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I. INTRODUCTION 

1.1 Statement of the Problem 

The optimal load flow is a static optimization problem. A scalar 

cost function which depends on power system quantities such as power 

generated and bus voltage is minimized. Restrictions, including upper 

and lower limits on these and other quantities, may be specified. The 

solution obtained is static since a new steady-state operating point is 

determined from some initial or assumed point with no dynamics considered. 

There are many formulations to the optimal load flow problem. 

Among these are economic dispatch, minimum transmission loss, minimum 

reactive compensation and minimum pollution dispatch. The first two 

will be described in greater detail below. See reference [10] for a 

more complete bibliography of the possible problems. The solutions of 

the optimal load flow involve manipulations with complex, nonlinear 

equations, thus dictating the use of digital computers. 

1.2 Scope of the Investigation 

Several types of computer methods have been applied to solve the 

optimal load flow problem. Among these, linear, quadratic and nonlinear 

programming have received widespread attention. This research was 

limited to a detailed study of the nonlinear programming solutions to 

the optimal load flow problems. Three acclaimed techniques were then 

selected for computer implementation in order to determine which would 

be most practical. 

Precautions were taken when pror,ramming to assure an unbiased com-

parison. All programs were prepared by the author in FORTRAN and 

1 
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executed at the Virginia Tech Computing Facility on the I.B.M. 370/158 

operating system. Also, common routines were used for different pro-

grams whenever appropriate. For example, a load flow was required for 

some portion of all programs, and a common Newton-Raphson polar form 

routine was used for each one. To test the programs the IEEE standard 

14, 30 and 57 bus systems [12] were used with cost function data taken 

from reference [11]. 



II. MATHEMATICAL FORM'JLATION OF THE 
OPTIMAL LOAD FLOW PROBLEM 

2.1 The Load Flow Problem 

The load flow may be viewed as a base for the optimal load flow 

since the initial and final points must satisfy the network power flow 

equations. The load flow is derived from these equations in general. 

As mentioned above, the Newton-Raphson polar form load flow is used for 

all techniques studied, and it is developed in some detail here [5]. 

See reference (14] or [15] for descriptions of other load flow methods. 

The admittance form of the network power flow equations may be 

written in exponential form for an n-bus system, 
n 

pk - jQk =i:lvkykivi exp[-j(ok+~ki-oi)] 

k=l,2, ••• n 

where, 

pk is the real power injected at bus k, 

Qk is the reactive power injected at bus k, 

vk is the voltage magnitude at bus k, 

ok is the voltage angle at bus k, 

yki is the magnitude of the admittance connecting busses i 

-~ki is the angle of the admittance connecting busses i and 

(2.1) 

and k, 

k. 

It should be noted that this form depends on the following definition 

of the bus admittances, 

where, 

k 1,2, ••• ,n 
i=l,2, ••• ,n 

(2.2) 

Gki is the real part of the admittance connecting busses i and k, 

3 
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and Bki is the imaginary part of the admittance connecting busses i and 

k. The equations (2.1) may be separated into real and imaginary parts 

as follows: 
n 
l VkYk.V. cos(ok + ~k. - o.) 

i=l i i i i 
(2. 3) 

k 1, 2, ... , n 

n 
l VkYk.V. sin(ok + ~k. - o.) i=l i i i i 

(2.4) 

k=l, 2, ... , n 

where PG 
k is the real power generated at bus k, 

PD 
k is the real power demanded at bus k, 

QG 
k is the reactive power generated at bus k, and 

QD 
k is the reactive power demanded at bus k. 

By expanding each equation (2.3) and (2.4) in a Taylor's series and 

retaining only the linear terms, the Newton-Raphson algorithm is 

obtained (see Appendix A): 

~ l N] [MJ --~-- • -- ( 2. 5) 
J l L tiV v 

where tiP is the vector of real power mismatches, 

tiQ is the vector of reactive power mismatches, 

P is the vector of scheduled real powers injected, sched 

Q is the vector of scheduled reactive powers injected, sched 

tic is the vector of voltage angle corrections, 

tiV/V is the vector of voltage magnitude corrections, and the 

matrix of partial derivatives is referred to as the Jacobian matrix. 
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The following steps comprise the Newton-Raphson iteration: 

i) All unknown voltage magnitudes and angles are initialized. 

ii) The Jacobian matrix and power mismatch vectors are computed. 

iii) The voltage correction vectors are found using some type of 

elimination method to avoid taking the inverse of the Jacobian. 

iv) Update voltages and check for convergence against some error 

tolerance specified. If convergence is not obtained, return to 

step (ii) and continue. 

v) Compute slack bus power and desired line flow powers. 

There are variations to this procedure, especially in the handling of 

voltage-controlled busses, and some of these items will be taken up 

later. In section 2.3 the method for checking reactive power generation 

at voltage-controlled busses will be discussed. 

2.2 The Static Optimization Problem 

The static optimization problem can generally be stated as the 

solution which minimizes (or maximizes) a scalar cost function subject 

to equality and inequality constraints on the variables [16], 

minimize f(x,u) (2.6) 
w.r.t. u 
subject to h(x,u) = 0 (2.7) 

and g(x,u) < 0 (2.8) 

where, 

f(x,u) is the scalar cost function, 

h(x,u) is the vector of equality constraints, 

g(x,u) is the vector of inequality constraints, 

x is the vector of load flow variables, 
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u is the vector of minimization variables, 

and there area fewer number of unknown variables, u, than equality con-

straints, h(x,u). The inequality constraints may consist of upper and 

lower bounds on the variables u and x. In addition, they may include 

functional constraints, depending on both u and x, for example, reactive 

power generation limits at the voltage-controlled busses. 

One solution to the above problem depends on the transformation to 

an unconstrained optimization. The Lagrangian method can be used to 

accomplish this transformation. A new cost function, termed the 

Lagrangian, is formed, 

L(x,u,A,µ) T T = f(x,u) + A h(x,u) + µ g(x,µ) (2.9) 

where, 

L(x,u,A,µ) is the Lagrangian function, 

A is the vector of Lagrange multipliers, and 

µ is the vector of dual variables. 

Special caution must be taken when handling inequality constraints since 

they are included in the Labrangian function only when they are violated, 

g,(x,u) > O. This fact is expressed in the exclusion equation, 
1 

T µ g(x,u) = O; µ .:::_ O. (2.10) 

The minimization of L(x,u,A,µ) will result in the minimum point of f(x,u) 

and will satisfy the constraints. Other means of handling inequality 

constraints, such as the penalty functions method, are described in 

conjunction with specific programming techniques. 

Some necessary conditions for the minimum point are given by the 

Kuhn-Tucker theorem[ 16 ~: 



a1 
ox 

01 
au 

7 

0 = +>.Toh+ l~-ox ax ax 
af 

O = l!_ + A Toh + T.lg_ 
au au µ au 

a1 - = 0 = h(x u) a>. ' 
T 0 = µ g(x,u), µ > 0 

(2. lla) 

(2.llb) 

(2.12) 

(2.13) 

Note the similarity between equations (2.7) and (2.8) with (2.12) and 

(2.13). Equation (2.11) turns out to be most useful in solving for the 

Lagrange multipliers, >.. These conditions have been applied to various 

techniques for solving the optimal load flow problem [9], described in 

the next section. 

2.3 The Optimal Load Flow Problem 

The development of the general optimization problem above can be 

applied to the optimal load flow problems of economic dispatch and mini-

mum transmission loss [l]. Throughout this discussion the load flow 

variables are 

p 
the slack bus Q ' at 

v the load busses (2.14) x = 0 , at 
Q , at the voltage-controlled busses. 0 

The remaining system quantities are lumped under the minimization 

variables, 

v the slack bus 0 , at 
p 

u = Q 
at the load busses (2.15) 

p 
the voltage-controlled busses. v , at 



8 

Certain of the u variables are selected for adjustment, depending on 

the specific problem at hand. 

For the economic dispatch problem the minimization variables are 

G all adjustable real power sources, P .• The cost function used for dis-
i 

patching p real power sources is 

f(x,u) 

where, 

p 
r 

i=l 
G f. (P.) 

]. l. 

G f.(P.) is the quadratic cost function for bus i. 
l. l. 

(2.16) 

The adjustable real power sources may be located at any load or voltage-

controlled bus, as well as at the slack bus. Note that a cost must be 

assigned to the slack bus so that the minimization will not try to 

assign all generation to it. The equality constraints for the economic 

dispatch problem are one equation (2.3) for each bus with fixed real 

power injected and one equation (2.4) for each load bus. Inequality 

limit constraints are normally placed on the p adjustable real powers, 

p~ < p~ < p ~ 
i- i- l. 

(2.17) 
i=l,2, ••• ,p 

where, 

p~ is the upper limit of real power generation for bus i, 
l. 

p~ is the lower limit of real power generation for bus i. 
l. 

G Limits are usually specified for reactive power generation, Q., at 
l. 

the m voltage-controlled busses also, 

t G u Q. < Q. < Q. 
i- i- l. 

i=l,2, ••• ,rn 

(2.18) 
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where, 

Q~ is the upper limit of reactive power generation for bus i, 
l. 

Q: is the lower limit of 
l. 

reactive power generation for bus i. 

These limits on reactive power generation may be handled in one of two 

ways. In the load flow the reactive power is clamped at the limiting 

value whenever a violation would occur. This method can be carried over 

to the optimal load flow, called a "hard" constraint. The voltage-con-

trolled bus at which this occurs must then be type changed to a load bus 

as in the typical load flow handling. The alternate method introduces 

functional inequality constraints, equation (2.4) for each voltage-con-

trolled bus with q? limits violated. In addition, the penalty functions 
l. 

method, discussed later, may be used, called a "soft" constraint. 

Finally, limits may be specified on voltage magnitude at any or all 

of the voltage controlled or load busses, 

v: < v. < v~ 
].- i- l. 

i=l,2, ••• ,n 

where, 

v~ is the upper limit of voltage magnitude 
l 

v: is the lower limit of voltage magnitude 
l 

(2.19) 

for bus i, 

for bus i. 

These limits are useful in maintaining a uniform voltage profile over 

the entire power system but may be difficult to satisfy. Typically, 

these constraints are handled by the soft penalty function method. 

For the minimum transmission loss or reactive power dispatch the 

minimization variables are all controllable bus voltage magnitudes. The 

cost function used for dispatching m voltage-controlled busses and the 

slack bus is 



f(x,u) 

where, 

10 

P (V ,o) 
s 

P (V,o) is equation (2.3) for the slack bus. s 

(2.20) 

This function associates transmission loss with the reactive power dis-

patch since in general it is difficult to assign a cost to production of 

reactive power unless, say, reactive compensation was to be installed at 

load busses for some cost. The equality constraints for the minimum loss 

problem are one equation (2.3) for each bus except the slack bus and one 

equation (2.4) for each load bus. Inequality limit constraints are 

normally placed on the m+l controllable voltages, equation (2.19). 

Reactive power generation limits are usually specified at the m voltage-

controlled busses, equation (2.18). Limits may also be specified on 

load bus voltage magnitudes, equation (2.19), as in the economic dis-

patch. 

2.4 Summary 

The basis for the optimal load flow has been shown to be the 

conventional load flow. The problems of real and reactive power dis-

patch have been developed from the static constrained optimization 

problem. The transformation to unconstrained minimization has been dis-

cussed along with some necessary conditions for solution. The optimal 

problems have been posed with cost functions and constraint equations. 

Solution techniques will be described in the next chapter. 



III. NONLINEAR PROGRAMMING SOLUTIONS TO 
THE OPTIMAL LOAD FLOW PROBLEM 

3.1 Review of Early Solutions 

In the late 1960's many utilities in the country had digital corn-

puters on-line to economically schedule real power generation using 

the B constants rnethoi.13 ~his method minimized the cost function equa-

tion (2.16) for p real power sources, subject to the real power balance 

equation for an n-bus system 

I p~ + PL - r P? 
i=l ]. i=l ]. 

0 (3.1) 

where PL is the real power losses in the system. 

The B constants arise in the calculation of PL from a loss formula such 

as 

(3. 2) 

where PG is a vector of real power generations, 

B is a scalar, 
0 

B1 is a vector, and 

B2 is a matrix. 

The B1 values are constant for a fixed system configuration and, thus, 

must be recalculated for any change in the system. The method is 

restricted to the adjustment of real power generations subject to 

limits as given in equation (2.17). Applying the Kuhn-Tucker condition 

equation (2.11) to the Lagrangian function equation (2.9) for p real 

power sources results in 

0 = 
af. 
__ i + 
a PG 

i 

11 

apL 1.c-c-1>, i=l,2, ••• ,p (3.3) 
aP. 

]. 
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G where af./aP. is the incremental cost and 
i i 

a PL 
(~- - 1) is the penalty factor. 
a PG 

i 

This method has achieved widespread application with considerable 

success, but it lacks the flexibility to solve the more general formu-

lation of the optimal load flow as developed in section 2.3 above. 

A similar method was later developed by Dopazo, Klitin, Stagg and 

Watson [6] which replaced the approximate loss formula equation (3.2) 

with an exact equation derived from 

h QL · h . 1 . h w ere is t e reactive power osses in t e system, 

I is the vector of bus currents, and 

Z is the bus impedance matrix. 

The exact loss equation then becomes 

where P is the vector of net real bus powers and 

Q is the vector of net reactive bus powers. 

The a and 8 elements are calculated from the equations 

r .. 
a .. = ~ cos(o. - o.) iJ v.v. i J 

i J 

r .. 
- _!:2_ sj n(o. v.v. i 

i J 
0.) 

J 

(3. 4) 

(3.5) 

(3.6) 

(3. 7) 

h i h . f h b . d . . . th were r .. st e resistance component o t e us impe ance matrix 1J iJ 
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element. When the Kuhn-Tucker conditions are applied to this formula-

tion, the result is again equation (3.3); however, the terms {aPL/aP?) 
l. 

are now exact expressions and referred to as the incremental transmis-

sion losses. An extension schedule reactive power generation 

~= 0 
af. a PL = __ l. + A-

aq? aQG aq? 
l. i l. 

(3.8) 

however G is function of G that f. (P.) now a Q. so 
l. l. l. 

this equation reduces to 

~ =O 
a PL 
A-

aq? aq~ 
l l 

(3. 9) 

While this method extended can adjust reactive power generations sub-

ject to limits as given in equation (2.18), the bus voltage magnitudes 

are not schedulej, hence a minimum loss dispatch cannot be assured [9]. 

This method does provide a prelude to the optimal load flow solution. 

3.2 Steepest Descent Minimization 

The method of steepest descent is probably the most popular and 

widely used technique for optimizing nonlinear problems of several 

variables. Ignoring constraints, the method is to compute iteratively 

a succession of control parameters from the equation 

( i+l) (i) (") ( ) u = u - c 1 Vf(x,u i ) (3 .10) 

h (i+l) . h d. f 1 were u is t e succee ing vector o- contra paramPters, 

(i) . h 1 f 1 u is t e ast vector o contra parameters, 

Vf(x,u{i)) is the present gradient of the cost function, af(x,u)/au, 

and c(i) is a nonnegative scalar which must be selected according to 

the equation 
. . . f( (i+l)) minimize(i) x,u 

w.r.t. c 
(3.11) 
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That is, u is adjusted according to a line search along the negative 

gradient, -Vf(x,u), and c is the distance to the minimum in that direc-

tion (see Figure 1). However, the beautiful simplicity of this method 

is obscured when constraints are considered, since f and g become com-

plicated equations with many varied terms. 

This method was first applied to solve the optimal load flow by 

Dommel and Tinney [l], who formulated the problem in the general form 

of section 2.3. This method provides a much more flexible solution 

than had previously been possible. A choice of cost functions is now 

available. For example, to minimize cost and losses simultaneously the 

cost equations is 

f(x,u) = 
p G l f.(P.) + P (V,o) 

i=l 1 1 s 
(3.12) 

subject to the network power flow equations. Control parameters for 

this problem are the p adjustable real power sources for which cost 

equations, f., have been described and m controlled voltages. 
1 

Hard limit constraints are normally placed on these quantities except 

for the following variable. The slack power is dependent on the net-

work power flow equations and thus cannot be constrained beforehand due 

to unknown system losses. When this control variable exceeds, say, its 

upper limit, a penalty function can be added to the cost equation of 

the form 

(3.13) 

where r is a nonnegative, scalar penalty factor for the slack bus s 

power. 
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I\ 
Initial point 

Figure 1. Steepest Descent Minimization 
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This equation provides a soft limit or constraint which brings PG(V,o) s 
back near its upper limit (see Figure 2). The relative magnitude of 

r determines how much the slack bus power is allowed to deviate from s 

its hard limit. To decrease this deviation, the value of the penalty 

factor should be increased. 

Similar penalty functions are used to constrain reactive power 

generations which have been violated at voltage controlled busses. A 

violation of the lower limit at bus i, say, would result in a penalty 

function of the form 

G w. (Q.) 
1 1 

where s. is penalty factor. 
1 

G s. (Q. 
1 1 

(3.14) 

Finally, penalty functions are also used when it is desired to con-

strain the voltage magnitude within limits at any or all of the load 

busses. A penalty function for a violation of the upper limit at bus 

j, say, would have the form 

w. (V .) 
J J 

where t. is the penalty factor. 
J 

(3.15) 

It should be noted that the penalty function for a soft limit should 

be added to the cost function, f(x,u), only if it is violated or 

"active". All inactive penalty functions should be omitted from the 

cost function before the minimization procedure begins. 

The scalar cost function, or Lagrangian, to minimize costs and 

losses thus formed with the addition of penalty functions becomes 



w(x) 
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Soft limit 
I 
I / 1 · Hard limit 

1/ 
I 

R, 
x 

u x 

Figure 2. Penalty Function for Soft 
Limit Constraints 

x 
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L(x,u) p T ~(V,o)j f(x,u) + [A AQ] ------ + 
Q (V, o) 

(3.16) 

The gradient, or vector of first partial derivatives, of this equation 

must be taken with respect to all variables to satisfy the Kuhn-Tucker 

necessary conditions for the minimum. Details of this derivation for the 

minimum costs and losses case are found in Appendix B. Since hard con-

straints are maintained on all control variables, the dual variables, 

µ's do not need to be evaluated in the minimization procedure and are 

simply set equal to zero. 

The following steps comprise the steepest descent optimal load flow: 

i) Initialize all control voltages and real power generations. 

ii) Perform a load flow by the Newton-Raphson technique and save the 

final Jacobian matrix for use in step (iv). 

iii) Determine all active inequality constraints at the solution point 

and augment the cost function with penalties. 

iv) Solve for the Lagrange multiplier, using the gradient w.r.t. the 

load flow variables, equation (2. llb). 

v) Solve for the control variable corrections using the gradient 

w.r.t. the control variables, equation (2.lla), adjust control 

variables using equation (3.10), and check for convergence against 

some error tolerance. If convergence is not obtained, return to 

step (ii) and continue. 
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vi) Compute final costs and losses at the minimum. 

The critical step which determines the success of the minimization 

procedure is step (v) where the control variables are adjusted. Several 

possible methods have been suggested to accomplish this, including a 

line search, or one-dimensional minimization, which was selected. In 

this step the cost function is approximated by the quadratic costs, 

equation (2.16), to become 

minimize 

w.r.t.c 

G L.f .(P. 
i i i 

p 
cVf.) 

i 

p 
where Vf. are the gradient terms for the real power generations 

i 

(3.17) 

and c is the distance moved in the feasible direction (see Figure 3). 

A final modification is possible when control variable corrections change 

sign in succeeding iterations, indicating their proximity to the mini-

mum point. It has been found that by using a backward difference form-

ula to approximate the second partial derivatives of the cost function, 

or Hessian terms, improved control variable corrections can be obtained. 

This can be calculated for the kth iteration from 

u. 
i 

(k-1) 

Vf. (k) 

u. 
i 

i 

(k) 

where H.(k) is the Hessian term at the kth iteration. 
i 

(3.18) 

The control variable corrections then become, for H (k) positive, 
i 

(3.19) 

otherwise ~u~k) should be set to zero since a descent step will not be 
i 
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assured. 

The performance of this method will be evaluated in the next chap-

ter when results for actual systems taken from reference [12] are pre-

sented. 

3.3 Fletcher-Powell Minimization 

The Fletcher-Powell method[l6 ] was among the earliest to form the 

inverse Hessian matrix of second partial derivatives for a nonlinear 

function f(y). An iteration scheme is used which requires the evalua-

tion of the gradient vector of first partial derivatives of the func-

tion at each step in the minimization. Successive corrections are 

then made to the variables by Newton's method: 
2 -1 

~y = -(V f(y)) (Vf(y)) 

where ~y is the variable correction vector, 

v2f(y) is the Hessian matrix, and 

Vf(y) is the gradient vector. 

(3.20) 

If the function f(y) were a quadratic, this procedure would arrive at 

the minimum point in one step from any starting point. However, for 

most problems a series of adjustments must be made and the inverse 

Hessian and gradient calculated at each step. 

The procedure to form the inverse Hessian by the Fletcher-Powell 

method is as follows: 

i) Initialize the inverse Hessian to any symmetric positive defi-

nite matrix, for example, the identity matrix and calculate 

the gradient vector. 

ii) Calculate the correction vector, or feasible direction, from 

equation (3.20) above. 



G G 
I: . f. (P. - cfi.P.) 

l. l. l. l. 

21 

c . min 

Figure 3. Quadratic Fit Line Search 

c 
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iii) Perform a line search to optimally adjust the y variables, 

equation (3.17), and compute the new gradient vector. 

iv) Compute the inverse Hessian correction matrix according to 

the Fletcher-Powell algorithm[ll] and check terms for conver-

gence against some prescribed error tolerance. If it is not 

obtained, return to step (ii) with the new gradient vector and 

continue. 

v) Evaluate the cost function, f(y), at the minimum point. 

This method was first applied to the optimal load flow solution by 

A. M. Sasson[ 2 l. In this early work several techniques were considered 

for transformation from constrained to unconstrained minimization. 

Methods due to Fiacco-McCormick, Lootsma, and Zangwill were discussed, 

but none were found to have special advantage for this problem. In 

his later work[J], Sasson develops the method of Powell to complete 

this solution of the optimal load flow. Powell's method, similar to the 

method of penalty factors, augments the cost function with terms re-

lated to the equality and active inequality constraints 

L(y,s,r) 
(h.(y)+s.) 2 (g.(y)+s.) 2 

f (y) + E. 1 1 + E. J J 
i r. J r. 

l J 
(3. 21) 

wheres. and r. are nonnegative scalars associated with the equality 
l l 

constraints h.(y) and 
l 

s. and r. are nonnegative scalars associated with the inequality 
J J 

constraints g.(y). 
J 

By successive adjustment of the s and r factors at each step in the 

minimization, the larger constraint vjolations can be more severely pen-

alized. Thus the convergence of the method can be improved. This 
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method is more powerful than the method of steepest descent described 

in the previous section. The square error type terms in equation (3.21) 

involving the equality constraints, h(y), actually compell each success-

ive point in the minimization to lie within the load flow solution 

space. Thus the requirement for intermediate load flow solutions during 

the minimization procedure is eliminated. For this reason Fletcher-

Powell has been referred to as the first completely nonlinear optimal 

load flow solution technique. Further, by setting the cost equation, 

f(y), to zero, this method will solve the conventional load flow prob-

lem. 

The minimization variables, y, which are adjusted by the Fletcher-

Powell optimal load flow are the complex bus voltages only. All cost 

and constraint equations dependent on real and reactive powers are 

written in terms of these variables using equation (2.1) in rectangular 

form: 

n 
l [Ek(E.Gk. + F.Bk.) + Fk(F.Gk. - E.Bk.)] i=l 1 1 1 1 1 1 1 1 

(3. 22) 

k = 1, 2, ... , n 

+ (F.Bk.) - Ek(F.Gk. - E.Bk.)] 1 1 1 1 1 1 
(3. 23) 

1, 2, ... , n 

where E. is the real part of the complex voltage at bus i and F. is the 
1 1 

imaginary part. 

The constraint equations for bus voltage magnitude are written in terms 

of E. and F. by using the equation 
1 1 

v. 
1 

(3.24) 
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The gradient vector of equation (3.21) is taken with respect to all E. 
1 

and F., except F at the slack bus, since the reference angle is zero. 
1 s 

Details of the gradient terms are found in Appendix C. 

The procedure of the Fletcher-Powell optimal load flow is as foll-

ows: 

i) Select an initial point and solve the load flow problem using 

any method available. Set the initial inverse Hessian equal to 

the identity matrix. 

ii) Perform the Fletcher-Powell method to construct the inverse 

Hessian matrix by successively forming the gradient of equation 

(3.21) and updating the minimization variables. 

iii) Check the minimization variables for convergence against some 

prescribed error tolerance. If it is not obtained, adjust the 

r. ands. factors by the Powell method and return to step (ii) 
1 1 

to recalculate the inverse Hessian. 

iv) Compute final costs at the minimum point. 

It has been found that by using the previous value of the inverse Hes-

sian from step (ii) when returning from step (iii) to recalculate the 

matrix, then convergence is considerably faster than if the initial 

identity matrix is used. The line search used in step (ii) is similar 

to the one employed in the method of steepest descent; however, in this 

method the control variables are not directly adjusted. Therefore, a 

cubic line fit is used to approximate the cost function. Once the 

feasible direction has been found from equation (3.20), successive 

steps of distance c are taken until the minimum point is enclosed. 

This is detected by computing the norm of the gradient at each step from 
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the equation 

lvf(y)I T 
~y Vf(y + c~y) (3.25) 

where IVf(y) I is the scalar norm and 

c is the total distance moved in the feasible direction ~y. 

When the norm of the gradient changes sign in succeeding steps, then 

the minimum point is enclosed. The value of c . can now be calculated min 

from the values of the cost function and gradient at each of the neigh-

boring points (see Figure 4)[l6 l. 

Details of the Powell method of adjusting the r. ands. factors 
1 1 

will be addressed in the next chapter when the performance of this 

method is described. 

3.4 Hessian Matrix Minimization 

Experience with the Fletcher-Powell method of constructing the 

inverse Hessian matrix led Sasson, Viloria, and Aboytes to try direct 

evaluation of the Hessian matrix for a specific cost function[ 4 l. 

Then equation (3.25) above can be rewritten as 

(V2 f(y))~y = -Vf(y) (3.26) 

and some form of matrix elimination used to evaluate ~y. However, the 

form of the cost function, equation (3.21), with Powell's method of 

transformation applied, presents an imposing problem to differentiate 

and evaluate. To overcome this, a simplified approach to handle con-

straints was taken. An augmented cost function was used which consisted 

of the cost equation f(y) plus weighted sums of square error type con-

straint terms 



A f(y + ct:.y) 
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Figure 4. Cubic Fit Line Search 

c 
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L (y, t) 2 2 f(y) + E.t.(h.(y)) + E.t.(g.(y)) 
1.1. 1. JJ J 

(3.27) 

where t. are nonnegative scalar factors for equality constraints h.(y) 
l. 1. 

and t. are nonnegative scalar factors for inequality constraints g.(y). 
J J 

The Hessian matrix method closely parallels the Fletcher-Powell minimi-

zation in several respects. Here the minimization variables are, again, 

the complex bus voltages; however, in this case they are separated into 

the voltage magnitude and angle components. The Hessian matrix of 

second partial derivatives and the gradient vector of the cost function 

can be developed in terms of the Jacobian matrix of first partial 

derivatives in polar form. 

The procedure for the Hessian matrix optimal load flow is as fol-

lows: 

i) Select an initial point and obtain a load flow solution using 

the Newton-Raphson method in polar form. Store the final 

Jacobian matrix for use in step (ii). 

ii) Evaluate the gradient and the Hessian from the terms of the 

Jacobian matrix. 

iii) Calculate the feasible direction from equation (3.26) using 

some form of matrix elimination. 

iv) Perform a line search to determine the optimal correction 

vector. 

v) Check the convergence of the voltage correction against some 

prescribed error tolerance. If it is not obtained, adjust the 

t. factors and return to step (ii). 
l. 

vi) Evaluate the cost function at the minimum. 
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The line search used in step (iv) is the cubic fit scheme developed in 

the last section (see Figure 4). The t. factors are simply increased at 
1 

each iteration if the associated constraint is violated. 

Further details of this procedure are included in the next chapter 

when the program results are discussed. 

3.5 Summary 

The nonlinear programming methods considered for the optimal load 

flow solution have been presented. Some of the mathematical details 

are developed further in the appendices. For a more complete explana-

tion of any of the methods described here, refer to the original works. 



IV. COMPUTER PROGRAMMING RESULTS 
AND COMPARISONS 

4.1 Computer Programs 

In the preparation of these computer programs, it was important 

that care be taken to assure, as much as possible, fair comparisons. A 

main program was written for each method to direct the execution of 

various subroutines. These subroutines then contain the various calcu-

lations which are performed; for example, construction of bus admittance 

matrix, Jacobian matrix, line searches, etc. The data is stored in 

conunon blocks which are accessed by each subroutine. This approach per-

mits the direct substitution of those subroutines which are required by 

each method. 

The data for the examples tested was the same for all methods. 

Initial starting values were also equal, except for the various penalty 

factors which were handled individually. Therefore, a common data ini-

tialization routine was written. Also, the bus admittance matrix was 

required for each method. Since no additional calculations, such as 

long line models, were needed, the bus admittance matrix was formed in 

the initialization routine. This eliminated the need to store the line 

data. The initial bus voltages are assigned values in this routine so 

that a load flow can be solved. A flat start at each bus of one per 

unit voltage magnitude and zero phase angle referred to the slack bus 

was used for all examples. Finally, the control parameters must be 

assigned values before the initial load flow can be solved. For the 

minimum costs and losses case, these are the adjustable real power gen-

29 
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erations and the controllable voltage magnitudes. These voltage mag-

nitudes are left at one per unit unless their upper or lower limit is 

violated. If this occurs, they are set to their lower limit. The 

initial real power generations must be chosen so that demand is met 

without limit violations, except perhaps at the slack bus. This is 

done by hand calculation prior to the computer run and supplied to the 

initialization routine as input data. 

The next step in each of the programs is the initial load flow. 

This is required to begin each minimization at a solution point of the 

system; however, some inequality constraints may be violated. Although 

the two completely nonlinear methods are capable of solving the load 

flow through a minimization technique with cost equations set to zero 

the Newton-Raphson load flow in polar form was used for all methods for 

the following reasons. 

i) The Newton-Raphson load flow is required in polar form as a 

step in each iteration of the steepest descent minimization 

approach. 

ii) To solve the load flow by the Fletcher-Powell minimization 

requires that the inverse Hessian matrix be formed from an 

initial value such as the identity matrix. This is a lengthy 

procedure which requires more storage when compared with the 

Newton-Raphson approach. 

iii) The Hessian matrix minimization can be used to obtain a load 

flow solution; however, to form the Hessian matrix, terms from 

the Jacobian are calculated. Therefore, it is more convenient to 
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use Newton-Raphson with fewer computations. 

The steepest descent and Hessian matrix methods each requires the 

solution of linear systems of equations so a common triangular factori-

zation routine and a back substitution routine were used. This was 

chosen since the steepest descent method required reuse of the factored 

Jacobian from the load flow in the solution of the Lagrange multipliers. 

The Fletcher-Powell and Hessian matrix methods each utilizes the cubic 

fit line search and a common routine was also used for this one-dimen-

sional minimization. 

Simplified flow charts of the computer programs are shown in 

Figures 5-8. In these figures each block represents the individual 

subroutines used. The main program for each method performs the indi-

cated convergence tests and controls the sequence of operations. 

Although some of the subroutines not mentioned above appear to be 

required by more than one method, recall from the developments in 

Chapter Three tha1· the augmented cost functions for each of the mini-

mization methods differed. Thus the gradients will differ for each 

method, as can be seen in the appendices. This is also true for the 

penalty factor adjustments in each method. Penalty factors are ad-

justed to increase the corrections on minlmization variables which still 

have large limit violations after one or two iterations. However, the 

penalty functions used to augment t11e cost functions in each method 

differ with regard to factors and variables. 

The final step in each procedure is then to compute the final cost 

and print important data, such as the time required for execution which 

is of interest here. 
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4.2 Penalty Factor Adjustment 

As seen in the flow charts of the previous section, all networks 

have the capability of adjusting penalty factors to more strictly pena-

lize constraint violations. Each method employs a different mechanism 

to effect these adjustments. The relative magnitude of the penalty 

terms must be kept small in each cost function when compared with the 

cost equations. If these penalty terms become too large, convergence 

will be affected. 

The following are techniques employed by the methods to adjust the 

penalty factors when limit violations are not reduced fast enough. 

i) In the steepest descent optimal load flow all penalty factors 

are initially set equal to 10. If limits are not met on ine-

quality constraints after two iterations, they are increased 

by a factor of 5 or 10, depending on the amount of the viola-

tion at each active constraint. 

ii) The Fletcher-Powell optimal load flow requires the adjustment 

of two penalty factors for each active constraint. Initially, 

1 all ri factors are set to 20 and si to zero. If the constraint 

violations are small after each iteration, the s. factors are 
1 

set equal to the magnitude of the violations. If the viola-

tions are large, both the r. and the s. factors are reduced 
1 1 

by a factor of 100. 

iii) The Hessian matrix optimal load flow takes a similar approach 

as was taken with steepest descent. All penalty factors are 

initially set equal to one. Then after two iterations, factors 
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associated with active constraints are increased by a factor 

of 5 or 10 depending on the relative size of the violation. 

All of the penalty factor adjustment schemes successfully served 

their purposes of keeping the limit violations within the feasible re-

gion at the minimum solution point. Numerical instability can occur in 

any method when the minimum lies on one or more of the boundary con-

straints. 

4.3 Comparison of Computer Results 

Computer results for the minimum costs and losses optimal load 

flow solution were obtained for the IEEE 14-, 30- and 57-bus test sys-

tems [lZ]. Quadratic cost equation data was taken from reference [11] 

and is shown in Table 1. The cost at the minimum solution point for 

each case is shown in Table 2. All methods achieved reasonable accuracy 

in attaining the minimum cost; however, the steepest descent optimal 

load flow would tend to oscillate in the proximity of the minimum point. 

-4 -3 Therefore, the error criterion was relaxed from 10 to .8•10 per 

unit for that method. 

A comparison of the execution time and number of iterations for 

each case is shown in Table 3. The times shown are for execution time 

only and do not include the compiler time. Clearly, steepest descent 

approaches the neighborhood of minimum point fastest, but if allowed to 

-4 complete an additional iteration, will not satisfy the 10 tolerance 

described above for most cases tried. Therefore, these times should be 

weighed against the degree of accuracy desired. It is possible that 

the Hessian matrix method could achieve a very high degree of accuracy 
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faster than steepest descent. 

A comparison of the array storage for each case is shown in Table 

4. These values reflect only the array storage and do not include the 

object code. Again, the steepest descent method requires the least 

amount of array storage for all of the cases tried. Sparsity tech-

niques were not attempted because of the small size of these test sys-

tems compared with the large size of practical systems. However, it is 

doubtful that either of the other systems would be able to achieve less 

storage than steepest descent for these reasons. 

i) In the steepest descent method the bus admittance and Jacobian 

matrices are used, which have the same relative sparsity. 

ii) In the Fletcher-Powell optimal load flow, the inverse Hessian 

is formed, which is a large full matrix. In addition, several 

large, full matrices are required. 

iii) The Hessian matrix optimal load flow uses the bus admittance 

and Jacobian matrices and, in addition, the large Hessian ma-

trix is formed. This matrix is less sparse than the Jacobian 

due to coupling terms. 

4.4 Alternative to Newton-Raphson Load Flow 

From the results presented in the previous section, steepest 

descent appears most promising as an applied optimal load flow technique. 

However, the execution times for the cases tried indicate that improve-

ments are necessary before on-line applications become popular. For 

these examples it was noted that the largest amount of execution time 

was spent in constructing and factoring the Jacobian matrix for repeated 
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14-bus 

30-bus 

57-bus 
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Table 1. Quadratic Cost Equation Data 
for the Test Systems 

Bus No. co cl 

1 50.0 245.0 

2 50.0 351.0 

6 50.0 389.0 

1 50.0 245.0 

2 50.0 351.0 

11 50.0 389.0 

1 50.0 245.0 

3 50.0 389.0 

8 50.0 285.0 

12 50.0 351.0 

G G 2 G f. (P.) = cO (Pi) + clPi + c2 1 1 

c2 

105.0 

44.4 

40.6 

105.0 

44.4 

40.6 

105.0 

44.0 

95.0 

40.6 
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Table 2. Comparison of Final Costs at the Minimum Point 

S~stem Stee2est Descent Fletcher-Powell Hessian Matrix 
Cost Cost Cost 

($/hr) ($/hr) ($/hr) 

14-bus 761. 29 760.87 760.50 

30-bus 1,136.44 1,135.79 1, 135. 71 

57-bus 6,524. 72 6,523.54 6,523.62 



Table 3. Comparison of Program Execution Times and Number of Iterations 

SteeEest Descent Fletcher-Powell Hessian Matrix 
System E;~.:.:c.:uLion Iterations E::ecution Iter.'.ltions Execution Iterations 

Time Time Time 
(sec) (sec) (sec) 

14-bus 9.23 4 33.54 5 14.76 3 

30-bus 38.13 4 114.79 4 52.44 3 

57-bus 147.60 5 529.10 5 162.30 4 

.c-
I-' 
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14-bus 

30-bus 

57-bus 
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Table 4. Comparison of Program Array Storage 

Steepest Descent 
Storage 
(K BYTE) 

13. 72 

31.64 

57.59 

Fletcher-Powell 
Storage 

(K BYTE) 

21.39 

52.41 

91.87 

Hessian Matrix 
Storage 

(K BYTE) 

17.84 

39.75 

73.34 
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load flows. Some reduction of time is possible by reusing the factored 

Jacobian for a second voltage correction when nearing the solution. 

This technique could also be applied to the Hessian matrix optimal load 

flow with regard to reusing the Hessian matrix when nearing the minimum 

solution point. 

Another technique has been employed which decouples real power and 

reactive power minimizations using the Fletcher-Powell method[Bl. How-

ever that method was not found attractive from the studies performed 

here. It is also possible to decouple Newton-Raphson load flow equa-

tions [71. Stott and Alsac developed an approach, called fast decoupled, 

to the Newton-Raphson load flow which neglects the off-diagonal Jacobian 

submatrices and approximates the remaining diagonal submatrices by con-

stant matrices in equation (2.5). The voltage magnitude and angle 

corrections are then found separately in alternate iterations. This 

approach has been found to work well for most cases. It is identical 

with the Newton-Raphson method except for the evaluation of the Jacobian 

matrix, which is now constant and can be left in factored form. 

The steepest descent optimal load flow program was modified by re-

placing the common load flow with the fast decoupled load flow (see 

Figure 6). Computer results were obtained for IEEE 14-, 30- and 57-bus 

systems. A comparison with the Newton-Raphson results is shown in Table 

5. A vast improvement in the execution time of the steepest descent 

method was noted. Some additional array storage was required; however, 

since now both the Jacobian matrix and the decoupled, constant approxi-

mation must be stored. 
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Table 5. Comparison of Steepest Descent 
Optimal Load Flow Results 

Newton-Raphson Fast Decoupled 

Execution Array Execution Array 
Time Storage Time Storage 
(sec) (K BYTE) (sec) (K BYTE) 

9.23 13.72 4.68 15.86 

38.13 31. 64 18.27 34.55 

147.60 57 .59 65.98 63.84 



45 

4.5 Summary 

It is clear from these results that steepest descent optimal load 

flow outweighs the other methods studied in most respects. Apart from 

slight convergence problems at the minimum, it ranked superior in all 

categories. Finally, the substitution of the fast decoupled load flow 

in the steepest descent optimal load flow holds much promise for further 

applications. 
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V. CONCLUSIONS 

The conclusion of these studies focuses on the possible practical 

importance of the steepest descent optimal load flow. This method ranks 

high with regard to the other methods studied as far as execution time 

and array storage. The primary drawback of this method was observed to 

be the slight final convergence problem. This may be due in part to the 

penalty factor selection, as supposed by some[ 9 1. For very small 

problems, it is possible to scale the variables so that the elliptical 

f F . 1 b . 1 d . . d [ 16 ] curves o igure ecome more circu ar an convergence is improve • 

However, this approach is not practical for large systems with many 

variables and has not received much attention. 

The substitution of the fast decoupled load flow in the steepest 

descent method greatly improved the execution time performance. There 

was some increase in the array storage; however, it is felt that this 

was heavily outweighed. The primary consideration for on-line applica-

tions is the computer execution time for repeated solutions. Presumably, 

in an actual application periodic solutions will be performed on-line 

whenever changes occur in the system's configuration or requirements. 

Since the load on a power system constantly experiences small changes 

in the demand power, the optimal load flow could be either executed at 

periodic intervals or when the mismatch between demand and supply be-

came too great. 

The optimal load flow in its present form is useful for system 

studies, especially planning, although some improvements must be made 

for on-line applications. Some recommendations for further studies in 

this area follow. 
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i) An improvement of the convergence characteristics of the 

steepest descent optimal load flow may be possible through the 

selection and adjustment of the penalty factors. 

ii) An investigation into the scaling of the optimal load flow 

problem could yield some useful guidelines to improve the 

convergence of the steepest descent method. 

iii) The improvement in execution times could be further increased 

and storage reduced if a decoupling procedure could be devel-

oped for the minimization routine with regard to the control 

variables. 

There are many other possible areas of further study for the 

optimal load flow problem; for example, the methods of nonlinear opti-

mization can be used to schedule other power systems variables, as well 

as plan future system requirements. It is hoped that through this 

work the methods of nonlinear programming gain more attention in the 

field of power system operation. 
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APPENDIX A 

The Terms of the Jacobian Matrix in Polar Form 

The terms of the Jacobian matrix in equation (2.5) are given below. 

ark 
~i = ~ = VkYkiVisin(~ki + 0k - oi) 

1 

i#k 

ark 
= v iavk = 

i#k 

aqk 
= ~ = 

1 

ilk 

aQk . 
= VkaV. = VkYkiVisin(~ki + 0k - oi) 

l. 

i#k 
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(A.l) 

(A. 2) 

(A. 3) 

(A. 4) 

(A.5) 

(A. 6) 

(A. 7) 

(A. 8) 



APPENDIX B 

The Terms of the Gradient Vector 
for the Steepest Descent Optimal Load Flow 

The terms of the gradient vector of equation (3.16) are given for 

the minimum costs and losses problem by the following equations. 

= + 

G Clf.(P.) 
1 1 

ape 
i 
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(B. 2) 

(B. 3) 



APPENDIX C 

The Terms of the Gradient Vector 
for the Fletcher-Powell Optimal Load Flow 

The terms of the gradient vector of equation (3.21) are given by 

the equations below. 

G af.(P.) aP 2(h.(y)+s.) ah. 2(g.(y)+s.) ag. 
E. 1 1 + _s_ + E. 1 1 __ 1 + E J J _=i (C. l) 

1 aEk aEk 1 ri aEk j rj aEk 

G af.(P.) 
1 1 

= Li dF 
k 

aP 2(h.(y)+s.) ah. 2(g.(y)+s.) ag. 
s + E 1 1 -~ + E J J _::i 

+aFk i ri aFk j rj aFk 
(C.2) 

The constraint terms in the above equations are given by the following 

terms. 

aF k 

-- =----
aFk / z 2 

Ek + Fk 

n 
l (Gk.E. 

i=l 1 1 
- Bk. F.) 

1 1 

i#k 

G.kE. + B.kF. 
1 1 1 1 

n 
l (Gk.F. + Bk.E.) i=l 1 1 1 1 

i#k 
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(C. 4) 

(C.5) 

(C.6) 

(C. 7) 
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ClFk = GikFi - BikEi 

ifk 

ClQG n 
k ClE. = -2BkkEk - L (Gk.F. + Bk.E.) k i=l 1 1 1 1 

ifk 

ClQG k n 
~ = 2BkkFk - L (Gk.E. - Bk.F.) k i=l 1 1 1 1 

ilk 

ClQ~ 
1 
~ = -B1'kF1. - G.kE. k 1 1 

ilk 
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(C. 8) 

(C. 9) 

(C.10) 

( C.11) 

(C.12) 
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ABSTRACT 

Power systems optimal load flow studies are performed for standard 

test cases using several methods of minimization. Comparisons of the 

solutions are made based on digital computer results. A general dis-

cussion is made of optimization and the necessary conditions for solution. 

Cost functions are written for the minimum costs and losses problem and 

then augmented to satisfy variable constraints. Through the use of 

common routines and format, sufficient basis for comparison of the 

several methods was established. Among the methods, steepest descent 

was chosen as most attractive and a further study was performed. Re-

sults of this are presented and conclusions drawn to improve the econom-

ical operation of our power system utilities. 
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