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(ABSTRACT)

A phase-shift analysis of elastic pion-nucleon scattering data
from threshold to a pion kinetic energy of 1100 MeV was performed.
The resulting partial-wave amplitudes were investigated in the complex
energy plane, and the resonance states with their associated zeros and
poles were determined. Particular emphasis was given on elucidating
the nature of the P;; partial wave.

The phase-shift analysis consisted of both energy-independent and
energy-dependent analyses. The energy-dependent partial waves were
parametrized as a coupled channel K-matrix whose elements are
polynomials in energy plus an explicit pole term.

A complete description of the investigation and the experimental
data used are included as is a description of the theoretical models

used for interpretation of the results.
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1. INTRODUCTION

The pion-nucleon scattering problem has long been recognized as an
important arena for the study of the strong nuclear force because it
is the simplest example of the strong interaction easily accessible to
experimentation. The nucleon is the lowest mass nucleus and has the
simplest quark structure of all the baryons, being composed primarily
of up and down quarks. Correspondingly, the pion is the lowest mass
and simplest of the mesons. The pion-nucleon interaction is,
therefore, responsible for the most important longest range part of
the nucleon-nucleon interaction, the force that holds the nucleus
together. Although the pion-nucleon interaction is obviously
important to our understanding of the hadronic force, explicit first
principle calculations of the physical observables: masses, cross
sections, etc., are not yet possible. The theory of the strong
interaction, quantum chromodynamics (QCD) is not amenable to exact or
even perturbative calculations because of its complexity and the large
magnitude of its coupling constant. Theoretical models can, however,
be developed based on QCD, but a means of relating the model
predictions to the experimental results must be established.
Historically, that means has been the phenomenological approach of
partial-wave, phase-shift analysis of the experimental data. Such an
approach results in the description of the data set in terms of a
relatively small number of energy-dependent, partial-wave amplitudes

that can be directly related to model predictions in terms of both



statics (masses and widths of states) and dynamics (cross sections,
lifetimes, etc).

Phase-shift analyses of pion-nucleon scattering data have been
performed since the days of Fermil in the early 1950's. Since then
the analyses have become much larger and more sophisticated, and much
understanding of the physics of the interaction has been gained. 1In
particular, a rich spectroscopy of resonant states responsible for
most of the structure in pion-nucleon data has been identified,
including the two earliest and among the most dominant resonances, the
Delta and Roper resonances. Even with the great amount of effort that
has been and continues to be directed at the pion-nucleon problem, the
problem is not completely solved and work remains to be done.
Evidence for several resonances: P;3 at 1540 MeV, P3; at 1550 MeV, and
P33 at 1600 in standard spectroscopic notation, is weak and their
existence needs to be verified. 1In addition, the resonance parameters
(masses, widths, and residues) for most of the confirmed states need a
more reliable determination for better comparison with model
predictions. The above uncertainties, by themselves, provide
sufficient motivation for pursuing the investigation being presented
here, but they are not the only reasons. In the mid-1970's, the
Saclay2 group performed a phase-shift analysis of elastic pion-nucleon
scattering data that identified a splitting of the Roper resonance
into two states at 1413 and 1532 MeV, respectively. It is this
intriguing possibility that served as the initial catalyst for this

investigation. In addition to verifying or rejecting, as appropriate,



the proposed resonant states and providing a precise determination of
their parameters, the objective of this research has been to clarify
the situation with the Roper resonance and the P); partial wave as a
whole. Is the Roper actually split, and, if so, what impact does that
splitting have on the validity of several popular theoretical models?
The approach needed to address these questions begins with the
development of a complete and up~to-date data base of elastic pion-
nucleon scattering results. That development and the description of
the resulting data base are presented in Chapter 2 with the references
for the many experiments given in Appendix A. A detailed explanation
of the phase-shift analysis is provided in Chapter 3. Both the
energy-dependent and energy-independent parametrizations of the
partial amplitudes are described, as is the methodology used to couple
these two distinct approaches. The formalism used to compute the
physical observables from the partial waves is given in Appendix B.
Also described in Chapter 3 is the chi-squared minimization technique
employed to determine the partial waves from the large data base and
the assumed parametrization. The fitting program used in this process
is documented in Appendix C. After the fitting process is completed
and a proposed solution is obtained, the resulting partial waves are
described and interpreted in Chapter 4&. Additional details of the
partial-wave amplitudes are shown in Appendix E. Many resonant states
are observed that are then described and their resonance parameters
presented. In addition, an exploration of the topology of the partial

amplitudes in the complex energy plane 1is undertaken to better



understand the complex zeros and poles in the amplitudes associated
with the resonances. Much emphasis is given to the particularly
interesting P;; wave. Once this description of pion-nucleon
scattering is obtained from the experimental data and the phase-shift
analysis, the results are compared to three popular and successful
models of hadron spectroscopy: the constituent quark models, the bag
models, and the Skyrmion model. Chapter 5 presents a description and
discussion of the relevance of these three models to the pion-nucleon
problem, providing further insight into the physics of the important
pion-nucleon interaction. A summary of the progress made by this
research toward a better understanding of the pion-nucleon interaction
and, hence, of the strong interaction is given in the conclusions of
Chapter 5 as the final results are all tied together. Recommendations
for future research are also made here as a final and appropriate end
to this dissertation.

1.1 REFERENCES

l. H. L. Anderson, E. Fermi, R. Martin, D. E. Nagle, Physical
Review, Vol. 91, 1953, p. 155

2. Ayed, Unpublished Thesis from the Saclay Group as reported in
Particle Data Group, Reviews of Modern Physics, Vol. 48, 1976, p.

S147



2. THE PION-NUCLEON DATA BASE

Obviously, a phase-shift analysis can be no better than the data
on which it is based. Therefore, an attempt has been made to assemble
as complete a collection as possible of elastic pion-nucleon data,
particularly those results published in refereed journals. Although
the analysis extends only to 1100 MeV, experiments have been included
with incident pion kinetic energy up to 1200 MeV in the laboratory
frame. The extension of the data base beyond the analysis limit
allows one to investigate extrapolations of the present analysis. A
chronological summary of the experiments in the data' base as of
September 1986 1s presented in Table 2-1 with the numbered references
given in Appendix A. Under the status column, the notation "A"
identifies active experiments included in the analysis, and "X" labels
those experiments excluded from the analysis. The "Short ID" consists
of an abbreviation of the principal author's name and the year in
which the data were published. For an example, the Measday etal. 1984
publication of charge exchange total elastic cross section is given
the ID of ME(84). Reaction types for positive pion, negative pion, and
charge exchange scattering off of protons are labeled PI+P, PI-P, and
CXS, respectively. Differential cross sections and polarization data
are labeled with DSG and P, while total and total-elastic cross
sections are labeled with SGT and SGTE. Because older experiments are
generally associated with larger errors, no data published before 1964
have been included in the data base. This date was chosen somewhat

arbitrarily but is based on the principle that deleted data be



TABLE 2-1. PION-NUCLEON DATA BASE (O to 1200 MeV)* (Sheet 1 of 4)
SHORT ID | REFERENCE ENERGY* | REACTION | OBSERVABLE | STATUS
BO(64) 40 756 to 1165 CXS DSG A
BU(64) 50 545 to 1000 CXS SGTE X
EA(64) 82 520 to 990 PI+P P A
EA(64) 82 520 to 990 PI-P p A
HE (64) 94 530 to 900 PI+P DSG A
HE (64) 95 530 to 900 PI-P DSG A
MU(64)** 114 595 to 800 CXS DSG A
VI(64) 137 604 PI-P DSG A
BA(65) 19 410, 492 PI+P p A
BA(65) 20 410, 492 PI-P p A
BU(65) 52 558 PI-P DSG A
Cu(65) 63 35 CXS DSG A
DE(65) 65 500 PI+P DSG A
DE(65) 65 500 PI+P SGTE A
DE(65) 65 500 PI+P SGTR X
DE (65) 72 495 to 1195 PI+P SGT X
DE (65) 72 415 to 1195 PI-P SGT X
LI(65) 108 313, 371 CXS 0SG A
0G(65) 117 310 to 650 PI+P DSG A
0G(65) 117 370 to 650 PI-P DSG A
BE (66) 30 775 PI-P DSG A
BI(66) 35 310 to 700 PI+P SGT X
BI(66) 35 310 to 700 | PI-P SGT X
CA(66) 57 790 to 870 PI-P SGTE X
DI(66) 73 365 PI-P P A
DO(66) 76 39 CXS DSG A
DU(66)** 80 745 to 850 PI+P DSG A
DU(66)** 80 745 to 850 PI-P DSG A
oL(66) 118 646 PI-P DSG A
RI(66) 122 450 to 685 CXS 0SG A
ST(66) 131 525 to 1170 PI+P SGT X
ST(66) 131 540 to 1170 PI-P SGT X
TI(66) 132 781 PI+P SGTE A
TR(66) 133 248 PI+P DSG A
TR(66) 133 248 PI+P SGT A
VA(66) 135 300 PI-P P A
BA(67) 17 410, 490 PI+P DSG A
BA(67) 17 410, 490 PI-P DSG A
BC(67) 13 949, 1098 PI-P SGTE A
BE(67) 32 900 PI+P SGTE A
CH(67) 59 500 to 1120 CXS DSG A
DE(69) 70 810 PI+P DSG A
ED(67) 83 98 PI+P DSG A

*Kinetic energy of incident pion in laboratory frame (MeV)
**More data available, but only in plotted form




TABLE 2-1. PION-NUCLEON DATA BASE (0 to 1200 MeV)* (Sheet 2 of 4)
SHORT ID | REFERENCE ENERGY* | REACTION | OBSERVABLE | STATUS
FE(67) 84 650 PI-P DSG A
GO(67 89 245 to 410 PI+P P A
GO(67 89 245 to 410 PI-P p A
HA(67) 92 470 to 770 PI-P P A
J0(67) 103 615 to 770 PI+P p A
ME(67) 112 900 PI+P DSG A
AR(68) 11 225 to 390 PI-P p A
BE(68) 31 595 to 675 PI-P DSG A
BI(68)** 36 765 PI+P P A
BI(68)** 36 564, 650 PI-P p A
CA(68) 54 345 to 1170 PI+P SGT A
CA(68) 54 350 to 1200 PI-P SGT A
CR(68) 62 60 PI+P DSG A
CR(68) 62 60 PI-P DSG A
DE(68) 66 722 PI+P DSG A
DE(68) 66 722 PI+P SGTE A
DU(68)** 81 745 to 800 PI-P P A
HY (68) 99 590 to 680 CXS DSG A
RI(68) 123 435 to 1005 CXS DSG A
VA(68) 134 720 PI-P DSG A
BU(69) 51 525 to 1115 CXS SGTE A
C0(69) 61 515 to 1185 PI-P P A
DE(69) 67 710 to 880 PI+P SGTE A
DE(69) 68 405 to 635 PI-P SGTE A
DE(69) 71 407, 493 PI-P DSG A
AB(70) 2 745 to 1150 PI-P DSG A
AL(70) 4 685 to 1170 PI+P DSG A
AL(70) 4 685 to 1170 PI+P p A
BA(70) 15 765 to 910 PI+P DSG A
BA(70) 15 765 to 910 PI+P SGT A
BI(70) 37 560 to 1185 PI-P SGT A
B0(70) a1 465 to 685 PI+P SGTE A
BO(70) 41 465 to 685 PI+P SGTR A
HI(70) 96 868 PI+P DSG A
HI(70) 96 868 PI+P p A
HL(70) 97 310 CXS p A
AP(71) 10 1075 to 1170 | PI-P DSG A
BL(71) 38 551, 592 CXS DSG A
BR(71) 43,46 |430 to 1195 PI-P DSG A
BU(71) 49 90 to 295 CXS SGTE A
CA(71) 55 70 to 285 PI+P SGT A
CA(71) 55 75 to 295 PI-P SGT A

*Kinetic energy of incident pion in laboratory frame (MeV)
**More data available, but only in plotted form




TABLE 2-1. PION-NUCLEON DATA BASE (O to 1200 MeV)* (Sheet 3 of 4)
SHORT ID | REFERENCE | ENERGY* REACTION | OBSERVABLE | STATUS
HA(71) 93 200 to 450 CXS DSG A
KA(71) 104 1148 PI+P DSG A
SL(71) 130 505 to 850 PI+P P X
AB(72) 3 745 to 1150 PI-P DSG A
AL(72) 5 735 to 1120 PI-P DSG A
AL(72) 5 735 to 1120 PI-P P A
BA(72) 16 765 to 910 PI+P SGTE A
BE(72) 29 205 to 375 CXS DSG A
B0(72) 42 465 to 680 PI+P DSG A
DA(72) 64 295 to 745 PI+P SGT X
DA(72) 64 295 to 745 PI-P SGT X
RO(72) 125 445 to 1440 PI+P DSG X
RO(72) 125 445 to 1140 PI-P SGT X
BU(73) 53 85 to 295 PI+P DSG A
BU(73) 53 85 to 295 PI-P DSG A
CA(73) 56 20 to 1198 PI+P REF X
CA(73) 56 20 to 1198 PI-P REF X
Do(73) 74 585 to 815 PI-P DSG A
DU(73) 79 20 to 45 CXS DSG A
60(73) 90 240 to 400 PI+P p A
G0(73) 90 240 to 400 PI-P p A
GR(73) 91 401, 545 PI-P DSG A
MA(73) 109 670 to 825 PI+P DSG A
NE(73)%* 116 900 CXS SGTE A
AB(74) 1 1075 PI+P DSG A
BE(74) 33 1064 PI+P DSG X
CH(74) 58 356, 428 CXS DSG A
DO(74) 75 855 to 995 PI-P SGTE A
JE(74) 101 110 to 230 CXS DSG A
RI(74) 121 475 to 1150 PI-P DSG A
SH(74) 129 900,1113 CXS P A
AM(75) 8 236 PI+P p A
BA(75)%** 18 865 to 1185 PI-P DSG A
Co(75) 60 135 to 260 CXS DSG A
DE(75) 69 475 to 870 PI-P DSG A
DE(75) 69 475 to 870 CXS DSG A
MA(75) 110 475 to 1195 PI+P P A
AM(75) 9 90 to 195 PI+P p A
BA(76) 14 495, 879 PI+P SGT A
BA(76) 14 885 PI-P SGT A
BK(76) 23 450 PI+P P A
BK(76) 23 450 PI-P p A

*Kinetic energy of incident pion in laboratory frame (MeV)

**More data available, but only in plotted form




TABLE 2-1. PION-NUCLEON DATA BASE (0 to 1200 MeV)* (Sheet 4 of 4)
SHORT ID | REFERENCE ENERGY* | REACTION | OBSERVABLE | STATUS
BE(76) 34 20 to 100 PI+P DSG A
BR(76) 45,48 |490 to 1145 CXS DSG X
BY(76) 22 140 to 275 CXS DSG A
BA(77) 21 1049, 1118 PI-P p A
BR(77) 46 650, 746 PL+P P X
DU(77) 77,78 [290 to 310 PI+P p A
JE(77) 102 125 to 245 CXS DSG A
0T(77) 119 1115 to 1185 | PI+p DSG A
VA(77) 136 1145 to 1185 | PI-P DSG A
AL(78) 6 292, 308 PI-P P A
BL(78) 39 40, 50 PI+P DSG A
BR(78) 47 490 to 1145 CXS P X
KR(78) 107 400 to 600 CXS DSG A
NE(78) 115 265 to 325 PI+P DSG A
NE(78) 115 260 to 330 PI-P DSG A
PE(78) 120 70 to 370 PI+P SGT A
PE(78) 120 70 to 370 PI-P SGT A
AU(79) 12 48 PI+P DSG A
HO(79) 98 20 to 1100 PI+P REF A
HO(79) 98 20 to 1100 PI-P REF A
KA(79) 105 885 to 1045 PI-P DSG A
SA(79) 128 540 to 590 PI-P DSG A
BE(81) 24,25 |450 to 600 PI-P p A
G0(81) 88 275 to 600 PI+P 0SG A
G0(81) 88 285 to 600 PI-P DSG A
RI(82) 124 65 to 140 PI+P DSG A
SA(82) 126 260 to 565 PI+P DSG A
SA(82) 126 260 to 565 PI-P DSG A
AL(83) 7 95 to 295 PI-P p A
AL(83) 7 235 to 310 CXS P A
BE(83) 26,27,28 |335 to 580 PI+P p A
FR(83) 86 25 to 90 PI+P DSG A
FR(83) 86 25 to 90 PI-P DSG A
GA(84) 87 401 CXS DSG A
ME (84) 111 27, 39 CXS SGTE A
FI(85) 85 30 to 65 CXS DSG A
IR(86) 100 65 to 230 CXS DSG A
KI(86) 106 190 to 505 CXS P A
MO(86) 113 350 to 565 PI+P P A
MO(86) 113 350 to 565 PI+P P A
SA(86) 127 290 to 565 PI+P DSG A
SA(86) 127 290 to 565 PI-P DSG A
WI(86) 138 425 to 535 CXS P A

*Kinetic energy of incident pion in laboratory frame (MeV)




10

supplanted by more recent and accurate results covering the same
kinematic (energy, angle) range. Also excluded from the data base are
those total-elastic cross sections that are not measured independently
of differential cross sections that have been included. There are
also several references!™ that are not in Table 2-1 or in the data
base because the published data are in plotted form only. Any reader
knowing how to obtain these or any additional data is requested to
notify the author.

When this work was begun, the data base was considerably smaller
~and consisted largely of data from experiments with energy less than
800 MeV. Since that time, the data base has been greatly increased
with the addition of many new experiments and the expansion of the
energy range to the present 1200 MeV. Even with the removal of the
old pre-1964 experiments, the data base has been approximately
doubled. With this rapid change in the data base, a computer-based
Data Log was developed to keep track of its evolution. The Data Log
enables comments about each reference -~ such as why a particular
experiment is not included in the analysis ~- to be recorded for
future reference.

2.1 ACTIVE EXPERIMENTS

Because of the large number of experiments in the data base, no
attempt has been made to describe it in detail. Instead, the extent
of the data base is shown via the kinematic distribution plots in
Figures 2-1 through 2-6. The distributions in angle and energy for

differential cross sections and polarization data are shown for each
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of the three charge channels. In these plots each data point is
indicated as being pre-1975 data with the label O for old data or as
being post-1974 data with the label N for new data. The positive pion
scattering is seen to cover the entire energy range relatively well
except for a large 100-MeV gap in the low-energy polarization data and
some much smaller gaps in the high-energy end of the differential
cross-section data. There is also a lack of data in the far forward
and backward directions, especially for polarization. The
distribution of negative pion scattering data is similar to that of
the positive. The negative pion polarization data also héve a low-
energy gap of about 200 MeV, with a dearth of data at the extreme
angles. The negative pion cross sections are in better shape than the
positive pion cross sections, with no significant gaps in angle or
energy in the medium- and high-energy sections of the data base. More
data at the low-energy end, especially at the extreme angles, would
again be helpful. There are far fewer charge exchange data, although
most of them are from recent (post-1974) experiments. The
polarization data have major gaps in the low-energy end, while the
low-energy, cross-section gap is smaller. Except for the low-energy,
differential cross sections, the angle range does tend to be fairly
well-covered. The PI-N Newsletter! describes an experiment planned by
the SIN group to measure low-energy, differential cross sections of
high quality. These results would remove many of the deficiencies in

the low-energy part of the data base.
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The total cross sections in the data base are dominated by the
experiments of Carter-CA(68) and CA(71), Pedroni-PE(78), and Bulos-
BU(69). New high-precision measurements of total cross sections over
the entire energy range to verify these results would be very helpful.
As alluded to in the next subsection, particular care would be needed
to be taken in the determination of the pion's beam energy.

There are currently no measurements available in the energy range
of this analysis for any of the spin observables other than
polarization. To date, no experiments have been performed to measure
the low-energy, spin rotation parameters, R and A, or the spin
rotation angle, B. The PI-N Newsletter describes an experiment planned
by the Leningrad group to make such a measurement. Such measurements
would be very valuable for eliminating ambiguities.8

Originally included in the data base were values of the real part
of the forward elastic scattering amplitude, Re[f(0)], determined by
Carter and Carter-CA(73).2 These quasi-data were calculated from
forward dispersion relations using total cross sections and provided
the only dispersion-theoretic constraint in the early stages of this
analysis. This set of values has been supplanted by the newer set of
real parts of the forward amplitude HO(79), obtained from Dr. G.
Héhler of the Karlsruhe group.10 Their results come from a
dispersion-theory-based, partial-wave analysis. They are expected to

be of greater validity than the older Carter values alone, at least

partially, because they are based on a larger, newer, and better data
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set, The Karlsruhe values provide the dispersion-theoretic constraint
in all the results presented in this report.
2.2 EXCLUDED EXPERIMENTS

In addition to those data described above that have been omitted
from the data base, there are other data that are in the data compila-
tion but have been excluded from the analysis. Because data with
large errors do little :3 constrain the analysis, polarization data
with absolute errors greater than 0.2 have been excluded from the
analysis. Most of these data come from source CO(69). Table 2-2
shows the xz obtained from solution FP86 of those experiments in Table
2-1 that have a status of "X" and are excluded from the analysis. Of
these, the total cross sections of Bizard-BI(66), Devlin-DE(65), and
Sterling-ST(66) are all older experiments with relatively large errors
and are inconsistent with the more precise measurements of CA(68),
CA(71), and PE(78). The total elastic cross sections of Cason-CA(66)
are inconsistent with other nearby data. The Davidson-DA(72) total
cross sections have known ptoblems,ll’12 particularly in the
determination of the beam energy. From the same group as the Davidson
experiment came the backward differential cross sections of
Rothschild=RO(72). This experiment also has an apparent difficulty
with its beam energy determinationl2s13 but not in the same direction
as DA(72). In addition, the data of both DA(72) and RO(72) are
inconsistent with the remainder of the data base, as seen by their
high x2, shown in Table 2-2. The Brown differential cross sections and

polarization data, BR(76), BR(77), and BR(78), have also been excluded
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TABLE 2-2. DATA EXCLUDED FROM ANALYSIS

SHORT NO. OF | x2/

ID |REACTION | OBSERVABLE | ENERGY* x2 | DATA | NDATA
Bu(64) | cxs SGTE  [545 to 999 92.0 7 | 13.1
DE(65) | PI+P SGT 497 to 1100 | 37.9] 15 2.5
DE(65) | PI-P SGT 418 to 1100 | 155.7 | 29 5.4
BI(66) | PI+P SGT 310 to 698 | 145.7] 20 7.3
BI(66) | PI-P SGT 310 to 698 | 385.0| 32 | 12.0
CA(66) | PI-P SGTE  |790 to 870 48.1 3 | 16.0
ST(66) | PI+P SGT 525 to 1100 | 68.5| 14 4.9
ST(66) | PI-P SGT 540 to 1100 | 209.2| 21 | 10.0
sL(71) | Pr+p P 598 to 846 | 709.0 | 130 5.5
DA(72) | PI+P SGT 298 to 742 | 1483.0| 25 | 59.3
pA(72) | PI-P SGT 298 to 742 | 2902.0 | 25 |116.1
RO(72) | PI+P DSG 468 to 1100 | 2888.0 | 33 | 87.5
Ro(72) | PI-P DSG 449 to 1100 { 3066.0 { 34 | 90.2
CA(73) | PI+P REF 21 to 1100 | 417.8| 102 4.1
CA(73) | PI-P REF 21 to 1100 | 301.9] 102 3.0
BE(74) | PI+P DSG 1064 1419.0 | 49 | 29.0
BR(76) | CXs DSG 494 to 1100 | 4197.0| 310 | 13.5
BR(77) | PI+P p 649 to 747 | 270.0| 48 5.6
BR(78) | CXS P 493 to 1100 | 4857.0 | 215 | 22.5

*Kinetic energy of incident pion in laboratory frame (MeV)
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from the analysis. The positive pion data of BR(77) have never been
published in a refereed journal, and the scatter in the data appears
unreasonable. The charge exchange data of BR(76) and BR(78) are
described in the PI-N Newsletter as being corn:lz'ovetsi.al,11 with the
polarization data earning only one star out of three in the
newsletter's quality rating scale. Bulos's charge exchange data,
BU(64), have been supplanted by more recent and accurate data from the
same group, BU(69). The differential cross sections of Berthon-BE(74)
and the polarizations of Sleeman-SL(71) each have unreasonably small
errors as compared with the considerable scatter in those data.
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3. THE PHASE-SHIFT ANALYSIS

The phase-shift analysis consisted of both an energy-dependent fit
and 23 separate single-energy fits covering the pion laboratory
kinetic energy range of 0 to 1100 MeV. The two types of analyses
complement each other, with the energy-dependent solution permitting
an investigation of the analytic structure of the amplitudes and a
determination of resonance parameters. The single-energy anaiysis
ensures that all structure in the amplitudes demanded by the data is
encoded. The coupling of these two types of analyses results in
mutually consistent solutions and hence the best of both approaches.

The objective of these analyses was primarily to obtain a precise
and economical encoding of the data and was not to test dispersion
theories. Consequently, a minimum amount of theoretical constraint is
included. The only explicit dispersion theory constraint was the use
of the forward dispersion relation derived real part of the forward
scattering amplitude, quasi-data of the Karlsruhe grOup.1 The
approach being presented here is unlike other works, such as the
Karlsruhe analysis,2 which includes much dispersion theory.

The amplitudes used in this work are the usual spin-no-flip and
spin-flip amplitudes, f and g. These amplitudes and their relation to
the experimental observables are described in Appendix B. The
amplitudes, f and g, are obtained from the parametrized, partial-wave
T-matrices after applying the coulomb corrections to be discussed in
Subsection 3.3. The partial waves were fitted with the standard

approach of minimizing X2 where

23
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n i i 2 N : 2
a® -8 (p)—ﬂexp] . zu [az_ll (3-1)
‘ i=1 ! ad

exp exp

value of observable "i" determined from parameters (p]

0i(p)

Biexp = experimental value of observable "i

oiexp = experimental standard deviation (error) of ith data point

an = normalization parameter for experiment n = n(i)
Np = number of data points being fit

N, = number of normalization parameters

Aaexp = standard deviation of normalization parameter ai.

In particular, the square error-matrix search method3 was employed
using the SHSZSA (Spin-Half Spin-Zero Scattering Analysis) code
developed over the last 20 years by Dr. R. A. Arndt. SHSZSA is
described in further detail in Appendix C.
3.1 THE ENERGY-DEPENDENT ANALYSIS

3.1.1 Parametrization of Energy-Dependent Partial Waves

The energy-dependent solution 1s parametrized by a multiple-
channel Chew-Mandelstam K-matrix4 whose elements are analytic
functions of energy. For each partial wave, the K-matrix includes
both the elastic n~N channel and the inelastic n-A channel of lowest
orbital angular momentum to which the elastic channel can couple. In
addition, because the S}] wave is known to couple strongly to the n-N
channel,3 this channel has been chosen as a second inelastic channel
for the S]] wave. The n-A and n-N states of lowest orbital angular

momentum to which the various n-N states can couple conserving total
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momentum and parity are given in Table 3-1. Thus the S)] wave is
modeled via a three-channel K-matrix and the other partial waves via
two—channel K-matrices. The n-N channel is responsible for the S-wave
eta production, clearly seen in Figure 4-1(c) as a cusp.

Because this is a phase-shift analysis of elastic scattering and
covers a relatively low-energy range (0 to 1100 MeV), all the
inelasticity was assumed to proceed only through the two (n-A or n-N)
described two-particle intermediate states. That such an assumption
does not detract from the analysis is obvious by the efficient
encoding of the data resulting from this parametrization.

The real symmetric K-matrix for a given partial wave is of the

form:
Kee Kel Ke2
K = Kel K11 0

where Ke2 and K22 are zero except for the S11 wave. Each K-matrix
element is parametrized as a polynomial in the barycentric energy, W,

with an optional explicit pole term and is given by:

— 2 3 4
K“ —pl+p22+p32 +p4z +p52 +

[ (b}, + P9 ]
d

_ 2
K, = Piysi t Poysi2 t Pyysi?

[ Pr5ea) " (Prgaa)
+

d

(3-3a)
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TABLE 3-1. STATES (L2J) OF LOWEST ORBITAL ANGULAR
MOMENTUM THAT CAN COUPLE TO n-N

n-A STATE n-N STATE
n-N STATE I=1/2, 3/2 I=1/2
S1 01 S1
P1 P1 P1
P3 P3 P3
D3 S$3 D3
Ds Ds Ds
F5 Ps Fs
F7 F7 F7
Gy D7 G7
Gg Gg Gg
Hg Fo Hg
H11 H11 H11
I G11 I11
113 113 I13
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2
Pig+ai \ .
Ky =Pyysi ¥ Psysi? ¥ (_d—_)’lzlorz

W—(Mn+MN+140MeV) pls-W
withz = ,andd = (—) (3-3b)
1000 MeV 1000 MeV

where W is the total barycentric energy and My and MN are the charged
pion and proton masses, respectively. The parameters p; through pjq
are those that are varied in the X2 minimization process. Parameters
py7 and pjg serve as elastic and 1inelastic coupling constants,
respectively, for the resonance pole given by the explicit K-matrix
pole at z = pjg. In this analysis, only the first 18 parameters were
actually used. Parameters pjq and pyg were always zero.

This Chew-Mandlestam K-matrix is related to the elastic element of

the nuclear T-matrix for the same partial wave by:

_ -1 (3-4)
(Te)" = [Im(Ce) * K, I-C,*K)7"|,

where I is the identity matrix and C is a diagonal matrix whose
elements are dispersion integrals of phase space factors over the

appropriate unitarity cuts:

dx

0 =7
Jr‘(w-.w)
8

Jl xe+l/2 (3-5)
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¢ = orbital angular momentum index
W = total barycentric energy
Wy = channel threshold energy

k = 1, the elastic channel

= MN + Mg, for j

MA + Mg, for j = k = 2, the inelastic n-A channel

= MN + Mp, for j = k = 3, the inelastic n-N channel

Ws = subtraction point

MN + My - 150 MeV, for the elastic channel

= My + Mp + 140 MeV, for either inelastic channel

and
Mp = 139.5 MeV
MN = 938.256 Mev
MA = 1232.0 - 1 * 51.0 MeV
My = 549.0 - i * 2.5 MeV.

The imaginary components in the delta and eta masses reflect the short
lifetimes of these two particles but are not meant to be identified
with their true widths. The given values were chosen largely for the
convenience of aiding the fitting process. The analytic structure of
the Cp's is discussed in detail in Appendix D. There, it is shown that
the usual space factor (p in Reference 4) is just the imaginary part
of C. That this choice of C gives the proper threshold dependence for
the partial waves is also demonstrated in the appendix.

With the K-matrix parametrized as described above, the T-matrix is
" manifestly analytic in the barycentric energy variable, W, with much

of the analytic structure provided by the Ce's It is also necessary
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for the T-matrix to obey unitarity. For § = 1 + 2iT, the generalized
unitarity condition, SS' <1, gives:

Tl < 1/21(T"-T) (3-6)
with the equal signs holding for elastic unitarity. One can check
this condition for those states that can be described by a two-channel
K-matrix (all but the S]] wave in this analysis), by first making the

following definitions:

Ke - Ci (Kee Kiji - Keiz)

a -

B = 1-cjKij

pe = Im {Ce}

p; = Im{Ci}. (3-7)

Simple algebraic manipulation then gives:
T = pe a/(f- Cea) (3-8)

from which it is straightforward to derive:

2
pepiKei 1,
T*T + —_— ==-i(T*-7
ip - C,al 2

(3-9)

Therefore, the nuclear T-matrix given by equation 3-4 will violate
elastic unitarity for p,p; = 0 and will violate generalized unitarity
for pgp; <O. Similar conclusions can be reached for the S]] state
whose partial T-matrix is derived from a three-channel K-matrix.
Appendix D shows that, above the elastic threshold, p, is strictly
positive. Above the pion production threshold, p; is also nonnegative

and generalized unitarity 1is satisfied. It is below the pion
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production threshold that a negative phase space factor in an
inelastic channel can arise and result in a small violation of
unitarity. The prescription used to correct this problem and to
ensure unitarity everywhere is to take the real part of the effective

one~-dimensional K-matrix:
Keff = Re [Tn/(l + 1 Tn)] (3-10)

with Tp defined by equation 3-4. Below the pion production threshold,

Keff is used to generate a new elastic unitary T-matrix:
Telastic = Keff/(l - i Keff). (3-11)

Because Keff is explicitly real, the proof that Telastic satisfies
elastic unitarity is now trivial.

3.1.2 Methodology for Energy-Dependent Analysis

With the T-matrix parametrized as described above, the search
program, SHSZSA, was used to determine the values of the 13 parameters
(18 for the S)i} wave) available for fitting in each partial wave.
S-waves through I-waves were fitted with higher peripheral waves being
assumed to be negligible. The S-, P-, D-, and F-waves are the most
important, with G, H, and I being smaller, peripheral waves. Becau#e
this analysis did not start in a vacuum but has been able to benefit
from earlier analysis,® it was not necessary to start with completely
unknown parameters. The present analysis began with an initial set of
parameters obtained by the CAPS (Center for Analysis of Particle

Scattering, VPI&SU) group during an older analysis based on an older,
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incomplete data base and with a parametrization that did not allow for
explicit poles in the expansion of the K-matrix elements. Those
partial waves known to have prominent resonances in the energy range
of this analysis were reinitialized, introducing the explicit poles
described above by specifically fitting the waves to either the
results of preliminary single-energy fits or to the Karlsruhe’! partial
waves. The analysis consisted of a great many iterations of the
search program, and the energy-dependent solutions were regularly
compared with the results of the single-energy analysis.
Occasionally, specific partial waves were reparametrized with a
different subset of the 13 (or 18) parameters being selected for
fitting and the other parameters fixed at zero. During this iteration
process, it became obvious that the experiments described in
Subsection 2.2 were '"bad," and the decision was made to omit them from
further analysis. The energy-dependent solution obtained in this
manner has been designated FA86 for "Fall 1986."

3.1.3 The Energy-Dependent Solution

Solution FA86 and six other energy-dependent solutions are sum-
marized in Table 3-2. For each of the solutions, the breakdown of xz,
number of data, and number of parameters are given.

After developing FA86, the effects of pruning the data were inves-
tigated. A number of individual data points had been found to give
very large contributions to FA86's total x2. By pruning these data
with x2 contributions greater than 16, overall x2 was reduced by

slightly over 20 percent with less than 2 percent of the data being
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eliminated. The X2 per data point limit of 16 is equivalent to 4
standard deviations and certainly is a reasonable cutoff to prune
single-data points obviously inconsistent with the rest of the data.
The pruned data are in addition to those experiments specifically
excluded from the analysis. 1In addition to inflating yx2, these data
were also frustrating the Xz minimization search algorithm. Much
cleaner searches resulted after a prune. By applying the above-
described pruning procedure iteratively, prune, search, reprune,
search, etc., solution FP86 was developed. For the details of the X2
comparison between FP86 and FA86, see Table 3-2. With so few data
pruned, the two solutions would be expected to be similar, and, as it
turns out, they are very close to each other. One comparison between
the two solutions is that of parameter 16, the position of the
explicit K-matrix pole encoded in most of the major waves. This
comparison is made in Table 3-3, and in only one case, P3;, does the
difference exceed 1 percent. The P3; difference is about 1.2 percent,
but the K-matrix pole position (2500 MeV) is at an energy considerably
greater than that for which the analysis is valid and hence is not
expected to be well-determined.

The approach used in this analysis of fitting individual waves
necessitates the use of a finite number of waves in the summation
defining amplitudes f and g. The wusual arguments against such a
cutoff include partial-wave indeterminancy caused by the continuum
ambiguity. Such arguments are not entirely valid for this analysis

because a number of peripheral waves, up through I-waves, are
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TABLE 3-3. SENSITIVITY OF K-MATRIX EXPLICIT POLE POSITION
TO PRUNING OF DATA AND TO THE NUMBER OF
PERIPHERAL WAVES IN SOLUTION

SOLUTION
HP86 FA86 FP86 JP86

WAVES (H-WAVES) | (I-WAVES) | (I-WAVES) | (J-WAVES)
S11 1678.7 1673.3 1677.4 1677.5
$31 1644.8 1639.5 1644.5 1643.9
P11 1576.3 | 1574.6 1576.4 1575.9
P13 1688.3 1704.9 1693.5 1696.2
P31 2583.9 2473.8 2504.4 2504.5
P33 1283.2 1283.4 1283.3 1283.3
D13 1578.4 1586.1 1577.9 1581.0
D15 1699.7 1700.0 1699.7 1699.6
D33 1668. 6 1655.4 1666.1 1666. 3
D35 2571.1 2593.2 2610.7 2569.7
F15 1702.5 1700.4 1701.4 1701.8
F35 1856.4 1879.7 1867.7 1879.4
F37 1935.6 1934.0 1934.6 1932.6
617 1789.9 1791.1 1797.2 1791.2
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included. Also, the constraint of fitting such a large number of data
over a wide-energy range limits the sensitivity of the major waves to
the precise number of partial waves included. Solutions HP86 and JP86
are a test of this sensitivity. HP86 is an energy-dependent solution
for which only waves through €= H are included. Those partial waves
with €>5 have been set equal to zero. Solution JP86 includes, in
addition, both the I- and J-waves. Solutions HP86 and JP86 are based
on the same pruned data set as solution FP86. If HP86 and JP86 are
compared with FP86 in Table 3-2, it 1is obvious that x2 changes
minimally with the number of peripheral waves. Certainly, given that
JP86 has more parameters (139 vs. 131) than FP86, the essentially
identical x2 per degree of freedom (1.66 vs. 1.67) does not justify the
inclusion of the J- and higher waves. The accuracy and extent of the
currently available data do not require additional peripheral waves.
Table 3-3, which shows the values of the K-matrix explicit pole
positions for the three solutions, also justifies this conclusion.

The three other solutions in Table 3-2 are PLUS, MNUS, and SPLT,
They constitute a test of isospin invariance in the energy-dependent
solution. Solution PLUS began with FP86 and resulted from an analysis
of only the positive pion scattering data. Solution MNUS also began
with FP86, but only the negative pion elastic and charge exchange
scattering data are analyzed. For solution MNUS, the values of the I
= 1/2 parameters are fixed at the FP86 values. The I = 3/2 parameters
alone were varied in arriving at solutions PLUS and MNUS. By allowing

the I = 3/2 parameters to differ in the analysis of the positive and
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negative pion data, a check is made of the dependence of the I = 3/2
partial waves on charge channel beyond the coulomb corrections
discussed in Subsection 3.3. Although the x2 for the positive pion
data is 1.9 percent less in PLUS than in FP86 (5699 vs. 5593) and the
X2 for negative pion and charge exchange scattering is 1.3 percent less
in MNUS than in FP86 (9819 vs. 9,945), the decrease is not significant
considering that solutions PLUS and MNUS together have effectively
more parameters to fit the same data than does solution FP86. In
fact, combining the results of solutions PLUS and MNUS results in a
chi-squared per degree of freedom negligibly better (1.66 vs. 1.67)
than solution FP86. Solution SPLT is a further check on charge
independence. As with MNUS, the negative pion scattering data alone
are analyzed, but it is the I = 1/2 waves along with the single I =
3/2 wave, P33 that are varied. By distinguishing between the P33 wave
in positive and negative pion scattering, Tromberg etal® claim a check
is made for short-range electromagnetic effects not accounted for by
the charge corrections (Subsection 3.3) of this analysis. The
reduction in chi-squared per degree of freedom of the negative pion
data from 1.67 for FP84 to 1.65 for SPLT, less than 2 percent, is
again not conclusive evidence for charge splitting in the current
world data base of pion-nucleon scattering.

FPB6 is the solution on which most of the results in this paper
are based. The pruned data base upon which FP86 is based provides a
clearly superior representation of elastic pion-nucleon scattering

below 1100 MeV over that of the unpruned data. The author believes
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solution FP86 to be the best energy-dependent fit to date 3in this
energy range. Almost 9,500 data have been fitted to a X2 of 15,645
with only 131 variable parameters. The values of all parameters for
solution FP86 are given in Table 3-4.

3.2 THE ENERGY-INDEPENDENT ANALYSES

3.2.1 Parametrization of Energy-Independent Partial Waves

Phase-shift analyses at specific energies serve to test the data
for any structure that may not be properly encoded by an inherently
smooth energy-dependent analysis. Because it is desirable to employ a
form-independent parametrization to avoid unwanted biases in the
solution, the phase shift, &8, and the inverse cosine of the
inelasticity, p, have been chosen as the parameters to be fitted at
each energy for which an analysis is performed. The phase shift and

inelasticity are related to partial wave S- and T-matrices by:

2i8 (3-12)

= ¢ _ :
Se = cos(p,) e =1+ 2‘Te

where ¢ labels the partial waves' orbital angular momentum. In an
energy bin for which a single-energy analysis is being performed, only
the actual values of the partial wave parameters, § and p, are fitted.
Such a natural parametrization obviously obeys elastic unitarity.

3.2.2 Methodology For Single~Energy Analyses

To cover the energy range of the energy-dependent analysis, data
were binned at 23 energies from 30 to 1100 MeV. For the final

iterations of the single-energy solutions, the data base was first
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pruned with solution FP86. In each bin, the partial-wave parameters
were assumed to be linearly dependent on energy with:

8(E)

8o + D * (E - Eo)

p(E) po + R * (E - Ep) . (3-13)
For an analysis energy, Eo, the initial values of the parameters for

the bin given by EL < Eg < EU were extracted from solution FP86 by an

inversion of equation 3-12 to yield:

p(E) = cos™! [n +2iT(E) |2]

8(E) = 1/2sin~} [Im [———ZT(E) ” (3-14)
cos [p(T]
with
80 = S(Eo)
po = p(Eo)
D = [8(EL) - 8(EU))/(EL - EU)
R = [p(EL) - p(EU))/(EL - EU). (3-15)

A check on the assumption of linearity was made by comparing the XZ in
each bin obtained directly from solution FP86 with that resulting from
linearization. An excessive (>30 percent) increase in x2 upon linear-
ization indicated a need to narrow the bin size. Bin sizes were ulti-
mately decided upon by the tradeoff between maximizing the number of
data in the bin and minimizing any increase in x2 caused by lineariza-
tion. For each partial wave, only §, and p, were varied during an
analysis. Slopes D and R were kept fixed at their FP86 derived

values. At each analysis energy, not every partial wave was fitted.
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The decision to search a particular wave in the single-energy
analyses was based on the criteria of requiring that either
0.5 * (2J+1) * Im {T¢} or 0.5 * (2J+1) * [Im {Tg}-ITi2] as obtained from
the energy-dependent solution FP86 exceed a minimum value, typically
0.014, The values of these two expressions are proportional to the
partial total and partial 1inelastic cross sections, respectively.
Once a wave was searched at any one energy, it was then searched at
each higher energy. The number of searched parameters went from a low
of 4 at 30 MeV to a high of 35 at 1100 MeV. The unsearched waves were
not set to zero but were fixed at their FP86 values. The
contributions from unsearched waves were most important at the lower
energies where the data base is too sparse to support the direct
determination of the smaller waves.

3.2.3 The Energy-Independent Solutions

The results of the single-energy analyses are given in Table 3-5
The real and imaginary parts of the T-matrix for each searched partial
wave are given with the associated error as determined from the chi-
squared error matrix. Plots of these results with the energy-
dependent partial waves are given in Figure 3-1. The high degree of
consistency between the single-energy and energy-dependent solutions
evident in these plots reinforces our confidence that all the
structure in the amplitudes demanded by the data is encoded. The
error bars shown are those obtained from the error matrix (see
Appendi¥ C). For some of the partial waves, such as P;3, the errors

appear precipitously large near 650 MeV with irregular behavior
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FIGURE 3-1. THE ENERGY-DEPENDENT SOLUTION COMPARED WITH THE ENERGY-

INDEPENDENT SOLUTION. The imaginary part of the T-matrix is shown
with triangles, the real part with diamonds. (Sheet 1 of 7)
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FIGURE 3-1. THE ENERGY-DEPENDENT SOLUTION COMPARED WITH THE ENERGY-

INDEPENDENT SOLUTION. The imaginary part of the T-matrix is shown
with triangles, the real part with diamonds. (Sheet 2 of 7)
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FIGURE 3-1. THE ENERGY-DEPENDENT SOLUTION COMPARED WITH THE ENERGY-

INDEPENDENT SOLUTION. The imaginary part of the T-matrix is shown
with triangles, the real part with diamonds. (Sheet 3 of 7)
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with triangles, the real part with diamonds. (Sheet 4 of 7)
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INDEPENDENT SOLUTION. The imaginary part of the T-matrix is shown
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slightly below this energy. This trend is apparently caused by a
dearth of quality data in that energy region.

3.3 COULOMB CORRECTIONS TO NUCLEAR AMPLITUDES

In pion-nucleon scattering, the existence of charged initial and
final states requires the inclusion of electromagnetic corrections to
the pion-nucleon scattering amplitudes. Because it is presumed that
the electromagnetic and strong interactions separately obey unitarity,
the total phase shift will be a nonlinear function of the two
interactions. The phase shifts caused by each interaction in the
absence of the other cannot be simply added. The approach taken here
to account for electromagnetic effects has been to use the direct or
pure coulomb amplitudes developed by Tromberg etal.® and documented by
Hohler etal.! The pion and proton form factors from Hohler are used.
Rather than use the coulomb phase shifts (which some authors call
coulomb rotation factors) and phase shift and inelasticity corrections
given by these authors, the coulomb phase shift given by Zidell etal.
and a coulomb barrier factor described below have been employed. In
the analysis being reported here, charged-neutral pion and proton-
neutron mass differences and the radiative capture process (n-P — yN)
have been ignored. Also neglected are corrections to cross sections

because of bremsstrahlung (soft photon emission).

The partial-wave T-matrices parametrized according to Subsections
3.1.2 and 3.2.2 must be charge-corrected for use in any of the three
charge channels. The corrections to these nucleon partial waves are

accomplished with coulomb barrier factors, B,:
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B,=B_ ﬁ 1 + @i (3-16)
j=1
with
Bo = 2mn/(e2m - 1)
v. = (pion laboratory velocity)/c
a = fine structure constant
n = ta/v,, for ntP —»ntP, (3-17)

For charge-exchange scattering (n-P — nON), the square root of the n-P
barrier factor is used. These barrier factors are multiplied with a
K-matrix computed from the nuclear T-matrices. The resulting modified
K-matrix is then used to calculate the charge-corrected T-matrix.
This recipe is documented further by Arndt etald and results in the
following T-matrix:

T _ B,* Tnuclear . (3-18)
charge corrected 1+i*(1 - B() *T

nuclear
The coulomb phase shifts that multiply these charge-corrected T-

matrices are given by zidel1® as follows

14
0, = Z tan_l(lq/jl)
i=1

(3-19)

The comparison between energy-dependent solutions FP86, SPLT,
PLUS, and MNUS reported in Subsection 3.1.3 showed that only the above

charge corrections are required by the data. A similar conclusion can



56

be reached from single-energy analyses such as described by Arndt et

al.9
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4. THE PARTIAL-WAVE RESONANCES

4.1 DEFINITION OF A RESONANCE

The energy dependence of the pion-nucleon elastic cross sections
exhibits conspicuous bumps, manifesting the presence of the underlying
partial-wave resonances. This structure in the cross sections of the
energy-dependent solution FP86 is shown in the plots of Figure 4-1 for
each of the three elastic charge channels. The most prominent peak
seen here occurs near a lab kinetic energy of 190 MeV and is caused by
the well-known delta P33 (1232) resonance.

The enhancement 1in scattering caused by the formation or
production of meta-stable states having short lifetimes on the order
of 10723 seconds occurs in states with good quantum numbers of the
strong interaction (angular momentum, isospin, parity, and spin), and
these states are referred to as resonances. Because resonances have
nonzero lifetimes, their formation or production during the scattering
process results in a time delay of the emergence of the scattered
particles with the resonance mass being identified as the center-of-
mass energy at which the peak delay occurs.

Resonances are typically described in terms of a Breit-Wigner

formula, where near the resonance energy of an elastic resonance,

r/2 (4-1)

. L~__—
TW.LJL) M-W —il/2

A similar formula, which includes a background term, exists for

nonideal and inelastic resonances. The mass and width of the

57
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resonance are given by M and I, respectively. An elastic resonance
can be identified by a phase shift rapidly increasing by an amount of
order of nm and by the counterclockwise movement of a partial-wave,
T-matrix element along a deformed circle in an Argand diagram. There
will also be a definite peak at the resonance mass in |dT/dW|. In the
past, resonances have usually been reported by giving the Breit-Wigner
resonance parameters, M and I'; however, more recently, investigators
have been reporting the location and residue of the poles of the T-
matrix in the complex energy plane. This approach has the advantage
of not necessarily depending on a Breit-Wigner-like parametrization
and the disadvantage of requiring the analytic continuation of the
amplitude into the second sheet of the complex-energy plane. The
identification of a resonance with a pole in the T-matrix enables one
to associate resonances with being new particles. According to
S-matrix theory, both stable particles and unstable resonances are
identified with poles in T or S in the second sheet of the complex-
energy plane. For the stable particle, the pole is on the real axis
below the threshold energy while a resonance pole is below the real
axis and on the second or unphysical sheet determined by the physical
branch cut in T(W) that begins at threshold. The presence of a
T-matrix pole is surer criterion for the existence of a resonance than
a rapidly varying phase shift or a loop in an Argand diagram because
these latter can occur in the absence of a resonance.l It is the

existence of a pole below the real axis on the second sheet in the
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complex-energy plane that is being used to identify resonances in this

work.

More detailed discussions about resonances are widely found in the

1

literature with excellent discussions in Subsection 4.2 of H6éhler* and

in Chapter 5 of Bransden and Moorehouse.?

4.2 THE PION-NUCLEON RESULTS

The pion-nulceon system is well-known for its wealth of partial-
wave resonances that include the first such resonance discovered, the
P33, A(1232). As described earlier, resonances can often be
identified by a counterclockwise loop in an Argand diagram. Argand
diagrams from the energy-dependent solution FP86 are given in Figure
E-1 of Appendix E for each partial wave through €= 3 and for energies
from threshold to a total center-of-mass energy of about 1800 MeV.
Their behavior varies from the highly elastic P33 that remains near
the unitarity circle as it loops through the A(1232) to the more
inelastic partial waves, such as the D33. Most of the waves show the
counterclockwise looping behavior characteristic of resonant behavior.
Indeed, partial waves S]1 and D13 clearly show two such loops, which
is strong evidence of two resonances in this energy range for each of
those waves. Only partial waves D35 and F17 show no indication of
resonant behavior. Although several waves (i.e., P13, P31, and D35)
begin by traveling along the unitarity circle in a clockwise
direction, S3] has the unique behavior of then very sharply moving
away from the unitarity circle and going into a counterclockwise

resonance loop. Of the waves shown, the D35, F17, and F35 are the
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smallest, with the smallness caused in part by the limited phase-space
available to higher angular momentum states. Although Argand diagrams
are useful for identifying resonances, they cannot serve as a rigorous
test because of the possibility of loops occurring without other
indications of resonances, such as a peak in the time delay, being
present.

Another characteristic of many pion-nucleon resonances 1is the
rapid rise in the phase shift by an amount of order n that results in
a peak in the partial cross section at the resonance energy. The
phase shifts from the energy-dependent solution are shown in Appendix
E, Figure E-3. Of all the partial waves, only five, P11, P33, D13,
D35, and F)5, show a rapid increase in the phase shift by an amount
near 180 degrees, although many of the others also had a resonance
loop in their Argand diagrams. These examples show that a rapid
change in the phase shift cannot be used as an absolute criterion for
the presence of a resonance. The four partial waves, whose Argand
diagrams showed initial traversal of the unitarity circle in the
clockwise direction, S31, P13, P31, and D35, also show a corresponding
distinctive behavior in their phase-shift plots. They have negative
phase shifts, which are caused by the existence of a repulsive
potential acting in those channels. Positive phase shifts are
correspondingly related to attractive potentials. Shown with the
phase shifts in the plots of Figure E-3 are the inelasticity (or
absorption) parameters, n. The actual quantity plotted is 1 =~ n2,

which increases from zero for purely elastic scattering toward unity
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as absorption increases. If the phase shift is given as a complex
quantity, 8§ = 6R + i61, then n = e-zsl. All the plots show an initial
inelasticity parameter of unity since the inelastic threshold is not
reached until a pion kinetic energy of 156 MeV (Ecm = 1290 MeV).
Descriptions of resonances in terms of phase-shift variation or
even via Argand diagrams have been known to be unreliable tests for
resonances. Here we use the existence of T-matrix poles near the real
axis on the unphysical sheet in the complex energy plane as a precise
test for the identification of a resonance. The results for each
partial wave from solution FP86 are given in Table 4-1. Pole
positions and residues are listed there for all three- and four-star
resonances and the single two-star resonance identified by the
Particle Data Tables3 that are within or near the energy range of
interest, below 2000 MeV. For each resonance, its status and the pole
position and residue from both solution FP86 and the Carnegie-Mellon4
(CM) analyses are given. The Carnegie-Mellon residue phases have been
modified from their reported values by a uniform increase of 180
degrees to give agreement with the VPI&SU phase convention. The
errors in the FP86 resonance parameters were computed from the errors
in the fitting parameters and the variation of the resonance
parameters with the fitting parameters. For fitting parameters pi
with statistical error Api, the error, Af, in a resonance parameter,
f, is given by
a%r
ap, 3p; "

(4-2)

@£ = (

i
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In the numerical differentiation, the variation in each parameter was
taken at 1 percent of the corresponding error. The parameter errors
were taken from the values given by the analysis program, SHSZSA, at
each cycle of the fitting process, but are not identical to the
diagonal elements of the error matrix. The large chi-squared second
derivative matrix 1is nearly singular, so numerical difficulties
require some massaging of the errors for the smaller parameters.
Consequently, the smaller FP86 errors shown here in Table 4-1 and
later in Table 4-2 are generally understated.

The resonance parameters presented in Table 4-1 show excellent
agreement between the results of this analysis and the Carnegie-Mellon
work. The only resonance for which major discrepancies exist is the
P11 (1710) and is presumably caused by the complicated structure in
this wave as described in the following section where each wave will
be discussed in greater detail. Table 4-1 also shows that this
analysis finds no resonances beyond those previously reported, and
below the highest energy range of this analysis, 1800 MeV in the
center of mass, all of the expected resonances are found except for
the two questionable one-star resonances, N(1540) in P;3 and A(1550)
in P31. In addition, the two-star A(1600) in the P33 wave is also
seen, although with a large width. An explanation for its weak status
will be presented in the next section. In the energy range between
1800 and 2000 MeV, just above the range of this analysis, two of the
predicted six delta resonance poles are seen. The observance of the

A(1905) and A(1950) poles is indicative that the effects of these two
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resonances extend significantly into the energy range of FP86. The
absence of the other four is not surprising; they just have little
effect below 1800 MeV.

In a Briet-Wigner parametrization, the magnitude of a resonance
pole residue is the elastic half-width, while the imaginary part of
the pole position gives the total half-width of the state. The total
width must obviously be greater than the elastic width, so it is
therefore reassuring to observe that the reported residue magnitudes
are all less than the magnitude of the imaginary parts of the pole
position to within the reported errors.

4.3 TOPOLOGY OF THE PARTIAL-WAVE AMPLITUDES

One of the principal advantages in the decision to parametrize the
partial waves, as described in Chapter 3, is the explicit analyticity
of the partial amplitudes. Analytic continuation into the complex
energy plane is straightforward with this parametrization and reveals
a rich topological structure for solution FP86. Each channel
threshold introduces a corresponding square root branch point, and
hence an additional Riemann sheet of the amplitude. As discussed
earlier, poles below but near the real axis on the second or
unphysical sheet of the elastic branch cut are identified with
resonances. Poles on other Riemann sheets of the complex amplitude
also exist, but typically have little effect on the physical amplitude
because of their long distance from the real axis, Zeros of the

amplitude are also found in the complex energy plane and can influence

the physical amplitude.
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Details about the poles and zeros found in solution FP86 are
summarized in Table 4-2. Features labeled as type "R" are resonance
poles on the unphysical sheet of the elastic channel. For
identification with specific resonances, the reader should refer back
to Table 4-1. Other poles, those not identified with resonances and on
the sheet introduced by the delta threshold, are labeled with a "P."
Zeros of the amplitude are naturally labeled with a "Z." The errors
in the positions of the features and in their residues shown in Table
4-2 were determined by the procedure described in the previous section
and, for the reasons explained there, are generally understated. A
pole residue has dimension of MeV and is given by,

o limit _
Pole Residue = ';,'f:wp TW) * (W - Wp)} (4-3)

where Wp is the pole (R or P) position in the complex energy plane.
In order for the '"residue" of a zero to have the same dimension as a

pole residue, the zero "residue" is taken as,

T W P (4-4)
Z . = limit { 2 }
ero Residue WaW, __(W - W,)

with Wz being the position of the zero. Note that except for the S§31
and the P13 waves, the zero residues are small in magnitude.

To aid in more detailed discussions of the topology of the partial
waves, contour plots of the T-matrices in the complex energy plane for
those waves exhibiting interesting poles and zeros are presented in

Figure 4-2. On the contour plots, squares indicate resonance poles



70

COMPLEX W-PLANE FEATURES FROM SOLUTION FP86

TABLE 4-2.
POSITION (MeV) RESIDUE*
PARTIAL
WAVE TYPE* Re {W} -Im{W} frl (MeV) 0 (deg)
S11 R 1461 + 14 103 + 6 63 +9 152 + 7
z 1587 + 17 55 + 4 1+4 -53 + 18
P 1654 + 16 83+ 4 84 +10 143 t 4
R 1655 + 16 58 + 3 41 + 4 123 + 3
S$31 z 1587 + 9 36+1 33+1 153 + 3
R 1596 + 8 57 £ 1 14 + 1 65 + 1
P11 R 1351 + 6 99 + 1 66 + 1 731
P 1394 + 14 [l14 + 1 144 + 3 108 + 1
z 1587 + 4 78 + 1 11+5 52 + 13
R 1611 + 14 {128 + 2 86 + 4 -8+3
R 1632 + 15 79 + 2 42 + 2 -153 + 7
Z 1705 + 7 74 + 2 2+1 22 +3
P13 R 1687 + 6 26 1 2+1 14 £ 1
z 1695 + 3 131 31 +4 -41 + 3
P33 R 1212 + 13 51 +1 56 + 1 151 + 1
R 1588 + 15 154 + 2 41 + 1 71+1
Z 1588 + 4 63 +1 0.40 £ 1 -109 + 2
Dy3 R 1508 + 9 60 £ 1 38 +1 170 £ 1
Z 1649 + 15 64 + 2 12 + 17 -45 + 23
R 1673 + 9 57 + 1 7¢+1 -159 + 7
Dys R 1664 + 12 67 £ 1 31 +1 164 £ 1
D33 z 1325 + 6 161 £ 5 0.00 £ 1 55 + 8
Z 1362 + 8 31 t4 0.03+1 -77 £ 30
R 1657 + 6 137 £ 2 19 +1 163 + 2
D3g z 1312 + 10 J105 + 2 0.02 +1 -55 + 3
Fis R 1669 + 7 54 + 1 321 161 + 1
F3s z 1576 + 7 55 + 2 0.01 +1 31¢1
R 1855 + 5 95 + 1 17 1 170 £ 1
F37 R 1879 + 6 105 + 1 54 + 1 158 + 1

*See text for explanations.
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(R) on the unphysical sheet, diamonds mark poles (P) on the sheet
introduced by the delta threshold, circles locate zeros (Z), and the
triangles mark the delta branch point. Shown with the contour plots
of log |T|2 are linear plots of the T-matrices on the physical axis.
The solid lines are Re {T} and the dashed lines are Im {T}. A measure
of the inelasticity is shown by the "x's" that label Im {T} - |1i2.

Figure 4-2a displays the two resonance poles of the S;; wave. The
top contour plot shows the unphysical sheet and a zero between the two
poles, with all three features influencing the physical amplitude.
The structure in the other sheet of the pi-delta branch cut is
displayed in the bottom plot. An additional pole is seen to exist on
this sheet, but it is a long distance from the physical axis, having
to go around the pi-delta branch point to reach the real axis.
Consequently, it has negligible effect on the on-shell amplitude.
Simpler structure is seen in the S3) wave shown in Figure 4-2b. Here
a closely spaced zero and resonance pole are shown with both obviously
influencing the real axis.

The most complicated structure of any of the waves is seen in the
P); wave as shown in Figure 4-2c. Again, the top plot displays the
unphysical sheet of the elastic cut, and the bottom plot rotates the
pi-delta branch cut to reveal the structure in the new sheet. The
Roper resonance, N(1440), is seen to lie near, but below the pi-delta
branch point. With the Roper is a nearby pole just around the
pi-delta branch point from the real axis. Its proximity to the Roper,

its relatively short distance to the real axis, and its significant
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residue result in this extra pole having some effect on the physical
amplitude. This second pole is relatively stable. Its presence was
observed early in the analysis before the explicit K-matrix poles were
introduced into the energy-dependent parametrization scheme. Although
this extra pole cannot properly be called a resonance, its impact with
the Roper on the on-shell amplitude is probably responsible for the
split Roper proposed by the older results of Ayed etal,,% but discounted
by other recent analyses.l»4,6 The N(1710) resonance in the P]] wave
also has a complicated structure: two poles and two zeros on the
unphysical sheet. The bottom pole is shielded from the real axis by
the upper pole and the two zeros. Its validity is questionable because
of the lack of effect on the real axis, and it may be just an artifact
of the parametrization for this wave. Because there is not just a
simple pole for the N(1710), but rather the intertwined =zeros and
poles as shown, there are significant differences in the resonance
parameters from FP86 and the Carnegie-Mellon results, as noted
earlier.

To further investigate the structure of the Roper resonance, the
sensitivity of the P;; pole positions to the coupling strength of the
explicit K-matrix pole is examined. Recall from Chapter 3's energy-
dependent parametrization that parameters 17 and 18 are the strengths
of the coupling of the explicit K-matrix pole to the elastic and
inelastic channels, respectively. Figure 4-3 shows the trajectories
of the T-matrix poles as the elastic coupling constant, g,, and the

inelastic coupling constant, g;, are varied between 0.1 and 1.0. The
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positions of the poles at the FP86 defined values of 8¢ = 0.3245 and
g; = 0.3569 are shown with the squares and diamonds described earlier.
Arrows denote the direction of the movement as the indicated coupling
increases. As expected, the Roper resonance pole moves about the
delta branch point and closer to the real axis as the elastic coupling
increases. As the non-resonant pole moves towards the second sheet,
it also slides further away from the real axis. Although this pole
continues to have some effect on the real axis for a range of coupling
strengths, the true resonance pole dominates. When the inelastic
coupling is increased, both poles move closer to the real axis and
nearer to the delta branch point. The trajectories even cross, but
the two poles never coalesce. As the inelastic coupling increases,
the second pole moves to a position where it could be classified as a
resonance. The interpretation of the movement of the T-matrix poles
as the K-matrix pole coupling is varied is not conclusive. However,
the movement is suggestive that the second pole might be related to a
resonance that couples, at most, only weakly to the elastic channel.
The P;3 and P33 partial waves displayed in Figure 4-2d show
somewhat simpler structure. At the P13 N(1720) resonance is a pole-
zero pair near the real axis. Other analyses4 state a larger width
for this resonance than observed here. The presence of the zero 1is
responsible for this difference. Without it obscuring part of the
effect of the pole, the pole would have to be farther from the real
axis. It might be possible to reparametrize this wave to do away with

the zero, but that investigation remains for the future. The delta
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resonance is seen in the bottom plot as a strong pole near the real
axis without any nearby zeros. The two-star resonance pole, P33
A1600, does have a zero between it and the real axis. Although it has
a small residue, the zero blocks much of the effect this pole would
otherwise have on the real axis, and this mitigation is presumably the
reason the resonance is only weakly observed. Without the zero, the
pole's presence would be obvious on the physical axis. With the zero,
the pole has a reduced effect on the real axis and the resonance is
difficult to observe.

The D-wave, pole-zero structures shown in Figures 4-2e and 4-2f
are even simpler. The zeros do little to mitigate the effect on the
real axis of any of the observed poles. All the D-waves except the
D35 have isolated poles, and the D13 also has a pole-zero pair.
Isolated zeros are seen near the pi-delta branch point in both the D33
and the D35 waves of Figure 4-2f, and this proximity renders their
actual presence questionable.

The three F-waves shown in Figures 4-2g and 4-2h all have well
isolated resonance poles, although more complicated structures could
conceivably exist at higher energies. The F35-wave of Figure 4-2h
exhibits, in addition, a relatively low-lying zero.

The presence of poles of ITF in the complex energy plane is
expected, and they can be identified with resonances if they are near
the real axis. The interpretation of the zeros is more difficult. In
nonrelativistic Schrodinger theory, Levinson's theorem for multiple

bound states requires the existence of partial-wave zeros, as has been
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demonstrated for the square well potential.7 However, it is not clear
how this aids the interpretation of the zeros seen here, other than to
say that zeros are expected. If resonance poles are "sources'" for the
interaction, then the zeros are '"sinks" that limit the poles' impact
on the real axis, consistent with unitarity. The examination of solu-
tion FP86 has found both isolated poles and zeros and pole-zero pairs.
In some cases such as the S31, P13, and P33 waves, the zero has a
major impact on the effect the associated pole has on the real axis.
It is conceivable that some of these zeros are not required to fit the
data and could be removed by changing the position of the pole. This
possibility should be pursued in future investigations, although
preliminary efforts in that direction have not yet had any success.

4.4 Near-Axis Poles

8 report the presence

In the nucleon-nucleon system, some analyses
of narrow poles in the partial-wave T-matrices near the real axis of
the complex energy plane. It is interesting to investigate the
possibility of the existence of such poles in the pion-nucleon system
because none of the models described in the next chapter predict them
and it would be useful to rule out their existence. That goal can be

addressed by testing the impact on chi-squared when a narrow pole is

imposed on a partial wave using a product S-matrix formulation,

S *S (4-5)

S BACKGROUND RESONANCE ~

TOTAL =

For the purpose of this investigation, the background S-matrix factor

is taken explicitly from the energy-dependent parametrization
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described in Chapter 3. The resonance S-matrix factor is given by a

Breit-Wigner parametrization,

- a+ i*h (4-6)
(c— WR)+i*(d - WD

1
Tresonance = 5; Sresonance =V

for real numbers a, b, c, and d and complex energy, W = WR + i*WI,
For this investigation, the values of a, b, ¢, and d are fitted
assuming an extra pole in only one partial wave. The initial values
chosen for the Breit-Wigner residue parameters (a, b) were each about
0.1. The complex pole position parameters (¢, d) were initialized at
(1200, -1), (1500, -1), and (1700, -1) MeV for each of three separate
sets of calculations. After the Breit-Wigner parameters are optimized
for the partial wave being investigated, all the parameters including
the K-matrix parameters are varied to minimize chi-square. This
process was repeated for each S-, P-, D-, and F-wave and for each of
the three initial near-axis resonance pole positions. All partial
waves other than the one being examined are defined by solution FP86.
The results of these investigations are given in Table 4-3, showing
the change in chi-square after optimizing the Breit-Wigner parameters,
and also after varying all the parameters for that wave.

For most of the cases considered, chi-square changes by an
insignificant amount to justify the possibility of the extra pole.
For those waves where the decrease in chi-square was greater than 10,

the Breit-Wigner parameters are shown in Table 4-4. The residues'

magnitudes (Val + b2) for these are all small compared to the pole
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TABLE 4-3. CHANGE IN CHI-SQUARE WITH INCLUSION OF NEAR-AXIS
POLE COMPARED TO SOLUTION FP86
INITIAL VALUE OF REAL PART OF RESONANCE POLE
PARTIAL
WAVE 1200 1500 1700
S11 W, 0. 0.9, 0.9 |-0.2, -1.°
s31 -a., -4 -3., -8 -0.2, -0.8
P1y +3., 0.5 -5., -6 -0.7, -6.
P13 -3., -3. -27., -2 -8., -29.
P3; 7., -1 5., -6 -17, -19.
P33 -6., -6. -8., -9 -12., -12
Dy3 -1., -1. -8., -9. -2., -2.
Dys +0.5, -0.5 2., -2 -2., -0.3
D33 -5., -18. -3., -7. -2., -13.
D3s -5., -5. -3., -3. -14., -18.
Fis +2., -19. 9., -12 2., -2
Fi7 -3., -3 -21., -21. -3., -3.
F3s -4., -4 -12., -12 9., -9.
F37 -2., -4 -14, -14. -25., -27.

*After fitting resonance parameters
*After refitting all parameters for the searched wave
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TABLE 4-4. NEAR-AXIS BREIT-WIGNER POLE PARAMETERS
POLE POSITION RESIDUE
(c + id) (a + ib)
WAVE c d 100%a | 100*b
P13 |1502.6 | -7.6087 |6.91a3 |0.12222
Py 1705.1 |-3.9313 [2.7161 |5.6324
P33 1702.2 |-0.93372 |-2.0196 |1.498
D35 1711.6 |-2.493 |1.2844 |1.4073
Fi7" 1498.1 |-3.4236 |1.5562 |2.2023
Fi5" 1500.5 |-3.8956 [1.4469 |1.7365
Fap' 1502.7 |-3.5666 |0.61382 |2.9028
F3;™  |1714.0 |-4.0284 [0.37903 |1.9888
Pi3™  |1511.8 |-2.4855 [5.5175 |3.5079
D33""  [1703.2 |-1.3354 [-2.1832 |1.9353
D33 1195.2 |-1.3413 |-1.9954 |1.6074
Fis  |1283.0 |-32.445 |5.5005 |-3.2483
Fis**  |1502.1 |-3.4115 [0.69244 |-1.4424

*Wave where chi-square decreased by more than 10
after fitting only Breit-Wigner parameters

**Have where chi-square decreased by more than 10,
only after refitting entire wave.
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half-width (idi), typically 1 percent, and thus the near-axis poles are
highly inelastic.

For a more in-depth examination of these partial waves, the
partial T-matrices for those four cases with a chi-squared reduction
of greater than 20 are shown in Figure 4-4., The differential cross
sections, polarizations, and spin rotation parameters were calculated
for each of these waves at the pole energy and compared with results
for solution FP86. The differential cross sections seldom changed by
more than 0.1 millibarn/steradian, and then only slightly. The
polarization values never differed by more than 0.05 and the rotation
values by more than 0.03. Although these differences are small, it is
difficult, but possible, to measure differential cross sections and
polarizations to within these accuracies. Calculating chi-square for
the experimental data base in a 30-MeV neighborhood of each Breit-
Wigner pole and comparing with solution FP86 show that the decrease in
chi-square for these waves is primarily caused by differential cross-
section data. In only one of the four cases, F3; with a pole at 1714
MeV, is the decrease primarily caused by polarization data. In
conclusion, these results show that the data do not preclude the
existence of near-axis poles, but neither are they required by the
data. To completely disprove their existence requires the measurement
of differential cross sections and polarizations to better than the
accuracies stated above over a wide range of angles and at small steps
in energy. The needed energy step size is illustrated by the close

spacings of the pole positions in Table 4-4, on the order of 1 MeV.
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5. THEORETICAL MODELS

The current theory of the strong interaction 1is, of course,
quantum chromodynamics (QCD). QCD is analogous to the theory of the
electromagnetic interaction, quantum electrodynamics (QED), but,
whereas there exists only one type of electromagnetic charge, there
are three types (colors) of color charge. Also, whereas the QED
exchange boson, the photon is uncharged, the carrier of the strong
force, the gluon does carry color charge. Presumably these
differences are responsible for the experimentally observed facts that
quarks are confined into the color singlet combinations of mesons and
baryons (quark confinement) and that within hadrons, the quarks are
nearly free (asymptotic freedom). The differences also result in a
theory so complicated that no exact solution has been (can be?) found,
and it has been necessary to develop models that are approximations to
the full theory. Consequently, the models only contain part of
physics needed to fully explain the experimental results. Indeed,
with the current state of knowledge, the experimental data are used to
improve the models rather than the models used to make precise
quantitative predictions. The models cannot be expected to agree
completely with the phase-shift results presented here, but they can
provide useful and important insight into the physics of the strong
pion-nucleon interaction.

In this chapter, three classes of the most popular and successful
of such models are described and their specific applications to the

pion-nucleon problem are discussed. The three model types presented
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here are the constituent quark models, the bag models, and the Skyrme
soliton models. The approach used in this chapter is largely tutorial
with only previously published results discussed. Particular emphasis
is given to using the results of these models to "explain" the phase-
shift results. No new theoretical calculations have been performed
and, indeed, would be outside the scope of this effort.
5.1 THE CONSTITUENT QUARK MODEL

5.1.1 OQverview

The first class of models to be examined here is the non-
relativistic quark potential models, or constituent quark models in
which baryons are composed of three valence quarks that define the
baryon quantum numbers. Although these models suffer from the
liability that the quarks are treated in a nonrelativistic fashion,
they benefit from the ease in which center-of-mass motion can usually
be separated from the internal degrees of freedom. Baryon wave
functions must exhibit the permutation symmetry appropriate to their
three quark composition and also must have total angular momentum as a
good quantum number. Appendix F describes the ensuing baryon
spectroscopy, showing how the baryon states may be classified
according to standard group-theoretic language. Good summaries of
this class of models are found in References 1l and 2.

A variety of quark-quark potentials have been used in these models
to account for the observed quark confinement. Included among them
are logarithmic,3 linear,4,5 and power lawb forms for the confining

potential's dependence on quark-quark separation. One of the most
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useful and successful forms is the quadratic or harmonic oscillator
model made popular by Isgur and Karl.”"10 1n al1 cases, the confining
long-range potential is flavor- and spin-independent, except for
possible constituent quark mass dependence. DéRujula etal.ll have shown
how QCD can give rise to short-range, spin-dependent forces that might
account for much of the splitting within supermultiplets. They argue
that in analogy to QED, one-gluon exchange (OGE) results in a short-
range force between quarks of the same form as the two-body Fermi-
Breit interaction. For quarks labeled by i and j, the baryon

Hamiltonian that they propose is:

2

p; 2
= —_— - = -1
H—-LVPQ,%wJ+ E (m, + 2m.+'")+.é(a%?i 3QQSU,(5 )
i i i>j

The constants a and ag are the electromagnetic fine structure and
strong coupling constants, respectively, for quarks of charge,
effective mass, position and momentum, qj, mj, ri, and pi. The inter-
action responsible for binding the quarks is denoted by L. It could
include any of the potentials described earlier. The three dots
denote any missing relativistic corrections to this Hamiltonian. The

two-body Fermi-Breit interaction for r = rj = rj is given by 5ij:

(5-2)
1 1 3 .
(—; + —;)S(A],Danmn

m. m.
L J

n
2
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2n : —
3 . . .
- 3m‘.m [ol .y &% (r) 1, Fermi contact term hyperfine interaction
-3 (3 M. ?)—oi 0 .], tensor term hyperfine interaction
4r°m.m
L{-}—( PRI )
T L TR T R
J Jj
+ — |(FxPp) 0. -(rxp)- r? lspinorbit(L- S)
’"rl L J J [
L 3.3« 6 T (5-2)
2mm;r Py * P; ’ ;i

Identification of the various terms is indicated as shown where
0i's are the usual Pauli spin matrices. DéRujula rewrites equation 5-1
as H = Hp + H' with:

H =L+ z (m +p?/2m) (5-3)

and H' including everything else with m being the effective
(constituent, as opposed to current) and assumed equal mass up-and-
down quarks. The spin-dependent potential, H', splits the degenerate
supermultiplet, eigenstates of Ho. DéRujula etal. also show how the
Fermi term causes the nearly degenerate quark spin 3/2 nucleon (8,4)
and quark spin 1/2 delta (10,2) members of the ({70, L=1"}

supermultiplet to lie above the quark spin 1/2 nucleon (8,2) members

of the multiplet.
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5.1.2 The Harmonic Oscillator Model

Although, as described above, a variety of forms has been used for
the long-range quark binding interaction, the emphasis is on the
quadratic form in this chapter. In their first works, Isgur and
Karl7+8 extended the work of DéRujula by explicitly calculating the
Breit contribution to {70, L=1"} supermultiplet splitting by using
harmonic oscillator wavefunctions as a zero-order approximation to the
true spatial wavefunction. The harmonic oscillator model has the
advantage that the spatial wavefunction reduces to the product of two
independent spherically symmetric oscillator wavefunctions of the
identical spring constant with center-of-mass motion separating

completely out. For the nonstrange sector of interest here, we define

- _ 1] = o
em T3 Mt gty
->_ l—> -—
p = 2 0} - r2)
- 1 = —
A= \/;(rl +r, = 2r,)- (5-4)

They obtain the harmonic confining Hamiltonian as follows:

1 2 2 3 2 2 (
- 4 5-5)
HHO 2m(pp+p)‘)+2K(p + 1°)

that they use as their unperturbed Hamiltonian. In comparison with
DéRujula, they include the effects of the nonspin-dependent part of

the Fermi-Breit interaction in the unperturbed energy and they omit
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the spin-orbit term. The splitting was found to be one-half of the

7 In

nucleon-delta mass difference, in good agreement with experiment.
fact, they used the nucleon-delta mass difference to fit the one
parameter in their model, the overall strength of the color magnetic
hyperfine interaction. Isgur and Karl also explicitly calculated the
contribution caused by the tensor part of the hyperfine interactions.®
They found weak mixing within the two JP = 1/27 nucleon states and
strong mixing within the two JP = 3/27 nucleon states, again in good
1,12

agreement with the empirical results of Hey efa The splitting

caused by the tensor term is caused by the mixing between states of
different quark spin that it produces. The operators have S = L = 2.
On the other hand, the Fermi term has S = L = 0 and only connects
quark pairs of zero orbital angular momentum. The resulting predicted
masses for the low-lying, negative-parity baryons are compared in
Table 5-1 and later in Table 5-4 with the results of the reported
phase-shift analysis. The higher lying negative-parity states are
presumably caused by N = 3 excitations that Isgur and Karl do not
address.

The successes of this model® as shown with the low-lying,
negative-parity baryons demonstrate the importance of the hyperfine
interaction in breaking the {70,1°} degeneracy. The Fermi-Breit
interaction also apparently gives the correct relative strength
between the Fermi and tensor terms of the observed hyperfine inter-

action. Conversely, there appears to be little evidence for the pres-

ence of the expected spin-orbit force. Isgur and Karl estimate that
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TABLE 5-1. HARMONIC OSCILLATOR MODEL PREDICTIONS OF LOW-
LYING, NEGATIVE-PARITY NONSTRANGE BARYON MASSES

STATE ISGUR AND KARL PREDICTIONSS PHASE SHIFT*
LZI.ZJ (MeV) (MeV) (MeV)
S11 (1535) 1490 1461
S11 (1650) 1655 1855
D13 (1520) 1535 1508
D13 (1700) 1745 1673
D15 (1675) 1670 1664
$31 (1620) 1685 1596
D33 (1700) 1685 1657

*Mass as given by pole from Table 4-1
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the spin-orbit force can be present with at most 10 percent of its
expected strength, speculating that the dominance of the spin-spin
force over the spin-orbit force may be caused by a highly anomalous
quark-gluon color magnetic moment. They also suggest and prefer an
alternative explanation that the spin-orbit contribution from OGE is
largely canceled by the spin-orbit contribution of the confining
potential through Thomas precision.

Isgur's and Karl's analysis of the positive-parity, excited,
nonstrange baryons9 illustrates the added complication in these states
as mentioned in Appendix F. For purely harmonic SU(6) invariant quark
confining forces, the positive-parity N = 2 states will lie in the
degenerate multiplets of (56%, LP = 0*), (56, LP = 2+), (70, LP = 0%),
(70, LP = 2+), and (20, L = 1*). Unlike the negative-parity states
where a purely harmonic confining interaction with hyperfine splitting
agrees well with experiment, the observed positive-parity states do
not lie in the degenerate multiplets listed above and predicted by the
harmonic confining interaction. There must be an anharmonic
contribution to the confining force, and, for these analyses, Isgur
and Karl add an undetermined anharmonic term, U(rij), to the confining
potential:

H= Zmi+H°+thp

Ho = HHo + z U(rij) ) (5-6)
i>)
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Because U(rij) is unknown, it is not possible to obtain exact
solutions to the eigenstates of H, as it was in the negative-parity
states where the presence of U(rjj) is not needed. In the harmonic
oscillator model, lack of knowledge of U(rjj) is not fatal to the
analysis because first-order perturbation theory shows in a
straightforward fashion that the =zero-order energies of the five
multiplets with N = 2 reduce to functions of two parameters, Eo and e,
that can be roughly fitted by the observed states with Epo = 2,020 MeV
and ¢ = 420 MeV. The five multiplets - (56%, LP = 0+), (56, LP = 2+),
(70, P = 0*), (70, LP = 2+), and (20, LP = 1*) then have eigenmasses
of Eg - ¢ = 1,600 MeV, Eo - 2/5 ¢ = 1,850 MeV, Eo - 1/2 ¢ = 1,800 MeV,
Eo - 1/5 ¢ = 1,935, and Eo = 2,020 MeV, respectively. The excited,
nonstrange, positive baryons in the N = 2 oscillator model, as
predicted by Isgur and Karl, along with their zero-order masses are
given in Table 5-2. As the authors note, the (56%, 0%) naturally
emerges as low-lying and can be identified with the Roper resonance.
The unobserved (20, LP = 1*) is pushed up high in energy.

Once the zero-order eigenmasses have been established, Isgur and
Karl use the hyperfine interaction and harmonic oscillator wave-
functions to mix the states within each of the SU(6) multiplets and
also to mix states of the same JP and isospin between the various

multiplets. A summary of their mass predictions and suggested

identification with states from the Particle Data Tablel!3 is given in
Table 5-3. For the states that can be identified, the agreement is

again very good. The major apparent problem is the prediction of many
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states, including both of the high predicted mass (20, LP = 1+)
states, that cannot be matched with observed pion-nucleon resonances.
The two low-lying resonances of questionable wvalidity, the one-star
P;3 (1540) and P3; (1550), are not predicted in Isgur's and Karl's
model. Again, the success of this model indicates little evidence for
the presence of any spin-orbit contribution to the baryon
spectroscopy. Flavor-independent quark confinement forces split by
hyperfine forces produce a good match to the low-lying nucleon and
delta states.

In their next major work,l0 Isgur and Karl re-examine the masses
of the ground-state baryons, The major impact in the nonstrange
sector including some second-order effects in the hyperfine inter-
action is to allow mixing between the ground state (56, P = o%)
multiplet and the excited N = 2 positive-parity states described
above. Since the nucleon and delta masses were used to fit the masses
of all members in the ground-state multiplet, the ground-state masses
for the nonstrange baryons obviously are not influenced, but the
masses reported above for the excited postive-parity baryons should be
adjusted slightly.

The problem with the excess of positive-parity states over those
seen in pion-nucleon phase-shift analyses is reconciled by Isgur and
his new collaborator, Koniuk,14’15 when they show that the unobserved
states couple only weakly to the elastic channel. Using the same
harmonic oscillator model of quark confinement with hyperfine

splitting, as discussed above, to describe baryon structure and a
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simple nonrelativistic model of baryon decay, they compute the baryon
decay amplitudes for pseudoscalar-meson and photon emission. Their
baryon decays proceed by a single-quark transition, and the
nonrelativistic model for decay was chosen to be consistent with the
nonrelativistic nature of the constituent quark oscillator model.
Koniuk's and Isgur's analysis showed that the "missing" states are, in
general, too inelastic to be easily seen in partial-wave analysis.
The observed states that remain are in good agreement in mass (as was
shown earlier) and in the size and magnitude of the decay amplitudes
considering the crudeness of the decay model. The authors also
demonstrated the necessity of the hyperfine interaction in inducing
the appropriate mixing responsible for the decoupling of the unseen
states.

The oscillator model is extended to the N = 3 excitations in the
work of Forsyth and Cutkoskyl®é to include the next set of negative-
parity states. Only the nonstrange baryons are considered. This work
differs from that of Isgur and Karl7-10 in allowing the relative
strength of the Fermi contact and tensor terms of the hyperfine
interaction to vary independently. Unlike Isgur and Karl, these
authors conclude that the tensor contribution to the spin-spin
interaction is small enough to not be needed to fit the data and that
the strength of Fermi term varies with parity. Although Forsyth and
Cutkosky omit the two-body, spin-orbit force as do Isgur and Karl,
they do include a small three-body contribution. Ten parameters were

fitted in constructing their Hamiltonian, four from the anharmonic,
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two-body, spin-independent, confining potential. The baryon decay
model they use is more .sophisticated than is Koniuk's and Isgur'sl4,15
in that the model included dependence of the elastic width on the spin
and orbital state of the so-called "spectator" quarks. Forsyth's and
Cutkosky's predictions for the masses and group composition of the
nonstrange baryons are shown in Table 5-4 for states up to about 1800
MeV for comparison with the phase-shift analysis reported here. Also
shown are similar results from Isgur and Karl. The most obvious
difference in composition for the two oscillator models occurs in the
s11 (1535), S11 (1650), and the troublesome Roper P1] (1440). The two
one-star resonances in this energy range, P13 (1540) and P31 (1550),
are neither predicted by the oscillator model nor seen in this work.
Two predicted N = 3 states at 1809 MeV, an S;;, and a D;3 are not
seen. In agreement with Koniuk and Isgur,l4,15 Forsyth and Cutkoskyl6
observe that these two and many higher lying N = 2 and N = 3 states
are largely decoupled from the elastic pion-nucleon channel and are
expected to be difficult to observe.

5.1.3 Deformation in the Harmonic Oscillator Model

The limitation to spherically symmetric oscillators in Isgur's and
Karl's model 1is relaxed in the work of Bhaduri and his
collaborators.17-20 Although their ground states remain nearly
spherical, they assume that in the excited states the valence quarks
should no longer be modeled with spherical oscillators, but instead

with a deformed oscillator potential. In their first paper on the

subject,17 the authors examine qualitatively the positive-party,
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excited, nonstrange baryons and show how the resulting strong
deformation is responsible for the low-lying P1] (1440). The more
excitation quanta a state has, the more deformed it will be and,
hence, the lower in energy it will be with respect to the spherical
model.

In their more quantitative paper,l8 Bhaduri etal. explicitly
examine the nonstrange baryons for states up to the lowest N = 3
levels. By initially assuming the quarks to be noninteracting and
then separating out the center of mass, they obtain the unperturbed
Hamiltonian, Hp, for the deformed oscillator

_ 1 (a2 2 m< 2(2 2 ) (5-8)
H,= 2m(pp+pk)+2—'-'-°’i pi+‘\i)

as compared to equation 5-5. They then borrow from nuclear physics

the concept of volume conservation, which they implement through the

condition,

to obtain the eigenenergies after minimization;

E = ha [e“(Nx+1) +eB(Ny + 1)+ e @*D (N, +1

1 (Nv +1) (Nz + 1)
a==1In - 3 I
3 N +1)
y
1 N + DN, + Dy (5-9)
B = 5 in

N + 17
y
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where the total number of excitations N = Nx + Ny + Nz. The intrinsic
states of proper permutation symmetry are produced from the ensuing
deformed oscillators in which the ground states remain spherical and
the N = 1, N = 2, and lowest N = 3 state are all prolate except for
the completely antisymmetric (spatially) N = 2 state with Nx = Ny =1
and Nz = 0. These intrinsic states no longer have quark orbital
angular momentum, L, as a good quantum number, but instead states of
good total angular momentum, J, must be formed by projecting out
states of good L and coupling to quark spin 1/2 or 3/2. In addition
to the lowering of a states energy because of deformation, the
projecting out of states with L = 0 reduces the energies even further
as seen by the low energy of the P11 (1440). Those states of a given
SU(6) multiplet with the lowest value of L then become a band head for
a series of rotational bands with L = 0, 2, 4, ... for the positive-
parity prolate states and L =1, 3, 5, ... for the negative-parity
prolate and the positive-parity oblate band.

The intrinsic unperturbed eigenstates are then used to diagonalize

the full Hamiltonian that they choose as
= 5-10
H—K+H0+HC+ZU(rU), ( )

where K is a constant (-286 MeV), H. is the Fermi contact term of the
hyperfine interaction, and U accounts for any missing short-range
interaction. U is about half the strength of Isgur's and Karl's

similar term. Bhaduri etal. ignore the tensor term of the hyperfine

interaction because they believe it to be small. They also show that
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the spin-orbit force has little effect in their deformed model, so
they omit it too. They do need to retain the Fermi contact term to
obtain the proper mixing of the {56, N = 2} and {70, N = 2} states
needed to explain the radiative decay amplitude of the Py; (1440) and
Py, (1710). Diagonalizing H then gives the intrinsic energies and
properly mixed wavefunctions that form the bandheads for the

rotational spectra having energies:

32 \ 42
ElL) = Eimimc T < L*> +?I-L(L+l) (5-11a)

for the positive-parity prolate bands with L = 0, 2, 4, ... and for

the negative parity and oblate bands with L =1, 3, S5, ...t
2 2
EL) = E - (<L?> - 214 o= L(L+1) . (5-11b)
intringic ~ 9] o]

The moment of inertia, I, and the expectation value, <L2>, for
these states are functions of the rotational band through their
dependence on Nx, Ny, and N;.

The resulting spectroscopy is in good agreement with the observed
states although there are some differences in detail with the
predictions of Isgur and Karl. Again, they predict a number of the
positive-parity states couple only weakly to the elastic =-N channel.
Bhaduri's deformed oscillator model naturally brings down, in energy,
the N = 2 and N = 3 states. He does not need the very strong spin-
independent central interaction, U(tij), required, but treated

perturbatively by Isgur and Karl. Perturbative treatment of Bhadrui's

weaker anharmonic term is much less objectionable.
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Bhaduri etal. next addressed, in more detail, the issue of the lack
of significant spin-orbit splitting in the low-lying baryon
states.19-20 One-gluon exchange as expected from QCD would seem to
require a stronger spin-orbit force than is seen experimentally. The
suggestion by Isgur and Karl® that Thomas precession from the
confining potential might cancel the OGE spin-orbit force is only a
partial solution since it is applicable only to the nucleon states.
The two spin-orbit forces would reinforce in the delta states, and
there must be an alternate solution. Gromes2l has suggested that the
scalar confining potential might be nonlocal, leading to a spin-orbit
force that can compensate for the OGE spin-orbit team. Bhadrui etal.
propose a different answer. They consider quarks coupling to pions in
addition to the gluon coupling resulting in a one-pion-exchange (OPE)
potential similar to the OGE interaction. Their revised Hamiltonian
is, therefore,

(5-12)
-— 4
H = H; + VOGE + VbPE'+ Véo
where
Voce = VcG coulomb plus Darwin terms
+Vs®  Fermi spin-spin term
+ VTG tensor hyperfine term
+ VsoG gluon-exchange spin-orbit
Vope =Vs" central spin-spin term
= V7" tensor hyperfine term

Vgo = phenomonelogical Thomas one-body, spin-orbit term.
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They diagonalize the Hamiltonian without the various spin-orbit and
tensor spin-spin terms using the deformed oscillator wavefunctions
described earlier, and they project out the states of good L to
generate the rotational spectra. They then diagonalize the remaining
terms after constructing the states of good J to completely specify
the splittings and mixings. The additional OPE contribution to the
spin-spin force allowed the use of a strong coupling constant one
third of the value in the original analysis and, therefore,
correspondingly reducing the strength of the OGE spin-orbit force.
Deformation in the N = 1 states further reduces the spin-orbit
contribution in these states. The one-body, spin-orbit force cancels
the remaining OGE spin-orbit force. Thus, Bhaduri claims that
including OPE interactions account for the lack of significant spin-
orbit splittings.

5.2 THE BAG MODEL

5.2.1 The MIT Bag

One of the most successful extended models of hadrons has been the
bag model in which the quarks are explicitly confined to a region of
space, the bag, having a constant postive potential energy density.
As originally developed by Chodes, Jaffe etal.2? the so-called MIT Bag
Model was motivated by two important features of the‘quark theory of
the strong interaction, QCD: 1) asymptotic freedom and 2) quark
confinement. Although it has not yet been possible to demonstrate a
mechanism for quark confinement based on a proof using QCD field

theory, no quarks have been isolated experimentally. With the
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confined quarks forming a fundamental triplet representation of SU(3)
color, the bag model ensures?? that only color singlet combinations of
quarks exist as physically realizable states. Asymptotic freedom
results from the free or nearly free behavior of the quark fields
inside the bag. The colored quarks are, at most, weakly coupled
through quark-gluon interactions that account for the quantum numbers
of the observed hadrons. It is only near the bag boundary that the
quarks experience the strong force of the confining pressure.

The bag model is described by the M1122,23 group through the

action for a Dirac field (without quark-gluon interactions),

1 —_
W= [v x|z iGAw - mTy - B|, (5-13)

where
B - constant energy density that provides the confining pressure
V - volume of the spatial region referred to as the bag.
For colored quarks having a flavor-color index, a, varying this action
results in the following equations of motion inside the bag and linear
boundary conditions on the bag surface for each field degree of

freedom

iy, = m y, (inside bag) (5-14)

inpyu g, = @, (onbag surface), (5-15)
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wvhere n, is the covariant four-normal to the boundary surface of the
bag. In addition, there 1is a quadratic boundary condition that
guarantees that the phenomenological pressure, B, is balanced at each
point on the surface by the pressure of the constituent quark fields,

S n T w, = 2B (5-16)

a

The equations of motion and boundary conditions are obviously Lorentz.
invariant as well as causal and local. In this version of the bag
model, B is the only parameter of the model and should be uniform for
all hadrons with the size of the bag scaling as (1/3)%.

Even the physically simple model, as given by equations 5-13
through 5-16, is not amenable to an exact solution, Several
approximations are possible, such as treating the bag as a static
spherical bag and assuming that the quarks are massless. The first
calculations?3 made with the bag model used both of these assumptions,
resulting in a bag radius of 1.37 fermis. Reasonable values for the
gyromagnetic ratio, axial-vector charge, and charge radius for the
nucleon were determined in this calculation, Golowich24125 firgt
investigated the effect of finite quark mass using the nucleon axial
vector coupling constant to calculate an effective up/down quark mass
of 122 MeV. His ground-state bag radius was 1.63 fermis. DeGrand26 et
al. expanded on the MIT model by including the effects of colored-gluon
exchange to lowest order, zero-point energy as well as quark mass to
calculate the masses and static parameters of the light hadrons. The

color-magnetic interaction split the nucleon and delta, which are
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degenerate in the original MIT model. For the proton and delta, the
bag radii ranged from 0.99 to 1.10 and 1.08 to 1.26 fermis,
respectively, as the quark mass varied from 0 to 108 MeV. More recent
and sophisticated adaptations of the MIT mode127928 have resulted in
even smaller nucleons with bag radii on the order of 0.5 fermi.

For the simple, static, spherical approximation to the bag, only
j = 1/2 quarks are allowed by the quadratic boundary condition
(equation 5-16). Consequently, for a three—quark baryon, only j = 1/2
and j = 3/2 states are allowed by the spherical bag. Higher angular
momentum states can arise only in bags that are not static spheres.
For the spherical bag, there will, therefore, be two types of quark

states in the bag, 51/2 and Py, according to the two possible states

of parity. The energy or mass of a bag state will then be given by

4 -
E= D> N.(m’+ 2/RHY + = uR? B, (5-17)
. i 1] 1] 3

i

where the sum is over the quarks in the bag of mass mj and momentum
Xi. R is the bag radius and is related to the pressure, B, by
minimizing the energy. In turn, the parameter B is typically found by
fitting to the nucleon-delta mass. The various baryons with j < 3/2
are described by the set of possible quark modes given by the quark

momentum eigenvalues of the transcendental equation,

x (5-18)
1-mR + k\[t2 + (mR)2

lan(x) =
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where k = *1 distinguishes the two possible parity states. The lowest
solution to this equation increases from 2.04 for a massless quark to
a maximum of n as the quark mass approaches infinity.

The first author to go beyond the static sphere approximation and
address nonspherical deformations of the bag was Rebbi.29,30 He
allowed the bag to perform small oscillations about the static
spherical boundary S-wave configuration but kept the assumptions of
massless and noninteracting quarks as he investigated nonstrange
baryons having orbital angular momentum L = 1, allowing one quark to
be excited to a P state. Allowing the bag boundary to oscillate
resulted in a proper treatment of the translational degrees of freedom
and caused only the states of the {70, L = 1}, representation of
SU(6) x 0(3);, to remain at low energy, agreeing with experimental
observation. The states of the other low-energy representation, {56,
L = 1}, separate into translation modes of the L = 0 multiplet and
into excited states of higher energy. DeGrand and Rebbi30+31 150
similarly investigated the effects of small oscillations on the
spectroscopy of low-energy-excited baryons. Using the j-j coupling
required for relativistic quarks, their (181/2)2 (1Py/5) and (151/2)2
(1P3/2) states resulted in the qualitatively correct number of states
and splitting but a spectrum that was too low in energy.

An alternative to exciting one of the three quarks to a P-state is
to radially excite the quark to the second S-state, resulting in
(181/2)2 (2s,/5) baryons. Bowler and Hey3? first considered this

possibility and used a color magnetic gluon interaction to split and
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mix the two otherwise degenerate nucleon P]] states at 1543 and 1646
MeV compared to the 1410 and 1780 MeV states seen in experiments.
DeCrand and RebbiJ3 also examined the radial excited states of the
quark, but, in addition, included the coupling of radial "breathing"
oscillations of the bag to these excited quark fields. Unfortunately,
they were able to only examine bosonic bags and then by analog apply
their results to the fermionic bag. Their results were, however, in
good qualitative agreement with experiment as shown in Table 5-5.

5.2.2 Chiral Bags

The MIT Lagrangian (equation 5-13) has some fundamental problems.
The confinement of quarks to the interior of bags with the associated
required reflection of the quarks at the bag surface violates the
chiral invariance of the QCD Lagrangian. In the limit of massless
quarks, the axial-vector current is not conserved at the bag boundary.
It has, therefore, been difficult to reconcile the pion of partial
conservation of axial-vector current (PCAC) with the quark-bag-model
piorx,22’23’25’26 although Donoghue's35 effort to include the effects
of spatial localization of the pion in the bag model has shown some
improvement. Also, the MIT bag generally has a radius of at least
1 fermi, which makes it difficult to picture how there could be room
in a nucleus3® for the pion exchange mechanism that dominates the N-N
interaction. Although the MIT Bag Model has had considerable success
with fitting or predicting static hadronic properties, it has not been

as successful with dynamic processes such as scattering and decay of

excited states.
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TABLE 5-5. SPECTRUM OF N AND A STAT§§
BAG MODEL OF DeGRAND AND REBBI
OF PHASE-SHIFT ANALYSIS DESCRIBED IN CHAPTERS 3 AND 4

ACCORDING TO RADIAL EXCITED
COMPARED WITH RESULTS

BAG MODEL MASS PHASE-SHIFT
PREDICTION MASS
STATE (MeV) (MeV)
N P11 1410 1351
N P11 1603 1632
N P13 1756 1687
a P33 1572 1588
a P31 1652 Not seen
a P31 1910 Not seen
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The above difficulties are related and have been mitigated with
the inclusion into the bag Lagrangian of the pion as an explicit and
fundamentally independent field.37 The pion contribution to the total
axial-vector current restores PCAC (for massive quarks) and chiral
symmetry 1s re-established. The actual incorporation of the pion
field into the bag Lagrangain has been accomplished in a number of
ways. In Chodos' original chiral model,38 chiral symmetry has been
built into the Lagrangian using a linear sigma model with ¥ y — ¥
(o+i7 - 'n>y5) y as the chirally invariant combination. He assumed
unconfined and massless pion and sigma fields coupling to the quarks
only at the bag surface. Other authors39+40 have used nonlinear sigma
models with ¥ y — ¥ exp (i T . n??/f) .

In the Little Bag Mode1,31’41'43 Brown and Rho have restricted the
pions to the exterior of the bag with coupling again at the bag
surface resulting in an increased pressure and much smaller bag, less
than 0.5 fermi. Outside the bag where pions exist, chiral symmetry is
realized in the Goldstone mode while inside the bag the chiral
symmetry is via the Wigner mode. Other models, most notably, the

Cloudy Bag Model,M'.46 do not confine the pion field at all. There

47

are even models that confine the pions interior to the bag and

"skin" models,"s’49 which allow the pion field to penetrate part way
into the bag!

In most chiral bags, the pion is allowed to couple to the bag
45-53

quarks only at the bag surface, but there are some feferences

that employ pion-quark coupling throughout the bag volume. In these
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models, the volume coupling is obtained from the surface coupling via
a unitary transformation of the quark fields and results in a
Lagrangian that gives the desired isovector S-wave scattering length

at threshold.50

5.2.3 Bags and nN Scattering

One of the main practical advantages of the chiral bags is their
ability to provide a natural means for nN interactions. Since the
delta P33 resonance dominates the low-energy, pion-nucleon
interaction, it is reasonable to ask how well the chiral bags are able
to duplicate the P33 partial wave. The answer to this question
enables one to attempt to reconcile the two distinct pictures of the
physical resonance as a dynamic pion-nucleon state and as a bare
three-quark delta bag state. Several authors“"sl"sS have addressed
this problem and are in agreement in concluding that the physical

resonance is mostly (approximately 80 percent) a delta bag, but that

36 also examined

pionic effects are not negligible. Gross and Hunter
the delta resonance but were primarily interested 1in assessing
deformations of the chiral bag. They concluded that the nonlinear
boundary condition gives a spherical nucleon but an oblate bag shape

for deltas with spin projection of 3/2 and a prolate delta for spin

projection of 1/2.

Scattering in the S-wave was first investigated by Thomas.’? He

used the volume-coupling version of the Cloudy Bag Model to obtain a
generalization of the Weinberg effective Lagrangian57 and, hence, was

able to derive the well-known result of a purely isovector S-wave
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scattering length at threshold. Subsequent analyse358’59 attempted to
extend this work to calculate S- and P-wave phase shifts. The authors
were not able to match the S-wave phase shifts very well except close
to threshold and concluded that some physics was lacking in their
approach. On the other hand, the small P-waves (P13 and P3]) and the
dominant P33 wave were in good agreement with experiment. Just as the
Roper was difficult to explain with the MIT bag (see Subsection
5.1.1), the P]] wave was also poorly described by these authors.

The P11 (1440) Roper resonance has consistently been difficult to
fully explain in quark lnoclels,6o’61 seemingly appearing at too low an
energy. As discussed earlier, the MIT Bag Model describes the Roper
as the lowest lying radial [(IS)2 (2S)] excitation of the nucleon. It
is unclear whether there are two nearly degenerate Ropers, N*(70) and
N*(56), split and mixed by direct gluon exchange as predicted by
Bowler and Hey32 or whether surface oscillations eliminate mixing,
giving two widely separated states identified as the P;; (1440) and
P;; (1700) by Close and Horgan34 and by DeGrand and Rebbi.33 Since it
is expected that the Chiral Bag Model should describe hadronic
properties better than the MIT Bag Model, it is instructive to
investigate the troublesome P]] states with a chiral model. Umland
and Duck®2+63 have done this; they studied the two low-lying radial
excitations, the symmetric N*(56), and the mixed symmetric N*(70),
using the Cloudy Bag Model, correcting for spurious center-of-mass
motion, and including pionic self-energy effects. Surprisingly they

obtained two adjacent Ropers with masses of 1418 and 1533 MeV.
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According to their results, the lower mass state is predominately
N*(56) and couples more strongly to the nN channel than does the
higher state. Consequently, the 1533-MeV state may be difficult to
observe in experiments. Further supporting confidence 1in these
results is the author's calculation of N* decay rates that are in good
agreement with experiment. If the two radial states are nearly
degenerate, as determined by Umland and Duck, what is the explanation
of the observed P11 (1710) that some authors33:64 claim to be the
higher of the radial excitations? Umland and Duck also examine this
state and suggest that the P31 (1710) is a (15)3 + TE gluon state.
5.3 THE SKYRME MODEL

Another model of the strong interaction that has experienced
considerable recent interest is the Skyrme model, based on ideas that
he originally proposed over 25 years ago.6S At that time, Skyrme
proposed a unified, but nonlinear field theory of mesons and baryons
in which the fundamental pion fields are represented as angular
variables. In this nonlinear sigma model, the baryons appear as

solitons with a topological charge that is identified as the baryon

number.

5.3.1 Static Properties in the Skyrme Model

Skyrme's work has remained largely dormant until recently. In
1974 ‘'t Hooft showed that when the number of colors, N¢, becomes
large, QCD reduces to an effective field theory of mesons.%6 In 1979,
Witten applied this idea to show how baryons can emerge as solitons

whose masses diverge as the inverse of the coupling constant, 1/N¢, in
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67 Then, in 1983, Guadagnini and he

this weakly coupled field theory.
explicity showed that these solitons have exactly the quantum numbers
of baryons of QCD.68’69 The solitons were shown to have baryon number
B =1 and to be fermions if the effects of the Wess-Zumino coupling,

70 are included. Adkins and

which takes into account the anomalies,
Nappi together with Witten then used the Skyrme model to investigate
the static properties of nucleons for SU(Nf) with the number of
flavors, Nf = 2.7 The Skyrme model Lagrangian for massless pions and
exact chiral symmetry is

L=<~ FTreuvsvh
16 n B n

1
+ — Trie U, @ YU'? +nT, (5-19)
32¢ B B

where U is an SU(2) matrix.

The firsf term here is the nonlinear, sigma Lagrangian, and the
second is a nonminimal term used to prevent the solitons from
vanigshing. The dimensionless parameter, e, is free for fitting. The
last term is the Wess-Zumino term that actually vanishes for the
two-flavor, SU(2), case considered by Adkins etalll The soliton

solution for this Lagrangian is the hedgehog,

. = A
U = elF(r)t - X (5-20)
o

that can be seen to interweave angular momentum (or spin) and isospin

because of its dependence on the spatial coordinate r and the isospin
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bases t. Indeed, the correlation between spin and isospin results in
the hedgehog having a new quantum number, K, the vector sum of spin
and isospin. Spin and isospin are no longer separately good quantum
numbers, but rather the hedgehog configuration becomes invariant under
global rotations in physical and isospin space. Physical baryons must
be constructed from the hedgehog by projecting out states of
appropriate spin and 1isospin. The Skyrme angle F(r) was computed
numerically from the differential equation of motion resulting from
inserting equation 5-20 into equation 5-19. Solutions other than

equation 5-20 are obtained from
U=A0U A0, (5-21)

where A(t) is an arbitrary, but time-dependent SU(2) matrix. Treating
A as a quantum mechanical variable, the authors were able to calculate
the static properties of the nucleon by using the nucleon and delta
masses to fit Fn and e. Among the computed properties were the
nucleon magnetic moments, 1soscalar charge radii, and pion-baryon
coupling constants. With the exception of the axial coupling, ga, all
these properties were determined within about 30 percent of their
known experimental values. Adkins and Nappi later extended this work
by examining the effects of explicitly breaking the chiral symmetry.72

They added to the SU(2) Skyrme Lagrangian of equation 5-19 the mass

term,

1
- M:FETry - 21 . (5-22)
8 n n
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As expected, the earlier results were not modified much because chiral
symmetry is typically valid in experiments to within 10 percent. They
were, however, able to calculate several additional quantities, the
isovector charge radii and the sigma term.

5.3.2 Skyrmion-Skrymion Interactions

Now that it has been shown that nucleons, baryons with B = 1, can
be considered to be solitons in the Skyrme model and reasonable static
properties computed it is useful to go one step further and examine
how Skyrmions might interact with one another in a model of the

73 were the first to

nucleon-nucleon interaction. Jackson and Rho
investigate this aspect of the Skyrme model. They computed the
Skyrmion energy for B = 1, 2, and 3, obtaining the values shown here
in Table 5-6, using the Goldberger-Treimann relation to establish the
asymptotic form of the chiral angle. They were then able to make an

estimate of the interaction between nucleons by comparing the energy

of a B = 2 Skyrmion with that of two coincident nucleons:

V2 ry = 0) = E@Q2)-2EQ1) = EQ) » (5-23)

where V2 is a measure of the two-body, nucleon-nucleon interaction
energy. It is seen to be equal about 1.4 GeV. This value can be

compared with a similar estimate of the three-body interaction energy,

Vy(r, = 0, riy = 0) = E@3) +3E(1) — 3E@) =~ - 0.025EQ) . (5-24)

Hence, because V3 is small compared to V2, the Skyrme model implies

the expected dominance of two-body forces over three-body forces.
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TABLE 5-6. SCALED SKYRMION MASSES

B E(B)/E(B = 1)
1 1.000
2.983

3 5.926
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Jackson and Rho were also able to compute the baryon number density,
obtaining a reasonable rms radius of 0.48 fm for the baryon (e.g.,
nucleon.)

Later, Jackson efal. expanded this analysis to deduce the main
features of the nucleon-nucleon potential.74 The only two parameters
in the theory were fit with the experimental values of the pion decay
constant and the nN-coupling constant, so the ability of the Skyrme
model in predicting a short-range repulsion of order 1 GeV and a long-
range potential equivalent to one-boson exchange can be considered a
notable success. Their adiabatic calculation included some of the
obvious effects of the finite size of N. suggested by quark chiral-bag
models and resulted in agreement with semiphenomenological potentials
to about 30 percent.

5.3.3 Skyrmion Monopole Resonances

The next logical test for the Skyrme model is its application to
the fundamental pion-nucleon problem. Several authors have examined
monopole excitations of the Skyrmion in order to identify nucleon and
delta resonances. Hajduk and Schwesinger7S investigated breathing mode
excitations of the Skyrmion by scaling the radial coordinate of the
meson fields with a time-dependent factor, r — A(t) * r. They used
the usual Skyrme Lagrangian (equation 5-19) and hedgehog ansatz and
allowed the Skyrmion to rotate so that states of definite spin and
isospin could be projected out from the Skyrmion. For the breathing

mode of the nucleon, they obtained an excitation energy of about
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250 MeV, over 200 MeV less than that needed for the Roper resonance,
which is expected to be a radial excitation of the nucleon.

76 3150 examined the breathing mode of the

Breit and Nappi
Skyrmion, but their Lagrangian included the explicit pion mass term of
equation 5-22. They investigated the breathing mode by allowing time-

dependent radial fluctuations of the Skyrme angle about the classical

solution:

F(r)» = F(r) + eSF(r,p) .

Expanding to second order in 8F, they calculated Skyrmion phase shifts
and used phase shifts passing through 90 deg as the criteria for a
resonance. The ensuing resonance occurs at a pion energy of 330 MeV
and produces breathing mode resonances for the nucleon at 1270 MeV and
the delta at 1560 MeV. Again, the resonance masses are considerably
lower than the experimental values of 1440 and 1600 MeV, respectively.

The work of Liu etal’’ followed the same approach very closely
except that they also examined the case of coﬁsidering the rotational
degrees of freedom before the pion scattering; that is, they examined
small oscillations about a rotating soliton. Naturally, their results
were similar to Breit's and Nappi's.

These results were contradicted by Zahed etaL,78 who explicitly
constructed a quantization scheme within the framework of the Skyrme
model. In the KP = 0% sector (recall that K = Jgpin + Iisospin),
their approach also reduced to examining fluctuations about the static

solution. Although the resulting phase shift rose to a peak near
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90 deg, it did not indicate a Roper resonance. In the odd parity
K" = 1° sector, the phase shift does show a clear cut indication of a
resonance, passing through 90 deg.

5.3.4 The Siegen Analysis

An early attempt, more systematic than the work quoted in the
previous section, has been made of the investigation of baryon
resonances within the Skyrme model by the group at Siegen
Univer.'sity.79-82 They have examined isovector fluctuations of the
pionic field about the static Skyrme hedgehog within chiral SU(2).
The small amplitude vibrations of the rotating soliton are interpreted
in terms of normal mode vibrations, phonons that carry orbital angular
momentum. The orbital angular momentum, €, is added to the isospin
fluctuation to obtain the phonon spin, K.

In the group's first paper on the subject,79 Hayashi and Holzwarth
showed how the nucleon and delta resonances can be interpreted in
terms of an underlying phonon spectrum with a rotation-vibration
coupling of the T ?form and a coupling coefficient of about 30 MeV.
They then derived a similar phonon spectrum (energies and coupling
coefficients) from the Skyrme model having energies roughly consistent
with the experimental data. The approximation used here to estimate
the phonon spectrum was a simple, time-dependent scaling of the
coordinates. A subsequent calculation of the restoring force and

vibrational inertia was used to estimate resonance energies.

The scaling approximation was removed in a second paperao in which

the normal modes of the fluctuations about the static solution are
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quantized. The eigenvalue problem they obtained has solutions that
decouple into both magnetic modes of phonon parity (-1)! and into
electric modes with phonon parity (-1)¢*1,  The authors recognized that
this eigenvalue problem (see their equations 12 and 13) contained
modes of zero frequency (translations, and rotations) that must be
handled carefully. The translational modes do not effect level-
spacing and were ignored. Because the intrinsic frame of the Skyrmion
is rotating in isospin space, the rotational modes are important in
obtaining states of definite spin and isospin. The authors made a so-
called adiabatic approximation by decoupling the rotation and the
vibration of the Skyrmion. The Lagrangian that they obtained includes
a sum over the normal modes. By quantizing this Lagrangian, they

determined the energy eigenvalues:

S(S+1)

S+ 1 (5-25)
— + Zn: W, + >)e, 7

b
1]

M - classical Skyrmion mass

Nn - number of phonons for the nth mode

own - l-phonon excitation energy

S - spin (or isospin) = 1/2 for nucleon, 3/2 for delta

A - moment of inertia of rotating Skyrmion.
Interestingly enough, the asymptotic forms of their quantized normal
mode solutions decay into pions just as physical baryons do.

Numerically solving the Lagrangian equations of motion enabled the

authors to determine the normal mode phase shifts. These phase shifts
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cannot be directly identified with the pion-nucleon phase shifts
because the rotating Skyrmion does not have definite isospin and spin
but are useful in identifying approximate resonance energies and
widths. Agreeing with the results of the previous section, they found
an electric monopole (K = spin plus isospin = 0) resonance at a low-
excitation energy of about 200 MeV, several hundred MeV below the 500
MeV expected for the Roper. For both the electric and magnetic modes,
states with K = 1 have no resonances but instead have zero-energy
bound states because of infinitesimal rotations (magnetic dipole) or
translations (electric dipole). The absence of any dipole resonance
was conjectured to be caused by their improper treatment of the zero-
energy modes. Phase shifts for the higher multipole states, K > 1,
all showed resonances.

In a manner similar to Hayashi's and Holzwarth's classification

80 yere able to classify,

scheme, Walliser and Eckert in this paper
according to phonon spin, most of the well-established nucleon and
delta resonances having excitation energies less than about 1200 MeV.
The only exceptions were the S;; (1650) and the S3; (1900).  They
found the states of different phonon spin to clearly separate in
energy, having a well-defined band structure. For the nucleon
resonances, the average experimental excitation energies are 500, 590,
760, and 1150 MeV for K =0, 1, 2, and 3, respectively. Therefore,
the classification according to underlying phonon spin is a possible
explanation for the energy-grouping of the pion-nucleon resonances

noticed by many including Hohler.83
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In the next paper,81 the Siegen group was able to derive the
actual physical n-N scattering phase shifts from the normal mode phase
shifts computed in the adiabatic approximation for which coupling
between rotation and vibration of the Skyrmion is neglected. Because
the phonon spin, vector sum of the vibration's orbital momentum (¢) and
isospin, is conserved in the scattering process, states of vibration
with different values of € will couple in the scattering. Physically,
this means that pion-nucleon phase shifts, necessarily having definite
values of orbital momentum, will consist of a mixture of phonons of
electric and magnetic modes. There is no direct one-to-one
correspondence between the normal modes and the physical pion-nucleon
states, but rather the pion-nucleon partial waves are constructed by a
recoupling of the normal modes. The geometrical coupling scheme that

the authors propose is given by the triangle rules:

- - —

L = ¢ + ¢t

-> - -

J = L + 8§

- - -

J = £ + s

- - -

T =t + =1, (5-26)
where

’ 13

L - phonon spin

-

¢ - orbital angular momentum of asymptotic pion field (the

fluctuation)

-> . . . . .

t - 1isospin (t = 1) of asymptotic pion field

-

J - total angular momentum in intrinsic frame

* 3 . [d * . 3 L3

S - total spin (S = T, total isospin) in intrinsic frame

T - target spin (s = 1, target isospin) in intrinsic frame.
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This geometrical recoupling scheme allowed them to obtain 1linear

relations between different S-matrix elements, S¢ 2T,2J%

2(2€+1)S = 3¢8 + (¢+2)8

€32t+1 €12¢-1 ¢12¢+1

+ 3(€+1)8S . (5-27)

22¢+1)S 0126 + 1

= (€-1S

€32¢+1 €12¢-1

The authors showed phase-shift predictions for the pion-nucleon F-
waves as an example of their procedure, and there was surprising
agreement with the experimental results. They did, however, admit
that serious difficulties exist with the S- and P-waves, which they
blame on their aﬁproximations in the treatment of zero-energy modes
and the adiabatic approximation.

The work of the Siegen group has been documented most completely
in their latest paper.82 Here, they describe, in more detail, the
work outlined in the earlier papers.79'81 Although they still were
not able to avoid the adiabatic approximation, they made a start in
that direction by reformulating the analysis directly in the
physically relevant isospin-space-fixed frame. This is in contrast to
the previous work for which results were obtained from a unitary
transformation of the isospin-space~rotating S-matrix. The adiabatic
approximation, which consists of a decoupling of the rotating Skyrmion
from its vibrations, results in an improper treatment of the zero-
energy modes and an exclusion of all rotational energies. The zero-
energy translational modes affect the S- and D-waves, while the zero-

energy rotational modes affect the P-waves. The authors also
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investigated both the effect of allowing a nonzero pion mass and the
effect of including a term in the Lagrangian of sixth order in the
fields, but only second order in time derivatives. In each case, the
results were not significantly improved.

5.3.5 The Stanford Linear Accelerator Analysis

Following soon after the initial reports from the Siegen group
were similar results from the group at Stanford Linear Accelerator
Center (SLAc).84-88 They too examined the two-flavor Skyrme
Lagrangian of equation 5-19 to lowest order in 1/Nc. In particular,
Mattis and his co-workers, Karliner and Peskin, elucidated the nature
of the adiabatic approximation, especially its relation to the 1/N¢
expansion.84-85 They omitted the effects of soliton (baryon)
deformation and recoil caused by the scattering and also ignored the
rotation of the soliton during scattering, a 1/N; effect. The
scattering amplitudes were derived based on a bare pion propagator,85
again a result of the lowest order expansion. This approximation
results in amplitudes that do not include multiple-pion production
and, hence, are only appropriate to scattering with two-particle final
states.

As Mattis and Karliner reported in the group's first paper,84 they
were able to obtain the pion-nucleon resonance masses to an average of
8 percent of their experimental values. Their resonance masses were
defined by the position of peaks in the speed, 1dT/dWl, obtained from

their numerical calculation of the phase shifts. The phase-shift

calculations resulted in a systematic ordering of the sizes of the
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partial amplitudes that 1is well followed by the results from
experiments, including the results reported in Chapter 3 of this work.
For L > 2, amplitudes Ll,2e-1 and L3’2e*1 move further in the unitarity
circle than do L1’2e+1 and L3,2e_1, respectively. In general, the
amplitudes they computed agree well with experiment for L > 2 except
for the inelasticities. A poor prediction of the inelasticity was
expected because of a lack of coupling to many inelastic channels as
noted earlier. They also make the claim that the Roper P;; is not a
pure-breathing mode excitation. In addition, their best fit to the
resonance masses resulted in improved predictions for some of the
static properties of the Skyrme model, including predictions of the
proton and neutron magnetic moments, the axial-vector coupling

85 were also

constant, and isoscalar charge radii. Mattis and Peskin
able to derive the same linear relations between the pion-nucleon
elastic partial waves, equation 5-27. In addition, they derived
similar formulas relating nN — nA S-matrix elements and one other
relating nN elastic S-matrix element to the nN — nA S-matrices.

As did the Siegen group, the SLAC group also found much poorer
agreement with the S-, P-, and D-waves. Again, they attribute this
discrepancy largely to the lowest order expansion used here that
produces translational-zero and rotational-zero modes of the
soliton.83 These modes are then manifested as zero-energy bound
states that directly couple to the S-, P-, and D-waves. The P-waves

couple to the rotational-zero mode while the S- and D-waves couple to

the translational-zero mode. Therefore, they could not predict the
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s11 (1650), s31 (1900), or the Di3 (1700).8%  The biggest failure was
the lack of finding the two most important resonances, the Delta and
Roper resonances. They claim that the resonance pole and the
rotational mode zero coincide at the elastic threshold, preventing
these resonances from appearing. However, with the next order in the
1/Nc expansion, the poles and zeros are perturbed away from the
origin. For the P;; and P33, the pole should move into the fourth
vquadrant of the complex energy plane, producing the expected
resonances. For the P;3, P3;, and also S3;, the poles should move
into the first or second quadrant resulting in the observed repulsive
behavior.

In their most recent papers,86-88 the SLAC group has progressed
beyond the Siegen group in considering the Skyrme model for the case
of three light flavors [unbroken SU(3)]). They used the same Skyrme
Lagrangian, equation 5-19, but had to include the Wess-Zumino term
that no longer vanishes for SU(3). They retained the approximations
of expanding to lowest order in 1/N; and using exact chiral symmetry.
Going to SU(3) allowed Karliner and Mattis3® to consider pseudoscalar
octet meson (pion, eta, kaon) scattering from unrotated Skyrmions.
They saw modest improvement in the agreement between the Skyrme model
and experiment, primarily because of the increase in inelasticity that
the additional degrees of freedom allows. Because they kept only the
leading order in 1/N. approximation, they saw no reconciliation of the

disagreements in the P,;, P33, and S3; channels.
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87 and

With the SU(3) version of the Skyrme model, Karliner
Mattis8® were able to examine KN and KN scattering in addition to nN,
The approach used here is very similar to that used earlier for the nN
problem. They were able to derive linear formula relating the
partial-wave amplitudes for these reactions. The last paper88 is
their comprehensive work on nN, KN, KN — q)psB in the three-flavor
Skyrme model, where q>ps is an arbitrary pseudoscaler meson and B is a
baryon, either a 1/2* octet or a 3/2* decuplet. No new additional
results relating to elastic pion-nucleon scattering were reported,
however.

The Skyrme model has shown some spectacular successes in its
agreement with much of the dynamics of pion-nucleon scattering. It
will be very interesting to see whether future work on this problem is
able to include the next term in the 1/Nc expansion and resolve the

discrepancies noted in the S-, D-, and, especially, the P-waves.
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6. SUMMARY AND CONCLUSIONS

A comprehensive phase-shift analysis of elastic pion-nucleon
scattering from threshold to a pion kinetic energy of 1100 MeV has
been performed. The foundation for this analysis is the data base of
worldwide pion-nucleon experimental results assembled by the author
and described in Chapter 2 and Appendix A. The phase-shift analysis
is explained in great detail in Chapter 3, where both the energy-
dependent and energy-independent parametrizations and methodology have
been described. The analysis process resulted in seven energy-
dependent solutions and a single final set of energy-independent
solutions. The first of the seven solutions to be developed consisted
of a fit to all active experiments using waves S through I and was
named FA86 for Fall 1986. Because a small number of the data were
responsible for unnecessarily inflating chi-square, a second solution
based on removing (pruning) these data from the data base was
developed by iterating the process of removing those data and
experiments with a chi-square per data point greater than 16 and
refitting the partial-wave parameters. The resulting solution, named
FP86 (P for prune), provides an excellent fit to 9493 data with a chi-
square of 15,646 using 131 parameters.

The seven energy-dependent solutions summarized in Tables 3-2 and
3-3 were used to address several issues. Solutions HP86, FP86, and
FP86 tested the sensitivity of the analysis to the number of
peripheral waves included in the calculation of the scattering

amplitudes. It was concluded that J and higher partial waves are not
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needed to fit the data in this energy region or to uniquely determine
the important (S through F) waves. The charge independence of the
I = 3/2 waves was verified by solutions FP86, MNUS, PLUS, and SPLT to
within the accuracy of the data. These same solutions also
demonstrated the adequacy of the prescription (see Subsection 3.3)
used to correct the partial waves for the electromagnetic interaction.
Solution FP86, together with the complementary energy-independent
solutions described in Subsection 3.2.3, is presented here as the most
economical and best representation to date of pion-nucleon scattering
experiments below 1100 MeV.

6.1 INTERPRETATION

Having completed an in-depth phase-shift analysis, it is necessary
to interpret the results to understand their significance. Chapter 4
presents the results from solution FP86 and describes its important
features. The basis for understanding these results is the insight
obtained from the three classes of theoretical models described in
Chapter 5.

In Chapter 4, the rich topological structure of the partial-wave
amplitudes in the complex energy plane is displayed, showing a variety
of poles and zeros. Poles on the second sheet are interpreted as
resonances in the elastic channel, and all of the states cited by the
Particle Data Tables are seen here except for the two questionable on-
star resonances, the P;3 (1540) and the P3 (1550). Because the
models discussed in Chapter 5 do not predict these two states, they

are probably not valid. The resonance pole parameters for the other
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waves agree well with the determination of other analyses as reported
in Chapter 4 with the exception of the second P;; and P33 resonances.
The two-star P33 (1600) is confirmed by this analysis, and the reason
for its weak effect on the physical axis was discovered. A zero in
the amplitude between the pole and the real axis masks much of its
impact, disguising its presence. The models of Chapter 5 predict this
state and the two recalcitrant P;; resonances to be predominantly
radial (breathing modes) excitations. The P;; wave has been difficult
to explain in any of the models, and the complicated structure shown
in Subsection 4.3 is indicative of these difficulties. Approximations
made in the Skyrme model, particularly in the treatment of rotational
zero modes, prevent the model from adequately addressing the P-waves
until another term in the I/Ncolor expansion 1is added. The bag
models, however, have provided useful insight here. Solution FP86
showed a second pole near the Roper resonance, but around the delta
branch point. As the coupling to the explicit K-matrix pole is
varied, the motion of both of these poles is consistent with the
interpretation given in Subsection 5.2.3 and obtained from a calcu-
lation of the cloudy bag model that this second pole is a manifestion
of a radial excitation in an inelastic channel, presumably the nA
channel. This suggestion is hardly conclusive, and further analysis
would definitely be needed to validate the presence of both poles in
the inelastic channel. If this interpretation is indeed verified,
then the P;; (1710) would not be a radial excitation but might be a

gluon-quark hybrid.
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All three classes of quark models reasonably match most of the
pion-nucleon states. Some of this success is simply because of the
underlying SU(6) group structure present in the models and obvious in
the data. Both the constituent quark and the bag models agree that
the color magnetic hyperfine interaction as obtained from one-gluon
exchange is responsible for much of the observed splitting between
nearby states but that the spin-orbit interaction has a negligible
effect. It is obvious that the resonances tend to fall in groups
according to their energy. According to the Skyrme model, this
grouping is caused by an underlying phonon spin spectrum. The Skyrme
model has also had great success in "explaining" the Llinear
relationship observed between various partial waves as described in
Subsections 5.3.4 and 5.3.5.

In addition to the resonance poles observed in solution FP86,
another obvious characteristic of the solution is the presence of
zeros in the amplitudes. A few isolated zeros were observed, but
generally the zeros are found paired with poles, sometimes beside a
pole and sometimes between the pole and the real axis. The models of
Chapter S5, however, have not been able to provide any insight into
these zeros. No analyses outside of the VPI and SU group have
reported such zeros, and it would be useful to provide some

interpretation of their significance beyond their necessity to satisfy

unitarity.
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6.2 RECOMMENDATIONS

The analysis presented herein still does not completely solve the
pion-nucleon problem, although it has resulted in significant progress
in our understanding of this important interaction. There 1is
additional experimental and theoretical work that should be performed.
As discussed in Chapter 2, the data base is incomplete, lacking data
at some energies and especially at the extreme angles. The discussion
there indicated where data are lacking and what experiments are needed
to fill out the data base. Data in the charge exchange channel are
particularly sparse. Of greatest significance, however, 1is the
complete lack of any measurements in this energy region of any of the
spin rotation observables. Such data are required to ensure
confidence in any phase-shift analysis including this one. In
addition, high-precision measurements are needed over much of the
energy range to conclusively address the possibility of the narrow
poles as examined in Subsection 4.4. Such poles are not expected but
cannot be ruled out by the present analysis.

Further phase-shift analyses are also appropriate, particularly as
new experiments are performed to reduce some of the deficiencies given
in the preceeding paragraph. As discussed in Subsection 4.3, effort
is certainly justified in attempting to reparametrize several of the
partial waves to validate the pole and zero structure observed in
solution FP86. It may be possible that the observed zeros are not all
required to fit the data, and their presence needs to be confirmed.

Particular care should be given to reexamining the P-waves and the Sy,
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wave, whose zeros significantly impact the effect nearby poles have on
the real axis. This investigation would also serve to validate the
complicated multiple pole structure seen with the two P;; resonances
as shown in Figure 4-2c. The author has suggested that the additional
pole seen in solution FP86's P;; wave just around the delta branch
point from the Roper pole might be a manifestation of an additional
resonance in the inelastic nA channel. This possibility would be best
investigated in an inelastic phase-shift analysis and, in particular,
a new analysis of the nN — nnN reaction is recommended.

Further theoretical investigation on the subject of partial-wave
zeros is also warranted. With the goal of providing a physical
interpretation of their existence, the author plans to continue to
examine the subject, initially by continuing to study the exactly
solvable square well potential. If the sqaure well zeros can be
understood, it is hoped that their signficance can be applied to the

pion-nucleon problem.
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APPENDIX B. AMPLITUDE CONVENTIONS
The analysis being reported in this paper has used the usual no-
spin-flip amplitude, £(8), and the spin-flip amplitude, g(@), where in

the center-of-mass system,

ﬁ @
f@=- > [(€+1)T+ + €T ] P, (cos®) ,
a ¢ e~
and
A 1 (B-1)
g@ =~ > (T - T _|P}(osO) ,
9 ;o0 ¢ ¢
with

barycentric momentum

]
"

6 = center-of-mass scattering angle

P¢ = ordinary Legendre function

P, = associated Legendre function = sin6 dP, (cos8)/dcos®
€ = orbital angular momentum index

Tp+ = partial-wave amplitude for total angular momentum
j=tx4.
The usual assumption of isospin invariance allows the following

isospin decomposition of the partial-wave amplitudes:

T, T3§ for positive-pion scattering,

t t

T, (B-2)

_.1/3(13i + 2Th:) for negative-pion scattering,
¢ 14 4

and

T

N V93 (Tali _ Tlli) for charge-exchange scattering state.
[ 4 ¢ ¢

with the superscript labeling the isospin state.
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The four complex, partial-wave, T-matrix elements for a given
value of ¢, Tl/zei and T3/20i are labeled according to the standard
spectroscopic notationj L2123, with J = £ £ 1/2, I = 1/2 or 3/2, and

L=S, P, D .. for €¢=0,1, 2, ..., respectively. The nuclear phase

shifts, 851, inelasticities, q&i are then given by

1
I I . ol -
T}I = E; [net ap(étSct> - l], (B-3)

and, hence, for each ¢ greater than zero, there are eight real numbers
to be determined.

The amplitudes used to compute the experimental observables must
include the electromagnetic corrections described in Subsection 3.3,
According to equations 3-17 and 3-18, the charge-corrected, partial-
wave amplitude is a function of the scattering reaction being
examined. Modifying the nuclear amplitudes of equations B-2 and B-3
according to this prescription then gives the charge-corrected
amplitudes (Tei)ﬁc for positive exchange (x = 0) scattering. Using
the coulomb phase shift of equation 3-19 and Tromberg's direct
positive pion coulomb amplitudes, fc and g¢, the total amplitudes for
each reaction can then be written as follows:

For positive-pion scattering,

[

+ e\t
+ e(rc+) ]Pe (cos0) ,

cc ec

20
FH =1 o+ ud et [(e+ 1)(T3’f_)
q =0 4

and
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t <« 2o + + -
GH=g +2 3 e "[(T3’f) - e(r""") ] Plse).  (B%)
q =0 [4 cc C_ cc
For negative-pion scattering,
* A s 1 -2io \— -
Fl=of+=3 -e {(e+1)l(T3’f) +2(TV2) ]
9 ,-9 3 ¢ /ce ¢ /ce
+ € [(T"’Z)- + 2(7“’2)- ” P, (cos®) ,
¢ /ec ¢ /ecc
and
A — 1 -2io - -
G '=-g +- D =e ‘“(Ta’f) +2(T"2> ]
¢ 9 ,-0 3 £ /ce ¢ /ec
- [(T""">— + 2(TU2>— ” P} (cos8) . (B-5)
™ /ec " /ec
For charge-exchange scattering,
® V2 -io 0 0
Fo - ® S —e ¢ [(e+1)[(T3’f> -(T"f)
q E:O 3 €t /ee t /ec
32 \? 12
+ 87T T P( (cos 0),
t /ecc ¢ /ecc
and
c® = i i _‘/_2_e“°e“(7.3/2) _ (Tuz>° “
q =9 3 et /ee t*/ce
32 0 12 0 1
~|(r2) (1) | L o (B-6)
¢t ’cc ¢ ‘cc
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The observables are calculated from the full amplitudes of equa-
tions B-4 through B-6 or from the "nuclear" amplitudes of equations B-
1 and B-2 where the T-matrix elements have also have been charge-
corrected according to the prescription of equations 3-17 and 3-18,
but the coulomb amplitudes and phases have not been included. This
latter set of amplitudes is used to compute all forward scattered
quantities such as the quasi-data of Carter and Hdhler discussed in
Subsection 2.1 and Chapter 3 as well as the total, inelastic, and
elastic cross sections. The explicit formulas used to calculate the
observables follow below where all the T-matrices shown are the
charge-corrected ones as described earlier.

According to the Optical Theorem, the total cross sections for

positive- and negative-pion scattering are computed with

o‘=4nﬁlm [fe=0)]. (B-7)
q

The total elastic cross sections are calculated with the charge-

corrected T-matrices appropriate for each reaction as follows:

o:'” = 4n(§-)2 i

[(e+1)|T3’3 2+ a7 |,
q =0 4 ¢

A\ o 1 2 1 2
(=) 32 2 ¥2 12 2
o =4n(-) E [(e+1) -T2 L 212401 - TV + = T,
a/ o |3 et 3 ot 3 ¢ 3 o

and
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B2 o V2
0(0)=4n(-> N [(8+1)|-3—T3’f_ _ vz
4

12 ;2
e ) = Tl

3 e

“~

vz _ vz "ft“’] : (B-8)

+¢|—T — T
3 2 3 e

The inelastic cross sections for positive- and negative-pion

scattering are then given by

O(.+) = o(+) _ o(+)
in t e
and
- -) (- B-9
o' ) - 0( -0 ) - 0(0) ] ( )
n t e €

The inelastic cross section for charge-exchange scattering

obviously does not exist.

The differential cross section for scattering by an unpolarized

target is given by

do . _ 2 2 (B-10)
— © = IFof + GO .

For an unpolarized target, the polarization of the outgoing
nucleon in a direction perpendicular to the scattering plane is

calculated with?

(B-11)

P(©)

a;‘:'i. = 2Im{F@)G*®)} .

This polarization is often determined from the asymmetry of the
scattering cross section for scattering from a transversely polarized

target
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do do
—(©) - =—(-0)

PP, = = il ' (B-12)
‘ ‘—ig @) + ﬂ (-9)
dQ dQ

where Pi is the initial polarization of the target.

For a target polarized in the beam direction, the spin rotation
parameters, R and A, give the components of the recoil nucleon
polarization in the direction of the outgoing nucleon and per-
pendicular to the nucleon but still in the scattering plane,

respectively. R and A are computed as follows:

R(®) % = (F® -=|G*c0s® ~ 2 Re{FG*}sin8 , (B-13)
and

A®) % = (G? -|F)c0s® ~ 2 Re{FG*sin6 , (B-14)
where 6 is the center of mass-scattering angle. The three spin

observables are related by P2 + A2 + R2 = ],
Other experimental observables exist but are not independent of

those shown above. One such example is the Wolfenstein spin-rotation

angle, B, which is given by

tan(B) = 2 Re FG*W(G|® — |G|?>) = (Rsin® + A cosO¥R cos® — Asin6) . (B-13)



APPENDIX C. THE ANALYSIS PROGRAM SHSZSA

The fitting process described in Chapter 3 was accomplished with
the FORTRAN program SHSZSA (Spin-Half Spin-Zero Scattering Analysis)
developed over the last 20 years by Drs. R. A. Arndt and L. D. Roper.
SHSZSA was used for both the energy-dependent and the single-energy
analyses. The logic flow in SHSZSA is illustrated in the flow chart
of Figure C-1. The diamond figures indicate a decision process where
alternate pathways are given for yes (Y) and no (N) answers to the
posed question. The bold line marks the path taken by the program in
a simple-energy-dependent analysis. The dashed 1line shows the
modification to this path for when the data are pruned before the
search. The second pass through PINDTA and PINSOL is required by the
obvious need to read the data base and initial solution parameter set
before the pruning, while the pruning option flag is set in PINDTA.
The variable, M, shown in the flow chart is used by SHSZSA to select
among many optional logic paths by controlling transfers between
different sections of the code. It is defined whenever input data are
requested. A more complete hierarchy of the major routines in SHSZSA
is shown in Figure C-2, while Table C-1 provides a brief description
of each of these subroutines.

The heart of the analysis is the chi-squared reduction process
performed by SCHPIN. Using initial parameter increments (DPZ(K) =
Apk) provided by DDPPIN, it varies the parameters to decrease chi-
square for a number of user-specified cycles or until chi-square is

minimized. After first randomly reordering the set of parameters to
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TABLE C-1. SHSZSA SUBROUTINE DESCRIPTION (Sheet 1 of 2)

NAME

DESCRIPTION

SHSZSA

CHIPIN

CMFN

couL

DAPIN

DDPPIN

DLTPIN

DTAPIN

EDTPIN

MTXPIN

OBSPIN

Top-level program that controls logic of the analy-
sis and sets up and validates the search tables.

Calculates chi-square of data set and when
specified, renormalizes all angular observables

Calculates the Chew-Mandelstom dispersion functions
used in the energy-dependent analysis and described
in Appendix D

Calculates the direct coulomb amplitudes as deYel-
oped by Tromberg et al. and documented by Hohler

Resets the total amplitudé (f and g) after a partial

~|wave has been changed because of parameter variation

in the process of chi-squared reduction.

Sets the initial parameter increments during the
setup of search tables and before the fitting
process

Calculates the partial-wave T-matrix according to
the user-specified parametrization (see Subsections
3.1.1 and 3.2.1)

Prints out a summary of data, including the experi-
mental and theoretical values and chi-square of each
datum plus the normalization and total chi-squares
for each experiment. If specified, also will print
total amplitudes (f and g) for each datum.

Prints out various quantities describing the search,
including the parameters that were varied, the
number of search steps and final chi-square. Prints
out the parameter values for each partial wave.

Calculates the gradient and second derivative of
chi-square with respect to the parameters being
varied.

Calculates each of the possible experimental
observables from the total amplitudes (see Appendix
B).
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TABLE C-1. SHSZSA SUBROUTINE DESCRIPTION (Sheet 2 of 2)

NAME

DESCRIPTION

PCHPIN

PHSEDT

PINDPT

PINDTA

PININI

PINRED

PINSOL

PRNPIN

RDSPIN
RSPPIN

SCHPIN

SYMINV

Writes onto an external file the solution (parameter
set) of an energy-dependent analysis after a search,
and, if specified, also writes the error matrix.

For single-energy analyses, prints out parameter
errors.

Prints out phase-shift and absorption coefficients
and elastic T-matrix element for a set of user-
specified energies.

Prints histogram of chi-square per data point for
each experiment.

Reads data selection Criteria from input and then
reads selected data from input and/or data files.

Calculates initial partial-wave amplitudes, Legendre
polynomials, and observables for each datum, as well
as initial total chi-square.

Reduces the number of parameters available to be
searched by zeroing out small parameters.

Reads solution parameters from input or a data file
or keeps current solution as directed.

Prunes data if option is selected by removing from
the analysis any single data points or entire
experiments with excessive chi-square. Then prints
out details of deleted data.

Sets up parametrization for single-energy analysis

Resets partial-wave amplitudes to new values after
parameters have changed.

Searches for new parameter set to reduce chi-square,
using the square-error-matrix search method.

Inverts a real symmetric matrix and checks for
positive definiteness.
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be varied, MTXPIN is called to calculate the gradient and second
derivative of chi square with respect to the parameters. For chi-

square given by equation 3-1, we have:

% Np (8 _ a"é ) nooagi
vze = -2 X oY [ . a ¥@] (c-1)
2o, 5 Oezp Oup P
and
2.2 i n i
3 a0 30
AZuK) = = —2X 2 [ (") 2 @, (c-2)
2 apjapk o' ap,
exp

AZ is also called the curvature matrix and is manifestly real
symmetric. Its inverse is the error matrix. Because the derivatives
are calculated by numerical differencing, the integrity of the second
derivative matrix, AZ, is checked by looking for nonpositive diagonal
elements, since these elements are related to the error in the
respective parameters.2 If necessary, any ''bad" rows and columns are
fixed and a message printed. Next, elements in AZ are scaled with the
corresponding diagonal error when the error in a parameter is large

while its value is small. After computing the inverse of the second

derivative matrix,

AZI = (A2)"! (c-3)

and establishing its integrity, a revised set of parameter increments
is calculated from which a new parameter set is obtained,

_ (c-4)
Cphrew = Prlog + AP,
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2 the optimum parameter set, p, can

According to Arndt and MacGregor,
be determined independently of the determination of the normalization
parameters, aP. Using the notation shown above, they show that the new

set of parameter increments can be calculated from

(AZ) - (DPZ) = YZ

or

Ap = DPZ = (AZD - (YZ) - (c-5)

The normalization parameters are calculated and revised by CHIPIN,
while MTXPIN includes corrections to AZ required by this revision.
REFERENCES
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APPENDIX D. ANALYTIC STRUCTURE OF THE DISPERSION INTEGRAL
The dispersion function given by equation 3-5 and used in the
energy-dependent parametrization can readily be evaluated and its

analytic properties investigated as follows:

1 xc+ll2
nC = L, oz & (p-1)
z= (W—W‘)/(W- Ws) . (3-5)

First, a recursion relation is obtained:

1 xe+u2 1 xe-vz
nC, = I dx = J [z+ (x - 2))dx
0 X*X—2 0 X -2

_ 2 (p-2)
"Ce = ane_.l + 2+ 1
that gives
[4 2 .
S -J -
nCe =z nCo + Z 1 227, fore=20. (D-3)

e+ v (F30) |

0
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1 -
=2+ Vz ln( ‘G)_ in(1 + 2n)

1+ Vz

(D-4)

1 - V2
= 9 (__>_ :
n(% +Vz|in Y in

when the principal value (n = 0) is taken.
Because Vz may be complex, we expand the logarithm function to

facilitate its evaluation and elucidate its structure.
in(a+ib) = In (\/a2 + b2> +i (tan-_‘ - +2nn> .

Upon continuing to use the principal value,

Inz(]'-\6;>
rlCo=2+\/z_(ln ;—:—\\/L_:_ —in)+ iVz tan™! R_-(%\\/r—zi—)
e
1+ V2 /ps)

For real Vz with -1 < Vz < 1, the inverse tangent vanishes; while
for Vz <-1 or Vz > 1, it contributes "-n." Together, equations D-3
and D-5 constitute an explicit evaluation of the dispersion integral,
equation 3-5. Although we have chosen to take the principal value of
the logarithm, there still remains an ambiguity in the choice of sign
for the square root function. This ambiguity will be used to reveal
different sheets of the scattering amplitude in the complex W-plane.
Now, we will examine C; more closely. For each of the three
channels being utilized in this work (equation 3-5 ff), Wg is real.

For the elastic channel, Wy is also real, but the imaginary components
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in the masses of the unstable delta and eta result in complex values

of Wy and, hence, also of z for each of the two inelastic channels.
Below a channel's subtraction point, we have W < Wg < Re(Wt), and

z lies in the first quadrant of the complex z-plane with Re z > 1,

Im(z) > 0. For the elastic channel with real Wy (Im z = 0), we have

1-Vz _
nCo= 2+\/;(ln TT\/—;:__ —2n1)
. 2 : 1-Vz
c, = 220+ €-j 4 12 (z "— -2').
e ‘ gl +1 £ "l1+vz "‘
! (D-6)
Therefore, in the elastic channel for W < Wg,
(D-7)

Im(C) = —28*12

For the two inelastic channels, z is complex, and there is no simple
reduction. Equations D-3 and D-4 must be used in their entirety.
Between the subtraction point and threshold, Wg < W < Re(Wt), and
z will lie in the second quadrant with Re(z) < 0, Im(z) > 0. For the
elastic channel, there is a simple reduction because z is strictly
negative. If we write z = -y2 for real vy, then Vz = t iy where the

sign ambiguity in the square root is explicitly shown, and

(1-\5) 1 Fiy 1=y T 2iy

1+ Vz liiY 1+-Y2
2 .
1 - ¥ 2 F2
nC =2 + Vz (ln _Y__z—ll —in) F iVz tan”! ( Y2>
o 1+ 1-y
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nC =2iy

o

t2
n+ tan~! ( A )] . (D-8)
1 =2
y
Therefore, Co and hence all C;'s are real for Wg < W < Re(W¢) in the
elastic channel. The inelastic channels are again more complicated
with Im(C;) nonvanishing.
Above channel threshold, W > Re(W¢) > Wg, and z will be in the
fourth quadrant with 0 < Re(z) < 1 and Im(z) < 0. For the elastic

channel, there is again a simplification because Vz is real, and we

have:
1 -Vz
nCo=2-I_-\/;(ln T\/—; —in)
1-Vz 2 . -
_ ¢ e+12 . ¢e-j (D-9)
nC! = 2z + 2 (ln ’l+\/; -ln) + Z 7+l 2z

J=1
and for the elastic channel with W > Re(W¢) gives

Im(C) = -2*12. (D-10)

Let us now examine the threshold dependence of the dispersion
integral. For a generalized, two-particle channel with masses M] and
M2 and center-of-mass momentum, q, we have Wy = M)} + M2. Just above
the channel's threshold, q2 will be small, and

g-ut=(\/§;2_+q2+\/uz_2:-q2)°(ﬂl"’“2)

= q2 (M} + M2)/2M1M2

E
|
x
n

[

(We - Wg) + (W = W)

~ (Wg - Wg) + qZ(M] + M2)/2M1M2 . (p-11)
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These approximations give:

z = (W= W)/(W - Wg)

= q2(M] + M2)/[2M1M2(Wr - Wg) + q2(M] + M2)]

z = q2(M] + M2)/2M1Ma(We = Wg) .

Using the masses following equation 3-5, we obtain z

A and ¢ are given below.

CHANNEL A (c/MeV) ¢ (deg)
Elastic 5.25 x 10-3 0.000
n-4A 4.65 x 10-3 -17.00
n-N 2.31 x 10-3 -0.695

For the elastic channel with real M] and M2 and,

2(0 < z << 1), equation D-10 gives

Im(C) = -Vz 2t .

(pD-12)

q2A2e2i¢, where

hence, small real

(D-13)

If the negative sign of the square root is chosen, then just above

threshold we have:

Im(C) = 12*V4 = lq (5.25 X 10~ 3% ¢+12

(D-14)

That this is the threshold dependence needed to identify Im(C;) as the

phase space factor for the elastic channel, providing the T-matrix

with its proper threshold dependence, will follow from equation 3-4.

For the two-channel K-matrix appropriate for all waves except S}1,
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equation 3-4 yields:

I = ImC K, - CK K, - K,
e =M e CCc k) CK +CCR K Kl
TP T Ve Tee e i ee 11~ el

(D-15)

Since the expression in the brackets does not vanish at threshold,
both Im(Ce) and Te have an identical threshold dependence of q2€+1_
Similar arguments will hold for the S]] wave.

For the inelastic channels, the situation is very different
because z is complex. To find the threshold dependence, we need only

to find the terms having the lowest powers of Vz. With small q,

equations D-3 and D-5 give:

nC =2 - inVz

o

U

2 - in(gA cos $)

c .2, 2
Me= 2e+1 T 2e-1°

2 . _2 242 . (D~16)
= + A” sin 29) .
e+t Tlze_1 1 ¢
If the negative sign of the square root is again taken,
Im(Co) = (gAcos d) = q
2,2
2q“A (D-17)

Im(Ce)= sin2¢°ﬂq2,

n2é¢+1)
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and the inelastic channel has a threshold dependence of q2f*l only for
S—-waves.

When examining the complex topology of the scattering amplitudes,
W is continued analytically off the real axis resulting in complex z.
The best manner to understand the structure of C, is by examining the
contour plots shown in Figures D-1 through D-8. The real and
imaginary parts of Cg and C] are displayed for both the elastic n-N
and the inelastic n-A channels. Cg is also shown in Figures D-7 and
D-8 for the inelastic n-N channel. For the elastic channel, only the
physical sheet of complex W is shown, while for the two inelastic
channels, both the physical and unphysical sheets are shown. For
convenience, each contour plot is shown covering the same size region
of the complex W-plane with the zero contour identified by a "Z." The

sign of the dispersion functions in each region of the plot is also

identified.
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APPENDIX E. PARTIAL-WAVE AMPLITUDES
The partial-wave amplitudes obtained from solution FP86 can be
displayed in a variety of formats beyond the partial-wave T-matrices
shown in Chapter 3. Figure E-1 provides Argand diagrams for each of
the partial waves of interest here, S- through F-wave. Shown in

Figure E-2 are the partial-wave cross sections,

4nh2 1
e _ 1 ¢
Ototal = 7 (J + )Im [TIJ }

4na? 1
1481 — -
oinelaatic - q (J + ) [Im [ } _I T ]

where q is the center-of-mass momentum. The energy dependence of the
phase shift and the inelasticity or actually one minus the
inelasticity squared are provided in the plots of Figure E-3. For all
the plots in this appendix, the energy runs from 1080 to 1780 MeV in

the center of mass.
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FIGURE E-1. PARTIAL-WAVE ARGAND DIAGRAM FOR CENTER-OF-MASS
ENERGY FROM 1080 TO 1780 MeV (Sheet 1 of 7)
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FIGURE E-1. PARTIAL-WAVE ARGAND DIAGRAM FOR CENTER-OF-MASS
ENERGY FROM 1080 TO 1780 MeV (Sheet 2 of 7)
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FIGURE E-1. PARTIAL-WAVE ARGAND DIAGRAM FOR CENTER-OF-MASS
ENERGY FROM 1080 TO 1780 MeV (Sheet 3 of 7)
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FIGURE E-1. PARTIAL-WAVE ARGAND DIAGRAM FOR CENTER-OF-MASS
ENERGY FROM 1080 TO 1780 MeV (Sheet 4 of 7)
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FIGURE E-1. PARTIAL-WAVE ARGAND DIAGRAM FOR CENTER-OF-MASS
ENERGY FROM 1080 TO 1780 MeV (Sheet 5 of 7)
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FIGURE E-1. PARTIAL-WAVE ARGAND DIAGRAM FOR CENTER-OF-MASS
ENERGY FROM 1080 TO 1780 MeV (Sheet 6 of 7)
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FIGURE E-1. PARTIAL-WAVE ARGAND DIAGRAM FOR CENTER-OF-MASS
ENERGY FROM 1080 TO 1780 MeV (Sheet 7 of 7)
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APPENDIX F. BARYON WAVEFUNCTIONS
Baryons are presumed to consist of three spin 1/2 quarks.
Considering here three light flavors of quarks: up (u), down (d), and
strange (s), the flavor content of the baryon wavefunction, ¢flavor,
will be a three-dimensional representation of the group SU(3)flavor-
These flavor wavefunctions with appropriate permutation symmetry are
shown in Table F-1 along with the baryons that they constitute. The

1 The corresponding three-

phase conventions used are those of Close.
dimensional representation of the SU(2) spin wavefunctions are given
in Table F-2. The flavor and spin wavefunctions combine to form the
SU(6) wavefunctions shown in Table F-3.

The baryon total wavefunction will then consist of a product of

the flavor-spin, spatial, and color wavefunctions as follows:

lpb‘”'}'o’l = (q’ﬂaw" xspin )Rspacc Ccolor * (F-1)

The baryon wavefunction, y, is totally antisymmetric as proper for
fermi statistics, while C is antisymmetric. The color wavefunction is
an antisymmetric, three-dimensional representation of SU(3) for the
three possible colors that compose the quark color singlet baryons.
The spatial wavefunction, R, has the group structure of 0(3) required
by rotational invariance. The actual form of R depends on the inter-
quark forces and how they are modeled.

The ground-state baryons are in the lowest possible spatial state
with each quark in an S-wave = (1s)3 and LP = 0O*, therefore, the

ground-state spatial wavefunctions are spatially symmetric. The
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TABLE F-1. SU(3) FLAVOR BARYON WAVEFUNCTIONS SHOWING

EXPLICIT PERMULATION SYMMETRY (3 ® 2 ® 3 =100 8 ® 8 & 1)
GROUP CONTENT FLAVOR WAVEFUNCTION BARYON
dsymmetric uuu At
= 10 (o) (uud + udu + duu)/V3 At
(ddu + dud + udd)/V3 A°
ddd A~
SSsS Q"
(ssd + sds + dss)/V3 = -*
(ssu + sus + uss)/V3 z o
(dds + dsd + sdd)/V3 z-*
(uus + usu + suu)/V3 o+*
(sud + sdu + uds + usd + dsu + dus)/V6 T+*
Pmixed symmetric | (udu + duu - 2 uud)/VE P
= 8 (dns) (2 ddu - udd - dud)/V6 N
(usu + suu - 2 UUs)/V6 T+
(sldu + ud] + [dsu - usd] - 2[du +ud]s)/VIZ | £o
(dsd + sdd - 2 dds) z-
(dsu - usd + sldu - ud])/2 NO
(2 ssd - [ds + sd]s)/V® =
(2 ssu - [us + suls)/VE =0
dmixed (ud - du)u/V2 P
antisymmetric (ud - du)d/V2 N
= 8 (dpa) (us - su)u/V2 s+
([dsu + usd] - s [ud + du])/2 X
(ds - sd)dVv2 z-
(s[du + ud] + [usd - dsu] - 2[du+ud]s)/VvIZ | A°
(ds - sd)s/V2 ) T -
(us - su)s/VZ =
Pantisymmetric | (s[du -udl + [usd - dsu] + {du - ud]s)VE A9

=1 (‘Pa)




TABLE F-2. SU(2) SPIN BARYON WAVEFUNCTIONS
(2®20®2=4062+ 0 2)

GROUP CONTENT

SPIN WAVEFUNCTION
(t = SPIN UP, | = SPIN DOWN)

Xsymmetric
=4 (Xs)

U
(tti+ 1t +111)/V3
(it + it +1L1)/V3
il

Xmixed symmetric
=2 (Xms)

(tit+ 41t -2111)/Ve
(LIt -1l + L1 L)/VE

Xmixed antisymmetric
= 2 Otpy)

(tit+ L11)/V2
(tid - L1 L)/V2
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TABLE F-3. SU(6) FLAVOR-SPIN WAVEFUNCTIONS FOR THREE-QUARK BARYONS
(6®6®6=5®70 & 70 & 20)

SYMMETRY FLAVOR-SPIN GROUP
REPRESENTATION STRUCTURE CONTENT FLAVOR-SPIN WAVEFUNCTION

Symmetric (10,4)* s Xs

565 (892)* (¢ms Xms * ¢éma Xma)/\/-z-

Mixed Symmetric (10,2)* ds Xms

70MS (8s4)* bms Xs
(8,2)* (q’ma Xma - oms Xms)/\/?
(1,2) da xma

Mixed Antisymmetric (10,2)* ®s Yma

70MA (8,4)* dms Xs
(8,2)* (¢ma Xma - ms Tms)/V2
(1,2) ba Xms

Antisymmetric (1,4) da Xs

20A (8,2)* (ms *ms - Pma ¥ms)/VZ

*Representation containing nucleon and delta states
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ground-state flavor-spin wavefunctions are then required to be a
symmetric representation of SU(6), namely 56S from Table F-3. From
Table F-1, it then follows that ground-state nucleons are members of
octet JP = 1/2*, (8,2), and ground-state deltas are members of
decuplet JP = 3/2+, (10,4).

In a baryon shell model, the first excited (N = 1) state has a
single quark excited to a relative P-state (1s)2(lp) and, therefore,
LP = 1= with only mixed-symmetric and mixed-antisymmetric spatial
states possible. The flavor-spin wavefunction must also have mixed
symmetry in order to have a symmetric combination of flavor, spin, and

spatial dependence,

q)firstexcitedstate = (T0MS Rma + T0MA Rm)/\/i : (F-2)

The first excited states of the nucleons are then (8,4) x 1~ with JP =
1/2-, 3/2=, 5/2= or (8,2) x 1= with JP = 1/2,- 3/2=. The first
excited states of the delta are (10,2) x 1= with JP = 1/2=, 3/2-,
There are five nucleon and two delta low-lying (mass less than .about
1700 MeV), negative-parity, pion-nucleon states seen experimentally
that can be matched with these seven LP = 1=, three-quark states.
Assuming that the spin 1/2 (8,2) states lie lower in energy than do
the spin 3/2 (8,4) states, the assignment is given in Table F-4. An
assignment of the odd-parity and higher energy negative-parity states
(N > 2) is not as direct, but is instead model-dependent.

Within a supermultiplet, the ground state (56,0*%) or the excited

multiplets (70, 1-), (56%, 0+), (70, 0*), (56, 2*), etc., the
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TABLE F-4. GROUP ASSIGNMENT OF LOW-LYING,
NEGATIVE-PARITY, PION-NUCLEON STATES

GROUP P PION-NUCLEON
ASSIGNMENT STATE
(8,2) ® 1- 1/2~ S11 (1535)

3/2- D13 (1520)
(8,4) ® 1- 1/2- S11 (1650)
3/2° D13 (1700)
5/2- D15 (1675)
(10,2) ® 1- 1/2- S31 (1620)
3/2° D33 (1700)
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degenerate states are broken by mass differences between quarks and by
dynamic effects such as caused by spin. Although nonequal quark
masses break SU(6) in the nonstrange sector where the up and down
constitutent quark masses are nearly equal, it remains convenient to
use SU(6) multiplet nomenclature.
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