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Fisher Information Test of Normality

by

Yew-Haur Lee

(ABSTRACT)

An extremal property of normal distributions is that they have the smallest Fisher

Information for location among all distributions with the same variance.  A new test of

normality proposed by Terrell (1995) utilizes the above property by finding that density

of maximum likelihood constrained on having the expected Fisher Information under

normality based on the sample variance.  The test statistic is then constructed as a ratio of

the resulting likelihood against that of normality.

Since the asymptotic distribution of this test statistic is not available, the critical

values for n = 3 to 200 have been obtained by simulation and smoothed using

polynomials.  An extensive power study shows that the test has superior power against

distributions that are symmetric and leptokurtic (long-tailed).  Another advantage of the

test over existing ones is the direct depiction of any deviation from normality in the form

of a density estimate.  This is evident when the test is applied to several real data sets.

Testing of normality in residuals is also investigated.  Various approaches in

dealing with residuals being possibly heteroscedastic and correlated suffer from a loss of

power.  The approach with the fewest undesirable features is to use the Ordinary Least

Squares (OLS) residuals in place of  independent observations.   From simulations, it is

shown that one has to be careful about the levels of the normality tests and also in

generalizing the results.
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Chapter 1 Introduction and Motivation

The problem of normality testing is well known and has generated plenty of

attention from researchers, see Mardia (1980) and D’Agostino and Stephens (1986).  This

is because a lot of classical optimal procedures were developed based on the normality

assumption.  However, researchers soon realized that this assumption was not always

satisfied.

          Three approaches can be taken to deal with non-normality of data. The first

approach is transforming the data to normality so that the classical procedures could still

be used.  The second approach is the use of nonparametric procedures.  The third is to use

robust procedures that are less sensitive to deviation from normality, especially tail

behavior.  Each of the three comes with strengths and weaknesses; there is no consensus

on which is the best approach.

          The role of normality testing is not just to see if the data are well approximated by

the normal distribution; but also to provide information on the deviation from normality.

This information would then guide the researchers to the best approach to dealing with

the non-normality of their data.

1.1 Statement of the Problem

          In this dissertation, it will be assumed that one is testing normality because the user

wishes to fit a location model.  Suppose the data collected x1, x2, ..., xn represent an

independent and identically distributed (iid) random sample of size n from a population

with probability density function f(x) and cumulative density function (cdf) F(x).  Let Φ

be the cdf of x that is normally distributed with unknown mean and variance.  The null

hypothesis in this problem of testing for normality is

H0 : F(x) = Φ(x)

and the alternative hypothesis simply states H0 is false.  Hence only omnibus tests will be

considered in this dissertation.  Here, omnibus refers to the ability of a test to detect any

deviation from normality with an adequate sample size.
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          In this problem, the focus is on failing to reject H0 so that the conclusion is that the

data come from a normal distribution.  As noted by D’Agostino and Stephens (1986), this

distinguishes normality testing from most statistical tests.  Also, with a vague alternative

hypothesis, they commented that ‘the appropriate statistical test will often be by no

means clear and no general Neyman-Pearson type (test) appears applicable’.  Hence, it

will be unlikely to have a single test that will have power superior to their alternatives.

1.2 Direction of Research

          There are literally hundreds of normality tests in the literature.  Major power

studies done by Shapiro et al. (1968) and Pearson et al. (1977) have not arrived at a

definitive answer; but a general consensus has been reached about which tests are

powerful.

          Pearson’s (1900) chi-squared test, which is possibly the oldest, is not very

sensitive.    Data are grouped and compared to the expected counts under normality.

Since information is lost in the grouping and this test is not specially tailored for the

normal distribution, the conclusion is not surprising.

          Bowman and Shenton (1975) proposed the use of joint contour plots of the third

and fourth moments for their test.  It proves powerful among tests based on moments.

For these tests, sample moments are compared to those which are expected from a normal

distribution.  However, these tests are not omnibus since a distribution could have

skewness and kurtosis close to that of a normal but yet the distribution could be non-

normal.

          Another class of normality tests are based on the empirical cumulative distribution

function (ECDF).  Deviation from normality is measured as a function of the

discrepancies between the empirical and hypothesized distribution functions.  Stephen’s

(1974) version to the Anderson-Darling (1954) test  has proved to be the most powerful

among these tests.  However, it is not clear if this measure of deviation is of primary

importance in deciding what to do if the data are non-normal.

          A new direction was established in normality testing when Shapiro and Wilk

(1965) formalized the evaluation of normality in probability plotting.  Probability plotting
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involves plotting of ordered observations against their expected values under normality.

Normality is judged by the linearity of the plot.  This test and its modifications have

proved to be popular among researchers since it is as powerful, if not more so, against

certain alternative distributions as the Anderson-Darling and the Bowman-Shenton tests.

However, as with the ECDF tests, it is unclear if the measure of deviation from normality

is what researchers are concerned about.

          A well known property of the normal distribution is that it has the least Fisher

information among all other distributions with the same variance.  A new approach to

normality testing suggested by Terrell (1995) essentially provides a nonparametric

density estimate of the data constrained on the above property when finding the

likelihood of the data.  This constraint eliminates the need for a smoothing parameter.

The test is then based on the ratio of that likelihood to that under normality.  Excess

information would be reflected in a poorer fit of the data to normality since the Fisher

Information is underestimated.   Hence, the test is omnibus and sensitive to departures

from normality that are manifested in the excess information.

          The goal of this dissertation is to gain an understanding into the workings of the

Fisher Information Test for normality, provide a comprehensive table of critical values

and evaluate the power performance against existing tests.  The Fisher Information Test

will also be modified to test for normality in residuals.

          In the next chapter, we will give a brief review of the background and details of the

existing tests of normality.  Chapter 3 develops the theory and operational details behind

the Fisher Information Test.  Chapter 4 presents an evaluation of the sensitivity of the

Fisher Information Test and a power comparison is done against existing tests.  Chapter 5

investigates the testing of normality in residuals and another power comparison is done to

see if the results differ from those using independent observations.  Finally, Chapter 6

summarizes the findings and also discusses directions for future research.
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Chapter 2 Existing Normality Tests

For a detailed survey of the literature, see Mardia (1980) and D’Agostino and

Stephens (1986).  In this chapter, the focus is on existing normality tests which are

mentioned in Chapter 1 that are powerful.  Each of these tests belongs to a different class

of normality tests.  A brief background to the general approach in each class is given

before details are presented for each test.

2.1 Moments Tests - Bowman-Shenton K 2

          Since the concepts of skewness and kurtosis can be used to differentiate between

distributions, one of the earliest classes of normality tests is based on these moments.

The standardized coefficients of skewness, β1 , and kurtosis, β2  are defined as

β
µ
σ1

3
3=  and β

µ
σ2

4
4=

where µ i  is the ith central moment.

          Skewness refers to the symmetry of a distribution.  For a symmetric distribution

like the normal, β1 = 0.  A distribution that is skewed to the right has β1  > 0 while

one that is skewed to the left has β1  < 0.

          Kurtosis refers to the flatness or ‘peakedness’ of a distribution.  The normal

distribution has β2 = 3 and is used as a reference for other distributions.  A leptokurtic

distribution is one that is more peaked and with heavier tails than the normal, resulting in

β2  > 3.  A platykurtic distribution has a flatter distribution with shorter tails than the

normal, hence β2  < 3.

           The sample skewness, b1 , and kurtosis, b2 , are defined as

( )
b

m

s
1

3

2
3

2

=  and 
( )

b
m

s
2

4

2 2=

where mi  is the ith sample moment.  Since the moments of b1  and b2  are known, their

distributions have been approximated using Pearson curves.  The critical values for the
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normality tests of skewness and kurtosis are tabulated in Pearson and Hartley (1972) for

selected values of n ≥ 25 at α = 0.02 and 0.10. Normalizing transformations have been

found for b1  and b2  by D’Agostino (1970) and D’Agostino and Pearson (1973)

respectively.   Z b( )1  and  Z b( )2  denote the resulting approximate standardized normal

variables.

          D’Agostino and Pearson suggested combining b1  and b2  in the following way:

( ) ( )K Z b Z b2 2
1

2
2= +

where K 2 is distributed as χ2
2  since it is the sum of the squares of 2 standardized normal

equivalent deviates.  However, they assumed that the squared standardized normal

equivalent deviates are independent which is not true especially for small sample sizes.

Using simulation, Bowman and Shenton (1975) obtained 90%, 95% and 99% contours

for K 2 for sample sizes between 20 and 1000.  Carrying out this test would then only

require calculating b1  and b2 , selecting the appropriate contour, and determining if

( b1 ,b2 ) falls within the contours.  If it does not, then normality is rejected.

2.2 Distance/ECDF Tests - Anderson-Darling A 2

          ECDF or distance tests are another broad class of normality tests that are based on

a comparison between the ECDF, F x
i
nn i( )( ) = , and the hypothesized distribution under

normality, Zi , as defined by

Z
x x

si

i
=

−





Φ

( )

where x
x

n

i
i

n

= =
∑

1  and 
( )

s
x x

n

i
i

n

2

2

1

1
=

−

−
=
∑

.  Stephens (1974) provided versions of the

ECDF tests with unknown µ  and σ 2 .
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          ECDF tests can be further classified into those involving either the supremum or

the square of the discrepancies, F x Zn i i( )( ) − .  The most well known ECDF tests

involving  the supremum is the Kolmogorov-Smirnov statistic

K D D= + −max( , )

where D
i
n

Zi
+ = −





max  and D Z

i
ni

− = −
−



max

1

          ECDF tests involving the square of the discrepancies are known as those from the

Cramér-von Mises family with the general form

CvM n
i
n

Z Z dZi i i= −∫ [ ] ( )2 ψ

where ψ( )Zi  is the weighting function.

          If ψ( )Zi = 1, that is the Cramér-von Mises statistic itself, W 2 .  For the Anderson-

Darling statistic, A2 , ψ( )
( )

Z
Z Zi

i i

=
−
1

1
.  This choice of ψ( )Zi  gives emphasis to tail

values and the computational form is given by

[ ][ ]A
n

i Z Z ni n i
i

n
2

1
1

1
2 1 1= − − + − −+ −

=
∑ ( ) ln( ) ln( )

Stephens found that A2  has the highest power among all ECDF tests.  The

asymptotic distribution is known and it was found that the critical values for finite

samples quickly converge to their asymptotic values for n ≥ 5.

2.3 Regression/Correlation Tests - Shapiro-Wilk W

          The main idea behind these tests is normal probability plotting.  Normal probability

plotting is a graphical technique to determine the normality of the data by looking for

linearity in a plot of the ordered observations x(i) against the expected values of standard

normal order statistics, mi.  Formal determination of the linearity uses regression or

correlation techniques, hence the name of this group of tests.

          If x(i) is indeed normal, then the slope would give the standard deviation of xi, σ,

and the intercept, the mean of the xi’s, µ.  Since the ordered observations are not



7

independent, let V=(vij) be the nxn covariance matrix, x′ = (x1, x2, …, xn) and m′ = (m1,

m2, …, mn). The best linear unbiased estimators of the slope and intercept using

generalized least squares are

$σ =
′
′

−

−

m V x

m V m

1

1  and $µ = x

          The usual symmetric estimate of the variance regardless of the distribution of xi is

given by  s2 .

          The Shapiro and Wilk  (1965) W statistic is defined as

W
K

n s
a x

n s

a x

x x

i i
i

n

i
i

n=
−

=
′

−
=











−

=

=

∑

∑

$

( ) ( )
( )

( )σ2

2 2

1

2

2

1

1 1

where

( ) ( )( )[ ] 2

1
111

21 ',...,,
−−−−′==′ mVVmVmaaaa n

mVVm

mVm
K

11

1

−−

−

′

′
=

          W compares the ratio of two estimates of variance, 2σ̂ and s2, apart from a

normalizing constant, K,  and (n-1).  If the distribution of xi is normal, then W will be

close to 1.  Otherwise, W is  less than 1.

          The critical values of W are tabulated up to sample sizes of 50.  However, values

for {ai} are also needed to carry out this test.  For larger sample sizes, Shapiro and

Francia (1972) noted that the ordered observations,  as n increases , may be treated as

independent (i.e. vij = 0 for i≠j) .  Treating V as an identity matrix, W can be extended for

n larger than 50 by

∑∑

∑

==

=

−













=′
n

i
i

n

i
i

n

i
ii

mxx

xm

W

1

2

1

2

2

1
)(

)(

Values of {mi} are available from Harter (1961) up to sample sizes of 400.  However,

two tables are still needed to carry out this test.
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          A further modification was suggested by Weisberg and Bingham (1975) that uses

this approximation

















+

−
Φ≈ −

4

1
8
3

1

n

i
mi

due to Blom (1958).  This approximation was shown to be close even in small samples,

and the null distribution of W was practically identical to W’.  This simplifies the

computation of the test statistics since separate values for mi need not be kept.

Royston (1982) used another approximation suggested by Shapiro and Wilk

(1965) for {ai} and applied the following normalizing transformation to W:

λ−= )1( Wy and yyyz σµ−= /)(

 where z is standard normal and λ, µy and σy are functions of n. λ is estimated by

maximizing the correlation between certain empirical quantiles of W and the

corresponding standard normal equivalent with weights given according to the variance

of a normal quantile.  The relation between µy and σy  and n is then determined by

applying λ to simulated values W.  The normalizing transformation producing W* does

away with any special tables, besides the standard ones, needed to find the critical values

of W.
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Chapter 3 Fisher Information Test

In this chapter, the theory behind the Fisher Information Test as suggested by

Terrell (1995) will be explained in detail.  First, the Fisher Information Inequality will be

derived.  Next, the Fisher Information Test will be developed and an implementation

algorithm will be presented.  Lastly, details of the simulation done to generate the critical

values will be given.

3.1 Normal Information Inequality (for location)

          The Fisher information number which is denoted by I F  is given by

(( ))
I E f E f

f

fF == −− ′′′′ == ′′ ==
′′

∫∫[ (log ) ] [{(log ) } ]2

2

where f  is any density.  It measures, on average, how fast the log-likelihood changes as

the mean moves away from the center of the distribution.  Another way of looking at it

would be the ease of using a sample to locate the center of a distribution.  A famous

property of the normal distribution is that its I F  is the smallest among all distributions

with the same variance.  The implication is that it is hardest to tell where the mean is in a

normal distribution. The proof given by Terrell (1995) is presented here since it  is

integral to the development of the Fisher Information Test.

The right hand side of the familiar property of a density given below

∫= f1

is integrated by parts for any µ  and f  that goes to zero at the limits of its support that

results in

∫ ′µ−−= fx )(1

Introducing f  to the integral by replacing ′f with 
′f

f
f results in

1 == −− −− ′′∫∫ ( )x f
f
fµ
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Applying  the Cauchy-Schwartz Inequality yields

1 2

2

2

2

== −− −−
′′

≤≤ −− −−
′′






 == −−

′′





∫∫ ∫∫ ∫∫ ∫∫ ∫∫[ ( )] [ ( )] ( )x

f
f

f x f
f
f

f x f
f
f

fµ µ µ

Choosing µ  to minimize the first integral makes ( ) var( )x f X−− ==∫∫ µ 2 .  Hence, the

inequality after rearranging becomes

I
f
f XF =
′

≥∫
( )

var( )

2 1

where equality is achieved when ( )x − µ  is proportional to 
′

= ′
f
f

f(log )  almost

everywhere.  For a normal distribution,

(log ) [ ( ) ] ( ) ( )f
d

d
x x x′ = − − = − ∝ −

µ πσ σ
µ

σ
µ µ

1

2

1

2

1
2 2

2
2

Therefore, for the normal distribution, the equality is achieved and I F =
1

2σ
.

          This Fisher Information Inequality is sort of a dual to the Cramér-Rao Inequality.

The Fisher Information Inequality gives the lower bound for the Fisher Information for

any distribution in terms of its variance while the Cramér-Rao Inequality gives the lower

bound for the variance of  any location estimator in terms of its Fisher Information.

3.2 Normal Information Statistic F

        For any other distribution besides the normal, the Fisher Information number would

be in excess of the inverse of its variance.  This excess would thus be a natural measure

of non-normality or deviation from normality.   A natural test statistic for normality

would be to get a direct estimate of I F .  However, that would require an estimate of the

density which relies on nonparametric methods that are asymptotically inefficient.

Moreover, there is also the need to specify a smoothing parameter.  Terrell circumvented

these two problems by formulating the problem using maximum likelihood in the

following way

        max log ( )
f

i
i

n

Ff x subject to I
s

and f
==
∑∑ ∫∫== ==

1
2

1
1                   (3-1)
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where the first constraint estimates I F  using the asymptotically efficient statistic s2

under normality.  The second constraint gives the familiar property of a density.

          The Normal Information statistic, F ,  is then a log-ratio of this likelihood to that

under normality.  If the data are normal, then F  is close to 1 since I F  has been correctly

estimated.  Otherwise, I F is underestimated and F reflects a poorer fit of the data.

          Rewriting (3.1) with Lagrange multipliers gives

              
(( ))

max log ( )
f

i
i

n

f x
f

f
f

==
∑∑ ∫∫ ∫∫−−

′′
−−

1

2

λ γ                                      (3-2)

where the values of λ  and γ  are chosen so that the constraints are met.  If λ  is treated

as a parameter, the above form is similar to the first penalized maximum likelihood

density estimation problem of Good and Gaskins (1971).  This problem is a formal dual

to theirs, and the form of the solutions to both are similar.  A solution in terms of

exponential splines has been found by deMontricher et al. (1975).  Hence, the Fisher

Information Test of Normality gives a graphical tool in the form of a nonparametric

density estimate with the smoothing parameter specified by the constraint on I F .

3.3 Solution to the Problem

          Since there is a need for the resulting density estimate to be non-negative, the

technique from Good-Gaskins of getting the solution in terms of a function fh =2 will

be used.  This will eliminate the need for a non-negativity constraint.  With this

modification, hhf ′=′ 2 .  The expression for Fisher information in terms of h  is then

( ) ( ) ( )∫∫∫ ′=
′

=
′

= 2
2

22

4
2

h
h

hh
f

f
I F

The optimization can be modified by maximizing the average log-likelihood and

(3-2) becomes

( )∫ ∫∑ γ−′λ−
=

22

1

4)(log
2

max hhxh
n

n

i
i

h
                                  (3-3)
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where λ  and γ  are chosen so that ( )
2

2 1
4

s
h =′∫  and 12 =∫ h .  (3-3) is a particular case

of the so-called isoperimetric problem in the calculus of variation.

Calculus of variation is a technique using classical calculus methods to solve

maximization and minimization problems where the solution is a function instead of a

point while isoperimetric problems are those that involve derivatives in the constraints.

The main idea is to write the objective function and constraints as a Lagrangian function

with h being replaced by pg ε+ .  Here, g is assumed to be the solution to the problem

and pε  is the perturbing function with p being an arbitrary function that vanishes at -∞

and ∞ (same as g ) and ε is an arbitrary constant.  The Lagrangian function (V) is then a

function of ε.  Note that as gh →→ε ,0 .  Therefore, the first-order necessary condition

for the problem is then given by 0
0

=
ε =εd

dV
 and the second-order sufficient condition for

maximization problems is 0
2

2

<
εd

Vd
.  For a reference to calculus of variation, see Chiang

(1992).

To get the Euler-Lagrange variational condition for (3-3) from first principles, (3-

3) is re-written as a function of ε as follows:

                    { } ( ) { }∫ ∫∑ ε+γ−′ε+′λ−ε+=ε
=

22

1

4)()(log
2

)( pgpgxpxg
n

V
n

i
ii              (3-4)

Expanding (3-4) results in

{ } { } { }∫ ∫∑ ε+ε+γ−′ε+′′ε+′λ−ε+=ε
=

222222

1

2)(2)(4)()(log
2

)( pgpgppggxpxg
n

V
n

i
ii

Differentiating V(ε) with respect to ε,

{ } { }∫∫∑ ε+γ−′ε+′′λ−
ε+

=
ε
ε

=

22

1

22)(224
)()(

)(2)(
pgpppg

xpxg
xp

nd
dV n

i ii

i

and using the first-order necessary condition gives

∫∫∑ =γ−′′λ−=
ε
ε

==ε

04
)(

)(1)(

10

gppg
xg
xp

nd
dV n

i i

i
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Using the shifting property of the Dirac delta function, )( ixp can be written as

∫ −δ= )()()( ii xxxpxp

and integrating the second term by parts,

∫∫∫ ′′−=′′−′=′′
∞

∞−
pgpgpgpg

where use is made of the fact that p vanishes at -∞ and ∞.  Substituting the above into the

first-order condition gives

∫∫∑ ∫ =γ−′′λ+
−δ

=

04
)(

)()(1

1

gppg
xg

xxxp

n

n

i i

i

Factoring p and collecting terms gives

04
)(

)(1

1

=








γ−′′λ+
−δ

∫ ∑
=

gg
xg

xx
n

p
n

i i

i

Since p is arbitrary, the above reduces to

04
)(

)(1

1

=γ−′′λ+
−δ∑

=

gg
xg

xx
n

n

i i

i

As the Dirac delta functional is zero except at zero, the final form of the Euler-Lagrange

variational condition is given by

(( ))1

41n
x x

g
g g

i
n

n

δ
γ λ

−−
== −− ′′′′==

∑∑
                                          (3-4)

For the second-order necessary condition,

{ }
( ) 028

)()(

)(2 22

1
2

2

2

2

<γ−′λ−
ε+

−=
ε ∫ ∫∑

=

pp
xpxg

xp
nd

Vd n

i ii

i

which ensures that the solution g gives a maximum solution to the problem.

          Klonias (1982) found that

( ) ( )
( )g x

n

K x x

g xh
h i

h ii

n
*

*
=

−

=
∑1

1

                                             (3-5)

characterized the solutions to (3-4) where K
h

K
x
hh ==







1
 and K e x== −−1

2
.  Here, the

principle of supposition is employed where (3-4) is solved for each n and then the
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solution is added together for the final solution to (3-4).  Kernel functions, K , are used to

solve the equation K K− ′′ = δ  and the scaled version, Kh ,  is a solution to the equation

K h Kh h−− ″″ ==2 δ                                                        (3-6)

 which looks like an n = 1 version of (3-4) .  Dividing (3-6) by (( ))ng xh i
*  and summing

from 1 to n  gives

(( ))
(( ))

(( ))
(( ))

(( ))
(( ))

1 1 1

1

2

1 1n

K x x

g x
h

n

K x x

g x n

x x

g x
h i

h ii

n
h i

h ii

n
i

h ii

n−−
−−

″″ −−
==

−−

== == ==
∑∑ ∑∑ ∑∑* * *

δ

(( )) (( )) (( ))
(( ))g x h g x

n

x x

g xh h
i

h ii

n
* *

*
−− ″″ ==

−−

==
∑∑2

1

1 δ

where (( ))
(( ))
(( ))g x

n

K x x

g x
h

h i

h ii

n
*

*

″″ ==
″″ −−

==
∑∑1

1

 and (3-5) are used for the substitution.  Since the delta

functional is zero except at zero

(( ))
g x h g x n

x x

g xh h

i
i

n

h

* *
*( ) ( )
( )

−−
″″

==
−−

==
∑∑

2 1

1
δ

                               (3-7)

Instead of solving for λ  and γ , the solution has been reparameterized to only one

parameter, h.  To tackle the second constraint that g h
*  is the square root of a density

where the square will integrate to one, let a g x dxh= ∫ * ( )2 .  Then g x
g x

ah
h( )
( )*

=  where

integrating the square of gh  gives one, which verifies that g h
*  indeed results in a square

root of a density.  Replacing (3-7) with gh  results in

( )
a g x a h g x

n
x x

g xh h

i
i

n

h

2 2 2 1

1

( ) ( )
( )

− ′′ =
−

=
∑δ

                                   (3-8)

where g x ag xh h
* ( ) ( )
″ = ′′ .

As for the first constraint on the Fisher Information, an expression for Fisher

Information is obtained by multiplying  (3-8) by g xh ( )  and integrating.  The first term

equals a 2  since g x dxh
2 1( )∫ =  by definition. Integrating the second by parts
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( ) ( )− ′′ = − ′ − ′ = ′∫ ∫ ∫−∞

∞
h a g x g x dx h a g x g x g x dx h a g x dxh h h h h h

2 2 2 2
2

2 2
2

( ) ( ) [ ( ) ( ) ( ) ] ( )

where use is made of the assumption that the density vanishes at the limits of its support.

The third term equals 1 since

(( )) (( ))1 1 1
1 1

1 1 1n
x x dx

n
x x dx

ni
i

n

i
i

n

i

n

δ δ−− == −− == ==
== == ==
∑∑∫∫ ∫∫∑∑ ∑∑

After the above simplification, (3-8) becomes

( )a a h gh
2 2 2

2

1+ ′ =∫

Hence, ( )I g
a

a hF h= ′ =
−

∫4 4
12

2

2 2  where the Fisher Information is a continuously

decreasing function of h .  If the data have been standardized, solving h  for I F = 1

would produce the required density estimate.

The Normal Information Test statistic, F , is twice the log likelihood ratio that

compares the estimated density, g 2 , to that of normality, f 0 :

( )








−== ∑∑

==

n

i

n

i

fg
fl
gl

F
1

0
1

2

0

2

loglog2
)(

log2                                (3-9)

Using the maximum likelihood estimators, $σ 2  and x , in f 0  yields

(( )) (( )) (( ))F g x x
i

n n n

i
i

n

== −− ++ −− −−


















==

−− −−

==
∑∑ ∑∑2 2

1

2
2

1

2
2 2

2

2

1
log log log $

$
π σ

σ

The third term vanishes since $σ 2 1==  as the data have been standardized.  In addition, the

last term simplifies to −−
n
2

using the definition of $σ 2 .  Finally, F simplifies to

(( ))F g n n
i

n

== ++ ++
==
∑∑4 2

1
log log π                                            (3-10)

3.4 Computational Algorithm

          The algorithm to get F  is as follows :

1.   Standardize the data to get variance one.

2. Solve the fixed point equation, ( ) ( )
( )g x

n

K x x

g xh
h i

h ii

n
*

*
=

−

=
∑1

1

, by
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a.   using an initial estimate g ( )0  by taking the square root of a Laplace kernel  density

estimate.

b.   computing a second estimate by (( ))
(( ))

(( ))g x
n

K x x

g x
h i

i
i

n
( )

( )

1

0
1

1
==

−−

==
∑∑

c. suppressing oscillations by (( )) (( )) (( ))[[ ]]g x g x g x( ) ( ) ( )2 0 11

2
== ++   and iterating to

convergence.

3.   Normalize the density so that its square integrates to one.

4.   Compute Fisher Information in terms of h .

5.  Find h  that gives Fisher Information of one using the secant method, and then

calculate F .

        The details of implementing this algorithm in FORTRAN are given in Appendices

B.1 and B.3.

3.5 Generation of Critical Values Using Simulation

          Since the distribution of F  is unknown, critical values have been generated via

simulation.  Sets of normal deviates are obtained using the subroutine ran1 from Press et

al. (1992). Ten thousand values of F  were generated for each sample size, n  =

3(1)100(5)200.  Different sets of pseudo-random numbers were used for each simulation

to avoid dependence between results.  The critical values obtained were then smoothed

using fifth degree polynomials.  The resulting smoothed critical values are tabulated in

Appendix A for α at 0.50, 0.25, 0.20, 0.15, 0.10, 0.05, 0.025, 0.02 and 0.01 where bigger

α values are available for those who are more inclined to accepting non-normality in their

data.
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Chapter 4 Evaluations and Applications to Real Data

From the definition of F  in (3-9), it can be expected that the power of F is

driven by the discrepancies between g 2  and f 0 .  The exact relationship is given in (3-10)

which shows that F  depends on the sample size, n , and the resulting square root of the

density, g .  To evaluate the sensitivity of F to non-normality, features of the data that

affect g 2  will be examined.  Then, based on those features, conjectures will be formed to

see what aspects of non-normality F  will be sensitive to.  These conjectures could then

be confirmed by a power comparison of F against existing tests.  Finally, F is applied to

some real data sets.

4.1 Features of Data that Affect Density Estimate, g 2

          If the data are normal, the theory behind F  would indicate that g 2  would give a

good estimate of the density.  To get a rough bell-shaped density, one would expect

clustering of data points in the center and tail behavior to greatly affect the shape of g 2 .

Figure 4-1 shows the estimated density plot for {-1, 0, 1}.  There are spikes at each data

point with the one in the center receiving more weight than the other two. For {-1, 0, 0,

1} in Figure 4-2, the middle spike has even more weight with the additional data point in

the center.

          With sparse data, the resulting density estimate has to fill the spaces between and

around data points to have a density with area that sums to one.  Hence, one would not

expect F  to be powerful.  As sample size increases, the density estimate is increasingly

driven by the location of data points and how they cluster together.  As a result, the

ability of F  to detect non-normality increases.
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Figure 4-1 Estimated density for {-1, 0, 1}

Figure 4-2 Estimated density for {-1, 0, 0, 1}
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          Note that for Figure 4-1 and Figure 4-2, the resulting tails are both tapering gently

down at both ends.  With no data in the tails, there is little discrepancy between g 2  and

f 0 .    For {-1, 0, 0, 1, 5} with a prominent outlier, the spike in the right tail in Figure 4-3

testifies to the sensitivity of g 2  to tail behavior.  Hence, tail behavior is another feature in

the data that affects g 2 .

           Although g 2  is not a consistent density estimate of the underlying density with

non-normal data, the discrepancies between g 2  and f 0  will have the potential to inflate

F  since the data might exhibit asymmetry and/or significant tail misbehavior.  Since g 2

is affected by clustering of data and tail behavior, one would conjecture that F  is most

sensitive to leptokurtic, symmetric distributions since the ability to inflate F  exists in

both tails.  Next would be leptokurtic, asymmetric where the ability is now confined to

only one tail.  With short tails in platykurtic distributions, F  should be less powerful.

Figure 4-3 Estimated density for {-1, 0, 0, 1, 5}
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et al. (1977).  Refer to Section 1.2 for some general conclusions that have been reached

from these major power studies.

4.2.1 Simulation Set-up

The simulation study was carried out with n = 10, 20, 50, 70 and 100 with 1000

samples drawn from 31 non-normal distributions specified in Table 4-1 and Table 4-2 for

symmetric and asymmetric distributions, respectively.  The distributions considered are

classified according to the following groups:

I. symmetric, leptokurtic

II. symmetric, platykurtic

III. asymmetric, leptokurtic

IV. asymmetric, platykurtic

The distributions within each group are arranged in order of increasing departure

from normality as measured by the standardized Fisher Information, var(X)IF.  This

measure is chosen so as to account for differing variances in distributions. Where

var(X)IF does not exist, the distributions are ordered on the basis of their standardized

coefficient of kurtosis, β2.  In group I, the distributions include SC(ε,σε
2) which is the

scale-contaminated normal with 100ε% of N(0,σε
2) being the contaminant.  Similarly,

LC(ε,µε) is the location-contaminated normal with 100ε% of N( εµ ,1) being the

contaminant in group III.
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Table 4-1 Properties of symmetric distributions used in simulation study

Distributions Var(X) β2 IF Var(X)IF

I  Symmetric, leptokurtic
Normal 1 3 1 1
t10 1.25 4 0.85 1.06
Logistic 3.29 4.2 0.33 1.10
SC(0.05, 9) 1.4 7.65 0.88* 1.24
SC(0.10, 9) 1.8 8.33 0.79* 1.42
t4 2 - 0.71 1.43
SC(0.05, 25) 2.2 19.96 0.89* 1.95
Laplace 2 6 1 2
SC(0.10, 25) 3.4 16.45 0.80* 2.71
t2 - - 0.6 -
Cauchy - - 0.5 -
II  Symmetric, platykurtic
U(0,1) 0.08 1.8 - -
Beta(1.5, 1.5) 0.06 2 - -
Beta(2,2) 0.05 2.14 - -
*using numerical integration

Table 4-2 Properties of asymmetric distributions used in simulation study

Distributions Var(X) 1β β2 IF Var(X)IF

III  Asymmetric, leptokurtic
Weibull(2) 0.21 0.63 3.25 - -
LC(0.05,3) 1.43 0.67 4.35 0.85* 1.22
LC(0.10,3) 1.81 0.80 4.02 0.77* 1.40
LC(0.20,3) 2.44 0.68 3.09 0.67* 1.63
Chi-squared(10) 20 0.89 4.2 0.08 1.67
LC(0.05,5) 2.19 1.65 7.44 0.95* 2.09
LC(0.10,5) 3.25 1.54 5.45 0.93* 3.03
LC(0.05,7) 3.33 2.42 10.37 1.00* 3.32
LC(0.20,5) 5 1.07 3.16 0.91* 4.54
LC(0.10,7) 5.41 1.96 6.40 0.99* 5.38
LC(0.20,7) 8.84 1.25 3.20 0.99* 8.78
Chi-squared(4) 8 1.41 6 - -
Chi-squared(2) 4 2 9 - -
Chi-squared(1) 2 2.83 15 - -
Weibull(0.5) 20 6.62 87.72 - -
Lognormal(0, 1) 4.67 6.18 113.94 14.78 69.03
IV  Asymmetric, platykurtic
Beta(3,2) 0.04 -0.29 2.36 - -
Beta(2,1) 0.06 -0.57 2.4 - -

*using numerical integration
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Table 4-3 Discrete distribution with normal moments

X P(X=x)

-4

-1

 1

 4

0.115827

0.384173

0.384173

0.115827

Table 4-4 Power estimates of discrete distribution with normal moments

 Sample size, n K2 W W* A2 F
α = 0.05
10 - 0.600 0.600 0.750 0.750
20 0.047 1.000 1.000 1.000 1.000
50 0.012 1.000 1.000 1.000 1.000
100 0.004 1.000 1.000 1.000 1.000
α  = 0.10
10 - 0.650 0.685 0.832 0.832
20 0.097 1.000 1.000 1.000 1.000
50 0.012 1.000 1.000 1.000 1.000
100 0.013 1.000 1.000 1.000 1.000

The existing normality tests considered in this study include W(W’), W* and A2.

Recall that W is the Shapiro-Wilk (1965) test and A2 is Stephen’s (1974) version to the

Anderson-Darling (1954) test.  Where the sample size exceeds 50, Shapiro-Francia

(1972) W’ will be used in place of W since it extends the range of W from 50 and below

to 400.  W*, which is Royston’s (1982) approximation to W(W’), will be considered a

separate test as it will be informative to compare its power to W(W’).

K2 is left out of the power study since it is not an omnibus test.  To illustrate this

point, a discrete distribution with normal moments is added to this simulation study.

Table 4-3 gives the details of such a discrete distribution that has the same first to fourth

moments as the normal.  The power of the normality tests with this distribution is given

in Table 4-4.  Results are not obtained for K2 at  n = 10 since the exact contours are not

available.  All the tests except K2 had estimated power above 0.60 even for n as low as

10.  For sample sizes 20 or larger, these tests had estimated power of 1.00.  The power for

K2 is even lower than the nominal α value especially for higher sample sizes.  Hence, K2,
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in particular, and moments tests, in general, are only able to detect distributions with non-

normal moments and are not omnibus tests.

To differentiate between the tests to see if one test is superior to another, the

practice in the literature has been to determine which test has the highest power based on

the same set of pseudo-random numbers for each distribution.  To generalize the results

across different distributions, the averaged rank calculated for each test is sometimes

used.  The fact that a different set of pseudo-random numbers might give rise to a

different ordering of the power is usually ignored.

To account for this variability, a formal statistical test on the equality of the power

of the tests is conducted in this power study.  As all the tests are subjected to the same set

of pseudo-random numbers, the powers of the individual tests are correlated.  Hence,

Cochran’s Q is used to account for this correlation.  In cases where the equal power

hypothesis is rejected, McNemar’s test with correction for continuity is used for pairwise

comparisons to determine whether the test with the highest power is significantly

different from the rest.  To maintain the overall type I error rate at 0.05 in the presence of

multiple testings, the idea from Fisher’s Least Significance Difference is used here.  This

means that multiple comparisons are carried out only if the hypothesis of equal power

using Cochran’s Q is rejected.  In addition, the same type I error rate is used for both

Cochran’s Q and McNemar’s tests.  For details of both tests, refer to Siegel and Castellan

(1988).

The results from using Cochran’s Q and McNemar’s tests will be reflected as

superscripts to the test with the highest power in this power study.  The superscripts will

denote the number of tests, including the one with the highest power, that are

significantly better than the rest.  Hence, a ‘1’ would reflect that the test with the highest

power has significantly higher power than the rest while a ‘4’ would mean that all the

tests have the same power.

The empirical level of each test is also given based on a normal sample of 10 000.

95% confidence intervals on the empirical level of each test will be used to assess if they

contain the relevant nominal levels.  This information is useful since it acts as a check on

possible inflation/deflation of the power estimates.
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For programming details involved in this simulation study, please refer to

Appendix B.2.

4.2.2 Results

n=10

Table C-1(a) shows the results for α = 0.05.  The empirical level for each test is

given by the power estimates for the normal distribution.  Here, all the confidence

intervals contain the nominal value of 0.05.

For group I, F is the most sensitive for most of the distributions, having

significantly higher power than the other tests for SC(0.10, 9), SC(0.10, 25) and t2.  For

t10 and SC(0.05, 25) where F did not have the highest power, all four tests have power

that are not significantly different from one another.  W is the least sensitive in

distributions where not all tests have the same power.

For group II, A2 has the highest power in all three distributions.  However, its

power is not significantly higher than W* and W while F proves to be the least sensitive.

For asymmetric and leptokurtic distributions in group III, there is no clear

dominance of any one test.  For location contaminated normals (LCs), A2, W* and F have

the highest power for different LCs, with A2 having significantly higher power for

LC(0.20,5).  As for non-LCs, W* clearly is the most sensitive with significantly higher

power for all distributions except Weibull(2), Chi-squared(10) and Weibull(0.5); F is the

least sensitive especially for those with higher var(X)IF.

As for distributions in group IV, W* has the highest power but it is not

significantly different from W and A2 while F again proves to be the least sensitive.

The results for α = 0.10 are given in Table C-6(a).  Here, F has the highest power

in most of the distributions in group I with the power being significantly higher for the

Laplace distribution. Again, W is the least sensitive for distributions that are symmetric

and leptokurtic.  As for group II, all tests except F are equally good at detecting non-

normality.

For non-LCs in group III, W* is the most sensitive, with the power for Chi-

squared(4), Chi-squared(2) and Lognormal(0,1) being significantly higher.  As for LCs,

A2 and F are more sensitive than W and W* in detecting non-normality, with A2 having
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significantly higher power in LC(0.20,7).  For group IV, both A2 and W have the highest

power but none of them are significantly higher than the rest.  Once again, F is the least

sensitive.

n=20

The results for α = 0.05 are given in Table C-2(a).  F is the most sensitive in

detecting non-normality in group I with significantly higher power in all distributions

except t10 and SC(0.05, 9). For groups II, IV and non-LCs, W is the most sensitive in

most distributions, with significantly higher power in Chi-squared(10).  W* proves to be

equally good in most cases while F is the least sensitive.

As for LCs, F is the most sensitive in six of the distributions with those for

LC(0.05,3), LC(0.10,3) and LC(0.05,7) being significantly higher.  W, W* and A2 are

equally sensitive in detecting non-normality for the remaining LCs but are not as

dominant as F.

The results for α = 0.10 are given in Table C-7(a).  For group I, F has

significantly higher power in all distributions except in t10 where all four tests are equally

sensitive.  On the whole, both W and W* are most sensitive in detecting non-normality in

groups II and IV as well as non-LCs.  As for LCs, F has significantly higher power in

LC(0.05,3), LC(0.10,3) and LC(0.10,5).  For the remaining LCs, F, W and W* are equally

sensitive.

n=50

The results for α = 0.05 are given in Table C-3(a) with the empirical level for W

being much lower than the nominal value.  Hence, the power for W is underestimated and

it is not surprising that W* emerged with significantly higher power in groups II and IV

as well as in Weibull(2) and Chi-squared(10) for the non-LCs.  Further, F’s position is

unchallenged in group I with significantly higher power in all distributions except for the

Cauchy. F is also most sensitive for most LCs with significantly higher power for

LC(0.05,3), LC(0.10,3), LC(0.05,5) and LC(0.10,5).

The other thing to note is that certain distributions in group III with higher

var(X)IF are beginning to be so extreme that all tests are equally adept at detecting them.
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These distributions include LC(0.20,5), Chi-squared(1), Weibull(0.5) and Lognormal(0,

1).

Table C-8(a) contains the results for α =0.10.  Here, the power for W is not

underestimated.  A fairer comparison can then be made of the sensitivity of W* and F.

The results are similar for F in group I and in LCs.  In groups II and III, W* still has

significantly higher power in Beta(1,1), Beta(2,2) and Beta(3,2) but are equally sensitive

for the remaining distributions as W.  The same applies to non-LCs.

As for LCs, the only anomaly is that A2 has significantly higher power for

LC(0.20,3).  Again, distributions with high var(X)IF in group III are all detected by all of

the normality tests.

n=70

Table C-4(a) displays the results for α = 0.05.  The empirical level of W’ of 0.067

is much higher than the nominal value of 0.05.  This confirms the hesitance of Pearson et

al. (1977) in recommending the use of W’ since they pointed out that the empirical

critical values were overstated as a result of being based only on 1 000 samples.  They

warned that this ‘unfairly enhances’ the power of W’.   With this in mind, it is not

surprising that for distributions in group I and some LCs, W’ has significantly higher

power than the other tests.  For these distributions, F consistently has the second highest

power for these distributions.

In spite of the inflated power for W’, both W* and A2 managed to have

significantly higher power: W* in  groups II and IV as well as Weibull(2) in group III and

A2 in LC(0.20,3).  In addition, the inflation of power in W’ did not affect those

distributions in group III that are detected by all the normality tests 100% of the time.

The results for α = 0.10 in Table C-9(a) are very similar.

n=100

Since the power of W’ is inflated for n=70, the critical value used for W’ for

n=100 was the average empirical critical value of W’ obtained by Pearson et al. (1977) to

adjust for the inflation to get a fair comparison.  This is reflected in Table C-5(a) and
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Table C-10(a) where the nominal levels are contained in the 95% confidence intervals for

the empirical levels.

In Table C-5(a) for α = 0.05, F and W are sensitive in detecting non-normality in

group I with F having significantly higher power for t4 and the Laplace distribution.  As

for groups II and IV as well as non-LCs distribution like Weibull(2) and Chi-squared(10),

W* has significantly higher power.  As for LCs, W has significantly higher power in

LC(0.05,3) and LC(0.10,3) while A2 excels in detecting LC(0.20,3).  For the most of the

remaining distributions in group III, all the tests are able to detect non-normality 100% of

the time.

A look at Table C-10(a) for α = 0.10 reveals similar findings.  W* has

significantly higher power in group  II as well as for Weibull(2) in group III and

Beta(3,2) in group IV.  Again, W and A2 have significantly higher power in the same LCs

and slightly more than half of the distributions in group III are detected 100% of the time

by all the normality tests.  However, in group I, F and W are now equally sensitive in

detecting non-normality in group I.

4.2.3 Summary

As expected, no one test has significantly higher power than all other tests for all

the distributions.  However, some broad patterns have emerged regarding the sensitivity

of each test to the different types of distribution.  The following summarizes the results

from the power study:

1. For distributions that are symmetric and leptokurtic, F is superior to the other tests for

detecting non-normality.

2. For distributions that are platykurtic or asymmetric excluding LCs, W* is superior for

larger sample sizes (n≥50) while both W and W* are equally sensitive for smaller

ones.

3. LCs behaves like a continuum between leptokurtic distributions that are symmetric to

those that are asymmetric as n, p and εµ increases.  Hence, no one test is superior.

With p and εµ small, F is more sensitive for smaller n (≤50) while W is better at

larger n.  As p and εµ increase, A2 is more sensitive.  However, there comes a point
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when p and εµ become so big that all the normality tests easily detect non-normality

100% of the time.

4. It is not surprising that when sample sizes are small (n<50), W* has power that is

equal to W.  However, at larger sample sizes, W* is preferred, since its power is

neither inflated/deflated.  In some cases, W* has significantly higher power than W

even when W’s power estimates are inflated.  Hence W* is preferred over W.

5. An examination of the power of F shows that besides increasing with n, it also varies

directly with Var(X)IF, albeit the relationship is not a deterministic one.

4.3 Applications to Real Data Sets

In this section, F is applied to several real data sets.  Here, the estimated density is

plotted against the normal density with the same sample mean and variance as the data.

This graphic best illustrates any deviation from normality and provides a ready

explanation when normality is rejected.
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 Figure 4-4 Density estimate of Male Weights Data (n=11)

4.3.1 Male Weights Data

Shapiro and Wilk (1965) used their test on a data set of 11 adult male weights

taken from Snedecor (1946).  These are, in pounds, 148, 154, 158, 160, 161, 162, 166,

170, 182, 195, and 236.  The resulting statistic F  is 4.7581, which is beyond the 99th

percentile.  This is consistent with the result given by W .  The resulting density estimate

in Figure 4-4 shows a prominent outlier at 236 with a peak in the right tail that accounts

for

the rejection of normality for this data set.
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Figure 4-5 Density estimate of Mississippi River Data (n=49)

4.3.2 Mississippi River Data

Another example is taken from Gumbel (1943) which gives the maximum daily

rates of discharge from the Mississippi River at Vicksburg in cubic feet per second for 49

years starting from 1890.  Assuming that the data are independent, the resulting statistic

F being 5.6311 is between the 50th and 90th  percentile.  From Figure 4-5, it can be seen

that the data do not deviate much from normality and hence supports the contention that

the data can be approximated by the normal distribution.
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Figure 4-6 Density estimate of PCB Data (n=65)

4.3.3 PCB Data

A third example is taken from Risebrough (1972) who was studying concentrations of

polychlorinated biphenyl (PCB), an industrial pollutant,  in the yolk lipids of pelican

eggs.  He had a sample size of 65 and the resulting F is 7.6175, which is between the 95th

and 97.5th percentile.  Figure 4-6 shows the resulting density plot which is close to

normal except for two outlying points in the right tail.  Rejection of normality using α of

0.05 is therefore not surprising.
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Figure 4-7 Density estimate of Buffalo Snowfall Data (n=63)

4.3.4 Buffalo Snowfall Data

This is a popular example used in the density estimation literature; see Silverman

(1986).  The data are a record of the amount of winter snowfall (in inches) at Buffalo,

New York, for 63 winters from 1910/11 to 1972/73.  Silverman showed that the data

could either be unimodal or trimodal, depending on the smoothing parameter used.

Subjecting the data to a normality test results in getting a density estimate as shown in

Figure 4-7.  The data fit a normal distribution quite well.  F is below the 50th percentile

and normality is not rejected.  In the framework of F, the data are unimodal.
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Figure 4-8 Density estimate of Mice Data (n=99)

4.3.5 Mice Data

This example is taken from Hoel (1972) who was looking at survival times of

mice that were exposed to radiation.  He had a sample size of 99 and the resulting F  is

12.9513, which is beyond the  99th percentile. Figure 4-8 shows the resulting density plot

which is skewed to the left.  Rejection of normality using α of 0.05 is therefore not

surprising.
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Chapter 5 Testing Normality of Residuals

In this chapter, the testing of normality in residuals will be investigated.  Firstly,

the background needed for testing residuals will be given.  This includes a review of the

existing methods in the literature.  Next, F will then be modified to take into account the

special nature of residuals as opposed to independent observations.  Lastly, a power

comparison is done to see if the results of testing normality in residuals differ from those

using independent observations.

5.1 Background

Consider the following general linear model

ε+β= Xy

where y  is a n x 1 vector of the observed responses, X  is a known non-stochastic n x k

matrix of rank k, β  is a k x 1 vector of unknown parameters and ε  is an n x 1 vector of

unobserved error terms which are assumed to be independent and normally distributed

with mean zero and constant variance, 2σ .

After the above model is fitted using least squares, the resulting ordinary least

squares (OLS) residuals

( )( ) ε−=ε − ''ˆ 1 XXXXIOLS (5-1)

are distributed as

( )( )[ ]21 ',0~ˆ σ′−ε − XXXXINOLS

with ( )( )XXXXI ′′− −1  being a n x n symmetric idempotent matrix with rank n – k. Thus

OLSε̂  has a singular normal distribution that may be heteroscedastic and correlated.

Since the normality tests considered in Chapter 4 are developed based on

independent observations, they cannot be used to test residuals without a study on the

effect on the levels and powers of the normality tests.  In the literature, one of the ways to

deal with this problem is to transform the residuals by reducing the dimensionality so that

they become homoscedastic and uncorrelated.  See Cook and Weisberg (1982) for details
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on two types of transformations. One of them is Theil’s  (1965) best linear unbiased

scalar (BLUS) residuals.

Huang and Bolch (1974) compared the power of normality tests using OLS and

BLUS residuals in their simulations and found that using OLS gives superior power over

BLUS especially for n greater than 30.  Moreover, the one-to-one link between residuals

and cases or data points no longer exists for BLUS residuals, making interpretation

difficult in situations where there are outliers.  In addition, there will be no advantage in

using BLUS over OLS residuals since both suffer from the lack of independence when

the underlying error distribution is not normal.

In view of the above two disadvantages in using BLUS residuals, the direction in

the literature turned to finding conditions under which OLS residuals could be used to

test normality of the true but unobserved errors.  White and Macdonald (1980) found that

under certain conditions, the distributions of certain test statistics used in normality  tests

remain asymptotically valid when OLS residuals are used instead of the true errors.  To

look at how the approximation works in finite samples, they carried out simulations to

compare the power of normality tests using OLS residuals against their true unobserved

error in addition to a comparison among normality tests.  Using their terminology, test

statistics that use the true errors are known as ‘true’ statistics while those using the OLS

residuals are known as the ‘modified’ statistics.

In their simulation, they looked at n = 20, 35, 50 and 100 with α = 0.1 and the k-1

regressors in X were generated from a uniform distribution with the first regressor being

a column of ones.  They only considered the case where k = 4 and used the following five

non-normal distributions (arranged in order of departure from normality):  Teichroew’s

(1956) heteroscedastic normal, t5, Laplace (double exponential), 2
2χ (exponential) and

lognormal.

They found that the powers of the modified statistics are lower than the true ones.

At n = 20, the powers of the modified statistics are not less than 60 percent of those of the

true statistics.  This percentage rises to 80 percent at n = 35.  It gets beyond 90% for n =

100.  At this sample size, the powers of the true and modified statistics were considered

to be practically the same.  Weisberg (1980) provided an explanation for the lower

powers in modified statistics by writing (5-1) in terms of the ith OLS residual as follows:
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( ) i
ij

ijiiii hh ε−ε−=ε ∑
≠

1ˆ (5-2)

where hij is the (i, j)th element of ( ) XXXXH ′′= −1 .  Since the second term in (5-2) is a

sum, iε̂ will tend to be normally distributed even if iε  itself is non-normal.  This

phenomenon is known as supernormality, as first coined by Gnanadesikan (1977).

Not surprisingly, the discrepancies between the powers of the modified and true

statistics also differ across different distributions – the greater the error distribution’s

departure from normality, the higher are the discrepancies.  In addition, it was also found

that no one test is dominant for all the error distributions considered.

Besides looking at power, White and Macdonald(1980) used measures such as ρ

(correlation between true and modified statistics) and m (maximum absolute deviation

between the true and modified statistics divided by the standard error of true statistic) to

quantify the correspondence between the true and modified statistics.  Their results

showed that as n increases, m  decreases while ρ increases to unity.  In addition, the

increase in these  measures are also affected by the test itself as well as by the underlying

error distribution.

In their conclusion, they warned that their results might not generalize well to all

situations since they only looked at a specific way of generating the regressors in the X

matrix.

Weisberg (1980) pointed out that any conclusion drawn from simulation studies

involving the use of modified statistics must take into account variations in n, k and H

(through how the regressors in X are generated).  He supplemented the results from White

and Macdonald by looking at two other ways of generating the regressors in the X matrix

and extending k to 6, 8 and 10.  However, he only considered W’ at n = 20 and showed

that the results do indeed depend on k and H  besides n.

5.2 Power Comparisons

Arising from Section 5.1, it would be interesting to extend the work done by

White and Macdonald (1980) and Weisberg (1980) to see if F still has superior power in

cases where the error distributions are leptokurtic and symmetric.  This is of special
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interest to those in the field of robust statistics where it is well known that leptokurtic

error distributions make OLS estimators very  inefficient.

Since the exact distribution of F is unknown at this point, it would not be possible

to prove theoretically that the distribution of the modified test statistic for F is

asymptotically valid.   However, the case for finite samples could be examined by using

the independent observations generated in the power study in Section 4.2 as true errors

and comparing their power to those of the resulting OLS residuals.

5.2.1 Simulation Set-up

For this power study to be comparable to previous work done, the regressors in

the X matrix will first be chosen from a uniform distribution with mean zero and variance

25.  This mimics what White and Macdonald (1980) used in their study.  Weisberg

(1980) considered this formulation of X as the ideal case for normality tests since the first

term in (5-2) is of order 1 while the second is of order n-1.  This implies that the ith OLS

residual is primarily determined by the ith true residual as n increases.  Hence, the effect

of supernormality is mitigated with increasing n.

The relative effects on the power of modified statistics compared to their true

counterparts will be evaluated at n = 10, 20, 35, 50 and 100 with α = 0.1 and the same

five error distributions used in White and Macdonald (1980).  To further generalize the

results across a wider array of distributions, the entire range of distributions considered in

the power study of Section 4.2 will be used here.

The second choice of X will be taken from Set 1 in Weisberg (1980).  This choice

of X seems to consist of generating the different columns from different distributions.

Here, the relative effects on the power between true and modified statistics will be

considered across k = 4, 6, 8 and 10 with the same five error distributions used in White

and Macdonald (1980).

For both parts of this study, ρ and m will be used to measure the level of

correspondence between the true and modified statistics.  In addition, Cochran’s Q and

McNemar’s tests will be used to evaluate the performance of the individual modified
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statistics to see if any test has superior power in detecting non-normality for each of the

error distributions considered.

For programming details, please refer to Appendix B.2.

5.2.2 Results

Comparison across n

Table 5-1 contains the results for comparing the power between the true and

modified statistics across different n using the regressors in X being generated from a

uniform distribution.

For the true statistics, the 95% confidence interval of the levels of each test all

contain the nominal value of 0.10 except for W at n = 35.  Hence, the power estimates for

W at n = 35 are underestimated although the effects are not that serious since W has

already attained the highest power for Chi-squared(2) and the Lognormal(0,1)

distribution.

In general, the levels of the normality tests do not seem to be affected by the use

of OLS residuals except for n = 10 where the levels are smaller than the nominal value of

0.1.  This is consistent with the idea of supernormality.  Moreover, the practical effect of

this is to have conservative normality tests at small sample sizes when modified statistics

are used.

At n = 35, only the levels of W and F seem to be affected.  Their power estimates

are underestimated since the 95% confidence intervals for their empirical levels are

below the nominal value. However, this does not change the results for F since it already

attains significantly higher power for t5 and the Laplace distribution.  Similarly, the

general conclusion for W is unchanged for the Lognormal(0,1) distribution, since it has

the highest power, although the effects on the other distributions are harder to predict.
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Table 5-1 Power comparisons of normality tests on iid observations and OLS residuals
across different values of n based on 1000 samples using k=4 with X1=1 and Xi, i=2,3,4 drawn from

the uniform distribution at αα=0.1

Distributions iid observations(true statistics) OLS residuals(modified statistics)
W(W’) W* A2 F W(W’) W* A2 F

n=10
Normala 0.095 0.100 0.102 0.100 0.078b 0.083b 0.087b 0.087b

Hetero. Normal 0.133 0.139 0.1464 0.139 0.071 0.077 0.083 0.0882

t5 0.165 0.171 0.162 0.1734 0.100 0.117 0.121 0.1293

Laplace 0.204 0.213 0.216 0.2421 0.101 0.110 0.118 0.1232

Chi-squared(2) 0.542 0.5501 0.519 0.513 0.153 0.164 0.160 0.1732

Lognormal(0,1) 0.669 0.6781 0.648 0.641 0.233 0.247 0.230 0.2612

n=20
Normala 0.099 0.097 0.104 0.102 0.098 0.095 0.102 0.098
Hetero. Normal 0.105 0.100 0.116 0.1232 0.102 0.100 0.113 0.1144

t5 0.265 0.261 0.246 0.2871 0.187 0.180 0.193 0.2201

Laplace 0.335 0.327 0.352 0.4051 0.250 0.248 0.244 0.2861

Chi-squared(2) 0.9062 0.905 0.863 0.851 0.5732 0.569 0.543 0.535
Lognormal(0,1) 0.9672 0.965 0.941 0.938 0.7502 0.749 0.724 0.729
n=35
Normala 0.092b 0.097 0.103 0.095 0.089b 0.095 0.099 0.092b

Hetero. Normal 0.113 0.118 0.122 0.1372 0.111 0.116 0.125 0.1372

t5 0.307 0.312 0.328 0.4011 0.262 0.269 0.277 0.3541

Laplace 0.428 0.437 0.523 0.5791 0.349 0.354 0.416 0.4851

Chi-squared(2) 0.9972 0.9972 0.988 0.986 0.927 0.9282 0.897 0.904
Lognormal(0,1) 1.0004 1.0004 0.998 0.998 0.9724 0.9724 0.969 0.967
n=50
Normala 0.097 0.100 0.102 0.102 0.100 0.102 0.103 0.099
Hetero. Normal 0.104 0.108 0.129 0.1511 0.114 0.117 0.130 0.1591

t5 0.342 0.343 0.405 0.5191 0.304 0.307 0.346 0.4471

Laplace 0.528 0.532 0.669 0.7171 0.444 0.449 0.568 0.6421

Chi-squared(2) 1.0004 1.0004 0.999 1.0004 0.987 0.9882 0.978 0.980
Lognormal(0,1) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
n=100
Normala 0.096 0.098 0.098 0.099 0.095 0.100 0.096 0.096
Hetero. Normal 0.159 0.092 0.135 0.1652 0.157 0.086 0.125 0.1662

t5 0.702 0.391 0.575 0.7092 0.6852 0.357 0.550 0.679
Laplace 0.888 0.603 0.881 0.8982 0.858 0.540 0.834 0.8742

Chi-squared(2) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Lognormal(0,1) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Notes : 

a.   based on 10 000 samples

b.   95% confidence interval for the level does not contain the nominal value.  Power estimates obtained do not reflect their true
values.

-     Refer to page 56 on the system of notation used for the superscript.
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In general, the percent decrease in power for modified statistics as observed by

White and Macdonald (1980) is consistent with the results here.  The superiority of the

modified statistics for F, in symmetric, leptokurtic distributions, and W, W*, in the

remaining distributions, mimics the results to those using the true statistics.  However, F

seems to perform better at n = 10 with the highest power for all the non-normal

distributions although none of them are significantly higher than the other tests.  This

might be due mainly from a smaller dip in its empirical level.

Appendices C-1(b) to C-10(b) contain the results for a wider array of error

distributions used in Section 4.2 at both α = 0.05 and 0.1.  They generally support the

conclusions made above.  The observation that F is superior at n = 10 holds.  Appendix

C-6(b) contains the results for α = 0.1 where the same empirical levels of the tests as

those in Table 5-1 apply.  Here, F has significantly higher power in LC(0.05,5),

LC(0.10,5), LC(0.05,7), LC(0.10,7) and Chi-squared(4) – distributions for which F never

had the highest power before –  in addition to those in group I.  In Appendix C-1(b)

where α = 0.05, F has the smallest empirical level and yet it still has significantly higher

power in LC(0.05,7), LC(0.10,7), Weibull(0.5) and Lognormal(0,1).

Table 5-2 contains the results for the measures of correspondence between the

true and modified statistics.  In general, F and W have the highest ρ for smaller and larger

n respectively.  However, F seems to have the smallest m in most cases except for n =

100 where W dominates.
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Table 5-2 Measures of correspondence between true and modified test statistics across
different values of n based on 1000 samples using k=4 with X1=1 and Xi, i=2,3,4 drawn from the

uniform distribution at αα=0.1

Distributions ρ(correlation) m(max. abs. dev. over std. error of true
statistics)

W(W’) W* A2 F W(W’) W* A2 F
n=10
Normala 0.171 0.179 0.167 0.193 7.553 7.605 7.316 6.519
Hetero. Normal 0.200 0.221 0.202 0.236 5.969 6.036 6.042 5.593
t5 0.237 0.255 0.251 0.300 5.188 5.137 5.135 4.624
Laplace 0.298 0.313 0.296 0.341 6.560 6.492 6.718 5.620
Chi-squared(2) 0.382 0.402 0.405 0.438 4.970 1.913 4.962 4.776
Lognormal(0,1) 0.357 0.378 0.403 0.450 4.557 4.513 4.790 4.344
n=20
Normala 0.485 0.482 0.453 0.475 6.468 6.455 7.364 5.070
Hetero. Normal 0.525 0.522 0.487 0.529 4.357 4.317 4.385 4.108
t5 0.743 0.739 0.654 0.747 4.245 4.286 5.310 3.236
Laplace 0.726 0.721 0.647 0.723 3.321 3.340 4.121 2.946
Chi-squared(2) 0.655 0.650 0.559 0.690 3.862 3.883 5.133 3.631
Lognormal(0,1) 0.778 0.775 0.701 0.800 3.712 3.732 4.391 3.512
n=35
Normala 0.642 0.642 0.611 0.641 5.622 5.621 5.653 4.590
Hetero. Normal 0.685 0.685 0.654 0.696 3.330 3.332 3.729 2.940
t5 0.906 0.906 0.863 0.899 2.879 2.880 3.865 2.588
Laplace 0.881 0.881 0.830 0.878 2.853 2.853 3.186 2.311
Chi-squared(2) 0.830 0.830 0.758 0.858 3.049 3.050 4.008 2.836
Lognormal(0,1) 0.885 0.885 0.796 0.901 2.333 2.333 4.187 2.150
n=50
Normala 0.731 0.731 0.704 0.718 4.068 4.069 5.302 4.233
Hetero. Normal 0.736 0.736 0.709 0.767 3.173 3.172 3.808 2.920
t5 0.954 0.954 0.921 0.950 2.023 2.023 3.376 1.556
Laplace 0.931 0.931 0.877 0.929 1.907 1.907 2.845 1.916
Chi-squared(2) 0.855 0.855 0.807 0.890 3.240 3.240 3.235 2.547
Lognormal(0,1) 0.919 0.919 0.852 0.935 2.178 2.178 3.227 2.081
n=100
Normala 0.869 0.857 0.824 0.817 3.748 2.979 4.737 3.660
Hetero. Normal 0.901 0.852 0.819 0.857 2.021 2.666 2.866 2.357
t5 0.990 0.987 0.969 0.986 1.019 1.264 1.998 0.841
Laplace 0.972 0.960 0.928 0.960 1.349 1.566 2.146 1.573
Chi-squared(2) 0.936 0.912 0.883 0.937 1.990 2.275 2.609 2.138
Lognormal(0,1) 0.975 0.967 0.925 0.976 1.185 1.350 2.080 1.160
Notes : a.   based on 10 000 samples
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Comparison across k

The results using set 1 in Weisberg (1980) which compares the power results for k

= 4, 6, 8 and 10 are given in Table 5-3.  For the true statistics, the nominal value of 0.1 is

within the 95% confidence interval of the levels of each test.  However, the effect on the

modified statistics depends on the normality test itself.  For W and W’, the empirical

levels are below the nominal value for k = 4.  As for A2, the empirical levels are higher

than the nominal for k = 6, 8 and 10.  The empirical levels for F are below the nominal

for k = 4 but they rise above the nominal as k increases.

Since the levels of modified statistics are affected by this particular X matrix, the

power estimates are also not reflective of their true power.  However, examining the

pattern of deflation/inflation might be instructive.

For k = 4, A2 has the highest empirical level that still captures the nominal value

in its 95% confidence interval.  However, it fails to have significant power for any of the

distributions.  This implies that A2 has inferior power to the other tests in testing non-

normality.  No obvious conclusion can be drawn about which of the remaining tests are

superior.  W* has the lowest empirical level which implies that its power estimates are

slightly deflated compared to the rest.  However, its power is still on par with W, in Chi-

squared(2) and Lognormal, and with the rest in the heteroscedastic normal distribution.

As for  t5 and Laplace, F seems superior since it is inconceivable that W* could have

significantly higher power even if the power estimates could be adjusted to account for

the deflation.

As for the remaining values of k, both A2 and F have inflated power estimates.

However, both W and W* have significantly higher power than the rest with the

Lognormal(0,1) distribution at k = 6 and Chi-squared distribution at k = 8.  This suggests

that both these tests retain their superiority in testing distributions that are asymmetric

and leptokurtic. The conclusion is less clear for F since its empirical levels get highly

inflated especially at k = 10.  However, looking at the difference in the power estimates

between F and the other tests for t5 and Laplace distributions, it is conceivable that F still

retains its superiority in detecting non-normality for distributions that are symmetric and

leptokurtic.
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Table 5-3 Power comparisons of normality tests on iid observations and OLS residuals
across different values of k based on 1000 samples using X=data set 1 from  Weisberg (1980) at αα=0.1

and n=20

Distributions iid observations(true statistics) OLS residuals(modified statistics)
W W* A2 F W W* A2 F

k=4
Normala 0.099 0.097 0.101 0.100 0.092b 0.090b 0.096 0.092b

Hetero. Normal 0.108 0.105 0.106 0.1184 0.100 0.099 0.111 0.1114

t5 0.231 0.227 0.252 0.2741 0.196 0.196 0.185 0.2161

Laplace 0.359 0.353 0.374 0.4361 0.245 0.239 0.238 0.2871

Chi-squared(2) 0.8932 0.8932 0.847 0.846 0.5782 0.574 0.544 0.541
Lognormal(0,1) 0.9712 0.971 0.947 0.946 0.7763 0.774 0.745 0.768
k=6
Normala 0.098 0.095 0.098 0.102 0.102 0.101 0.109b 0.113b

Hetero. Normal 0.099 0.098 0.104 0.1154 0.114 0.111 0.120 0.1254

t5 0.274 0.272 0.266 0.3221 0.206 0.203 0.212 0.2361

Laplace 0.360 0.350 0.373 0.4141 0.248 0.241 0.248 0.2931

Chi-squared(2) 0.8962 0.8962 0.856 0.841 0.477 0.473 0.436 0.4783

Lognormal(0,1) 0.9612 0.9612 0.939 0.932 0.6762 0.669 0.631 0.668
k=8
Normala 0.103 0.102 0.105 0.103 0.105 0.103 0.109b 0.113b

Hetero. Normal 0.098 0.092 0.102 0.1122 0.101 0.098 0.111 0.1232

t5 0.239 0.237 0.241 0.2861 0.150 0.145 0.152 0.1821

Laplace 0.390 0.381 0.398 0.4431 0.198 0.196 0.206 0.2341

Chi-squared(2) 0.899 0.9002 0.848 0.844 0.3363 0.335 0.315 0.328
Lognormal(0,1) 0.9742 0.972 0.945 0.949 0.478 0.474 0.463 0.5041

k=10
Normala 0.103 0.102 0.103 0.104 0.105 0.103 0.111b 0.133b

Hetero. Normal 0.1334 0.127 0.121 0.126 0.100 0.099 0.121 0.1272

t5 0.247 0.244 0.239 0.2881 0.153 0.149 0.163 0.2111

Laplace 0.340 0.338 0.366 0.4171 0.194 0.190 0.188 0.2461

Chi-squared(2) 0.8972 0.896 0.859 0.857 0.258 0.254 0.236 0.2891

Lognormal(0,1) 0.9422 0.9422 0.909 0.908 0.376 0.365 0.365 0.4301

Notes : 
a.   based on 10 000 samples
b.   95% confidence interval for the level does not contain the nominal value.  Power estimates obtained do not reflect their true
values.
-     Refer to page 56 on the system of notation used for the superscript.
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Table 5-4 gives the results for the measures of correspondence between the true

and modified statistics.  Here, F has the highest  ρ and smallest m for the almost all of the

error distributions and values of k.  This shows that using the modified statistic for F is

the closest to the true statistic among all normality tests considered for this configuration

of X.  Another interesting result is that as k increases, the correspondence between the

true and modified statistics decreases.  This shows that k also must be considered in the

use of modified statistics to test normality of residuals.

5.2.3 Conclusion

From the results above, it seems that the modified statistics can indeed be used to

detect non-normality of residuals albeit with some loss of power due to the presence of

supernormality.  In particular, F has, in general, the highest measures of correspondence

between the true and modified statistic across the combinations of n, k and X considered

in this chapter.  However, one has to be careful about the levels of the normality tests and

also generalizing any results since they do vary according to the specific combination of

n, k and X.

From the two specific formulation of the X matrix, the conclusions regarding the

superiority of F, W and W* seem unchanged from those where the observations are

independent.  In the case where X is generated from a uniform distribution for n as small

as 10, the pattern of superiority seems to take on a different characterization.  F is now

superior across a wider range of distributions besides those that are symmetric and

leptokurtic.



45

Table 5-4 Measures of correspondence between true and modified test statistics across
different values of k based on 1000 samples using X=data set 1 from  Weisberg (1980) at αα=0.1 and

n=20

Distributions ρ(correlation) m(max. abs. dev. over std. error of true
statistics)

W W* A2 F W W* A2 F
k=4
Normala 0.439 0.436 0.415 0.441 6.463 6.471 7.942 5.550
Hetero. Normal 0.446 0.442 0.400 0.467 4.416 4.381 4.720 3.968
t5 0.771 0.766 0.708 0.778 3.697 3.727 5.230 3.442
Laplace 0.694 0.690 0.609 0.701 4.626 4.659 4.057 3.432
Chi-squared(2) 0.687 0.683 0.606 0.721 3.953 3.976 4.245 3.528
Lognormal(0,1) 0.786 0.783 0.683 0.815 2.866 2.884 3.568 2.690
k=6
Normala 0.300 0.300 0.258 0.317 7.833 7.786 7.794 7.203
Hetero. Normal 0.337 0.334 0.267 0.348 5.581 5.675 5.766 5.277
t5 0.640 0.635 0.518 0.636 3.753 3.771 5.609 3.407
Laplace 0.545 0.541 0.475 0.564 4.480 4.504 4.513 4.105
Chi-squared(2) 0.603 0.600 0.514 0.630 4.802 4.795 4.697 4.698
Lognormal(0,1) 0.664 0.661 0.583 0.695 4.925 4.930 5.391 4.876
k=8
Normala 0.167 0.163 0.144 0.191 8.892 8.813 8.500 8.202
Hetero. Normal 0.236 0.232 0.212 0.254 6.551 6.539 5.636 5.503
t5 0.387 0.382 0.329 0.400 5.510 5.525 5.151 5.092
Laplace 0.416 0.411 0.357 0.440 5.619 5.635 5.097 5.002
Chi-squared(2) 0.440 0.435 0.370 0.479 4.880 4.871 4.462 4.764
Lognormal(0,1) 0.533 0.529 0.466 0.562 4.409 4.427 4.974 4.109
k=10
Normala 0.135 0.131 0.112 0.160 9.543 9.522 9.662 8.214
Hetero. Normal 0.166 0.162 0.142 0.196 6.012 5.968 5.434 5.729
t5 0.334 0.331 0.283 0.341 6.300 6.336 6.406 4.865
Laplace 0.320 0.316 0.291 0.353 6.052 6.061 5.530 5.362
Chi-squared(2) 0.325 0.321 0.288 0.356 5.195 5.189 4.941 5.045
Lognormal(0,1) 0.447 0.443 0.433 0.493 4.595 4.609 5.135 4.311
Notes : a.   based on 10 000 samples



46

Chapter 6 Summary and Discussion

From the power studies, it is clear that both W* and F  are needed in an arsenal of

normality tests to detect non-normality over a wide range of distributions.  However, F

possesses certain advantages over W*, in particular, and existing normality tests, in

general.

Firstly, it provides a direct, graphical depiction of the deviation from non-

normality through the estimated density plots.  Aspects of non-normality like asymmetry

and significant tail behavior show up more clearly in the estimated density plot than in a

normal probability plot.

Secondly, the power of F is superior when the underlying distribution is

symmetric and leptokurtic.  This is precisely the situation where a formal test of

normality is most needed to distinguish one’s data from normality.

The above two advantages carry over when OLS residuals are used in place of the

true errors in testing normality of residuals.  Moreover, the superiority in power has

added significance since it is well known that the OLS estimates obtained are very

inefficient when the underlying distribution is leptokurtic or long-tailed.  However, as the

results have shown, the levels of the test might differ from the nominal depending on the

particular combination of n, k and V.  As there could be a myriad of combinations

between these factors, more research needs to be done to see how to make the results

more generalizable.

As for other directions for further research, more work needs to be done to either

get an asymptotic or approximate distribution for F  so as to do away with the need to

consult tables for the critical values.  Further, the ideas behind F  could be generalized to

the multivariate case for a multivariate normality test.

On a more general level, it seems the two advantages might even translate to tests

for other distributions based on the main ideas used in deriving F.  Terrell (1985) has

outlined the basic arguments in creating tests for membership in the Pearson family by

creating pseudo-information functionals that are extremal for certain distributions.  This

mimics the extremal property of IF in normal distributions.  Although Terrell cautioned
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that the derived tests will not be based on maximum likelihood estimates of the

corresponding parameters, the strong advantage in this approach is the resulting density

estimator that is far superior to existing graphical methods.
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Appendix A Critical Values of the Normal Information

Statistic, F

n\α 0.500 0.250 0.200 0.150 0.100 0.050 0.025 0.020 0.010
3 1.5901 1.8664 1.9512 2.0470 2.1727 2.3666 2.5381 2.5894 2.7494
4 1.6925 1.9937 2.0853 2.1916 2.3318 2.5519 2.7517 2.8123 3.0003
5 1.7919 2.1172 2.2155 2.3317 2.4859 2.7312 2.9582 3.0277 3.2424
6 1.8883 2.2369 2.3416 2.4675 2.6350 2.9045 3.1576 3.2356 3.4761
7 1.9820 2.3530 2.4639 2.5990 2.7795 3.0721 3.3502 3.4364 3.7015
8 2.0729 2.4655 2.5825 2.7264 2.9193 3.2342 3.5362 3.6302 3.9189
9 2.1611 2.5746 2.6974 2.8498 3.0546 3.3909 3.7159 3.8173 4.1286
10 2.2467 2.6804 2.8089 2.9693 3.1856 3.5425 3.8894 3.9980 4.3308
11 2.3298 2.7829 2.9169 3.0851 3.3124 3.6889 4.0569 4.1723 4.5258
12 2.4104 2.8824 3.0216 3.1973 3.4351 3.8305 4.2186 4.3405 4.7138
13 2.4888 2.9788 3.1232 3.3060 3.5540 3.9674 4.3747 4.5029 4.8951
14 2.5648 3.0722 3.2216 3.4112 3.6689 4.0997 4.5254 4.6596 5.0698
15 2.6386 3.1629 3.3170 3.5132 3.7803 4.2276 4.6709 4.8108 5.2382
16 2.7102 3.2508 3.4095 3.6120 3.8880 4.3512 4.8113 4.9566 5.4005
17 2.7798 3.3360 3.4993 3.7077 3.9923 4.4707 4.9469 5.0974 5.5569
18 2.8474 3.4187 3.5863 3.8005 4.0933 4.5862 5.0778 5.2332 5.7077
19 2.9131 3.4988 3.6706 3.8903 4.1911 4.6979 5.2041 5.3642 5.8530
20 2.9769 3.5766 3.7525 3.9774 4.2857 4.8059 5.3260 5.4906 5.9930
21 3.0388 3.6521 3.8319 4.0618 4.3774 4.9103 5.4437 5.6126 6.1279
22 3.0990 3.7253 3.9089 4.1437 4.4662 5.0112 5.5574 5.7303 6.2580
23 3.1576 3.7963 3.9836 4.2230 4.5522 5.1088 5.6671 5.8440 6.3834
24 3.2145 3.8653 4.0561 4.2999 4.6355 5.2033 5.7731 5.9536 6.5042
25 3.2698 3.9323 4.1265 4.3745 4.7162 5.2946 5.8754 6.0595 6.6207
26 3.3236 3.9973 4.1948 4.4469 4.7944 5.3830 5.9743 6.1617 6.7331
27 3.3760 4.0605 4.2612 4.5172 4.8703 5.4686 6.0698 6.2604 6.8414
28 3.4269 4.1218 4.3256 4.5853 4.9438 5.5514 6.1621 6.3557 6.9459
29 3.4765 4.1815 4.3883 4.6515 5.0151 5.6315 6.2514 6.4478 7.0467
30 3.5248 4.2394 4.4491 4.7158 5.0843 5.7092 6.3376 6.5368 7.1440
31 3.5718 4.2958 4.5083 4.7782 5.1515 5.7844 6.4211 6.6228 7.2380
32 3.6177 4.3506 4.5658 4.8388 5.2167 5.8573 6.5018 6.7060 7.3287
33 3.6623 4.4040 4.6218 4.8978 5.2800 5.9280 6.5800 6.7865 7.4163
34 3.7059 4.4559 4.6763 4.9552 5.3415 5.9966 6.6556 6.8644 7.5009
35 3.7484 4.5065 4.7293 5.0109 5.4013 6.0631 6.7289 6.9398 7.5828
36 3.7899 4.5558 4.7809 5.0652 5.4594 6.1277 6.7999 7.0128 7.6620
37 3.8304 4.6038 4.8313 5.1181 5.5160 6.1904 6.8688 7.0836 7.7386
38 3.8699 4.6506 4.8803 5.1696 5.5710 6.2514 6.9355 7.1522 7.8128
39 3.9086 4.6963 4.9281 5.2198 5.6246 6.3107 7.0004 7.2188 7.8846
40 3.9463 4.7409 4.9748 5.2688 5.6769 6.3683 7.0633 7.2834 7.9543
41 3.9833 4.7845 5.0204 5.3165 5.7278 6.4244 7.1245 7.3461 8.0219
42 4.0195 4.8270 5.0649 5.3632 5.7774 6.4790 7.1840 7.4072 8.0876
43 4.0549 4.8686 5.1083 5.4087 5.8259 6.5323 7.2419 7.4665 8.1513
44 4.0896 4.9093 5.1509 5.4532 5.8732 6.5842 7.2983 7.5242 8.2133
45 4.1236 4.9491 5.1925 5.4968 5.9195 6.6349 7.3532 7.5805 8.2736
46 4.1570 4.9881 5.2332 5.5394 5.9647 6.6844 7.4068 7.6354 8.3324
47 4.1897 5.0263 5.2731 5.5811 6.0089 6.7328 7.4591 7.6889 8.3896
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n\α 0.500 0.250 0.200 0.150 0.100 0.050 0.025 0.020 0.010
48 4.2218 5.0638 5.3121 5.6220 6.0523 6.7801 7.5101 7.7411 8.4455
49 4.2534 5.1006 5.3505 5.6621 6.0947 6.8264 7.5601 7.7922 8.5001

50 4.2844 5.1366 5.3881 5.7014 6.1364 6.8717 7.6089 7.8421 8.5534
51 4.3150 5.1721 5.4250 5.7400 6.1772 6.9161 7.6568 7.8910 8.6056
52 4.3450 5.2069 5.4613 5.7779 6.2173 6.9597 7.7037 7.9390 8.6567

53 4.3746 5.2412 5.4970 5.8152 6.2568 7.0026 7.7497 7.9860 8.7068
54 4.4038 5.2749 5.5321 5.8519 6.2955 7.0446 7.7948 8.0321 8.7559
55 4.4325 5.3082 5.5667 5.8880 6.3337 7.0860 7.8392 8.0775 8.8042

56 4.4608 5.3409 5.6007 5.9236 6.3712 7.1267 7.8829 8.1221 8.8517
57 4.4888 5.3732 5.6343 5.9587 6.4082 7.1668 7.9258 8.1660 8.8985
58 4.5165 5.4051 5.6674 5.9933 6.4448 7.2063 7.9682 8.2093 8.9445

59 4.5438 5.4365 5.7000 6.0275 6.4808 7.2453 8.0100 8.2519 8.9900
60 4.5707 5.4676 5.7323 6.0612 6.5164 7.2838 8.0512 8.2941 9.0348
61 4.5974 5.4983 5.7642 6.0945 6.5515 7.3218 8.0919 8.3357 9.0792

62 4.6239 5.5287 5.7957 6.1275 6.5863 7.3594 8.1322 8.3769 9.1230
63 4.6500 5.5588 5.8269 6.1602 6.6207 7.3967 8.1720 8.4176 9.1665
64 4.6759 5.5886 5.8578 6.1925 6.6548 7.4335 8.2115 8.4579 9.2095

65 4.7016 5.6181 5.8884 6.2245 6.6886 7.4700 8.2506 8.4979 9.2522
66 4.7271 5.6473 5.9187 6.2563 6.7220 7.5062 8.2894 8.5376 9.2945
67 4.7524 5.6763 5.9487 6.2878 6.7552 7.5421 8.3279 8.5770 9.3366

68 4.7774 5.7051 5.9785 6.3190 6.7882 7.5778 8.3661 8.6161 9.3785
69 4.8023 5.7337 6.0081 6.3501 6.8209 7.6132 8.4041 8.6550 9.4201
70 4.8271 5.7621 6.0375 6.3809 6.8534 7.6483 8.4419 8.6937 9.4615

71 4.8516 5.7903 6.0667 6.4115 6.8857 7.6833 8.4795 8.7322 9.5028
72 4.8761 5.8184 6.0957 6.4420 6.9178 7.7181 8.5169 8.7705 9.5439
73 4.9003 5.8463 6.1245 6.4723 6.9498 7.7528 8.5541 8.8087 9.5849

74 4.9245 5.8740 6.1532 6.5024 6.9816 7.7872 8.5912 8.8468 9.6258
75 4.9485 5.9017 6.1817 6.5325 7.0132 7.8216 8.6282 8.8847 9.6667
76 4.9724 5.9292 6.2101 6.5623 7.0448 7.8558 8.6651 8.9226 9.7075

77 4.9962 5.9565 6.2384 6.5921 7.0762 7.8899 8.7019 8.9603 9.7482
78 5.0199 5.9838 6.2665 6.6217 7.1075 7.9239 8.7386 8.9980 9.7889
79 5.0435 6.0110 6.2946 6.6513 7.1387 7.9578 8.7752 9.0357 9.8296

80 5.0670 6.0380 6.3225 6.6807 7.1698 7.9916 8.8117 9.0732 9.8702
81 5.0904 6.0650 6.3503 6.7100 7.2008 8.0254 8.8482 9.1108 9.9109
82 5.1137 6.0919 6.3781 6.7393 7.2317 8.0590 8.8847 9.1483 9.9515

83 5.1369 6.1187 6.4057 6.7685 7.2625 8.0926 8.9211 9.1857 9.9922
84 5.1601 6.1454 6.4333 6.7975 7.2933 8.1262 8.9574 9.2232 10.0329
85 5.1832 6.1721 6.4608 6.8266 7.3240 8.1596 8.9937 9.2606 10.0736

86 5.2062 6.1987 6.4882 6.8555 7.3546 8.1930 9.0300 9.2979 10.1143
87 5.2291 6.2252 6.5155 6.8844 7.3851 8.2264 9.0662 9.3353 10.1550
88 5.2519 6.2516 6.5428 6.9131 7.4156 8.2596 9.1024 9.3726 10.1957
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n\α 0.500 0.250 0.200 0.150 0.100 0.050 0.025 0.020 0.010
89 5.2747 6.2780 6.5700 6.9419 7.4460 8.2929 9.1385 9.4099 10.2364
90 5.2974 6.3043 6.5971 6.9705 7.4764 8.3260 9.1746 9.4471 10.2771

91 5.3201 6.3305 6.6241 6.9991 7.5066 8.3591 9.2106 9.4843 10.3177
92 5.3426 6.3567 6.6511 7.0276 7.5368 8.3921 9.2466 9.5214 10.3584
93 5.3651 6.3828 6.6780 7.0560 7.5669 8.4250 9.2825 9.5585 10.3991

94 5.3875 6.4088 6.7048 7.0843 7.5969 8.4579 9.3183 9.5955 10.4397
95 5.4098 6.4348 6.7315 7.1126 7.6269 8.4907 9.3541 9.6325 10.4803
96 5.4320 6.4607 6.7582 7.1408 7.6567 8.5233 9.3898 9.6694 10.5208

97 5.4542 6.4865 6.7848 7.1689 7.6865 8.5559 9.4254 9.7062 10.5612
98 5.4763 6.5122 6.8112 7.1969 7.7161 8.5884 9.4608 9.7429 10.6016
99 5.4982 6.5378 6.8376 7.2247 7.7457 8.6208 9.4962 9.7795 10.6419

100 5.5201 6.5633 6.8639 7.2525 7.7751 8.6530 9.5315 9.8159 10.6820
105 5.6281 6.6895 6.9939 7.3897 7.9205 8.8122 9.7054 9.9960 10.8808
110 5.7333 6.8127 7.1207 7.5234 8.0620 8.9670 9.8745 10.1712 11.0744

115 5.8351 6.9321 7.2438 7.6527 8.1987 9.1161 10.0370 10.3394 11.2607
120 5.9331 7.0471 7.3622 7.7768 8.3295 9.2582 10.1913 10.4990 11.4373
125 6.0265 7.1568 7.4753 7.8945 8.4534 9.3919 10.3355 10.6481 11.6022

130 6.1151 7.2606 7.5822 8.0053 8.5694 9.5162 10.4685 10.7850 11.7532
135 6.1983 7.3578 7.6825 8.1084 8.6769 9.6301 10.5890 10.9087 11.8889
140 6.2761 7.4481 7.7758 8.2035 8.7755 9.7333 10.6964 11.0183 12.0083

145 6.3483 7.5314 7.8619 8.2906 8.8652 9.8256 10.7907 11.1137 12.1112
150 6.4154 7.6078 7.9411 8.3698 8.9464 9.9077 10.8726 11.1955 12.1981
155 6.4778 7.6781 8.0141 8.4421 9.0200 9.9809 10.9437 11.2654 12.2707

160 6.5365 7.7430 8.0818 8.5088 9.0879 10.0473 11.0064 11.3258 12.3319
165 6.5928 7.8043 8.1460 8.5719 9.1522 10.1098 11.0644 11.3804 12.3859
170 6.6486 7.8638 8.2088 8.6340 9.2161 10.1723 11.1226 11.4342 12.4383

175 6.7062 7.9244 8.2731 8.6985 9.2836 10.2400 11.1870 11.4938 12.4965
180 6.7683 7.9894 8.3425 8.7697 9.3598 10.3192 11.2654 11.5670 12.5696
185 6.8384 8.0630 8.4212 8.8528 9.4507 10.4175 11.3671 11.6635 12.6688

190 6.9207 8.1499 8.5145 8.9538 9.5634 10.5438 11.5031 11.7948 12.8073
195 7.0200 8.2561 8.6286 9.0801 9.7065 10.7089 11.6863 11.9745 13.0007
200 7.1417 8.3883 8.7704 9.2399 9.8896 10.9248 11.9316 12.2180 13.2668
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Appendix B Computational Details

All programs are written in FORTRAN and double precision representation is

used.

B.1 Details of programming for F

The program to get F and the resulting density estimate is listed in Appendix B.3.

The subroutine rtsec from Press et al. (1992) was used to implement the secant method in

searching for the value of h and gives IF =1.

B.2 Details of power study

Critical values used were obtained from Shapiro (1980) for A2, W and W’.  The

only exception is for W’ at n=100 where the values are taken as an average of the values

available in Pearson et al. (1977).  Critical values for F were those that were obtained

from the original simulation (unsmoothed).  A full list of the values used is available in

Table B-1.

Table B-1 List of critical values used in power study

α=0.05 (A2=0.752a) α=0.10 (A2=0.631a)n

W(W’)a Fb W(W’)a Fb

10

20

35

50

70

100

0.842

0.905

-

0.947

0.968

0.9743

3.6747

4.8394

-

6.8451

7.6560

8.6528

0.869

0.920

0.944

0.955

0.973

0.9787

3.2759

4.3292

5.3879

6.1177

6.8537

7.7811
Sources: a.   Shapiro (1980) except for n=100 which is taken from Pearson et al. (1977)

b.   Using simulated critical values (unsmoothed)

The pseudo-random number subroutines used were those available from IMSL

(STAT/LIBRARY FORTRAN Subroutines for Statistical Analysis Version 1.0, April

1987).  For distributions that do not have a subroutine of their own like the Laplace, the
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inverse cumulative distribution function (cdf) method is used where a uniform deviate is

generated first before using the inverse cdf to get the required pseudo-random number.

The FORTRAN code for obtaining the test statistics for K2, W, W’ and A2 were

adapted from a collection of FORTRAN subroutines entitled ‘Tests of Composite

Distributional Hypotheses for the Analysis of Biological & Environmental Data’

available at Statlib (http://lib.stat.cmu.edu) that was written by Paul Johnson.  The

subroutine for W* is available in IMSL.

B.3 Program Listing for F

c
c FisherInfoTest.f
c
c date : Aug 20, 98
c
c aim  : Calculate test statistic F and provide density estimate in
c              original units (optional)
c
c input : data in ASCII file
c
c output :
c a.  test statistic F
c       b.  ASCII file containing x (1st column) and density estimate(2nd
c     column) in original units (optional)
c
c

c
c     declaration of variables
c
      integer ndata, count
      double precision samave, samstdev, kernel, FisherInfo, h
      double precision mmm(1:200), sdata(1:200), root(1:200)
      double precision sum, sumsq, log2pi
      double precision h1, h2, fl1, f2, root11(1:200)
      double precision xl, swap, dx, factor
      double precision min, max, increment, x, density, rplot(1:200)
      logical Fisher1
      character PrintPlot
      data log2pi, big, Maxplot /1.83787706640934548356, 1.0D20, 128/
      data top, bottom /4, -4/
      character DataFile*20
      character PlotFileName*20

c
c     get data and determine minimum and maximum

      write(*,*)'Enter name of data file '
      read(*,*)DataFile
      open(unit=7, file=DataFile, status='old')
      ndata=0
      min=big
      max=-big
5     read(7,*, END=7)mmm(ndata+1)
      if (mmm(ndata+1).lt.min) min=mmm(ndata+1)
      if (mmm(ndata+1).gt.min) max=mmm(ndata+1)
          ndata=ndata+1
          go to 5

c
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c     get mean and standard deviation using subroutine avestdev
c

7     call avestdev(mmm,ndata,samave,samstdev)

c
c     standardize data
c

      do 10 i = 1, ndata
         sdata(i)=(mmm(i)-samave)/samstdev
10    continue

c
c     get h where Fisher Information is 1
c
      h1=0.5
      h2= 2.0

20    call GetFisherInfo(ndata,h1,sdata,root11,fl1)
      call GetFisherInfo(ndata,h2,sdata,root11,f2)

      if (abs(fl1).lt.abs(f2)) then
         h=h1
         xl=h2
         swap=fl1
         fl1=f2
         f2=swap
      else
         xl=h1
         h=h2
      endif
      count=1
      Fisher1=.false.
30    if (.not.Fisher1) then
         count=count+1
         dx=(xl-h)*f2/(f2-fl1)
         xl=h
         fl1=f2
         h=h+dx
         if (h.lt.0) h=exp(h)
         call GetFisherInfo(ndata,h,sdata,root,f2)
         if (abs(dx).lt.0.0000000000001.or.f2.eq.0.) Fisher1=.true.
         go to 30
      endif
      FisherInfo=f2+1.0
      sum=0
      do 50 i=1, ndata
         sum = sum + log(root(i))
50    continue
      sumsq=4/(FisherInfo*h*h+4)
      sum = 4*sum - ndata*(2*log(sumsq)-1-log2pi)
      if (sum.le.0.) then

 h1=0.5
         h2=2.1
         go to 20
      endif
      write(*,*)'test statistic, F =', sum
c
c     print density plot
c
      write(*,*)'Plot density?(y/n)'
      read(*,*)PrintPlot
      if (PrintPlot.eq.'y') then
         write(*,*)'Enter name of file to store density'
         read(*,*)PlotFileName
         open(unit=8, file=PlotFileName, status='new')
         increment=(top-bottom)/Maxplot
         x=bottom
         do 200 i=1, Maxplot



54

            density=0.0
            do 100 j =1, ndata
               density=density+kernel(x,sdata(j),h)/root(j)
100         continue
            rplot(i)=density/ndata
            x=x+increment
200      continue
         factor=1/samstdev/sumsq
         x=bottom
         do 300 i=1, Maxplot
            write(8,250)samave+samstdev*x, rplot(i)*rplot(i)*factor
250         format(f10.4,5X,e15.10)
            x=x+increment
300      continue
         close(unit=8)
      endif
      close(unit=7)
      end

c
c     subroutine avestdev to calculate average and standard deviation
c
      SUBROUTINE AVESTDEV(DATA,N,AVE,STDEV)
      DOUBLE PRECISION DATA(N), AVE, STDEV, S
      AVE=0.0
      STDEV=0.0
      DO 11 J=1,N
        AVE=AVE+DATA(J)
11    CONTINUE
      AVE=AVE/N
      DO 12 J=1,N
        S=DATA(J)-AVE
        STDEV=STDEV+S*S
12    CONTINUE
      STDEV=STDEV/N
      STDEV=SQRT(STDEV)
      RETURN
      END

c
c     function kernel to get kernel values
c
      double precision function kernel(x,y,z)
      double precision x, y, z
      kernel=exp(-abs(x-y)/z)/z/2.0
      return
      end

c
c     subroutine to get Fisher Information
c

      subroutine GetFisherInfo(gndata,gh,gsdata,groot,gFisherInfo)
      logical converge, convergerest
      integer gndata, i, j, c, count
      double precision gh, gsdata(gndata), groot(gndata), gFisherInfo
      double precision kernel, density, datum, groot2(1:200)
      double precision oldroot(1:200), gsumsq, x

      c=1
      count=1
      converge = .false.

      do 1 i=1, gndata
         oldroot(i) = 0.0
1     continue

         do 10 i=1, gndata
            density=0.0
            do 5 j=1, gndata
               density = density + kernel(gsdata(i),gsdata(j),gh)
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5           continue
            groot(i)=sqrt(density/gndata)
10       continue
15     if (.not.converge) then
         count = count + 1
         do 30 i=1, gndata
            density = 1.0/2.0/gh/groot(i)
            datum = gsdata(i)
            do 20 j=1, gndata
            if (i.ne.j) then
               density = density + kernel(datum,gsdata(j),gh)/groot(j)
            endif
20          continue
            groot2(i)=density/gndata
30       continue
         do 40 i=1, gndata
            groot(i) = (groot(i)+groot2(i))/2.0
40       continue
         if (abs(oldroot(c)-groot(c)).lt.0.00000000000001) then
            c = c + 1
            convergerest=.true.
            do 50 i=c, gndata
             if (abs(oldroot(c)-groot(c)).gt.0.00000000000001) then
                  convergerest=.false.
             endif
50          continue
            if (convergerest) converge=.true.
         endif
         do 60 i=1, gndata
            oldroot(i) = groot(i)
60       continue
         go to 15
      endif
      gsumsq=0
      do 80 i=1, gndata-1
         gsumsq = gsumsq + 1/groot(i)/groot(i)
         do 70 j=i+1, gndata
            x = abs(gsdata(i)-gsdata(j))/gh
            gsumsq = gsumsq + 2*exp(-x)*(1+x)/groot(i)/groot(j)
70    continue
80    continue
      gsumsq = gsumsq + 1/groot(gndata)/groot(gndata)
      gsumsq = gsumsq/4/gndata/gndata/gh
      gFisherInfo = 4*(1/gsumsq -1)/gh/gh
      gFisherInfo = gFisherInfo - 1.0
      return
      end
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Appendix C Results from Power Study

This appendix contains the results on the power comparisons of normality tests on

iid observations and the resulting OLS residuals.  The power estimates are obtained based

on 1000 samples using k=4 with X1=1 and Xi, i=2,3,4 drawn from the uniform

distribution.  The combination of n and α for each table is given below:

n α Table
10 0.05 C-1
20 0.05 C-2
50 0.05 C-3
70 0.05 C-4

100 0.05 C-5
10 0.10 C-6
20 0.10 C-7
50 0.10 C-8
70 0.10 C-9

100 0.10 C-10

Note:  To make it easier to assess the results of the power study for each table, the

following system of notation is adopted:

a. A superscript appears on the estimate of the test with the highest power.

b. The number in the superscript denote the number of tests, including the one with

the highest power, that are significantly better than the rest.  Hence, a ‘1’ in the

superscript would reflect that the test, with the highest power, has significantly higher

power than the rest while a ‘4’ in the superscript would mean that all the tests have the

same power.  Cochran’s Q is used to determine if the power estimates of all the tests are

the same while McNemar’s test is used for multiple comparisons when the hypothesis of

equal power for all tests is rejected.  Refer to Section 4.2.1 for more details.

c. The superscript notation will not be used for cases where all the estimates reflect

the same numerical value.
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Table C-1 Power comparisons of normality tests on iid observations and OLS residuals
based on 1000 samples using k=4 with X1=1 and Xi, i=2,3,4 drawn from the uniform distribution at

αα=0.05 and n=10

Distributions (a)   iid observations (b)   OLS residuals
W W* A2 F W W* A2 F

I.Sym., lep
Normala 0.046 0.051 0.051 0.051 0.036b 0.040b 0.039b 0.029b

t10 0.068 0.0724 0.070 0.071 0.043 0.0464 0.0464 0.045
Logistic 0.062 0.070 0.068 0.0734 0.046 0.0534 0.046 0.045
SC(0.05, 9) 0.113 0.117 0.118 0.1204 0.046 0.052 0.051 0.0603

SC(0.10, 9) 0.165 0.168 0.164 0.1831 0.063 0.073 0.074 0.0743

t4 0.125 0.142 0.129 0.1502 0.052 0.0584 0.056 0.056
SC(0.05, 25) 0.201 0.2104 0.206 0.208 0.083 0.093 0.093 0.1071

Laplace 0.149 0.153 0.156 0.1662 0.065 0.074 0.065 0.0782

SC(0.10, 25) 0.280 0.290 0.288 0.3031 0.091 0.099 0.103 0.1102

t2 0.281 0.293 0.288 0.3111 0.105 0.114 0.108 0.1242

Cauchy 0.561 0.576 0.587 0.5952 0.238 0.254 0.247 0.2791

II.  Sym., platy
Beta(1,1) 0.088 0.086 0.0933 0.067 0.033 0.035 0.0441 0.031
Beta(1.5, 1.5) 0.036 0.038 0.0443 0.033 0.031 0.0334 0.030 0.032
Beta(2,2) 0.032 0.031 0.0344 0.028 0.027 0.026 0.0314 0.030

III. Asym., lep.
Weibull(2) 0.066 0.0744 0.071 0.068 0.028 0.0324 0.030 0.032
LC(0.05, 3) 0.082 0.0902 0.079 0.088 0.047 0.057 0.051 0.0603

LC(0.10, 3) 0.104 0.117 0.113 0.1183 0.041 0.044 0.046 0.0533

LC(0.20, 3) 0.143 0.1544 0.1544 0.146 0.044 0.051 0.0534 0.052
Chi-squared(10) 0.131 0.139 0.1443 0.132 0.062 0.0703 0.061 0.068
LC(0.05, 5) 0.295 0.305 0.281 0.3073 0.091 0.103 0.095 0.1044

LC(0.10, 5) 0.384 0.3974 0.384 0.396 0.128 0.138 0.127 0.1442

LC(0.05, 7) 0.420 0.424 0.412 0.4273 0.135 0.149 0.141 0.1631

LC(0.20, 5) 0.457 0.468 0.4861 0.464 0.088 0.100 0.092 0.1033

LC(0.10, 7) 0.609 0.612 0.6204 0.616 0.168 0.176 0.169 0.1941

LC(0.20, 7) 0.776 0.781 0.7922 0.768 0.133 0.141 0.154 0.1552

Chi-squared(4) 0.225 0.2361 0.223 0.210 0.063 0.0664 0.0664 0.0664

Chi-squared(2) 0.427 0.4381 0.413 0.387 0.098 0.1064 0.103 0.104
Chi-squared(1) 0.709 0.7151 0.681 0.649 0.163 0.1802 0.166 0.177
Weibull(0.5) 0.892 0.8952 0.878 0.857 0.227 0.148 0.248 0.2751

Lognormal(0,1) 0.620 0.6331 0.604 0.580 0.166 0.174 0.180 0.1931

IV.Asym.,platy
Beta(3,2) 0.045 0.0484 0.046 0.040 0.043 0.044 0.0454 0.044
Beta(2,1) 0.110 0.1123 0.108 0.088 0.044 0.0414 0.0414 0.038

Notes : 

a.   based on 10 000 samples

-     Refer to page 56 on the system of notation used for the superscript.
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Table C-2 Power comparisons of normality tests on iid observations and OLS residuals
based on 1000 samples using k=4 with X1=1 and Xi, i=2,3,4 drawn from the uniform distribution at

αα=0.05 and n=20

Distributions (a)   iid observations (b)   OLS residuals
W W* A2 F W W* A2 F

I.Sym., lep
Normala 0.052 0.049 0.049 0.052 0.046 0.044 0.045 0.047
t10 0.102 0.097 0.090 0.1103 0.073 0.071 0.063 0.0803

Logistic 0.110 0.108 0.100 0.1381 0.085 0.084 0.088 0.0963

SC(0.05, 9) 0.191 0.185 0.166 0.2032 0.154 0.146 0.125 0.1652

SC(0.10, 9) 0.294 0.286 0.243 0.3201 0.207 0.198 0.170 0.2321

t4 0.250 0.246 0.232 0.2861 0.160 0.157 0.158 0.1871

SC(0.05, 25) 0.374 0.372 0.354 0.3861 0.301 0.293 0.274 0.3211

Laplace 0.289 0.283 0.286 0.3431 0.191 0.182 0.174 0.2191

SC(0.10, 25) 0.541 0.536 0.508 0.5611 0.402 0.397 0.369 0.4331

t2 0.555 0.541 0.553 0.6151 0.413 0.402 0.381 0.4581

Cauchy 0.886 0.883 0.899 0.9141 0.745 0.738 0.726 0.7891

II.  Sym., platy
Beta(1,1) 0.1842 0.182 0.162 0.096 0.0733 0.0733 0.072 0.044
Beta(1.5, 1.5) 0.0943 0.091 0.093 0.042 0.061 0.059 0.0663 0.033
Beta(2,2) 0.053 0.052 0.0573 0.034 0.054 0.054 0.0593 0.032

III. Asym., lep.
Weibull(2) 0.1462 0.145 0.123 0.120 0.107 0.1404 0.1134 0.099
LC(0.05, 3) 0.192 0.188 0.167 0.2091 0.135 0.132 0.111 0.1403

LC(0.10, 3) 0.265 0.259 0.234 0.2811 0.165 0.154 0.139 0.1693

LC(0.20, 3) 0.2662 0.258 0.265 0.243 0.135 0.132 0.1531 0.126
Chi-squared(10) 0.2401 0.235 0.202 0.209 0.1442 0.142 0.114 0.128
LC(0.05, 5) 0.554 0.547 0.483 0.5622 0.358 0.353 0.293 0.3761

LC(0.10, 5) 0.779 0.773 0.728 0.7862 0.499 0.490 0.459 0.5092

LC(0.05, 7) 0.651 0.650 0.645 0.6571 0.558 0.553 0.505 0.5751

LC(0.20, 5) 0.852 0.846 0.8563 0.822 0.475 0.471 0.4863 0.462
LC(0.10, 7) 0.8804 0.8804 0.877 0.878 0.697 0.693 0.663 0.7033

LC(0.20, 7) 0.9864 0.9864 0.984 0.9864 0.6563 0.651 0.647 0.636
Chi-squared(4) 0.5412 0.537 0.472 0.459 0.3092 0.307 0.271 0.277
Chi-squared(2) 0.8352 0.834 0.764 0.758 0.4821 0.475 0.417 0.431
Chi-squared(1) 0.9882 0.986 0.974 0.972 0.7041 0.698 0.679 0.689
Weibull(0.5) 0.9974 0.9974 0.995 0.993 0.8583 0.851 0.829 0.842
Lognormal(0,1) 0.9302 0.927 0.901 0.897 0.6861 0.680 0.636 0.660

IV.Asym.,platy
Beta(3,2) 0.0753 0.073 0.069 0.044 0.043 0.043 0.0463 0.036
Beta(2,1) 0.2952 0.290 0.255 0.199 0.1353 0.131 0.122 0.104

Notes : 

a.   based on 10 000 samples

-    Refer to page 56 on the system of notation used for the superscript.



59

Table C-3 Power comparisons of normality tests on iid observations and OLS residuals
based on 1000 samples using k=4 with X1=1 and Xi, i=2,3,4 drawn from the uniform distribution at

αα=0.05 and n=50

Distributions (a)   iid observations (b)   OLS residuals
W W* A2 F W W* A2 F

I.Sym., lep
Normala 0.041b 0.048 0.049 0.049 0.040b 0.047 0.048 0.046
t10 0.097 0.102 0.113 0.1701 0.082 0.098 0.100 0.1551

Logistic 0.127 0.138 0.157 0.2451 0.114 0.124 0.145 0.2201

SC(0.05, 9) 0.309 0.320 0.286 0.4061 0.276 0.285 0.251 0.3741

SC(0.10, 9) 0.468 0.484 0.443 0.5931 0.416 0.427 0.397 0.5421

t4 0.356 0.372 0.414 0.5161 0.301 0.316 0.350 0.4661

SC(0.05, 25) 0.621 0.627 0.610 0.6861 0.598 0.608 0.577 0.6661

Laplace 0.382 0.404 0.537 0.6031 0.304 0.325 0.440 0.5041

SC(0.10, 25) 0.831 0.833 0.833 0.8961 0.806 0.812 0.804 0.8791

t2 0.808 0.820 0.860 0.9051 0.738 0.748 0.804 0.8601

Cauchy 0.996 0.996 0.997 0.9994 0.988 0.989 0.991 0.9981

II.  Sym., platy
Beta(1,1) 0.853 0.8711 0.582 0.392 0.552 0.5911 0.379 0.206
Beta(1.5, 1.5) 0.471 0.5121 0.271 0.115 0.284 0.3091 0.190 0.071
Beta(2,2) 0.235 0.2621 0.147 0.066 0.161 0.1861 0.088 0.029

III. Asym., lep.
Weibull(2) 0.420 0.4521 0.335 0.307 0.326 0.3571 0.278 0.262
LC(0.05, 3) 0.304 0.329 0.302 0.4001 0.250 0.267 0.241 0.3381

LC(0.10, 3) 0.496 0.510 0.502 0.5421 0.415 0.438 0.422 0.4571

LC(0.20, 3) 0.582 0.605 0.6252 0.531 0.449 0.4831 0.511 0.410
Chi-squared(10) 0.558 0.5821 0.484 0.490 0.449 0.4711 0.377 0.399
LC(0.05, 5) 0.846 0.851 0.800 0.8791 0.811 0.814 0.767 0.8521

LC(0.10, 5) 0.975 0.976 0.970 0.9841 0.958 0.960 0.945 0.9691

LC(0.05, 7) 0.908 0.909 0.892 0.9143 0.904 0.905 0.886 0.9131

LC(0.20, 5) 1.000 1.000 1.000 1.000 0.984 0.9873 0.986 0.971
LC(0.10, 7) 0.9934 0.9934 0.991 0.9934 0.992 0.992 0.990 0.9934

LC(0.20, 7) 1.0004 1.0004 0.999 1.0004 0.9984 0.9984 0.9984 0.994
Chi-squared(4) 0.952 0.9562 0.877 0.879 0.835 0.8451 0.765 0.761
Chi-squared(2) 1.0004 1.0004 0.998 0.998 0.9732 0.9732 0.960 0.958
Chi-squared(1) 1.000 1.000 1.000 1.000 0.9994 0.9994 0.9994 0.998
Weibull(0.5) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Lognormal(0,1) 1.000 1.000 1.000 1.000 0.9994 0.9994 0.998 0.994

IV.Asym.,platy
Beta(3,2) 0.268 0.2931 0.183 0.086 0.176 0.1941 0.145 0.075
Beta(2,1) 0.881 0.8971 0.709 0.593 0.619 0.6531 0.510 0.372

Notes : 

a.    based on 10 000 samples

b.    95% confidence interval for the level does not contain the nominal value.  Power estimates obtained do not reflect their true
values.

-     Refer to page 56 on the system of notation used for the superscript.
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Table C-4 Power comparisons of normality tests on iid observations and OLS residuals
based on 1000 samples using k=4 with X1=1 and Xi, i=2,3,4 drawn from the uniform distribution at

αα=0.05 and n=70

Distributions (a)   iid observations (b)   OLS residuals
W’ W* A2 F W’ W* A2 F

I.Sym., lep
Normala 0.067b 0.046 0.047 0.051 0.064b 0.046 0.048 0.048
t10 0.2571 0.109 0.141 0.231 0.2341 0.096 0.116 0.202
Logistic 0.3481 0.149 0.219 0.323 0.3201 0.141 0.178 0.279
SC(0.05, 9) 0.5581 0.386 0.366 0.532 0.5411 0.360 0.338 0.511
SC(0.10, 9) 0.7381 0.542 0.555 0.718 0.7271 0.498 0.515 0.693
t4 0.6961 0.429 0.545 0.662 0.6501 0.396 0.495 0.617
SC(0.05, 25) 0.8161 0.735 0.724 0.801 0.8111 0.711 0.695 0.803
Laplace 0.7571 0.476 0.693 0.743 0.6881 0.400 0.595 0.669
SC(0.10, 25) 0.9592 0.914 0.916 0.954 0.9582 0.903 0.904 0.954
t2 0.9681 0.889 0.942 0.960 0.9531 0.868 0.917 0.947
Cauchy 1.0004 0.999 1.0004 1.0004 0.999 0.998 1.0004 1.0004

II.  Sym., platy
Beta(1,1) 0.822 0.9911 0.781 0.690 0.574 0.8641 0.625 0.439
Beta(1.5, 1.5) 0.352 0.7961 0.403 0.231 0.241 0.6091 0.304 0.151
Beta(2,2) 0.131 0.4691 0.183 0.083 0.089 0.3421 0.139 0.064

III. Asym., lep.
Weibull(2) 0.590 0.6451 0.457 0.461 0.511 0.5381 0.399 0.380
LC(0.05, 3) 0.5821 0.394 0.381 0.511 0.5331 0.348 0.337 0.477
LC(0.10, 3) 0.7451 0.634 0.629 0.655 0.6911 0.571 0.594 0.629
LC(0.20, 3) 0.763 0.763 0.7951 0.679 0.662 0.667 0.7041 0.590
Chi-squared(10) 0.7732 0.761 0.635 0.655 0.7041 0.679 0.567 0.592
LC(0.05, 5) 0.9611 0.925 0.885 0.952 0.9561 0.913 0.869 0.943
LC(0.10, 5) 0.9984 0.997 0.994 0.9984 0.9974 0.994 0.995 0.9974

LC(0.05, 7) 0.9803 0.978 0.973 0.9803 0.9793 0.977 0.968 0.9793

LC(0.20, 5) 1.000 1.000 1.000 1.000 0.996 0.9974 0.9974 0.995
LC(0.10, 7) 0.9994 0.9994 0.9994 0.9994 0.9994 0.9994 0.9994 0.9994

LC(0.20, 7) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Chi-squared(4) 0.990 0.9932 0.967 0.974 0.9682 0.964 0.929 0.931
Chi-squared(2) 1.000 1.000 1.000 1.000 0.999 1.0004 0.997 0.999
Chi-squared(1) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Weibull(0.5) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Lognormal(0,1) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

IV.Asym.,platy
Beta(3,2) 0.248 0.4751 0.280 0.164 0.175 0.3681 0.221 0.111
Beta(2,1) 0.936 0.9901 0.891 0.845 0.794 0.9081 0.779 0.646

Notes : 

a.   based on 10 000 samples

b.   95% confidence interval for the level does not contain the nominal value.  Power estimates obtained do not reflect their true
values.

-     Refer to page 56 on the system of notation used for the superscript.
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Table C-5 Power comparisons of normality tests on iid observations and OLS residuals
based on 1000 samples using k=4 with X1=1 and Xi, i=2,3,4 drawn from the uniform distribution at

αα=0.05 and n=100

Distributions (a)   iid observations (b)   OLS residuals
W’ W* A2 F W’ W* A2 F

I.Sym., lep
Normala 0.050 0.050 0.048 0.049 0.050 0.050 0.048 0.050
t10 0.292 0.097 0.173 0.3032 0.269 0.093 0.147 0.2772

Logistic 0.372 0.131 0.238 0.3842 0.345 0.120 0.225 0.3502

SC(0.05, 9) 0.6282 0.397 0.408 0.627 0.6142 0.374 0.405 0.612
SC(0.10, 9) 0.8262 0.611 0.676 0.822 0.8062 0.575 0.647 0.804
t4 0.749 0.469 0.653 0.7601 0.727 0.444 0.618 0.7451

SC(0.05, 25) 0.9042 0.830 0.828 0.903 0.9002 0.815 0.808 0.896
Laplace 0.826 0.540 0.820 0.8491 0.785 0.464 0.754 0.8121

SC(0.10, 25) 0.9832 0.950 0.961 0.982 0.9872 0.948 0.958 0.985
t2 0.982 0.935 0.974 0.9832 0.974 0.912 0.967 0.9752

Cauchy 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

II.  Sym., platy
Beta(1,1) 0.961 1.0001 0.953 0.929 0.820 0.9841 0.870 0.771
Beta(1.5, 1.5) 0.513 0.9541 0.563 0.428 0.348 0.8531 0.458 0.295
Beta(2,2) 0.204 0.7631 0.310 0.154 0.155 0.6471 0.266 0.127

III. Asym., lep.
Weibull(2) 0.700 0.8091 0.617 0.610 0.624 0.7161 0.544 0.526
LC(0.05, 3) 0.6681 0.494 0.508 0.641 0.6311 0.453 0.469 0.611
LC(0.10, 3) 0.8471 0.755 0.798 0.820 0.8111 0.711 0.765 0.793
LC(0.20, 3) 0.884 0.892 0.9301 0.864 0.838 0.854 0.8951 0.812
Chi-squared(10) 0.860 0.8881 0.801 0.800 0.820 0.8451 0.752 0.748
LC(0.05, 5) 0.9892 0.962 0.954 0.987 0.9872 0.957 0.952 0.986
LC(0.10, 5) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
LC(0.05, 7) 0.9964 0.9964 0.992 0.9964 0.9964 0.995 0.994 0.9964

LC(0.20, 5) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
LC(0.10, 7) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
LC(0.20, 7) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Chi-squared(4) 0.9984 0.9984 0.996 0.997 0.9964 0.994 0.991 0.993
Chi-squared(2) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Chi-squared(1) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Weibull(0.5) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Lognormal(0,1) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

IV.Asym.,platy
Beta(3,2) 0.303 0.7201 0.399 0.230 0.241 0.6141 0.335 0.185
Beta(2,1) 0.991 1.0001 0.984 0.975 0.934 0.9881 0.946 0.883

Notes : 

a.   based on 10 000 samples

-     Refer to page 56 on the system of notation used for the superscript.
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Table C-6 Power comparisons of normality tests on iid observations and OLS residuals
based on 1000 samples using k=4 with X1=1 and Xi, i=2,3,4 drawn from the uniform distribution at

αα=0.1 and n=10

Distributions (a)   iid observations (b)   OLS residuals
W W* A2 F W W* A2 F

I.Sym., lep
Normala 0.095 0.100 0.102 0.100 0.078b 0.083b 0.087b 0.087b

t10 0.119 0.128 0.124 0.1353 0.090 0.0944 0.093 0.091
Logistic 0.147 0.1594 0.148 0.152 0.092 0.098 0.090 0.0994

SC(0.05, 9) 0.160 0.167 0.1773 0.1773 0.107 0.114 0.116 0.1321

SC(0.10, 9) 0.194 0.204 0.207 0.2182 0.112 0.125 0.121 0.1362

t4 0.206 0.214 0.223 0.2292 0.111 0.120 0.110 0.1302

SC(0.05, 25) 0.232 0.245 0.237 0.2483 0.129 0.135 0.134 0.1423

Laplace 0.204 0.213 0.216 0.2421 0.101 0.110 0.118 0.1232

SC(0.10, 25) 0.346 0.362 0.366 0.3732 0.173 0.186 0.171 0.2111

t2 0.383 0.397 0.406 0.4122 0.168 0.179 0.180 0.2071

Cauchy 0.659 0.674 0.690 0.7002 0.302 0.314 0.327 0.3511

II.  Sym., platy
Beta(1,1) 0.1543 0.150 0.152 0.123 0.080 0.078 0.0824 0.073
Beta(1.5, 1.5) 0.103 0.1063 0.104 0.088 0.092 0.0934 0.0934 0.083
Beta(2,2) 0.080 0.082 0.0932 0.062 0.078 0.076 0.079 0.0804

III. Asym., lep.
Weibull(2) 0.155 0.1652 0.154 0.138 0.083 0.084 0.086 0.0874

LC(0.05, 3) 0.161 0.1763 0.165 0.1763 0.079 0.089 0.085 0.0953

LC(0.10, 3) 0.185 0.195 0.195 0.2053 0.101 0.108 0.098 0.1172

LC(0.20, 3) 0.176 0.187 0.2022 0.189 0.090 0.095 0.098 0.1082

Chi-squared(10) 0.176 0.1804 0.173 0.171 0.099 0.102 0.1084 0.100
LC(0.05, 5) 0.348 0.355 0.363 0.3683 0.169 0.181 0.182 0.2011

LC(0.10, 5) 0.489 0.504 0.498 0.5053 0.168 0.181 0.173 0.1971

LC(0.05, 7) 0.447 0.450 0.4574 0.453 0.185 0.194 0.197 0.2191

LC(0.20, 5) 0.580 0.594 0.6063 0.570 0.158 0.172 0.171 0.1793

LC(0.10, 7) 0.670 0.670 0.670 0.6754 0.252 0.266 0.270 0.2901

LC(0.20, 7) 0.861 0.859 0.8721 0.855 0.226 0.230 0.2344 0.232
Chi-squared(4) 0.313 0.3261 0.305 0.297 0.109 0.117 0.114 0.1301

Chi-squared(2) 0.542 0.5501 0.519 0.513 0.153 0.164 0.160 0.1732

Chi-squared(1) 0.816 0.8182 0.787 0.779 0.235 0.253 0.244 0.2602

Weibull(0.5) 0.9352 0.9352 0.922 0.908 0.305 0.317 0.331 0.3352

Lognormal(0,1) 0.669 0.6781 0.648 0.641 0.233 0.247 0.230 0.2612

IV.Asym.,platy
Beta(3,2) 0.107 0.108 0.1134 0.102 0.0894 0.086 0.0894 0.085
Beta(2,1) 0.2302 0.227 0.210 0.191 0.086 0.0954 0.092 0.093

Notes : 

a.   based on 10 000 samples

b.   95% confidence interval for the level does not contain the nominal value.  Power estimates obtained do not reflect their true
values.

-     Refer to page 56 on the system of notation used for the superscript.
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Table C-7 Power comparisons of normality tests on iid observations and OLS residuals
based on 1000 samples using k=4 with X1=1 and Xi, i=2,3,4 drawn from the uniform distribution at

αα=0.1 and n=20

Distributions (a)   iid observations (b)   OLS residuals
W W* A2 F W W* A2 F

I.Sym., lep
Normala 0.099 0.097 0.104 0.102 0.098 0.095 0.102 0.098
t10 0.156 0.152 0.146 0.1574 0.121 0.118 0.122 0.1382

Logistic 0.160 0.155 0.163 0.1891 0.144 0.141 0.130 0.1631

SC(0.05, 9) 0.259 0.255 0.247 0.2841 0.227 0.223 0.195 0.2421

SC(0.10, 9) 0.330 0.326 0.306 0.3641 0.257 0.256 0.242 0.2831

t4 0.306 0.297 0.294 0.3431 0.235 0.230 0.218 0.2671

SC(0.05, 25) 0.400 0.398 0.390 0.4211 0.314 0.308 0.301 0.3481

Laplace 0.335 0.327 0.352 0.4051 0.250 0.248 0.244 0.2861

SC(0.10, 25) 0.614 0.609 0.597 0.6321 0.497 0.491 0.460 0.5401

t2 0.619 0.616 0.622 0.6661 0.497 0.489 0.479 0.5401

Cauchy 0.899 0.896 0.905 0.9211 0.781 0.777 0.777 0.8141

II.  Sym., platy
Beta(1,1) 0.381 0.3822 0.317 0.208 0.164 0.1653 0.153 0.103
Beta(1.5, 1.5) 0.168 0.1693 0.155 0.104 0.1213 0.1213 0.115 0.080
Beta(2,2) 0.1203 0.119 0.110 0.070 0.098 0.096 0.1053 0.069

III. Asym., lep.
Weibull(2) 0.2662 0.263 0.241 0.226 0.1752 0.174 0.158 0.148
LC(0.05, 3) 0.284 0.279 0.264 0.3051 0.210 0.205 0.196 0.2351

LC(0.10, 3) 0.368 0.363 0.352 0.3881 0.243 0.240 0.244 0.2661

LC(0.20, 3) 0.4053 0.403 0.392 0.361 0.2283 0.2283 0.211 0.206
Chi-squared(10) 0.3202 0.314 0.285 0.287 0.2253 0.223 0.205 0.218
LC(0.05, 5) 0.624 0.619 0.581 0.6293 0.453 0.447 0.413 0.4881

LC(0.10, 5) 0.800 0.798 0.784 0.8141 0.569 0.565 0.538 0.5743

LC(0.05, 7) 0.6404 0.637 0.635 0.638 0.572 0.567 0.532 0.5783

LC(0.20, 5) 0.927 0.927 0.9313 0.915 0.584 0.582 0.5933 0.554
LC(0.10, 7) 0.885 0.884 0.882 0.8884 0.751 0.751 0.739 0.7651

LC(0.20, 7) 0.9934 0.9934 0.9934 0.9934 0.7573 0.756 0.754 0.733
Chi-squared(4) 0.6432 0.640 0.566 0.562 0.4082 0.406 0.378 0.384
Chi-squared(2) 0.9062 0.905 0.863 0.851 0.5732 0.569 0.543 0.535
Chi-squared(1) 0.9962 0.9962 0.988 0.988 0.7692 0.7692 0.748 0.752
Weibull(0.5) 1.000 1.000 1.000 1.000 0.9133 0.910 0.887 0.907
Lognormal(0,1) 0.9672 0.965 0.941 0.938 0.7502 0.749 0.724 0.729

IV.Asym.,platy
Beta(3,2) 0.1523 0.1523 0.151 0.111 0.111 0.108 0.1173 0.091
Beta(2,1) 0.4562 0.454 0.377 0.310 0.2203 0.219 0.215 0.167

Notes : 

a.   based on 10 000 samples

-     Refer to page 56 on the system of notation used for the superscript.
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Table C-8 Power comparisons of normality tests on iid observations and OLS residuals
based on 1000 samples using k=4 with X1=1 and Xi, i=2,3,4 drawn from the uniform distribution at

αα=0.1 and n=50

Distributions (a)   iid observations (b)   OLS residuals
W W* A2 F W W* A2 F

I.Sym., lep
Normala 0.097 0.100 0.102 0.102 0.100 0.102 0.103 0.099
t10 0.169 0.172 0.202 0.2851 0.151 0.155 0.174 0.2481

Logistic 0.202 0.208 0.249 0.3321 0.186 0.191 0.226 0.3061

SC(0.05, 9) 0.364 0.368 0.354 0.4511 0.344 0.347 0.326 0.4281

SC(0.10, 9) 0.524 0.526 0.531 0.6621 0.490 0.493 0.492 0.6341

t4 0.471 0.473 0.535 0.6191 0.426 0.429 0.472 0.5791

SC(0.05, 25) 0.656 0.657 0.639 0.7101 0.636 0.639 0.610 0.6991

Laplace 0.528 0.532 0.669 0.7171 0.444 0.449 0.568 0.6421

SC(0.10, 25) 0.870 0.872 0.871 0.9221 0.847 0.850 0.851 0.8961

t2 0.850 0.852 0.895 0.9261 0.800 0.801 0.870 0.9101

Cauchy 0.9984 0.9984 0.9984 0.9984 0.991 0.991 0.994 0.9964

II.  Sym., platy
Beta(1,1) 0.954 0.9611 0.739 0.612 0.733 0.7382 0.538 0.362
Beta(1.5, 1.5) 0.656 0.6612 0.380 0.222 0.451 0.4601 0.283 0.147
Beta(2,2) 0.426 0.4321 0.234 0.116 0.320 0.3242 0.191 0.097

III. Asym., lep.
Weibull(2) 0.577 0.5851 0.446 0.429 0.481 0.4852 0.382 0.359
LC(0.05, 3) 0.408 0.412 0.397 0.4931 0.350 0.354 0.359 0.4401

LC(0.10, 3) 0.613 0.618 0.617 0.6571 0.538 0.545 0.544 0.5731

LC(0.20, 3) 0.730 0.733 0.7541 0.668 0.606 0.614 0.6391 0.571
Chi-squared(10) 0.697 0.7022 0.610 0.626 0.615 0.6211 0.540 0.537
LC(0.05, 5) 0.874 0.875 0.851 0.8991 0.850 0.853 0.820 0.8881

LC(0.10, 5) 0.986 0.986 0.985 0.9931 0.976 0.976 0.968 0.9891

LC(0.05, 7) 0.934 0.934 0.929 0.9354 0.931 0.931 0.923 0.9343

LC(0.20, 5) 1.000 1.000 1.000 1.000 0.987 0.987 0.9952 0.989
LC(0.10, 7) 0.994 0.994 0.994 0.9954 0.9954 0.9954 0.991 0.9954

LC(0.20, 7) 1.000 1.000 1.000 1.000 0.9994 0.9994 0.9994 0.998
Chi-squared(4) 0.977 0.9782 0.942 0.936 0.917 0.9182 0.878 0.870
Chi-squared(2) 1.0004 1.0004 0.999 1.0004 0.987 0.9882 0.978 0.980
Chi-squared(1) 1.000 1.000 1.000 1.000 0.9994 0.9994 0.998 0.997
Weibull(0.5) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Lognormal(0,1) 1.000 1.000 1.000 1.000 0.9994 0.9994 0.998 0.998

IV.Asym.,platy
Beta(3,2) 0.434 0.4401 0.284 0.188 0.322 0.3281 0.240 0.151
Beta(2,1) 0.9722 0.9722 0.858 0.789 0.811 0.8191 0.713 0.588

Notes : 

a.   based on 10 000 samples

-     Refer to page 56 on the system of notation used for the superscript.
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Table C-9 Power comparisons of normality tests on iid observations and OLS residuals
based on 1000 samples using k=4 with X1=1 and Xi, i=2,3,4 drawn from the uniform distribution at

αα=0.1 and n=70

Distributions (a)   iid observations (b)   OLS residuals
W’ W* A2 F W’ W* A2 F

I.Sym., lep
Normala 0.118b 0.101 0.098 0.098 0.117b 0.094 0.094 0.098
t10 0.3591 0.175 0.234 0.333 0.3191 0.159 0.209 0.299
Logistic 0.4361 0.207 0.288 0.410 0.4211 0.190 0.290 0.396
SC(0.05, 9) 0.6011 0.432 0.447 0.584 0.5881 0.411 0.407 0.565
SC(0.10, 9) 0.7981 0.587 0.635 0.765 0.7551 0.553 0.601 0.736
t4 0.7471 0.501 0.625 0.729 0.7211 0.486 0.582 0.699
SC(0.05, 25) 0.8481 0.761 0.755 0.837 0.8251 0.733 0.735 0.813
Laplace 0.8302 0.533 0.786 0.828 0.7691 0.462 0.681 0.759
SC(0.10, 25) 0.9652 0.922 0.938 0.963 0.9622 0.908 0.924 0.958
t2 0.9713 0.922 0.963 0.968 0.9641 0.898 0.940 0.956
Cauchy 1.0004 0.998 1.0004 1.0004 0.9984 0.997 0.9984 0.9984

II.  Sym., platy
Beta(1,1) 0.907 0.9961 0.883 0.846 0.718 0.9271 0.756 0.624
Beta(1.5, 1.5) 0.503 0.8901 0.530 0.386 0.349 0.6921 0.395 0.263
Beta(2,2) 0.265 0.6731 0.346 0.197 0.211 0.5351 0.284 0.146

III. Asym., lep.
Weibull(2) 0.675 0.7671 0.564 0.566 0.579 0.6301 0.477 0.477
LC(0.05, 3) 0.6541 0.476 0.474 0.607 0.6171 0.431 0.446 0.567
LC(0.10, 3) 0.8271 0.739 0.751 0.776 0.7841 0.696 0.702 0.740
LC(0.20, 3) 0.861 0.852 0.8781 0.808 0.796 0.795 0.8201 0.747
Chi-squared(10) 0.827 0.8412 0.733 0.747 0.7622 0.752 0.675 0.673
LC(0.05, 5) 0.9622 0.925 0.911 0.960 0.9602 0.914 0.905 0.956
LC(0.10, 5) 0.9994 0.998 0.998 0.9994 1.0004 0.995 0.997 1.0004

LC(0.05, 7) 0.9684 0.966 0.964 0.9684 0.9693 0.967 0.959 0.968
LC(0.20, 5) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
LC(0.10, 7) 0.9994 0.9994 0.9994 0.9994 0.9994 0.9994 0.998 0.9994

LC(0.20, 7) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Chi-squared(4) 0.998 0.9993 0.988 0.995 0.9902 0.9902 0.970 0.971
Chi-squared(2) 1.000 1.000 1.000 1.000 1.0004 1.0004 1.0004 0.999
Chi-squared(1) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Weibull(0.5) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Lognormal(0,1) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

IV.Asym.,platy
Beta(3,2) 0.397 0.6901 0.428 0.283 0.321 0.5421 0.346 0.241
Beta(2,1) 0.972 0.9951 0.954 0.933 0.886 0.9561 0.882 0.798

Notes : 

a.   based on 10 000 samples

b.   95% confidence interval for the level does not contain the nominal value.  Power estimates obtained do not reflect their true
values.

-     Refer to page 56 on the system of notation used for the superscript.
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Table C-10 Power comparisons of normality tests on iid observations and OLS residuals
based on 1000 samples using k=4 with X1=1 and Xi, i=2,3,4 drawn from the uniform distribution at

αα=0.1 and n=100

Distributions (a)   iid observations (b)   OLS residuals
W’ W* A2 F W’ W* A2 F

I.Sym., lep
Normala 0.096 0.098 0.098 0.099 0.095 0.100 0.096 0.096
t10 0.3772 0.142 0.244 0.366 0.3622 0.141 0.239 0.356
Logistic 0.476 0.187 0.358 0.4772 0.447 0.157 0.326 0.4562

SC(0.05, 9) 0.684 0.456 0.502 0.6862 0.6702 0.436 0.485 0.668
SC(0.10, 9) 0.8752 0.662 0.763 0.872 0.8602 0.641 0.734 0.859
t4 0.818 0.541 0.745 0.8242 0.797 0.516 0.709 0.8012

SC(0.05, 25) 0.894 0.819 0.836 0.8952 0.893 0.808 0.824 0.8952

Laplace 0.888 0.603 0.881 0.8982 0.858 0.540 0.834 0.8741

SC(0.10, 25) 0.990 0.969 0.981 0.9922 0.988 0.965 0.978 0.9882

t2 0.9942 0.959 0.985 0.993 0.993 0.950 0.985 0.9952

Cauchy 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

II.  Sym., platy
Beta(1,1) 0.989 1.0001 0.973 0.971 0.917 0.9961 0.934 0.872
Beta(1.5, 1.5) 0.714 0.9921 0.723 0.620 0.555 0.9391 0.630 0.479
Beta(2,2) 0.395 0.8761 0.487 0.324 0.317 0.7881 0.436 0.262

III. Asym., lep.
Weibull(2) 0.833 0.9001 0.736 0.735 0.757 0.8261 0.696 0.674
LC(0.05, 3) 0.7811 0.588 0.634 0.761 0.7551 0.567 0.617 0.731
LC(0.10, 3) 0.8861 0.818 0.859 0.872 0.8551 0.787 0.822 0.831
LC(0.20, 3) 0.942 0.944 0.9641 0.926 0.884 0.900 0.9201 0.865
Chi-squared(10) 0.935 0.9362 0.887 0.902 0.9052 0.9052 0.862 0.874
LC(0.05, 5) 0.9902 0.972 0.972 0.989 0.9882 0.971 0.969 0.9882

LC(0.10, 5) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
LC(0.05, 7) 0.9924 0.991 0.990 0.9924 0.9924 0.991 0.9924 0.9924

LC(0.20, 5) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
LC(0.10, 7) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
LC(0.20, 7) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Chi-squared(4) 1.000 1.000 1.000 1.000 1.0004 1.0004 0.998 0.999
Chi-squared(2) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Chi-squared(1) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Weibull(0.5) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Lognormal(0,1) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

IV.Asym.,platy
Beta(3,2) 0.463 0.8711 0.511 0.364 0.403 0.7581 0.453 0.314
Beta(2,1) 0.997 1.0003 0.996 0.993 0.969 0.9971 0.974 0.951

Notes : 

a.   based on 10 000 samples

-     Refer to page 56 on the system of notation used for the superscript.
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