix is included to provide a more detailed view of the steps required for 

implementing the system.  It also discusses some details of the VHDL descriptions. 
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Chapter 2  
Case Study: Heat Transfer in a Matrix with 
Embedded Particles 

An objective of this research is to design a system that computes a problem by 

translating it to machine hardware, so a prerequisite of the design is to select a test 

problem.  Ideally, this problem should be representative of a typical real-life problem so 

that the usefulness of the system can be demonstrated.  The test problem used for this 

design is, in fact, a real-life problem that researchers are currently studying.  This chapter 

discusses the problem, the derivation of its model, the steps required for FPGA 

implementation, and some of the useful things it demonstrates. 

The problem used as a case study is based on work presented by Vick and Scott in 

their paper [35] on heat transfer in a heterogeneous material.  In this paper, they give a 

thermal model for a solid material with a uniform density of particles of a different 

material.  The heat capacity of the particle material can be chosen such that the particle 

temperature lags the matrix material temperature (Figure 2-1).  One possible use for such 

a material is in protective suits used in firefighting where the thermal lag effect can keep 

the inside cooler than the outside, which may be exposed to extreme heat. 
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Figure 2-1. Thermal lag effect using the model in [35] with an applied temperature of +2.6 K1 

                                                
1 This figure was generated using the thermal model in MULTIPLE.  Temperatures of cell 25 of 50 are 
shown for 12,000 time steps.  A temperature of +2.6 is applied to both ends of the material, and . 0=Γ
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A derivation of the thermal model begins by considering a volume of a bulk 

material containing a uniform density of particles of another material, as shown in Figure 

2-2.  The behavior of interest is the dynamics of , the matrix material temperature, and 

, the particle temperature.  The analysis is considered one-dimensional, meaning that 

heat flows only in the x dimension.  A temperature gradient, 

mT

pT

xTm ∂∂ , at the volume slice 

shown in Figure 2-2 will cause heat to flow at that point, and a change in the temperature 

gradient, 22 xTm ∂∂ , due to the heat flow indicates a change in the overall temperature of 

the slice.  Thus, heat flow into the slice is given by 

 2

2

x
T

K m

∂
∂

, (2-1) 

where the thermal conductivity, K, quantifies the ability of heat to flow through the 

matrix material.  In general, the matrix material will have a different temperature than the 

particles, and this difference, , causes heat to flow from the material into the 

particles.  The ability of heat to cross the interface between the matrix and the particles is 

characterized by a heat transfer coefficient, H, and this heat flow is given by 

pm TT −

 ( )pm TTH − . (2-2) 

Applied
heat

dx
x

 
Figure 2-2. Idealized sectional used for analysis 

The thermal model in [35] has been extended for this analysis to include the 

effects of curing, a heat-induced chemical change that alters the material’s thermal 

properties.  A model [8] of the heat generated by this curing process is given by 
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t

Γ
∂
∂α , (2-3) 

where 

 ( )( αα )α −+=
∂
∂ 121 KK

t
 and (2-4) 

 ( ) 2,1, == − ieAK mi TRE
ii . (2-5) 

As an example of the effect of curing on the temperature dynamics of a material, 

Figure 2-3 uses the same setup as Figure 2-1 but includes curing.  It can be seen that 

curing causes a heat spike to occur once the matrix material has reached a certain 

temperature.  The spike peaks and then quickly returns to a stable temperature. 
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Figure 2-3. Same setup as Figure 2-1 but with the addition of the curing effect2 

All the heat sources and sinks with respect to the matrix material add together to 

give 

 
t

TC m
m ∂

∂ , (2-6) 

the rate of heat storage in that part of the material, where the heat capacity, , is the 

ability of the matrix material to store heat energy.  Invoking the law of conservation of 

energy, expressions (2-1), (2-2), (2-3), and (2-6) can be combined to give 

mC

                                                
2 This figure has . 6.2=Γ
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 ( )
t

ΓTTH
x
T

K
t

T
C pm

mm
m ∂

∂+−−
∂

∂
=

∂
∂ α

2

2

. (2-7) 

Equation (2-7) is the basic model for determining how the matrix temperature changes 

over time.  Heat is added to the matrix material through an applied temperature and 

through the curing process, and heat is removed from the material by flowing into the 

particles.  The particles are considered small enough that heat flow within them can be 

ignored, and it is assumed that the curing effect does not occur for the particle material.  

Thus, the particle temperature changes only due to the heat flowing through the 

matrix/particle interface, suggesting that the particle temperature dynamics can be 

characterized by 

 ( pm
p

p TTH )
t

T
C −=

∂
∂

, (2-8) 

where  is the heat capacity of the particle material. pC

Explicit Model 

Equation (2-7) cannot be solved analytically, but a numerical solution can be 

obtained by using the finite difference method described by Patankar [28].  The approach 

is to divide the material into N discrete cells and to divide the duration under analysis into 

T discrete time elements, as depicted in Figure 2-4.  The differential elements of time and 

space in the equations can be approximated by  and , respectively, allowing forms 

like 

t∆ x∆

tTm ∂∂  to be written as 

t
TT i

jm
i

jm

∆
− −1

,, , 

where the j subscript specifies the cell and the i superscript specifies the time step. 
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Figure 2-4. Discretization of space and time for numerical analysis 

In discrete form, the second derivative in (2-1) represents a difference of 

differences of adjoining cell temperatures where each cell, j, considers the temperatures 

of its left and right neighbors.  There is a question, however, as to the time step at which 

these differences are taken.  An implicit method uses the current time step, i, and an 

explicit method uses the previous time step, i .  Equations (2-4) and (2-8) are the same 

when rewritten using either method and are given by 

1−

( )( 111
,2

1
,1

1

1 −−−−
−

−+=
∆
− i

j
i
j

i
j

i
j

i
j

i
j KK )

t
αα

αα
 and 

 ( )1
,

1
,

1
,, −−
−

−=
∆
− i

jp
i

jm

i
jp

i
jp

p TTH
t
TT

C , 

which can be rearranged to give 

  and (2-9) ( )( 1111
,2

1
,1 1 −−−−− +−+∆= i

j
i
j

i
j

i
j

i
j

i
j KKt αααα )

 1
,

1
,, 1 −− ∆+









 ∆−= i
jm

pp

i
jp

i
jp T

C
tH

C
tHTT . (2-10) 

Rewriting equation (2-7) using the implicit method gives 

( )
t

ΓTTH
x
TT

x
TT

x
K

t
TT
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i
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ji
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
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which can be rearranged to give 

 , (2-11) ( ) i
j

i
j

i
jm

i
jm

i
jm cΓTTbaT =−++ +− α1,1,,

where 

 , bCa m 2−=

 2x
tKb

∆
∆−= , and 

( ) 11
,

1
,

1
,

−−−− −−∆−= i
j

i
jp

i
jm

i
jmm

i
j ΓTTtHTCc α . 

Equation (2-11) sets up a system of j simultaneous equations that does not render itself to 

FPGA-based cellular computing because its solution requires expensive matrix 

multiplication, and the complexity of the computation increases with the number of cells.  

Rewriting equation (2-7) using the explicit method gives 
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which can be rearranged to give 

 , (2-12) ( i
j

i
jm

i
jm

i
jm

i
jm cTTbTaT +++= −

+
−

−
− 1

1,
1

1,
1

,, )
where 

 , ba 2−=

 2xC
tKb

m ∆
∆= , and 

( ) ( )11
,

1
,

1
,

−−−− −+−∆−= i
j

i
j

m

i
jp

i
jm

m

i
jm

i
j C

ΓTT
C

tHTc αα . 

Equation (2-12) gives an explicit solution for the matrix material temperature that can be 

calculated from previously computed values, and the entire set of cells can be updated in 

parallel.  This makes the explicit solution ideal for an FPGA-based cellular computing 

system and is used in the design discussed in this thesis. 
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One caveat with the explicit solution that does not exist for the implicit case is a 

restriction on the size of .  The temperature solutions given in equations (2-10) and 

(2-12) will remain numerically stable only if the coefficients of T  and  are greater 

than or equal to zero, or 

t∆
1

,
−i

jm
1

,
−i
jpT









∆+
∆

≤∆
H
C

HxK
xC

t pm ,
2

min 2

2

. 

The analysis is simplified for this research by assuming that , 

, and 

21 KK =

1==== pm CCHK Nx 1=∆ .  With these assumptions, equations (2-9), (2-10), 

and (2-12) become 

 , (2-13) ( )( ) 1111 11 −−−− +−+⋅∆= i
j

i
j

i
j

i
j

i
j Kt αααα

 , and (2-14) ( ) ,,, 1 ⋅∆+∆−= jmjpjp TttTT 11 −− iii

) , (2-15) ( i
j

i
jm

i
jm

i
jm

i
jm cTTbTaT +++= −

+
−

−
− 1

1,
1

1,
1

,,

where 

 2x
tb

∆
∆= , 

( ) ( 11
,

1
,

1
,

−−−− −+−∆−= i
j

i
j

i
jp

i
jm

i
jm

i
j ΓTTtTc αα ), 

and a is the same as for the explicit case above.  The time step constraint becomes 

12
1

2 +∆
≤∆

x
t , 

and for this analysis, 

12
99.0

2 +∆
=∆

x
t . 

Arrhenius Approximation 

The Arrhenius equation (2-5) involves an exponential function, which must be 

approximated in some way so that it can be computed using the basic arithmetic 
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operations available in an FPGA.  A common approach to approximating a complicated 

function is to use some number of terms from the beginning of its Taylor series 

expansion, which works well for exponentials in the form of .  The Arrhenius form, 

however, involves an exponential in the form of 

xe−

xe 1−  with its independent variable in the 

denominator of the exponent, and an accurate Taylor series approximation can require a 

large number of terms, which in turn requires a large number of costly multiplications. 

A better approach is a parabolic approximation, which can be used in this case 

because the matrix temperature is not expected to span a large range of values.  Equation 

(2-5) with values used in this analysis is mTeK 20
2,1 000,10 −=  and is shown in Figure 2-5 

over the range of expected temperatures.  It can be seen that over this range, the function 

is close to zero for temperatures less than about two, so for temperatures below this 

value, the function is taken to be zero, and for higher temperatures, the function is 

approximated with a parabola.  Determined by using a least-squares fit3, this parabolic 

approximation is given by 

  (2-16) 
( )







<

≥−
=

−

−−

37.2,0

37.2,37.299.25
1

,

1
,

21
,

,2,1
i

jm

i
jm

i
jm

approx
T

TT
K

and is shown along with the original function in Figure 2-5.  The parabolic approximation 

parameters will be referred to as 

99.25=aC  and 

 . 37.2=bC

Each of the four cell architectures generates new temperatures by computing 

equations (2-13), (2-14), (2-15), and (2-16).  The operations required for this calculation 

are depicted in the dataflow diagram shown in Figure 2-6, and the only variables in the 

computation are α , T , and T . m p

                                                
3 Least-squares fit to 2632 data points between 2.37 and 5 

 17



0 1 2 3 4 5
Temperature change, K

0

25

50

75

100

125

150

175

Fu
nc

tio
n

va
lu

e Arrhenius function

Parabolic approximation

 
Figure 2-5. Parabolic approximation of an exponential function 
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Figure 2-6. Dataflow diagram showing the heat flow computation 

What this Test Case Demonstrates 

The heat flow test case is useful not only because it demonstrates the application 

of the FPGA system to a real-life problem, but for other reasons as well.  The variable 

coefficients like those in (2-12) are sometimes constant values that will not change, but 
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they are more often parameters that a researcher would like to adjust in order to see their 

effect on the model’s behavior.  In order to demonstrate the ability to quickly change a 

parameter without requiring an FPGA reconfiguration, the coefficient of the curing term, 

Γ , in (2-3) is set up to be sent as an input parameter to the FPGA.  Additionally, the 

externally applied temperatures are input parameters that can be changed without 

reconfiguration. 

Many problems require more complex operations than additions and 

multiplications, and an example of this in the heat flow test case is the less-than test 

required for the parabolic approximation in (2-16).  To address this need, additional 

hardware is included in the design to realize a less-than test and its inclusion is a useful 

example of the implementation of a complex operation. 
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Chapter 3  
Design Flow and Development Tools 

The design work required for this research includes describing the four 

architectures in a hardware description language, transforming the description into an 

FPGA-suitable form, defining interfaces between the FPGA and the development 

platform, and, finally, defining an interface between the development platform and a host 

PC where a user interacts with the system.  This chapter gives an overview of the main 

development steps performed and the tools used throughout the design process. 

The development process can be divided into two major steps: the FPGA design 

and the supporting design.  These steps are shown in the flow diagram of Figure 3-1 

along with the major sub-steps. 
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Figure 3-1. Flow diagram of the major design development steps 
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FPGA Design Flow 

This section discusses the design flow required to realize the initial concept in an 

FPGA, and it gives an overview of the particular FPGA used in this research. 

Design entry was done using VHDL [19], a textual language for describing digital 

hardware.  Although a VHDL description is mainly used for simulation, it can also be 

used for synthesis, but a subset of the language [20] must be used if a design is meant to 

be synthesized.  Synthesis is the process of taking an input form like VHDL to a device-

specific form such as a programming file. 

A design must be verified for correctness before it is synthesized because the 

synthesis process can take a very long time.  Verification of this design was done by 

simulating waveforms using Cadence tools, which was preceded by the construction of a 

VHDL testbench.  VHDL simulation requires three steps: analysis, elaboration, and 

simulation.  Analysis, done using ncvhdl, parses the text input and places design units in 

libraries.  Elaboration, done using ncelab, creates a set of processes that can be executed 

to simulate the hardware.  Simulation, done using ncsim, executes the processes and 

allows signals to be viewed as a waveform.  These tools were used from inside the 

NCDesktop v03.20 IDE. 

A design is ready for synthesis once it simulates correctly.  All synthesis steps can 

be done using software from Xilinx, the manufacturer of the FPGA used in this design, 

but the initial compilation and mapping steps were done using Synplify Pro 7.1 because it 

is capable of giving better results for large designs [12].  During this initial synthesis step, 

the VHDL description is interpreted and logic is assembled and mapped to FPGA 

components. 

With the required components defined, they can be assigned to actual chip 

locations and connections can be made between them.  Because of the interconnection 

architecture in the device used for this research, these place and route steps can take 

several hours to complete as the software tries to find routes that meet timing constraints.  

Once the design is placed and routed, a binary file can be generated that contains all the 

information needed for programming the FPGA with the design.  For this research, 

placement, routing, and programming-file-generation were all done using ISE 5.1i. 
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There are generally two ways to program an FPGA with a binary file: directly or 

indirectly through flash memory.  For the Xilinx FPGA, either the iMPACT software 

along with the Parallel Cable IV from Xilinx or Multi-ICE can be used to program the 

chip directly through the Multi-ICE connector on the ARM development board, but this 

method is unfavorable because the design remains programmed only while the FPGA is 

powered.  A better method is to store the binary programming file in a flash memory that 

is set up to download the programming information into the FPGA on power-up.  Using 

Multi-ICE 2.2 and the progcards utility from ARM, the flash memory programming 

method was used for this research. 

The particular FPGA used for this research was a Xilinx Virtex-E XCV2000E.  

This chip is made up of an array of  CLBs surrounded by I/O blocks and 

interconnected with various routing resources similar to the structure shown in Figure 

1-1, and configuration is achieved by loading static RAM cells.  Each CLB (Figure 3-2) 

has 2 slices, each of which has two logic cells (LCs).  An LC contains a 4-input LUT-

based function generator followed by a flip-flop (FF).  Additional logic is included in the 

CLB to allow function generators to be combined to produce higher-input functions.  A 

LUT can be used as a 16 -bit synchronous RAM and can be combined with other 

LUTs to produce larger memories, or it can be used as a shift register. 
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Figure 3-2. Structure of a Virtex-E CLB 
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Horizontal and vertical routing channels run between the rows and columns of 

CLBs, and at the intersection of these channels are routing switches.  These switches 

allow CLBs to interconnect by interfacing with the CLBs as shown in Figure 3-3.  CLBs 

are also able to form direct connections to their left and right neighbors so that delays 

incurred by going through the programmable switches can be avoided.  Global clocks 

must avoid switch delays, so they are distributed throughout the chip using special 

resources that minimize clock skew. 

Switch

CLB

To adjacent
switch

To adjacent
switch

To adjacent
switch

To adjacent
switch

To adjacent
CLB

To adjacent
CLB

 
Figure 3-3. CLB interface with the routing matrix1 

The Virtex-E XCV2000E FPGA also has extra features to support designs that 

use the chip.  In addition to the distributed RAM contained in LUTs, the chip has 160 

512-byte block RAMs spread across the chip for a total of 80KB of extra memory.  The 

chip has 8 digital delay-locked loops that allow clocks to be multiplied or divided, or they 

can be used to eliminate skew on the clock lines.  The horizontal routing channels contain 

dedicated lines that allow for tri-state busses.  There is also additional arithmetic logic in 

the CLBs that helps to speed up add and multiply operations.  The synthesis software 

uses many of these resources automatically whenever a design can benefit from them. 

                                                
1 Adapted from a figure in [44] 
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Supporting Design and Development Platform 

This section introduces the development platform on which the design was 

implemented and discusses the design flow of those parts of the design not specifically 

included in the FPGA design flow. 

For the FPGA-based computing system to be useful, there should be a convenient 

way to communicate with the chip and retrieve the results it generates.  An ideal 

arrangement would be the FPGA attached to a PC where computing software such as 

Matlab or Mathematica could accelerate the computation of certain problems by sending 

them to the FPGA.  The ARM Integrator/AP platform provides a good environment for 

developing a PC/FPGA setup.  As shown in Figure 3-4, the Integrator/AP is a 

motherboard that provides basic system resources such as memory and I/O to modules 

that can be attached to the system.  Up to five core or logic modules can be added to the 

system by stacking them on one another, but only one of each module was used for this 

research.  Core modules contain a processor and logic modules contain a configurable 

FPGA, and all modules can communicate over a common bus.  The motherboard has a 

simple boot monitor that can configure the system and execute images stored in on-board 

flash memory, but switch settings allow flash images containing user programs to execute 

on power-up.  I/O resources include serial ports, PCI slots, and keyboard and mouse 

connectors. 
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Figure 3-4. ARM Integrator/AP motherboard layout2 

The core module used for this design, CM720T, has an ARM720T chip, which is 

a 32-bit RISC processor that executes the ARM and Thumb instruction sets.  The module 

has a DIMM slot for up to 256MB of SDRAM that can be accessed by other modules on 

the motherboard, and it has 256KB of local SSRAM.  The logic module used for this 

design, LM-XCV600E+ (Figure 3-5), has a Xilinx XCV2000E FPGA, 4MB of local flash 

memory used for storing FPGA configurations, and 1MB of SSRAM for general-purpose 

memory.  The module also has general-purpose LEDs and input switches as well as 

switches for selecting the configuration data to be loaded into the FPGA on power-up. 

                                                
2 Adapted from a figure in [6] 
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Figure 3-5. ARM LM-XCV600E+ logic module layout3 

The Integrator/AP motherboard is not set up to support full-scale operating 

systems that can run calculation software like Matlab or Mathematica, so to gain this 

functionality, the motherboard is connected to a host PC where FPGA-computed results 

can be manipulated.  This presents the problem of how to quickly transfer FPGA-

computed results that are stored on the logic module to the PC’s calculation software, 

since a goal of this research is to demonstrate that the FPGA system can give results more 

quickly than a typical PC system.  While not an ideal solution to the data transfer 

problem, an adequate solution for this research has been to use both Integrator/AP serial 

links at full speed.  These serial links are also used for problem setup, which includes 

sending input parameters to the FPGA. 

A core module attached to the Integrator/AP motherboard acts as an ideal 

intermediary between the host PC and the FPGA since it frees the FPGA from requiring 

serial communication hardware and leaves more space for the computing cells.  Thus, the 

host PC’s link to the FPGA system is set up as shown in Figure 3-6.  The interface 

program that runs on the core module’s processor was compiled from C code using 

                                                
3 Adapted from a figure in [7] 
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CodeWarrior for the ARM Developer Suite (ADS) v1.2 in conjunction with libraries 

from the ARM Firmware Suite (AFS) v1.4.1.  The AXD Debugger was used to download 

the program’s binary into the motherboard’s flash memory. 

AHB BusMatlab

Dual Serial
Links

Core Module Logic Module

Integrator/AP Motherboard

FPGA

 
Figure 3-6. Host PC’s link to the FPGA system 

As a demonstration of the FPGA system’s use from common calculation software, 

a Matlab interface was written to allow a user to provide input parameters to and receive 

results from the FPGA.  A similar interface could be written for Mathematica or another 

calculation system. 
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Chapter 4  
Four Architecture Designs 

The main purpose of this chapter is to describe the four computing-cell 

architectures implemented for this research, but this chapter also describes the common 

top-level FPGA hardware used by each architecture to facilitate interaction with the 

surrounding system.  The four architectures MULTIPLE, SINGLE, BOOTH, and BIT 

differ in the way they compute the test problem by using different degrees of parallelism 

and by performing arithmetic operations differently.  The hardware is designed 

specifically for the test problem, so each architecture includes only the minimum number 

of arithmetic units required to compute the problem.  Therefore, each arithmetic unit1 is 

used in every clock cycle making the duty cycle of each architecture 100%.  The logic 

required for system interaction is kept to a minimum in an effort to reserve as much chip 

area as possible for the computing cells.  Except for the logic that controls the FPGA’s 

clock frequency, the system interface logic is identical for all four architectures. 

Common Top-Level Design 

This section describes the tasks performed by the FPGA and the hardware 

implemented to carry out these tasks.  Only the parts of the FPGA design common to 

each architecture are discussed in this section. 

The steps performed by the FPGA during a complete calculation cycle are shown 

in Figure 4-1.  Immediately after power-up, configuration data from the Logic Module 

(LM) flash memory is downloaded to the FPGA.  At the same time, the Core Module 

(CM) initializes the Integrator/AP motherboard and then waits for input parameters to be 

sent from the host PC.  After the CM receives these parameters, it sends them over the 

motherboard’s Advanced High-performance Bus (AHB) to the LM.  At this time, writes 
                                                
1 Adders and multipliers 
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to the LM address space are forwarded to the LM SSRAM by the FPGA.  Before the 

FPGA begins computing, it expects all input parameters to reside at the beginning of the 

LM SSRAM in the following order: iterations, result cell, and the rest of the input 

parameters.  Iterations is the number of iterations to calculate, which are time steps for 

the heat flow test case.  If the FPGA is configured with N computing cells, then result 

cell is a number between 1 and N and is the cell number whose data will be stored in 

SSRAM.  For the heat flow problem, the cell data stored is the matrix temperature at each 

time step.  The remaining input parameters are problem-specific, and for the heat flow 

problem, they are the temperature applied to Cell 1, the temperature applied to Cell N, 

and the curing parameter Γ .  Because of the number scheme used in this design, these 

input parameters must be given as fixed-point scaled integers.  After the CM sends these 

parameters, it sends the FPGA a start signal indicating that the calculation is ready to 

proceed.  After the FPGA receives this signal, it gains control of the LM SSRAM and 

reads the input parameters described above.  With the input parameters in place, the row 

of computing cells is instructed to begin calculating, and when an iteration has 

completed, the result in result cell is written to SSRAM starting immediately after the 

input parameters at the beginning of the memory space.  Iteration results continue to be 

written to SSRAM until iteration results have been stored.  At this point, the FPGA 

releases control of the SSRAM and allows the CM to read the computed results over the 

AHB bus.  Initial values are then reset, and the FPGA is ready to begin a new calculation 

cycle.  If a second calculation cycle is started, the FPGA overwrites the stored results 

from the first cycle. 

The VHDL that implements the procedure described above is set up to be 

extensible to any cellular parallel problem that is similar to the heat flow test case.  There 

can be any number of input parameters following iterations and result cell, and the 

number of cells is limited only by the available space in the FPGA.  Changes to the 

number of input parameters or the number of cells requires resynthesis of the design and 

reconfiguration of the FPGA, but the number of iterations calculated is limited only by 

the size of the SSRAM where results are stored. 
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Figure 4-1. Tasks performed by the FPGA design; dashed tasks are not required for a calculation cycle 

Figure 4-2 shows the structure of the top-level FPGA design that implements the 

procedure in Figure 4-1.  The cell row controller is a Finite State Machine (FSM) that 

waits for a start signal, reads SSRAM input parameters, starts the row computation and 

sends results to SSRAM, and keeps track of the number of iterations that have completed.  

A single cell-controller FSM controls all cells in the row and is different for each 
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architecture.  The SSRAM controller provides the memory chip’s control signals and 

facilitates the timing of reads and writes.  Control and data lines from both the AHB bus 

and the row controller are multiplexed onto the SSRAM, and data from the row controller 

and the SSRAM are multiplexed onto the AHB bus.  Although not shown in Figure 4-2, 

there is also logic that decodes addresses from the AHB bus.  All addresses in the LM 

address space except one will address the SSRAM.  A write from the CM to the single 

address 0x0DDC0DE in the LM’s address space writes the FPGA’s start signal, and a read 

of the same address reads the row controller’s done signal, which indicates when the CM 

can begin reading the calculated results from SSRAM.  Also not shown in the figure is 

logic that controls the FPGA’s programmable clock and the LM’s indicator LEDs. 

1 N

Cell Controller

Cell Row Controller

Cell Row

Result Cell

SSRAM
Controller

AHB Bus

SSRAM

Inside FPGA

Unique to each
architecture

 
Figure 4-2. Structure of the top-level FPGA design 
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The computing cells in the FPGA run on a separate clock from the AHB bus 

clock so that they are not constrained to the bus frequency.  Data must be transferred 

between these two asynchronous clock domains, however, so a handshaking sequence is 

performed to ensure proper data delivery.  The handshaking is set up to allow any 

combination of bus and cell clock frequencies. 

A detailed view of the cell row structure is shown in Figure 4-3.  The explicit 

solution given in equation (2-15) dictates this structure, and it requires that each cell 

connect to its left and right neighbors and that it have access to the values computed in its 

previous iteration.  Each cell computes equations (2-13), (2-14), (2-15), and (2-16) and 

stores the matrix and particle temperatures for a single time step.  Collectively, the values 

stored represent the temperature distribution across the section of material partitioned by 

the cells.  All cells are updated in parallel, and the speed of the computation does not 

depend on the number of cells, N.  An effort is made to make the computing cells as 

small as possible by moving most of the control outside of the cell despite the fact that a 

centralized controller is contrary to the cellular computing model described in [31].  

These cells are replicated until the entire FPGA area is utilized. 

N-1 N21Left Applied
Temperature

Right Applied
Temperature

 
Figure 4-3. Cell row structure 

MULTIPLE 

This section discusses the cell controller and computing cell structures of the 

MULTIPLE architecture. 

The MULTIPLE architecture is given this name because each computing cell 

instantiates multiple adders and multipliers: one for each add and multiply that occurs in 

the underlying equations being computed.  The computation is done completely with 

combinational logic, so new values could be generated every clock cycle.  However, due 

to the handshaking needed to write results to SSRAM, each iteration takes two clock 
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cycles.  Thus, the cell controller is an extremely simple FSM that toggles between two 

states.  During one state, a value is computed, and during the other state, the value is 

stored in memory.  The MULTIPLE architecture consumes a large amount of chip area, 

so its usefulness is mainly as a basis of comparison for the other architectures. 

VHDL supports standard arithmetic operations, so the equations that need to be 

computed can almost be written directly in the hardware description.  However, it is 

desirable to first put the equations into forms that minimize the number of multiplies, 

since multiply hardware consumes more area than addition.  Thus, the heat flow 

equations for the MULTIPLE architecture are implemented as shown in Figure 4-4.  The 

temporary variables , , and 1t 2t α∆  are used to ensure that the synthesis software does 

not instantiate unnecessary logic.  To implement the less-than test, the MULTIPLE 

architecture instantiates full-width comparator hardware. 
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Figure 4-4. Heat flow equations reformulated for the MULTIPLE architecture 

All variables and parameters in Figure 4-4 are fixed-point scaled W-bit integers, 

so results of multiply operations must be scaled accordingly.  First, a standard VHDL 

multiply is performed, which produces a 2W-bit result.  The scaled integer result of the 

multiply operation resides within this 2W-bit result as shown in Figure 4-5 assuming S 
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integer bits.  For this and the other architectures, W  and .  W was chosen by 

overlaying temperature plots made using floating-point and fixed-point calculations, and 

W was increased until the fixed-point plot “looked” accurate. 

25= 5=S

W1+W

VHDL multiply result

Scaled integer multiply result

W2

SW −2 SW −

1

 

Figure 4-5. Scaled integer multiplies 

The cell structure for the MULTIPLE architecture is shown in Figure 4-6.  The 

number of add and multiply units in the figure shows why each cell consumes so much 

chip area.  Each multiply unit performs the operation shown in Figure 4-5.  The enable 

signal allows new results to latch into the registers and is generated by the 2-state FSM in 

the cell controller. 
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Figure 4-6. Cell structure for the MULTIPLE architecture 
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SINGLE 

This section discusses the cell controller and computing cell structures of the 

SINGLE architecture. 

The SINGLE architecture is given this name because each cell time-shares a 

single multiplier and adder among a sequence of operations that implement the heat flow 

equations.  Thus, it uses less area than MULTIPLE but more clock cycles, although the 

clock rate may be able to be higher for SINGLE because signals only have one multiplier 

level to travel through instead of the multiple levels in MULTIPLE.  Each single-cycle 

operation consists of a consecutive multiply and add.  Time-sharing the arithmetic 

resources is achieved through a many-state FSM, so the cell controller for SINGLE is 

much more complex than the controller for MULTIPLE.  The SINGLE architecture is 

useful as a first attempt at decreasing area at the expense of time. 

If an add does not need to be performed during an operation, then the adder 

resource is idle and is effectively wasted for that clock cycle.  A similar situation holds 

whenever a multiply is not needed.  Thus, it is desirable to partition the equations into 

sub-operations that include both a multiply and an add, as shown in Figure 4-7.  The 

temporary variables  and t  are essential and add to the number of register bits required 

by each cell, although this is not usually a problem for flip-flop-rich FPGAs.  Some 

special operations are done in order to maximize cell performance.  Lines 5 and 11 in 

Figure 4-7 make two concurrent assignments for the purpose of saving one clock cycle.  

Two numbers A and B can be subtracted by performing an operation such as 

, but the hardware does not support direct subtraction as in . 

1t 2

BAAB −=+×−1 CBA −×
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Figure 4-7. Heat flow equations partitioned for the SINGLE architecture 

The cell and controller structures for the SINGLE architecture are shown in 

Figure 4-8.  The add and multiply units are the same as those used by MULTIPLE, but 

there is only one of each for this architecture.  Each state in the cell controller’s 12-state 

FSM determines the inputs applied to the adder and multiplier as well as the destination 

register that will latch the result of the multiply/add operation.  The controller also 

distributes constant parameter inputs to all cells.  Although not shown in Figure 4-8, each 

cell includes the same comparator hardware as MULTIPLE. 
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Figure 4-8. Cell and controller structures for the SINGLE architecture 

BOOTH 

This section discusses the cell controller and computing cell structures of the 

BOOTH architecture. 

The strategy of decreasing size at the expense of time can be taken further by 

eliminating the large multiplier unit in SINGLE and doing all operations with a single W-

bit adder.  One way to perform signed-number multiply operations using a single adder is 

the Booth algorithm [10], which is the method used for this architecture and the reason 

for the name BOOTH.  Using this method, each multiply operation takes W clock cycles, 

but full-width add operations can still be done in one cycle.  The clock frequency may be 

able to be higher than for SINGLE since signals in the BOOTH architecture go through 
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one adder rather than a multiplier followed by an adder.  Like SINGLE, the BOOTH 

architecture requires complex control in order to spread operations out over time in the 

correct order. 

A string of W bits  represents a two’s complement integer by 0121 aaaa WW K−−
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if  [38].  Therefore, if A is multiplied by another two’s complement integer B, 

then 
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where each addend effectively adds B, subtracts B, or adds 0 to each partial sum term 

depending on if  is 10, 01, or 00/11, respectively.  Booth’s algorithm uses this fact 

and the fact that multiplication by 2  can be done by shifting a bit sequence.  The Booth 

algorithm and the required hardware are shown in Figure 4-10 and Figure 4-9, 

respectively.  A and B are the two operands to the multiplication, and C accumulates the 

partial sums.  The multiplication by  is done by shifting C and A to the right.  The 

adder contains additional hardware for subtracting B and for adding 0.  The usual result 

of the multiplication is a two’s complement integer that resides in the concatenation of 

registers C and A, but since scaled integers are being used, the result lies within C and A 

at the position shown in Figure 4-5. 

ii aa 1−
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Figure 4-9. Hardware for Booth’s algorithm 
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 39



Like the MULTIPLE architecture, it is advantageous to compute the heat flow 

equations using the least number of multiply operations, but unlike MULTIPLE, the 

reason is not because of size but because of time: multiply operations are W times longer 

than add operations in the BOOTH architecture.  Thus, the heat flow equations for the 

BOOTH architecture are partitioned as shown in Figure 4-11.  Lines 11 and 12 

implement  and are done using two single-cycle add operations rather than a 

multiply, which would take W clock cycles.  As with SINGLE, temporary variables  

and  are essential and add to the register count of each cell. 
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Figure 4-11. Heat flow equations partitioned for the BOOTH architecture 
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The cell and controller structures for the BOOTH architecture are shown in Figure 

4-12.  Each cell uses a single adder, but the C and A registers needed for the Booth 

algorithm increase the register count of the cell.  The B register of the Booth algorithm is 

not explicitly included but is effectively the cell register that passes through the input-2 

select logic.  This requires the cell controller to hold the proper select lines until a 

multiplication completes.  Each state in the cell controller’s 18-state FSM determines 

both of the adder’s inputs and the destination register that will latch an operation’s result.  

The controller also distributes a constant parameter input to all cells and selects the 

operation to be either an add or a multiply.  The cell controller has the ability to select a 

subtraction operation so that operations like  can be performed.  Although not 

shown in Figure 4-12, each cell includes a bitwise less-than unit and is instructed to do 

the test during line 2 in Figure 4-11, which is a multiply operation that takes the same 

number of clock cycles as the less-than test.  This dual use of the W clock cycles saves 

area that would be consumed by using a full-width less-than unit.  The counter in the cell 

controller counts W cycles for multiply operations and is implemented with a simple shift 

register rather than an incrementer in order to save area and increase speed.  In this 

implementation, multiply operations take W  cycles due to required initializations, but 

it may be possible to construct a design such that they take W cycles.  Rather than 

generating  with a negation unit, 

BA −

2+

B− B  is provided and  is generated in the carry 

logic, which add together to produce a properly negated B. 

1+
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Figure 4-12. Cell and controller structures for the BOOTH architecture 

BIT 

This section discusses the cell controller and computing cell structures of the BIT 

architecture. 

The MULTIPLE architecture can be thought of as the extreme in terms of 

requiring the least amount of time at a very high size expense.  At the other end of the 

spectrum is an architecture that requires the least amount of space at a very high time 

expense.  The way to achieve this extreme is by performing all operations one bit at a 
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time, which is what the BIT architecture does, hence the reason for its name.  Like 

BOOTH, the BIT architecture uses the Booth algorithm to perform multiplies, but each 

add operation is bit-serial.  Thus, multiplies take W  cycles and additions take W cycles, 

although the clock frequency may be able to be higher than for BOOTH because signals 

in the BIT architecture go through a 1-bit adder rather than a full-width adder.  Although 

the BIT architecture consumes the least amount of area per cell, its VHDL description is 

the most complex of the four architectures due to the complicated timing control 

required. 

2

Because of the BIT architecture’s similarities to BOOTH, the heat flow equations 

are partitioned in nearly the same way as they are for the BOOTH architecture.  The only 

differences between the BOOTH partitioning shown in Figure 4-11 and the BIT 

partitioning are the first four lines.  The BIT architecture’s first four operations are shown 

in Figure 4-13.  The reason for the differences in these lines is due to an important 

constraint on the way in which multiply operations can be performed in the BIT 

architecture.  The two operands to a multiply operation are shifted through the hardware 

one bit at a time but at different rates: the right operand rotates every clock cycle while 

the left operand rotates with the destination register every W cycles.  Thus, the right 

operand cannot be the same as the destination register, which is the reason why both t  

and  are assigned in line 1 and why  is set in line 3: so that the operations in lines 2 

and 4 can be performed.  As with SINGLE and MULTIPLE, t  and  are essential 

temporary variables. 
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Figure 4-13. First four lines of the BIT architecture’s partitioning of the heat flow equations 

 43



The cell and controller structures for the BIT architecture are shown in Figure 

4-14.  All registers are shift registers so that they can be read and written one bit at a 

time, but only the C and  registers are implemented with flip-flops.  The other registers 

are implemented as LUT shift registers, otherwise they would quickly consume all FPGA 

flip-flops due to the large number of cells that can fit on the chip.  Like BOOTH, the B 

register of the Booth algorithm is excluded, but the A register is also excluded in the BIT 

architecture because result bits can be shifted into their destination register as they are 

generated.  Unlike BOOTH, selecting the correct result bits requires complex timing 

control in the cell controller.  Because the B register is excluded, the cell controller must 

also hold the input-2 select lines throughout a multiplication and rotate the multiplicand a 

total of W  times.  The required timing is achieved using two W-cycle counters, each 

implemented as a simple shift register to save area and increase speed.  In this 

implementation, multiply and add operations take W  and W  cycles, 

respectively, due to required initializations, but it may be possible to construct a design 

such that they take W  and W cycles.  Each state in the cell controller’s 19-state FSM 

determines both of the adder’s 1-bit inputs and the destination register that will rotate in 

result bits as they are generated.  The controller also distributes a constant parameter 

input one bit at a time to all cells and selects the operation to be either an add or a 

multiply.  The cell controller has the ability to select a subtraction operation so that 

operations like  can be performed.  The BIT architecture requires 19 states instead 

of the 18 for BOOTH because the bitwise less-than test requires a separate operation, 

which occurs just before line 1 in Figure 4-13.  There are also other states required for 

initialization and synchronization with SSRAM, but some of them occur only once at the 

beginning of a calculation cycle. 

mT

2
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Figure 4-14. Cell and controller structures for the BIT architecture 
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Chapter 5  
Results and Analysis 

Each architecture described in Chapter 4 was implemented using the procedures 

outlined in Chapter 3.  This chapter gives the performance results of each architecture 

followed by a brief analysis and discussion of the results.  Also included in this chapter is 

a simple verification of each architecture’s computations as well as some of the 

alternative designs considered in an effort to increase performance. 

Design Verification 

As a way of verifying that the designs operate as intended, Matlab scripts 

containing each architecture’s sequence of operations were written.  These scripts 

perform fixed-point scaled integer arithmetic and are expected to produce results 

identical to those computed by the FPGA-system.  The results produced by executing the 

scripts are shown in Table 5-1 next to the values produced by simulating the VHDL 

descriptions using Cadence tools.  Additionally, simulation waveforms are shown in 

Figure 5-1.  For each architecture, the scaled integer matrix temperature of cell 1 of 50 is 

shown for the first 10 time steps with W , , and T .  It 

can be seen that the VHDL descriptions behave as expected.  The SINGLE architecture 

computes values that are slightly different than the other three architectures because of 

the differences in its partitioning of the heat flow equations.  Each architecture simulation 

in Figure 5-1 uses the same clock frequency making it apparent that for a given clock 

rate, decreasing parallelism in each cell increases the computation time. 

25= 5=S 6.2,, === ΓT rightmleftm
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Table 5-1. Verification of 10 simulated time steps for each architecture 

MULTIPLE SINGLE BOOTH BIT 
Matlab VHDL Matlab VHDL Matlab VHDL Matlab VHDL 

0 0 0 0 0 0 0 0 
1349246 1349246 1349246 1349246 1349246 1349246 1349246 1349246 
1362739 1362739 1362737 1362737 1362739 1362739 1362739 1362739 
1693341 1693341 1693338 1693338 1693341 1693341 1693341 1693341 
1703256 1703256 1703252 1703252 1703256 1703256 1703256 1703256 
1865335 1865335 1865330 1865330 1865335 1865335 1865335 1865335 
1873433 1873433 1873426 1873426 1873433 1873433 1873433 1873433 
1972797 1972797 1972791 1972791 1972797 1972797 1972797 1972797 
1979742 1979742 1979735 1979735 1979742 1979742 1979742 1979742 
2047997 2047997 2047989 2047989 2047997 2047997 2047997 2047997 

Discrepancies: 0 Discrepancies: 0 Discrepancies: 0 Discrepancies: 0 
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Figure 5-1. Simulation waveforms for each architecture 

A hardware implementation may not always function as predicted by simulation, 

lues produced by the FPGA system were verified by comparing them to values from 

atlab scripts as shown in Table 5-2.  The input parameters are the same as those 
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used for Table 5-1, but each architecture uses the maximum number of cells that can fit in 

the FPGA.  It can be seen that the hardware implementations behave as expected.  While 

only 10 time steps are shown in Table 5-2, the results of over 200,000 time steps were 

verified in the laboratory. 

Table 5-2. Verification of 10 hardware-executed time steps for each architecture 

MULTIPLE 
Cell 1 of 10 

SINGLE 
Cell 1 of 37 

BOOTH 
Cell 1 of 76 

BIT 
Cell 1 of 424 

Matlab FPGA Matlab FPGA Matlab FPGA Matlab FPGA 
0 0 0 0 0 0 0 0 

1342800 1342800 1349022 1349022 1349399 1349399 1349511 1349511 
1356231 1356231 1362511 1362511 1362894 1362894 1363009 1363009 
1682151 1682151 1692948 1692948 1693608 1693608 1693805 1693805 
1691959 1691959 1702857 1702857 1703528 1703528 1703727 1703727 
1850262 1850262 1864801 1864801 1865698 1865698 1865965 1865965 
1858226 1858226 1872890 1872890 1873800 1873800 1874072 1874072 
1954394 1954394 1972141 1972141 1973245 1973245 1973573 1973573 
1961187 1961187 1979075 1979075 1980194 1980194 1980528 1980528 
2026658 2026658 2047230 2047230 2048520 2048520 2048904 2048904 

Discrepancies: 0 Discrepancies: 0 Discrepancies: 0 Discrepancies: 0 

Because the FPGA system uses limited-precision fixed-point numbers, it is 

important to verify the accuracy of the computed results by comparing them to higher-

precision results.  Figure 5-2 shows 7000 FPGA-computed time steps using the same 

setup used in Figure 2-3 but converted from scaled integers to real numbers.  Overlaying 

these are the results of the same computation using machine-precision arithmetic on a PC.  

Relative percent error, as shown in Figure 5-3, is commonly used to quantify the 

accuracy of measured results, but in this case, relative error is not very useful because it 

generates high-magnitude transient error spikes at early time steps due to comparisons 

between very small numbers.  Therefore, Figure 5-3 also shows an alternative method of 

quantifying the error that uses 

)min()max(
)()(100

ff
nfng

−
−× , 

which can be interpreted as the “visual” percent error.  This is effectively the percentage 

of the range of f that each value in g is different than the corresponding value in f, where f 

is the set of accepted values.  Figure 5-3 shows that “visual” error is similar to relative 
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error but that it does not have the transient problem.  The fixed-point scaled integer 

results are accurate to within 4%, which is acceptable since input parameters to the heat 

flow test case are usually only known to within 5% to 20%.  The error occurs to the 

greatest extent around the curing spike and is essentially zero everywhere else indicating 

that nearly all of the error is due to the computations associated with the curing effect. 
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Figure 5-2. Comparison of results computed with real numbers and with scaled integers 
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Figure 5-3. Two methods of quantifying the accuracy of the scaled integer computation 
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Results and Comparisons 

The number of cells was increased for each architecture until the design could no 

longer fit on the FPGA or until it became difficult for the synthesis tools to operate 

efficiently.  Using the procedure described in the Appendix, the synthesis tools were set 

up to achieve a near-optimal clock frequency.  As a reference for the synthesis times 

below and the speedups reported in the next section, Table 5-3 is a description of the PC 

used for design and testing. 

Table 5-3. PC setup used for design and testing 

Model: Dell Inspiron 5100 
CPU: Intel Pentium 4 2.66GHz 

RAM: 512MB  
Operating System: Windows XP Professional SP2 

The following graphs show various performance results of each architecture.  

Figure 5-4 shows the total synthesis time, which is the time required by Synplify to 

compile the VHDL and perform the first synthesis stage added to the time required by 

ISE to perform the second synthesis stage and generate a programming file added to the 

time required to load the LM flash with configuration data.  Figure 5-5 shows the 

maximum number of cells, , that fit in the chip for each architecture.  Figure 5-6 

shows the worst-case maximum clock frequency at which the computing cells can run.  

This value is reported by ISE after synthesis as an estimate of the maximum clock 

frequency that should remain valid through acceptable device tolerances and operating 

conditions.  Figure 5-6 also shows the actual maximum clock frequency, , achieved 

in the laboratory.  This was determined by stepping up the clock frequency by 1MHz 

until the FPGA produced erroneous results.  Figure 5-7 shows the number of clock 

cycles, , required to complete one iteration as determined by the number of states 

in the cell controller’s FSM and by the type of operation performed in each state.  Figure 

5-8 shows each architecture’s calculation rate, which is given by 

maxN

maxf

cyclesN
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cycles

maxmax

N
fN . 

Figure 5-9 shows the time required to compute 200,000 iterations and send the 32-bit 

results to Matlab over two 460,800 baud serial links. 
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Figure 5-4. Total synthesis time for each architecture 
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Figure 5-5. Maximum number of cells that fit in the FPGA for each architecture1 

                                                
1 38 cells fit for SINGLE and 77 cells fit for BOOTH, but synthesis becomes difficult in both cases. 
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Maximum Clock Frequency
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Figure 5-6. Worst-case and actual maximum clock frequency for each architecture2 
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Figure 5-7. Number of clock cycles required for one iteration for each architecture 

                                                
2 Actual maximum frequencies measured to 1MHz precision 
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Results Produced Per Second
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Figure 5-8. Calculation rate of the entire cell row for each architecture 

Computation Time for 200,000 Iterations
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Figure 5-9. Time required to compute and transfer the results of 200,000 time steps 

Analysis 

Figure 5-8 shows that the MULTIPLE architecture has the highest calculation 

rate, although its usefulness is severely limited by the small number of cells that fit in the 

FPGA.  Conversely, the BIT architecture has the lowest calculation rate but permits a 

very large cell density.  In order to stress the importance of a large number of cells, 
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Figure 5-10 shows a performance measurement that gives more weight to the cell density 

by squaring  to give maxN

( )
cycles

maxmax

N
fN 2

. 

Using this index, the SINGLE and BIT architectures show the best performance. 

Architecture Performance Measurement
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Figure 5-10. Performance index that gives more weight to cell density 

While the performance measurements given above are interesting, the most 

important measurement is the architecture’s ability to accelerate calculations done with a 

single-processor machine.  Figure 5-11 shows the speedups obtained over four common 

methods that researchers might use to do computations on a PC.  The four methods are: 

• Mathematica:  This method uses the Nest function in Mathematica 5.0.1. 

• Matlab 1:  This method uses nested loops in Matlab 6.5 but simulates how the 

computation would take place in a pre-6.5 version without Performance 

Acceleration. 

• Matlab 2:  This method uses vector operations as recommended in the Matlab 6.5 

documentation [24]. 

• Matlab 3:  This method also uses nested loops in Matlab 6.5 but takes advantage 

Matlab’s Performance Acceleration feature.  Introduced in version 6.5, this 

feature accelerates certain loops by translating them into highly optimized code. 
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Each method was used to compute 200,000 time steps of the heat flow equations shown 

in Figure 4-4 using standard real number machine arithmetic.  Figure 5-11 shows that the 

BIT architecture is actually slower than two Matlab methods and that the MULTIPLE 

architecture provides the greatest speedup.  It should be emphasized, however, that the 

computation times for MULTIPLE are relatively short on both the FPGA and the PC, so 

the real benefit of the FPGA-based MULTIPLE architecture would be seen when doing 

repetitive calculations such as the temperature dynamics of all cells over time. 
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Figure 5-11. Each architecture’s speedup over Mathematica and three calculation methods in Matlab3,4 

The Synplify synthesis tool reports estimated maximum clock frequencies after 

the mapping process that are usually fairly accurate, but they are significantly 

overestimated for some of the architectures in this design.  This may be due to the high 

routing delays, which, among other things, can be caused by the near-maximum device 

utilization.  The Xilinx documentation [42] suggests that a typical design’s total delay 

should be 40% logic and 60% routing delay, but for this design, the total delay is around 

20% logic and 80% routing.  Different synthesis techniques may be able to reduce the 

                                                
3 The FPGA’s execution time does not include the time required to transfer computed results to a host PC. 
4 Performance results were obtained using the PC system in Table 5-3. 
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routing delay and achieve Synplify’s estimated frequencies.  Figure 5-12 shows 

Synplify’s maximum clock frequency estimates and Figure 5-13 shows the speedups 

possible if these frequencies can be realized. 
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Figure 5-12. Maximum clock frequencies estimated by Synplify 

Possible Speedups with Synplify's Frequency Estimates
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Figure 5-13. Speedups possible if Synplify’s frequency estimates can be achieved 
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Next-generation FPGAs from Xilinx will have 4.6 times as many logic cells and 

will operate 3.8 times as fast as the XCV2000E device [43].  Figure 5-14 shows the 

speedups possible with these next-generation FPGAs assuming that the computing cells 

can operate 3.8 times as fast as the maximum frequencies reported by Synplify and that 

PC execution times remain the same. 
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Figure 5-14. Speedups possible with next-generation FPGAs from Xilinx 

Figure 5-15 shows the performance/cost ratios possible with next-generation 

FPGAs for each architecture assuming an FPGA cost of $500.  The ratio is given by 

FPGA
cycles

maxmax

N
fN $ . 

For comparison, Figure 5-15 also shows the performance/cost ratio achieved by the 

Virginia Tech “X” cluster supercomputer, which is given by 2.5$ops1012×10  million.  

It can be seen that at least two of the architectures are expected to compare favorably to 

this large, expensive supercomputer. 
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Figure 5-15. Performance/cost ratios for each architecture and for a cluster supercomputer 

Although the FPGA-based system is aimed at accelerating calculation software 

like Matlab and Mathematica, it is informative to compare the FPGA to more efficient 

PC execution methods.  Figure 5-16 shows each architecture’s speedup over an optimized 

C program that calculates the heat flow equations using floating-point arithmetic on the 

PC system in Table 5-3.  Only floating-point is shown because integer arithmetic in C is 

only slightly faster than the efficient Matlab 3 method discussed above.  Figure 5-16 

shows that the single-chip FPGA-based computer discussed in this thesis is currently not 

able to outperform C code on a PC. 
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Figure 5-16. Each architecture’s comparison to optimized C code 
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Alternative Designs Considered 

A few alternative designs were implemented in an attempt to increase the cell 

clock rates, although none of them succeeded in providing any significant improvement.  

Most of the alternatives were attempted for the BIT architecture, but the results apply to 

the other architectures as well. 

The control signals generated by the cell controller in the BIT architecture have 

an extremely high fanout because they must drive hundreds of cells, and this high fanout 

can limit the maximum clock frequency.  In an attempt to reduce the fanout, the cell 

controllers were replicated using an algorithm in VHDL that evenly distributes C 

controllers over N cells so that the number of cells that each controller must drive is 

reduced to at most   2+CN .  In a separate attempt to reduce fanout, the changeable 

input parameter Γ , which also must be distributed to all cells, was eliminated by making 

it a constant parameter.  Neither of these attempts made any improvement, which is 

probably due to the synthesis tool’s own fanout reduction by logic replication and buffer 

insertion.  Replicating cell controllers actually has a negative effect on performance 

because it reduces the number of cells that fit in the chip. 

The ability to observe the results of any cell is achieved by using a large 

multiplexer that collects the output of every cell in the chip.  This multiplexer is 

especially large for the BOOTH architecture because of the large number of full-width 

cell results that must be selected.  To observe its effect on performance, the multiplexer 

was removed by hard-coding the number of the cell under observation.  No performance 

increase resulted from the removal, which could be due to routing delays being much 

higher than the multiplexer delay or to an efficient multiplexer implementation by the 

synthesis tools. 

An FPGA containing an array of computing cells brings to mind a regular matrix 

of well-defined cell boundaries.  However, the synthesis tools actually spread a particular 

cell across the chip in a semi-random layout.  Because cells communicate only with their 

nearest neighbors, it seems logical that placing cells next to their neighbors could 

increase performance by minimizing the distance that signals must travel.  The synthesis 

tools allow a design to be floorplanned, which constrains selected logic to specific chip 
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areas, and Mathematica was used to generate area constraints that tile the row of cells in a 

snake-like pattern throughout the chip.  Figure 5-17 shows the chip layout with and 

without these area constraints and with one cell darkened.  Surprisingly, floorplanning 

does not increase the maximum clock frequency, and it has the negative side effect of 

decreasing the number of cells that fit in the chip.  Also surprising is that even without 

floorplanning, decreasing the number of cells to make the design easier to synthesize 

does not seem to give better performance. 

With Floorplanning Without Floorplanning 

Figure 5-17. FPGA design layout with and without floorplanning 
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Chapter 6  
Conclusions 

This chapter outlines the procedure necessary for adapting the FPGA computing 

system to problems beyond the heat flow case study.  It also recommends areas that need 

improvement and suggests possibilities for future research.  The chapter concludes with a 

summary of the work presented in this thesis. 

Extending the Designs to Other Problems 

While the VHDL design descriptions are written to allow any number of 

computing cells, the code is deliberately problem-specific in order to maximize the 

computation rate of the particular problem.  As a result, extending the descriptions to 

other problems requires considerable code modification.  The code describing the 

interface between the FPGA and the development board is problem-independent and 

requires no modification, but extending the design requires the following changes to the 

problem-specific code. 

• The problem’s equations must be partitioned appropriately for the target 

architecture, and the resulting operations must be listed as states in the cell 

controller. 

• Control signals generated by each state must be set to perform the associated 

operation. 

• The controller’s state variable must be modified to accommodate the required 

number of states. 

• Enumerations for the source and destination selectors should be given proper 

names, and register rotate enables must be listed when targeting the BIT 

architecture. 
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• Input parameters must be distributed as needed to the row of cells. 

• The cell structure must include all required registers, and these registers must be 

interfaced to the arithmetic resources according to the source and destination 

selectors from the cell controller. 

• The common definitions file must be given the fixed-point parameters W and S, 

the number of cells N, and any constant parameters used by the calculation. 

Future Work 

The foremost problem with the FPGA-based system discussed in this thesis is the 

large amount of synthesis time required.  The system cannot be a viable desktop 

computation accelerator if it takes an hour to set up the problem in the FPGA, and as 

FPGAs increase in size, the synthesis time will only increase.  Thus, the next important 

step in this research should be finding ways to reduce or eliminate the synthesis time.  

One way to do this would be to make the hardware slightly more general so that it can 

apply to a larger range of problems.  Another approach is Run-Time Reconfiguration 

(RTR) using a system like the JBits system [16] being developed by Xilinx [41].  JBits is 

a programming interface that provides access to all programmable resources in supported 

FPGAs.  Using RTR, the FPGA could be quickly configured for a new problem by 

modifying its configuration stream directly without requiring a lengthy synthesis cycle. 

A problem with the particular implementation for this research is the large routing 

delay in the FPGA, which severely limits the maximum attainable clock frequencies, 

especially for the BOOTH and BIT architectures.  The focus of this research was on 

implementing the four architectures and not on tailoring them to a particular FPGA, so 

with a better understanding of the FPGA architecture and synthesis tools, it may be 

possible to reduce or eliminate the excessive routing delays.  Alternatively, there are 

FPGAs available with routing architectures that have more predictable delays, which can 

increase the synthesis tool’s ability to route a design efficiently. 

The development platform used for this design is intended to serve as a proof-of-

concept, but the usefulness of the FPGA-based system could be better demonstrated if 
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computed results could be transferred more quickly to the host PC.  The dual serial links 

provide an adequate transfer rate, but they take several seconds to transfer the results of a 

large number of iterations.  Another solution would be to use Ethernet or another protocol 

through the PCI slots on the Integrator/AP motherboard.  This method may require an 

operating system such as eCos [14], which is freely available and has been ported to the 

Integrator/AP motherboard. 

The concept of an FPGA-based computing system can be extended past the 

objective of a desktop PC accelerator to a much larger parallel computer.  Any number of 

FPGAs, each with several hundred or more cells, could conceivably be joined to provide 

massive computational power for cellular parallel problems, although a few issues would 

need to be addressed.  The FPGAs in the array would have to remain synchronized with 

each other in order to keep the row of cells in lock-step.  This would reduce the 

maximum clock frequency compared to the frequency possible with a single FPGA.  The 

maximum frequency might be further reduced due to the requirement for cells to send 

their data off-chip.  The FPGA array would require a high-speed interconnection network 

to reduce this negative effect on the clock frequency. 

The BOOTH and BIT architectures are actually special cases of a more general 

digit-serial architecture.  A digit-serial architecture uses a D-bit adder, so BOOTH is 

digit-serial with  and BIT is digit-serial with .  Such an architecture requires 

the same complex control as BIT but uses fewer cycles per iteration, and more cells can 

fit on a chip than for BOOTH because the adders are smaller.  It may be possible that a 

digit-serial architecture with 1  can provide a better calculation rate than both 

BOOTH and BIT. 

WD = 1=D

WD <<

Researchers using an FPGA-based cellular computing system cannot be expected 

to know how to transform their problems for computation on the FPGA.  This 

transformation should be completely automated so that a researcher can formulate a 

problem in Matlab or Mathematica and transparently receive results computed by the 

FPGA.  Therefore, another step in this research should be to construct an automated 

process that partitions equations from Matlab or Mathematica into operations suitable for 

the particular FPGA architecture, inserts those operations into a configuration that can be 
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programmed on an FPGA, and retrieves the results generated after running the FPGA 

computer. 

Summary 

This thesis has presented the design of four cell architectures for FPGA-based 

cellular computing as well as the application of the design to a real-life heat flow 

problem.  Each architecture was implemented and tested on a development board, and 

performance results obtained were used to compare cell densities and speedups over PC 

calculation software. 

The four architectures vary in the way they utilize chip area and execution time in 

order to compute a problem.  Two architectures operate at the extremes of the area/time 

spectrum: one takes a very short time but consumes a large chip area, and the other uses a 

very small chip area but takes a long time to execute.  The other two architectures lie 

between these two extremes. 

The structure of the FPGA computer is a row of computing cells under the control 

of a central controller.  Each cell in the row is connected only to its left and right 

neighbors and has access to its data from the previous iteration.  This structure limits the 

FPGA computer to certain types of parallel problems like cellular automata and like 

discretized differential equations with an explicit solution as in the heat flow case study. 

The analysis shows that the MULTIPLE architecture provides the highest speedup 

and that PC calculation software outperforms the current implementation of the BIT 

architecture.  However, with next-generation FPGAs, all four architectures can be 

expected to accelerate cellular parallel problems with speedups as high as 22,000.  Due to 

the widely varying cell densities, no single architecture is the best choice for every 

problem: problems that require a large number of cells can benefit from architectures like 

BIT, and problems that need only a few cells would benefit more from architectures like 

MULTIPLE. 

With additional research and development, an FPGA-based cellular parallel 

computer could substantially accelerate scientific problems as a PC peripheral or even as 

a component in a much larger supercomputer. 
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Appendix  
Design Flow Details 

The purpose of this appendix is to expand on Chapter 3 by giving the details 

necessary for implementing the FPGA-based system discussed in this thesis.  Also 

included is some specific information about the VHDL descriptions. 

VHDL 

Figure A-1 shows the hierarchy of the VHDL source files for this design as well 

as the files used only for simulation.  The top_test.vhd testbench simulates the 

actions taken by the Core Module (CM) including the Logic Module (LM) SSRAM 

transactions. 

top_test.vhd

top.vhd ssram_sim.vhd

ram_controller.vhd row_controller.vhd

cell_row.vhd cell_controller.vhd

cell.vhd

bit_multipiler.vhd booth_multipiler.vhd

Simulation Only

Not in MULTIPLE

BIT Only BOOTH Only

common_pack.vhd
Common Definitions

 
Figure A-1. VHDL source file hierarchy 
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The VHDL descriptions written for this design adhere to the language standard 

[19] as well as the synthesis subset of the standard [20].  It is common practice for VHDL 

designers to include std_logic_arith and related arithmetic libraries in their designs.  

However, these libraries are not the standard and are proprietary to Synopsys.  The 

numeric_std library was used instead because it is the standard and its documentation 

[21] is readily available from IEEE [22]. 

The source code is completely general in terms of the fixed-point parameters W 

and S as well as the number of cells N.  For this research, W is limited to 32-bits by the 

width of the SSRAM where results are stored, and S must be less than W and greater than 

1.  The number of cells is generalized by using VHDL’s generate statement, a loop-

like construct that allows logic to be replicated any number of times.  These design 

parameters as well as input parameters to the heat flow problem are contained in the 

definitions file common_pack.vhd.  While supported by VHDL, the synthesis subset of 

the language does not allow real numbers in design descriptions.  As a result, the scaled 

integer input parameters to the heat flow problem must be calculated outside the VHDL 

and manually inserted into common_pack.vhd.  The definitions file also allows clock 

frequencies to be assigned to switch settings on the logic module.  These switches can 

then change the frequency at which the computing cells operate. 

For the MULTIPLE, SINGLE, and BOOTH architectures, implementing scaled 

integer arithmetic is trivial because the bit slice shown in Figure 4-5 can be written 

directly in VHDL.  It is more complicated for the BIT architecture, however, because the 

result of a multiply operation is spread out over time.  Thus, result bits must be carefully 

picked out of the bit stream generated by the Booth multiplier. 

Due to the large number of cells that fit in the FPGA for the BIT architecture, 

some of the cell’s shift registers must be implemented in LUTs to keep from exhausting 

the FPGA’s flip-flop supply.  The synthesis tools will infer LUT shift registers rather 

than flip-flop registers if the VHDL is coded in a certain way.  According to the Synplify 

documentation [33], LUT shift registers will be inferred if a register does not have a 

synchronous reset and if only the register output bit is directly utilized. 

Xilinx offers design tips in [42] that suggest registering module outputs so that 

routing delays need not be affected by paths through combinational logic.  This technique 
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is used for the cell controller outputs and does cause a moderate increase in the maximum 

clock frequency. 

Compilation and Mapping with Synplify 

Synplify does not automatically recognize hierarchy in VHDL source files, so the 

synthesis files must be added to a Synplify project in the order shown in Table A-1. 

Table A-1. Source file order for Synplify 

File Applicable Architecture 
1. common_pack.vhd All 
2. bit_multiplier.vhd BIT 
3. booth_multiplier.vhd BOOTH 
4. cell_controller.vhd All except MULTIPLE 
5. cell.vhd All 
6. cell_row.vhd All 
7. row_controller.vhd All 
8. ram_controller.vhd All 
9. top.vhd All 

Figure A-2 shows the project options that must be set.  Everything remains as the 

default except for the part selection, the “Write Vendor Constraint File” checkbox, and 

the “Top Level Entity” name.  The constraint file checkbox is unchecked so that the place 

and route (PAR) step is free of timing constraints, which will enable Automatic 

Timespecing as discussed in the next section. 
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Figure A-2. Project options in Synplify 

 68



With the source files in place and the options set, the design should be compiled 

(but not mapped).  A SCOPE constraint file should be entered as shown in Figure A-3.  It 

is important to assign the two clocks to different groups so that the software does not treat 

them as synchronous clocks.  Frequency goals are given for each clock so that the 

software can insert buffers and replicate logic in order to meet the constraints.  The value 

for HCLK is the Integrator/AP AHB bus frequency, and the value for CLK1 should be 

slightly above the maximum frequency reported by the ISE PAR software. 

 
Figure A-3. SCOPE timing constraints 

The options dialog box should list the SCOPE constraints file and the checkbox 

should be checked.  At this point, the design can be mapped using the GUI interface or by 

executing the Tcl command project -run synthesis. 

After its synthesis stage, Synplify generates a report that includes the FPGA’s 

resource utilization.  This information is often useful, so it is shown in Figure A-4 for 

each cell architecture. 
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MULTIPLE 
Cell usage: 
FDP             32 uses 
FDC             6 uses 
GND             12 uses 
VCC             11 uses 
MUXCY_L         31007 uses 
XORCY           30030 uses 
MULT_AND        11600 uses 
MUXCY           721 uses 
FDCE            821 uses 
MUXF5           50 uses 
MUXF6           25 uses 
FDE             99 uses 
FDPE            36 uses 
 
I/O primitives: 
IBUF           41 uses 
IOBUF          65 uses 
OBUFT          2 uses 
OBUF           62 uses 
 
BUFGP          2 uses 
 
I/O Register bits:                  68 
Register bits not including I/Os:   926 (2%) 
 
Global Clock Buffers: 2 of 4 (50%) 
 
Mapping Summary: 
Total  LUTs: 33808 (88%) 

SINGLE 
Cell usage: 
FDP             34 uses 
FDC             55 uses 
GND             40 uses 
MUXCY_L         23226 uses 
XORCY           22701 uses 
MUXCY           667 uses 
MULT_AND        10508 uses 
FDRE            925 uses 
MUXF5           1153 uses 
FDE             1000 uses 
FDCE            2852 uses 
FDS             55 uses 
FDRS            3 uses 
FD              44 uses 
MUXF6           53 uses 
FDPE            38 uses 
VCC             1 use 

I/O primitives: 
IBUF           41 uses 
IOBUF          65 uses 
OBUFT          2 uses 
OBUF           62 uses 

BUFGP          2 uses 

I/O Register bits:                  68 
Register bits not including I/Os:  4938 (12%) 

Global Clock Buffers: 2 of 4 (50%) 

Mapping Summary: 
Total  LUTs: 34849 (90%) 

BOOTH 
Cell usage: 
FDP             33 uses 
FDC             118 uses 
GND             2 uses 
MULT_AND        1824 uses 
MUXCY_L         1851 uses 
XORCY           1920 uses 
FDR             1940 uses 
FD              1907 uses 
FDRE            988 uses 
FDSE            912 uses 
FDCE            5963 uses 
FDE             1975 uses 
FDS             26 uses 
FDRS            41 uses 
FDPE            40 uses 
MUXF5           506 uses 
MUXF6           125 uses 
MUXCY           1 use 
VCC             1 use 
 
I/O primitives: 
IBUF           41 uses 
IOBUF          65 uses 
OBUFT          2 uses 
OBUF           62 uses 
 
BUFGP          2 uses 
 
I/O Register bits:                  68 
Register bits not including I/Os:   13875 (36%)
 
Global Clock Buffers: 2 of 4 (50%) 
 
Mapping Summary: 
Total  LUTs: 34692 (90%) 

BIT 
Cell usage: 
FDP             34 uses 
FDC             169 uses 
GND             427 uses 
VCC             425 uses 
FDRS            10186 uses 
FDRE            424 uses 
FDRSE           424 uses 
MUXF5           2590 uses 
FDE             2220 uses 
FD              502 uses 
MUXF6           460 uses 
FDCE            11583 uses 
FDR             69 uses 
FDS             228 uses 
FDPE            39 uses 
MUXCY_L         27 uses 
XORCY           20 uses 
MUXCY           1 use 

I/O primitives: 
IBUF           41 uses 
IOBUF          65 uses 
OBUFT          2 uses 
OBUF           62 uses 

BUFGP          2 uses 

SRL primitives: 
SRL16E         3392 uses 

I/O Register bits:                  68 
Register bits not including I/Os: 25810 (67%) 

Global Clock Buffers: 2 of 4 (50%) 

Mapping Summary: 
Total  LUTs: 28262 (73%) 

Figure A-4. FPGA resource usage for each architecture 
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Place and Route with ISE 5.1 

A goal of this research is to run the computing cells at the highest possible clock 

frequency, but this rate is typically unknown until after the synthesis process.  To address 

this problem, the ISE software provides Automatic Timespecing, which will attempt to 

place and route the design to achieve a near-optimal clock frequency without requiring 

multiple synthesis passes.  According to the Xilinx documentation [40], Automatic 

Timespecing is enabled if no timing constraints are found and if the Overall Effort Level 

is Normal or higher. 

The PAR synthesis step starts by adding an EDIF file produced by Synplify to an 

ISE project.  It is very important to also add a constraint file (pinout.ucf) that assigns 

signals to pin locations, because all FPGA pins are predefined by the chip’s placement on 

the LM.  Settings in the “Place and Route Properties” box should be entered as shown in 

Figure A-5.  All other settings can remain at their defaults.  Double-clicking on “Generate 

Programming File” in the process window starts a sequence of processes that ends with a 

bit file (top.bit) used for programming the FPGA.  The typical command lines of the 

intermediate steps should be similar to Figure A-6, although they do not have to be 

entered directly when the ISE GUI is used. 

Timing constraints can be used to further increase the maximum clock frequency, 

but this method only provides a few megahertz improvement and can add several hours to 

the synthesis time. 
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Figure A-5. Project options for Xilinx ISE 

ngdbuild -quiet -dd _ngo -uc pinout.ucf -p xcv2000e-fg680-6 top.edf top.ngd 

edif2ngd –quiet "top.edf" "./_ngo/top.ngo" 

map -quiet -p xcv2000e-fg680-6 -cm area -pr b -k 4 -c 100 -tx off -o 
top_map.ncd top.ngd top.pcf 

par -w -ol 3 -t 1 -detail top_map.ncd top.ncd top.pcf 

trce -quiet -e 3 -l 3 -a -xml top top.ncd -o top.twr top.pcf 

bitgen -f top.ut top.ncd 

Figure A-6. Typical ISE command lines for the synthesis processes 

Bit File Download Over Multi-ICE 

The following is a list of the steps required for programming the FPGA with the 

bit file produced by the ISE software.  Refer to Figure 3-5 for a diagram of the LM 

layout. 
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1. Turn off power to the Integrator/AP motherboard. 

2. Connect the Multi-ICE cable between the Multi-ICE connector on the LM and the 

Multi-ICE unit and connect the Multi-ICE unit’s parallel cable to a PC. 

3. Fit a jumper to the CONFIG link on the LM. 

4. Turn on power to the Integrator/AP motherboard. 

5. On the host PC, start the Multi-ICE Server and click “Auto-Configure,” which 

should detect the XCV2000E FPGA.  The Multi-ICE Server opens portmap in 

the background and requires the program to stay open. 

6. Execute the progcards utility with a .brd and a .bit file in the same directory 

as the executable.  The .bit file is the programming file generated by ISE.  The 

.brd file contains the actions requested of progcards as shown in Figure A-7.  

If there are multiple .brd files in the same directory, progcards allows one to 

be selected by providing a menu.  The LM flash can hold up to two FPGA 

configuration files located at flash addresses 0x000000 and 0x200000, and one 

of these addresses must be specified in the .brd file.  The .brd file shown in 

Figure A-7 is set up to first configure the FPGA to allow the .bit file to pass 

through to the flash memory.  It does this through another .bit file (available 

from the LM documentation CD) that must also be in the same directory.  The 

.brd file then instructs progcards to send the .bit file containing the design 

to flash and then verifies the flash contents. 

7. Turn off power to the Integrator/AP motherboard. 

8. Remove the CONFIG link jumper and set the mode switches on the LM 

according to Table A-2.  S1[3] must be open to allow the switches to select the 

flash image and S1[1] selects which flash data will configure the FPGA. 

9. On Integrator/AP power-up, the LM configures the FPGA with the selected flash 

data. 

 73



[General] 
Name = top AHB XCV2000E -> flash (addr 0x200000) 
Priority = 1 
 
[ScanChain] 
TAPs = 2 
TAP0 = XCV2000E 
TAP1 = XC9572XL 
 
[Program] 
SequenceLength = 3 
Step1Method    = Virtex 
Step1TAP       = 0 
Step1File      = lmxcv600e_72c_xcv2000e_via_reva_build0.bit 
Step2Method    = IntelFlash 
Step2Address   = 200000 
Step2TAP       = 0 
Step2File      = top@0x200000.bit 
Step3Method    = IntelFlashVerify 
Step3Address   = 200000 
Step3TAP       = 0 
Step3File      = top@0x200000.bit 

Figure A-7. Example .brd file used for downloading configuration files to LM flash 

Table A-2. LM switch settings for selecting a flash image 

Flash Image Image Base Address S1[1] S1[2] S1[3] S1[4] 
0 0x000000 Closed1 x Open x 
1 0x200000 Open x Open x 
Motherboard selects image x x Closed x 

Core Module Code Generation with ADS and AFS 

The program that runs in the CM is the first thing executed when the 

Integrator/AP motherboard is turned on, so it is responsible for all motherboard 

initializations.  This is done through the ARM Firmware Suite (AFS) µHAL library, 

which also provides access to the serial ports.  The CM program executes as shown in 

Figure A-8.  After initialization, the program enters an infinite loop that receives 

parameters from the host PC, starts the FPGA calculation, sends FPGA-computed results 

to the host PC, and then returns to the loop’s beginning to start a new calculation cycle. 

                                                
1 “Closed” is down and “Open” is up. 
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iteration
results sent?

Program entry

N Y

 
Figure A-8. Core module program flow 

The simplest way to generate the CM binary is to create a CodeWarrior project 

based on an example project from AFS v1.4.1.  For this research, the hello example was 

used as a starting point because it uses the µHAL library and performs serial I/O.  The 

following is a list of the steps required to build the CM binary and download it to the 

Integrator/AP motherboard. 

1. Copy fpga_execute.c, the source code file for the CM program, to 

$AFS/Source/uHALDemos/Sources2. 

                                                
2 $AFS is the directory where the ARM Firmware Suite is installed. 
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2. Make a copy of $AFS/Source/uHALDemos/Build/Integrator720T.b/ 

hello.mcp and rename it to fpga_execute.mcp.  It should remain in the same 

directory as hello.mcp. 

3. The line in $AFS/Source/uHALDemos/Build/Integrator720T.b/ 

scatter.txt that reads LR_1 0x24800000 should be changed to LR_1 

0x24000000.  This allows the CM image to run when the Integrator/AP is turned 

on. 

4. Open fpga_execute.mcp in CodeWarrior and change the File, Link Order, and 

Targets as shown in Figure A-9. 

5. The settings for the standalone target should be changed as shown in Figure 

A-10.  All other settings can remain unchanged.  The post-linker is set to “ARM 

fromELF” and the output format is set to “Plain binary” because the image is not 

meant to be executed from an operating system or a debugger. 

6. Click “Make” to generate the binary image. 

7. Turn off power to the Integrator/AP motherboard. 

8. Connect the Multi-ICE cable between the Multi-ICE connector on the CM and the 

Multi-ICE unit and connect the Multi-ICE unit’s parallel cable to a PC. 

9. Turn on power to the Integrator/AP motherboard. 

10. Start the Multi-ICE Server and click “Auto-Configure,” which should detect the 

ARM720T processor.  The Multi-ICE Server opens portmap in the background 

and requires the program to stay open. 

11. Open the AXD Debugger. 

12. Click the Options→Configure Target… menu item.  The first time AXD is run, 

the Multi-ICE DLL must be made known to the debugger.  Click Add and select 

the file $MULTIICE/Multi-ICE.dll3.  Choose “Multi-ICE” in the “Choose 

Target” dialog box and click Configure.  The software will try to locate the Multi-

                                                
3 $MULTIICE is the directory where Multi-ICE is installed. 
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ICE Server, which can also be running on a remote computer.  When the 

ARM720T processor shows up in the “Device selection” box, click Ok. 

13. AXD will connect to the ARM720T processor through Multi-ICE.  Click “Flash 

Download.”  In the “Image to load” box, enter or browse to $AFS/Source/ 
uHALDemos/Build/Integrator720T.b/fpga_execute_Data/standalo

ne/fpga.bin and click Ok.  A console window will show the download’s 

progress.  Enter ‘y’ at both prompts.  At this point, the CM image resides in the 

motherboard flash. 

14. Turn off power to the Integrator/AP motherboard. 

15. Referring to Figure 3-4, set switch S1[1] to the off position to allow code 

execution to begin at 0x24000000. 

16. On Integrator/AP power-up, the CM image will begin executing. 
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Figure A-9. CodeWarrior file and target settings 
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Figure A-10. CodeWarrior project settings 
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Matlab User Interface 

The Matlab user interface to the FPGA system is a simple function that opens two 

serial ports, sends input parameters to the Integrator/AP over one port, and retrieves 

FPGA-computed results over both ports.  Two serial ports are used to collect the results 

in order to maximize the data transfer rate.  Figure A-11 is an example Matlab session 

showing the function usage.  The example shows the retrieval of 10 time steps of the 

matrix temperature for cell 1 of 424 with T  using the BIT 

architecture.  The function arguments are the number of time steps, the result cell, a 

vector of the input parameters, and the names of two serial ports over which results will 

be transferred.  The vector of input parameters must be the left applied temperature, the 

right applied temperature, and 

6.2,, === ΓT rightmleftm

Γ .  The first serial port name given must be connected to 

Serial A on the Integrator/AP motherboard. 

>> fpga_execute(10,1,[2.6 2.6 2.6],'com6','com7') 
 
ans = 
 
           0 
     1349511 
     1363009 
     1693805 
     1703727 
     1865965 
     1874072 
     1973573 
     1980528 
     2048904 

Figure A-11. Example usage of the Matlab FPGA interface function 

Due to a bug in the serial handling code for Matlab 6.5, a patch must be 

downloaded from the MathWorks website [23] before the function can be used. 
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