Recent Remote Sensing Innovations and Future Direction

Co-Authors: 2016 NLCD Tree Canopy Science Team

Virginia Tech: V.A. Thomas, R. Wynne, J. Derwin, E. Brooks, R. Saxena

USDA Forest Service: G. Liknes, J. Coulston, K. Megown, G. Moisen, C. Toney, K. Schleeweis

RedCastle Resources: M. Finco, R. Benton, and B. Ruefenacht

Seminar Outline

Introduction

- Science Team Research Questions
 - Do time time series approaches improve tree canopy cover modeling?
 - How has US canopy cover changed from 2011-16?
- Methods
- Results
- Lessons learned to date
- Other innovations and future directions

Do time series approaches help us to predict/map tree canopy cover?

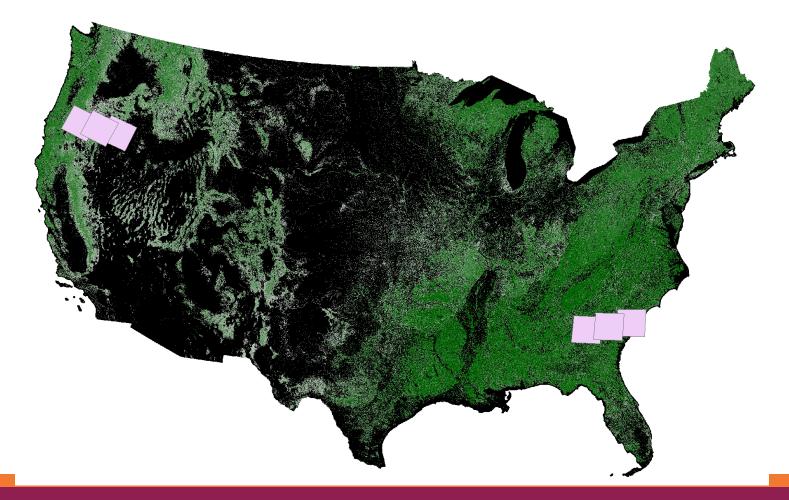
Percent tree canopy from 0-100% With associated pixel-level uncertainty Responsibly deal with change

Why would we want to use time series for TCC?

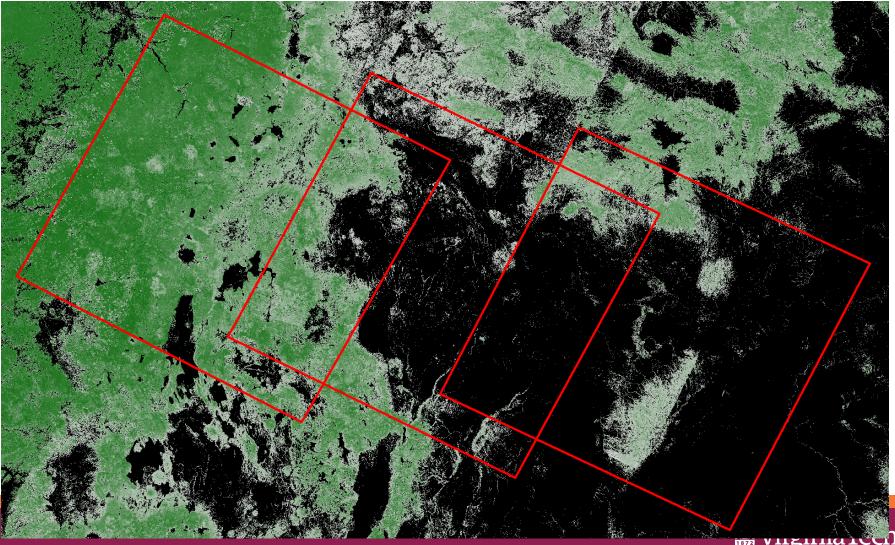
- Understand the dynamics of the system
- Can provide insight into the type of change

 Understand drivers
- Examine trends within the time period

Study Area

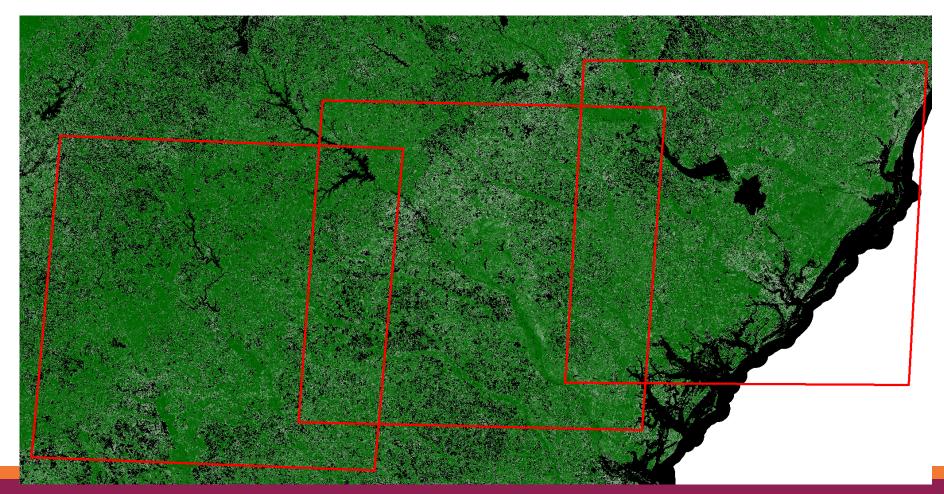


2011 Product - West



Invent the Future®

2011 Product - Southeast



How can we get the "Static" product?

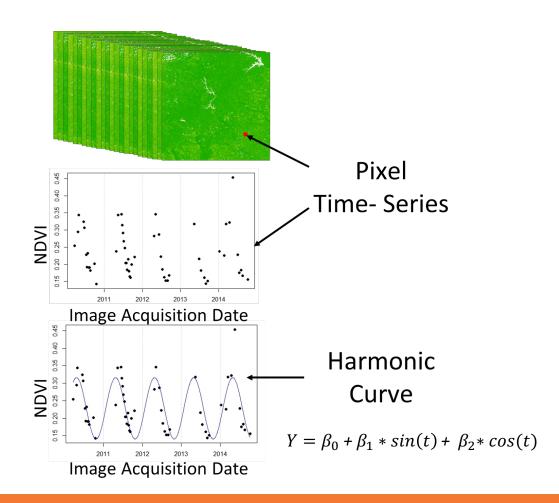
i.e., 2016 Tree Canopy Cover

2 Main Approaches

- 1.) Use the same approach as for the 2011 product
- 2.) Exploit the time series data around the year of interest
 - For 2011: use data from 2010, 2011, and 2012
 - Use newly developed (published) Landsat time series algorithms
 - Harmonic regression, EWMA, Shapes, etc.

Time Series Variables

- NDVI, SWIR 5, SWIR 7 images from 2008-2014
- Constant, 1 Sine Coefficients, 1 Cosine Coefficients
- 9 bands, if all data are used



RSAC Variables

Aspect Mean T1 Aspect Std T1 Cos Aspect Mean T1 Cos Aspect Std T1 Sin Aspect Mean T1 Sin Aspect Std T1 Baileys Sec fmaj T1 DEM 30m Mean T1 DEM 30m Std T1 X2001 LC fmaj T1 L_med_comp_Mean_b1_T1 L_med_comp_Mean_b2_T1 L med comp Mean b3 T1 L med comp Mean b4 T1 L_med_comp_Mean_b5_T1

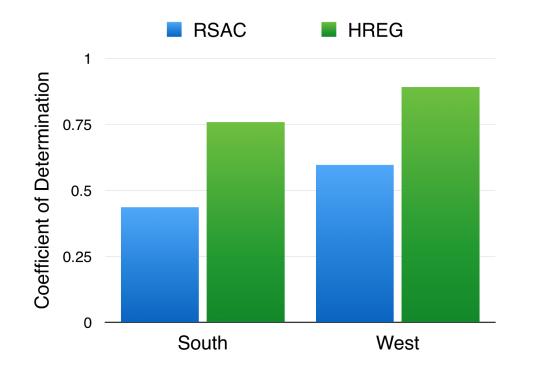
L med comp Mean b7 T1 L med comp Std b1 T1 L med comp Std b2 T1 L med comp Std b3 T1 L_med_comp_Std_b4_T1 L_med_comp_Std_b5_T1 L med comp Std b7 T1 NDMI Mean T1 NDMI Std T1 NDVI Mean T1 NDVI Std T1 Tcap Mean_b1_T1 Tcap Mean b2 T1 Tcap Mean b3 T1 Tcap Mean b4 T1

Tcap Mean b5 T1 Tcap Mean b6 T1 Tcap Std b1 T1 Tcap Std b2 T1 Tcap Std b3 T1 Tcap Std b4 T1 Tcap Std b5 T1 Tcap Std b6 T1 X2001 PctCC Mean T1 X2001 PctCC Std T1 Slope_Deg_30m_Mean_T1 Slope Deg 30m Std T1 X11 LC fmaj T2

43 bands, if all are used

Table 3 :Landsat Acquisition Information				
Path/Row	Number of Bands	Sensors	Date Range	
16/37	199	Landsat 5, 7	2009-2014	
17/37	199	Landsat 5, 7	2009-2014	
18/37	198	Landsat 5, 7	2009-2014	
43/30	235	Landsat 5, 7	2008-2014	
44/30	236	Landsat 5, 7	2008-2014	
45/30	237	Landsat 5, 7	2008-2014	

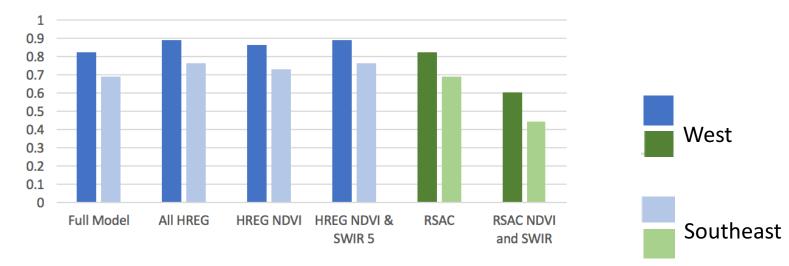
Harmonic regression clearly outperforms median composite for "Head's Up" comparison



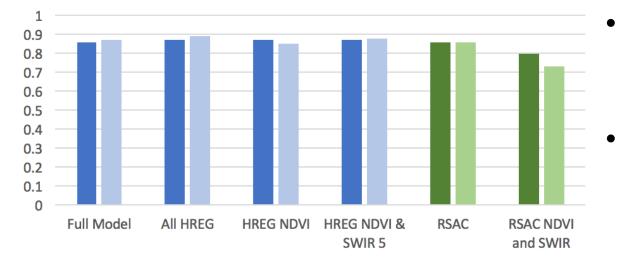
SWIR 1, SWIR 2 & NDVI

Heads up comparison between time series (Green) versus the 2011 approach (Blue)

Time 1



Time 2



- Not much
 difference if all
 data are used.
- Time series regression models much simpler.

How can we get change?

4 Main Change Detection Approaches

- Indirect change
 - Time 2 Time 1
- Direct change
 - separate models for T1, T2, and change
- Stratified direct change
 - Use time series algorithms to flag likely change
 - Fit separate models for change/no change areas
- Multivariate regression approaches

– Where by definition T2-change = T1

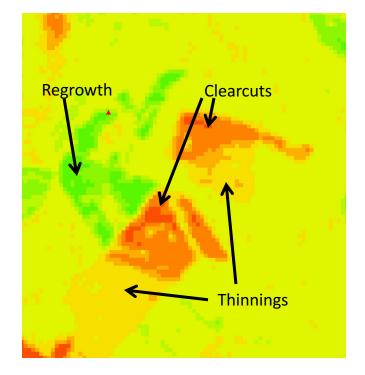
% Canopy Cover Example – NAIP

Regrowth Clearcuts Thinnings

2013 NAIP

Harmonic Regression Residuals Show the growth and loss





2013 Mean Residuals

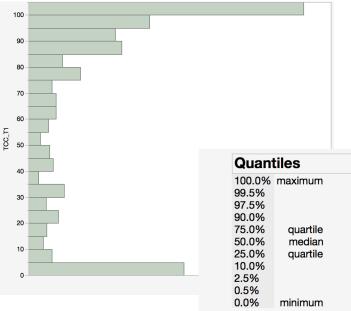
Challenges for modeling change for TCC project

 Time period is relatively short (2010-2013 or 2009-2013)
 Not much change in the PI data

Distributions of the PI Data

TCC_T2

Time 1

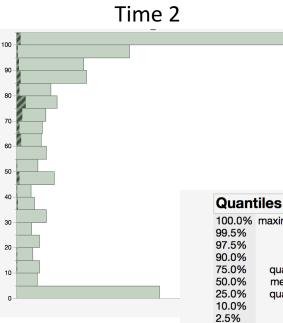


Quant	tiles		
100.0% 99.5% 97.5% 90.0%	maximum	I	100 100 100
75.0%	quartile)	99.1
50.0%	mediar	ı	86.2
25.0%	quartile)	33
10.0%			C
2.5%			C
0.5%			C
0.0%	minimum	1	C
Sumn	nary Sta	atistics	
Mean		66.922258	
Std Dev		37.13669	
Std Err N	Mean	1.0546111	
Upper 9	5% Mean	68.991279	

Lower 95% Mean 64.853237

1240

Ν

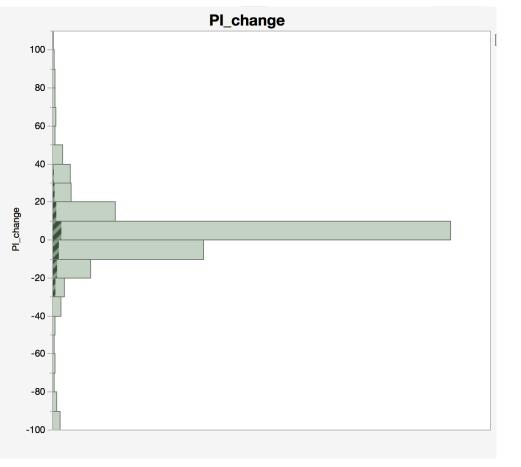


100.0%	maximum	100		
99.5%		100		
97.5%		100		
90.0%		100		
75.0%	quartile	100		
50.0%	median	83.5		
25.0%	quartile	34.9		
10.0%		0		
2.5%		0		
0.5%		0		
0.0%	minimum	0		
Summany Statistics				

Summary Statistics

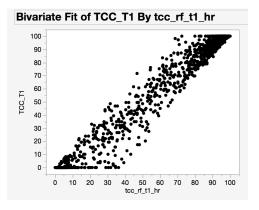
Mean	65.905645
Std Dev	36.835601
Std Err Mean	1.0460608
Upper 95% Mean	67.957891
Lower 95% Mean	63.853399
Ν	1240

Change from the PI Data

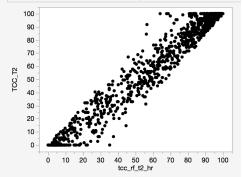


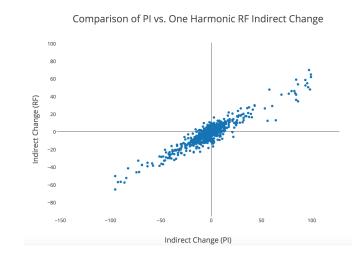
▼TCC	_chang	е		
100			•	
80		Ÿ		
60-			ż	
40]		1	
20				
0-				
-20-				
-40	I		Ŧ	
-60	_			
-80-				
-100			5	
Q uan	tiles			
	maximum		99.1	
99.5%			7735	
97.5%		39	.475	
90.0% 75.0%			10.1 1.9	
75.0% 50.0%	quartile median		1.9 0	
25.0%			-5.5	
10.0%	quartile		-5.5	
2.5%	-43.235			
0.5%	-85.147		.147	
0.0%			95.4	
Summary Statistics				
Mean		-1.4877	24	
Std Dev		19.388261		
Std Err Mean		0.5803724		
Upper 95% Mean		-0.348979		
Lower 95% Mean		-2.626469		
N		11	16	

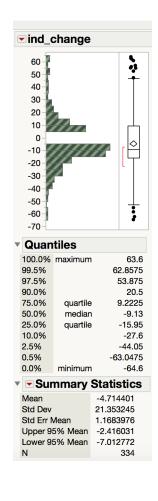
Indirect Change, HREG models



Bivariate Fit of TCC_T2 By tcc_rf_t2_hr







Ability to Predict Change

- Direct Change, incorporating HR residuals
 - $R^2 = 0.7$ for west
 - $R^2 = 0.53$ for south
- PI data does not contain much change (n=1240)
 - T2 mean = 66%
 - T1 mean = 67%
- Sample number very low in areas of high change, limiting any model's ability to capture it (3% of plots --40 -- with plus or minus 65% change
- Maps of change look good, qualitatively (both direct and indirect)
 - But absolute accuracy, spatially, is unknown

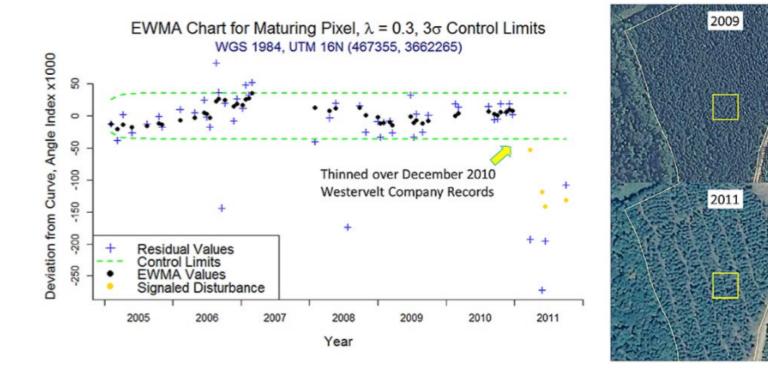
Using change detection algorithms to stratify for change

State-of-the-art

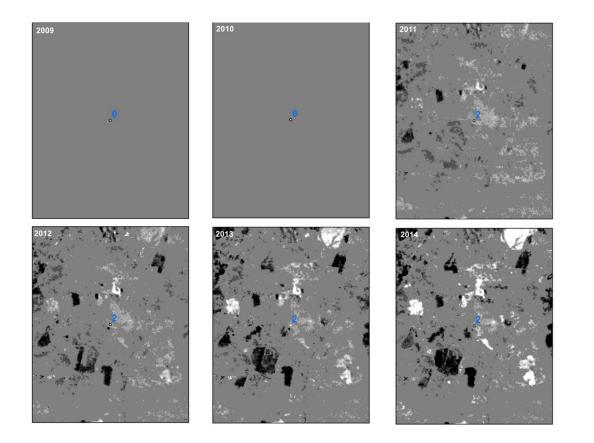
Algorithms in Remote Sensing	Segmentation approaches in general time series literature
• EWMACD, CCDC, SHAPE- SELECT-FOREST	 Kernel regression methods
 LandTrendR, VeRDET 	 Top-down approach
 Model-Map, BFAST, MIICA, VCT 	 Bottom-up approach

Remote sensing vs. the broader picture

Flagging Persistent Change



"Zoomed-in" NDVI Change Flags: 2009-2014



Change models for the Southeast

Southern Analysis (1355 records)

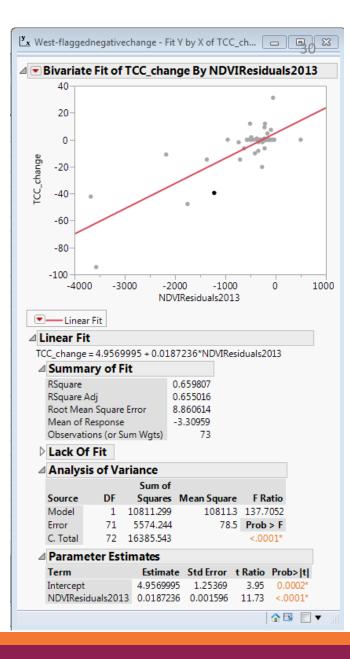
	Change Flag	Ν	Pseudo R2	RMSE
	All EWMA	300	0.61	21.5
	NDVI-EWMA	171	0.64	25.1
EWMA change	SWIR5-EWMA	227	0.62	22.7
flag (2009-	SWIR7-EWMA	196	0.60	24.8
2014)	NDVI&SWIR5	285	0.63	21.5
	NDVI&SWIR7	247	0.65	21.7
	SWIR5&SWIR7	256	0.60	22.6
	All Shapes	537	0.33	16.9
Shapes	Shapes-NDVI	473	0.31	18.0
disturbance	Shapes-DNBR	126	0.18	20.5
(2009-2016)	Shapes-B5	340	0.22	18.8
	Shapes –B7	104	0.05	22.6

 Growth and loss can be modelled together.

2. Improvements over direct change models.

West

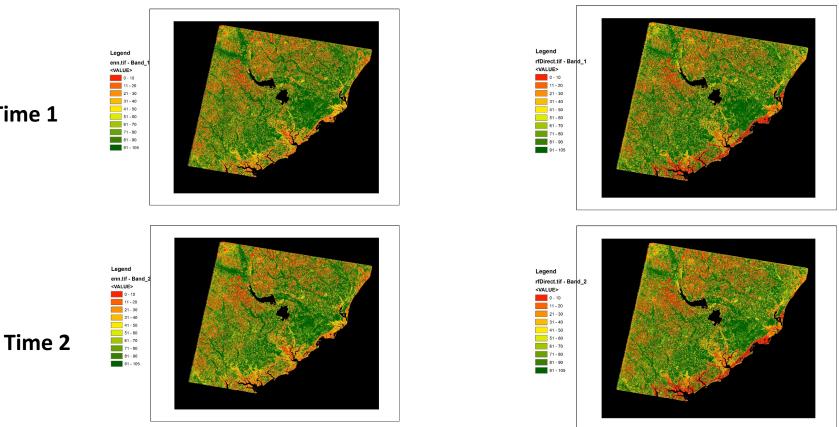
- Growth and loss must be modeled separately
- Models are strong, but not enough change PI points to feel confident.



Multivariate Regression (ENN) for Change

	Time 1		Time 2		Change	
	R ²	RMSE	R ²	RMSE	R ²	RMSE
All Points, EWMA change as a variable	0.79	17.6	0.80	17.1	0.37	16.0
"No Change" Points	0.81	16.7	0.81	16.5		
"Change" Points	0.62	23.7	0.66	21.3	0.59	27.9

Advantage? T2-change = T1



Time 1

32

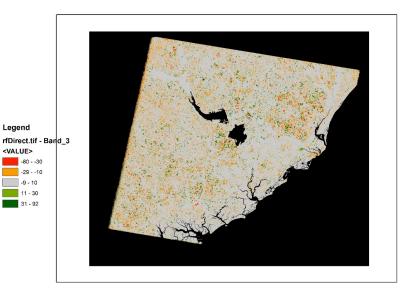
Direct Change

Change looks as expected

Multivariate change

Legend enn.tif - Band_3 <VALUE> - 00 - 30 - 29 - 10 - 9 - 10 - 11 - 30 - 31 - 92

Direct change



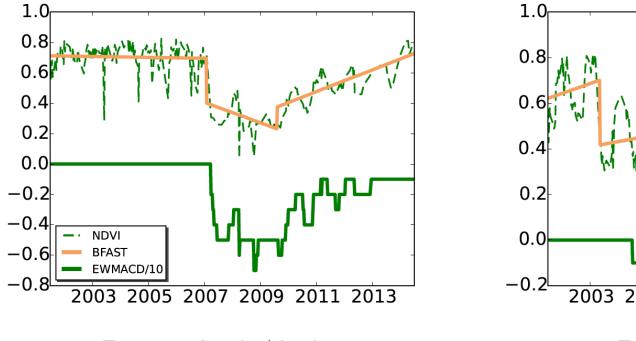
Other Approaches

Polyalgorithm Tree height indicators: Lidar & Photogrammetric point clouds Crowdsourcing

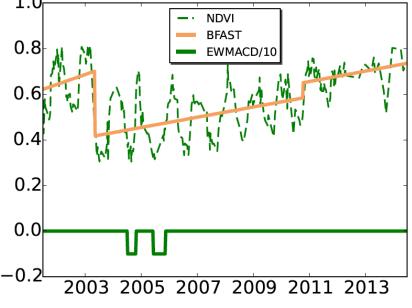
Our polyalgorithm approach

Combining multiple algorithms:

Ensemble	Hybrid	Polyalgorithm
Contains multiple learners called base learners. Base learners are generated from training data by a base learning algorithm which can be decision tree, neural network or any other kind of learning algorithm.	Combines two or more different algorithms that solve the same problem, either choosing one (depending on the data), or switching between them over the course of the algorithm.	<i>Collection</i> of several algorithms that strives to satisfy certain objectives as it determines which particular algorithm to use in a given scenario.
e.g. Random Forests, LCMS	e.g. (i) Introsort for sorting, (ii) Brent's method for root finding.	e.g. Root finding algorithm in NAPSS (uses secant method with requisite tests).

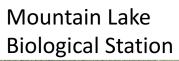


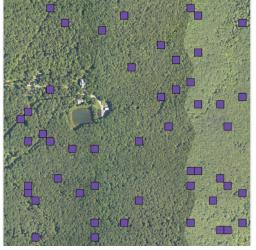
Forest \rightarrow Scrubs/shrubs TCC(2009)=93.6, TCC(2013)=87.2



Forest \rightarrow Scrubs/shrubs TCC(2009)=54.1, TCC(2013)=9.2

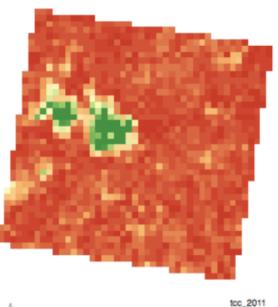
Correlation of lidar to TCC

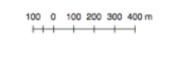




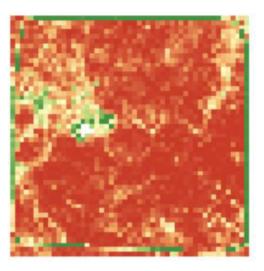
P. Corey Green, 2017

2011 TCC



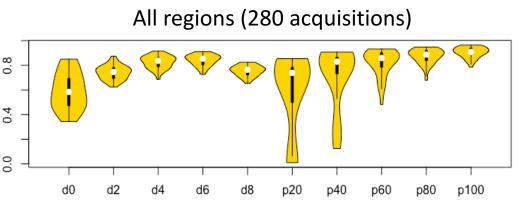


TCC = 64.7 + 0.34PFRAM $R^2 = 0.88$

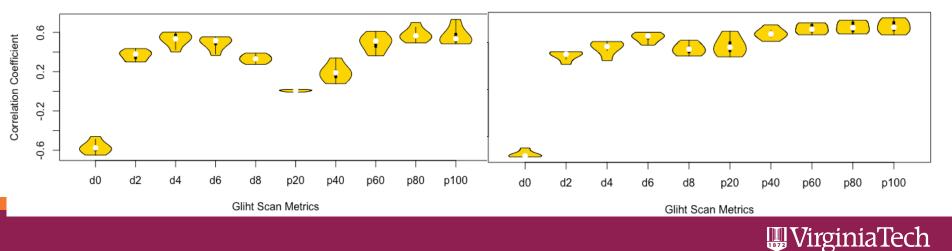


30m lidar model of TCC

Lidar

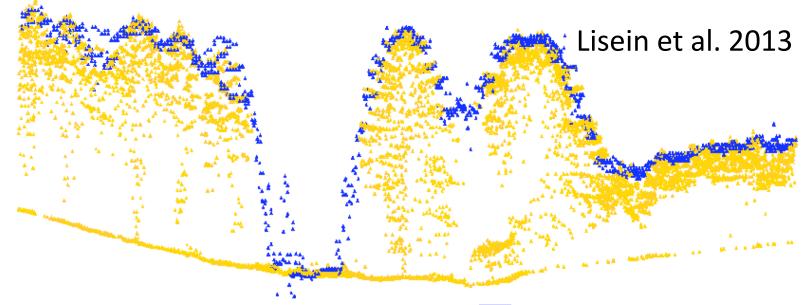


Mean Metrics Rocky Mountain



Invent the Future[®]

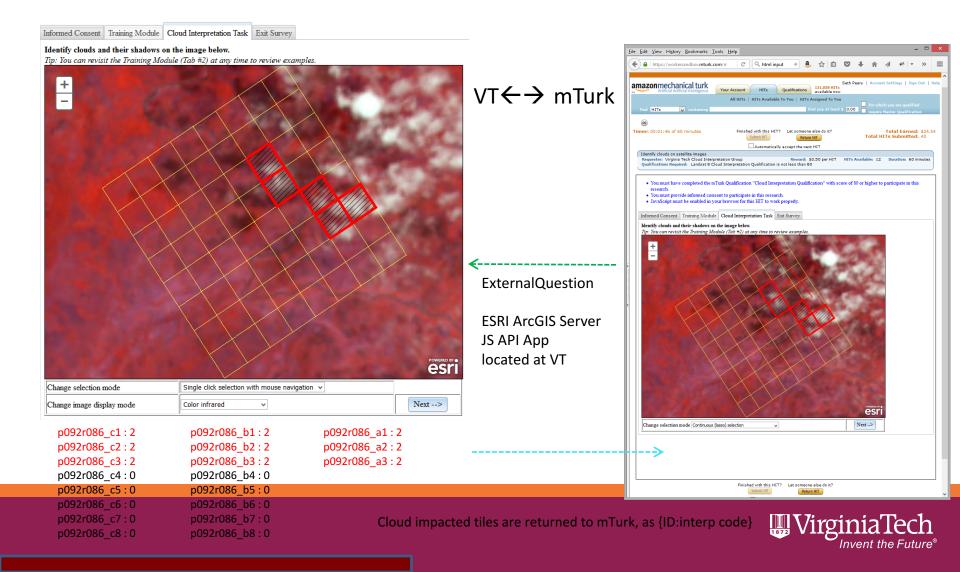
Photogrammetric Heights Could be ³⁹ used instead of lidar



Forest canopy point cloud

PhotogrammetricLiDAR

Developing Crowd-Sourced PI Chips



Crowdsourcing Response Variable

Home *▼* FIA Plots and NAIP ESRI service reference

Concluding Thoughts I

 Multivariate regression (T2 – change = T1) best for direct models of change

- Random forest, ENN, etc.

- Larger number of repeat PI samples, across multiple forest types, needed for robust modeling of change
 - Crowdsourcing could be valuable here
- Multitemporal approaches are needed for direct modeling of change

Concluding Thoughts II

- Lidar data clearly ideal for TCC estimation or, more likely, given coverage, improved training
- High resolution orthoimagery (e.g., NAIP, sensu Ganguly et al.) can be used for TCC training (classification chips and crowdsourcing) and estimation
 - incorporation of DSM with programmatic changes will improve separation from shrubs or other non-tree vegetation

Questions?

V.A. Thomas: thomasv@vt.edu R.H. Wynne: wynne@vt.edu

