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A phase-shift analysis of elastic pion-nucleon scattering data

g from threshold to a pion kinetic energy of 1100 MeV was performed.
A

The resulting partial-wave amplitudes were investigated in the complex

energy plane, and the resonance states with their associated zeros and

poles were determined. Particular emphasis was given on elucidating

the nature of the P11 partial wave.

The phase-shift analysis consisted of both energy-independent and

energy-dependent analyses. The energy·dependent partial waves were

parametrized as a coupled channel K-matrix whose elements are

polynomials in energy plus an explicit pole term.

A complete description of the investigation and the experimental

data used are included as is a description of the theoretical models

used for interpretation of the results.
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1. INTRODUCTION

The pion-nucleon scattering problem has long been recognized as an

important arena for the study of the strong nuclear force because it

is the simplest example of the strong interaction easily accessible to

experimentation. The nucleon is the lowest mass nucleus and has the

simplest quark structure of all the baryons, being composed primarily

of up and down quarks. Correspondingly, the pion is the lowest mass

and simplest of the mesons. The pion-nucleon interaction is,

therefore, responsible for the most important longest range part of

the nucleon·nucleon interaction, the force that holds the nucleus

together. Although the pion-nucleon interaction is obviously

important to our understanding of the hadronic force, explicit first

principle calculations of the physical observables: masses, cross

sections, etc., are not yet possible. The theory of the strong

interaction, quantum chromodynamics (QCD) is not amenable to exact or

even perturbative calculations because of its complexity and the large

magnitude of its coupling constant. Theoretical models can, however,

be developed based on QCD, but a means of relating the model

predictions to the experimental results must be established.

Historically, that means has been the phenomenological approach of

partial•wave, phase-shift analysis of the experimental data. Such an

approach results in the description of the data set in terms of a

relatively small number of energy-dependent, partial—wave amplitudes

that can be directly related to model predictions in terms of both

l
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statics (masses and widths of states) and dynamics (cross sections,

lifetimes, etc).

Phase-shift analyses of pion-nucleon scattering data have been

performed since the days of Fermil in the early 1950°s. Since then

the analyses have become much larger and more sophisticated, and much

understanding of the physics of the interaction has been gained. In

particular, a rich spectroscopy of resonant states responsible for

most of the structure in pion-nucleon data has been identified,

including the two earliest and among the most dominant resonances, the

Delta and Roper resonances. Even with the great amount of effort that

has been and continues to be directed at the pion·nucleon problem, the

problem is not completely solved and work remains to be done.

Evidence for several resonances: PI3 at 1540 MeV, P31 at 1550 MeV, and

P33 at 1600 in standard spectroscopic notation, is weak and their

existence needs to be verified. In addition, the resonance parameters

(masses, widths, and residues) for most of the confirmed states need a

more reliable determination for better comparison with model

predictions. The above uncertainties, by themselves, provide

sufficient motivation for pursuing the investigation being presented

here, but they are not the only reasons. In the mid-1970's, the

Saclayz group performed a phase·shift analysis of elastic pion·nucleon

scattering data that identified a splitting of the Roper resonance

into two states at 1413 and 1532 MeV, respectively. It is this

intriguing possibility that served as the initial catalyst for this

investigation. In addition to verifying or rejecting, as appropriate,
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the proposed resonant states and providing a precise determination of

their parameters, the objective of this research has been to clarify

the situation with the Roper resonance and the P11 partial wave as a

whole. Is the Roper actually split, and, if so, what impact does that

splitting have on the validity of several popular theoretical models?

The approach needed to address these questions begins with the

development of a complete and up—to—date data base of elastic pion-

nucleon scattering results. That development and the description of

the resulting data base are presented in Chapter 2 with the references

for the many experiments given in Appendix A. A detailed explanation

of the phase-shift analysis is provided in Chapter 3. Both the

energy·dependent and energy·independent parametrizations of the

partial amplitudes are described, as is the methodology used to couple

these two distinct approaches. The formalism used to compute the

physical observables from the partial waves is given in Appendix B.

Also described in Chapter 3 is the chi—squared minimization technique

employed to determine the partial waves from the large data base and

the assumed parametrization. The fitting program used in this process

is documented in Appendix C. After the fitting process is completed

and a proposed solution is obtained, the resulting partial waves are

described and interpreted in Chapter 4. Additional details of the

partial·wave amplitudes are shown in Appendix E. Many resonant states

are observed that are then described and their resonance patamététs

presented. In addition, an exploration of the topology of the partial

amplitudes in the complex energy plane is undertaken to better
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understand the complex zeros and poles in the amplitudes associated

with the resonances. Much emphasis is given to the particularly

interesting P11 wave. Once this description of pion—nucleon

scattering is obtained from the experimental data and the phase-shift

analysis, the results are compared to three popular and successful

models of hadron spectroscopy: the constituent quark models, the bag

models, and the Skyrmion model. Chapter 5 presents a description and

discussion of the relevance of these three models to the pion—nucleon

problem, providing further insight into the physics of the important

pion-nucleon interaction. A summary of the progress made by this

research toward a better understanding of the pion—nucleon interaction

and, hence, of the strong interaction is given in the conclusions of

Chapter 5 as the final results are all tied together. Recoumendations

for future research are also made here as a final and appropriate end

to this dissertation.

1.l REFERENCES

1. H. L. Anderson, E. Fermi, R. Martin, D. E. Nagle, Physical
Review, Vol. 91, 1953, p. 155

2. Ayed, Unpublished Thesis from the Saclay Group as reported in
gaäticle Data Group, Reviews ofM0demPhysics, Vol. 48, 1976, p.



2. THE PION-IUCLEON DATA BASE

Obviously, a phase—shift analysis can be no better than the data

on which it is based. Therefore, an attempt has been made to assemble

as complete a collection as possible of elastic pion-nucleon data,

particularly those results published in refereed journals. Although

the analysis extends only to 1100 MeV, experiments have been included

with incident pion kinetic energy up to 1200 MeV in the laboratory

frame. The extension of the data base beyond the analysis limit

allows one to investigate extrapolations of the present analysis. A

chronological summary of the experiments in the data, base as of

September 1986 is presented in Table 2-1 with the numbered references

given in Appendix A. Under the status column, the notation "A"

identifies active experiments included in the analysis, and "X" labels

those experiments excluded from the analysis. The "Short ID" consists

of an abbreviation of the principal author's name and the year in

which the data were published. For an example, the Measday etaL 1984

publication of' charge exchange total elastic cross section is given

the ID of ME(84). Reaction types for positive pion, negative pion, and

charge exchange scattering off of protons are labeled PI+P, PI-P, and

CXS, respectively. Differential cross sections and polarization data

are labeled with DSC and P, while total and total-elastic cross

sections are labeled with SGT and SGTE. Because older experiments are

generally associated with larger errors, no data published before 1964

have been included in the data base. This date was chosen somewhat

arbitrarily but is based on the principle that deleted data be

5

1



6

TABLE 2-1. PION-NUCLEON DATA BASE (0 to 1200 MeV)* (Sheet 1 of 4)

SHORT ID REFERENCE ENERGY* REACTION OBSERVABLE STATUS

B0(64) 40 756 to 1165 CXS DSG A
BU(64) 50 545 to 1000 CXS SGTE X
EA(64) 82 520 to 990 PI+P P A
EA(64) 82 520 to 990 PI-P P A
HE(64) 94 530 to 900 PI+P DSG A
HE(64) 95 530 to 900 PI-P DSG A
MU(64)** 114 595 to 800 CXS DSG A
VI(64) 137 604 PI-P DSG A
BA(65) 19 410, 492 PI+P P A
BA(65) 20 410, 492 PI-P P A
BU(65) 52 558 PI-P DSG A
CU(65) 63 35 CXS DSG A
DE(65) 65 500 PI+P DSG A
DE(65) 65 500 PI+P SGTE A
DE(65) 65 500 PI+P SGTR X
DE(65) 72 495 to 1195 PI+P SGT X
DE(65) 72 415 to 1195 PI-P SGT X
LI(65) 108 313, 371 CXS DSG

‘
A

0G(65) 117 310 to 650 PI+P DSG A
0G(65) 117 370 to 650 PI-P DSG A
BE(66) 30 775 PI-P DSG A
BI(66) 35 310 to 700 PI+P SGT X
BI(66) 35 310 to 700 . PI-P SGT X
CA(66) 57 790 to 870 PI-P SGTE X
DI(66) 73 365 PI-P P A
D0(66) 76 39 CXS DSG A
DU(66)** 80 745 to 850 PI+P DSG A
DU(66)** 80 745 to 850 PI-P DSG A
0L(66) 118 646 PI-P DSG A
RI(66) 122 450 to 685 CXS DSG A
ST(66) 131 525 to 1170 PI+P SGT X
ST(66) 131 540 to 1170 PI-P SGT X
TI(66) 132 781 PI+P SGTE A
TR(66) 133 248 PI+P DSG A
TR(66) 133 248 PI+P SGT A
VA(66) 135 300 PI-P P A
BA(67) 17 410, 490 PI+P DSG A
BA(67) 17 410, 490 PI-P DSG A
BC(67) 13 949, 1098 PI-P SGTE A
BE(67) 32 900 PI+P SGTE A
CH(67) 59 500 to 1120 CXS DSG A
DE(69) 70 810 PI+P DSG A
ED(67) 83 98 PI+P DSG A

*Kinetic energy of incident pion in laboratory frame (MeV)
**More data available, but only in plotted form
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TABLE 2-1. PION-NUCLEON DATA BASE (0 to 1200 MeV)* (Sheet 2 of 4)

SHORT ID REFERENCE ENERGY* REACTION OBSERVABLE STATUS

FE(67) 84 650 PI-P DSG AG0(67; 89 245 to 410 PI+P P A
G0(67 89 245 to 410 PI-P P A
HA(67) 92 470 to 770 PI-P P A
J0(67) 103 615 to 770 PI+P P A
ME(67) 112 900 PI+P DSG A
AR(68) 11 225 to 390 PI-P P A
BE(68) 31 595 to 675 PI-P DSG A
BI(68)** 36 765 PI+P P A
BI(68)** 36 564, 650 PI-P P A
CA(68) 54 345 to 1170 PI+P SGT A
CA(68) 54 350 to 1200 PI-P SGT A
CR(68) 62 60 PI+P DSG A
CR(68) 62 60 PI-P DSG A
DE(68) 66 722 PI+P DSG A
DE(68) 66 722 PI+P SGTE A
DU(68)** 81 745 to 800 PI-P P A
HY (68) 99 590 to 680 CXS DSG A
RI(68) 123 435 to 1005 CXS DSG A
VA(68) 134 720 PI-P DSG A
BU(69) 51 525 to 1115 CXS SGTE A
C0(69) 61 515 to 1185 PI-P P A
DE(69) 67 710 to 880 PI+P SGTE A
DE(69) 68 405 to 635 PI-P SGTE A
DE(69) 71 407, 493 PI-P DSG A
AB(70) 2 745 to 1150 PI-P DSG A
AL(70) 4 685 to 1170 PI+P DSG A
AL(70) 4 685 to 1170 PI+P P A
BA(70) 15 765 to 910 PI+P DSG A
BA(70) 15 765 to 910 PI+P SGT A
BI(70) 37 560 to 1185 PI-P SGT A
B0(70) 41 465 to 685 PI+P SGTE A
B0(70) 41 465 to 685 PI+P SGTR A
HI(70) 96 868 PI+P DSG A
HI(70) 96 868 PI+P P A
HL(70) 97 310 CXS P A
AP(71) 10 1075 to 1170 PI-P DSG A
BL(71) 38 551, 592 CXS DSG A
BR(71) 43,44 430 to 1195 PI-P DSG A
BU(71) 49 90 to 295 CXS SGTE A
CA(71) 55 70 to 285 PI+P SGT A
CA(71) 55 75 to 295 PI-P SGT A

*K1net1c energy of incident pion 1n laboratory frame (MeV)
**More data available, but only in plotted form
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TABLE 2-1. PION-NUCLEON DATA BASE (0 to 1200 MeV)* (Sheet 3 of 4)

SHORT ID REFERENCE ENERGY* REACTION OBSERVABLE STATUS

HA(71) 93 200 to 450 CXS DSG A
KA(71) 104 1148 PI+P DSG A
SL(71) 130 595 to 850 PI+P P X
AB(72) 3 745 to 1150 PI-P DSG A
AL(72) 5 735 to 1120 PI-P DSG A
AL(72) 5 735 to 1120 PI-P P A
BA(72) 16 765 to 910 PI+P SGTE A
BE(72) 29 205 to 375 CXS DSG A
BO(72) 42 465 to 680 PI+P DSG A
DA(72) 64 295 to 745 PI+P SGT X
DA(72) 64 295 to 745 PI-P SGT X
R0(72) 125 445 to 1440 PI+P DSG X
R0(72) 125 445 to 1140 PI-P SGT X
BU(73) 53 85 to 295 PI+P DSG A
BU(73) 53 85 to 295 PI-P DSG A
CA(73) 56 20 to 1198 PI+P REF X
CA(73) 56 20 to 1198 PI-P REF X
D0(73) 74 585 to 815 PI-P DSG A
DU(73) 79 20 to 45 CXS DSG A
GO(73) 90 240 to 400 PI+P P A
GO(73) 90 240 to 400 PI-P P A
GR(73) 91 401, 545 PI-P DSG A
MA(73) 109 670 to 825 PI+P DSG A
NE(73)** 116 900 CXS SGTE A
AB(74) 1 1075 PI+P DSG A
BE(74) 33 1064 PI+P DSG X
CH(74) 58 356, 428 CXS DSG A
D0(74) 75 855 to 995 PI-P SGTE A
JE(74) 101 110 to 230 CXS DSG A
RI(74) 121 475 to 1150 PI-P DSG A
SH(74) 129 900,1113 CXS P A
AM(75) 8 236 PI+P P A
BA(75)** 18 865 to 1185 PI-P DSG A
C0(75) 60 135 to 260 CXS DSG A
DE(75) 69 475 to 870 PI-P DSG A
DE(75) 69 475 to 870 CXS DSG A
MA(75) 110 475 to 1195 PI+P P A
AM(75) 9 90 to 195 PI+P P A
BA(76) 14 495, 879 PI+P SGT A
BA(76) 14 885 PI-P SGT A
BK(76) 23 450 PI+P P A
BK(76) 23 450 PI-P P A

*Kinetic energy of incident pion in laboratory frame (MeV)
**More data available, but only in plotted form
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TABLE 2-1. PION-NUCLEON DATA BASE (0 to 1200 MeV)* (Sheet 4 of 4)

SHORT ID REFERENCE ENERGY* REACTION OBSERVABLE STATUS

BE(76) 34 20 to 100 PI+P DSG A
BR(76) 45,48 490 t¤ 1145 CXS DSG X
BY(76) 22 140 to 275 CXS DSG A
BA(77) 21 1049, 1118 PI-P P A
BR(77) 46 650, 746 PI+P P X
DU(77) 77,78 290 to 310 PI+P P A
JE(77) 102 125 to 245 CXS DSG A
OT(77) 119 1115 to 1185 PI+P DSG A
VA(77) 136 1145 to 1185 PI-P DSG A
AL(78) 6 292, 308 PI-P P A
BL(78) 39 40, 50 PI+P DSG A
BR(78) 47 490 to 1145 CXS P X
KR(78) 107 400 to 600 CXS DSG A
NE(78) 115 265 to 325 PI+P DSG A
NE(78) 115 260 to 330 PI-P DSG A
PE(78) 120 70 to 370 PI+P SGT A
PE(78) 120 70 to 370 PI-P SGT A
AU(79) 12 48 PI+P DSG A
H0(79) 98 20 to 1100 PI+P REF A
H0(79) 98 20 to 1100 PI-P REF A
KA(79) 105 885 to 1045 PI-P DSG A
SA(79) 128 540 to 590 PI-P DSG A
BE(81) 24,25 450 to 600 PI-P P A
G0(81) 88 275 to 600 PI+P DSG A
G0(81) 88 285 to 600 PI-P DSG A
RI(82) 124 65 tc 140 PI+P DSG A
SA(82) 126 260 to 565 PI+P DSG A
SA(82) 126 260 to 565 PI-P DSG A
AL(83) 7 95 to 295 PI-P P A
AL(83) 7 235 to 310 CXS P A
BE(83) 26,27,28 335 to 580 PI+P P A
FR(83) 86 25 to 90 PI+P DSG A
FR(83) 86 25 to 90 PI-P DSG A
GA(84) 87 401 CXS DSG A
ME(84) 111 27, 39 CXS SGTE A
FI(85) 85 30 to 65 CXS DSG A
IR(86) 100 65 to 230 CXS DSG A
KI(86) 106 190 to 505 CXS P A
M0(86) 113 350 to 565 PI+P P A
M0(86) 113 350 to 565 PI+P P A
SA(86) 127 290 to 565 PI+P DSG A
SA(86) 127 290 to 565 PI-P DSG A
WI(86) 138 425 to 535 CXS P A

*K1netic energy of incident pi¤n in laboratory frame (Mev)
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supplanted by more recent and accurate results covering the same

kinematic (energy, angle) range. Also excluded from the data base are

those total-elastic cross sections that are not measured independently

of differential cross sections that have been included. There are

also several references1°6 that are not in Table 2-1 or in the data

base because the published data are in plotted form only. Any reader

knowing how to obtain these or any additional data is requested to

notify the author.

When this work was begun, the data base was considerably smaller

„and consisted largely of data from experiments with energy less than

800 MeV. Since that time, the data base has been greatly increased

with the addition of many new experiments and the expansion of the

energy range to the present 1200 MeV. Even with the removal of the

old pre-1964 experiments, the data base has been approximately

doubled. With this rapid change in the data base, a computer-based

Data Log was developed to keep track of its evolution. The Data Log

enables comments about each reference -— such as why a particular

experiment is not included in the analysis -- to be recorded for

future reference.

2.1 ACTIVE EXPERIMENTS

Because of the large number of experiments in the data base, no

attempt has been made to describe it in detail. Instead, the extent

of the data base is shown via the kinematic distribution plots in

Figures 2-1 through 2-6. The distributions in angle and energy for

differential cross sections and polarization data are shown for each
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of the three charge channels. In these plots each data point is

indicated as being pre-1975 data with the label O for old data or as

being post-1974 data with the label N for new data. The positive pion

scattering is seen to cover the entire energy range relatively well

except for a large 100-MeV gap in the low-energy polarization data and

some much smaller gaps in the high—energy end of the differential

V cross-section data. There is also a lack of data in the far forward

and backward directions, especially for polarization. The

distribution of negative pion scattering data is similar to that of

the positive. The negative pion polarization data also have a low-

energy gap of about 200 MeV, with a dearth of data at the extreme

angles. The negative pion cross sections are in better shape than the

positive pion cross sections, with no significant gaps in angle or

energy in the medium- and high-energy sections of the data base. More

data at the low-energy end, especially at the extreme angles, would

again be helpful. There are far fewer charge exchange data, although

most of them are from recent (post—l974) experiments. The

polarization data have major gaps in the low-energy end, while the

low-energy, cross-section gap is smaller. Except for the low-energy,

differential cross sections, the angle range does tend to be fairly

well-covered. The PI-NNewslctter7 describes an experiment planned by

the SIN group to measure low-energy, differential cross sections of

high quality. These results would remove many of the deficiencies in

the low-energy part of the data base.
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The total cross sections in the data base are dominated by the

experiments of Carter—CA(68) and CA(71), Pedroni-PE(78), and Bulos-

BU(69). New high—precision measurements of total cross sections over

the entire energy range to verify these results would be very helpful.

As alluded to in the next subsection, particular care would be needed

to be taken in the determination of the pion°s beam energy.

There are currently no measurements available in the energy range

of this analysis for any of the spin observables other than

polarization. To date, no experiments have been performed to measure

the low—energy, spin rotation parameters, R and A, or the spin

rotation angle, ß. The PI-NNewsletter describes an experiment planned

by the Leningrad group to make such a measurement. Such measurements

would be very valuable for eliminating ambiguities.8

Originally included in the data base were values of the real part

of the forward elastic scattering amplitude, Re[f(0)], determined by

Carter and Carter-CA(73).9 These quasi-data were calculated from

forward dispersion relations using total cross sections and provided

the only dispersion-theoretic constraint in the early stages of this

analysis. This set of values has been supplanted by the newer set of

real parts of the forward amplitude HO(79), obtained from Dr. G.

Höhler of the Karlsruhe group.l0 Their results come from a

dispersion—theory—based, partial-wave analysis. They are expected to

U be of greater validity than the older Carter values alone, at least

partially, because they are based on a larger, newer, and better data
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set. The Karlsruhe values provide the dispersion-theoretic constraint

in all the results presented in this report.

2.2 EXCLUDED EXPERIMENTS

In addition to those data described above that have been omitted

from the data base, there are other data that are in the data compila-

tion but have been excluded from the analysis. Because data with

large errors do little to constrain the analysis, polarization data

with absolute errors greater than 0.2 have been excluded from the

analysis. Most of these data come from source CO(69). Table 2-2

shows the X2 obtained from solution FP86 of those experiments in Table

2-1 that have a status of "X" and are excluded from the analysis. Of

these, the total cross sections of Bizard-BI(66), Devlin-DE(6S), and

Sterling-ST(66) are all older experiments with relatively large errors

and are inconsistent with the more precise measurements of CA(68),

CA(71), and PE(78). The total elastic cross sections of Cason-CA(66)

are inconsistent with other nearby data. The Davidson-DA(72) total

cross sections have known problems,l1*l2 particularly in the

determination of the beam energy. From the same group as the Davidson

experiment came the backward differential cross sections of

Rothschild-RO(72). This experiment also has an apparent difficulty

with its beam energy determination12*l3 but not in the same direction

as DA(72). In addition, the data of both DA(72) and R0(72) are

inconsistent with the remainder of the data base, as seen by their

high X2, shown in Table 2-2. The Brown differential cross sections and

polarization data, BR(76), BR(77), and BR(78), have also been excluded
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TABLE 2-2. DATA EXCLUDED FROM ANALYSIS

SHORT N0. OF X2/
ID REACTION OBSERVABLE ENERGY* X2 DATA NDATA

BU(64) CXS SGTE 545 to 999 92.0 7 13.1
DE(65) PI+P SGT 497 t0 1100 37.9 15 2.5
DE(65) PI-P SGT 418 to 1100 155.7 29 5.4
BI(66) PI+P SGT 310 to 698 145.7 20 7.3
BI(66) PI—P SGT 310 to 698 385.0 32 12.0
CA(66) PI-P SGTE 790 to 870 48.1 3 16.0
ST(66) PI+P SGT 525 to 1100 68.5 14 4.9
ST(66) PI-P SGT 540 to 1100 209.2 21 10.0
SL(71) PI+P P 598 to 846 709.0 130 5.5

DA(72) PI+P SGT 298 to 742 1483.0 25 59.3

DA(72) PI-P SGT 298 to 742 2902.0 25 116.1

R0(72) PI+P DSG 468 to 1100 2888.0 33 87.5
R0(72) PI-P DSG 449 to 1100 3066.0 34 90.2

CA(73) PI+P REF 21 to 1100 417.8 102 4.1

CA(73) PI-P REF 21 to 1100 301.9 102 3.0

BE(74) PI+P DSG 1064 1419.0 49 29.0

BR(76) CXS DSG 494 to 1100 4197.0 310 13.5

BR(77) PI+P P 649 to 747 270.0 48 5.6

BR(78) CXS P 493 to 1100 4857.0 215 22.5

*K1net1c energy of incident pion in Taboratory frame (Mev)
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from the analysis. The positive pion data of BR(77) have never been

published in a refereed journal, and the scatter in the data appears

unreasonable. The charge exchange data of BR(76) and BR(78) are

described in the PI-N Newsletter as being controversia1,11 with the

polarization data earning only one star out of three in the

newsletter's quality rating scale. Bu1os°s charge exchange data,

BU(64); have been supplanted by more recent and accurate data from the

same group, BU(69). The differential cross sections of Berthon-BE(74)

and the polarizations of Sleeman-SL(71) each have unreasonably small

errors as compared with the considerable scatter in those data.
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3. THE PHASE-SHIFT ANALYSIS

The phase-shift analysis consisted of both an energy—dependent fit

and 23 separate single-energy fits covering the pion laboratory

kinetic energy range of 0 to 1100 MeV. The two types of analyses

complement each other, with the energy-dependent solution permitting

an investigation of the analytic structure of the amplitudes and a

determination of resonance parameters. The single-energy analysis

ensures that all structure in the amplitudes demanded by the data is

encoded. The coupling of these two types of analyses results in

mutually consistent solutions and hence the best of both approaches.

The objective of these analyses was primarily to obtain a precise

and economical encoding of the data and was not to test dispersion

theories. Consequently, a minimum amount of theoretical constraint is

included. The only explicit dispersion theory constraint was the use

of the forward dispersion relation derived real part of the forward

scattering amplitude, quasi—data of the Karlsruhe group.1 The

approach being presented here is unlike other works, such as the

Karlsruhe analysis,2 which includes much dispersion theory.

The amplitudes used in this work are the usual spin—no—flip and

spin-flip amplitudes, f and g. These amplitudes and their relation to

the experimental observables are described in Appendix B. The

amplitudes, f and g, are obtained from the parametrized, partial-wave

T-matrices after applying the coulomb corrections to be discussed in

Subsection 3.3. The partial waves were fitted with the standard

approach of minimizing X2 where

23
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ND a"·9i(p)-Bi
2 ”¤ „#_l“

XM):.
1=1 vw) z=1 Mcxp

6i(p) = value of observable "i" determined from parameters [p]

Biexp = experimental value of observable "i"

oiexp = experimental standard deviation (error) of ith data point

¤¤ = normalization parameter for experiment n = n(i)

ND = number of data points being fit

N, = number of normalization parameters

Aaexp = standard deviation of normalization parameter ai.

In particular, the square error-matrix search method3 was employed

using the SHSZSA (Spin-Half Spin—Zero Scattering Analysis) code

developed over the last 20 years by Dr. R. A. Arndt. SHSZSA is

described in further detail in Appendix C.

3.1 THE ENERGY-DEPENDENT ANALYSIS
l

3.1.1 Parametrization of Energy-Dependent Partial Waves

The energy-dependent solution is parametrized by a multiple-

channel Chew-Mandelstam K·matrix4 whose elements are analytic

functions of energy. For each partial wave, the K-matrix includes

both the elastic n-N channel and the inelastic n-A channel of lowest

orbital angular momentum to which the elastic channel can couple. In

addition, because the S11 wave is known to couple strongly to the q-N

channel,$ this channel has been chosen as a second inelastic channel

for the S11 wave. The n-A and q-N states of lowest orbital angular

momentum to which the various n-N states can couple conserving total
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momentum and parity are given in Table 3-1. Thus the S11 wave is

modeled via a three-channel K-matrix and the other partial waves via

two-channel K-matrices. The q-N channel is responsible for the S—wave

eta production, clearly seen in Figure 4-l(c) as a cusp.

Because this is a phase-shift analysis of elastic scattering and

covers a relatively low-energy range (0 to 1100 MeV). all the

inelasticity was assumed to proceed only through the two (n·A or r1-N)

described two-particle intermediate states. That such an assumption

does not detract from the analysis is obvious by the efficient

encoding of the data resulting from this parametrization.

The real symmetric K—matrix for a given partial wave is of the

form:

Kee Kel Ke2

K = Ke1 K11 0

Kez 0 K22 (3-2)

where Ke; and K22 are zero except for the S11 wave. Each K—matrix

element is parametrized as a polynomial in the barycentric energy, W,

with an optional explicit pole term and is given by:

2 2

K =p +pz+pz2+p z3+pz4+[]
ee 1 2 3 4 5 d

Ke, .+„ ..+,, +
[-L’°"’“=+="}

;;; 1+5; 2+5; 3+5; d (3-3;)
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TABLE 3-1. STATES (Lgg) DF LOWEST ORBITAL ANGULAR
MOMENTUM THAT CAN CDUPLE T0 H-N

n-A STATE q·N STATE
H-N STATE I = 1/2, 3/2 I = 1/2

S1 D1 S1
P1 P1 P1
P3 P3 P3
D3 $3 D3
D5 D5 D5

. F5 P5 F5
F7 F7 F7

G7 D7 G7
G9 G9 G9
H9 Fg H9

H11 H11 H11
111 G11 111
112 112 112
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2
Ku = p4+6z + ps+s6Z + (I%li?i)*i=1°'2

W—(Mn+MN+140MeV) pl6—W
with: = andd = (3-3b)

where W is the total barycentric energy and Mu ¤¤d HN ¤Y¢ the ¢h¤F8¢d

pion and proton masses, respectively. The parameters pl through pzo

are those that are varied in the X2 minimization process. Parameters

PI7 and pl8 serve as elastic and inelastic coupling constants,

respectively, for the resonance pole given by the explicit K-matrix

pole at z = pl6. In this analysis, only the first 18 parameters were

actually used. Parameters plg and pzo were always zero.

This Chew·Mand1estam K-matrix is related to the elastic element of

the nuclear T—matrix for the same partial wave by:

··whereI is the identity matrix and C is a diagonal matrix whose

elements are dispersion integrals of phase space factors over the

appropriate unitarity cuts:

(0). :6. (3'S)
¢ 1* 1* n 0 w- wi‘ ’



28

8 = orbital angular momentum index

W = total barycentric energy

W; = channel threshold energy

= My + Mu, for j = k = 1, the elastic channel

= MA + MH, for j = k = 2, the inelastic n-A channel

= MN + MH, for j = k = 3, the inelastic q-N channel

WS = subtraction point

= MN + Mu - 150 MeV, for the elastic channel

= MN + MH + 140 MeV, for either inelastic channel

and

Mu = MeV

MN = 938.256 Mev »

MA = 1232.0 · i * 51.0 MeV

Mn = 549.0 - i * 2.5 heV. '

The imaginary components in the delta and eta masses reflect the short

lifetimes of these two particles but are not meant to be identified

with their true widths. The given values were chosen largely for the

convenience of aiding the fitting process. The analytic structure of

the Cg's is discussed in detail in Appendix D. There, it is shown that

the usual space factor (p in Reference 4) is just the imaginary part

of C. That this choice of C gives the proper threshold dependence for

the partial waves is also demonstrated in the appendix.

With the K-matrix parametrized as described above, the T·matrix is

l
manifestly analytic in the barycentric energy variable, W, with much

of the analytic structure provided by the C,°s Tt is slss ¤€¢€ss¤YY
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f°T the T-matrix to obey unitarity. For S = 1 + 2iT, the generalized

unitarity condition, ss* jgl, gives:

T*'l' _g_ 1/2 i (T* - T) (3-6)

with the equal signs holding for elastic unitarity. One can check

this condition for those states that can be described by a two-channel

K-matrix (all but the S11 wave in this analysis), by first making the

following definitions:

¤ = Ke ' Ci (Kee Kii ° Keiz)

ß = 1 - C1 K11 1

Pe = Im {C11}

pi = h¤{Ci}. (3-7)

Simple algebraic manipulation then gives:

T = pg o/(ß- Cea) (3-8)

from which it is straightforward to derive:

2P P—K· 1 -
nß - Gear 2

Therefore, the nuclear T-matrix given by equation 3-4 will violate

elastic unitarity for pepi == 0 and will violate generalized unitarity

for pepi ·< 0. Similar conclusions can be reached for the S11 state

whose partial T-matrix is derived from a three-channel K-matrix.

Appendix D shows that, above the elastic threshold, pe is strictly

positive. Above the pion production threshold, pi is also nonnegative

and generalized unitarity is satisfied. It is below the pion
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production threshold that a negative phase space factor in an

inelastic channel can arise and result in a small violation of

unitarity. The prescription used to correct this problem and to

ensure unitarity everywhere is to take the real part of the effective '

one-dimensional K-matrix:

Kaff = Re [Ta/(1 + i T¤)] (3-10)

with Tu defined by equation 3-4. Below the pion production threshold,

Kaff is used to generate a new elastic unitary T-matrix:

Telastic = Keff/(1 ' i Kaff)- (3'll)

Because Kaff is explicitly real, the proof that Tglagtic satisfies

elastic unitarity is now trivial.

3.1.2 Methodology for Energy-Degendent Analysis

With the T-matrix parametrized as described above, the search

program, SHSZSA, was used to determine the values of the 13 parameters

(18 for the S11 wave) available for fitting in each partial wave.

S-waves through I-waves were fitted with higher peripheral waves being

assumed to be negligible. The S-, P-, D-, and F-waves are the most

important, with C, H, and I being smaller, peripheral waves. Because

this analysis did not start in a vacuum but has been able to benefit

from earlier analysis,6 it was not necessary to start with completely

unknown parameters. The present analysis began with an initial set of
A

parameters obtained by the CAPS (Center for Analysis of Particle

Scattering, VPI&SU) group during an older analysis based on an older,
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incomplete data base and with a parametrization that did not allow for

explicit poles in the expansion of the K-matrix elements. Those

partial waves known to have prominent resonances in the energy range

of this analysis were reinitialized, introducing the explicit poles

described above by specifically fitting the waves to either the

results of preliminary single-energy fits or to the Karlsruhe7 partial

waves. The analysis consisted of a great many iterations of the

search program, and the energy-dependent solutions were regularly

compared with the results of the single—energy analysis.

Occasionally, specific partial waves were reparametrized with a

different subset of the 13 (or 18) parameters being selected for

fitting and the other parameters fixed at zero. During this iteration

process, it became obvious that the experiments described in

Subsection 2.2 were "bad," and the decision was made to omit them from

further analysis. The energy-dependent solution obtained in this

manner has been designated FA86 for "Fall l986."

3.1.3 The Energy-Dependent Solution

Solution FA86 and six other energy-dependent solutions are sum-

marized in Table 3-2. For each of the solutions, the breakdown of X2,

number of data, and number of parameters are given.

After developing FA86, the effects of pruning the data were inves-

tigated. A number of individual data points had been found to give

very large contributions to FA86°s total X2. By pruning these data

with X2 contributions greater than 16, overall X2 was reduced by

slightly over 20 percent with less than 2 percent of the data being



32

Ne5-••.n"‘ewnm
O

¤.chen°‘e
m

1-I

•-I
oofmfo

en

O "
v~

genen

F.

'Qengzo

—|
men

O

Q)

¢ÜlD
I

:@

•—
z

N LD

gn

gg
LD¤_O

éeomen
I-I

(V)
F•l£

Q-

,_,_,
e.n°

'v~‘°c¤ en

¤-M

•-«°‘
"‘•"m°"r~"‘•.n

„_

m„;.";¤¤g•.¤g=

>-ez
G

=

£·~8·—·¤¤

'5
en

:>‘·*-¤$•'“‘••‘i"'*$¤~.-„

v>N

• en

ee-

_II'LLD°
'r~°‘ez>‘°en

2

an

•-

'·"e4g
E,•-e E

f\¤.

+-»

z

o

$7

c

eu

·¤4,
eu

+-•
„, 4,

|¤-¤e:
4,s.

g^
¤. Ö-

JJQ-l-ÖL

N"’s.z«-•+•¤

'°s‘”¤.»

"'e¤
•¤ -4->'

¤e¤E+»

X2
I

•—•

G

°'

¤n.g•-•
enänw

°-euäexgä•"6

°o""\"'~•-
o

S-\N

•—,_¤N

•4_¤°
\¤.

I-

eu

I-
·|¢



33

eliminated. The X2 per data point limit of 16 is equivalent to 4

standard deviations and certainly is a reasonable cutoff to prune

single-data points obviously inconsistent with the rest of the data.

The pruned data are in addition to those experiments specifically

excluded from the analysis. In addition to inflating X2, these data

were also frustrating the X2 minimization search algorithm. Much

cleaner searches resulted after a prune. By applying the above-

described pruning procedure iteratively, prune, search, reprune,

search, etc., solution FP86 was developed. For the details of the X2

comparison between FP86 and FA86, see Table 3-2. With so few data

pruned, the two solutions would be expected to be similar, and, as it

turns out, they are very close to each other. One comparison between

the two solutions is that of parameter 16, the position of the

explicit K-matrix pole encoded in most of the major waves. This

comparison is made in Table 3-3, and in only one case, P31, does the

difference exceed 1 percent. The P31 difference is about 1.2 percent,

but the K-matrix pole position (2500 MeV) is at an energy considerably

greater than that for which the analysis is valid and hence is not

expected to be well·determined.

The approach used in this analysis of fitting individual waves

necessitates the use of a finite number of waves in the summation

defining amplitudes f and g. The usual arguments against such a

cutoff include partial-wave indeterminancy caused by the continuum

ambiguity. Such arguments are not entirely valid for this analysis

because a number of peripheral waves, up through I—waves, are
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TABLE 3-3. SENSITIVITY OF K-MATRIX EXPLICIT POLE POSITION
TO PRUNING OF DATA AND TO THE NUMBER OF

PERIPHERAL NAVES IN SOLUTION

SOLUTION

Hp35 FA86 FP86 JP86
wAv55 (H-wAV[$) (I-HAVES) (I—HAVES) (J-NAVES)

S11 1678.7 1673.3 1677.4 1677.5

S31 1644.8 1639.5 1644.5 1643.9

P11 1576.3
‘

1574.6 1576.4 1575.9

P13 1688.3 1704.9 1693.5 1696.2

P31 2583.9 2473.8 2504.4 2504.5

P33 1283.2 1283.4 1283.3 1283.3

D13 1578.4 1586.1 1577.9 1581.0

015 1699.7 1700.0 1699.7 1699.6

033 1668.6 1655.4 1666.1 1666.3

035 2571.1 2593.2 2610.7 2569.7

F15 1702.5 1700.4 1701.4 1701.8

F35 1856.4 1879.7 1867.7 1879.4

F37 1935.6 1934.0 1934.6 1932.6

G17 1789.9 1791.1 1797.2 1791.2
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included. Also, the constraint of fitting such a large number of data

over a wide-energy range limits the sensitivity of the major waves to

the precise number of partial waves included. Solutions HP86 and JP86

are a test of this sensitivity. HP86 is an energy—dependent solution

for which only waves through
€=

H are included. Those partial waves

with
€I>

S have been set equal to zero. Solution JP86 includes, in

addition, both the I- and J-waves. Solutions HP86 and JP86 are based

on the same pruned data set as solution FP86. If HP86 and JP86 are

compared with FP86 in Table 3-2, it is obvious that X2 changes

minimally with the number of peripheral waves. Certainly, given that

JP86 has more parameters (139 vs. 131) than FP86, the essentially

identical X2 per degree of freedom (1.66 vs. 1.67) does not justify the

inclusion of the J- and higher waves. The accuracy and extent of the

currently available data do not require additional peripheral waves.

Table 3-3, which shows the values of the K-matrix explicit pole

positions for the three solutions, also justifies this conclusion.

The three other solutions in Table 3-2 are PLUS, MNUS, and SPLT.

They constitute a test of isospin invariance in the energy-dependent

solution. Solution PLUS began with FP86 and resulted from an analysis

of only the positive pion scattering data. Solution MNUS also began

with FP86, but only the negative pion elastic and charge exchange

scattering data are analyzed. For solution MNUS, the values of the I

= 1/2 parameters are fixed at the FP86 values. The I = 3/2 parameters

alone were varied in arriving at solutions PLUS and MNUS. By allowing

the I = 3/2 parameters to differ in the analysis of the positive and



36

negative pion data, a check is made of the dependence of the I = 3/2

_ partial waves on charge channel beyond the coulomb corrections

discussed in Subsection 3.3. Although the X2 for the positive pion

data is 1.9 percent less in PLUS than in FP86 (5699 vs. 5593) and the

X2 for negative pion and charge exchange scattering is 1.3 percent less

in MNUS than in FP86 (9819 vs. 9,945), the decrease is not significant

considering that solutions PLUS and MNUS together have effectively

more parameters to fit the same data than does solution FP86. In

fact, combining the results of solutions PLUS and MNUS results in a

chi-squared per degree of freedom negligibly better (1.66 vs. 1.67)

than solution FP86. Solution SPLT is a further check on charge

independence. As with MNUS, the negative pion scattering data alone

are analyzed, but it is the I = 1/2 waves along with the single I =

3/2 wave, P33 that are varied. By distinguishing between the P33 wave

in positive and negative pion scattering, Tromberg etaL8 claim a check

is made for short-range electromagnetic effects not accounted for by

the charge corrections (Subsection 3.3) of this analysis. The

reduction in chi-squared per degree of freedom of the negative pion

data from 1.67 for FP84 to 1.65 for SPLT, less than 2 percent, is

again not conclusive evidence for charge splitting in the current

world data base of pion•nuc1eon scattering.

FP86 is the solution on which most of the results in this paper

are based. The pruned data base upon which FP86 is based provides a

clearly superior representation of elastic pion-nucleon scattering

below 1100 MeV over that of the unpruned data. The author believes
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solution FP86 to be the best energy-dependent fit to date in this

energy range. Almost 9,500 data have been fitted to a X2 of 15,645

with only 131 variable parameters. The values of all parameters for

solution FP86 are given in Table 3-4.

3.2 THE ENERGY-INDEPENDENT ANALYSES

3.2.1 Parametrization of Energy—Independent Partial Waves

Phase-shift analyses at specific energies serve to test the data

for any structure that may not be properly encoded by an inherently

smooth energy-dependent analysis. Because it is desirable to employ a

form-independent parametrization to avoid unwanted biases in the

solution, the phase shift, 8, and the inverse cosine of the

inelasticity, p, have been chosen as the parameters to be fitted at

each energy for which an analysis is performed. The phase shift and

inelasticity are related to partial wave S- and T-matrices by:

S, = cos(p,)
em!

= 1+ 2iTe
(3-12)

where 6 labels the partial waves' orbital angular momentum. In an

energy bin for which a single-energy analysis is being performed, only

the actual values of the partial wave parameters, 8 and p, are fitted.

Such a natural parametrization obviously obeys elastic unitarity.

3.2.2 Methodology For Single-Energy Analyses

To cover the energy range of the energy-dependent analysis, data

were binned at 23 energies from 30 to 1100 MeV. For the final

iterations of the single-energy solutions, the data base was first
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pruned with solution FP86. In each bin, the partial-wave parameters

were assumed to be linearly dependent on energy with:

8(E) = 8O+ D*(E"E°)

p(R) = p„ + R * (E - Ro) . (3-13)

For an analysis energy, Eg, the initial values of the parameters for

the bin given by EL < EO < EU were extracted from solution FP86 by an

inversion of equation 3-12 to yield:

p(E) = cos'1 [I1 + 2iT(E')I2]

· 8(E') = 1/2sin'l [Im (3-14)
cos[p(T)]

with

6,, = 6(EO)

90 = 9(EO)

D = [sm.) - 6(EU)]/(EL - Eu)

R = [p(r:1.) - p(1·:u)l/(Er. - zu). (3-15)

A check on the assumption of linearity was made by comparing the X2 in

each bin obtained directly from solution FP86 with that resulting from

linearization. An excessive (>30 percent) increase in X2 upon linear-

ization indicated a need to narrow the bin size. Bin sizes were ulti-

mately decided upon by the tradeoff between maximizing the number of

data in the bin and minimizing any increase in X2 caused by lineariza-

tion. For each partial wave, only 80 and 90 were varied during an
A

analysis. Slopes D and R were kept fixed at their FP86 derived

values. At each analysis energy, not every partial wave was fitted.
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The decision to search a particular wave in the single-energy

analyses was based on the criteria of requiring that either

0.5 * (2J+l) * Im {TQ or 0.5 * (2J+l) * [Im {TA-ITW2] as obtained from

the energy-dependent solution FP86 exceed a minimum value, typically

0.014. The values of these two expressions are proportional to the

partial total and partial inelastic cross sections, respectively.

Once a wave was searched at any one energy, it was then searched at

each higher energy. The number of searched parameters went from a low

of 4 at 30 MeV to a high of 35 at 1100 MeV. The unsearched waves were

not set to zero but were fixed at their FP86 values. The

contributions from unsearched waves were most important at the lower

energies where the data base is too sparse to support the direct

determination of the smaller waves.

3.2.3 The Energy-Independent Solutions

The results of the single-energy analyses are given in Table 3-5

The real and imaginary parts of the T-matrix for each searched partial

wave are given with the associated error as determined from the chi-

squared error matrix. Plots of these results with the energy-

dependent partial waves are given in Figure 3-1. The high degree of

consistency between the single-energy and energy-dependent solutions

evident in these plots reinforces our confidence that all the

structure in the amplitudes demanded by the data is encoded. The

error bars shown are those obtained from the error matrix (see

Appendix C). For some of the partial waves, such as PI3, the errors

appear precipitously large near 650 MeV with irregular behavior
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slightly below this energy. This trend is apparently caused by a

dearth of quality data in that energy region.

3.3 COULOHB CORRECTIONS TO NUCLEAR AMPLITUDES

In pion•nucleon scattering, the existence of charged initial and

final states requires the inclusion of electromagnetic corrections to

the pion-nucleon scattering amplitudes. Because it is presumed that

the electromagnetic and strong interactions separately obey unitarity,

the total phase shift will be a nonlinear function of the two

interactions. The phase shifts caused by each interaction in the

absence of the other cannot be simply added. The approach taken here

to account for electromagnetic effects has been to use the direct or

pure coulomb amplitudes developed by Tromberg etaL8 and documented by

Höhler etaL7 The pion and proton form factors from Höhler are used.

Rather than use the coulomb phase shifts (which some authors call

coulomb rotation factors) and phase shift and inelasticity corrections

given by these authors, the coulomb phase shift given by Zidell etaL

and a coulomb barrier factor described below have been employed. In

the analysis being reported here, charged-neutral pion and proton-

neutron mass differences and the radiative capture process (n—P —+ YN)

have been ignored. Also neglected are corrections to cross sections

because of bremsstrahlung (soft photon emission).

The partial-wave T—matrices parametrized according to Subsections

3.1.2 and 3.2.2 must be charge—corrected for use in any of the three

charge channels. The corrections to these nucleon partial waves are

accomplished with coulomb barrier factors, Bg:



55

(

Br :80 [1 (3-16)
_1=l

with

ß„ == 2m;/(e2¤n — 1)

vr = (pion laboratory velocity)/c

a = fine structure constant

q = ia/vr, for ni? —»niP. (3-17)

For charge-exchange scattering (n-P —>n¤N), the square root of the n-P

barrier factor is used. These barrier factors are multiplied with a

K-matrix computed from the nuclear T-matrices. The resulting modified

K-matrix is then used to calculate the charge-corrected T-matrix.

This recipe is documented further by Arndt etal.9 and results in the

following T-matrix:

T :
Bei Tweeear . (3-18)

charge corrected 1 .1. i #(1 _
B!) #

Taucher

The coulomb phase shifts that multiply these charge-corrected T-

matrices are given by Zidellö as follows

c
oej=1

oo =
g_g . (3-19)

The comparison between energy—dependent solutions FP86, SPLT,

PLUS, and MNUS reported in Subsection 3.1.3 showed that only the above

charge corrections are required by the data. A similar conclusion can
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be reached from single-energy analyses such as described by Arndt et

al.9
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4. THE PARTIAL—HAVE RESOHANCES

4.1 DEFINITION OF A RESONANCE

The energy dependence of the pion-nucleon elastic cross sections

exhibits conspicuous bumps, manifesting the presence of the underlying

partial-wave resonances. This structure in the cross sections of the

energy—dependent solution FP86 is shown in the plots of Figure 4-1 for

each of the three elastic charge channels. The most prominent peak

seen here occurs near a lab kinetic energy of 190 MeV and is caused by

the well-known delta P33 (1232) resonance.

The enhancement in scattering caused by the formation or

production of meta-stable states having short lifetimes on the order

of 10-23 seconds occurs in states with good quantum numbers of the

strong interaction (angular momentum, isospin, parity, and spin), and

these states are referred to as resonances. Because resonances have

nonzero lifetimes, their formation or production during the scattering

process results in a time delay of the emergence of the scattered

particles with the resonance mass being identified as the center-of-

mass energy at which the peak delay occurs.

Resonances are typically described in terms of a Breit-Wigner

formula, where near the resonance energy of an elastic resonance,

T(W;l,J,L) ~ . (‘*'1)

A similar formula, which includes a background term, exists for

nonideal and inelastic resonances. The mass and width of the
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resonance are given by M and I", respectively. An elastic resonance

can be identified by a phase shift rapidly increasing by an amount of

order of 11 and by the counterclockwise movement of a partial-wave,

T-matrix element along a deformed circle in an Argand diagram. There

will also be a definite peak at the resonance mass in |dT/dW|. In the

past, resonances have usually been reported by giving the Breit-Wigner

resonance parameters, M and P; however, more recently, investigators

have been reporting the location and residue of the poles of the T-

matrix in the complex energy plane. This approach has the advantage

of not necessarily depending on a Breit·Wigner-like parametrization

and the disadvantage of requiring the analytic continuation of the

amplitude into the second sheet of the complex-energy plane. The

identification of a resonance with a pole in the T-matrix enables one

to associate resonances with being new particles. According to

S—matrix theory, both stable particles and unstable resonances are

identified with poles in T or S in the second sheet of the complex-

energy plane. For the stable particle, the pole is on the real axis

below the threshold energy while a resonance pole is below the real

axis and on the second or unphysical sheet determined by the physical

branch cut in T(W) that begins at threshold. The presence of a

T-matrix pole is surer criterion for the existence of a resonance than

a rapidly varying phase shift or a loop in an Argand diagram because

these latter can occur in the absence of a resonance.1 It is the

existence of a pole below the real axis on the second sheet in the
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complex-energy plane that is being used to identify resonances in this

work.

More detailed discussions about resonances are widely found in the

literature with excellent discussions in Subsection 4.2 of Höhlerl and

in Chapter 5 of Bransden and Hoorehouse.2

4.2 THE PION-NUCLEON RESULTS

The pion·nulceon system is well-known for its wealth of partial-

wave resonances that include the first such resonance discovered, the

P33, A(1232). As described earlier, resonances can often be

identified by a counterclockwise loop in an Argand diagram. Argand
l

diagrams from the energy-dependent solution FP86 are given in Figure

E—l of Appendix E for each partial wave through
€=

3 and for energies

from threshold to a total center—of—mass energy of about 1800 MeV.

Their behavior varies from the highly elastic P33 that remains near

the unitarity circle as it loops through the A(1232) to the more

inelastic partial waves, such as the D33. Most of the waves show the

counterclockwise looping behavior characteristic of resonant behavior.

Indeed, partial waves S11 and D13 clearly show two such loops, which

is strong evidence of two resonances in this energy range for each of

those waves. Only partial waves D35 and F17 show no indication of

resonant behavior. Although several waves (i.e., P13, P31, and D35)

begin by traveling along the unitarity circle in a clockwise

direction, S31 has the unique behavior of then very sharply moving

away from the unitarity circle and going into a counterclockwise

resonance loop. Of the waves shown, the D35, F17, and F35 are the
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l

smallest, with the smallness caused in part by the limited phase-space

available to higher angular momentum states. Although Argand diagrams

are useful for identifying resonances, they cannot serve as a rigorous

test because of the possibility of loops occurring without other

indications of resonances, such as a peak in the time delay, being

present.

Another characteristic of many pion-nucleon resonances is the

rapid rise in the phase shift by an amount of order n that results in

a peak in the partial cross section at the resonance energy. The

phase shifts from the energy·dependent solution are shown in Appendix

E, Figure E-3. Of all the partial waves, only five, P11, P33, D13,

D35, and F15, show a rapid increase in the phase shift by an amount

near 180 degrees, although many of the others also had a resonance

loop in their Argand diagrams. These examples show that a rapid

change in the phase shift cannot be used as an absolute criterion for

the presence of a resonance. The four partial waves, whose Argand

diagrams showed initial traversal of the unitarity circle in the

clockwise direction, S31, P13, P31, and D35, also show a corresponding

distinctive behavior in their phase-shift plots. They have negative

phase shifts, which are caused by the existence of a repulsive

potential acting in those channels. Positive phase shifts are

correspondingly related to attractive potentials. Shown with the

phase shifts in the plots of Figure E-3 are the inelasticity (or

absorption) parameters, n. The actual quantity plotted is l ~ nz,

which increases from zero for purely elastic scattering toward unity
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as absorption increases. If the phase shift is given as a complex

quantity, S = ÖR + iS}, then q =
e—28I.

All the plots show an initial

inelasticity parameter of unity since the inelastic threshold is not

reached until a pion kinetic energy of 156 MeV (Ecm = 1290 MeV).

Descriptions of resonances in terms of phase-shift variation or

even via Argand diagrams have been known to be unreliable tests for

resonances. Here we use the existence of T-matrix poles near the real

axis on the unphysical sheet in the complex energy plane as a precise

test for the identification of a resonance. The results for each

partial wave from solution FP86 are given in Table 4-1. Pole

positions and residues are listed there for all three- and four—star

resonances and the single two-star resonance identified by the

Particle Data Tables3 that are within or near the energy range of

interest, below 2000 MeV. For each resonance, its status and the pole

position and residue from both solution FP86 and the Carnegie-Melloné

(CM) analyses are given. The Carnegie-Mellon residue phases have been

modified from their reported values by a uniform increase of 180

degrees to give agreement with the VPI&SU phase convention. The

errors in the FP86 resonance parameters were computed from the errors

in the fitting parameters and the variation of the resonance

parameters with the fitting parameters. For fitting parameters pi

with statistical error Api, the error, Af, in a resonance parameter,

f, is given by

ra ¤ 1
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In the numerical differentiation, the variation in each parameter was

taken at 1 percent of the corresponding error. The parameter errors

were taken from the values given by the analysis program, SHSZSA, at

each cycle of the fitting process, but are not identical to the

diagonal elements of the error matrix. The large chi-squared second

derivative matrix is nearly singular, so numerical difficulties

require some massaging of the errors for the smaller parameters.

Consequently, the smaller FP86 errors shown here in Table 4-1 and

later in Table 4-2 are generally understated.

The resonance parameters presented in Table 4-1 show excellent

agreement between the results of this analysis and the Carnegie-Mellon

work. The only resonance for which major discrepancies exist is the

P11 (1710) and is presumably caused by the complicated structure in

this wave as described in the following section where each wave will

be discussed in greater detail. Table 4-1 also shows that this

analysis finds no resonances beyond those previously reported, and

below the highest energy range of this analysis, 1800 MeV in the

center of mass, all of the expected resonances are found except for

the two questionable one-star resonances, N(1540) in P13 and A(1550)

in P3}. In addition, the two—star A(1600) in the P33 wave is also

seen, although with a large width. An explanation for its weak status

will be presented in the next section. In the energy range between

1800 and 2000 MeV, just above the range of this analysis, two of the

predicted six delta resonance poles are seen. The observance of the

A(190S) and A(19S0) poles is indicative that the effects of these two
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resonances extend significantly into the energy range of FP86. The

absence of the other four is not surprising; they just have little

effect below 1800 MeV.

In a Briet-Wigner parametrization, the magnitude of a resonance

pole residue is the elastic half-width, while the imaginary part of

the pole position gives the total half-width of the state. The total

width must obviously be greater than the elastic width, so it is

therefore reassuring to observe that the reported residue magnitudes

are all less than the magnitude of the imaginary parts of the pole

position to within the reported errors.

4.3 TOPOLOGY OF THE PARTIAL—WAVE AMPLITUDES

One of the principal advantages in the decision to parametrize the

partial waves, as described in Chapter 3, is the explicit analyticity

of the partial amplitudes. Analytic continuation into the complex

energy plane is straightforward with this parametrization and reveals

a rich topological structure for solution FP86. Each channel

threshold introduces a corresponding square root branch point, and

hence an additional Riemann sheet of the amplitude. As discussed

earlier, poles below but near the real axis on the second or

unphysical sheet of the elastic branch cut are identified with

resonances. Poles on other Riemann sheets of the complex amplitude

also exist, but typically have little effect on the physical amplitude

because of their long distance from the real axis. Zeros of the

amplitude are also found in the complex energy plane and can influence

the physical amplitude.
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Details about the poles and zeros found in solution FP86 are

summarized in Table 4-2. Features labeled as type "R" are resonance

poles on the unphysical sheet of the elastic channel. For

identification with specific resonances, the reader should refer back

to Table 4-1. Other poles, those not identified with resonances and on

the sheet introduced by the delta threshold, are labeled with a "P."

Zeros of the amplitude are naturally labeled with a "Z." The errors

in the positions of the features and in their residues shown in Table

4-2 were determined by the procedure described in the previous section

and, for the reasons explained there, are generally understated. A

pole residue has dimension of MeV and is given by,

PokResidue = äiliävp {T(W) * (W — Wp)} (4-3)

where Wp is the pole (R or P) position in the complex energy plane.

In order for the "residue" of a zero to have the same dimension as a

pole residue, the zero "residue" is taken as,

ZeroResidue · iimii {———T(W)ii [Walz} (ii-ii)
° W-W, (W- W:)

with WZ being the position of the zero. Note that except for the S31

and the P13 waves, the zero residues are small in magnitude.

To aid in more detailed discussions of the topology of the partial

waves, contour plots of the T-matrices in the complex energy plane for
i

those waves exhibiting interesting poles and zeros are presented in

Figure 4-2. On the contour plots, squares indicate resonance poles
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TABLE 4-2. COMPLEX W-PLANE FEATURES FROM SOLUTION FP86

<·^·=“> @
PARTIAL

HAVE TYPE* Re {H} -Im{w} |r|(MeV) B(deg)

S11 R 1461 1 14 103 1 6 63 1 9 152 1 7
Z 1587 1 17 55 1 4 1 1 4 -53 1 18
P 1654 1 16 83 1 4 84 1 10 143 1 4
R 1655 1 16 58 1 3 41 1 4 123 1 3

S31 Z 1587 1 9 36 1 1 33 1 1 153 1 3
R 1596 1 8 57 1 1 14 1 1 65 1 1

P11 - R 1351 1 6 99 1 1 66 1 1 73 1 1
P 1394 1 14 114 1 1 144 1 3 108 1 1
Z 1587 1 4 78 1 1 11 1 5 52 1 13
R 1611 1 14 128 1 2 86 1 4 -8 1 3
R 1632 1 15 79 1 2 42 1 2 -153 1 7
Z 1705 1 7 74 1 2 2 1 1 22 1 3

P13 R 1687 1 6 26 1 1 2 1 1 14 1 1
Z 1695 1 3 13 1 1 31 1 4 -41 1 3
R 1212 1 13 51 1 1 56 1 1 · 151 1 1
R 1588 1 15 154 1 2 41 1 1 71 1 1
Z 1588 1 4 63 1 1 0.40 1 1 -109 1 2

D13 R 1508 1 9 60 1 1 38 1 1 170 1 1
Z 1649 1 15 64 1 2 12 1 17 -45 1 23
R 1673 1 9 57 1 1 7 1 1 -159 1 7

015 1664112 6711 3111 16411
Z 1325 1 6 161 1 5 0.00 1 1 55 1 8
Z 1362 1 8 31 1 4 0.03 1 1 -77 1 30
R 1657 1 6 137 1 2 19 1 1 163 1 2
z 1312 1 10 105 1 2 0.02 1 1 -66 1 2

615 166917 5411 3211 16111
F35 1576 1 7 55 1 2 0.01 1 1 31 1 1

1855 1 5 95 1 1 17 1 1 170 1 1

r31 187916 10511 5411 15811
*See text for exp1anat1ons.
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(R) on the unphysical sheet, diamonds mark poles (P) on the sheet

introduced by the delta threshold, circles locate zeros (Z), and the

triangles mark the delta branch point. Shown with the contour plots

of log [H2 are linear plots of the T—matrices on the physical axis.

The solid lines are Re {T} and the dashed lines are Im {T}. A measure

of the inelasticity is shown by the "x's" that label Im {T} -|H2.

Figure 4-2a displays the two resonance poles of the S11 wave. The

top CO¤tOur plot shows the unphysical sheet and a zero between the two

poles, with all three features influencing the physical amplitude.

The structure in the other sheet of the pi-delta branch cut is

displayed in the bottom plot. An additional pole is seen to exist on

this sheet, but it is a long distance from the physical axis, having

to go around the pi-delta branch point to reach the real axis.

Consequently, it has negligible effect on the on-shell amplitude.

Simpler structure is seen in the S31 wave shown in Figure 4-2b. Here

a closely spaced zero and resonance pole are shown with both obviously

influencing the real axis.

The most complicated structure of any of the waves is seen in the

P11 wave as shown in Figure 4-2c. Again, the top plot displays the

unphysical sheet of the elastic cut, and the bottom plot rotates the

pi-delta branch cut to reveal the structure in the new sheet. The

Roper resonance, N(1440), is seen to lie near, but below the pi-delta

branch point. With the Roper is a nearby pole just around the

pi-delta branch point from the real axis. Its proximity to the Roper,

its relatively short distance to the real axis, and its significant
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residue result in this extra pole having some effect on the physical

amplitude. This second pole is relatively stable. Its presence was

observed early in the analysis before the explicit K-matrix poles were

introduced into the energy-dependent parametrization scheme. Although

this extra pole cannot properly be called a resonance, its impact with

the Roper on the on-shell amplitude is probably responsible for the

split Roper proposed by the older results of Ayed etaL,5 but discounted

by other recent analyses.l»‘»6 The N(17l0) resonance in the P11 wave

also has a complicated structure: two poles and two zeros on the

unphysical sheet. The bottom pole is shielded from the real axis by

the upper pole and the two zeros. Its validity is questionable because

of the lack of effect on the real axis, and it may be just an artifact

of the parametrization for this wave. Because there is not just a

simple pole for the N(1710), but rather the intertwined zeros and

poles as shown, there are significant differences in the resonance

parameters from FP86 and the Carnegie-Mellon results, as noted

earlier.

To further investigate the structure of the Roper resonance, the

sensitivity of the P11 pole positions to the coupling strength of the

explicit K-matrix pole is examined. Recall from Chapter 3's energy-

dependent parametrization that parameters 17 and 18 are the strengths

of the coupling of the explicit K-matrix pole to the elastic and

inelastic channels, respectively. Figure 4-3 shows the trajectories

of the T·matrix poles as the elastic coupling constant, ge, and the

inelastic coupling constant, gi, are varied between 0.1 and 1.0. The
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positions of the poles at the FP86 defined values of ge = 0.3245 and

gi == 0.3569 are shown with the squares and diamonds described earlier.

Arrows denote the direction of the movement as the indicated coupling

increases. As expected, the Roper resonance pole moves about the

delta branch point and closer to the real axis as the elastic coupling

increases. As the non-resonant pole moves towards the second sheet,

it also slides further away from the real axis. Although this pole

continues to have some effect on the real axis for a range of coupling

strengths, the true resonance pole dominates. When the inelastic

coupling is increased, both poles move closer to the real axis and

nearer to the delta branch point. The trajectories even cross, but

the two poles never coalesce. As the inelastic coupling increases,

the second pole moves to a position where it could be classified as a

resonance. The interpretation of the movement of the T-matrix poles

as the K-matrix pole coupling is varied is not conclusive. However,

the movement is suggestive that the second pole might be related to a

resonance that couples, at most, only weakly to the elastic channel.

The P13 and P33 partial waves displayed in Figure 4-2d show

somewhat simpler structure. At the P13 N(1720) resonance is a pole-

zero pair near the real axis. Other analysesé state a larger width

for this resonance than observed here. The presence of the zero is

responsible for this difference. Without it obscuring part of the

effect of the pole, the pole would have to be farther from the real
l

axis. It might be possible to reparametrize this wave to do away with

the zero, but that investigation remains for the future. The delta
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resonance is seen in the bottom plot as a strong pole near the real

axis without any nearby zeros. The two—star resonance pole, P33

Al600, does have a zero between it and the real axis. Although it has

a small residue, the zero blocks much of the effect this pole would

otherwise have on the real axis, and this mitigation is presumably the

reason the resonance is only weakly observed. Without the zero, the

pole°s presence would be obvious on the physical axis. With the zero,

the pole has a reduced effect on the real axis and the resonance is

difficult to observe.

The D-wave, pole-zero structures shown in Figures 4-2e and 4-2f

are even simpler. The zeros do little to mitigate the effect on the

real axis of any of the cbserved poles. All the D-waves except the

D35 have isolated poles, and the D13 also has a pole—zero pair.

Isolated zeros are seen near the pi-delta branch point in both the D33

and the D35 waves of Figure 4-2f, and this proximity renders their

actual presence questionable.

The three F-waves shown in Figures 4-2g and 4-2h all have well

isolated resonance poles, although more complicated structures could

conceivably exist at higher energies. The F35—wave of Figure 4-2h

exhibits, in addition, a relatively low-lying zero.

The presence of poles of [TF in the complex energy plane is

expected, and they can be identified with resonances if they are near

the real axis. The interpretation of the zeros is more difficult. In

nonrelativistic Schrödinger theory, Levinson's theorem for multiple

bound states requires the existence of partial-wave zeros, as has been
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demonstrated for the square well potential.7 However, it is not clear

how this aids the interpretation of the zeros seen here, other than to

say that zeros are expected. If resonance poles are "sources" for the

interaction, then the zeros are "sinks" that limit the poles° impact

on the real axis, consistent with unitarity. The examination of solu-

tion FP86 has found both isolated poles and zeros and pole-zero pairs.

In some cases such as the S31, P13, and P33 waves, the zero has a

major impact on the effect the associated pole has on the real axis.

It is conceivable that some of these zeros are not required to fit the

data and could be removed by changing the position of the pole. This

possibility should be pursued in future investigations, although

preliminary efforts in that direction have not yet had any success.

4.4 Near-Axis Poles

In the nucleon-nucleon system, some analysesa report the presence

of narrow poles in the partial-wave T-matrices near the real axis of

the complex energy plane. It is interesting to investigate the

possibility of the existence of such poles in the pion-nucleon system

because none of the models described in the next chapter predict them

and it would be useful to rule out their existence. That goal can be

addressed by testing the impact on chi-squared when a narrow pole is

imposed on a partial wave using a product S-matrix formulation,

STOTAL = SBACKGROUND * SRESONANCE ' (4-5)

For the purpose of this investigation, the background S-matrix factor

is taken explicitly from the energy-dependent parametrization
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described in Chapter 3. The resonance S-matrix factor is given by a

Breit-Wigner parametrization,

'*

TRESONANCE (szzzsozvmvcs '

1)forreal numbers a, b, c, and d and complex energy, W = WR + i*WI.

For this investigation, the values of a, b, c, and d are fitted

assuming an extra pole in only one partial wave. The initial values

chosen for the Breit—Wigner residue parameters (a, b) were each about

0.1. The complex pole position parameters (c, d) were initialized at

(1200, -1), (1500, -1), and (1700, -1) MeV for each of three separate

sets of calculations. After the Breit-Wigner parameters are optimized

for the partial wave being investigated, all the parameters including

the K-matrix paramétcrs are varied to minimize chi-square. This

process was repeated for each S-, P-, D-, and F-wave and for each of

the three initial near-axis resonance pole positions. A11 partial

waves other than the one being examined are defined by solution FP86.

The results of these investigations are given in Table 4-3, showing

the change in chi-square after optimizing the Breit-Wigner parameters,

and also after varying all the parameters for that wave.

For most of the cases considered, chi-square changes by an

insignificant amount to justify the possibility of the extra pole.

For those waves where the decrease in chi-square was greater than 10,

the Breit-Wigner parameters are shown in Table 4-4. The residues'

magnitudes (vaz + b2) for these are all small compared to the pole



86

TABLE 4-3. CHANGE IN CHI-SQUARE HITH INCLUSION OF NEAR-AXIS
POLE COMPARED TO SOLUTION FP86

INITIAL VALUE OF REAL PART OF RESONANCE POLE

PARTIAL
HAVE 1200 1500 1700

S11 +1., Ü. -1).2, -1.

S31 -4., -4 -3., -8. -0.2, -0.8

P11 +3., +Ü.5 -5., -6. -Ü.7, -6.

P13 -3., -3. -27., -27. -8., -29.

P31 -7., -7. -5., -6. -17, -19.

AP33 -6., -6. -8., -9. -12., -12.

U13 -1., -1. -8., -9. -2., -2.

015 +0.5, -0.5 -2., -2. -2., -0.3

033 -5., -18. -3., -7. -2., -13.

035 -5., -5. -3., -3. -14., -18.

F15 +2., -19. -9., -12. -2., -2.

Fly -3., -3 -21., -21. -3., -3.

F35 -4., -4. -12., -12. -9., -9.

F37 -2., -4. -14, -14. -25., -27.

*After fitting resonance parameters

**After refittlng all parameters for the searched wave
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TABLE 4-4. NEAR—AXIS BREIT-NIGNER POLE PARAMETERS

POLE POSITION RESIDUE
(c + id) (a + ib)

HAVE
¤¤

100*a 100*b
I

P13 1502.6 -7.6087 6.9143 0.12222

P31* 1705.1 -3.9313 2.7161 5.6324

P33* 1702.2 -0.93372 -2.0196 1.498

035* 1711.6 -2.493 1.2844 1.4073

F17* 1498.1 -3.4236 1.5562 2.2023

F35* 1500.5 -3.8956 1.4469 1.7365

F37** 1502.7 -3.5666 0.61382 2.9028

F37** 1714.0 -4.0284 0.37903 1.9888

P13** 1511.8 -2.4855 5.5175 3.5079

D33** 1703.2 -1.3354 -2.1832 1.9353

D33** 1195.2 -1.3413 -1.9954 1.6074

F15** 1283.0 -32.445 5.5005 -3.2483

F15** 1502.1 -3.4115 0.69244 -1.4424

*Nave where chi-square decreased by more than 10
after fitting only Breit-Nigner parameters

**Have where chi-square decreased by more than 10,
only after refitting entire wave.
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half-width Hdl), typically 1 percent, and thus the near-axis poles are

_ highly inelastic.

For a more in-depth examination of these partial waves, the

partial T-matrices for those four cases with a chi-squared reduction

of greater than 20 are shown in Figure 4-4. The differential cross

sections, polarizations, and spin rotation parameters were calculated

for each of these waves at the pole energy and compared with results

for solution FP86. The differential cross sections seldom changed by

more than 0.1 millibarn/steradian, and then only slightly. The

polarization values never differed by more than 0.05 and the rotation

values by more than 0.03. Although these differences are small, it is

difficult, but possible, to measure differential cross sections and

polarizations to within these accuracies. Calculating chi-square for

the experimental data base in a 30-MeV neighborhood of each Breit-

Wigner pole and comparing with solution FP86 show that the decrease in

chi-square for these waves is primarily caused by differential cross-

section data. In only one of the four cases, F37 with a pole at 1714

MeV, is the decrease primarily caused by polarization data. In

conclusion, these results show that the data do not preclude the

existence of near-axis poles, but neither are they required by the

data. To completely disprove their existence requires the measurement

of differential cross sections and polarizations to better than the

accuracies stated above over a wide range of angles and at small steps

in energy. The needed energy step size is illustrated by the close

spacings of the pole positions in Table 4-4, on the order of 1 MeV.
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S. THEORETICAL HODELS

The current theory of the strong interaction is, of course,

quantum chromodynamics (QCD). QCD is analogous to the theory of the

electromagnetic interaction, quantum electrodynamics (QED), but,

whereas there exists only one type of electromagnetic charge, there

are three types (colors) of color charge. Also, whereas the QED

exchange boson, the photon is uncharged, the carrier of the strong

force, the gluon does carry color charge. Presumably these

differences are responsible for the experimentally observed facts that

quarks are confined into the color singlet combinations of mesons and

baryons (quark confinement) and that within hadrons, the quarks are

nearly free (asymptotic freedom). The differences also result in a

theory so complicated that no exact solution has been (can be?) found,

and it has been necessary to develop models that are approximations to

the full theory. Consequently, the models only contain part of

physics needed to fully explain the experimental results. Indeed,

with the current state of knowledge, the experimental data are used to

improve the models rather than the models used to make precise

quantitative predictions. The models cannot be expected to agree

completely with the phase-shift results presented here, but they can

provide useful and important insight into the physics of the strong

pion—nucleon interaction.

In this chapter, three classes of the most popular and successful

of such models are described and their specific applications to the

pion·-nucleon problem are discussed. The three model types presented
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here are the constituent quark models, the bag models, and the Skyrme

soliton models. The,approach used in this chapter is largely tutorial

with only previously published results discussed. Particular emphasis

is given to using the results of these models to "explain" the phase-

shift results. No new theoretical calculations have been performed

and, indeed, would be outside the scope of this effort.

5.1 THE CONSTITUENT QUARK MODEL

5.1.1 Overview

The first class of models to be examined here is the non-

relativistic quark potential models, or constituent quark models in

which baryons are composed of three valence quarks that define the

baryon quantum numbers. Although these models suffer from the

liability that the quarks are treated ix: a nonrelativistic fashion,

they benefit from the ease in which center-of-mass motion can usually

be separated from the internal degrees of freedom. Baryon wave

functions must exhibit the permutation symmetry appropriate to their

three quark composition and also must have total angular momentum as a

good quantum number. Appendix F describes the ensuing baryon

spectroscopy, showing how the baryon states may be classified

according to standard group-theoretic language. Good summaries of

this class of models are found in References 1 and 2.

A variety of quark-quark potentials have been used in these models

to account for the observed quark confinement. Included among them

are logarithmic,3 linear,9•S and power law6 forms for the confining

potential's dependence on quark-quark separation. One of the most
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useful and successful forms is the quadratic or harmonic oscillator

model made popular by Isgur and Karl.7°l0 In all cases, the confining

long-range potential is flavor- and spin•independent, except for

possible constituent quark mass dependence. DéRujula etaLll have shown

how QCD can give rise to short-range, spin-dependent forces that might

account for much of the splitting within supermultiplets. They argue

that in analogy to QED, one-gluon exchange (OCE) results in a short-

range force between quarks of the same form as the two-body Fermi-

Breit interaction. For quarks labeled by i and j, the baryon

Hamiltonian that they propose is:

P? 2H = L(r1,r2,r3 ,...1+ +...1+(aqiqj1
1 1>_}

The constants a and Os are the electromagnetic fine structure and

strong coupling constants, respectively, for quarks of charge,

effective mass, position and momentum, qi, mi, ri, and pi. The inter-

action responsible for binding the quarks is denoted by L. It could

include any of the potentials described earlier. The three dots

denote any missing relativistic corrections to this Hamiltonian. The

two-body Fermi—Breit interaction for r = ri - rj is given by Sij:

Sij ooulomb (5"2)

· - ä + $)83(r)] ,Darwin
1 1
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Identification of the various terms is indicated as shown where

0j_'s are the usual Pauli spin matrices. DéRujula rewrites equation 5-1

as H = Hg + H' with:

2Ho = L + (m +pi/2m) (5-3)
I

and H' including everything else with m being the effective

(constituent, as opposed to current) and assumed equal mass up-and-

down quarks. The spin-dependent potential, H', splits the degenerate

supermultiplet, eigenstates of HO. DéRujula etal. also show how the

Fermi term causes the nearly degenerate quark spin 3/2 nucleon (8,4)

and quark spin 1/2 delta (10,2) members of the {70, L=l°}

supermultiplet to lie above the quark spin 1/2 nucleon (8,2) members

of the multiplet.
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5.1.2 The Harmonic Oscillator Model

Although, as described above, a variety of forms has been used for

the long—range quark binding interaction, the emphasis is on the

quadratic form in this chapter. In their first works, Isgur and

Karl7•8 extended the work of DéRujula by explicitly calculating the

Breit contribution to [70, L=1°} supermultiplet splitting by using

harmonic oscillator wavefunctions as a zero··order approximation to the

true spatial wavefunction„ The harmonic oscillator model has the

advantage that the spatial wavefunction reduces to the product of two

independent spherically syumetric oscillator wavefunctions of the

identical spring constant with center-of—mass motion separating

completely out. For the nonstrange sector of interest here, we define

-> _ 1 ·-> -> ..,

-> l—> ->p = E
(rl — r2)

·> 1->

-r·Theyobtain the harmonic confining Hamiltonian as follows:

H = L(p2+p2)+ äK(p2+ A2) (5'5)
H0 2m P Ä 2

that they use as their unperturbed Hamiltonian. In comparison with

DéRujula, they include the effects of the nonspin-dependent part of

the Fermi—Breit interaction in the unperturbed energy and they omit
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the spin-orbit term. The splitting was found to be one·half of the

nucleon-delta mass difference, in good agreement with experiment.7 In

fact, they used the nucleon-delta mass difference to fit the one

parameter in their model, the overall strength of the color magnetic

hyperfine interaction. Isgur and Karl also explicitly calculated the

contribution caused by the tensor part of the hyperfine interactions.8

They found weak mixing within the two JP = 1/2- nucleon states and

strong mixing within the two JP = 3/2- nucleon states, again in good

agreement with the empirical results of Hey etal.l2 The splitting

caused by the tensor term is caused by the mixing between states of

different quark spin that it produces. The operators have S = L = 2.

On the other hand, the Fermi term has S = I. = 0 and only connects

quark pairs of zero orbital angular momentum. The resulting predicted

masses for the low-lying, negative-parity baryons are compared in

Table S-l and later in Table 5-4 with the results of the reported

phase-shift analysis. The higher lying negative-parity states are

presumably caused by N = 3 excitations that Isgur and Karl do not

address.

The successes of this model8 as shown with the low-lying,

negative-parity baryons demonstrate the importance of the hyperfine

interaction in breaking the {70,1-} degeneracy. The Fermi-Breit

interaction also apparently gives the correct relative strength

between the Fermi and tensor terms of the observed hyperfine inter-

action. Conversely, there appears to be little evidence for the pres-

ence of the expected spin—orbit force. Isgur and Karl estimate that
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TABLE 5-1. HARMONIC OSCILLATOR MODEL PREDICTIONS OF LON-
1

LYING, NEGATIVE-PARITY NONSTRANGE BARYON MASSES

STATE ISGUR AND KARL PREDICTI0NS8 PHASE SHIFT*
L2I·2J (MeV) (MSV) (MeV)

S11 (1535) 1490 1461

S11 (1650) 1655 1655

D13 (1520) 1535 1508

D13 (1700) 1745 1673

D15 (1675) 1670 1664

S31 (1620) 1685 1596

D33 (1700) 1685 1657

*Mass as given by pole from Table 4-1



99

the spin-orbit force can be present with at most 10 percent of its

expected strength, speculating that the dominance of the spin—spin

force over the spin—orbit force may be caused by a highly anomalous

quark—gluon color magnetic moment. They also suggest and prefer an

alternative explanation that the spin·orbit contribution from OCE is

largely canceled by the spin·orbit contribution of the confining

potential through Thomas precision.

Isgur°s and Karl°s analysis of the positive—parity, excited,

nonstrange baryonsg illustrates the added complication in these states

as mentioned in Appendix F. For purely harmonic SU(6) invariant quark

confining forces, the positive-parity N = 2 states will lie in the

degenerate multiplets of (56*, LP = 0*), (56, LP = 2*), (70, LP = 0*),

(70, LP = 2*), and (20, L = 1*). Unlike the negative-parity states

where a purely harmonic confining interaction with hyperfine splitting

agrees well with experiment, the observed positive-parity states do

not lie in the degenerate multiplets listed above and predicted by the

harmonic confining interaction. There must be an anharmonic

contribution to the confining force, and, for these analyses, Isgur

and Karl add an undetermined anharmonic term, U(ri_j), to the confining

potential:

H:Ho

= HHO "' (5-6)

(
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Because U(rij) is unknown, it is not possible to obtain exact

solutions to the eigenstates of H° as it was in the negative-parity

states where the presence of U(rij) is not needed. In the harmonic

oscillator model, lack of knowledge of U(rjj) is not fatal to the

analysis because first-order perturbation theory shows in a

straightforward fashion that the zero-order energies of the five

multiplets with N = 2 reduce to functions of two parameters, EO and 2,

that can be roughly fitted by the observed states with Eg = 2,020 MeV

and 2 = 420 MeV. The five multiplets - (56*, LP = 0*), (56, LP = 2*),

(70, P = 0*), (70, LP = 2*), and (20, LP = 1*) then have eigenmasses

of EO - 2 = 1,600 MeV, EO - 2/5 2 = 1,850 MeV, EO - 1/2 2 = 1,800 MeV,

Eg - 1/5 2 = 1,935, and Eg == 2,020 MeV, respectively. The excited,

nonstrange, positive baryons in the N = 2 oscillator model, as

predicted by Isgur and Karl, along with their zero-order masses are

given in Table 5-2. As the authors note, the (56*, 0*) naturally

emerges as low—lying and can be identified with the Roper resonance.

The unobserved (20, LP = 1*) is pushed up high in energy.

Once the zero-order eigenmasses have been established, Isgur and

Karl use the hyperfine interaction and harmonic oscillator wave-

functions to mix the states within each of the SU(6) multiplets and

also to mix states of the same JP and isospin between the various

multiplets. A summary of their mass predictions and suggested

identification with states from the Particle Data Table13 is given in

Table 5-3. For the states that can be identified, the agreement is

again very good. The major apparent problem is the prediction of many
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states, including both of the high predicted mass (20, Lp = 1*)

states, that cannot be matched with observed pion-nucleon resonances.

The two low-lying resonances of questionable validity, the one-star

PI3 (1540) and P3l (1550), are not predicted in Isgur's and Karl's

model. Again, the success of this model indicates little evidence for

the presence of any spin-orbit contribution to the baryon

spectroscopy. Flavor-independent quark confinement forces split by

hyperfine forces produce a good match to the low—lying nucleon and

delta states.

In their next major work,l0 Isgur and Karl re-examine the masses

of the ground-state baryons. The major impact in the nonstrange

sector including some second-order effects in the hyperfine inter-

action is to allow mixing between the ground state (56, LP = 0+)

multiplet and the excited N = 2 positive—parity states described

above. Since the nucleon and delta masses were used to fit the masses

of all members in the ground-state multiplet, the ground-state masses

for the nonstrange baryons obviously are not influenced, but the

masses reported above for the excited postive-parity baryons should be

adjusted slightly.

The problem with the excess of positive-parity states over those

seen in pion—nucleon phase—shift analyses is reconciled by Isgur and

his new collaborator, Koniuk,14*15 when they show that the unobserved

states couple only weakly to the elastic channel. Using the same

harmonic oscillator model of quark confinement with hyperfine

splitting, as discussed above, to describe baryon structure and
av
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simple nonrelativistic model of baryon decay, they compute the baryon

decay amplitudes for pseudoscalar-meson and photon emission. Their

baryon decays proceed by a single-quark transition, and the

nonrelativistic model for decay was chosen to be consistent with the

nonrelativistic nature of the constituent quark oscillator model.

Koniuk's and Isgur°s analysis showed that the "missing" states are, in

general, too inelastic to be easily seen in partial-wave analysis.

The observed states that remain are in good agreement in mass (as was

shown earlier) and in the size and magnitude of the decay amplitudes

considering the crudeness of the decay model. The authors also

demonstrated the necessity of the hyperfine interaction in inducing

the appropriate mixing responsible for the decoupling of the unseen

states.

The oscillator model is extended to the N = 3 excitations in the

work of Forsyth and Cutkoskylö to include the next set of negative-

parity states. Only the nonstrange baryons are considered. This work

differs from that of Isgur and Karl7'l0 in allowing the relative

strength of the Fermi contact and tensor terms of the hyperfine

interaction to vary independently. Unlike Isgur and Karl, these

authors conclude that the tensor contribution to the spin-spin

interaction is small enough to not be needed to fit the data and that

the strength of Fermi term varies with parity. Although Forsyth and

Cutkosky omit the two-body, spin-orbit force as do Isgur and Karl,

they do include a small three—body contribution. Ten parameters were

fitted in constructing their Hamiltonian, four from the anharmonic,
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two-body, spin—independent, confining potential. The baryon decay

model they use is more.sophisticated than is Koniuk's and Isgur'sl4•l$

in that the model included dependence of the elastic width on the spin

and orbital state of the so-called "spectator" quarks. Forsyth's and

Cutkosky's predictions for the masses and group composition of the

nonstrange baryons are shown in Table 5-4 for states up to about 1800

MeV for comparison with the phase-shift analysis reported here. Also

shown are similar results from Isgur and Karl. The most obvious

difference in composition for the two oscillator models occurs in the

S11 (1535), S11 (1650), and the troublesome Roper P11 (1440). The two

one-star resonances in this energy range, P13 (1540) and P31 (1550),

are neither predicted by the oscillator model nor seen in this work.

Two predicted N = 3 states at 1809 MeV, an S11, and a D13 are not

seen. In agreement with Koniuk and Isgur,l4•lS Forsyth and Cutkoskylö

observe that these two and many higher lying N = 2 and N = 3 states

are largely decoupled from the elastic pion-nucleon channel and are

expected to be difficult to observe.

5.1.3 Deformation in the Harmonic Oscillator Model

The limitation to spherically symmetric oscillators in Isgur's and

Karl's model is relaxed in the work of Bhaduri and his

collaborators.l7°20 Although their ground states remain nearly

spherical, they assume that in the excited states the valence quarks

should no longer be modeled with spherical oscillators, but instead

with a deformed oscillator potential. In their first paper on the

subject,17 the authors examine qualitatively the positive-party,
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excited, nonstrange baryons and show how the resulting strong

deformation is responsible for the low-lying P11 (1440). The more

excitation quanta a state has, the more deformed it will be and,

hence, the lower in energy it will be with respect to the spherical

model. .

In their more quantitative paper,18 Bhaduri etal. explicitly

examine the nonstrange baryons for states up to the lowest N = 3

levels. By initially assuming the quarks to be noninteracting and

then separating out the center of mass, they obtain the unperturbed

Hamiltonian, Ho, for the deformed oscillator

i(2 2 mv 2(2
2X

(5..8)Ho- 2m .pP+p^) + 2
pi + Ai)

as compared to equation 5-5. They then borrow from nuclear physics

the concept of volume conservation, which they implement through the

condition,

ms = w co w
0 I y Z

to obtain the eigenenergies after minimization;

E = hwo [.¤(„vI+1)+J*«Ny +1)+ e'(°+ß) (Nz+1)l

1 (NV + 1) (NZ + 1)
cx = -ln3

(N + 1)y

B (N + l)(N + 1) _

B : - ,,1 . (5 9)
3 (Ny + 1)
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where the total number of excitations N = Nx + Ny + Nz. The intrinsic

states of proper permutation symmetry are produced from the ensuing

deformed oscillators in which the ground states remain spherical and

the N = 1, N = 2, and lowest N = 3 state are all prolate except for

the completely antisymmetric (spatially) N = 2 state with Nx = Ny = 1

and Nz = 0. These intrinsic states no longer have quark orbital

angular m0m€¤tum, L, as a good quantum number, but instead states of

good total angular momentum, J, must be formed by projecting out

states of good L and coupling to quark spin 1/2 or 3/2. In addition

to the lowering of a states energy because of deformation, the

projecting out of states with L = 0 reduces the energies even further

as seen by the low energy of the P11 (1440). Those states of a given

SU(6) multiplet with the lowest value of L then become a band head for

a series of rotational bands with L = 0, 2, 4, ... for the positive-

parity prolate states and L = 1, 3, 5, ... for the negative-parity ·

prolate and the positive-parity oblate band.

The intrinsic unperturbed eigenstates are then used to diagonalize

the full Hamiltonian that they choose as

H=K+H0+Hc+ 2U(rij) . (5*0)

where K is a constant (-286 MeV), HC is the Fermi contact term of the

hyperfine interaction, and U accounts for any missing short-range

interaction. U is about half the strength of Isgur's and Karl's

similar term. Bhaduri etah ignore the tensor term of the hyperfine

interaction because they believe it to be small. They also show that
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the spin-orbit force has little effect in their deformed model, so

they omit it too. They do need to retain the Fermi contact term to

obtain the proper mixing of the [S6, N = 2} and {70, N = 2} states

needed to explain the radiative decay amplitude of the P11 (1440) and

P11 (1710). Diagonalizing H then gives the intrinsic energies and

properly mixed wavefunctions that form the bandheads for the '

rotational spectra having energies:

E(L) = E. , . +äL(L+1) (S-lla)HIITHISICfor

the positive-parity prolate bands with L = 0, 2, 4, ... and for

the negative parity and oblate bands with L = 1, 3,

5,E(L)= Einmnm
—

5; [<L2> - 2]+5 L(L+l) . (S-llb)
l

The moment of inertia, I, and the expectation value, <L2>, for

these states are functions of the rotational band through their

dependence on Nx, Ny, and NZ.

The resulting spectroscopy is in good agreement with the observed

states although there are some differences in detail with the

predictions of Isgur and Karl. Again, they predict a number of the

positive-parity states couple only weakly to the elastic 1r-N channel.

Bhaduri°s deformed oscillator model naturally brings down, in energy,

the N = 2 and N = 3 states. He does not need the very strong spin-

independent central interaction, U(rij), required, but treated

perturbatively by Isgur and Karl. Perturbative treatment of Bhadrui's

weaker anharmonic term is much less objectionable.
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Bhaduri etal. next addressed, in more detail, the issue of the lack

of _significant spin-orbit splitting in the low-lying baryon

states.19-20 One—gluon exchange as expected from QCD would seem to

require a stronger spin-orbit force than is seen experimentally. The

suggestion by Isgur and Karl8 that Thomas precession from the

confining potential might cancel the OCE spin-orbit force is only a

partial solution since it is applicable only to the nucleon states.

The two spin-orbit forces would reinforce in the delta states, and

there must be an alternate solution. Cromeszl has suggested that the

scalar confining potential might be nonlocal, leading to a spin-orbit

force that can compensate for the OCE spin-orbit team. Bhadrui etal.

propose a different answer. They consider quarks coupling to pions in

addition to the gluon coupling resulting in a one—pion-exchange (OPE)

potential similar to the OCE interaction. Their revised Hamiltonian

is, therefore,

H = Ho + V008 + V0P8 + V80 ·
(5*2)

where

VOGE = VCG coulomb plus Darwin terms

+VSG Fermi spin-spin term

+VTG tensor hyperiine term

+ VSQG gluon-exchange spin-orbit

VOPE =
VS“

central spin-spin term

=
VT“

tensor hyperfme term

VSO = phenomonelogical Thomas one-body, spin-orbit term.
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They diagonalize the Hamiltonian without the various spin-orbit and

tensor spin·spin terms using the deformed oscillator wavefunctions

described earlier, and they project out the states of good L to

generate the rotational spectra. They then diagonalize the remaining

terms after constructing the states of good J to completely specify

the splittings and mixings. The additional OPE contribution to the

spin-spin force allowed the use of a strong coupling constant one

third of the value in the original analysis and, therefore,

correspondingly reducing the strength of the OCE spin—orbit force.

Deformation in the N = 1 states further reduces the spin—orbit

contribution in these states. The one-body, spin-orbit force cancels

the remaining OCE spin-orbit force. Thus, Bhaduri claims that

including OPE interactions account for the lack of significant spin-

orbit splittings.

5.2 THE BAC MODEL

5.2.1 The MIT Bag

One of the most successful extended models of hadrons has been the

bag model in which the quarks are explicitly confined to a region of

space, the bag, having a constant postive potential energy density.

As originally developed by Chodes, Jaffe etaL22 the so-called MIT Bag

Model was motivated by two important features of the quark theory of

the strong interaction, QCD: 1) asymptotic freedom and 2) quark

confinement. Although it has not yet been possible to demonstrate a

mechanism for quark confinement based on a proof using QCD field

theory, no quarks have been isolated experimentally. With the

1
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confined quarks forming a fundamental triplet representation of SU(3)

color, the bag model ensureszz that only color singlet combinations of

quarks exist as physically realizable states. Asymptotic freedom

results from the free or nearly free behavior of the quark fields

inside the bag. The colored quarks are, at most, weakly coupled

through quark·gluon interactions that account for the quantum numbers

of the observed hadrons. It is only near the bag boundary that the

quarks experience the strong force of the confining pressure.

.The bag model is described by the MIT22*23 group through the

action for a Dirac field (without quark·gluon interactions),

V 2

where

B — constant energy density that provides the confining pressure

V - volume of the spatial region referred to as the bag.

For colored quarks having a flavor-color index, o, varying this action

results in the following equations of motion inside the bag and linear

boundary conditions on the bag surface for each field degree of

freedom

ilxpu = ma wu (insidebag) (S-14)

inpy“ ux = w¤(onbagsun%¤9, (5'l5)

l
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where np is the covariant four-normal to the boundary surface of the

bag. In addition, there is a quadratic boundary condition that

guarantees that the phenomenological pressure, B, is balanced at each

point on the surface by the pressure of the constituent quark fields,

Eu $(1 = 2B_ (5-16)

The equations of motion and boundary conditions are obviously Lorentz.

invariant as well as causal and local. In this version of the bag

model, B is the only parameter of the model and should be uniform for

all hadrons with the size of the bag scaling as (1/B)%.

Even the physically simple model, as given by equations 5-13

through S-16, is not amenable to an exact solution. Several

approximations are possible, such as treating the bag as a static

spherical bag and assuming that the quarks are massless. The first

calculations23 made with the bag model used both of these assumptions,

resulting in a bag radius of 1.37 fermis. Reasonable values for the

gyromagnetic ratio, axial-vector charge, and charge radius for the

nucleon_ were determined in this calculation. Golowich24*25 first

investigated the effect of finite quark mass using the nucleon axial

vector coupling constant to calculate an effective up/down quark mass

of 122 MeV. His ground—state bag radius was 1.63 fermis. DeGrand26 et

„ ah expanded on the MIT model by including the effects of colored-gluon

exchange to lowest order, zero-point energy as well as quark mass to

calculate the masses and static parameters of the light hadrons. The

color-magnetic interaction split the nucleon and delta, which are
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degenerate in the original MIT model. For the proton and delta, the

bag radii ranged from 0.99 to 1.10 and 1.08 to 1.26 fermis,

respectively, as the quark mass varied from 0 to 108 MeV. More recent

and sophisticated adaptations of the MIT model27*28 have resulted in

even smaller nucleons with bag radii on the order of 0.5 fermi.

For the simple, static, spherical approximation to the bag, only

j= 1/2 quarks are allowed by the quadratic boundary condition

(equation S-16). Consequently, for a three··quark baryon, only j = 1/2

and j = 3/2 states are allowed by the spherical bag. Higher angular

momentum states can arise only in bags that are not static spheres.

For the spherical bag, there will, therefore, be two types of quark

states in the bag, S1/2 and P1/2, according to the two possible states

of parity. The energy or mass of a bag state will then be given by

E = E Ni (mf + @122)* + § 111:* B, ($*7)
1

where the sum is over the quarks in the bag of mass mi and momentum

xi. R is the bag radius and is related to the pressure, B, by

minimizing the energy. In turn, the parameter B is typically found by

i fitting to the nucleon—delta mass. The various baryons with j S 3/2

are described by the set of possible quark modes given by the quark

momentum eigenvalues of the transcendental equation,

i
(5—18)

· 1-mR+kx+(mR)
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where k = il distinguishes the two possible parity states. The lowest

solution to this equation increases from 2.04 for a massless quark to

a maximum of n as the quark mass approaches infinity.

The first author to go beyond the static sphere approximation and

address nonspherical deformations of the bag was Rebbi.29*30 He

allowed the bag to perform small oscillations about the static

spherical boundary S-wave configuration but kept the assumptions of

massless and noninteracting quarks as he investigated nonstrange

baryons having orbital angular momentum L = 1, allowing one quark to

be excited to a P state. Allowing the bag boundary to oscillate

resulted in a proper treatment of the translational degrees of freedom

and caused only the states of the {70, L = 1}, representation of

SU(6) x O(3)L to remain at low energy, agreeing with experimental

observation. The states of the other low-energy representation, {gg, _

L = 1}, separate into translation modes of the I. = 0 multiplet and

into excited states of higher energy. DeGrand and Rebbi30'31 also

similarly investigated the effects of small oscillations on the

spectroscopy of low-energy-excited baryons. Using the j-j coupling

required for relativistic quarks, their (181/2)2 (1Pl/2) and (151/2)2

(1P3/2) states resulted in the qualitatively correct number of states
V

and splitting but a spectrum that was too low in energy.

An alternative to exciting one of the three quarks to a P—state is

to radially excite the quark to the second S-state, resulting in

(181/2)2 (251/2) baryons. Bowler and Hey32 first considered this

possibility and used a color magnetic gluon interaction to split and

1
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mix the two otherwise degenerate nucleon P11 states at 1543 and 1646

MeV compared to the 1410 and 1780 MeV states seen in experiments.

Decrand and Rebbi33 also examined the radial excited states of the

quark, but, in addition, included the coupling of radial "breathing"

oscillations of the bag to these excited quark fields. Unfortunately,

they were able to only examine bosonic bags and then by analog apply

their results to the fermionic bag. Their results were, however, in

good qualitative agreement with experiment as shown in Table 5-5.

5.2.2 Chiral Bags

The MIT Lagrangian (equation 5-13) has some fundamental problems.

The confinement of quarks to the interior of bags with the associated

required reflection of the quarks at the bag surface violates the

chiral invariance of the QCD Lagrangian. In the limit of massless

quarks, the axial-vector current is not conserved at the bag boundary.

It has, therefore, been difficult to reconcile the pion of partial

conservation of axial-vector current (PCAC) with the quark—bag-model

pion,22*23*2S*26 although Donoghue's35 effort to include the effects

of spatial localization of the pion in the bag model has shown some

improvement. Also, the MIT bag generally has a radius of at least

1 fermi, which makes it difficult to picture how there could be room

in a nuc1eus36 for the pion exchange mechanism that dominates the N-N

interaction. Although the MIT Bag Model has had considerable success

with fitting or predicting static hadronic properties, it has not been

as successful with dynamic processes such as scattering and decay ofexcited states.
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TABLE 5-5. SPECTRUM OF N AND A STAT5§ ACCORDING TO RADIAL EXCITED
BAG MODEL OF OeGRAND AND REBBI COMPARED WITH RESULTS

OF PHASE-SHIFT ANALYSIS DESCRIBED IN CHAPTERS 3 AND 4

BAG MODEL MASS PHASE-SHIFT
PREDICTION MASS

STATE (MeV) (Mev)

N P11 1410 1351

N P11 1603 1632

N P13 1756 1687

A P33 1572 1588

A P31
V

1652 Not seen

A P31 1910 Not seen
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The above difficulties are related and have been mitigated with

the inclusion into the bag Lagrangian of the pion as an explicit and

fundamentally independent field.37 The pion contribution to the total

axial-vector current restores PCAC (for massive quarks) and chiral

syumetry is re-established. The actual incorporation of the pion

field into the bag Lagrangain has been accomplished in a number of

ways. In Chodos' original chiral model,38 chiral symmetry has been

built into the Lagrangian using a linear sigma model with E mp —+ ii

(0 + iT· Irrys) xp as the chirally invariant combination. He assumed

unconfined and massless pion and sigma fields coupling to the quarks

only at the bag surface. Other authors39'l‘0 have used nonlinear sigma

models with E xp —> E exp (i ?. rx}?/f) xp.

In the Little Bag Model,31*41°43 Brown and Rho have restricted the

pions to the exterior of the bag with coupling again at the bag

surface resulting in an increased pressure and much smaller bag, less

than 0.5 fermi. Outside the bag where pions exist, chiral symmetry is

realized in the Goldstone mode while inside the bag the chiral

symmetry is via the Higner mode. Other models, most notably, the

Cloudy Bag Model,“‘°46 do not confine the pion field at all. There

are even models that confine the pions interior to the bag"7 and

"skin" models,l‘8•49 which allow the pion field to penetrate part way

into the bag!

In most chiral bags, the pion is allowed to couple to the bag

quarks only at the bag surface, but there are some referencesl‘S°53

that employ pion-quark coupling throughout the bag volume. In these
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models, the volume coupling is obtained from the surface coupling via

a unitary transformation of the quark fields and results in a

Lagrangian that gives the desired isovector S-wave scattering length

at threshold.50

5.2.3 Bags and nN Scattering

One of the main practical advantages of the chiral bags is their

ability to provide a natural means for nN interactions. Since the

delta P33 resonance dominates the low-energy, pion-nucleon

interaction, it is reasonable to ask how well the chiral bags are able

to duplicate the P33 partial wave. The answer to this question

enables one to attempt to reconcile the two distinct pictures of the

physical resonance as a dynamic pion-nucleon state and as a bare

three-quark delta bag state. Several authors44*54*5S have addressed

this problem and are in agreement in concluding that the physical

resonance is mostly (approximately 80 percent) a delta bag, but that

pionic effects are not negligible. Gross and Huntersß also examined

the delta resonance but were primarily interested in assessing

deformations of the chiral bag. They concluded that the nonlinear

boundary condition gives a spherical nucleon but an oblate bag shape

for deltas with spin projection of 3/2 and a prolate delta for spin

projection of 1/2.

Scattering in the S-wave was first investigated by Thomas.50 He

used the volume·coupling version of the Cloudy Bag Model to obtain a

generalization of the Weinberg effective Lagrangian57 and, hence, was

able to derive the well—known result of a purely isovector S-wave



122

scattering length at threshold. Subsequent analyses58*59 attempted to

extend this work to calculate S- and P-wave phase shifts. The authors

were not able to match the S-wave phase shifts very well except close

to threshold and concluded that some physics was lacking in their

approach. On the other hand, the small P-waves (P13 and P31) and the

dominant P33 wave were in good agreement with experiment. Just as the

Roper was difficult to explain with the MIT bag (see Subsection

5.1.1), the P11 wave was also poorly described by these authors.

The P11 (1440) Roper resonance has consistently been difficult to

fully explain in quark models,6o•6l seemingly appearing at too low an

energy. As discussed earlier, the MIT Bag Model describes the Roper

as the lowest lying radial [(1S)2 (25)] excitation of the nucleon. It

is unclear whether there are two nearly degenerate Ropers, N*(70) and

N*(56), split and mixed by direct gluon exchange as predicted by

Bowler and Hey32 or whether surface oscillations eliminate mixing,

giving two widely separated states identified as the P11 (1440) and

P11 (1700) by Close and Horgan34 and by DeGrand and Rebbi.33 Since it

is expected that the Chiral Bag Model should describe hadronic

properties better than the MIT Bag Model, it is instructive to

investigate the troublesome P11 states with a chiral model. Umland

and Duck62*63 have done this; they studied the two low—1ying radial

excitations, the symmetric N*(56), and the mixed symmetric N*(70),

using the Cloudy Bag Model, correcting for spurious center—of-mass

motion, and including pionic self-energy effects. Surprisingly they

obtained two adjacent Ropers with masses of 1418 and 1533 MeV.
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According to their results, the lower mass state is predominately

N*(56) and couples more strongly to the nN channel than does the

higher state. Consequently, the 1533-MeV state may be difficult to

observe in experiments. Further supporting confidence in these

results is the author's calculation of N* decay rates that are in good

agreement with experiment. If the two radial states are nearly

degenerate, as determined by Umland and Duck, what is the explahation

of the observed P11 (1710) that some authors33*6‘ claim to be the

higher of the radial excitations? Umland and Duck also examine this

state and suggest that the P11 (1710) is a (IS)3 + TE gluon state.

5.3 THE SKYRME MODEL

Another model of the strong interaction that has experienced

considerable recent interest is the Skyrme model, based on ideas that

he originally proposed over 25 years ago.6S At that time, Skyrme

proposed a unified, but nonlinear field theory of mesons and baryons

in which the fundamental pion fields are represented as angular

variables. In this nonlinear sigma model, the baryons appear as

solitons with a topological charge that is identified as the baryon

number.

5.3.1 Static Properties in the Skyrme Model

Skyrme's work has remained largely dormant until recently. In

1974 't Hooft showed that when the number of colors, NC, becomes

large, QCD reduces to an effective field theory of mesons.66 In 1979,

Witten applied this idea to show how baryons can emerge as solitons

whose masses diverge as the inverse of the coupling constant, 1/NC, in

1
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this weakly coupled field theory.67 Then, in 1983, Guadagnini and he

explicity showed that these solitons have exactly the quantum numbers

of baryons of QCD.68*69 The solitons were shown to have baryon number

B = l and to be fermions if the effects of the Wess-Zumino coupling,

which takes into account the anomal·ies,7o are included. Adkins and

Nappi together with Witten then used the Skyrme model to investigate

the static properties of nucleons for SU(Nf) with the number of

flavors, Nf = 2.71 The Skyrme model Lagrangian for massless pions and

exact chiral synmetry is

L = L F2 Tr(6 U6 UT)
16 ¤ P H

1+ Ü True rr, (S-19)
32e

“
"

where U is an SU(2) matrix.

The first term here is the nonlinear, sigma Lagrangian, and the

second is a nonminimal term used to prevent the solitons from

vanishing. The dimensionless parameter, e, is free for fitting. The

last term is the Wess-Zumino term that actually vanishes for the

two-flavor, SU(2), case considered by Adkins etal.71 The soliton

solution for this Lagrangian is the hedgehog,

. —> A
U = e¢F(r)t · x (5_20)

o

that can be seen to interweave angular momentum (or spin) and isospin

because of its dependence on the spatial coordinate r and the isospin
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bases u. Indeed, the correlation between spin and isospin results in

the hedgehog having a new quantum number, K, the vector sum of spin

and isospin. Spin and isospin are no longer separately good quantum

numbers, but rather the hedgehog configuration becomes invariant under

global rotations in physical and isospin space. Physical baryons must

be constructed from the hedgehog by projecting out states of

appropriate spin and isospin. The Skyrme angle F(r) was computed

numerically from the differential equation of motion resulting from

inserting equation 5-20 into equation 5-19. Solutions other than
U

equation 5-20 are obtained from

U = A(t)UoA“1(t), (*21)

where A(t) is an arbitrary, but time-dependent SU(2) matrix. Treating

A as a quantum mechanical variable, the authors were able to calculate

the static properties of the nucleon by using the nucleon and delta

masses to fit Fn and e. Among the computed properties were the

nucleon magnetic m0m€¤tS, isoscalar charge radii, and pion-baryon

coupling constants. With the exception of the axial coupling, gA, all

these properties were determined within about 30 percent of their

known experimental values. Adkins and Nappi later extended this work

by examining the effects of explicitly breaking the chiral symmetry.72

They added to the SU(2) Skyrme Lagrangian of equation 5-19 the mass

term,

1 2 2
g Mn Fn [Tr (U) - 2] . (5-22)

1
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As expected, the earlier results were not modified much because chiral

symmetry is typically valid in experiments to within 10 percent. They

were, however, able to calculate several additional quantities, the

isovector charge radii and the sigma term.

5.3.2 Skyrmion-Skrygion Interactions

Now that it has been shown that nucleons, baryons with B = 1, can

be considered to be solitons in the Skyrme model and reasonable static

properties computed it is useful to go one step further and examine

how Skyrmions might interact with one another in a model of the

nucleon-nucleon interaction. Jackson and Rho73 were the first to

investigate this aspect of the Skyrme model. They computed the

Skyrmion energy for B = 1, 2, and 3, obtaining the values shown here

in Table 5-6, using the Goldberger-Treimann relation to establish the

asymptotic form of the chiral angle. They were then able to make an

estimate of the interaction between nucleons by comparing the energy

of a B = 2 Skyrmion with that of two coincident nucleons:

V2 012 = 0) = E(2) - 2E(1) = Eu) . (5-23)

where V2 is a measure of the two-body, nucleon-nucleon interaction

energy. It is seen to be equal about 1.4 GeV. This value can be

)
compared with a similar estimate of the three-body interaction energy,

V3(r12 = 0, rm = 0) = E(3) + 3E(1) — 3E(2) == — 0.025 E(l) . (5-24)

Hence, because V3 is small compared to V2, the Skyrme model implies

the expected dominance of two-body forces over three-body forces.
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TABLE 5-6. SCALED SKYRMION MASSES

1>
1 1.000

U
2 2.983
3 5.926
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Jackson and Rho were also able to compute the baryon number density,

obtaining a reasonable rms radius of 0.48 fm for the baryon (e.g.,

nucleon.)

Later, Jackson etab expanded this analysis to deduce the main

features of the nucleon-nucleon potential.74 The only two parameters

in the theory were fit with the experimental values of the pion decay

constant and the nN—coup1ing constant, so the ability of the Skyrme

model in predicting a short-range repulsion of order 1 GeV and a long-

range potential equivalent to one—boson exchange can be considered a

notable success. Their adiabatic calculation included some of the

obvious effects of the finite size of Nc suggested by quark chiral-bag

models and resulted in agreement with semiphenomenological potentials

to about 30 percent.

5.3.3 Skyrmion Monopole Resonances
T

The next logical test for the Skyrme model is its application to

the fundamental pion—nucleon problem. Several authors have examined

monopole excitations of the Skyrmion in order to identify nucleon and

delta resonances. Hajduk and Schwesinger7S investigated breathing mode

excitations of the Skyrmion by scaling the radial coordinate of the

meson fields with a time—dependent factor, r —+ A(t) ° r. They used

the usual Skyrme Lagrangian (equation S-19) and hedgehog ansau· and

allowed the Skyrmion to rotate so that states of definite spin and

isospin could be projected out from the Skyrmion. For the breathing

mode of une nucleon, they obtained an excitation energy of about
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250 MeV, over 200 MeV less than that needed for the Roper resonance,

which is expected to be a radial excitation of the nucleon.

Breit and Nappi76 also examined the breathing mode of the

Skyrmion, but their Lagrangian included the explicit pion mass term of

equation 5-22. They investigated the breathing mode by allowing time-

dependent radial fluctuations of the Skyrme angle about the classical

solution:

F(r) —> F(r) + eSF(r,t).

Expanding to second order in SF, they calculated Skyrmion phase shifts

and used phase shifts passing through 90 deg as the criteria for a

resonance. The ensuing resonance occurs at a pion energy of 330 MeV

and produces breathing mode resonances for the nucleon at 1270 MeV and

the delta at 1560 MeV. Again, the resonance masses are considerably

lower than the experimental values of 1440 and 1600 MeV, respectively.

The work of Liu etaL77 followed the same approach very closely

except that they also examined the case of considering the rotational

degrees of freedom before the pion scattering; that is, they examined

small oscillations about a rotating soliton. Naturally, their results

were similar to Breit's and Nappi°s.

These results were contradicted by Zahed etaL,78 who explicitly

constructed a quantization scheme within the framework of the Skyrme

model. In the KP = 0+ sector (recall that K = Jspjn + Iisospiu),

their approach also reduced to examining fluctuations about the static

solution. Although the resulting phase shift rose to a peak near



130

n
90 deg, it did not indicate a Roper resonance. In the odd parity

K" = l° sector, the phase shift does show a clear cut indication of a

resonance, passing through 90 deg.

5.3.6 The Siegen Analysis

An early attempt, more systematic than the work quoted in the

previous section, has been made of the investigation of baryon

resonances within the Skyrme model by the group at Siegen

University.79-82 They have examined isovector fluctuations of the

pionic field about the static Skyrme hedgehog within chiral SU(2).

The small amplitude vibrations of the rotating soliton are interpreted

in terms of normal mode vibrations, phonons that carry orbital angular

momentum, The orbital angular momentum, 8, is added to the isospin

fluctuation to obtain the phonon spin, K.

In the group°s first paper on the subject,79 Hayashi and Holzwarth

showed how the nucleon and delta resonances can be interpreted in

terms of an underlying phonon spectrum with a rotation—vibration

coupling of the ‘S»form and a coupling coefficient of about 30 MeV.

They then derived a similar phonon spectrum (energies and coupling

coefficients) from the Skyrme model having energies roughly consistent

with the experimental data. The approximation used here to estimate

the phonon spectrum was a simple, time-dependent scaling of the

coordinates. A subsequent calculation of the restoring force and

vibrational inertia was used to estimate resonance energies.

The scaling approximation was removed in a second paperao in which

the normal modes of the fluctuations about the static solution are
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quantized. The eigenvalue problem they obtained has solutions that

decouple into both magnetic modes of phonon parity (-l)‘ and into

electric modes with phonon parity (—1)‘+1. The authors recognized that

this eigenvalue problem (see their equations 12 and 13) contained

modes of zero frequency (translations, and rotations) that must be

handled carefully. The translational modes do not effect level-

spacing and were ignored. Because the intrinsic frame of the Skyrmion

is rotating in isospin space, the rotational modes are important in

obtaining states of definite spin and isospin. The authors made a so-

called adiabatic approximation by decoupling the rotation and the

vibration of the Skyrmion. The Lagrangian that they obtained includes

a sum over the normal modes. By quantizing this Lagrangian, they

determined the energy eigenvalues:

’ (5-25)

where

M - classical Skyrmion mass

Nu • number of phonons for the nth mode

On - 1-phonon excitation energy
V

S - spin (or isospin) = 1/2 for nucleon, 3/2 for delta

A — moment of inertia of rotating Skyrmion.

Interestingly enough, the asymptotic forms of their quantized normal

mode solutions decay into pions just as physical baryons do.

Numerically solving the Lagrangian equations of motion enabled the

authors to determine the normal mode phase shifts. These phase shifts
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cannot be directly identified with the pion-nucleon phase shifts

because the rotating Skyrmion does not have definite isospin and spin

but are useful in identifying approximate resonance energies and

widths. Agreeing with the results of the previous section, they found

an electric monopole (K = spin plus isospin = 0) resonance at a low-

excitation energy of about 200 MeV, several hundred MeV below the 500

MeV expected for the Roper. For both the electric and magnetic modes,

states with K = 1 have no resonances but instead have zero-energy

bound states because of infinitesimal rotations (magnetic dipole) or

translations (electric dipole). The absence of any dipole resonance

was conjectured to be caused by their improper treatment of the zero-

energy modes. Phase shifts for the higher multipole states, K > 1,

all showed resonances.

In a manner similar to Hayashi's and Holzwarth°s classification

scheme, Walliser and Eckert in this paper8o were able to classify,

according to phonon spin, most of the well-established nucleon and

delta resonances having excitation energies less than about 1200 MeV.

The only exceptions were the S11 (1650) and the S31 (1900). They

found the states of different phonon spin to clearly separate in

energy, having a well-defined band structure. For the nucleon

1 resonances, the average experimental excitation energies are 500, 590,

760, and 1150 MeV for K = 0, 1, 2, and 3, respectively. Therefore,

the classification according to underlying phonon spin is a possible

V
explanation for the energy-grouping of the pion-nucleon resonances

noticed by many including Höhler.83
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In the next paper,81 the Siegen group was able to derive the

actual physical n—N scattering phase shifts from the normal mode phase

shifts computed in the adiabatic approximation for which coupling

between rotation and vibration of the Skyrmion is neglected. Because

the phonon spin, vector sum of the vibration's orbital momentum (C) and

isospin, is conserved in the scattering process, states of vibration

with different values of C will couple in the scattering. Physically,

this means that pion—nucleon phase shifts, necessarily having definite

values of orbital momentum, will consist of a mixture of phonons of

electric and magnetic modes. There is no direct one-to—one

correspondence between the normal modes and the physical pion-nucleon

states, but rather the pion—nucleon partial waves are constructed by a

recoupling of the normal modes. The geometrical coupling scheme that

the authors propose is given by the triangle rules:

-> -> ->L_ = C + t
-»— -»- «»
J = L + S
-•- -» e-
J = C_ + s
->1* = T + T, (5-26)

where

*· .
L - phonon spin
•>

C - orbital angular momentum of asymptotic pion field (the
fluctuation)

¢· . . . . .
t — isospin (t = 1) of asymptotic pion field

total angular momentum in intrinsic frame
(

T; - total spin (S = T, total isospin) in intrinsic frame

T? · target spin (s = r, target isospin) in intrinsic frame.
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This geometrical recoupling scheme allowed them to obtain linear

relations between different S-matrix elements, S(’2']_‘,2_'|€

=

(*27)

The authors showed phase-shift predictions for the pion-nucleon F-

waves as an example of their procedure, and there was surprising

agreement with the experimental results. They did, however, admit

that serious difficulties exist with the S- and P-waves, which they

blame on their approximations in the treatment of zero-energy modes

and the adiabatic approximation.

The work of the Siegen group has been documented most completely

in their latest paper.82 Here, they describe, in more detail, the

work outlined in the earlier papers.79°81 Although they still were

not able to avoid the adiabatic approximation, they made a start in

that direction by reformulating the analysis directly in the

physically relevant isospin-space-fixed frame. This is in contrast to

the previous work for which results were obtained from a unitary

transformation of the isospin-space-rotating S-matrix. The adiabatic

approximation, which consists of a decoupling of the rotating Skyrmion

from its vibrations, results in an improper treatment of the zero-

energy modes and an exclusion of all rotational energies. The zero-

energy translational modes affect the S- and D-waves, while the zero-

energy rotational modes affect the P-waves. The authors also
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investigated both the effect of allowing a nonzero pion mass and the

effect of including a term in the Lagrangian of sixth order in the

fields, but only second order in time derivatives. In each case, the

results were not significantly improved.

5.3.5 The Stanford Linear Accelerator Analysis

Following soon after the initial reports from the Siegen group

were similar results from the group at Stanford Linear Accelerator

Center (SLAC).8h°88 They too examined the two—flavor Skyrme

Lagrangian of equation 5-19 to lowest order in 1/NC. In particular,

Mattis and his co-workers, Karliner and Peskin, elucidated the nature

of the adiabatic approximation, especially its relation to the l/NC

expansion.84°8S They omitted the effects of soliton (baryon)

deformation and recoil caused by the scattering and also ignored the

rotation of the soliton during scattering, a 1/NC effect. The

scattering amplitudes were derived based on a bare pion propagator,8S

again a result of the lowest order expansion. This approximation

results in amplitudes that do not include multiple-pion production

and, hence, are only appropriate to scattering with two-particle final

states.

As Mattis and Karliner reported in the group's first paper,84 they

were able to obtain the pion-nucleon resonance masses to an average of

8 percent of their experimental values. Their resonance masses were

defined by the position of peaks in the speed, IdT/dWl, obtained from

their numerical calculation of the phase shifts. The phase-shift

calculations resulted in a systematic ordering of the sizes of the
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partial amplitudes that is well followed by the results from

experiments, including the results reported in Chapter 3 of this work.

For L > 2, amplitudes Ll,2,_l and L3’2,+1 move further in the unitarity

circle than do L1,2,+1 and L3’2,_1, respectively. In general, the

amplitudes they computed agree well with experiment for L > 2 except

for the inelasticities. A poor prediction of the inelasticity· was

expected because of a lack of coupling to many inelastic channels as

noted earlier. They also make the claim that the Roper P11 is not a

pure-breathing mode excitation. In addition, their best fit to the

resonance masses resulted in improved predictions for some of the

static properties of the Skyrme model, including predictions of the

proton and neutron magnetic moments, the axial-vector coupling

constant, and isoscalar charge radii. Mattis and Peskin8S were also

able to derive the same linear relations between the pion-nucleon

elastic partial waves, equation S-27. In addition, they derived

similar formulas relating nN -+ uA S-matrix elements and one other

relating nN elastic S-matrix element to the nN -+ nA S-matrices.

As did the Siegen group, the SLAC group also found much poorer

agreement with the S-, P-, and D-waves. Again, they attribute this

discrepancy largely to the lowest order expansion used here that

produces translational-zero and rotational-zero modes of the

soliton.85 These modes are then manifested as zero-energy bound

states that directly couple to the S-, P-, and D-waves. The P-waves

couple to the rotational-zero mode while the S- and D-waves couple to

the translational-zero mode. Therefore, they could not predict the
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S11 (1650), S31 (1900), or the D13 (1700).84 The biggest failure was

the lack of finding the two most important resonances, the Delta and

Roper resonances. They claim that the resonance pole and the

rotational mode zero coincide at the elastic threshold, preventing

these resonances from appearing. However, with the next order in the

1/NC expansion, the poles and zeros are perturbed away from the

origin. For the P11 and P33, the pole should move into the fourth

vquadrant of the complex energy plane, producing the expected

resonances. For the P13, P31, and also S31, the poles should move
l

into the first or second quadrant resulting in the observed repulsive

behavior.

In their most recent papers,86°88 the SLAC group has progressed

beyond the Siegen group in considering the Skyrme model for the case

of three light flavors [unbroken SU(3)]. They used the same Skyrme

Lagrangian, equation S-19, but had to include the Wess—Zumino term

that no longer vanishes for su(3). They retained the approximations

of expanding to lowest order in l/NC and using exact chiral symmetry.

Going to SU(3) allowed Karliner and Mattis86 to consider pseudoscalar

octet meson (pion, eta, kaon) scattering from unrotated Skyrmions.

° They saw modest improvement in the agreement between the Skyrme model

and experiment, primarily because of the increase in inelasticity that

the additional degrees of freedom allows. Because they kept only the

leading order in l/NC approximation, they saw no reconciliation of the

disagreements in the P11, P33, and S31 channels.

1
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With the SU(3) version of the Skyrme model, Karliner87 and

Mattis88 were able to examine KN and KN scattering in addition to nN.

The approach used here is very similar to that used earlier for the r1N

problem. They were able to derive linear formula relating the

partial-wave amplitudes for these reactions. The last paper88 is

their comprehensive work on nN, KN, KN —> cbpsß in the three-flavor

Skyrme model, where epps is an arbitrary pseudoscaler meson and B is a

baryon, either a 1/2+ octet or a 3/2+ decuplet. No new additional

results relating to elastic pion-nucleon scattering were reported,

however.

The Skyrme model has shown some spectacular successes in its

agreement with much of the dynamics of pion-nucleon scattering. It

will be very interesting to see whether future work on this problem is

able to include the next term in the 1/NC expansion and resolve the

discrepancies noted in the S-, D-, and, especially, the P-waves.
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6. SUMARY AND CONCLUSIONS

A comprehensive phase-shift analysis of elastic pion-nucleon

scattering from threshold to a pion kinetic energy of 1100 MeV has

been performed. The foundation for this analysis is the data base of

worldwide pion-nucleon experimental results assembled by the author

and described in Chapter 2 and Appendix A. The phase-shift analysis

is explained in great detail in Chapter 3, where both the energy-

dependent and energy-independent parametrizations and methodology have

been described. The analysis process resulted in seven energy-

dependent solutions and a single final Aset of energy-independent

solutions. The first of the seven solutions to be developed consisted

of a fit to all active experiments using waves S through I and was

named FA86 for Fall 1986. Because a small number of the data were

responsible for unnecessarily inflating chi-square, a second solution

based on removing (pruning) these data from the data base was

developed by iterating the process of removing those data and

experiments with a chi-square per data point greater than 16 and

refitting the partial-wave parameters. The resulting solution, named

FP86 (P for prune), provides an excellent fit to 9493 data with a chi-

square of 15,646 using 131 parameters.

The seven energy-dependent solutions summarized in Tables 3-2 and

3-3 were used to address several issues. Solutions HP86, FP86, and

FP86 tested the sensitivity of the analysis to the number of

peripheral waves included in the calculation of the scattering

amplitudes. It was concluded that J and higher partial waves are not

144
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needed to fit the data in this energy region or to uniquely determine

the important (S through F) waves. The charge independence of the

I = 3/2 waves was verified by solutions FP86, MMUS, PLUS, and SPLT to

within the accuracy of the data. These same solutions also

demonstrated the adequacy of the prescription (see Subsection 3.3)

used to correct the partial waves for the electromagnetic interaction.

Solution FP86, together with the complementary energy·independent

solutions described in Subsection 3.2.3, is presented here as the most

economical and best representation to date of pion-nucleon scattering

experiments below 1100 MeV.

6.1 INTERPRETATION

Having completed an in—depth phase—shift analysis, it is necessary

to interpret the results to understand their significance. Chapter 4

l
presents the results from solution FP86 and describes its important

features. The basis for understanding these results is the insight

obtained from the three classes of theoretical models described in

Chapter 5.

In Chapter 4, the rich topological structure of the partial-wave

amplitudes in the complex energy plane is displayed, showing a variety

of poles and zeros. Poles on the second sheet are interpreted as

resonances in the elastic channel, and all of the states cited by the
(

Particle Data Tables are seen here except for the two questionable on-

star resonances, the P13 (1540) and the P31 (1550). Because the

models discussed in Chapter 5 do not predict these two states, they

are probably not valid. The resonance pole parameters for the other
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waves agree well with the determination of other analyses as reported

in Chapter 4 with the exception of the second P11 and P33 resonances.

,The two—star P33 (1600) is confirmed by this analysis, and the reason

for its weak effect on the physical axis was discovered. A zero in

the amplitude between the pole and the real axis masks much of its

impact, disguising its presence. The models of Chapter 5 predict this

state and the two recalcitrant P11 resonances to be predominantly

radial (breathing modes) excitations. The P11 wave has been difficult

to explain in any of the models, and the complicated structure shown

in Subsection 4.3 is indicative of these difficulties. Approximations

made in the Skyrme model, particularly in the treatment of rotational

zero modes, prevent the model from adequately addressing the P-waves

until another term in the 1/Ncolm. expansion is added. The bag

models, however, have provided useful insight here. Solution FP86

showed a second pole near the Roper resonance, but around the delta

branch point. As the coupling to the explicit K-matrix pole is

varied, the motion of both of these poles is consistent with the

interpretation given in Subsection 5.2.3 and obtained from a calcu-

lation of the cloudy bag model that this second pole is a manifestion

of a radial excitation in an inelastic channel, presumably the nA

channel. This suggestion is hardly conclusive, and further analysis

would definitely be needed to validate the presence of both poles in

the inelastic channel. If this interpretation is indeed verified,

then the Pu (1710) would not be a radial excitation but might be a

gluon-quark hybrid.
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All three classes of quark models reasonably match most of the

pion·nuc1eon states. Some of this success is simply because of the

underlying SU(6) group structure present in the models and obvious in

the data. Both the constituent quark and the bag models agree that

the color magnetic hyperfine interaction as obtained from one•gluon

exchange is responsible for much of the observed splitting between

nearby states but that the spin-orbit interaction has a negligible

effect. It is obvious that the resonances tend to fall in groups

according to their energy. According to the Skyrme model, this

grouping is caused by an underlying phonon spin spectrum. The Skyrme

model has also had great success in "explaining" the linear

relationship observed between various partial waves as described in

Subsections 5.3.4 and 5.3.5.

In addition to the resonance poles observed in solution FP86,

another obvious characteristic of the solution is the presence of

zeros in the amplitudes. A few isolated zeros were observed, but

generally the zeros are found paired with poles, sometimes beside a

pole and sometimes between the pole and the real axis. The models of

Chapter 5, however, have not been able to provide any insight into

these zeros. No analyses outside of the VPI and SU group have

reported such zeros, and it would be useful to provide some

1 interpretation of their significance beyond their necessity to satisfy

K

unitarity.
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6.2 RECOMMENDATIONS

The analysis presented herein still does not completely solve the

pion-nucleon problem, although it has resulted in significant progress

in our understanding of this important interaction. There is

additional experimental and theoretical work that should be performed.

As discussed in Chapter 2, the data base is incomplete, lacking data

at some energies and especially at the extreme angles. The discussion

there indicated where data are lacking and what experiments are needed

to fill out the data base. Data in the charge exchange channel are

particularly sparse. Of greatest significance, however, is the

complete lack of any measurements in this energy region of any of the

spin rotation observables. Such data are required to ensure

confidence in any phase—shift analysis including this one. In

addition, high-precision measurements are needed over much of the

energy range to conclusively address the possibility of the narrow

poles as examined in Subsection 4.4. Such poles are not expected but

cannot be ruled out by the present analysis.
—

Further phase-shift analyses are also appropriate, particularly as

new experiments are performed to reduce some of the deficiencies given

in the preceeding paragraph. As discussed in Subsection 4.3, effort

is certainly justified in attempting to reparametrize several of the

partial waves to validate the pole and zero structure observed in

solution FP86. It may be possible that the observed zeros are not all

required to fit the data, and their presence needs to be confirmed.

Particular care should be given to reexamining the P-waves and the S31

1
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wave, whose zeros significantly impact the effect nearby poles have on

the real axis. This investigation would also serve to validate the

complicated multiple pole structure seen with the two P11 resonances

as shown in Figure 4-2c. The author has suggested that the additional

pole seen in solution FP86's P11 wave just around the delta branch

point from the Roper pole might be a manifestation of an additional

resonance in the inelastic nA channel. This possibility would be best

investigated in an inelastic phase-shift analysis and, in particular,

a new analysis of the nN -> nnN reaction is recommended.

Further theoretical investigation on the subject of partial—wave

zeros is also warranted. With the goal of providing a physical

interpretation of their existence, the author plans to continue to

examine the subject, initially by continuing to study the exactly

solvable square well potential. If the sqaure well zeros can be

understood, it is hoped that their signficance can be applied to the

pion-nucleon problem.
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APPEIIDIX B. AMPLITUDE CONVENTIONS

The analysis being reported in this paper has used the usual no-

spin—flip amplitude, f(9), and the spin-flip amplitude, g(6), where in

the center·of-mass system,

®
f(9)=- (C+1)T++CT P€(cos6) ,

and

fz °° (B1)
q (:0 C C-

with

q = barycentric momentum

9 = center—of-mass scattering angle

Pg = ordinary Legendre function

P; = associated Legendre function = sinG dP; (cos6)/dcos9

C = orbital angular momentum index

T(i = partial-wave amplitude for total angular momentum

j = Ci f.

The usual assumption of isospin invariance allows the following

isospin decomposition of the partial-wave amplitudes:

T ., T3'3 for positive-pion scattering,ei ci

T ., 1/3 (T3/2 + 2TV2) for negative-pion scattering, (B-2)
ei cd: ci

and

T for charge·exchange scattering state.
ct ci ei

with the superscript labeling the isospin state.
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The four complex, partial-wave, T-matrix elements for a given

value of C, T1/2,1 and T3/2,; are labeled according to the standard

spectroscopic notation; LZIZJ, with J = C i 1/2, I = 1/2 or 3/2, and

L = S, P, D ... for C = 0, 1, 2, ..., respectively. The nuclear phase

shifts, öui, inelasticities, qui are then given by

Tg; = L exp(2i 2;) - 2], <¤-6;
2l (

and, hence, for each C greater than zero, there are eight real numbers

to be determined.

The amplitudes used to compute the experimental observables must

include the electromagnetic corrections described in Subsection 3.3.

According to equations 3-17 and 3-18, the charge-corrected, partial-

wave amplitude is a function of the scattering reaction being

examined. Modifying the nuclear amplitudes of equations B-2 and B-3

according to this prescription then gives the charge-corrected

amplitudes (T€i)ic for positive exchange (x = 0) scattering. Using

the coulomb phase shift of equation 3-19 and Tromberg's direct

positive pion coulomb amplitudes, fc and gc, the total amplitudes for

each reaction can then be written as followsz

For positive-pion scattering,

,.~<+> = fc + E E ,2‘°¢](g+1;(1~“'j)+ + c(T"f)+]1=·,<2226>,
q (:0 C cc C ‘cc

and
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6 °° 2‘
-Gm = gc + - E 6

‘°"I(1·“’f)+
- c(T"’2>+I 1>}(ws0). (B ")

q (:0 C CC Ü- CC

For negacive—pion scattering,

6 6 °° 1—2‘F"’
= -f e Ic q (:0 3 C cc C+ cc

+ e
cc C- cc

and 6

6 °" 1 —2‘ — —G6-) = _g + - E - 6 IC q (:0 3 C cc C- cc

P; ((6*056). (8-5)
C- cc C- cc

For charge-exchange scattering,

6 °° (/2 —‘ 0 06«» 6 - s-6q
(:0 3 C cc C cc

0 0
C cc C cc

and

G‘°’ = B Efeq
(:0 3 C cc C cc

0 0
I P: (6056) . (B-6)

C cc C cc
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The observables are calculated from the full amplitudes of equa-

tions B-4 through B-6 or from the "nuclear" amplitudes of equations B-

1 and B-2 where the T-matrix elements have also have been charge-

corrected according to the prescription of equations 3-17 and 3-18,

but the coulomb amplitudes and phases have not been included. This

latter set of amplitudes is used to compute all forward scattered

quantities such as the quasi-data of Carter and Höhler discussed in

Subsection 2.1 and Chapter 3 as well as the total, inelastic, and

elastic cross sections. The explicit formulas used to calculate the

observables follow below where all the T-matrices shown are the

charge-corrected ones as described earlier.

According to the Optical Theorem, the total cross sections for

positive- and negative-pion scattering are computed with

fzot=4n;Im[f(6=0)]. (B-7)

The total elastic cross sections are calculated with the charge-

corrected T-matrices appropriate for each reaction as follows:

6 2 “’
¤i*’ = 4¤(-) E [(6+1>|1""§ |1 + (ITB? P] ,

q (,0 C C

T3'; + 1 T3;|3+ Cl 1 T3;+1<1
ho 3 c 3 c 3 e 3 eand i
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6 2 °° x/2 V?[(6+111 —rB’fQ
,:0 3 6 3 6

x/E x/E+6|——1·°’2-—T‘”42]. (8-8)
3 g' 3

g‘

The inelastic cross sections for positive- and negative-pion

scattering are then given by

06+» = 0«+» _ o«+»
m t e

and

06-» __: U6-> _ o«-> _ o«0> • (B-9)
m t e e

The inelastic cross section for charge-exchange scattering

obviously does not exist.

The differential cross section for scattering by an unpolarized

target is given by

do -—<o> = |1·‘<6>|2 + |G<6>|B . (B IB)
dQ

For an unpolarized target, the polarization of the outgoing

nucleon in a direction perpendicular to the scattering plane is

calculated with:

do -mo) - = 2Im{F(6)G*(6)} . (B 11)
dQ

This polarization is often determined from the asymmetry of the

( scattering cross section for scattering from a transversely polarized

\

target
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do
(9)

do
( G)

df} - dS2
_

-1=·<6)1·„= l——— ' (B 12)‘ $2 66) +ä« 6)
df! df}

where Pi is the initial polarization of the target.

For a target polarized in the beam direction, the spin rotation

parameters, R and A, give the components of the recoil nucleon

polarization in the direction of the outgoing nucleon and per-

pendicular to the nucleon but still in the scattering plane,

respectively. R and A are computed as followsz

d° 2 2 6 (B-13)R(9) = —|G| )cos9 — 2Re{FG*}sm6 ,

and

do
-A(6) = (IGIZ —|F|2)cos9 ·- 2Re{FG*}sin9 , (B 14)

where G is the center of mass—scattering angle. The three spin

observables are related by P2 + A2 + R2 = 1.

Other experimental observables exist but are not independent of

those shown above. One such example is the Wolfenstein spin-rotation

angle, ß, which is given by

—- |G|2) = (Rsinü +Acos6)/Rcosü-Asinß) . (B”15)



APPKNDIX C. THE ANALYSIS PROGRAH SHSZSA

The fitting process described in Chapter 3 was accomplished with

the FORTRAN program SHSZSA (Spin-Half Spin-Zero Scattering Analysis)

developed over the last 20 years by Drs. R. A. Arndt and L. D. Roper.

SHSZSA was used for both the energy•dependent and the single-energy

analyses. The logic flow in SHSZSA is illustrated in the flow chart

of Figure C-1. The diamond figures indicate a decision process where

alternate pathways are given for yes (Y) and no (N) answers to the

posed question. The bold line marks the path taken by the program in

a simple-energy-dependent analysis. The dashed line shows the

modification to this path for when the data are pruned before the

search. The second pass through PINDTA and PINSOL is required by the

obvious need to read the data base and initial solution parameter set

before the pruning, while the pruning option flag is set in PINDTA.

The variable, M, shown in the flow chart is used by SHSZSA to select

among many optional logic paths by controlling transfers between

different sections of the code. It is defined whenever input data are

requested. A more complete hierarchy of the major routines in SHSZSA

is shown in Figure C-2, while Table C-1 provides a brief description

of each of these subroutines.

The heart of the analysis is the chi-squared reduction process

performed by SCHPIN. Using initial parameter increments (DPZ(K) =

Apg) provided by DDPPIN, it varies the parameters to decrease chi-

square for a number of user-specified cycles or until chi-square is

minimized. After first randomly reordering the set of parameters to

>
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START AND INITIALIZEREAD

SEARCH
CRITERIAN

VALIDATE
SEARCH TABLES

Y

Ü ¤><·T EW
——...... SINPLEST LOGIC PATH FOR ANALVSIS

··*···*··*··*········ EXTRA LOOP FOR INITIAL PRUNE

F IGURE C—1. SHSZSA FLOIICHART
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. CHPIN CHIPIN
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FIGURE C—2. SUBROUTINE CALLING HIERARCHY
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TABLE C-1. SHSZSA SUBROUTINE DESCRIPTION (Sheet 1 of 2)

ß osscmmou
SHSZSA Top-level program that controls logic of the analy-

sis and sets up and validates the search tables.

CHIPIN Calculates chi-square of data set and when
specified, renormalizes all angular observables

CMFN Calculates the Chew-Mandelstom dispersion functions
used in the energy-dependent analysis and described
in Appendix D

COUL Calculates the direct coulomb amplitudes as deyel-
oped by Tromberg etaL and documented by Höhler

DAPIN Resets the total amplitude (f and g) after a partial
_ wave has been changed because of parameter variation

in the process of chi-squared reduction.

DDPPIN Sets the initial parameter increments during the
setup of search tables and before the fitting
process

DLTPIN Calculates the partial-wave T-matrix according to
the user-specified parametrization (see Subsections
3.1.1 and 3.2.1)

DTAPIN Prints out a summary of data, including the experi-
mental and theoretical values and chi-square of each
datum plus the normalization and total chi-squares
for each experiment. If specified, also will print
total amplitudes (f and g) for each datum.

EDTPIN Prints out various quantities describing the search,
including the parameters that were varied, the
number of search steps and final chi-square. Prints
out the parameter values for each partial wave.

MTXPIN Calculates the gradient and second derivative of
chi-square with respect to the parameters being
varied.

OBSPIN Calculates each of the possible experimental
observables from the total amplitudes (see Appendix
B).
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TABLE C-1. SHSZSA SUBROUTINE DESCRIPTION (Sheet 2 of 2)

ß usscmmou
PCHPIN writes onto an external file the solution (parameter

set) of an energy-dependent analysis after a search,
and, if specified, also writes the error matrix.
For single-energy analyses, prints out parameter
errors.

PHSEDT Prints out phase-shift and absorption coefficients
and elastic T-matrix element for a set of user-
specified energies.

PINDPT Prints histogram of chi-square per data point for
each experiment.

PINDTA Reads data selection criteria from input and then
reads selected data from input and/or data files.

PININI Calculates initial partial-wave amplitudes, Legendre
polynomials, and observables for each datum, as well
as initial total chi—square.

PINRED Reduces the number of parameters available to be
searched by zeroing out small parameters.

l
PINSOL Reads solution parameters from input or a data file

or keeps current solution as directed.

PRNPIN Prunes data if option is selected by removing from
the analysis any single data points or entire
experiments with excessive chi-square. Then prints
out details of deleted data.

RDSPIN Sets up parametrization for single-energy analysis

RSPPIN Resets partial-wave amplitudes to new values after
parameters have changed.

SCHPIN Searches for new parameter set to reduce chi—square,
using the square-error-matrix search method.

SYMINV Inverts a real symmetric matrix and checks for
positive definiteness.
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be varied, MTXPIN is called to calculate the gradient and second

derivative of chi square with respect to the parameters. For chi-

square given by equation 3-1, we have:

1
ax’ ND °i,„„—¤" WP) ¤" ä9i(p)”"°- -6 Z T 7] ··

‘°"’
k

‘=1
02Ip

021]} k

and

1
a2X’ ND Q" a6‘<p> ¤"

6 $6; - Z [T TH T T‘]· ‘°"’
J le 1-1 ¤„p J ¤„p pk

AZ is also called the curvature matrix and is manifestly real

Syll'Im€C1'iC• Its
ihV€l’S€

is Ché €t'f0‘|.' |IISC1’iX• Because
Ch€

d€1’iVSCiV€S

are calculated by numerical differencing, the integrity of the second

derivative matrix, AZ, is checked by looking for nonpositive diagonal

elements, since these elements are related to the error in the

‘l°€Sp€CCiV€ pS!'Sl!l€C€!'S•2 If h€C€8SS!'y, Shy "bad" TOWS Shd CO].\l!llhS
St'€

fixed and a message printed. Next, elements in AZ are scaled with the

CO!°‘|.°€Sp0hdi.hg diagonal €!'I'O1° Whéh the €‘|.°!‘Of ih S parameter is lS‘l.’g€

while its value is small. After computing the inverse of the second

derivative matrix,

Az: = <Az>" ·
(*3)

and establishing its integrity, a revised set of parameter increments

is calculated from which a new parameter set is obtained,
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According to Arndt and MacGregor,2 the optimum parameter set, p, can

be determined independently of the determination of the normalization

parameters, aß. Using the notation shown above, they show that the new

set of parameter increments can be calculated from

(AZ) · (DPZ) = YZ

or

Ap = 1>1>2 = (A21)- (YZ) · <¤·5>

_ The normalization parameters are calculated and revised by CHIPIN,

while MTXPIN includes corrections to AZ required by this revision.
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APPENDIX D. AIALYTIC STRUCTURE OF THB DISPERSIOH INTEGRAL

The dispersion function given by equation 3-S and used in the

energy-dependent parametrization can readily be evaluated and its

analytic properties investigated as follows:

1 x€+1/2

C = -— dxH
0 x—z (D•l)

Z = (W-W:)/(W-W,) . (3-5)

First, a recursion relation is obtained:

1xf+lI2 1 xt-!/2
¤C(=[ —dx=[ —-—-[z+(x-z)]dx

0 1-Z 0 1-2

1 x£—lJ2 1
= z dx dx

0 I-! 0

2 <¤-z>C = C + ————“ « Z" M 28+1

that gives

nC = z£nC + é L- z¢”j
for€==0 (D-3)

e o Fl 2j+l
’

Next, the lowest order integral is evaluatedz

1 xl/2
¤Co dx

0 1-2

~/?- 1/Z
‘

=i Z Z ”
(/;+6 0
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1 - V?= 2+V-[1 (1+2 )lZ n .1 + V? m n

1 - V?c=2+V°[z(———)-·l (°"•)
n 0 z n 1 + V;. m

when the principal value (n = 0) is taken.

Because Vz may be complex, we expand the logarithm function to

facilitate its evaluation and elucidate its structure.

ln.(a+ib)=lr1(Va2 + bz) + i (tan-1 ä +2nn> .

Upon continuing to use the principal value,

I (1-V?
1 - V" m 1 + V'

nC = 2+V?(lnI—in)+iV?tan-1——?—‘L.¤ 1 + V? R (1 - V?)
1 + V-Z (D-s>

For real V; with -1 < V? < 1, the inverse tangent vanishes; while

for V? <-l or V? > 1, it contributes "-n." Together, equations D-3

and D—5 constitute an explicit evaluation of the dispersion integral,

equation 3-5. Although we have chosen to take the principal value of

the logarithm, there still remains an ambiguity in the choice of sign

for the square root function. This ambiguity will be used to reveal

different sheets of the scattering amplitude in the complex W-plane.

Now, we will examine C; more closely. For each of the three

channels being utilized in this work (equation 3-5 ff), WS is real.

For the elastic channel, W; is also real, but the imaginary components
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in the masses of the unstable delta and eta result in complex values

of W; and, hence, also of z for each of the two inelastic channels.

Below a channel°s subtraction point, we have W i WS < Re(H;), and

z lies in the first quadrant of the complex z·plane with Re z _; 1,

Im(z) g 0. For the elastic channel with real W; (Im z = 0), we have

1 - x/Ec-2I10 Z fl 1+6 Hl

C 2c+é 2 2'>n = z — z z 71 l - .¢ .:1 2j+l 1+x/E
nl

J <¤-61
Therefore, in the elastic channel for W g WS,

Im(Cc) = -2z‘*"2. (D"?)

For the two inelastic channels, z is complex, and there is no simple

reduction. Equations D—3 and D-4 must be used in their entirety.

Between the subtraction point and threshold, WS < W < Re(Wt), and

z will lie in the second quadrant with Re(z) _§_ 0, Im(z) g 0. For the

elastic channel, there is a simple reduction because z is strictly

negative. If we write z = ·Y2 for real Y, then N/E = iiY where the

sign ambiguity in the square root is explicitly shown, and

(1-\/Z) _ 1 ¥iY _ 1-Y2?F2iY

1+x/E -111Y- 1+Y2

1 -
’

¢ 2i 4:2
nC ‘—·=2 + V; (ln —in) $ i\/;tan”1°

1 + Y 1 — Y
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:*:2
nCo = 2i y[n + tan-1. (D·8)

Therefore, Co and hence all C2's are real for Hs < W < Re(Wt) in the

elastic channel. The inelastic channels are again more complicated

with Im(Cg) nonvanishing.

Above channel threshold, W > Re(W;) > WS, and z will be in the

fourth quadrant with 0 g Re(z) < 1 and Im(z) g 0. For the elastic

channel, there is again a simplification because \/E is real, and we

have:

1 - V? _
nC0 = 2-I¢\/;(ln. -1n)

l—~’?
° 2 2 111-2)“¤ Z Z " 1+1/; ‘“ §12j+1 Z

and for the elastic channel with W > Re(Wt) gives

Im(C,) = —Z(+1/2. (D°1o)

Let us now examine the threshold dependence of the dispersion

integral. For a generalized, two-particle channel with masses M1 and

M2 and center-of-mass momentum, q, we have W1; = M1 + M2. Just above

the channel°s threshold, qz will be small, and

w · wt = (x/M12 + q2 + x/1122 + qz)
- (M1 + M2)

== qz (M1 + M3)/2M1Mg

w—ws = (ws-ws) + (w—ws)

== (wt - ws) + 1121111 + 112)/2111112 . (1)-11)

1
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These approximations give:

z = (w - ws)/(w - ws)

== q2(M1 + M2)/[2M1M2(W; - Hs) + q2(H1 + M2)]

z === q2(M1 ·•· M3)/2M1M2(W; - Hs) . @-12)

Using the masses following equation 3-5, we obtain z = qzA2e2i¢, where

A and da are given below.

CHANNEL A (c/MeV) q> (deg)

Elastic 5.25 x 10-3 0.000

n—A 4.65 x 10-3 -17.00

q-N 2.31 x 10-3 -0.695

For the elastic channel with real M1 and M2 and, hence, small real

z(0 5_ z << 1), equation D-10 gives

Im(C€) = -x/FJ . (D-13)

If the negative sign of the square root is chosen, then just above

threshold we have:

(5.25 ><
1o‘°)’1‘*‘”

ImThatthis is the threshold dependence needed to identify Im(Cg) as the

phase space factor for the elastic channel, providing the T-matrix

with its proper threshold dependence, will follow from equation 3-4.

For the two—channe1 K-matrix appropriate for all waves except S11,
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equation 3-4 yields:

Kee —
Ci(K¢¢ K11

_ K;)

Te =Im(Ce) . @*15)
(1

_
C1 K11) - Ce Kce + Ce Ci (Kee K11

—
Kal)

Since the expression in the brackets does not vanish at threshold,

both Im(Ce) and Tg have an identical threshold dependence of qzül.

Similar arguments will hold for the S11 wave.

For the inelastic channels, the situation is very different

because z is complex. To find the threshold dependence, we need only

to find the terms having the lowest powers of \/2. With small q,

equations D-3 and D-S give:

nCo =2=

2 - in(qA cos¢)

C
2

+
2“ ¢" 26+1 26-1 Z

2 . 2 2 2 . (D-16)
=
—i

+ ** ( A 2 ) .26+1 l2£—1 q sm ¢

If the negative sign of the square root is again taken,

Im(Co) = (qAoos <l>) ¤= q

2112112 2 (D-17)
I C =

-——— ' 2 ,'”( ¢) 1'I(2€+ 11 sm q
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and the inelastic channel has a threshold dependence of q2€*l only for

S-waves.

When examining the complex topology of the scattering amplitudes,

W is continued analytically off the real axis resulting in complex z.

The best manner to understand the structure of C; is by examining the

contour plots shown in Figures D—l through D-8. The real and

imaginary parts of CQ and Ö1 are displayed for both the elastic n-N

and the inelastic n—A channels. CQ is also shown in Figures D-7 and

D-8 for the inelastic q-N channel. For the elastic channel, only the

physical sheet of complex W is shown, while for the two inelastic

channels, both the physical and unphysical sheets are shown. For

convenience, each contour plot is shown covering the same size region

of the complex W-plane with the zero contour identified by a
“Z."

The

sign of the dispersion functions in each region of the plot is also

identified.
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APPENDIX E. PARTIAL-HAVE AHPLITIJDES

The partial-wave amplitudes obtained from solution FP86 can be

displayed in a variety of formats beyond the partia1·wave T-matrices

shown in Chapter 3. Figure E-1 provides Argand diagrams for each of

the partial waves of interest here, S- through F•wave. Shown in

Figure E-2 are the partial-wave cross sections,

4nh2 1(IJ ,. ·
__ C

Ototal ’ 2 (J + 2)I'" [Tu}
Q

061.1 Im T6 _IT6l2
inelaatic

_
q2 J 2 IJ IJ ’

where q is the center-of-mass momentum. The energy dependence of the

phase shift and the inelasticity or actually one minus the

inelasticity squared are provided in the plots of Figure E-3. For all

the plots in this appendix, the energy runs from 1080 to 1780 MeV in

the center of mass.
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FIGURE E-1. PARTIAL-WAVE ARGAND DIAGRAM FOR CENTER-OF—MASS
ENERGY FROM 1080 T0 1780 MeV (Sheet 1 of 7)
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F IGURE E-1. PARTIAL-WAVE ARGAN0 DIAGRAM FOR CENTER-0F—MASS
ENERGY FROM 1080 T0 1780 MeV (Sheet 2 of 7)
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FIGURE E-1. PARTIAL—NAVE ARGAND OIAGRAM FOR CENTER-0F—MASS
ENERGY FROM 1080 T0 1780 MeV (Sheet 3 of 7)
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FIGURE E-1. PARTIAL-WAVE ARGAND DIAGRAM FOR CENTER-0F·MASS
ENERGY FROM 1080 TO 1780 MeV (Sheet 4 of 7)
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FIGURE E-1. PARTIAL—NAVE ARGAND DIAGRAM FOR CENTER-OF-MASS
ENERGY FROM 1080 TO 1780 MeV (Sheet 5 of 7)
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F IGURE E-1. PARTIAL—NAVE ARGAND DIAGRAM FOR CENTER-OF-MASS
ENERGY FROM 1080 TO 1780 MeV (Sheet 6 of 7)
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FIGURE E—1. PARTIAL-HAVE ARGAND OIAGRAM FOR CENTER-OF-MASS
ENERGY FROM 1080 TO 1780 MeV (Sheet 7 of 7)
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APPENDIX F. BARYON HAVEFUNCTIONS

Baryons are presumed to consist of three spin 1/2 quarks.

Considering here three light flavors of quarks: up (u), down (d), and

strange (s), the flavor content of the baryon wavefunction, ¢f1aVor,

will be a three-dimensional representation of the group SU(3)f1aV°r.

These flavor wavefunctions with appropriate permutation symmetry are

shown in Table F-1 along with the baryons that they constitute. The

phase conventions used are those of Close.l The corresponding three-

dimensional representation of the SU(2) spin wavefunctions are given

in Table F-2. The flavor and spin wavefunctions combine to form the

SU(6) wavefunctions shown in Table F—3•

The baryon total wavefunction will then consist of a product of

the flavor-spin, spatial, and color wavefunctions as follows:

%„,„„ = <¢„„„„„ ><„,„„>R„„„„.C„„„„· (H)

The baryon wavefunction, w, is totally antisymmetric as proper for

fermi statistics, while C is antisymmetric. The color wavefunction is

an antisymmetric, three-dimensional representation of SU(3) for the

three possible colors that compose the quark color singlet baryons.

The spatial wavefunction, R, has the group structure of O(3) required

by rotational invariance. The actual form of R depends on the inter-

quark forces and how they are modeled.

The ground—state baryons are in the lowest possible spatial state

with each quark in an S—wave = (ls)3 and LP = 0*, therefore, the

ground-state spatial wavefunctions are spatially symmetric. The
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TABLE F-1. SU(3) FLAVOR BARYON NAVEFUNCTIONS SHONING
EXPLICIT PERMULATION SYMMETRY (3 ® 2 ® 3 = 1O 69 8 aa 8 aa 1)

GROUP CONTENT FLAVOR NAVEFUNCTION BARYON

¢synmetr1c ¤¤¤ ATT

= 13 QS) (uud + udu + duu)/x/3 AT

(ddu + dud + udd)/w/3 A°
ddd A'

sss Q'

(ssd + sds + dss)/x/3 g -*
(ssu + sus + uss)/x/3. g 0*
(dds + dSd + sdd)/N/T3, 2-*
(uus + usu + suu)/~/3 2+*
(sud + sdu + uds + usd + dsu + dus)/x/E 2+*

¢m1xed synmetric (udu + d¤¤ - 2 uud)/~/E P
= 3 Qms) (2 ddu - udd N

(usu + suu - 2 UUs)/x/Ö 2+
(s[du + ud] + [dsu - usd] - 2[du +ud}s)/x/T2 20
(dsd + sdd - 2 dds) 2- °

(dsu - usd + s[du - udl)/2 ^°
(2 ssd — [ds + sdls)/x/E E -
(2 ssu - [us + suls)/x/E g 0

¢’m1xed (ud - 00)*1/V? P
antisynmetric (ud - du)d/\/2 N
=· 8 (q>m) (us — su)u/x/2 2+

(ldsu + usd] — s [ud + dul)/2 20
(ds - sd)dx/2 2-
(sldu + ud} + [usd - dsu] - 2[du+ud1s)1«/T2 ^°
(ds - sd)s/x/2 _ g -
(us - su)s/x/2 E 0

qsantisymetric (sldu -ud] + [usd — dsu] + [du - ud]s)x/E ^?
’ 1 (4*3)
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TABLE F—2. SU(2) SPIN BARYON WAVEFUNCTIONS
(2®2®2=4$2+$2)

SPIN WAVEFUNCTION
GROUP CONTENT (1 = SPIN UP, 1 = SPIN DOWN)

Xsymetric T T T
=4(X$) (TT1+T1T+1TT)/V?

(11T+1T1+T1l)/V? I
111

Xm1¤¤d Sw¤¤<-=t¤‘1¢ (111+ 111 -
ZT‘2(><¤¤s)(2111-111+111)/»/E
xmixed antisymmetric (111+ 111)/\/-E’2‘*=¤=·’

(111-111)/~/ä
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TABLE F—3. SU(6) FLAVOR-SPIN HAVEFUNCTIONS FOR THREE—QUARK BARYONS
(6®6®6=56$70®70$20)

SYMMETRY FLAVOR-SPIN GROUP
REPRESENTATION STRUCTURE CONTENT FLAVOR·SPIN NAVEFUNCTION

Symmetric (10,4)* eps xs
56S (8•2)* (¢m$ Xmg +

(PMRMixedSymmetric (10,2)* eps xms
70MS (8,4)* ¢mg XS

(8,2)* (¢ma
Xma(lsz)¢& Xma

Mixed Antisynmetric (10,2)* eps xma
7OMA xs

(8•2)* (¢ma xma · ‘Pms -Tms)/‘/-E
(le?) (Pa Xms

Antisynmetric (1,4) epa xs
20A (8•2)* (¢ms Ims ' ¢ma xms)/‘/ä

*Representation containing nucleon and delta states
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ground—state flavor-spin wavefunctions are then required to be a

symmetric representation of SU(6), namely 56S from Table F·3. From

Table F-1, it then follows that ground-state nucleons are members of

octet JP = 1/2*, (8,2), and ground-state deltas are members of

decuplet JP = 3/2*, (10,4).

In a baryon shell model, the first excited (N = 1) state has a

single quark excited to a relative P—state (ls)2(lp) and, therefore,

LP = l' with only mixed—symmetric and mixed—antisymmetric spatial

states possible. The flavor-spin wavefunction must also have mixed

symmetry in order to have a symmetric combination of flavor, spin, and

_ spatial dependence,

epfirsuxcmdmu = (70MSRm + 70MARm)/\/2 . (F-2)

The first excited states of the nucleons are then (8,4) x l' with JP =

1/2*, 3/Z', S/2' or (8,2) x l' with JP = 1/2,' 3/Z'. The first

excited states of the delta are (10,2) x l' with JP = 1/2‘, 3/2'.

There are five nucleon and two delta low·lying (mass less than about

1700 MeV), negative·parity, pion-nucleon states seen experimentally

that can be matched with these seven LP = 1'• three·quark states.

Assuming that the spin 1/2 (8,2) states lie lower in energy than do

the spin 3/2 (8,4) states, the assignment is given in Table F—4. An

assignment of the odd·parity and higher energy negative-parity states

(N > 2) is not as direct, but is instead model-dependent.

Within a supermultiplet, the ground state (56,0*) or the excited

66161616:6 (70, 1-), (56*, 0+), (70, 0+), (56, 2+), src., the
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TABLE F-4. GROUP ASSIGNMENT OF L0w—LYING,
NEGATIVE-PARITY, PION-NUCLEON STATES

GROUP Jp PION-NUCLEON
ASSIGNMENT STATE

(8,2) ® 1- 1/2' S11 (1535)
3/2- 013 (1520)

(8,4) ® 1- 1/2' S11 (1650)
3/2' D13 (1700)
5/2- 015 (1675)

(10,2) ® 1- 1/2' S31 (1620)
3/2‘ 033 (1700)
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