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SYNTHESIS OF ELECTRIC NETWORKS INTERCONNECTING PZT
ACTUATORS TO EFFICIENTLY DAMP MECHANICAL

VIBRATIONS.

M.PORFIRI

(ABSTRACT)

The aim of this thesis is to show that it is possible to damp mechanical
vibrations in a given frame, constituted by Euler beam governed by the
equations of an elastica, by means of piezoelectric actuators glued on
every beam and interconnected each other via electrical networks.Since
we believe that the most efficient way to damp mechanical vibrations by
means of electrical networks, is to realize a strong modal coupling between
the electrical and the mechanical motion, we will synthesize a distributed
circuit analog to the Euler beam.We will approach this synthesis problem
following the black box approach to mechanical systems, studied by many
engineers and scientists during the 1940’s in an attempt to design analog
computers.It will be shown that it is possible to obtain a quick energy
exchange between its mechanical and electrical forms, using available
piezoelectric actuators.Finally we will study a numerical simulation for the

damping of transverse vibrations of a beam clamped at both ends.
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Chapter 1

Theory of networks: a brief

introduction.

Systems

The aim of this chapter is to introduce concepts from the theory of networks that
will be needed in syntesizing an electrical parallel of the Euler beam. The first step of
our discussion is the presentation of the model black box for a wide class of electrical
devices those communicating with the outer world by a finite number of access points,
called terminals.

It must be underlined that, although generally the described concepts are used in
the special context of the theory of networks, they can be fruitfully applied to different
branches of Engineering Science, where different physical devices may be involved. In-
deed different physical objects can be described by the black box model. Generalizing
the discussion given by Molly (1958) [1], we will do so for an element of a beam.

The state of every terminal 7; is characterized by a pair of [—tuples (o, 7;) =
((a}, - ai-) , (7’}, e Ti)) The set of the pairs (a;, 7;) €IR!xIR! characterizes completely
the state of the device. Generally speaking Tg is referred to as a through variable, while

a? is called an across variable.



The evolution of the system in the time interval [0, co) will be described by motion,
i.e. a function M : ¢t — (o (t),7;(t)), ¢ = 1...I. The motion is a real vector valued

function of the time variable ¢, and all its scalar components, i.e. all the scalar functions

ag ct o (t), Tg A Tg (t), belong to a Signal Space D1 which needs to be rigorously

defined.

Definition 1 The Signal Space Dy is the Linear Space of infinitely continuously dif-

ferentiable real valued functions of a real variable, whose support is in IRT.!

The Signal Space D is neither an inner product space nor a normed space, nev-
ertheless we introduce whenever it is possible an inner product and a norm, extending
the notion of inner product in L?.

Note that for a generic black box the §—Dirac distributions are not allowed as signals
of the system, nevertheless we will need these distributions to describe the input-output
relationship for a particular class of networks.

We explicitly remark that the following definitions do not apply to every function

of D, but only to the functions belonging to the intersection D, N L2

Definition 2 Let x and y be in Dy. The inner product of x and y is given by:

@)= | ey ()t (L1)
if it exists.

Definition 3 Let x be in Do. The norm of x is:

]| = (x, )" (1.2)

! The support of a function ¢ of a real variable is defined as the smallest closed set outside which ¢
vanishes and denoted by Suppe



if it exists.

The only topological concept we require in all D, is the notion of convergence:

Definition 4 Let (x,) be a sequence of functions in Dy, that is (x,) : IN — Dy. Then
d%x,

dte

this sequence is said to converge to x € D if the sequence < > converges uniformly

(87

x
on Dy to = 7 oY compact set, Vo € IN.

The variables «;, 7; in the pair relative to 7; are generally called conjugate variables
since we assume their inner product (Z; ag Tg ) to have the dimension of a power. Typical
conjugate variables are current and voltage, force and velocity, moment and angular

velocity and temperature and entropy change.

Usually in the theory of networks the state at every terminal is assumed to be fully

characterized only by a pair of scalar variables.

However we intend to generalize such treatment in order to be allowed to regard
a plane-beam element as a "network”. Indeed the kinematic state of such an element
at its terminals is characterized by two displacements and a variation of attitude, while

the conjugate quantities will be two force components and one bending moment.

Let us now label consecutively the terminals of our device 7;, ¢ = 1, ..., k, where k
is the number of such terminals; and arrange all the across variables in a k£ x [ matrix
o, and the through variable in a k x [ matrix 7.

3



Definition 5 We will group the state variables of our device following the convention:

o ol ... o}
(8% = =
o a}C ak
T1 T% Tll
T = =
Tk 7"1f T’k
l 1 l
al cee Oél 7—1 .ee Tl
(aﬂ—) =
l 1 l
Qp .. Qp TR ... T

The space of k x [ matrices of entries functions of D, will be called DZT_XZ: it is
natural to generalize the definitions of inner product and norm given in D to the space

DﬁXl, which is clearly a Linear Space.

Definition 6 Let x and y be in DﬁXl. The inner product of x and y is given by:

(x,y) = /°° x(t) : y(t)dt (1.3)

—0co
if it exists. Where : denotes the standard inner product of matrices, i.e. X :'y =

k !
Doict i1 TijYis-
Definition 7 Let x be in D-’Ter' The norm of x is:
Il = (x,%)'* (1.4)

if it exists.



Each physical device is determined by the relation that it places upon the variables

at the terminals, that is, different devices are characterized by different relations.

Figure 1.1: Representation of a system

A relation Cg is a binary relation on the set of all pairs (c, T): its action is to select

the set of admissible pairs (o, T) .
Definition 8 Given a binary relation Cs on D_IT_XZ X fo_Xl, a System S is:
S= {(a,T) e D x DEX oy T} (1.5)

Remark 9 When the black box is interpreted as a mechanical device the binary relation

Cs just prescribes the relationships among the state variables induced by:

e balance equations

e constitutive relations



Remark 10 Not all possible binary relations Cs model actual physical devices. The
set of physically admissible constraints has to be restricted, e.q. by introducing the axiom

of causality. For a formulation of this aziom see axiom (64).

When we limit our attention to the electrical case, where T is a current vector and
« is a voltage vector a system is called a network. In this particular case, | = 1 and

then 7 and a belong to the space Dﬁ“ of columns k—vector with elements in D .

One of the most significant and useful concepts in the theory of networks is that of

port.

A pair of terminals is a port relative to the subset P C S if for every pair (o, T) € P
the current entering one terminal is equal to the current leaving the other terminal. If
all terminals occur as ports, we can relabel the terminals, calling those for the j-th port

’];* and ’]}*, j=1,...,n= % and then call the network an n—port .

Figure 1.2: N-port Network

For an n—port N the meaningful variables are only the n—vectors v and i of port
voltages (i.e. the voltage between ’]}Jr and 'ZT) and currents, then given a binary relation

6



Cy we define a n—port A by:
N ={(v,i) e D! x D} ,vCy i} (1.6)

In the following we will use the convention that assumes as positive the currents

entering the networks, and as positive the voltages between T, and T;r.

Remark 11 Generally speaking whether or not a pair of terminals forms a port is
dramatically dependent not only on the topology of the circuits, but also on how it is
interconnected to the outer world; thus a pair of terminals can behave like a port only
under the particular circumstances specified by P. Some networks behave like n—port
networks under every circumstance (for instance a resistor can be always regarded as
a 1—port network), while others exhibit this behavior only in extremely particular cases
(for instance when two given terminals are interconnected by means of external resistors,

and/or sources).

Definition 12 A circuit C is a specific interconnection-topology of networks. Any con-

stituent of a given circuit is called subnetwork.

Remark 13 A given network, i.e. a given system as specified by the binary relation

Ch, can be realized with several different circuits.

Therefore the concept of circuit is well distinguished from the concept of network.
In fact we can think of a network as the equivalence class of all those circuits having
the same behavior at their terminals: a circuit allows for a particular realization of a

network.



Example 14 The “elementary” network inductor can be also realized by means of the

interconnection of nullors, resistors and capacitor (see next section for more details).

In the definition of a network we are not interested in its internal structure, but
only in the properties that the network shows to the outer world through its terminals.
In the following sections we will be interested in the synthesis of a given network: it will
necessarily involve the choice of a circuit among those realizing the given network; this

choice will depend on several conditions that will become clearer in the next sections.

Definition 15 The total instantaneous power expended into N is

p(t) = v(t)"i(t) (1.7)

and the net energy’ delivered to the network to time t is

&)= / p(t)dt (1.8)

If £(t) is positive, then at time # the network N is said to have absorbed net positive
energy, while if £(%) is negative then the network N is said to have delivered net positive
energy.

The connections of different subnetworks can be mathematically represented as
operations on the subnetworks dictated by the well-known Kirchhoff’s laws, that we

need to state again in the particular context of black boxes.

Definition 16 Given a circuit, we call node the set of terminals of constituting networks
interconnected in the given topology. Every terminal of the subnetworks must belong to

exactly one node.

?The definition of energy is well posed, in fact the integral always exists since (v,i) € DZ“,_ X fo_, and
then their supports are bounded on the left. (v and i are 0 until the time 0)

8



Remark 17 The previous definition allows for a node constituted by a single terminal,

which is open circuited.
Axiom 18 Given a circuit C, let denote by {n;} the set of its nodes
e The sum of the currents entering n; must vanish.

o Let (ng,ny, ..., N1 = ng) be a closed loop of nodes in C, «; be their voltages

with respect to the same reference and A; = ;11 — o, then

Network analysis
Building blocks

In this section we will introduce the elementary networks. They will be the building
blocks of the circuits that further we will need to synthesize; the following definitions
are not the most general that one can conceive, nevertheless they seem to be general

enough for our purposes.
Definition 19 The resistor Ng is a 1—port network defined by:
Nr={(vji) €D: xDs:v=Ri, ReER} (1.10)
R s its resistance.
Definition 20 The capacitor N¢ is a 1—port network defined by:
. . dv
Ne =1 (v)) €D+><D+:z:CE, CeR (1.11)

C is its capacitance.



Definition 21 The inductor N, is a 1—port network defined by:
‘ di
NL:{(U,Z)ED+XD+:U:L%, LER} (112)

L is its inductance.

Figure 1.3: Representations of a resistor, capacitor, and inductor

Definition 22 The nullator Ny is 1—port network defined by:
No={(vysi) €Dy XDy :v=0, i =0} (1.13)
Definition 23 The norator N is 1—port network defined by:

Now =Dy x Dy (1.14)

Definition 24 The nullor Ny is a 2—port network defined by:

No = {(v,i) € D: x D : (v1,i1) = (0,0)} (1.15)

Remark 25 The nullor is an elementary network of capital importance in the synthesis

of active filters and simulated capacitors and inductors.

10



Figure 1.4: Representations of the nullator and norator

Vi Vo

Figure 1.5: Representation of the nullor

Definition 26 The ideal transformer Ny is an (I +m)-port network with

Vi
v € Dljm::DZ_@DT; i.e. v= ,V1€'DZ_ and vo € D!
V2
iy
i € DI =D, ©D7; ie. i= , i1 € DY and iy € DY’
i
defined by:
_ T
— : l+m I+m | vi=T"v; . m 1
Nr = (v,i) e DI™ x D™ , Te€ Lin(R", IR
ibr=-Ti

T 1s its turns-ratio matriz.

11

(1.16)

(1.17)



vy ! T m v,

Figure 1.6: Representation of the ideal transformer

Remark 27 We will see in what follows that the constitutive assumption (1.17) assures

that the ideal transformer is lossless.
Definition 28 The voltage source Ny is a 1—port network defined by:
Ny ={(vj) €Dy xDy:v=V, VeD,} (1.18)
V' is its applied voltage.
Definition 29 The current source N7 is a 1—port network defined by:
Ni={(vi)eD, xD,:i=1, €Dy} (1.19)

1 is its applied current.

Fundamental properties of networks

In this section we will discuss some of the main properties of networks, and will
specify the class of networks to be taken into account for our issues.

As a preliminary, let us specify the linear structure of the space V consisting of the
pairs of column k—vectors (v,1i) € D_’f_ X fo_ introducing the simple operation of sum of

12
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— =
AN e
e

(%)
L]
L]
]

Figure 1.8: Representation of the current source and voltage source.

pairs and multiplication of a pair by a real number:

(Vlail) + (VQ,iQ) = (V1 —|—V2,i1 + 12)
(1.20)

a(v,i) = (av,ai)

As a topological concept we require only the notion of convergence, this is an immediate

extension of what we have done in D, .

13



Definition 30 A sequence ((vy,i,)) : IN — D¥ is said to converge to (v,i) € DY if

Vie{l,..,k}, vy, € Dy converges tov; € Dy, and in, € D4 converges to iy € Dy

(1.21)
Now we can define one of the most important properties of networks:
Definition 31 An n—port network N is linear if N is a subspace of V, that is
(Vvi+ vy, i) +i2) €N
A4 (Vl,il),(VQ,iQ) eN,aeR (1.22)

(av,ia) e N

The requirement of linearity leads straightforward by to the principle of superposi-

tion; note that in general this principle does not hold for non-linear networks.

Example 32 The resistor, capacitor, inductor and ideal transformer are all linear net-

works; this statement follows directly from the linearity of the differentiation.

Example 33 The nullator is linear since Ny is the singleton of the null vector of V.
The norator is also linear, since it allows all conceivable pairs. Clearly the nullor is

linear.

Example 34 The voltage and current source are both non-linear networks, since they

violate both the requirement of the definition.

Now we introduce two very tricky concepts, the notion of solvability and complete
solvability; as a preliminary we have to introduce a particular network, called series
augmented network N, associated with N.

14



Definition 35 Let N be an n—port network, N, is said to be the series augmented

network if:

(v,i) e N = (1Qi+v,i) EN, (1.23)

The series augmented network can be thought of as the the network obtained by

connecting one unit resistor to each of the ports of the given network N.

Figure 1.9: Augmented network

Remark 36 With an abuse of notation in what follows we will write i + v instead of

101+ v.

Definition 37 N is solvable if Ve € D 3! (v,i) € N such thate =i+ v

Remark 38 N is solvable if and only if there is a unique pair (v,i) € N wverifying

Kirchhoff’s laws in the circuit represented in the previous figure.

Definition 39 N is completely solvable if it is solvable and if

V (ep) : IN — D convergent to e =i+v , ((Vn,i,)) converges to (v,i), with e, =i, + vy,

(1.24)

15



Remark 40 N is completely solvable if the currents and voltages generated by the volt-

age source e depend continuously on e.

Example 41 The capacitor and the inductor are completely solvable; the resistor is

completely solvable if the resistance is different from —1.

Example 42 The nullator is not solvable since it forces e = 0, while the nullator is not

solvable since ¥ e € D} 3 infinite (v,i) € N such that e =i+ v.
Definition 43 N is time invariant if
V (v,i)e N, VTeR 3 (vr,i,) eN : (vi(t),i,(t) = (vt +7),i(t+7)) (1.25)

The property of time invariance essentially restricts the class of circuits represented

by N, to those circuits constituted by building blocks which do not vary with time.

Example 44 The resistor, the capacitor, the inductor and the transformer are time-

invariant.
Example 45 The norator and the nullator are time invariant.

Example 46 The voltage source and the current source are not in general time invari-
ant, since they constrain one conjugate variable to vary with time in a prescribed non

constant way.
Definition 47 N is passive if

V (v,i) € N,VteR (1.26)

otherwise N is active.

16



Thus if A/ absorbs net positive energy for every (v, i) then it is called passive, while

if it is able to deliver energy it is called active

Example 48 The instantaneous power for the ideal transformer is always zero, in fact:

p(t) =vi (1) i (1) + v (1) ia (1) = T vy (1) iy (1) + (—=va (1) Tiy (1)) =0 (1.27)

then, trivially ¥ (v,i) € N, Vt € R Er (t) = 0, thus the ideal transformer is passive.

Example 49 Trivially, the instantaneous power for a nullator is zero, and then the

nullator is passive. On the contrary the norator is active since every (v,i) belongs to

Ne.

Example 50 The energy delivered to a capacitor is:

50@):/ (T)i(f)dt:c_/ v (7) dQ;(TT)dt:%Cv(t)z

(%
J —o0

then a capacitor is passive only if C' > 0, otherwise it is active.

Example 51 The energy delivered to an inductor is:

E’L(t):/ U(T)i(T)dt:L/ i) ) gy Lp 2

oo oo dr 2

then an inductor is passive only if L > 0, otherwise it is active.

Example 52 The energy delivered to a resistor is:

ER(t):/t U(T)i(T)dT:R/t i (1) dr

—0 —0o0
then a resistance is passive only if R > 0, otherwise it is active.

17

(1.28)

(1.30)



Lemma 53 If N is passive, solvable and e € D} N LY, then v and i belong to D} N
L% too, and £ (00) € RT.

Proof. Since the network is solvable then for every e €D there is a unique pair
(v,i) € N such that e = v +i; thus

g g

i (7)i(r) dr + 2 / VT (7)i(7) dr

J =00

/t eT(T)e(T)dT:/t VT(T)V(T)dT+/

J =00 J =00 J =00

(1.31)

Supposing that e € D N L% we have that |le|| € R, but since N is passive, the previous
equality implies that both v and i belong to Ly and that £ (c0) = ]foo vl (r)i(r)dr €

R" =
For the following critical result we will omit the proof, see Newcomb (1966) [3].
Theorem 54 A passive and solvable network N is completely solvable.

These last considerations allow us to define lossless networks; the main idea of the
definition is that the energy fed to the augmented network of a lossless network by a
square integrable voltage source e, can be dissipated only by the unit resistors. We do
not require that the energy absorbed by a lossless network should be zero in every time
interval, but only that this energy should vanish at infinity.

We will base our definition upon the solvability and passivity of the network, and

in that way, because of the Lemma (53), we guarantee the existence of £ (00).
Definition 55 N s lossless if:

e N is passive

18



o N is solvable

o for everye € Dt N LY, £ (c0) =0

Example 56 The transformer is lossless since it is passive and solvable and E (t) is

always zero.

Example 57 The inductor and the capacitor are both lossless if C and L are non

negative.

Example 58 The nullator is not lossless since it is not solvable, while the norator is

not lossless since it is not passive.

Definition 59 N is reciprocal if

YV (vi,i1), (vo,iz) €N, VlT*ig :Vg*il (1.32)

where * means the convolution®.

Remark 60 Consider two measurements, denoted by the subscripts 1 and 2 a network
N is said to be reciprocal if the voltage responses are independent of an interchange of

response and excitation points.

Example 61 The transformer is reciprocal.

3Given (f,g) € D} x D%, fxg € DT and is defined by:

fFrg (1) = /w £ (¢ — 1) g (r) dr

J —oo

whenever it exists.
For a rigorous definition of the convolution see the section below.

19



Proposition 62 A network constituted by resistors, inductors, capacitors and ideal
transformers is reciprocal.

Proof. For a detailed proof of this proposition see Martinelli (1986)[16] m
Example 63 The nullator is reciprocal, while the norator is not.

Axiom 64 FEvery network is causal, i.e. if the application of some variable at time tg

causes other variables to appear at time t > tg.

Remark 65 If the network N is time-invariant, then requiring that the (v,i) € D} x
D%, we automatically satisfy the axiom of causality. In fact supposing that v is zero
before an instant t, then if, by contradiction, i is non zero before t the time-invariance

would be violated by the pair (V (t + ﬂ ,i(t + ﬂ) , as i (t + f) ¢ Dr.
As a final comment to this section we list some relationships between A and N:

o N is linear = N is linear

e N is passive = N, is passive

e N is time invariant = N, is time invariant
e N is reciprocal = N, is reciprocal

e N is solvable # A is solvable

A deeper insight in the Signal Space

In the preceding section an n—port network N was defined as a binary relation on

D7 . As such a definition is too general, it is not convenient for practical applications.
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Thus in this section we will restrict to a particular class of networks, i.e. those
linear and completely solvable, characterized as linear and continuous mapping on DY .
Further we will require our network to fulfil the property of time invariance, so as

to represent the previous mapping by a simpler operation: the convolution.

Mathematical preliminaries

As a preliminary to further discussions, we will now introduce some mathematical
elements of the theory of distributions. (An exhaustive development of the theory is

given in Cristescu (1973) [4] and Friedlander (1998) [5])

Definition 66 We shall denote by D(IR) the space of all real valued functions ¢ of a

real variable which have the following property:

o © is infinitely continuously differentiable, i.e. ¢ € C*(IR)

e © has compact support.

These functions will be called test functions and from now on the space D(IR) will

be denoted by D.

Example 67 D is not empty: indeed consider the function

1 1
o= ()= () e (1.33)
0 TI=Ri

This function vanishes outside [—1,1] and it is infinitely continuously differentiable on
this interval.
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The space D is obviously a linear space for the usual operation of addition of
functions and multiplication of a function by a scalar; the only topological concept that

we will define is the notion of convergence:

Definition 68 Let (¢,,) be a sequence of functions in D, that is (p,,) : IN — D. This
sequence is said to converge to ¢ € D, and we will write ¢,, — ¢, if all the functions
¢, have the support in the same bounded set ) and if all the derivatives of the functions

@, converge uniformly to the corresponding derivative of ¢ on (1.

We now introduce the concept of distribution:

Definition 69 A distribution is a generic functional ¥: D —IR, that satisfies the fol-

lowing conditions:

e Linearity: (o, + Bpy) = af (¢1) + BF(py)

o Continuity: if ¢, — ¢ then ¥(p,) — F (¢)

The space of distributions will be denoted by D’ and obviously it is a linear space
for the usual operation of addition of functionals and multiplication of a functional by
a real number.

An important notion, which allows for the determination of some classes of distri-

butions which appear in applications, is that of the support of a distribution.

Definition 70 A distribution ¥ is said to vanish on an open interval I if Fo vanishes
for all the p’s belonging to D, having support included in I. The complement of the
union of all such open intervals is called the support of F and denoted by Suppr.
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Sometimes a distribution is formally represented as a generalized function f(¢) in-

troducing the symbolic scalar product

Pio)= [ e (1.34)

also denoted by (f, ) .

Remark 71 We explicitly remark that equation (1.34) is meaningful only when f(t) is
a locally integrable function. Indeed given such a function equation (1.34) rigorously
defines a functional belonging to D'. However there are elements of D' which cannot be
represented in this way, e.g. the 6 Dirac distribution. The somehow misleading tradition
(stemming from the papers of P.A.M. Dirac) in distribution theory allows for the use of

(1.34) also in the more general case.

Definition 72 In what follows we will call D', the subspace of D' consisting of distribu-
tions having support included in IR™ and &' the subspace of D' consisting of distributions
having compact supports. Using the identification between functions and distributions

given by (1.84) it is easy to see: Dy C D/, and D C &'.

Example 73 Consider the distribution of Heaviside U (called in Engineering Literature

step distribution) defined as

U() = /0 " (bt (1.35)

0 t<0
This distribution is representable as the locally integrable function u(t) =

; since U(p) = (u, )
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Example 74 Consider the distribution of Dirac 6 defined as:

6(p) =@ (0) = (6, %) (1.36)

Clearly this distribution cannot be written as a scalar product of two functions, i.e. 6(t)

is mot a function.

Definition 75 A sequence of distribution (Fy) is said to converge to a distribution F,

written ¥, — F or f, — f if:

Fr(p) = F(p) or (fa,p) = (f,p)  VpeD (1.37)

Now we introduce a fundamental theorem which enables us to define distributions

as limits in a distributional sense of functions belonging to D.

Theorem 76 For every distribution F there exists a sequence (p,,) : IN — D such that,

distributionally:

Fp— @ or f= nh—>nolo ©p

Definition 77 Let ¥ be a distribution then we define weak derivative of F the distri-

bution F! such that:

VoeD  Fi(p)=—F (%‘f) (1.38)

Remark 78 Note that for every F represented by a differentiable function we have:

FI(p) = —F <Cfl—":> =—(f,¢') =— /OO f(t) (t)dt (1.39)

Integrating by parts, when f (t) is a (strongly) differentiable function, we get:

_ /OO F(6) ¢ (1) dt = Fol*° + /OO £ (1) o (t)dt = (7, ) (1.40)

J =00 J =00
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so that the distributional derivative of F coincides with the first (strong) derivative of f.
Roughly speaking the definition of derivative for a distribution is the natural extension

of the definition of derivative for a "true” function.

Example 79 Consider the derivative of the Heaviside distribution:

dt -

dSO ~OO ~O0
)=+ () == [ s ti=— [TFwa-p0 o) @)
then the derivative of the Heaviside function is the distribution of Dirac 9.

Definition 80 Let F be a distribution then we define the —th weak derivative of ¥ the

distribution D'F such that:

dl
VeoeD D' (p) = (-1)'F <ﬁ) (1.42)
Up to now we have considered test functions of only one real variable, but these
concepts can be easily generalized to real functions on IR™ and thus define a linear space
D (IR™) of test functions ¢ : R™ — IR.
In this generalized framework a distribution will be a continuous linear functional

of D (IR™) and the space of distributions is a linear space denoted by D (IR™)’

Further it is again possible to introduce the formal scalar product defined as:

F(p) = / nf(tl,---,tn)90(751,---,75n)dt1---d75n =(f(t1,.-tn), @(t1,.-stn)) (1.43)

where f (¢1,...,t,) is again called generalized function.

This extension will become now very useful in the discussion of mapping of the
space of test functions D into the space of distributions D’ since we will discover that
such a mapping is represented, under particular hypothesis, by a distribution of two

variables.
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Definition 81 Given two functions f and g belonging to D the tensor product f ® g is

a function of D (]RQ) defined as follows:

fog@y)=f(x)gl)  (zy cR? (1.44)

Before stating an amazing theorem called Kernel Theorem due to L.Schwartz, let

we define a continuous linear mapping of D into D’:

Definition 82 & : D — D’ is a continuous linear mapping if:

o & (ap; + Bpy) = a® (p1) + B ()
® ¢, = ¢ then & (p,) — & (p)

Theorem 83 If & is a continuous linear mapping of D into D', then there exists a

distribution ¢ € D (IRQ)/ such that:

Vo, €D (B(p) Y =G (1Y), ie. VpeD  &(p)=(g(t,7), ¢(7))

(1.45)

Generally the distribution G is called distributional Kernel and the scalar product
(g (t,7), ¢ (7)) denoted by G-p.

This theorem establishes an isomorphism between the space of distributions in
D (IRQ)I and the space of linear and continuous mapping of D into D’.

This theorem has a number of additional variations, wherein the domain and the
codomain for the mapping may be varied; usually these space are required to contain
D as a subset and be subset of D', for more details see Treves (1967) [6].
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One of the basic operation of the theory of distributions is the tensor product, which
is the natural extension of the tensor product of ”true” functions.
All results mentioned in what follows about tensor product and convolution of pairs

of distributions can be found in Friedlander (1998) [5] and Schwartz (1978) [8].

Definition 84 Given two distributions G and F belonging to D', then the tensor product

G®F is a distribution of D (]RQ)/ such that:

Vo, €D GRF (p@Y) =G (p) F(¥) (1.46)

Theorem 85 For every pair of distributions G and ¥ in D'there exists a unique tensor

product GRF. It can be computed as:
Yo € D (IRQ) GRF (¢(t, 7)) =Gy (Fr (0 (t,7))) (1.47)

where ¥ means that ¥ operates on ¢ as a function of T, while Gy means that G operates

on Fr (p(t,7)) as a function of t. Further:
SuppG @ F = SuppG X SuppF (1.48)
and the tensor product is separately continuous bilinear form on D' x D'.

Now we digress to an application that will become very useful in the theory of

networks:

Definition 86 Let F€ D', and T € R. The translate T.F of F is the distribution such

that

Voe D % (F (p() =F (p(t+7)) (1.49)

where Fy means that F operates on ¢ as a function of t.
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Remark 87 Note that ¢ (t + T) is the translate function ¢ translated by a quantity —T.
Definition 88 A linear mapping & of D' into D' is called translation invariant if:
vFe D, VreR G (T, (F) =%, (B(F)) (1.50)

Another important concept that we will need in the following is the notion of con-

volution.
Definition 89 Let Ge &' and v€ D', the convolution GxF is defined by:
Yo e D G*F (@) =G®F (p(t)p(t+T1)) (1.51)

where p € D is a cut-off function such that p = 1 on a neighborhood of the support of

G.

Remark 90 (Lemma of Uryson) If K C IR™ is a compact set, and X is an open
neighborhood of K. Then there p € D, such that Suppp C X, p € [0,1] and p=1 on a

netghborhood of K. Such function will be called cut-off function.

Remark 91 The definition of convolution is independent of the choice of cut-off func-

tion. For, if o € D and 0 =1 on a neighborhood of the support of G then:

GOF (p()pt+7))—caF (c)pt+7)=caF (p(t) =) p(t+7)) =0

(1.52)
Supp ((p(t) — o (1)) ¢ (t+ 7)) C IR — SuppG (1.53)

which implies that
Supp ((p(t) —a (t)) @ (t +7)) C R? — SuppG x Suppr (1.54)
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Definition 92 Remark 93 The introduction of the cut-off function is necessary to

assure that ¥+ (p(t) ¢ (t + 7)) is a test function.

Theorem 94 Let Ge &' and F€ D'. Then the convolution GxF defines a distribution

in D' that can be computed as follows:

Voe D GxF (9) =G (p(t)Fr (9(t+7)) (1.55)

Furthermore convolution is commutative: GxF=Fx*G.

Convolution is well defined for pairs of distributions G, F other than e & and
Fe D', In particular it can be extended to distributions G, F€ D', . This extension will
be dealt with the following considerations, since in the theory of networks we need to
make the convolution between distributions in 7, .

In order to ensure the existence of the convolution of two distributions, we can

require these distributions to fulfil the following condition.

Condition 95 Let Ge D' and F€ D’. Then the condition can be stated as follows:

(t,7) € SuppG X SuppF
V6 >0 =3 >0:0t| <, |7 <8 (1.56)

lt+7| <6

that is:
V6 >0 (SuppG x Suppr) N {(t,7) € R?: [t +7| < &} is a compact set. (1.57)

Theorem 96 Let G€ D' and F€ D', and let their supports satisfy condition (95) then

the convolution G*F is the distribution defined by:
Vo e D G*F (p)=G®RF (p,(t,T)p(t+T)) (1.58)
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where p, € D(IR?) is a cut-off function such that p =1 on a neighborhood of I, defined

as:
I ={(t,7) € SuppG x SuppF : t+ 1 € Suppp}. (1.59)

Remark 97 The previous extension of the convolution is independent of the choice of

cut-off function.

Theorem 98 Let ce D' and v€ D’ satisfying condition (95) then the convolution G*F

can be computed by:
Vo e D G*F (@) =Gt (Fr (p, (t,7) @ (t+7))) (1.60)
where p, is defined as in Theorem (96). Further the convolution is commutative and

SuppG * F C SuppG U SuppF (1.61)

Remark 99 If c€ D/, and r€ D, then they satisfy (95). For, since SuppG C IRY,

Suppr C RT then:

(t,7) € SuppG x Suppf (t,7) € SuppG X SuppF
t+7] <6 t+7<6
(1.62)

then the convolution of two distributions in D', is defined, and since SuppG+F C SuppG U SuppFk

then it is a distribution in D! .

Remark 100 The convolution of a § Dirac with a generic distribution leaves this last

unchanged:
Ve eD  §xF=F (1.63)
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Now we are ready to introduce a very powerful result due to Schwartz, which will
enable us to characterize the behavior of a particular class of network by the well known

impulsive response.

Theorem 101 If & is a continuous translation invariant, linear mapping of D into

D'then:
Vo€ D G (p) =& () *p (1.64)

Remark 102 Eq. (1.64) is generally used for representing the solutions of differential

equations in terms of generalized ” Green” function.

Corollary 103 If & is a continuous translation invariant linear mapping of D', into

D', then there exists a unique distribution G in D', such that:
VF e D & (F) = GxF (1.65)

The proof of this theorem and of the corollary can be found in Beltrami (1966) [7].

Up to now we have restricted our study to real valued functions, anyway these
results can be generalized to column n—vector function in a quite straightforward way;
we will use these results dealing with n—port networks.

We will also use the previous theorem in studying mechanical systems.

Time domain representation of linear, completely solvable and

time-invariant network.

In this section we will exploit the fundamental results of the theory of distribution
mentioned before so as to characterize a linear, completely solvable and time-invariant
n—port network by a representation amenable to convenient and fruitful analysis.
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Definition 104 Since N is solvable then ¥ e €D 3! (v,i) €N such that e = v +i; let

me call P, the mapping of Dt into D} such that i =), (e).

Proposition 105 Since N is linear then Ny is linear, and ), is a linear mapping of
DY into D7

Proof. In fact, thanks to the linearity of Ny:

Vei, e € DSL_, a, F€R (a (V1+i1) + 0 (V2+i2) ,ody + ﬁig) eN, (1.66)

thus

Va (aer + Per) = a1 + Biz = aq (e1) + Y. (e2) (1.67)

Proposition 106 Further, since N is completely solvable then N is completely solvable
and g s continuous.

Proof. In fact:

e, — e = (Vp+ip,i,) — (Vv+1i,i) (1.68)

thus

e, v e=1i, > 1=, (e,) — Ya(e) (1.69)

Thus a linear completely solvable network A defines a linear continuous mapping
of D into D .

32



Proposition 107 Further, since the network N is time-invariant then N, is time-
mvariant and ), is a translation invariant mapping.

Proof. In fact:

VeeDy  Da(Tr(e))=Tr (Val(e)) (1.70)

Thus 9, is a linear, continuous translation invariant mapping of D into D ; since
D7 is a subset of D} we can use an analog of Corollary (103) extended to DY to state

that:

Proposition 108 For a linear, completely solvable and time invariant n—port network

there exists a unique distribution Y, in DY, such that:
Ve € DY i=Yg,*e (1.71)
and since e =i+ v, then:
Vv=—Yoxe+e=(6—Y,) xe (1.72)
where 6 is the Dirac distribution in DY'.

Definition 109 Y, will be called the admittance of the augmented network Nj.

In the particular case of a network N linear, passive and completely solvable the
current i of the network is related to the voltage source e by a convolution between a
distribution Y, ,depending on the characteristics of A/, and the voltage source e.

Roughly speaking we can have a physical interpretation of v, as the matrix n x n
whose generic entry Y, (t)|; ; is the current response at port ¢ of the augmented network
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at time ¢ to a § voltage applied at port k at the instant zero. This interpretation is
clearly not rigorous since we have restricted the space of our admissible input and output

to D7, and ¢ is clearly outside this space.

Remark 110 As a remark we claim that, because of prop. (108) and Theorem (54)
the representation (1.71) holds also for a linear, solvable, passive and time invariant

network because of Theorem (54).

Frequency domain representation of linear, completely solvable, time

invariant n-port networks

From now on we will restrict our interest to the particular class of n—port networks
linear, passive and completely solvable.

In order to characterize in the so called ”frequency domain” the response of net-
works, we need to introduce Laplace bilateral transform.

However it is known (see Beltrami (1966)[7]) that the Laplace transform cannot be
defined in all D!,. Therefore when a Laplace transform will be needed we will restrict

the consideration to the signals belonging to a subset of D/, to be specified .

Definition 111 Let S be the subset of C* of tempered functions:

ds
Sz{fECOO:EI(a,/B)EIN22>sup t*—=
telR

€ ]R} (1.73)

Definition 112 The sequence (fy,) of elements in S is said to converge to f € S if and
only if:

V(a, ) € N lim tQW

n—-+oo

=0 (1.74)
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Definition 113 Let C§'% be the set of continuous functions of polynomial growth, i.e.
Cglow .= {A €CY:I(M,C) e Rt xRY = [A(t)] < C (1 +t2)M} (1.75)

then the set of tempered distributions is defined as:
S = {F €D :3ne Cslow, ZGIN;»D‘A:F} (1.76)

Remark 114 There are distributions which do not belong to S’. For instance the func-
tion !, when regarded as a distribution, does not belong to S'. Indeed all its primitives

do not belong to Cgl"“’.
The following Theorem is due to Schwartz:

Theorem 115 (Theorem of Structure) S' coincides with the set of linear continuous

functionals defined on S.

Now on we will limit our attention to a particular class of distribution, those for
which a bilateral Laplace transform can be defined.
In what follows we will need to regard a distribution as a functional defined on the

set of complex valued test functions D,.
Definition 116 Let F€ D/, ¢ € D, then

F (p) =T (Re[p]) + i (Im [p]) (1.77)

Definition 117 Let r€ D', g € C™ then ¥ g is the distribution in D' defined by:

VoeD rFgl(p)=F (9¢) (1.78)
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The following considerations allow for the definition of Laplace transform:
Definition 118 Let € D' and let s = 0 + iw. We will call damping region, the set:
Iy :={ceR:Fe " €8} (1.79)

Lemma 119 T is an interval. If ¥€ D' then T'z is a semiinfinite interval included in

R™.
Definition 120 I'¢ = {s € C: Re[s] € I'+}

Theorem 121 Let re D', I'y = (0¢,00) and p € Dy such that p(t) =1 if t € Suppr.

Then for every s € 'y, s =0 + iw:

Joi€RT,0>01>00=Fe P8, pt)e NS

. (Fe"’lt) (p (t) e’(s’al)t) =: L[F] (s) independently of the choice of o1 and p.

The function defined in TS, s — LIF](s) is holomorphic and is called Laplace

transform of F.

e For everym € R L[(-t)"F] = ddfnﬁ[bF]

Now we introduce some fundamental results in the theory of Laplace transform

distributions, for a detailed analysis of these properties see Schwartz (1966) [9]:

Theorem 122 Let F and G be two distributions in Dﬂr, and let Ty and I'c be their

damping region. Then F*G has a Laplace transform in I'y NT'c and:

LlF*c]=L[F]L[c] (1.80)
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Corollary 123 L [D'r| = s'L[F]

Let us turn again our attention to the linear, completely solvable and time invariant
n—port network considered in prop.(108).

Laplace transform of eq.(1.71) leads to:

I(s)=Ya(s)E(s) (1.81)

where I(s) = L[i] (s), Yo (s) =L[Y4](s), E(s) = L][e] (s).

Repeating the same reasonings as eq.(1.71), we get:
V(s)=(1-Y.(s)E(s) (1.82)
where V (s) = L[v] (s).

Remark 124 It has been decided to characterize a network N by means of the ad-
mittance of its augmented network. This is done to guarantee the universal frequency
domain representation of the network. Instead the alternative possible choices presented
in what follows, i.e. to introduce for characterizing N, its own immittance or trans-
mission matrices do not have general validity. Some networks which deserve attention

could be singular, i.e. do not admit one of the aforementioned representations.

Thus in the frequency domain a network is represented by the admittance matrix
Y, (s); in the following when it will be possible without misunderstandings we will drop
the variables when indicating I and V, i.e. the (Laplace transform) current and voltage
respectively.
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Now we are ready to introduce some of the most used and fruitful matrix descrip-

tions of A in the frequency domain.

Definition 125 Let us start with the impedance Matriz Z (s) :

V = Z(s)I (1.83)

Z(s) = (1-Ya(s)Ya(s)™

The generic entry Z (s)|, ; represents the ratio between the voltage at port i and the cur-

Vi

Wi~ T,

rent applied at port j when all the other ports are open-circuited: Z (s)| .
i 11,=0, k£

The terms on the diagonal of Z will be called driving impedances, while the others

will be called transfer impedance.

Example 126 The impedance of an inductor is
Zr, (s) =sL

Example 127 The impedance of a resistor is
Zr(s)=R

Example 128 The impedance of a capacitor is

Zo (s) = e,

Remark 129 Note that it is not always possible to describe a network by an impedance

matriz, since Yq (s) can be singular.
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Definition 130 Another common matriz used to describe a network is the Admittance

Matriz Y (s) :

I = Y(s)V (1.84)

Y(s) = Ya(s)(1—Ya(s)™

The generic entry Y (s)|, ; represents the ratio between the current at port i and

4.3
the wvoltage applied at port j when all the other ports are short-circuited: Y(s)\ij =
I;

Viln=0, kj

Remark 131 Clearly Y is the inverse of Z, and its existence is related to the invert-
ibility of (1 — Y, (5))71, thus it may happen that a network admits the Y representation
without admitting the Z representation and viceversa. It can happen also that no one
of these two representation is admissible, this being the case of the ideal transformer.

Generally Y and Z are both called immitance matrices.

Example 132 The admittance of an inductor is:

Example 133 The admittance of a capacitor is:
Yo(s) = sC
Example 134 The admittance of a resistor is:

Yr(s) = }%
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The last description matrix that will be used all over this work is the Transmission

Matrixz T.

The use of this description for A/ will become very useful in the discussion of the
transfer properties of the network, and in development of the so called cascade connec-

tion.

Assume that the network has an even number of ports n = 2m then we can partition
the ports into two sets 1 and 2 such that 1 contains the first m ports and 2 the others,

according to this partition we can write:

Vi L
V= and I = (1.85)
Vo I
vy m N m v,

Figure 1.10: Partitioned network

Definition 135 The transmission matriz associates to the "input” vector the ”output”
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vector, i.e.t:

A\ Vi
_ (1.86)
—Is I

Example 136 The (m + m)—port transformer has a transmission matriz:

T 0
T =
0 T!
The transmission matrix, sometimes called Chain Matriz, can be related to Y and
Z, whenever it is possible, by the following reasoning.

Let me partition the impedance matrix and the transmission matrix into four sub-

matrices m x m each:

Tii Ti2 21 Zis
Y = 7 = (1.87)

Ta1 Ta Zy1 Zy

then substituting these two expressions into 125 and 135 we get:

,

Vi=2Z1111 +Z12D

Vo =Zo11h + Zals

(1.88)
Vo =T11V1 + T2y
I =-T5 V) — Taly
This system yields:
" ~Zy Z1y 7, ”_ ~Ty1 T2 ~Ty
ZonZis Zno — ZonZ 371 ~Y11 05! Tog + Tia —T11 o)
(1.89)

*The minus sign in the following equation is needed in order to account for the different conventions
used when introducing immittance and trasmission matrices.

In the first case the current is positive when it enters the network,while in the second case the current
is positive when it leaves the network.
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Analogous relations can be found between the impedance matrix and the transmis-

sion matrices.

Balanced networks We have developed all the previous matrix terminology for mul-
tiport networks, nevertheless we can extend these ideas also to networks in which pairs

of terminal cannot be grouped into ports.

Consider a n + 1 terminal network A/:

Figure 1.11: N+41-terminal network

where the (n + 1)th terminal is assumed to act as a reference point for the voltages

of the other terminals, and all the currents are assumed to enter the terminals.

In the framework of linear,time invariant and completely solvable networks we can
go again through all the steps mentioned dealing with n—port networks and establish

an isomorphism between (n + 1) —terminal networks and n—port networks.

Sometimes in literature an (n + 1) —terminal network is called an n—port balanced
network.
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Interconnection of networks

Usually the problem of the synthesis of a networks is solved regarding it as decom-

posed into several subnetworks, each of them performing a specific task.

That is, once we have found the matrix representation of the network, instead of
trying the immediate synthesis of a corresponding circuit, we decompose the global
matrix in terms of simpler matrices and then we turn to the problem of designing a

circuit for a set of component subnetworks.

In this section we want to examine the most common techniques of network in-
terconnection, and to understand the relationship between connections and matrix de-

scriptions.

Series connection Let us start with the Series connection of two n—ports AN; and

Na:

[

Figure 1.12: Series
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In the series connection the terminal 7, of N is connected to 7; of Na,i.e. all the

currents leaving the first networks, enter the other network:

I =1, (1.90)

Clearly the impedance matrix of the series connections is equal to the sum of the

two impedances matrices:

Example 137 The impedance of the series between an inductor and a capacitor is:

1 s2LC +1
7 =sL+ —==—
(5) =sL+ sC' sC'
while the admittance is:
sC

Figure 1.13: Series between an inductor and a capacitor
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Parallel connection In the Parallel connection the terminal 7; of A is connected

to T; of N3, i.e. the two networks have the same voltages:

Vi=V, (1.92)

L — L
T

Figure 1.14: Parallel

Obviously the admittance matrix of the parallel connection is equal to the sum of

the two admittance matrices:

Y=Yi+Y; (1.93)

Example 138 The admittance of the parallel between an inductor and a capacitor is:

1 S2LC +1
Y(s)=sC+ —=""""->_—
(S) sC+ sL sL

while the impedance is:
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%@

Figure 1.15: Parallel between an inductor and a capacitor

Cascade connection Now we have to discuss the Cascade connection; this connection
represents the interaction of two networks where the second one accepts as ”input” the
”output” of the first one.

In fact, consider two 2m ports N7 and N3, and connect the (m + j)th port of N;

to the jth of Na:

Figure 1.16: Cascade

Clearly the best matrix representation of the cascade connection is the transmission
matrix, and that matrix is equal to the product of the transmission matrices of the
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subnetworks:

T =To"y (1.94)

Cascade-loaded transformer Finally we have to discuss the cascade-loaded trans-
former, this connection will become very useful in the synthesis of finite networks with
more than 2 ports. Indeed it will enables us to synthesize a given Z using a simple circuit

(e.g. with diagonal or spherical impedance) to cascade load a multiport transformer.

Figure 1.17: Cascade-loaded transformer

In particular given an (I4+m)—port transformer one can terminate it with an m—port
network described by an impedance matrix Z,,. The thus obtained loaded transformer

is an [—port network the [ x [ impedance matrix Z of which is equal to:

7Z=17%72,T (1.95)

Realizability considerations

We will characterize the set of impedance and admittance matrices of linear, time
invariant, completely solvable and passive n—port network.
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Then we will discuss the problem of the realizability of a given network, under
further specified constraints such as reciprocity, finiteness and losslessness.
The proofs of all theorems mentioned in this subsections can be found in Newcomb

(1966)3].

Definition 139 An n x n matriz A(s), s = o + iw, is called positive-real if: (the x

denotes complex variable conjugation)

o A(s) is holomorphic in the half plane © = {s €C : 0 > 0}
o A*(s) = A(s*) in O, this implies that A(o + i0) is real in O

o Ay(s) =3 (A(s)+ A*T(s)) semidefinite positive in ©, Ay (s) is called the Her-

mitian part of A(s).

Theorem 140 The immittance matrices of a linear solvable, time invariant, passive

n—port network are positive real, whenever they exist.

As a remark, we have to underline that for a 1—port network, usually called bipole,

the theorem can be stated as follows:

Corollary 141 The immittance A(s) of a linear solvable, time invariant, passive one-

port network is positive real (whenever it exists), that is:
o A(s) is holomorphic in ©
o A*(s) = A(s*) in ©, this implies that A(o + i0) is real in ©

e Re[A(s)] 20, in©
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Now we will exhibit and discuss some examples of immittances, which will be used in
the synthesis of the networks involved in the electro-mechanical parallel we will consider

later.

Example 142 Consider the trascendental immittance:
A(s) = Agtanh-ys (1.96)

where Ag and v are positive real constants, in particular Ag has the dimension of a
resistance if the immittance is an impedance and it has the dimension of the inverse
of a resistance if the immittance is an admittance, and ~y has the dimension of a time.
Now let us investigate the conditions of Theorem (141):

sinh s

o A(s) = Agtanhys = Ay

s singular at the points p, where coshys van-
cosh ys

ishes, i.e.:
€oS Ywq coshyoq = 0 T
coshyp, =0 = :>pa:O—|-i2—(2k:—|—1) keZ
sinywgq sinh yo, = 0 7
(1.97)

Thus A (s) is holomorphic in ©, and it is meromorphic in every bounded region

of the complex plane.® In the following A (s) will be called meromorphic.

o A*(s) = Ap (tanhvs)* = Agtanh~ys* = A (s*)

A(s) + A(s)" 4 sinh ys (coshys)* + coshys (sinhys)* 4 sinh 2yo
2 0 2 [cosh ys|? 02|cosh73|2 -

0, in ©. Where the last equality holds because of:

o Re[A(s)] =

sinh acosh 3 + sinh 3 cosh & = sinh (a0 + )

A function of a complex variable is said to be meromorphic in a region of the complex plane, if it
is holomorphic in the region exept at a finite number of poles.
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Remark 143 On the imaginary axis
A (iw) = iAg tanh yw (1.98)

Example 144 Consider the trascendental immittance function:

@ sin k cosh k — cos ksinh k&

Als) =s k3 (14 coskcoshk)

where k = y/as e~ T and Ag is real positive constant. Let us investigate the conditions

of Theorem (141):

o A(s) is singular at the points pg, where (1 + cos (\/a367%> cosh (\/asef%))

vanishes, since

lim A(s) =0 (1.99)

s—0

It is easy to show that

cosh (v2y/as) + cos (v2/s)
2

+1

(1 + cos (\/@e*%j cosh (\/@e*%)) =
(1.100)

Thus the points pg can be found from:
cosh (\/5\/043> + cos (\/5\/043) +2=0 (1.101)

Let us introduce the auxiliary variable z = /2 /as := a + ib, then:

cosbcosha 4+ cosacoshd =2
coshz+cosz+2=0= (1.102)

sin bsinh a = sinasinh b

since:

coshz = cosbcosha+isinbsinha (1.103)

cosz = cosacoshb—isinasinhb
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The system (1.102) is invariant under an exchange of the imaginary part of z into

the real part of z, and viceversa. Thus:

z=a(l+1) (1.104)
Finally:
a(1+14) = V2,/aps = Re[pg] =0 (1.105)

Thus A (s) is holomorphic in O, further it is meromorphic. The poles are in
complex conjugate pairs and only on the imaginary axis. They can be found solving

the following trascendental equation:

cosT = CO_SEW (1.106)
withr = \/aw. The first five roots of this equation are:
1 = Jaw;~ 1875
ry = Jaw; ~ 4.694
ry = \Jaws~7.853
re = \Jaws~ 10.996
rs = /ows~14.137
When v/ow > \/aws eq.(1.106) can be written in the approzimate form:
cos yaw ~ 0 (1.107)
50
Vawy, ~ @W n>5 (1.108)
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o Since:

sin v/2as n sinh v/2as

inkcoshk =
sin k cos 5 57
cosksinh b — sin Y ‘2043 n sinh 2\/ 2ars
1

1) [ sinhv24/(as) —sin vV24/(as
Al = s S e e V)
(Vas)’e "z cosh v/2+/(as) + cos v/2+/(as) + 2
AoV/2 (sinh V2+y/(as) — sin \/Z/(as))

(Vas)® cosh v/2/(as) + cos v/2,/(as) + 2

Clearly A(s)* = A(s*) since

A(s) =

(V3)" = Vs (1.110)
e Further it can be proved that:
Re[A(s)] = ——— >0, in O. (1.111)

Remark 145 On the imaginary axis:

Ag L sin /aw cosh y/aw — cos v/aw sinh v/aw
(Va)® vw (1 4 cos y/aw cosh y/aw)

Aiw) = (1.112)

Reciprocal, lossless, finite networks.

In synthesis it can be needed to impose further properties, in addition to passivity,
such as finiteness, reciprocity and losslessness. Consequently, we have to understand the

effects of these additional assumptions upon the matrix descriptions of the networks.

Reciprocity Let us start our analysis with the assumption of reciprocity.
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Proposition 146 The immittance matrices of a linear solvable, time invariant, passive

and reciprocal n—port network are symmetric.

Sometimes this statement is taken as definition of reciprocity for an n—port network.
We believe, however, that the reciprocity is a concept the definition of which is more

fundamental than the symmetry of immittance matrices.

Finiteness Let us detail now the assumption of finiteness. A network is said to
be finite if it is obtained by interconnecting a finite number of elementary networks:
resistors, inductors, capacitors and ideal transformers.

If the number of subnetwork is infinite, the network is called infinite or distributed.

Remark 147 By the definition a finite network is reciprocal. For proving this simply

recall prop. (62)
Before we go further, consider the following definition:

Definition 148 An nxn matriz A(s) is called real-rational if all its entries are rational

functions with real coefficients, i.e.:

.5 .n .7 n—1 i,j
ay’s" +a;” (s + ...+ ag
(S)w bj#sm + b 1sm*1 + ...+ bé’j (1.113)
Nl

where all the coefficients are real numbers.

Remark 149 In the examples given dealing with immittance representation, are found
the immittances for elementary networks. They are all real-rational. Their interconnec-
tion produces networks with immittance matrices which are obtained by rational opera-
tions. Therefore finite networks have real-rational immittances.
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Thus we can state the following proposition:

Proposition 150 The immittance matrices of a linear solvable, finite, time invariant,
passive n—port network are positive-real, real-rational and symmetric, whenever they

exist.

Remark 151 The immittance A(s) of a linear solvable, finite, time invariant, passive

one-port network is positive-real and real-rational (whenever it exists).

Example 152 The immittance of examples (142) and (144) cannot represent a finite
one-port network, i.e. it does not exist a circuit represented by that immittance consti-
tuted by the interconnection of a finite number of resistors, capacitors, inductors and

ideal transformers.

Losslessness Now we are ready to understand which restrictions on immittance ma-
trices are implied by the assumption of losslessness, which we will require in the synthesis

of some of our electrical analogs for mechanical devices.

Definition 153 Given an n x n matriz A(s), the Hurwitz conjugate A, (s) is defined

A.(s) = A(—s) (1.114)

Proposition 154 If the immittance matriz of a lossless, solvable, linear, time invariant

n—port network is meromorphic® then:

A(s) = —AT(s) (1.115)

6 A matrix is meromorphic if all its entrys are meromorphic.
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Remark 155 As a remark, note that a rational matrix is a particular meromorphic
matriz. Then we can state: the immittances matrices of a linear, solvable, lossless, time

invariant, finite n—port network are positive-real, real-rational and symmetric and
A(s) = —A(—s) (1.116)
whenever they exist.

Corollary 156 If the immittance of a linear lossless, time invariant one-port network

is meromorphic then:
A(s) = —A(—s) (1.117)
i.e., A(s) is an odd function.
Example 157 Consider again the immittance of example (142):
A(s) = Agtanh~ys (1.118)
clearly A (s) is an odd function, then this immittance can be realized by a lossless circuit.

Example 158 Consider again the immittance of example (144):

B S@sinkcoshk —cos ksinh k
SRS (14 coskcoshk)

Als) (1.119)

where k = Jase 7. Clearly A(s) is an odd function, then this immittance can be

realized by a lossless circuit.

Fundamental properties of the meromorphic immittance function for a

linear, lossless, time invariant one-port network.

This section deals with the analysis of the immittance of a linear, lossless, time
invariant one-port network in the particular case in which its immittance is meromorphic
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function, in order to achieve a different form for them amenable for practical synthesis.

Remark 159 Assuming that the immittance matrices are meromorphic restricts the
subsequent analysis to practical applications where the evolutionary operators have dis-

crete spectrum.

As a preliminary, let us summarize the properties that we have so far found for the

considered particular one-port networks:

Summary 160 The immittance A (s) of a linear solvable, time invariant, passive one-

port network (whenever it exists) is

e positive real

e if it is meromorphic then it is an odd function of s.

Remark 161 At the moment we are not focusing our attention on the particular case
of finite one-port network. The reason for this generality will become clearer in what
follows, in particular when we will synthesize one-port networks simulating mechanical

impedances or mobilities.

By the corollary (141) we know that A(s) is holomorphic in the right plane, but
since A(s) has to be an odd function of s, then A(s) is also holomorphic in the left
plane.

Thus the poles of A(s) lie on the imaginary axis; further they are complex conjugate,
by virtue of A(s) = A*(s*).

Now we will prove that all the poles of A(s) are simple, including the pole s = 0.
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In fact, consider a pole p; of order m, remembering that A(s) is meromorphic then
A(s) is holomorphic in a ring-shaped neighborhood of p;, R. (p;) of external radius e.
Then in that region it can be expanded in Laurent series:

k; .
A(s) ~ G Vs € Re (pi) (1.120)

where k; is the residue of A(s) at p;.

On the external contour of R (p;), i.e. on the circumference of center p; and radius

A(s) = kjge™ (1.121)

By means of the corollary (141) we require also Re[A(s)] to be greater or equal to

zero in the right half plane.

Then:
Re [kieeimﬂ >0 de (—g%) (1.122)
This implies:
Re [ki] cos (m®) + Im [k;] sin (md) >0 9 € (—% g) (1.123)

This inequality holds only if m = 1, Re[k;] > 0 and Im [k;] = 0; that is the pole p;
is simple and the residue at p; is real positive.

Furthermore s = 0 is a pole or a zero of A(s). For, consider the Laurent series
expansion in the neighborhood of s = 0 then ,by contradiction, if s is nor a pole neither

a zero then:

A(s) ~ A(0) Vs € R (0) (1.124)
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Thus in R. (0) A(s) is not an odd function of s.

We have thus proved that:

Proposition 162 If the immittance A(s) of a linear lossless, time invariant one-port
network is meromorphic then A(s) has simple complex conjugate poles on the iw axis
(so they include the pole at zero) and the residues at every pole are real positive. Further

s =0 is a either a pole or a zero.

Remark 163 The previous properties which we have proven for the networks verifying
the properties listed in prop.(162) in Zinn (1951)[10] are assumed as hypothesis for
developing "network representation of trascendental functions” while in Dah-You Maa

(1943)[11] are accepted without proof.
Example 164 Consider again the immittance of example (142):
A(s) = Aptanh~ys (1.125)

As we have shown in the previous section A(s) is meromorphic and all its poles are

simple purely imaginary:
T
pr=1i— (2k+1) keZ (1.126)
2y
Besides s = 0 is a zero of A(s).

Example 165 Consider again the immittance of example (144):

Als) = s@ sin k cosh k — cos ksinh k&
SRS (14 coskcoshk)

(1.127)

where k = /as e~F. As we have shown in the previous section A(s) is meromorphic
and all its poles are simple purely imaginary. Besides s =0 is a zero of A(s).
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The following Theorem provides a tool for breaking up, under quite general restric-

tions, meromorphic functions into an infinite series of simple fractions.

Theorem 166 (Mittag-Leffler) Let A (s) be a function satisfying the following hypoth-

es1S:

o Let p1,pa, ... be the sequence of its poles, with |p;| < |piy1| Vi € IN, then

Vi e IN 0 < |pi| < +o0 and p; is a simple pole (1.128)

e there is a sequence of closed contours Cy, such that C, encloses p1,p2, ..., pn but

no other poles.

o the minimum distance of Cp, from the origin tends to infinity with n;

o A(s) = A* (s

e A(s)=o0(R,) as n — oo, i.e.

A(8)sec
lim ——== = 1.12
Then:
> 1 1
A(s) =A0)+ D kn <s_p +p—) Vs €T, s # py (1.130)

n=—oo

where ki, ko, ... are the residues at the poles p1,pa, ... respectively. And

P =Pl bn = K (1.131)

since by virtue of A (s) = A* (s*) the poles occur in conjugate complex pairs.

Proof. For a detailed proof of the theorem see Titchmarsh (1939)[2] m
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Remark 167 The residues are determined by:

kn = lim (s —pp) A(s) (1.132)

$—Pn

Further if A (s) has all the poles on the imaginary axis and the residues are positive,

then the Mittlag-Leffler’s expansion states:

A(s) = A(0) +§:12kn <;) (1.133)

52 + w2
Remark 168 Given a meromorphic immittance function A(s) of a linear, lossless,

time invariant one-port network then the only condition that we have to check before

applying the Mittag-Leffler’s expansion are:

e there is not a pole at s = 0.

there is a sequence of closed contours C,, such that C, encloses py,pa, ..., Pm but

no other poles.

the minimum distance R, of C,, from the origin tends to infinity with n;

Remark 169 The first condition of the previous remark is not stringent, since given
an immittance function A (s) having a pole at s = 0, it is always possible to consider
the inverse of A(s) which is still an immittance, but with a zero at s = 0. The third

condition is verified if for example A(s) is bounded on U,Cy,.

Example 170 Consider the immittance of example (142)

A(s) = Agtanh~ys (1.134)
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+1)

. Further the immittance

Clearly we can choose C,, as the sphere of radius

function has not a pole at infinity, since:

‘ ‘lim Aptanhvys = Ay (1.135)
§|——+o00
Then:
A(s) =o(R,) as n — oo. (1.136)
The residues of A (s) are:
L L sinhys . (s —pn)
kn = limge—p, (s —pn) A(s) =limy_p, (5 — Dn) 0ot s Ag lim,_,p,, ZT;EWS
1 A A
= Aolim,p, ———x = 0 = —sinh? (in (n + 1))
ds <s;)nh'ys> ~ cosh® ys—1 i (2n+1) i (2n+1)
A A
Z—Osin2(7r(n+%)) = 20
gl iz @nt1)
(1.137)
and:
A(0)=0 (1.138)
Then:
2A0 ad S

T
where wy, = > 2n+1).

Example 171 Consider the immittance of example (144)

Als) = @sinkcoshk —cos ksinh k

= 1.14
s (14 coskcoshk) (1.140)
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where k = \/as e~ F. The immittance can also be written as follows:

. AovV/2 (sinh\/ﬁ\/@_ sin ﬁ@)

Als) = (Vas)? cosh v/2+/(as) + cos /2, /(as) + 2 (1.141)
Clearly
A(s) =0 as |s| = o0 (1.142)

and it is possible to choose a sequence of circles C, whose radius is between ./a,_1

and \/awn,. The residues of A(s) are:

Ay  siny/aw cosh /ow — cos v/aw sinh y/aw

S5—Pn r—iWwn

k= lim (s —pp) A(s) = lim (iw —iwy,) <zw —3 (1 & cos /s cosh Jao)

(1.143)

and:
A(0)=0 (1.144)
Then:

Al(s) = 225 <82i—”w%> (1.145)

where wy, are the imaginary part of the poles.

Properties of realizable matrices

For the various decomposition needed for synthesis of networks, it is necessary to

introduce the algebraic properties of real-positive, real-rational and symmetric matrices.
Remark 172 Now we will restrict to the case of finite networks.

A fundamental necessary and sufficient condition for a real-rational matrix to be
positive-real is established by the following direct test:
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Theorem 173 An n X n real rational matriz A(s) is positive-real if and only if:

e A(s) has no poles in ©

e Poles of A(s) on o =0 are simple

e For each pole on o =0, the residue K is Hermitian, i.e.
K+ K7

K=Ky =—"3— (1.146)

, and semidefinite positive.

Definition 17/ o Ap(iw) semidefinite positive whenever it is defined.

Proof. For a detailed proof of the theorem see Newcomb(1966) [3]. The proof is
conceptually identical to the one we have given dealing with non-finite one-port networks.

|
Corollary 175 A real rational function A(s) is positive-real if and only if:

e A(s) has no poles in ©

Poles of A(s) on o =0 are simple

For each pole on 0 = 0, the residue K is real and positive

e Re[A(iw)] = 0 whenever it is defined.

Remark 176 The above result allows us to check the positive-real character of a func-
tion by examining the behavior of its real-part on the imaginary azxis o0 = 0 only, instead
of over the entire right half plane.
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We recall that the immittance matrices of a linear, solvable, lossless, time invariant,

finite n—port network are positive-real, real-rational and symmetric and

A(s) = —A(—s) (1.147)

whenever they exist.

Then, by the holomorphy of A(s) in ©, it follows that all the poles are complex
conjugate on the imaginary axis. To prove this assumes that p; is a pole of A(s), then
—p; is a pole of A(—s), but any pole of A(—s) is also a pole of A(s), showing that p;
and —p; are both poles of A(s); by the holomorphic property it follows that p; = iw;.

By means of Theorem (173) p; is a simple pole and the residue matrix K; is Her-
mitian and positive semidefinite. Further p; is also a pole and its residue is K} which
is clearly Hermitian and positive semidefinite.

Since A(s) is symmetric, all the residues are symmetric matrices; further we know

that these matrices are Hermitian then:

K+K;"
K, = KlT K; = % = K; = K} = K, are matrices of real constants
(1.148)
Combining these two conjugates poles in the fraction expansion we get:
‘ I Z :ZW ( > 2) 3( + 22):2 S 2KZ' (1149)
s —iw; S+ iw; 52 4 w3 52 4+ w3 52 4+ w3
Hence the partial-fraction expansion for A(s) states:
- s 1
A(s) = sKoo + ; 2mKi + Ko (1.150)
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Usually these expression is called Foster’s form of the immittance.

Let us resume these fundamental results in the following proposition:

Proposition 177 The immittance matrices of a linear, solvable, lossless, time invari-
ant, finite n—port network are positive-real, real-rational, symmetric and odd functions

of s. They can be expressed in the generalized Foster’s form, whenever they exist:

- 1
As) = sKoo + Y 2WSWQK +-Ko (1.151)
=1 7

where the residues K; are real constant matrices, symmetric and positive semidefinite.
Proposition 178 The immittances of a linear, solvable, lossless, time-invariant, finite

one-port network are positive-real, real rational and odd functions of s. They can be

expressed in the Foster’s form, whenever they exist:
- S 1
A(s) = skoo + ;2mk + ko (1.152)

where the residues k; € RT.

65



Chapter 2

Network synthesis

In this chapter we will give an outline of the approaches used in the synthesis of networks,

for a deeper discussion about this topic see Baher (1984)[15].

Synthesis of linear, solvable, time-invariant, lossless, finite one-port

networks.

From Foster’s form of the immittance, we can get two different techniques for design
depending on the kind of immittance we are dealing with. In fact if the given network

is represented as an impedance Z(s) we get Foster’s first form:
= s 1
Z(s) = sk 2——=ki+ -k 2.1
(s) sm+; Tkt (2.1)

It is clear that Z is a series coonection of n + 2 one-port sub-networks, in particular:

e sK, represents an inductor, the inductance of which is Lo, = koo

S
e 2———k; represents the parallel connection between an inductor and a capacitor,

82 + w3
c 2k; ) 1 )
with inductance L; = — and capacitance C; = i respectively
w; f
. . Do 1
e —kg represents a capacitor, the capacitance of which is Cy = BT
s 0
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Figure 2.1: Foster’s first form

If the one-port network is given in term of its admittance we get Foster’s second

form:
(2.2)

S

It is clear that Y is the parallel connection of n+ 2 one-port subnetworks, in particular

e sk, represents a capacitor, the capacitance of which is Coo = koo

5 ki represents the series connection between an inductor and a capacitor,

and capacitance C; = —QZ respectively
w*
k3

S
*2———
52 + w3

with inductance L; = —
2k;

1 . : Do
e —kg represents an inductor, the inductance of which is Ly = 3
S 0

[P

Figure 2.2: Foster’s second form
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Synthesis of linear, solvable, time-invariant, lossless, infinite one-port

networks.

In general the immittance of a one port network satisfying the conditions of the

Mittag-LefHer’s Theorem can be expanded as:

A(s) = A(0) + nf; 2 (L) (2.3)

s2 +w?

Then if A(0) = 0, A(s) can be represented by the connection of infinite one-port

networks.

Indeed if A(s) is an impedance, then it can be designed as a series connection
of infinite one-port networks, each of them representing the parallel connection of a

capacitor and an inductor, such as:
2k
Ln="—% Cp=o— (2.4)
wi

While if A (s) is an admittance, then it can be designed as the parallel of infinite one-
port networks, each of them being the series between a capacitor and an inductor, such

as:

Lyp==— Cy,==2 (2.5)

Remark 179 The condition A (0) = 0 does not restrict the field of applicability of our

technique, since as we have proven s = 0 is either a pole or a zero. Thus if A(0) # 0

then A (0) = oo, and we can consider the synthesis of instead of A (s).

1
A(s)
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Synthesis of linear, solvable, time-invariant, lossless, finite two-port

networks.

We have, so far, established that for a given 2 X 2 matrix A (s) to be realizable
as the immittance matrix of a linear, solvable, time-invariant, lossless and reciprocal

two-port network, it is necessary that A (s) be a generalized Foster’s matrix, i.e.:

n
s 1
A(s) = Koo + 32— Ki + “Ko (2.6)
i—1 7

where the residue matrices are all real constants, symmetric and positive semidefinite.
Momentarily suppose that A (s) represents an impedance matrix, that is Z(s) :=
A(s).
Let K be one of the residue matrices K, K;, Ko; also let ¢ (s) be one of the three
S

functions —, 2m, or s. Accordingly a typical term of the expansion (2.6) can be
§T 8%+ ws
2

written in the form:

Za(s) = Kif () = K (s) Ko (o) (2.7)

K29 (s) Kaov(s)

where, in particular by virtue of the semidefinite positiveness:

det K >0
K110 (2.8)
Ks220

We now want to demonstrate that the above typical term K1) (s), can be realized by

the following network:
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el

Figure 2.3: A two-port network capable of realizing any typical term in Foster’s expan-

sion.

The impedance matrix of the introduced network, sometimes called a T —network

is (for the meaning of symbols see the previous figure):

Zo+ Ze nZ
L= (2.9)

nZ, n? (Zy + Z.)

After this demonstration, it becomes obvious that the entire impedance matrix Z(s)
is realizable as the series connection of n + 2 T'—networks each representing a term in

Foster’s expansion.

Thus we want to show that it is always possible to find Z,, Zy, Z. and n such that:

Zr = K (s) (2.10)

Let us assume that Z,, Z;, Z. may be expressed in the form:

Zg = av) (s) Zy = by (s) Ze=c) (s) (2.11)

where a, b, ¢ are real positive constants.
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Thus from eq.(2.10), we get the following relations:

alp (s) + e (s) = K119 (s)

n(cy(s)) = K29 (s)

n? (by (s) + et (s)) = Koot (s)

Hence:

CL—I—C:KLl

nc = KLQ

n? (b + C) = K272

From which, n has the same sign of Kj 2 to guarantee that ¢ € IR™, and:

Kip
a=Ky——==Ky-
n
_ Kip K
n [n|

| K1 2]

]

b=

n2

n

n2

_ Ksy Kip  Kpp  |K

7]

Now we must require that both a and b are non-negative:

K
Kig — | |7}L7|2‘
thus:
K
Ki1 > | |le\2|
or:
| K1 2 Koo
3 2 :> I J—
Kll \‘ ‘\|K172| ‘n‘e

the set I is not empty, since:

Koo  |Kig

>0
n? In| ~
Koo > |Kig||n|
K o Ko
reRT | : < —=
{ Kip 7 7 |Kig

detK>0:>K1,1K2,2—K12,2 20 |K19| Ky

K17 20, Ko22>0
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(2.14)
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(2.16)
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Remark 180 In general the synthesis of a lossless reciprocal two-port network requires
the use of transformers, nevertheless if 1 € I and K12 > 0 then it is possible to choose

n =1 and the transformer may be dispensed with.

1
Remark 181 If ¢ (s) = — then the impedances of the T—network are capacitors, if
s
P (s) = 2% then each of these impedances is the parallel of an inductor and a
Wi
capacitor, while if ¢ (s) = s all these impedances are inductors.
If the admittance A(s) represents an immittance Y (s) it is easy to show that it is

realizable as the parallel connection of n + 2 networks, of the form showed below, called

a m—network.

ol O 1

Figure 2.4: A two-port capable of realizing any typical term in the expansion of the

admittance

An alternative approach

If the impedance matrix is of the form:

Z.(s) = Kif (s) = B (s) Kz (o) (2.19)

Ki2v¢(s) Kia1v(s)

then it can be realized by a network called a symmetric lattice:
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L,y

Figure 2.5: Symmetric lattice
The impedance matrix of this network is of the form:

1 Zb + Za Zb — Zqg
Zs = ; (2.20)

Zb_Za Zb"’Za

Thus we want to show that it is always possible to find Z,, Z;, such that:
Zs =Ky (s) (2.21)
Let us assume that Z,, Z, may be expressed in the form:
Zo=ap(s)  Zy=1bip(s) (2.22)

where a, b are real positive constants.Then eq.(2.21) yields:

L (b0 (s) + avp (s)) = K119 (s)

(2.23)
3 (00 (s) — av (s)) = K12 (s)
Hence:
b=Ki1— Kip
(2.24)
a = K171 + KLQ

Since det K >0 then K 1> |Kj 2| and the previous system is solvable with a, b both
positive real constants.
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Synthesis of multiport networks

The impedance matrix of a linear, solvable, time-invariant, lossless and reciprocal
multiport network (suppose that the network has more than two ports), can be expressed

in the generalized Foster’s form as:

n
S 1
Z(s) =Ko+ 25K+ Ko (2.25)
i—1 ?

where the residue matrices are all real constants, symmetric and positive semi-definite.
Let K be one of the residue matrices K, K;, Ko; also let ¢ (s) be one of the three

. 1 . . . . .
functions —, 2 or s. Accordingly a generic term of this expansion can be written
s

52—}—%2’

in the form:
Zi(s) = K (s) (2.26)

Since the generic residue K is symmetric and semidefinite positive it can be diago-
nalized and all the eigenvalues are nonnegative.

The eigenvalues can be assembled in an n X n matrix A:
A=1 . (2.27)

Furthermore it is possible to find an orthonormal set of eigenvectors {ei,e,,...,e,}
following the Gram-Schimdt procedure. These eigenvalues can be assembled by rows in

an orthonormal matrix E:
€1

E=| _ (2.28)

€n
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such that:
A =EKE'= K = ETAE (2.29)

For a proof of all the statements we are using see Pease (1965)[14].

Then a generic term of the expansion can be written as:
Zi(s) =Ky (s) = E" (Ay (5)) E (2.30)
Introducing a magnification factor k multiplying the eigenvectors it is possible to
express Z;(s) by:
Zi(s) =TT (= T 2.31
() =T (A0 (s) (2:31)

where T =kE.
Then the generic term can be synthesized as n uncoupled impedances of values

H—lg)\iw (s) terminating a transformer with the n X n turns-ratio matrix T.

Figure 2.6: Network capable of realizing a generic term in the Foster’s expansion

By a series connection of these n+2 cascade loaded transformers it is easy to realize
the given impedance matrix.
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1
Remark 182 If) (s) = — then the impedances are capacitors; if ¥ (s) = 2% then
s 52 +w;

they are the parallel snnection of an inductor and a capacitor; while if 1 (s) = s they

are inductors.
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Chapter 3

Timoshenko beam

Kinematics

The beam theory of Bernoulli-Navier allows for a rough description of the mechan-

ical behavior of an elastic body, under the following hypothesis:

e the reference configuration is a cylinder

e the maximum diameter of the cross sections is much smaller than the length of

the body

e the deformation of the sections is negligible, that is the section can be treated as

rigid bodies.

In the following we will be interested only in plane beams the reference configuration
of which is a straight line v, on which is fixed an abscissa s € [0,[]. Furthermore, we
will associate a section, regarded as rigid, to every point on the axis.

From now on we will always refer to an observer O characterized by an origin o and
a basis (e1, ey, es) of the space of translations.

The kinematical descriptors of the beam will be the three scalar fields w(s,t),
u(s,t), U (s,t) depending on the abscissa s and the time ¢, furthermore we will assume
that they belong to the space C*° (]0,1] x [0,00)).

7



The evolution of the system in the time interval [0, co) will be described by motion,
i.e. a function M : t — (w (s,t),u(s,t),9(s,t)) Vs €[0,1].

Let us explain each of these fields: w is the longitudinal displacement, w is the
transverse displacement and ¢ is the change of attitude of the section with respect to

the reference configuration.

actual
configuration

reference
configuration

Figure 3.1: Kinematical descriptors of the beam

Small deformations

Let us define a(s,t) the angle between the normal to the beam in the reference
configuration and the normal to the beam in the actual configuration.

It is trivial to see that « (s,t) coincides with the angle between the centerline of
the beam in the reference configuration and the tangent to the centerline in the actual

configuration, i.e.:

tana (s, t) = u'(s,t) (3.1)

Dealing with small deformations, we can linearize the tangent in the previous equa-
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tion to establish that:

a(s,t) ~u(s,t) (3.2)

Let us now introduce, the functions describing the small deformation of the beam,

in the so called linearized kinematics:

1. The shear deformation, supposing that all of the cross sections are orthogonal to
the axis of the beam in the reference configuration, is defined as the angle between
the section in the actual configuration and the normal to the axis in the actual

configuration:

v (s,t) == (s,t) — I(s,t) (3.3)

thus v represents the lack of orthogonality of the cross sections to the centerline

of the beam in the actual configuration.

2. Consider two sections at s and (s + ds), in the reference configuration. In the ac-
tual configuration these two sections will undergo two different axial displacements

w (s,t) and w (s + ds,t). The azial deformation is described by:

e (s,1) = L5 F dS’CZ —w Y s ) (3.4)

3. Consider two sections at s and (s + ds), in the reference configuration. In the ac-
tual configuration these two sections will undergo two different change of attitude

Y (s,t) and 9 (s + ds,t). The bending deformation is described by:

9 (s +ds,t) — I (s,t)
ds

ey (s,t) == = (s,t) (3.5)
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Figure 3.2: Axial and bending deformation

Dynamics

Consider the beam characterized by the interval of the abscissa [s1, s2], subjected
to a force per unit length b(s) = by (s)e; + br(s)es and a couple per unit length

p(s) = p(s)es and introduce the potentials Uy, (s), Uy, (s) and U,(s) defined by:

Upy () = — '8812 by (s)w (s, t)ds
Upy (1) = — [2 by (s)u (s, t) ds (3.6)
U(u) = = [72 p(s) 0 (s,t) ds

In the following we will assume that the cross section of the beam is constant, and

that the beam is homogeneous.

Axiom 183 The evolution of a dynamical system from time t = t1 to a later time

t = to is always such that the action is stationary. The action is the integral over the

time domain [t1,t2] of the Lagrangian which can be determined as the difference between

kinetic and potential energy.

Axiom 184 The kinetic energy of an element of the beam characterized by the interval
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[s1, S2] is:

.. 52 1 .92 1 .9 1 + 2
T(w,u,ﬂ) = —\® + =M + =19 ds (3.7)
1, 2 2 2

where X is the density per unit length of the beam, and I is the moment of inertia of the

section. Both these quantities are positive.

Axiom 185 The potential elastic energy of an element of the beam characterized by the
interval [s1, sa] is:

52 ] 2 1 2 1 2
U(ﬂ,w',u',z?'):./ﬂ Sk (@) 4 ghr (= 9)"+ Sk (9)2ds (33)

where ky is called azial stiffness, kp shear stiffness and kps rotational stiffness. All

these quantities are positive.

Remark 186 Sometimes it is convenient to introduce a kinetic energy density and a

potential energy density, defined by:

wr (1,05 ) = $xi? + §xi + §15°
(3.9)
wy (O, 0,9, s) = Sky (W) + Lkp (' —9)* + Lk (19')2

Once we have assumed expressions (3.7) and (3.8) to be the kinetic and potential

energy of the beam, the Lagrangian £ of the beam becomes:
c (w,u,ﬂ,w’, o b, 1,0, 5) =T —U-"U, — Uy, — U, (3.10)
And the action becomes:

Aw (), u(),9() = /tQ,c(w,u,ﬂ,w',u',ﬁ',w,u,ﬁ, s) dt (3.11)

t1
By virtue of the Hamilton’s principle the motion M is determined by imposing the
stationarity of the Action (3.11).
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In order to have a well-posed variational problem we have to add a set of boundary
conditions to the functions w, u, 9, limiting the set of admissible variations to a defined
set.

Initially we will not specify the boundary conditions at s; and so, so as to get
a general expression for the first variation of the Action valid for different boundary
conditions; nevertheless, we will immediately impose the boundary conditions at the

time ¢ and t9 given by:

w(s,t1) =wi (s, t1) w(s,t2) =wa(s,ta)
u(s,t1) =wug (s,t1)  w(s,ta) =us(s,ta) (3.12)

V(s,t1) =v1(s,t1) I (s,t2) = V2 (s,t2)
then the variations dw, du, 61 of the functions w, u, ¥ will be such that:
dw (s,t2) = dw (s,t1) =0

ou (s, tg) = ou(s,t1) =0 (3.13)

oY (S,tg) =6 (S,tl) =0

these variations are called synchronous.
Consider the action corresponding to the functions w, u, 9 variated by the quantities

ow, du, 61, respectively:
to s2
A(w + bw,u+ §u, 9 + 60) :/ / wr (& (w+ dw) , & (u+bu), & (94 60),5) —
t1 81
—wy (9 + 69, (w + dw), (u+6u), (9 + 69),s)

+bn (w + dw) + by (u+ du) + p (9 + 69) dsdt

(3.14)
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Since the differentiation with respect to the independent variables ¢ and s is com-

mutative with the § operator, from the previous equation we get:

‘2 *52 . .
A(w+(5w,u+6u,19+(519):/ / wT((wa),(uMu),(qu),s)—
J oty J s1
—wy (0 + 69, (W' + 6w') , (v + 6u') , (¢ + 69') , s)

+bn (w4 dw) + by (u + du) + p (¥ + 69) dsdt

(3.15)
Consider now the first term in the expression(3.15):
‘2 *52 . .
/ / wr ((w +ow), (i + 81) (19 + 579) : s) dsdt (3.16)
Jt1 Jsp
and substitute the first of (3.9):
2 rs2 5 1 s 1 /. N
/ / N+ 80 (i 80)° 4 5T (4 80) dsdr (3.17)
Ju Js 2 2 2
that is:
to 82 1 .9 Lo 1 .9 Lo 1 .92 .. 9
5)\w + Adw + 5)\u + Audi + 5[79 + 1969 dsdt + O(67) (3.18)
t1 S1
considering again (3.9), we can write the previous expression as:
to 59 . .o
/ / wr (u’;, U, 9, s) + AN + bt + T[98 dsdt + O(62) (3.19)
11 S1
Consider now the second term in the expression(3.15):
to 59
- / / @y (9 + 60, (w + 6w, (ul + ), (& +60') ,5) dsdt (3.20)
t1 s1

and substitute the second of (3.9):
2o ! n2 1 ! ! 2 1 ' 2
tl 81
(3.21)
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that is:

to D)
- / / Tky (W) + kyw'sw' + Lk (v —9)? + kr (v — 9) (60’ — §9)
SR (3.22)

+Lkar (0)° + kard'89'dsdt + O(8%)

considering again (3.9), we can write the previous equation as:

9 S
— / / w7 (79,w',u’,19’, s) + kyw'dw' + kp (u' — 19) ((5u’ — (519) + k' 69 dsdt + 0(62)
Jt1 Jsy

8

(3.23)
Finally consider the remaining three terms in the expression (3.15):
ty  pSo
/ / b (w + 6w) + by (u+ 6u) + pu (0 + 69) dsdt (3.24)
Jt1 Jsy
and expand the products to get:
to "5
/ / byw + bru 4+ pd + byodw + broéu + pdd dsdt (325)
Jt1 Js1

Substituting these results into eq.(3.15) we get:
A (w + dw,u + du, ¥ + 69) = A (w,u, )
/ 'ZQ / - (Awéw + Nt + 11957'9) — (kyw'sw' + kg (' —9) (5u' — 69) + kp?89') +
J ) s
+ (b bw + bpdu + pdv) dsdt + O(6%)

(3.26)

Hence the first variation of the action A is:
to 89 L.
0A = / / <)\u')6w + Ao + Iz%z?) — (k:Nw’(Sw’ + k(U = 9) (6u' — 69) + k:Mz(}’éﬂl) +
tl 81

+ (byodw + bpdu + pdd) dsdt
(3.27)
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Consider the first term in eq.(3.27):
ty 1S9 o
/ / (Awéw + i + 119619) dsdt (3.28)
t1 s1
and integrate by parts with respect to t:

"89 . t=to to 82 .
/ ()\u')éw + Midu + mw) ‘ ds — / / (Awéw + Niidu + mw) dsdt (3.29)
s 1 Jty 1

J 81 t=t J S8

Consider now the second term in eq.(3.27):

t s
—/”/ﬂmwmw@@um@mwm+mwwyMt (3.30)
t1 1

8

and integrate by parts with respect to s:

to
— / (k:Nw’(Sw + kr (u’ — 19) ou + kﬂ[ﬂléﬂ) }zizj dt+
t1

(3.31)
i S

/ : / : (knvw”éw + kp (0" —0") du + (v —9) 89) + kpr0”60) dsdt
t1 S1

Substituting these expressions into (3.27) we get:

t=t

& t
6A = / 2 (Au'zéw + Audu + 11'9619) ’t ; ds — / ’ (knw'dw + kp (u' —9) du+ kn9'89) 7 dit+
Ss1 =1 t1
t ]
+ / 2 / 2 (knw" 8w + kr (W' =) bu+ (v — 9) 69) + kard"69) — <)\w6w + Aidu + 1&9519)
t1 S1

+ (byodw + bpdu + pdd) dsdt

(3.32)

Manipulating this expression we get:

t—t b2 =
2 e / (k6w + ko (u' — 9) 6u + k' 69) |22 dt+

t=t1 t1

.59 ]
§A = / ()\u')éw + Midu + 119519) ’
J s1
to 89
+/ / (kNw”—Al'[)—l-bN) ow + (kT (u’—ﬂ)/ —)VLL—l—bT) ou+
tl 81

(kT (W — ) + k" — I0 + u) 69 dsdt
(3.33)
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and now the problem is to find (w,u, ) such that the first variation of A is zero, i.e.

the stationary points of A :

SA=0 (3.34)

The first integral in eq.(3.33) immediately vanishes since we are considering syn-
chronous variations. In order to find the extremals of the action, we have to add the
boundary condition at the edges of the beam-element to the variational problem.

These boundary conditions cannot be chosen arbitrarily, but they have to fulfill the

transversality conditions:

Enw' (s2,t) dw (s2,t) =0
kEyw' (s1,t) dw (s1,t) =0
kr (W (s2,t) — U (s2,t)) bu(s2,t) =0
(3.35)
kr (W (s1,t) — 9 (s1,t)) u(s1,t) =0
k]\ﬂ?l (82, t) ov (82, t) =0

k]\ﬂ?’ (81, t) ov (81, t) =0

in order to make it possible to find a solution of the variational problem.

Example 187 One of the possible choices of admissible boundary conditions, would be:

w(s1,t) =wi(t) w(sa,t)=wa(t)
w(st,t) =ui(t)  w(sa,t) = u(t) (3.36)

% (Sl,t) = 191(7f) 0 (Sg,t) = 192(t)
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which limit the set of admissible variations as follows:

ow (s1,t) =0 dw(s2,t) =0
ou(s1,t) =0 odu(sz,t)=0 (3.37)

09 (s1,t) =0 69 (s2,t) =0

Introducing the functions N, T', M defined by:

N = kNw’
T = kp (u/ — ) (3.38)
M = kp

the transversality conditions become:

N (sa,t) dw (s2,t) =0

N (s1,t) dw (s1,t) =0

Tou(s2,t) =0
(3.39)
Tou(s1,t) =0
M9 (Sg,t) =0
M9 (Sl,t) =0

The functions N, T, M are called contact actions, in particular IV is called the
generalized normal force, T' the generalized shear force and M the bending moment.
Furthermore the equations in (3.38) are called constitutive equations and they establish
a relationship between the deformation parameters and the contact actions.

Imposing these conditions on the set of admissible variations, also the second inte-

gral vanishes and since the third should be zero for every admissible variation, we get
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the following Euler-Lagrange equations:
Enw"” — Mo+ by =0
kp (W —9) — Ni +bp =0 (3.40)
kp (0 —0) + kpd" — T+ =0
The equations in (3.40) are called the equations of an elastica, or Navier equations,
for a Timoshenko beam.
N — X +by =0
T — Nii+ by =0 (3.41)
T+M —Id+pu=0
The partial differential equations in (3.41) are called balance equations.
Substituting the constitutive equations (3.38) into the definition of the density of

potential elastic energy (3.9) we obtain:

wy (ﬂ,w',u',z?',s) = %Nw’—l—%T (u’—ﬁ) —}—%Mﬂ’ (3.42)

Energy of a Timoshenko beam

Definition 188 The Energy of an element of the beam characterized by the interval
[s1,82] and subjected to the external actions per unit length detailed in the previous

section 1S:
5@WﬁwmnmwmaQ=T+U+mMu%+mL (3.43)

Proposition 189 The beam element is conservative.

Proof. To prove that the beam element is conservative, we have to demonstrate:

d
ZE=0 (3.44)
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i.e. the energy is a first integral of the motion. Hence:

d. d [ [*
Efziﬁ</ @@+wwd&+mN+w@+mJ (3.45)

51
Substituting (3.9) and (3.6) we get:

d d [?

2. . -9
—E== Sgmﬂ+§mﬂ+§h9+%mmwf+%mww—0f+%mww32

—by (s)w —br (s)u— p(s)Vdds

(3.46)

Differentiating the argument of the integral with respect to time, we obtain:

d 52 . . y .

a&:/Ammmm+hw+me+m@thw—@+mmw—mm—mﬂ—wm
J 81

(3.47)

Integrating by parts the 4-th, 5-th and 6-th terms of the previous equation we get:

d e iy s
as:/&ummu—mmw—ma+uQu—m_wT@ﬂ—w»+ﬁ(m—kTmhwﬂ—u—kMW)¢

8§=8 S=s§

+kNww§jj+kT@u—ﬁy@y—@)

2 .
+ k"o
1

5=8 5§=81

(3.48)

By virtue of the equations of an elastica (3.40) and the transversality conditions (3.35),

d
Se_.
dt "

Euler beam

An Euler beam is a Timoshenko beam, with the additional constitutive assumption:

u =1 (3.49)

i.e., the sections in the actual configuration are always orthogonal to the axis of the
beam.

89



This assumption immediately leads to:

kT—>OO

(3.50)

since, even if the section is orthogonal to the centerline in the actual configuration, the

shear contact action 7" has to be finite.

Furthermore, the energy densities for an Euler beam become:

wr (9,5 ) = $xi? + 4Nl + 31 (i)’
wy (ﬂ,w’,u’,z?', s) = %k:N (w’)2 + %kM (u”)2
The equations of an elastica for an Euler beam become:
knw” — Mo+ by =0

k]y[’LL”” _ I,I:'LII + )\U — bT _ /’LI

(3.51)

(3.52)

Remark 190 In the applications we are dealing with the kinetic energy due to the

rotation of the section is negligible with respect of the kinetic energy due to the motion

of the axis of the beam, then:

= — AW — AU S
2 2

J 51

Furthermore we will neglect 1" in the previous equations to get:

kyw” — Mo+ by =0

k" + Nii = bp — M/

90
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Chapter 4

Electrical analogs for simple

mechanical structures

Claim 191 ”An analogy is a recognized relationship of consistent mutual similarity be-
tween the equations and structures appearing within two or more fields of knowledge,
and an identification and association of the quantities and structural elements which
play mutually similar roles in these equations and structures, for the purpose of facili-
tating transfer of knowledge of mathematical procedures of analysis and behavior of the

structures between these fields.” Floyd A. Firestone (1956)[12]

History of the mechanical impedance methods for vibration problems

In the classical approach to vibration problems, the vibrating structure is studied
as a unique mechanical system, i.e. the governing equations for the entire structure are
written and any change in the topology of the structure leads dramatically to a new set

of equations which needs to be solved anew.

During the 1940’s a lot of effort was expended in attempts to approach the prob-
lem as a ”black box”. That is, rather than describing the complete behavior of the
whole structure at every point, only the motion of a few of its points is considered,
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resulting from forces applied at these assigned points. This procedure recalls that based
on the ideas of Maxwell, Castigliano, Mohr, and the method of Muller-Breslau for the
study of indeterminate systems. Furthermore, with this procedure, it is possible to
characterize the behavior of each structural member and then assemble them following
well-established connection rules derived from the theory of networks. The first at-
tempts were essentially focused on lumped parameter systems, disregarding distributed
elements such as beams and plates (see Firestone (1956)[13]). Later the impedance
method was applied to more complex systems, leading to fruitful results in industrial

and civil applications such as torsional vibration of wings and vibration of floors.

Following this black box approach the response of the whole system may be built up
from partial characteristics of its structural members, each of them modelled as a one-
port network. Every one port network establishes a relation between the ”"force” at a
point (chosen as the across variable) and the ”velocity” at the same point (chosen as the
through variable). Depending on the particular structural member the ”force” can be
either a shear force or a normal force, and the ”velocity” can be either a deflection or an
elongation. In this framework it is possible to define a so called mechanical impedance
and a mobility. The mechanical impedance, for brevity impedance, is defined as the
ratio of the Laplace transform of force to the Laplace transform of velocity, while the

mobility is defined as the inverse of the impedance.

However this black box approach can not be applied to a generic structure, since
not all the structural members can be fully described by one-port networks. In fact,
only those structural members modeled at their terminals by one dynamic variable and
one kinematic variable can be completely represented by one port networks. Indeed, as
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we will see in the following chapter, any frame, constituted by an Euler beam, needs to
be modeled as a 6—port network, in order to consider all its vibrating properties.
In what follows we want to show two particular applications of the impedance

analogy, and a simple structure analyzed by virtue of this black box approach.

Simply supported beam loaded at the end by an axial force

Figure 4.1: Simply supported beam

We assume that the constitutive equation for the beam is:
N = kNw’

where kpy is a positive real constant.
From the balance equation for IV, taking into account the inertial bulk force, we

get:
N' + X =0 (4.1)

The pivot at A and the roller at B set the following boundary conditions:

)

N@U:ﬂw:w@D:kN

w(t,0) = 0 (4.2)
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The first step of our study is to non-dimensionalize the equations of the structural
problem.

Let us assume as characteristic values:

[ is the lenght of the beam

to = 25, where wy is the angular frequency of the first vibrational mode of the beam

wg?
(4.3)
Let us introduce the following dimensionless variables:
g=2 LY (1.4)
-7 T4 7 ‘
Then the constitutive equation becomes:
N = kn¢’ (4.5)
. . . . N
Introducing a dimensionless normal action Fy = T we get:
N
Fy=(
(4.6)
F(r
D P (r)
N
Further, for the balance equation we get:
k Al -
Npy-56=0 (4.7)

Substituting the constitutive equation into the previous equation, we obtain the

equation of evolution of the structure:

2 .
A G (4.8)

(l/ _

 knt?
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Considering as kinematical descriptor of the system the velocity, instead of the

displacement, we get in dimensionless variables:

pYE
"= "= 4.9
kntd (4.9)
The boundary conditions are, in term of the dimensionless velocity:
v(r,0)=0 v (1,1) = Fp (1) (4.10)

Transforming (4) and the boundary conditions by a bilateral Laplace transform we

get:

v(n,8)" = T2 v (n,§) (4.11)

’7(77:0) =0 ’7/(7771)277FF(77)

where the tilda denotes the Laplace transformation and 7 is the dimensionless Laplace
variable.

The solution of this boundary value problem is:

7(0.6) = 2 tan ()

where o = i i
to V kn

The dimensionless mechanical impedance of the structure is:

Fr(n) o
Z = = 4.12
() v(n,1)  tanhan (4.12)
while the mobility is:
r(n,1 tanh o
aoln) = 1) _ i (4.13)




Now let us find the mechanical impedance Z(s) and the mobility a(s):

(4.14)

Synthesis of the electric analog

Given the mobility a(s) we can introduce an electrical admittance Y'(s) :

1 A Ak
Y(s) = T tanh 4/ E.ls = RONa(s) (4.16)

where Ry is a constant that has the dimension of a resistance.

By virtue of the techniques developed in chapter (2) we can synthesize a one-port

network, the admittance of which is Y(s). The ratio of current and voltage for this one

VAN

0

port-network is proportional to the ratio of velocity and force by the factor

From the examples given in section (1), it is clear that:

2A0 ad S
A(S) = AO tanh'ys = Tn:1 <m>

where w,, = 21 (2n + 1) and Ag and  are positive real constants.
v

Then:

1 [\ 2 [hy & s
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[k
where wy, = TN% (2n+1).

Thus Y'(s) can be designed as infinite one-port networks in parallel, each of them

being a capacitor and an inductor in series, such as:

Rl JA S S8 AL (4.18)

Ln ==
2V kN Ro V kn (2n +1)?

We can explicitly write:

Y(s) =3 _ G (4.19)

Figure 4.2: Circuit analog to the simply supported beam

Cantilever beam

Figure 4.3: Cantilever beam
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The constitutive equations for the Timoshenko beam are:

M = kyt (4.20)

T = kT(’LLI—ﬁ)

where ky and kp are positive real constants.
The balance equations, neglecting the rotational inertia, for the shear action and

the bending moment are:

M+T = 0 (4.21)

T = X\i

The clamping device at A and the force at B determine the following boundary

conditions:

u(t,0) = 0 (4.22)
9(t,0) = 0

M(t,l) = 0

T(t,1) = F(t)

Now let us restrict to the Euler beam, thus supposing k7 — oo, then:

W =9 =0 (4.23)

Thus the constitutive equation for the bending moment becomes:

M = k]wu" (424)
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And the boundary conditions:

u(t,0) = 0 (4.25)
W' (t,0) = 0

M(t,1) = 0

Tt = F(t)

The first step of our study is to non-dimensionalize the equations of the structural
problem.

Let us assume as characteristic values:

l is the lenght of the beam

2T

to = <L, where wq is the angular frequency of the first mode of the beam (4.26)
wo y

ro is the radius of gyration of the section

Let us introduce the following dimensionless variables:
T=— (== (4.27)

Then the constitutive equation for the bending moment becomes:

karro
M = B ¢’ (4.28)
2
Introducing a dimensionless bending moment Fjy; = — M, we get:
(karro)
Fy=¢" (4.29)

Further, for the balance equation of bending moment we get:

kprro
T+, =0 (4.30)
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Introducing a dimensionless shear action Fr = —7T', we get:
(karro)
Fr+Fy, =0 (4.31)
l3
Fr = 4.32
P (karro) (4.32)
Further from the balance equation for T" we obtain:
Fro=a?C (4.33)
4
where o? = ;\—l
Substituting (4.29) and (4.33) into (4.31) we get:
V4’ =0 (4.34)

Considering the kinematical descriptor of the system to be the velocity, instead of

the displacement, we get in dimensionless variables:

vVVr =0 (4.35)

The boundary conditions are in terms of the dimensionless velocity:

v(r,0) = 0 (4.36)
/(r,0) = 0

V(7,1) = 0
—V"(r,1) = Fp(r)

Transforming (4.35) and the boundary conditions by a bilateral Laplace transform
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we get:

7 (n,€)" + a2 (n,6) =0

7(n,0) =0
5 (0,0) = 0 (4.37)
7"(n,1) =0

7" (n,1) = —nF (n)

The general solution of the differential equation is:
v (n,&) = Asinké + Bcos k€ 4+ Csinh k€ + D cosh k€

where k =, /naeﬂ%.
Imposing the boundary conditions we can find the dimensionless mechanical impedance

of the beam:

Fp(n) k% (14 coskcoshk)

Z = =— 4.
(1) v(n,1)  n sinkcoshk — cosksinh k (4.38)
while the mobility is:
v(n,1)  n sinkcoshk — cosksinh k
= = = 4.
(1) Fp(n) Kk (1+coskcoshk) (4.39)
Now let us find the mechanical impedance Z(s) and the mobility a(s):
LIF ()] - (5)
Z(s) = =
)= ] ~ sa(s,0
(4.40)
(o) oo LEED] _si(s.])
LIF@®]  F(s)

They are related to the dimensionless values by:

. . 2 T -
k= \mae 't =e¢ 1 Stoi— A e 'aly/sq/ ki =e "1,/(s (4.41)
0 M

ks B
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with

FP="" k=k(s)=e5\/Bs (4.42)
ke
thus:
F (s 13 Mo M 1 + cos k cos
() st (s,l) o, (n,1) 13 o(m) = 2(s) 13 s sinkcoshk — cosksinh k
to D
st (s,1) 3 s sinkcoshk — cosksinh k

1
F(s)  Z(s) = als) = kar k3 (1+ coskcoshk)

(4.43)
Synthesis of the electric analog.
Given the mobility a(s) we can introduce an electrical admittance Y'(s) :
s sinkcoshk — cosksinh k ks
Y(s)=Ao—= = Ao— 4.44
(5) O3 (1+ coskcosh k) e a(s) (4.44)

where Ag is a positive real constant.

By virtue of the techniques developed in chapter (2) we can synthesize a one-port
network, the admittance of which is Y(s). The ratio of current and voltage for this one
. . . : Ao
port-network is proportional to the ratio of velocity and force by the factor —3 kum-

From the examples given in section (1), it is clear that:

Y (s) = g:l 2s (82]_‘1—”6‘)%> (4.45)

Thus Y (s) can be designed as infinite one-port networks in parallel, each of them

being a capacitor and an inductor in series, such as:

Ly==— Cp==2 (4.46)

102



We can explicitly write:

Y(s)=Y __Cn (4.47)

Figure 4.4: Circuit analog to cantilever beam

Remark 192 The natural frequencies of this admittance are not equally spaced on the

1Maginary aris.
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Chapter 5

A black box approach to the

theory of vibrating structures

The purpose of this chapter is to extend the black box approach studied in the theory
of networks to vibrations of plane beam-structures. (Where there will not be possible

misunderstandings we will call a plane beam-structure, simply structure).

We will limit our observations to the mechanical devices which can be modelled
as black boxes, communicating to the outer world by a finite number of access points

called terminals.

Furthermore we will suppose that the state of each terminal 7; is completely char-
acterized by a pair of 3—tuples (a;,T;) = ((U{, vy, w'), (ti, th, M")).

The pair (vi, vé) represents the velocities and w? the angular velocity, at the terminal
7;, with respect to a given observer O characterized by an origin o and a basis (e;, e;)
of the space of translations, while (tzi,tg, M 1) represents the contact actions, force and

bending moment, applied at a Cauchy cut at the terminal 7;, with respect to O.

Notation 193 For a n—terminal mechanical device, we will group the state variables
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Figure 5.1: Representation of a structure

with the following convention:

U1
a = (v, Vo,w) =

ot

t
T @ = (tl,tQ,M) =

1

ty

ty

M1

MTL

As we have done dealing with networks, we will suppose that the Signal Space is

still Dy

Definition 194 Given a binary relation Cg on D:L_X?’ X Dzw, a beam-structure S is:

S = {((v1,va,w), (t1,t2, M)) € DI*? x D3 (v1,vy,w) Cg (t1,t2, M) }

(5.2)

Claim 195 We have established a physical analogy between the model of a network and
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the model of a structure. In fact we can claim that an n — terminal structure S is

analogous to a 3n—port network N .

Definition 196 A frame F is a specific interconnection-topology of structures. Any

constituent of a given structure is called a structural member.

Definition 197 The total instantaneous power expended into S is:
p(t) - (t17t27M) : (v17V27w) (53)

and the net energy delivered to the network at time t is:
£
E) = / p(t)dt (5.4)

The connection of different structural members can be mathematically represented
as operations on the structural members dictated by the force and moment balance

equations, and the congruence relation.

Definition 198 Given a frame, we call a node the set of terminals of constituting

structures interconnected in the given topology.
Axiom 199 Given a frame F, let’s {n;} denote the set of its nodes:

e The sums of forces and bending moment at every node must vanish
o Let (ng,ny,...,ng, N1 = ng) be a closed loop of nodes in F:

(v},v?,wi) = (0,0,0) (5.5)

k
=1

K2
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Structure Analysis
Building blocks

In this section we will give a brief outline of the most common structural members
used in engineering applications. These will be the building blocks of the frames we are

interested in.

Constraints
Definition 200 A pivot Sp is a one-terminal structure defined by:
Sp = {((Ul,UQ,LU) ) (t17t27 M)) € D}rX3 X D}rXB : (U17U27M) = (07070)} (56)

Definition 201 A clamping device S¢ (or encastre) is a one-terminal structure defined

by:

Sc = {((vl,vg,w) , (t1,t2, M) € D}FX?' X le‘g : (v1, v, w) = (0,0,0)} (5.7)

oA

Figure 5.2: Representation of the pivot and clamping device

Definition 202 A roller Slﬁ is a one-terminal structure defined by:
((v1,v9,w), (t1,t2, M)) € DI*3 x DYP : —sin vy + cospvg =0, M =0,

S¢ =

cos @ty +sinpty =0
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Definition 203 A link-block Sf_5 is a one-terminal structure defined by:

. ((v1,v9,w), (t1,t2, M)) € DI x DYP : —sin vy + cospvg =0, w =0
S, p=

cospt] +sinpts =0

(5.9)

Figure 5.3: Representation of a roller and a link-block

Lumped elements

For a direct definition of lumped elements see Molly (1958)[1].

Definition 204 A damping device Sp is a two terminal structure such that:

S ((V17v27w) ’ (t17t27M)) S D—2|—><3 X D—2|—><3 : (t%atéaMl) = - (t%atga-ZV[Q) 9
D p—

(t%,t%,Ml) =r (v% — vl 03 — vl w? —wl)

(5.10)

where r € R is the damping ratio.
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Figure 5.4: Representation of a damping device
Definition 205 A spring ngp 15 a two terminal structure such that:

4
((vl,v2,1'9) ,(tl,tQ,M)) e D3 x D23 M =0, (t},1) = — (2,83,

3§p =94 —tising+ t% cosp =0,

(i% cos ¢ + 13 singo) =—k ((v% — v%) cos ¢ + (v% — v%) Singp)

(5.11)

where k € R™ is the stiffness constant of the spring.

Figure 5.5: Representation of a spring
Definition 206 A mass S,, is a two terminal structure such that:
((V17V27w) 7(t17t27M)) € ,Dixg X D—Qi-X3 M= 07 (U%,U%) = (U%,U%)
Sm =
(t% - t%vt% - t%) =m (U% - 1.)%77‘)% - U%)

(5.12)

m € R is the mass of Sp.
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K2

Figure 5.6: Representation of a mass

Sources

Definition 207 A shaker Sgi, is a one terminal structure such that:

Ss = {((v1,v2,w) , (t1,t2, M)) € D3 x DY3: (vy,09,w) = (V4 (), Va (), (1))}

(5.13)

Definition 208 A load S;, is a one terminal structure such that:

St = {((v1,v2,w), (t1,t2, M)) € DY x D%+ (t1,ta, M) = (T1 (t) , To (t) , M (¢))}

(5.14)

WS (e

Figure 5.7: Representation of a load and a shaker
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Continuous elements
Definition 209 A beam is a two-terminal structure defined by:
SB = {((V17V27w) ) (t17t27M)) € D—2i-X3 X D—Qi—xg : (V17V27w) CB (t17t27M)} (515)

where the binary relation Cp on D3* x D¥*? select those ((v1,Vy,w), (t1,t5, M)) such

that:

( ( ) w1 (O, t) w9 (O,t) ws (O,t)
Vi,Vy, W) =

w1 (l, t) w9 (l, t) ws (l, t)

(5.16)
(b6, M) —s1(0,t) —s2(0,t) —c(0,t)
1, Lo, =
s1(1,t) s2 (1,t) c(l,t)

\
where 1 is the length of the beam and the fields wy (x,t), we (x,t), w3 (x,t), s1(x,t),
s2 (w,t), c(z,t) verify:

s’ (z,t) +b(z,t)=0

(¢ (z,t) +s(x,t) x ' () + p(x,t)) - (€1 x ez) =0

51 (z,t) wh (x,t)
o (z,t) | =R | wh(a,0) (5.17)
¢ (x,t) wh (x,t)

b (z,t) = =V (2,1)

p(r,t) =0

\

Remark 210 The previous definition is well-posed since, by virtue of the definition of

our signal space Dy, att =0 the beam is at rest.

Remark 211 The first two equations of the previous set stand for the balance equation
of forces and torques for a plane beam of generic shape. The third equation is not exactly
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a constitutive relation, since the variables on the left hand side are not the strains. The

remaining two equations specify the bulk actions, maintaining the negligibility of the

rotational inertia due to the physical assumption of thin sections with respect to the

vertical direction es.

Now we consider two particular kinds of beam, in particular we will assume that

for these beams the undeformed shape is straight and parallel to the e; vector.

Definition 212 A Timoshenko beam St is a particular beam defined by:

Sr = {((V17V27w) ) (t17t27M)) € D—2|—><3 X D—Ql—xs : (v17V27w) Cr (t17t27M)}

(5.18)

where the binary relation Cr on D2 x D2*? select those ((v1,Vy,w), (t1,t5, M)) such

that:

(V17V27w) =

(t17t27M) =

w(0,t) @ (0,t) 9(0,t)
w(l,t) w(l,t)y 9(1,t)
(5.19)
—N(0,t) =T(0,t) —M(0,t)
Nty Tt  M(t)

where [ is the length of the beam and the fieldsw (x,t) , 4 (z,t), 9 (x,t), N (z,t), T (z,t),
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M (z,t) verify:

N (2,t) + by (,8) = 0
T (,t) + by (2,) = 0

M (z,t) + T (z,t) + p(z,t) =0

N (z,t) Exn 0 0 W' (x,t)
T(x,t) |=| 0 kp 0 W (z,t) — 0 (x,t) (5.20)
M (z,1) 0 0 ky W (x,t)

by (x,t) = = (x,t)

br (z,t) = =i (x,t)

p(s,t) =0

Definition 213 An Fuler beam Sg is a particular beam defined by:

Sg = {((V17V27w) ) (t17t27M)) € Dix?» X ,DiXS : (V17V27w) Ce (t17t27M)} (521>

where the binary relation Cp on D3X3 X Diw selects those (vi,vy,w), (t1,t9, M) such

that:

( w(0,t) @ (0,t) 9(0,t)

(V17V27w):
w(l,t) a(l,t) 9(,t)

(5.22)

—N(0,t) —T(0,t) —M(0,t)

(t17t27M):
N(@,t) Tt Mt

where [ is the length of the beam and the fieldsw (x,t) , 4 (z,t), 9 (x,t), N (z,t), T (z,t),
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M (z,t) verify:

N (z,t) + by (2,8) =0
T (x,t) + by (,t) =0
M (z,t) + T (z,t) + p(z,t) =0

N (z,t) En 0 W' (z,t)

. o/

M (z,t) 0 ky W (x,t) (5.23)
W (z,t) — 9 (x,t) =0
by (x,t) = = (,t)

br (z,t) = =i (x,t)

p(s,t) =0

\

the assumption o' (x,t) — 9 (x,t) = 0 can be considered as a kinematical constraint, due

to the physical hypothesis of shear indeformability, i.e. kp — oo.

Fundamental properties of structures

As we have done dealing with networks, we will introduce briefly the most funda-

mental properties of an n—terminal structure S.

Definition 214 A structure S is linear if S is a subspace of V := szs X Dix‘g', e

(a1 +ag, 71 +T2) €S
V(ai,7T1), (e, 7)) €S, € R (5.24)
(ba,BT) €S
Remark 215 V is trivially a vector space, once it is endowed with the simple operations

of sum of two vectors (o, T), and multiplication of a pair by a real number. Furthermore

we introduce the notion of convergence as we have done dealing with networks.
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Example 216 All the introduced constraints are linear.
Example 217 All the introduced lumped elements are linear.
Example 218 None of the introduced sources is linear.

Example 219 All the introduced continuous elements are linear. In particular since Cg
is defined by a set of linear ordinary differential equations and the constitutive equations

are linear then the beam is linear.
Definition 220 Let S be a structure, S, is said to be the augmented structure if:
() eS=(a+T1,7)ES, (5.25)

The augmented structure can be thought as the structure obtained by connecting

one unit damping device to each of the terminal of the given structure S.
Definition 221 S is solvable if ¥V (V1,V,,Q) € D? 3 (a,7) € S such that

(V1, Vo, Q) =a+ 1 = (vq, Ve, w) + (t1,t5, M) (5.26)
Definition 222 S is completely solvable if it is solvable and if

V{((V1,V4,Q),) : N — D" convergent to (V1,V,,9),
<((V1,V2,QJ)“ ’ (t17 t27 M)n)> converges to ((V17V27 (.u') ’ (tl? t27 M))

with (V1,Vy,Q),, = (v1,vy,w),, + (t1,t5, M), (5.27)
Example 223 All the introduced constraints are completely solvable.

Example 224 All the introduced lumped elements are completely solvable.
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Example 225 All the introduced sources are completely solvable.
Example 226 All the introduced continuous elements are completely solvable.

Definition 227 S is time-invariant if:
V(a,7) €S, Vo e IR F (o, (t), T4, (1) = (a(t +1to), T (t+to)) (5.28)

Remark 228 In mechanics the time-invariance property is called memoryless, and it
essentially maintains that the structure is not able to store information about its load

cycles.
Example 229 All the constraints are time-invariant.
Example 230 All the lumped elements are time-invariant.

Example 231 No one of the sources is in general time invariant since they fix on set

of variable, in a way that is generally varying with time.

Example 232 All the continuous elements are time-invariant, since the set of differ-

ential equations and the constitutive relations are time invariant.

Definition 233 S is passive if:

-t

V(a,T) €S, Vte R, 5@):/ (&) T(€)dE >0 (5.29)

J =00

otherwise it is active.
Example 234 All the constraints are passive, since for all of them:
pt)=a(t):7(t)=0=E()=0 (5.30)
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Remark 235 In general these constraints are called "perfect”, since they expend zero

power on all the possible displacements.

Example 236 The damping element is passive, since:

2 .
pl)y=a): ()=t +thh + M =r {(t} ) + (t (1) + (M (t))Q} = E(t) >0
i=1
(5.31)
Example 237 The spring is passive since:
1
£ (t) = gk (Al (t)? >0 (5.32)

where Al (t) =1(t) —lo is the variation of length of the spring with respect to its initial

length.
Example 238 The mass is passive since:
]_ 1 2 2 2
£(t)=5m ((v1 ) + (2 (1)) ) >0 (5.33)
Example 239 All the sources are active
From now on for simplicity, we will restrict to Timoshenko and Euler beams.

Example 240 All the continuous elements are passive, since:

p(t) = Nwl) + Taly + Mol (5.34)

2

PR 5 SUPRS SUPINS SPIPC IS SEPRC IS P
(t) = 5)\10 +§)\u +§l€N (w') +§kT (v =) +§k]V[ (9)"ds >0 (5.35)

S1
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As a preliminary to the definition of a lossless structure, we state the following

lemma:

Lemma 241 If S is passive, solvable and ¥V (V1,V,,Q) € DﬁX?’ NLY*3, then o and T

belong to D> N Ly*? too, and € (o) € RY.
Proof. Since the network is solvable then for every (Vi, V4, Q) € DﬁX?’ there is a
unique pair (o, T) € S such that (V1, V,, Q) = a+T; thus

St (V1 Vo, )T (1) (V1, V,,Q) (1) dr
(5.36)

= [l ©" T©ds+ [LoT ()T T(©ds+2 L T (©)T(¢)de
Supposing that (V1, V5, Q) € DT**NLE*? we have that ||(V1, V,,Q)|| € R, but, since
S is passive, the previous equality implies that both a and 7T belong to LSXB and that

£(0) = [ (OT()dEERT. m
Definition 242 A structure S is lossless if:
e S is passive
e S is solvable
oV (V1,V,,Q) e DP* N LL*3, £ (00) =0
Example 243 All the introduced constraints are lossless since, in particular, p(t) = 0.

Example 244 The introduced mass and the spring are lossless, while the damping de-

vice is not lossless.

Example 245 The introduced continuous elements are lossless.
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Notation 246 In what follows, in order to emphasize the correspondence between the
model of network and the model of structure, and to simplify the mathematics involved
in the definition of reciprocity and in the time domain representation, we will use a
"Voigt” representation for the state variable o« and 7. That is, we will assemble these

two n X 3 matriz in two 3n column vectors in Di” :

vt t
v3 t3
w! M?
a=| |, T=| . (5.37)
vy ty
vy ty
w"” M”
Definition 247 S is reciprocal if:
V(ap, ), (e, T9) €S, ol s =al x1; (5.38)

Example 248 All the introduced lumped structures are reciprocal.

Remark 249 If (a1, 7;) and (o, Ty) belong to (D" x DI) N (8" x 8§ then by

the theorem of convolution, the previous equation states:

V(eu, 7)), (@2, 7m5) € SN (8™ x ™) (Llaa))! LIma] = (Llew])" £[71]
(5.39)
Proposition 250 (Dynamical Mazwell-Betti reciprocal theorem) All the introduced con-

tinuous structures are reciprocal.
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Proof. Suppose that (aq, 7)) and (o, T5) belong to (DI x D3™) N (8" x &),
i.e. every entry is a tempered distribution. Then we can take Laplace transform of all

the balance equations, to get:
N =Xty = 0= N =s\0 (5.40)
M+T = 0=M+T=0
T — vy = T'=s\iy
Where the tilde denotes the Laplace transform, i.e.
f e (DI x D) N (87" x 8B, LI[f (2,1)] (s) =: £ (,5) (5.41)

.Furthermore we can take Laplace tansform of the constitutive relations:

N = kyvy = sN = kyo} (5.42)
T = kTUIQ — ST = kTﬁIQ
M = k]uw/ — SM = k]ud},

Consider now the two given set of equations for the pair (a1, 7;) and regard the other
pair (ag,T5) as a test vector, i.e. multiply the first balance equation for the normal

stresses by the velocity @ (x) and integrate over the domain:

.0 ol "l "l

. k

N§dde = / SADL 2dr = / oM o2 de = / sATIOde = (5.43)
Jo Jo s Jo J0

l k l
N, = / sA il i2da + —¥ / 552 da
0 S Jo
Now let us multiply the second balance equation by the angular velocity @? (z) and

integrate over the domain:

o] N 5 N I o] N o] N
/ (M{aﬂ v Tlaﬂ) de =0 = M@Q)O . / Lo da + / Tide =0 (5.44)
JO JO JO
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T:
Now consider the velocity ©2 (x) such that &% = _Sk_2 + 93":
T

5 1 l 1o ffv
Mld]Q’O — l{j]\f/ &'}1/[[12/d$ +/ T <_Sk_2 + {}%’) dr=0—=
0 0 T
N 1 N 1 !l S O !l
Mlaﬂ) - Tﬁg) = ks / Vo dx + - / T Tydx + s / oL D2dx
0 0 Jo kr Jo Jo

Hence:

~2l - ol = ol
N1v1’0+M1w O+T11)20

I I I I I
k .
= / sABLBRde + N / VoY dx + kay / Vo dr + = / T Todx + s / Aoy o2dx =
0 S Jo 0 kr Jo 0

~ l ~ l
— Nyl |L + Mgajljo + TQ@;)O

Time domain representation of linear, completely solvable and

time-invariant structures.

As we have stated in Claim(195) an n—terminal structure S is completely analog

to a 3n—port network N.

Hence we can exploit all the results obtained in the time domain representation for

networks when dealing with structures.

Corollary 251 For a linear, completely solvable and time invariant n—terminal struc-

ture S there exists a unique distribution Y, in Di”’ such that:

VS €D T =v,*S (5.45)
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where

S:=| _ (5.46)

QTL

is the generic Shaker. Since S = T + « then:
a=—Y,*xS+S=(6—-Y,) %S (5.47)

where 6 is the Dirac distribution in Di".

Frequency domain representation of linear, completely solvable and

time-invariant structures.
In this section we will introduce the most useful frequency domain representation
for linear, completely solvable and time invariant n—terminal structures.
Hence, from eq.(5.45) and eq.(5.47) we get:
7(s) = Yal(s) S (s) (5.48)

&(s) = (1-Ya()S(s) (5.49)

& = M(s)7F (5.50)

M(s) = (1-Ya(s) Y, (s) (5.51)



Remark 253 The Mobility matriz can be partitioned as:

M= . . . (5.52)

where u*’ is a 3 x 3 matriz which needs a physical interpretation:

° ;fff‘l is the velocity v1 at the terminal T; when all the terminals Ty, with k # j are

load free and at T; a unit horizontal force is applied.

° ;ffé is the velocity v1 at the terminal T; when all the terminals Ty, with k # j are

load free and at T; a unit vertical force is applied.

° ;fié is the velocity v1 at the terminal T; when all the terminals Ty, with k # j are

load free and at T; a unit couple is applied.

° l‘é,ll is the velocity vo at the terminal T; when all the terminals Ty, with k # j are

load free and at T; a unit horizontal force is applied.

° pé’é is the velocity vo at the terminal T; when all the terminals Ty, with k # j are

load free and at T; a unit vertical force is applied.

° ;fié is the velocity vo at the terminal T; when all the terminals Ty, with k # j are

load free and at T; a unit couple is applied.

° ;fi‘l is the angular velocity w at the terminal T; when all the terminals T;, with

k # j are load free and at T; a unit horizontal force is applied.

° ngz is the angular velocity w at the terminal T; when all the terminals T;, with
k # j are load free and at T; a unit vertical force is applied.
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° ,u,g]g 1s the angular velocity w at the terminal T; when all the terminals Ty, with

k # j are load free and at T; a unit couple is applied.
Remark 254 The terms on the diagonal of M are called driving mobility:

° ;fffl is the velocity v1 at the terminal T; when all the terminals T, with k # i are

load free and at T; a unit horizontal force is applied.

° ,ué’fQ is the velocity va at the terminal T; when all the terminals Ty, with k #£ 1 are

load free and at T; a unit vertical force is applied.

° pg’g is the velocity vo at the terminal T; when all the terminals Ty, with k # i are

load free and at I; a unit couple is applied.

Definition 255 The Mechanical impedance matriz Z (s) is defined as:

F o= Z(s)a (5.53)

M(s) = Ya(s)(1—Ys(s) ™" (5.54)

Remark 256 The Mechanical impedance matriz can be partitioned as:

Cl,l Cl,n
Z=\ .. . . (5.55)

where ¢ is a 3 x 3 matriz, the physical interpretation of each entry can be deduced
from the detailed analysis of the mobility matriz. The elements on the diagonal of Z are
called driving impedances.
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Assume that the structure has an even number of terminals n = 2m, then we can

partition the terminals into two sets 1 and 2 such that 1 contains the first m terminals

and 2 the others. According to this partition we can write:

(03] T1
(5.56)

dg a7
(5.57)

Sometimes it is possible to relate the transmission matrix to the mobility matrix,

by the following formulas, equivalent to those stated dealing with networks:

-M7) M7 M1

T(s) = b2 s (5.58)
Mz,QMi% M1,2—M2,2Mi%M1,1
~Y73Y29 -5

M (s) = b ! (5.59)
—Tl,ng_sz,Q + Y12 —Tl,ng_&

Frequency domain representation of an Euler beam

A beam is a linear, completely solvable and time invariant two-terminal structure,
thus we can study its frequency domain representation by means of the tools developed
in the previous section.

In order to make use of this representation in the synthesis of the analog network,

it is better to work with dimensionless variables and equations.
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Hence let us introduce the following characteristic values:

(

[ is the lenght of the beam

to = i—g, where wq is a typical angular frequency that will be defined

according to the application we are dealing with.

rg is the radius of gyration of the section
\

and the following dimensionless variables:

Thus the set of constitutive equations that specify an Euler beam becomes:

ow o0&
N = kyn— = N=ky=
N ox N 9e
ou To 8C T 8C
— = J=>—"=—"0===40
Bz T 0o 107 e
879 k MT0 69
M = ky—=M= —
Mow ™ 2 e
Introducing the dimensionless contact actions:
Fy = LN Fr = e T = e M
N kn r= karo M Earro
The set of constitutive relations becomes:
¢
Fy = =
N Oe
¢
. S
Oe
00
Fry = —
M e

(5.60)

(5.61)

(5.62)
(5.63)

(5.64)

(5.65)

(5.66)
(5.67)

(5.68)



and the set of balance equations becomes:

ON 9w kn OF N 1 0% OFy N2 9%
o oe T T T e 707 e T @y 00
6T aQU - k]\,ﬂ“o 8FT To 62§ . 8FT - )\l4 82<
e =TT e T gor =7 o T o O
8]\/[ o kjur() 8FM k]y[’)"o . 8FM o
e L = 0= =+ 5 Fr=0=>—F=+Fr=0 (5.71)

As far as we have done in the analysis of the structure Sg Euler beam, let us write all the

constitutive and balance equations in terms of velocity fields, instead of displacement

fields.

Hence, let us introduce the following dimensionless velocity fields:

0¢ ¢ 00
=5 = = .72
YT oy T ar Y= oy (5:72)
and the two real positive constants:
A4 A2
32 2 (5.73)

= —_— ry e —
t3kar t3kn

Summary 258 Thus a "dimensionless” Euler beam can be specified by the following

relations:

ve (0,7) ve (0,7) we(0,7)
(V17V27w):
ve (1, 7) v (1,7) we(1,7)
(5.74)
—FN(O,T) —FT(O,T) —F]V[(O,T)
(t17t27M):
FN(LT) FT(l,T) FA[(l’T)
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where the fields so far introduced satisfy:

l.e.:

( 8FN 2 61)5 8FT 2 8UC
_— = _S _— - = 6 —>
3 or

8 | ar’ p)

8FM o 8FN_8U£
O¢ =0, or  Oe
0% _ .y, OFM_ O
oe or  Oe

Transmission matrix

o o
02 ol
g ol
=T (n)
—t t
—t3 t
—M? M1
e (1,m) e (0,m)
B (1,m) B¢ (0,m)
Vg (1777) ﬁ@ (0777)
) =Tm |
_FT (1777) _FT (0777)
_FM (17 77) _FM (07 77)
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Let us find an expression for the dimensionless transmission matrix, defined as:

(5.76)

(5.77)



To obtained the requested transmission matrix Y (), let us consider the Laplace trans-

formed set of balance and constitutive equations for the dimensionless Euler beam:

P -
OFny 5 oFr o
5e = ) M 9% = BN v¢
OFy ~ 00 -
- _F %t _pF
66 T, ag neN
0v¢ 00y ~
— =9 _— F
66 Vg, 85 nrar

(5.78)

Let us assemble these equations in the so called "normal form”, where the prime /

denotes the differentiation with respect to the variable e:

v¢ (£,7)

0¢ (£,1)

tg (€,7)
—Fy (1)

_FT (57 77)

_FM (57 77)

/

0 0 0 -n 0 0
0 0O 1 0 0 0
0 0 0 0 0 -p

o o0 0 0 -1 O

Ue (£,1)

0¢ (e,m)

tg (€,7)
—Fy (5,1)
—Fr(e,m)

_F]VI (67 77)

(5.79)

The set of equations can be arranged in the following normal form which immediately

shows that bending and axial deformations are governed by uncoupled equations:

/

(5.80)



where the matrix and the columns can be partitioned as follows:

!

X5 (e,m) B O4x2 X5 (e,1)
= (5.81)
Xc (&,m) 0254 C Xc (g,m)
with:
¢ 0 1 0 0
N 179 B 175 0 0 0 —-n
XB = ) XC - I B= ) C =
—FT _FN _6277 0 0 0
—Fy 0 0 -1 0
(5.82)

B is called the bending matrix, while C is called the compression matrix since they

relate respectively the bending and the compression of the beam.

Remark 259 In the considered model of the beam structure it is assumed that the
normal stress does not spend any power on the vertical displacement of the beam. This is
true because we limit our study to small deformations and linearize in the neighborhood
of the undeformed straight line configuration. Then the bending and the compression
modes are completely uncoupled, and it will be possible to synthesize them by means of
two different circuits.
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By virtue of the previous remark it is possible to study the bending and the compres-

sion as two distinct phenomena, thus introducing two different matrix representations:

o3 ¥y
@2 nL
= Ygp(n) (5.83)
- 7
—M? M
o o)
= Yo (n) (5.84)
- 7

where Y (n) and T¢ (1) will be called respectively the bending and the compression

transmission matrix.

B
The solution of (5.81) can be expressed in terms of the value of at e =10
in the following form, see Pease (1965)[14] for more details :

XB (57 77) = ebe XB (07 77)
(5.85)

XC (6777) = eCa SCC (07 77)

Be

where the matrices B¢ and e©¢ can be computed as follows.

Let us start with the compression matrix and find the eigenvectors and eigenvalues

of C:

C= (5.86)
The eigenvectors and eigenvalues of C are:

e = A =1, ey = A2 = —ny (5.87)
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Assembling the eigenvectors in a mat

It is well known that:

C

and the matrix e“~¢ can be evaluated

emns 0
eCE — P6A6P71 -P
0 e~ e

rix we get:

C=PAP!

as follows:

Thus the Compression Transmission matrix is:

cosh ny

— sinh ny

132

coshnye

—sinh nvye

1
——sinhny
v

cosh iy

1
——sinhnye
~

cosh nye

(5.88)

(5.89)

(5.90)

(5.91)

(5.92)



Now we have to evaluate the matrix B¢, following the same steps as we have done

in the compression analysis. The eigenvectors and eigenvalues of B are:

Figenvectors

Eigenvalues

Choosing

(&%)
8%

3
4 (7/82772)
B%n

M=/ (=52

V (=0%12) = VByne's = \/Bk

_yCar)
8%n
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3
4 (7/82772)

8%n 8%n
v (—6%n%) i/ (=6%?)
1 1

(5.94)



where /7 is such that Im [\/ﬁ] > 0and /B € IR, the set of eigenvectors and eigenvalues

of B becomes:

i i i i
g g B B
k k k k
i—= — —i— —
FEigenvectors VB VB VB VB
(5.95)
—/Bk —iv/Bk VB iv/PBk
1 1 1 1
FEigenvalues A\ = +/Bk Xo=i/Bk  M3=—Pk M\ =—ivBk
Remark 260 On the imaginary azis n = iw, w € IR and
k= +Viwe'i = ivw (5.96)
where /o € R™.
Assembling by columns the eigenvectors in a matrix we get:
)
g g g g
LA L B
P = VB VB VB VB (5.97)
~VBk —ivBk Bk ik

1 1 1 1
And assembling the eigenvalues in a diagonal matrix we obtain:
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A= (5.98)

It is well known that:

B =PAP! (5.99)

Be

and the matrix eP¢ can be evaluated as follows:

eVPke 0 0
0  eiVbke 0 0
eBe = PPl =P P! (5.100)
0 0 e VPke 0
0 0 0 e iV/Bke

the expanded expression for eB¢ is cumbersome, because of the great amount of trascen-
dental functions involved in each entry of the matrix. However in the sections below we
will need this expression in terms of its submatrices. The Bending Transmission matrix

1s:

Tp (n) = e (5.101)

Mobility matrix

In this subsection we want to find the mobility matrix of the Euler beam; to simplify
the problem it is worthwhile to find separately the bending mobility matrix Mp and
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the compression mobility matrix M¢ defined by:

¥y t
o! M! o th
= Mg (1) =Mc¢ (n) (5.102)
3 & o #
o? M2
ie.:
¢ (0,7m) —Fr(0,m)
7 (0,7) —Fyr (0,m) 7 (0,m) —Fy (0,7)
— MB — MC
¢ (1,7m) Fr(1,n) e (1,7m) Fn(1,m)
g (1,7) Far (1,m)

(5.103)

Let us start finding the compression mobility matrix M by the relation:

My ~Y¢,, Y -Ye,, _
—Tclle(‘;;chu +Ycy, —TCMTEJJ
— (—ysinhny) ™" coshpy — (—ysinhny) ™
B — coshnpy (—y sinh7y) ! coshny — % sinh (nye) — coshny (—ysinhny) !
(5.104)
Thus:
% coth ny m
M = (5.105)
m % cothny

Remark 261 The compression mobility matriz is not a rational matriz, thus it cannot
be synthesized as a finite network. Indeed we will see in chapter(6) that an infinite
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network is needed which is the cascade of an infinite number of finite networks called

moduli.

Now let us turn our attention to the bending mobility matrix Mg.
At first let us investigate the four blocks constituting the transmission bending

matrix T g, defined by:

eVBE 0 0
0 VL 0 0 TB1,1 TBl,Z
Tp=P P!= (5.106)
0 0 6_\/Bk 0 TBQ 1 TBZ 2
0 0 0 e iVPk

% (cosh Bk + cos \/Bk) 2\/13k (Sin V/Bk + sinh \/Bk)

Yp,, = (5.107)
3v/Bk (sinh \/Bk — sin \/Bk) 3 (cosh /Bk + cos \/Bk)
13 _ (sin\/Bk —sinh/BEk) 1 (cosh+/Bk — cos+/Bk
Ty, =| “HV) (sin VB VK) 2 (cosh VB VY (5.108)
%% (cos \/Bk — cosh \/fk) %Lﬁk (sin \/Bk + sinh \/3k)
- %z (\/B)S k (sin V/Bk + sinh \/Bk) %zﬁ (cosh V/Bk — cos \/Bk:)
Ba1 —

313 (cos /Bk — cosh /Bk) 34/ B (sin /Bk — sinh \/Bk)

(5.109)

% (cosh Bk + cos \/Bk) %\/Bk (sin \/Bk — sinh \/Bk:)
Tpy, = (5.110)

— 2\/1@% (sin V/Bk + sinh \/Bk:) % (cosh V/Bk + cos \/Bk:)
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The mobility matrix Mp can be expressed in terms of the previous submatrices as

follows:

—1 —1
_TBQ.I TB?? _TB2.1 MBl,l MBLQ
MB - =

-1 -1
_TBl,l TBQJ TBQ,Z +T31,2 _TBl,l TBQJ MBQ,l MB2,2

(5.111)

where the submatrices are:

sin /Bk sinh v/Bk
,8(—1+cosh v/ Bk cos \/Bk)

—i sin +/Bk CSOSh +/Bk—cos v/Bk sinh /Bk
k(\/,@) (—1+cosh v/Bk cos \/Bk)

1

Mg, , =
i sin v/Bk sinh /Bk —ik sin v/Bk cosh \/Bk+cos+/Bk sinh +/Bk
/B(flJrcosh v/Bk cos \/Bk) \/ﬁ(flJrcosh v/ Bk cos \/ﬁk)
(5.112)
— sin /Bk—sinh /Bk i cosh /Bk—cos/Bk
k(\/ﬁ)s(flJrCOSh V/Bk cos \/ﬁk) /3(*1+Cosh V/Bk cos \/Bk)
My, , = (5.113)
— cosh +/Bk—cos /Bk —ik sin v/Bk-+sinh +/Bk
,8(—1+cosh v/ Bk cos \/Bk) \/B(—l—i—cosh V/Bk cos \/Bk)
i sinh v/Bk—sin /Bk . cosh /Bk—cos /Bk
k(\/ﬁ)g(flJrcosh Bk cos \/ﬁk) ﬁ(—l-{—cosh v/ Bk cos \/Bk)
Mp,, = (5.114)
i cosh v/Bk—cos /Bk ik sin v/Bk-+sinh /Bk
ﬁ(—1+cosh +/Bk cos \/Bk) ﬁ(—l—&—cosh +/Bk cos \/Bk)
_isin +/Bk cosh \/Bk—cos \/Bk sinh /Bk o sin /Bk sinh /Bk
k(\/B)S(—l—&—cosh V/Bk cos \/Bk) /3(—1+COSh VBk cos \/Bk)
Mg, , =

sin v/Bk sinh /Bk

o ﬁ(flJrcosh v/ Bk cos \/ﬁk)

—ik sin v/Bk cosh \/Bk+cos+/Bk sinh /Bk
\/B(flJrcosh v/ Bk cos \/ﬁk)

(5.115)



Remark 262 The bending mobility matrix is symmetric, and it can be written as:

MBl,l ]\/[Bl,Z M31,3 ]\/[Bl,4

Mp,, Mgp,, —Mp,, Msp,,
Mp = (5.116)

Mp,; —Mp,, Mp,, —Msp, ,

Mp,, Msp,, —Mp,, Ms,,
Remark 263 The bending mobility matrix is not a rational matriz, thus it cannot be
synthesized as a finite network. Indeed we will see in chapter(6) that an infinite network
is needed, which can be designed as the cascade of an infinite number of finite networks

called moduli.

Once we have found the two matrices Mg and Mg it is easy to manipulate them

in order to obtain the Mobility matrix M of the Euler beam.

Cantilever beam It is interesting to deduce the impedance of a cantilever beam by
means of this powerful matrix formulation. Indeed we can think of the cantilever beam

as a frame Fo_p constituted by two elements: a clamping device S¢ and an Euler beam

Sk.

Figure 5.8: Cantilever beam
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In particular Fe_p can be thought of as a representative of a class of 1—terminal

structure defined by a 3 x 3 mobility matrix M which can be evaluated by the following

steps.

Consider eq.(5.76), taking into account the action of the clamping device on the

first terminal of the beam:

Ue (1,7) 0
O¢ (1,m) 0
v (1,7) 0
) =Tm |
—Fn (1,7) —Fn (0,m)
—Fr(1,n) —Fr (0,n)
—Fa (1,m) —F (0,m)
ie.:
t¢ (1,m)
Ty (1,m) Tp, Tr, O2x1 0O2x1
—Fr (1,n) B Tpy,y Yoy, O2x1 0O2x1
—Fy (1,7m) 0 0 Yoy, Yoo,
U¢ (1,m) 0 0 Yoo, Yoy,
—Fy (1,7)
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_FT (07 77)

—FM (0777)

_FN (07 77)

(5.117)

(5.118)



Hence:

¢ (1,m) 0
779 (17 77) TBl.l TBl,Q 0
= =
_FT (17 77) TB2.1 TBQ,Q _FT (07 77)
—FM (17 77) —FM (07 77)
) (5.119)
= 1Bip ~
Vo (1777) _FM (07 77)
_FT (1777) _FT (0777)
TBZ 2
—Far (1,m) —Far (0,m)
65 (1777) TCl,l TCl,Q 0
= =
_FN (17 n) TC’2,1 TCZ,Q _FN (0, n)
) (5.120)
65 (1777) = _Tcl,ZFN (0777)
_FN (1777) = _TCZ,QFN (0777)
Finally:
_TCLQTE'Q 2 01><2
02><1 _TBLQTBQ'Q B
69 (1777) FZVI (1777)
Proposition 264 The mobility matriz of a cantilever beam is:
Yo, , Yo O1x2
M = b G (5.122)
02x1 —Tp, T;;;Q
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Figure 5.9: Loaded Cantilever beam

Entry Expression

’

1
M1 — tanh ny
Y

L sin \/Bk cosh \/Bk — cos \/Bk sinh \/Bk

M-

. £ (/3)" (cosh v cos Bk + 1) (5.123)
B _ sinh v/Bk sin \/Bk

Mp3 = M3 _Zﬁ (cosh V/Bk cos \/Bk + 1)

sin v/Bk cosh \/Bk + cos v/Bk sinh \/Bk
VB (cosh Bk cos\/Bk + 1)

Remark 265 All the terms on the diagonal of M represent a driving mobility:

Mz 3 —ik

e represents the axial velocity resulting from a unit axial load,

o represents the transverse velocity resulting from a unit shear load,

e represents the angular velocity resulting from a unit couple.

Remark 266 All the results derived so far agree with the conclusions derived in chapter
(4), but with the introduced theory of structures, we have saved many steps reaching more

general and useful goals.
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Chapter 6

Synthesis of a circuit analog to

the Euler beam

Now, it is time to merge the knowledge which we have acquired so far to solve the
practical problem of the synthesis of a network analog to the Euler Beam. Let us detail

this purpose:

Problem 267 Given the dimensionless mobility matriz M for an Euler beam, we have

to find a circuit described by a dimensionless impedance z such that:

z(n) =M (n) (6.1)

Such a circuit will be said to be the analog of the Euler beam.

The immediate synthesis of the network is very difficult, since M is not a rational
matrix.

In fact we want to realize a distributed circuit governed by the same set of equations
that defines an Euler beam. We require the circuit to behave as a beam at every point,
not only at its terminals.

This problem can be explicitly stated as:

143



Problem 268 Synthesize a distributed circuit Cg such that the 6—port network obtained
considering the circuit that lies from x = x1 to *x = w2 is analog to the 2—terminal
structure obtained considering the beam-element from x = x1 to x = xo for every choice

of x1and xa from 0 to (.

The way we will approach this problem will be detailed by the following steps, but
as an anticipation we state that it will become necessary to partition the beam into a

class of beam-elements and then synthesize a circuit simulating each element.

Figure 6.1: Mesh on the beam

1. Consider the Euler beam Sg of length [ as the cascade of n Euler beams of size

l
A = —, then the transmission matrix T of Sg will be:
n

T ()= (T (n)" (6.2)

where Y. is the transmission matrix of a generic structural member (since all the
length of the beam-elements are equal, each of them is represented by the same

transmission matrix Ye (7)).

2. Supposing A to be ”small”, the mobility matrix M, of a generic structural member
is expanded as a Laurent series in terms of A in the neighborhood of A = 0.
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3. Truncate the expansion at a suitable degree of approximation.

4. Synthesize the resulting rational Mobility matrix M, by a finite dimensionless

subnetwork.

5. Cascade connect the subnetworks, obtaining a finite circuit which approximates
the beam more closely as the number of structural members/subnetworks in-

creases.

LB

Figure 6.2: Circuit

Remark 269 For practical purposes, A cannot be as small as we want, for then the
circuit analog will be well-behaved only on a limited range of frequencies. In fact as we
will see, the expansion will involve a trascendental function whose argument is propor-
tional to the product of frequency and size. Hence as the frequency increases, the size

should become smaller and smaller in order to provide a good approrimation.

Initially let us find the dimensionless transmission matrix of a beam-element. With-
out lack of generality, we can consider the first beam-element, i.e. the one whose first

terminal coincides with the first terminal of the whole beam.
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Figure 6.3: First beam-element

The dimensionless variables which will be used below are the same as the ones we
have introduced in the previous chapter dealing with the frequency domain representa-

tion of the entire beam.

1
Going through all the steps detailed in the previous chapter and assuming § := —
n

we get:

o7 o}
3 ¥}
@? nL
=T°(n) (6.3)
—3 t
—t3 t
—M? M
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le.:

0¢ (8,m)
U (6,m)
v (6,1)
—Fn (8,m)

_FT (67 77)

_FM (5, 77)

T (n)

v (0,m)
¢ (0,m)
_FN (07 77)

_FT (07 77)

_F]VI (07 77)

As we have noted in the previous chapter, it is possible to completely separate bending

from compression, and to arrange the previous set of equations as follows:

73 73
o2 ol o2 o1
=T () =Tz () (6.5)
>y il —i2 t
—M? M!

It is convenient to split the synthesis problem of a circuit analog to the Euler beam

into two easier problems:

e Synthesis of a circuit analog to the extending beam

e Synthesis of a circuit analog to the bending beam

Synthesis of a circuit analog to the longitudinally vibrating beam

From the previous chapter it is easy to find the transmission compression matrix

for this beam-element:

1
cosh (1y9) - sinh (1y96) 66)

Yo () = e =

—~vsinh (ny6)  cosh (nv9d)
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Furthermore it is easy to find the mobility compression matrix for this beam-element:

1 1
—coth (6 _
ot (om) 7 sinh (6777)
Me (n) = (6.7)
1 1
——— —coth(é
vsinh (6n77) v (om)

Remark 270 As expected, M¢ is symmetric, all its poles are simple and lie on the
imaginary axis. Furthermore, it is an odd function of n. All these results are conse-

quences of the reciprocity and losslessness of the Euler beam.

Now let us expand each element of M as a Laurent series in the neighborhood of

6=0:
- 1 4 1
]\401’1 = .1\402,2 =~ %6 + 577(5 (68)
M, N VRPN R S N (N (6.9)
Ci2 = Co1 — ~2n 677 .

Thus the approximate mobility matrix of the element is:

1 1 1
M¢ = 17” , 7771 ) (6.10)
— 5Ty (—Zp)s — 6 4 2né
e < 6”) 2 3"
Remark 271 The approximate mobility matrix Mc fulfills all the requirements needed

for it to represent a reciprocal and lossless network.

In fact it is a real-rational, symmetric matrix expressible in Foster’s canonic form

as:

1 ¢—1 1 ¢—1 1 1

o At L +i6 (=16

Mo = C +y b (79) (6.11)
6t et (—g)6 +30
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where the residues matrix are both symmetric and positive semidefinite:

Ko = Koo = (6.12)

(6.13)
det Ko = det Koo = 562
Let us focus our attention to the matrix zg (1) defined by:
1 11 | b
Z = —Ko = ——5< 6.14
==y | (6.14)

Using the techniques developed in chapter (2), in particular the following condition

on the turns-ratio of the transformer,

(6.15)

we find
|nogl =1 (6.16)

Since Kp, , > 0 the transformer may be dispensed with, and zg (1) may be realized as

a shunt capacitor ¢ of capacitance 726.

Now consider the impedance matrix z. (1) defined by:

S 2 -1
Zoo (17) = Koo = 1 (6.17)
-1 2
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1
—

Figure 6.4: Realization of the first term in Foster’ expansion

Condition (6.15) yields:

< neo] < 2 (6.18)

Even if 1 is a possible value for the absolute value of the turning ratio, here the trans-

former may be not dispensed with, since:

Koy, <0. (6.19)

Thus we can choose ns = —1.

Now we have to determine the inductances of the three inductors:

_ [Koora| _ 6 _é
oo = 01,1 |noo| _6(2_1)_6
Coo = }I‘(noolf} = g (6.20)
po o Boos  |Koo| 6 66
T nZ, Nl 3 6 6

0
Thus the three inductors have the same inductance, equal to 5

Connecting the two networks in series, we obtain the realization of the entire ap-

proximate mobility matrix M.
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R

Figure 6.5: Realization of the second term

U
-

=

Figure 6.6: Realization of the approximate mobility matrix

In this particular case it is possible to dispense with the ideal transformer, if we

synthesize the entire matrix by a symmetric lattice. In fact:

1 1 1 1
— & T4 s =61+ <——n> 6 . .
A v2n 3 v2n 6 Me,, Mc,,
o= = (6.21)
1, 1 1 1 Me,, Mc
T(S + <_677> 6 Té + 577(5 1,2 1,1
ren Y

Thus the two impedances in the symmetric lattice are
- - 1 1 1 1 1
=M¢,, — M =—6t4+ons— (=06t ——n]dé)==nb
Zq C1,1 C1,2 7277 + 377 <7277 + < 677> > 277

-~ - 1 1 1 1 2 1
= 80 =t~ g+ (7t () 8) = g + e
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Hence z, is an inductor of inductance 5(5 while 2z, is the series connection of an

1 2
inductor of inductance 66 and a capacitor of capacitance %6.

o2

Z, Y
0/6 5
275 o8 o A8
v Y'Y H

Figure 6.7: Realization of the approxiamte mobility matrix by a symmetric lattice

Now we have to find the analog dimensional circuit:
Z(s) = RoMc () (6.23)

where Ry has the dimension of a resistance.

Thus
kN 1 1 x kN 1 1 x
oNs 3T oNs <_€S>7
Z(S) = Roto
kvl (12 kvl 12
N s 6°) 7T  wnNs 371
And
1 1
— + —sL — + (——5L>
E—i— (——sL) a—f——sL
with:
C = 2Al Ry
kn to (6.25)
RoL = 2t



and:

CL A
- = 2
ZL’2 kN (6 6)

Remark 272 In the circuit simulating the beam, once we have fized the size of the
modulus x and the value of the capacitance C' we are compelled to choose the inductance

such that the previous equation holds.

Synthesis of a circuit analog to the transversally vibrating beam

We will follow the procedure sketched at the beginning of the chapter, but as a
preliminary step we have to find the expression of the transmission matrix and the
bending mobility matrix of the element.

The transmission bending matrix is given by:

TS () = B (6.27)
with:
0O 1 0 0
0 0 0 -n
B= (6.28)
—-3n 0 0 0
0 0 -1 0

It can be evaluated as follows:

eVBRE 0 0
0 eiVBkS 0 0
() =eP =PeMP 1 =P P! (6.29)
0 0 e VBKS 0
0 0 0 e V/Bko
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where:

k= /ne' (6.30)

Lo i 2
§; 5 5 §;
Bk 0 0 0
k k k k
I— — —— ——= 0 iv/Bk 0 0
p=| VB VB VB VB A=
0 0 —/Bk 0
—Bk —i/Bk Bk i/Bk 0 0 0 —iyBk
1 1 1 1
(6.31)
The mobility matrix can be easily found to be:
_ - TEBQJ - TEBQ'Q - TEBQJ - _ MBl,l MBl,Q
Mpg
e -1 N
_TBLl (TEB2‘1> TB2,2+TB1,2 _TBl,l (TEB2‘1> MB2,1 MBQ,Q
(6.32)

where the submatrices can be expressed as follows:

—i sin v/Bké cosh v/ Bkd—cos /Bkd sinh v/ BkS

i sin v/Bké sinh v/Bk6
k(VB)® (—1+cosh \/BkS cos \/BkS ) B(—1+cosh /Bké cos v/Bk6 )
Mp, ,
i sin v/Bké sinh /Bké ik sin /Bké cosh v/ Bké-+cos \/Bké sinh /Bkd
B(—1+cosh \/Bké cos /Bké ) VB(—1+cosh \/Bké cos /Bké )
(6.33)
— sin v/Bké—sinh /Bks i cosh v/Bkb—cos +/Bké
k(+/B)” (—1+cosh \/BkS cos /BkS ) B(—1+cosh \/Bk& cos /Bké )
Mp, , (6.34)

cosh /Bké—cos/Bkd —ik sin /Bké+sinh v/Bké
ﬁ(*lJrCOSh v/ Bké cos \/Bké) \/B(*lJrCOSh v/Bké cos \/Bké)
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sinh v/Bké—sin /BkS — cosh /Bkb—cos +/Bké
k(v/B)® (~1+cosh /Bké cos v/Bko) B(—1+cosh \/Bké cos /Bké )

Mg, , = (6.35)
i cosh \/Bké—cos /Bkb —ik sin v/Bké+-sinh +/Bké
ﬁ(flJrcosh v/ Bk cos \/ﬁké) \/ﬁ(flJrcosh v/ Bké cos \/ﬁké)

_ -sin Bk cosh /Bkb—cos /Bké sinh /BkS — sin v/Bké sinh /Bké
k(v/B)” (—14cosh \/Bks cos /BkS ) B(—1+cosh \/Bké cos /Bké )
M, ,
—i sin v/Bké sinh /Bké —ik sin v/Bké cosh v/Bké+-cos /Bké sinh +/Bké
/B(flJrcosh v/Bké cos \/ﬁké) \/B(*lJrCOSh +/Bkéb cos \/Bké)

(6.36)
Remark 273 The mobility matriz Mp is clearly symmetric, and it can be proved that
all its poles are simple and lie on the imaginary axis, and that it is an odd function of
n. All these results are somehow clear from all the considerations we have made dealing

with the properties of the Fuler beam structure.

Remark 274 Furthermore, from the previous expressions it is easy to see that the poles

of the mobility matrix happen when:

—1 + cosh \/Bv/@6 cos \/Byv/@b = 0 (6.37)

with n = iww and k = iy/w. The first root of this equation is
VBV@ = r ~ 4.73004 (6.38)

From now on we will be only interested in an approximate form of this matrix,
obtained by a Laurent expansion of each entry in the neighborhood of § = 0, the

convergence of this expansion is guaranteed as long as ¢ is less than dpax, defined by:

Omax = # (639)
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where .y is the maximum pulsation allowed for the beam.

Approximate value

4
7752 105
6 11
——5_2—— 52
03 210"
TR

14 7763

(6.40)



Assembling these entries, we get:

20+ gne” _W‘S Lo ggnd? =g gnd® — 5867 + gmd”
X, — — 0 —gnd? 6+ gdnd - gmé? 60— fgnd

— 5807+ gnd’ %5*2 ot G0 End® 567+ s

_%5_2+%7752 12 5— __775 6 +211107752 6 + 13775

(6.41)

Remark 275 The matriz Mg is a real rational, symmetric matrix expressible in the

canonic Foster’s form:

N
Mg = Ko+ 7Ke. (6.42)

B B B
Koo | T FETT T
_%571 %572 5;426—1 %6*2
_%572 %573 %5—2 %573
(6.43)
1(1)553 21_11052 +1411053 JF42052
—5Ls? +§—§6 R L.

2 9 11 2 13
+4206 —250  +350°  +30

where both the residue matrices are positive semi-definite and symmetric.
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Synthesis of the residue matrix K

The eigenvectors and eigenvalues of Kg are:

1
-1 0 1 —30
= -1 0 1
FEigenvector
1 0 1 16 (6.44)
0 1 0 1
Eigenvalue 0 0 % 6‘;:2‘(’;;1
The eigenvalues can be arranged in the following diagonal matrix:
00 0 0
00 O 0
Ay = (6.45)
2
00 7% 0
00 0 655
an approximate form of Ag is:
00 0 0
. 00 O 0
Ay = (6.46)
00 F 0
00 0 263

The system of eigenvectors obtained is not orthonormal.

Nevertheless by simple calculations, following the Gram-Schmidt algorithm, it is
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possible to find a set of orthonormal eigenvectors of Kj:

FEigenvector

Eigenvalue

2
0 \/ (4+82) i
26
AL 2,/ (4+82)
0 V2 1
) :
3V2 SV
2,/ (4+82)
0 0

R

&

3%

The Eigenvectors of Kg can be assembled by rows in the matrix:

Eq

N
SR
%

\/(4+62)
L
2\/ (1+62)

\/(4+62)
8% +4
il

0 —1V2 0 V2

vZ_ /% V2 /3
V/(4+6%) 2/(4+62) /(a+¢%) 2,/ (4+6%)

L3 0 L3 0

VY, V2 V326 V2
2/(4+6%)  J(4+0%)  2/(a+82) /(4482

(6.47)

(6.48)

Furthermore consider the matrix Ty obtained by multiplying Eg by a real positive

number Kg:

To = ko2

0 -3 0 3
1 6 1 &
V) 2/(are%)  J(4482)  2y/(a48)
3 0 3 0
5 1 5 1
2/(a+62)  J(a+e%)  2/(a46?) [ (a+8?)

(6.49)



A linearized form of T is:

0 -2 0 2
. 2 -2 =6 2 =6
To = F&o% (650)
2 0 2 0
-6 2 6 2
It is well-known that:
Ko = ElAEg (6.51)
(1
Ko = Ty ?Ao Ty (6.52)
0

Thus K can be realized by a multiport transformer N the turning ratio matrix of
which is T cascade connected to a simple 4—port network with impedance matrix éAO,
0

i.e. ”constituted” by two short-circuits and two capacitors which have capacitances

equal to:

526 ,62 53
¢ = — cq=———"— 6.53
. 2/{8 ! 6 ((52 + 4) /{% ( )
Simplification of the capacitive circuit
In the previous section we have shown that:

{1
Ko =Ty | Ao ) To (6.54)

Ko

with Ag and T 4 x 4 matrices.
In this section we want to prove that it is possible to synthesize the capacitive

residue, using a simpler circuit constituted by a multiport transformer whose turns-ratio
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1
Tox Toy, Toss To

24

1

P

1oy 1oy, 105, Loay

1
1 e
1

7641 1042 1041 1044

Figure 6.8: Realization of the residue matrix Ky

matrix is 2 X 4 and a load which is constituted only by the two uncoupled capacitors
previously introduced.

This simplification is due to the fact that the residue matrix is singular, in particular
its rank is equal to 2.

Consider the equation (6.54), in the form:

K 1 T%ﬂlyl T%;)l 02><2 02><2 T01)1 TOLQ (6 55)
0="5 .
R,
’ Tgl,Z ng,Q 022 A02,2 T02,1 T02,2

evaluating the product we get:

T T T
K 1 O2x2 T0271A02‘2 T01'1 TOLQ 1 T02)1A02,2T02.1 T02)1A02,2T02,2
0= "5 =3
"0\ 0y TT A To,, T "0\ TT Ag,To,, TE . Ao, T
2x2 0g,04102,2 02,1 02,2 0g,04102,2 L 02,1 02,04102,2 L 02,2
(6.56)

it is clear, that the only significant submatrices in the turns-ratio matrix of the trans-
former are Ty, , and Ty, ,.
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Consider now the ideal transformer defined by the turns ratio matrix Sg:

Sg = < To,, To,, > (6.57)

and suppose to cascade load it with the two uncoupled capacitors represented by the

matrix %AO2 », then we will obtain an impedance matrix defined by:
24302,

T T T
1 1 T02.1 1 T02 1A02,2T02,1 T02 1A02,2T02,2
ST'Ag, .S A == ’ ’
290 4102,2090 = "5 022 \ Toy; Toy, K2
0 0 T 0 T T
TOQ'Q TOQ’Q A02,2T02,1 TOQ’Q A02,2T02,2

(6.58)

Thus the residue matrix can be synthesized cascade connecting a transformer, the

turns-ratio matrix of which is Sg, with two uncoupled capacitors.

Notation 276 In the following, we will denote whenever it is possible the turns-ratio

matrixz Sg by To.

1613 16]4

TO:l o Toys Rz-'s

1
et

Figure 6.9: Simplified realization of the residue matrix
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Synthesis of the residue matrix K,

The eigenvectors and eigenvalue of K, are:

FEigenvector Eigenvalue
1
1 8760 473567+ 715/ (900+406>+6%) ) &
5 82 1, 162 1 Y
(4 + o8 + 1/ (900 + 4082 + %) ) 8
1
1 8 —60( 4+ 356%+ dg / (900-+4082 +6%)) &
-1 2
1
1 8°60( 4+ 155°— o/ (0004082 +87) )6
5 62
(4 + 1556 — 35/ (900 + 408° + 6%) ) 8
1
67=60(3+3356°— k5 / (900+406>+6%) ) &

1
5 52

o 17670 H5+ 5k 8%+ 515/ (10404+12062+5*) ) 6
3 52

1

176-70( 5+ 55587 + 515/ (10404.41208246) ) o
62

(140 + 30 + 8%()\/(10404 +1206% + 64)) 6

winy

2 2 4
o 176-70( 5+ 4587~ 515/ (10404412082 45) ) 6
3 52

1

AT 12 1 \/ 10404 + 12062 + &* )5
176-70( 45+ 5k562— 55/ (10 404+ 12062 1-64) ) 5 (140 * s s/ ( + +8%)
62

wilbho

(6.59)
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The eigenvalues can be arranged in a following diagonal matrix such that:

Nooss = (3 + 180% + i/ (900 + 408 4 6%) ) &

Mooy = (% + 746% — 75/ (900 + 406 + 6%) ) &

(6.60)
Nooss = (5 + 550% + s/ (104044 12007 + 6%) ) 6
Nooes = (5 + 558 — s/ (10404 + 1206% + o)) 6.
An approximate form of A, is:
16 0 0 0
A 0 =6 0 0
Ay = 500 (6.61)
0 o0 5 0
0 0 0 516

The norms of the eigenvectors so far obtained are not equal to 1.

Nevertheless by simple calculations it is possible to find a set of orthonormal eigen-

vectors of Kg:

FEigenvector Linearized expression

54

2
<53 —60 ( 2+ 13562+ 135 4/ (900-+4052 +54)) 5)
5042

§3-60( 1+ 56+ 1k |/ (900+4062+8%) ) 6

/26
6 5042

54

2 - V26
<53 —60 ( 3+ 15562+ 3/ (900-+4052 +64)) 6)
5042 1
5% 3 \/§

6°-60( %+ 156>+ 7351/ (900+408%+5) ) §

2
53—60(711+F1()52+1—%()1 /(900+4052+54)) 5)
82 (50+2 (

54

(6.62)
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2

FEigenvector

5

2
1,1 1/
(53 60<Z+—2—1 052 o (900+4052+54)) 5)

5042 =

53-60( 1+ 1562~ 15/ (900+4062+6%) ) 6

2
1 1 1 / 2 54
(53760<Z+m527m (900+405 +6 )) 6)

54

52 5042

ot

2
3 1, 1 62 1/ 2454
(6 60< 1+1206 120 (900+406 +6 )) )

5042 =

6°=60(3+7356° k5 / (900+406>+6") ) 8

2
<53—60<%+ﬁ62—ﬁ1 /(900+4052+54)) )

82 | [ 50+2 S

FEigenvector

176-70( 35+ 54587+ 515/ (10404+12062+56) ) 6

2
17 1

) <175—70<m+m52+8 01/(10404+12052+54)) )

& 8 I +18

3

2
175 70 11 5 +8‘4_52+E1_ (10 404+12052+54)) 5)
= +18

17670 5+ 55587 + 515/ (10404412082 461) ) o

- +18
3
2
175 70 T7+ST1052+W10 (10404+12052+54))5)
- +18

2
\l 175 70 —m+8—}m§2+8—}m (10404+12062+64))6)
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1
V2
1
LV/26
1
V2

(6.63)

Linearized expression

G V20
3V2
G V20
3V2

(6.64)



Eigenvector

1

17 2 1 2 4
176-70( 5+ 5558% 515/ (10404+1208%+5) ) 6

Linearized expression

3 1
3V2

V28
W)

2

76—70( 1L 4 525 62— ghg 1/ (10 404412062 464) ) 5
52 (8<1 0<m+m ’8‘4?4 (10404412062 + ))) +18)

2
(176770<1—14%+8—}m6278—}m\ /(10 404+12062+64)) 6)

8 = +18
17 1 <2 1 2 4

i 17670 5+ 5558% 515/ (10404412082 46) )6

2
(176770(1{T+8f}£06278%01 /(10 404+12062+64)) 6)
82 |8 = +18

G V20

3

A7 1 2 1
(175—70(1 01+3810°° ~ 310
8 +

2
(10 404+12052 +54)) 5)
+18

(6.65)

The Eigenvectors of K., can be assembled by rows in the matrix E,,. Nevertheless

we will only be interested in the linearized matrix:

=
3
Il

13V26

3 1

1 1 1
—3V2 $5V28 3V2
1 1
Ve —4V26
3 1
2V26 32

1 3 1 3
V2 V28 —3V2 V28

V2 1V26
? . (6.66)

Furthermore, consider the matrix Tso obtained through multiplying oo by a real pos-
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itive number Kqo:

1 1
. 2 1 =0 1 =36
Too = mm§ 6 6 (6.67)
3 3
-6 1 26 1
3 3
1 26 -1 £
It is well-known that:
1
Ko =ELAE, =TL <TAOO> Too (6.68)
and:
A oA A - 1 4 ~
Ko ~ELA B, =T <TAOO> Teo (6.69)
K’OO

Thus K, can be realized by a multiport transformer N whose turning ratio matrix
is T'» cascade connected to a simple 4—port network whose impedance matrix is K%Aoo,

i.e. ”constituted” by four inductors whose inductances are equal to the eigenvalues of

K. divided by x2Z .

Summary 277 Given the mobility bending matriz M p we have decomposed it into the
sum of two matrices, one representing the capacitive effect and the other representing
the inductive effect. We have realized both matrices as a cascade loaded transformer,
where the loads are simple diagonal matrices. Below is given a table of the approximate
values of the turning ratio matrices of the two transformers and the impedance matrices
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T T
7;11 12 “13

1;14 1
1
21 23 By, |
33 e
Loy Loys Loy |
1 O
41 L [ |
[

_— £
5

Figure 6.10: Realization of the residue K,

of the loads:

matrix Ky Ko

1 1
. Ko \/Q 2 020 Koo \/§ 1 6 6 1 6 6
turns-ratio

4 2
-5 2 6 2 —26 1 26 1
3 3
1 25 -1 26
1
6 0 0 0
2 1 <3
1| 5% O 1| 0 556° 0 0
load ? /{T
"\ o Zs? *1 0 o s 0

(6.70)
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impedance matrix of the analog circuit

In this section we want to find the numerical values of the inductances and the

capacitances that constitute the cascade load of the so far discussed transformers.

The dimensionless inductances are:

11 Ll 117 11

Tt BT P’ T am

while the dimensionless capacitances are:

o = /{2/6—26 Cy = K2 363
092 0 24
Then:
1 =z 1 23 17 =« 1 a3
ll:_Q_ 2= 9602 73 3= 2 7 4= 5002 I3
2k5, 1 360KZ, 1 T0kE, 1 2040k%5, 1
/@% Axl3 /@% Al
cl =

2 Bk T 248k

It is so possible to introduce the dimensionless impedance matrices:

L 0 0 0
1 £ 0 0 o 0 0
1
zo (1) := — Zoo (1) :=1)
o < 0 0 I3 0
0 0 0 I

And the governing equation for the dimensionless circuit can be written as:

@ (n) = Mgt () ~ (T§zo (n) To + Tz (1) Tao) T(n)

(6.71)

(6.72)

(6.73)

(6.74)

(6.75)

(6.76)

where ¢ (7) is the dimensionless voltage column vector and ¢ (7) is the dimensionless
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current column vector defined by:

@ (1) =V ()= P 1) = 7V ()

L(7) = Ilox(t) i) = ﬁi(s) (6.77)
Vi - 1 -

I_(()) = Ro=@ne) = RofotoV

where Vp, Iy, Ry are positive dimensional constants, and only one among them can be
chosen arbitrarily. For instance, we can choose an arbitrary value for V4.
Now we have to find the analog dimensional circuit. To reach this goal consider the

dimensional load matrices:

Zo(s) = R()AO (77) ZOO(S) = R()Aoo (77) (678)

where Ry has the dimension of a resistance.

Hence:
L 0 0 0
1= 0 0 & 00
Zo(s) = Ros_to ZOO(S) = Rosto
0 = 0 0 I3 0
0 0 0 Iy
Thus:
Ly 0 0 0
1
1 & 0 0 Ly 0 0
Zo(s) = — “ Zoo(s) = s (6.79)
0 c% 0 0 L3 O

0 0 0 Ly
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with:

c1to cato
c, = 9 C, — 20 6.80
1 RO ) 2 RO ( )
L1 = llRoto, LQZlgRoto, nglgRoto, L4:l4R0t0 (681)
le.:
K2 \xl® K2 \xdl
o, = fo C, = M0 6.82
! 2 tokar Ro’ 27 24 toka Ro (6.82)
1 xRoto 1 2®Roty 17 xRoto 1 23Rt
i1 = — "2 [h=——"2""0 [a= —L:—A%O—@
! 262, 1 TP T 360k2, B0 T 70k 1 YT 2040k2, )
This yields:
2
ﬁ—nl
Co 2
K2 A
Lo = o -~ 4
Cil 7202, ks
K2 A
Ly=—30 = 4 6.84
Cila 40802, kag (6:84)
K2\
CoL = 0o .4
2 48/'@‘%0 k]y[m
1 20\
CQLQ, — 7 Ko A4

1680 K2, ks

The governing equation for the beam element can be written as follows:

V(s)=Z(s)I(s) = (T{Zo(s)To + TLZeo(s)Too) I(s) (6.85)

Remark 278 Once we have chosen a particular value for C1, for the size of the beam-
element x and for the magnification constants kg and ko all the subnetworks consti-
tuting the circuit analog to the transversally vibrating beam element are unequivocally

determined. Furthermore the resistance Ry is unequivocally determined, since tg s fived.
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Numerical example

In this subsection we will give a brief outline of the procedure, which leads to the

evaluation of all the subnetworks of the previously described circuit.

Consider a beam of length [ and suppose the cross-section to have rectangular shape

with breadth b and depth d. The stiffness constant ks for this beam is:
hag = B—sbd? (6.86)
M= LB .
where E is the Young modulus of the material, and the radius of gyration rq is:

Lpa3 1
=/ =/-=d .
o > 5 (6.87)

Furthermore the density per unit length A is equal to:

A = pbd (6.88)

where p is the density per unit volume of the material.

Assume the following parameters to be given:

l=1m
b=3cm
d=2mm
(6.89)
E =70GPa
p = 2700 Kg/m?
ro = 0.57736 mm
Hence substituting these data into eq.(6.86) and eq.(6.88) we get:
ky=14Nm*  A=0.162Kg/m (6.90)
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Furthermore suppose that the following electrical entities are fixed:

C1 =0.6uF
Ko = % (6.91)
Koo = 101/2

and to use 10 moduli in the circuit, i.e.:
T = —l =10cm (6 92)
10 ’

Then all the quantities in the subnetworks are determined by:

2

Cy = &01 =5.0x 10719F = 50nF

Ly = 726%/{30 k—ijﬁé = 6.6966 x 1075 H ~ 67 uH

Ly = 40;(;%/%0 k—i[x‘icil =1.1817 x 10°H ~ 12 uH (6.93)
L= 4;530 kiM:LACiQ = 1.2054 x 1072H ~ 12mH

Ly = 17 “—%ix‘li =5.8547 x 103 H ~ 5.8 mH :

1680 Klgo k]u CQ

Finally consider the two transformers:

+ -10 & 10
1 1 1 1
. 10 1 0 ) 0 L 10 -1
To=| °? 2 Too = ‘ ‘ (6.94)
1 1 1 1 3 3
~i I 10 3 -3 10 3 10
10 & =10

34

Furthermore, let us take tg = 1s, then the maximum frequency allowed for the

circuit to simulate the trasversally vibrating beam given by eq.(6.39) is:

IS (5 W R N S N S (TN

T or \VBs)  2re2g 2met2\ A YT
2

L (4‘7(;03) 1/ L4 ) Hz=1033.7H2 ~ 1 KH>

27 (0.1)% (1)2 V 0.162
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Governing equations for the distributed circuit analog to the

transversally vibrating beam

Once we have found the circuit simulating the transversally vibrating beam element,
we have to cascade connect a number of them to approximate the behavior of the entire
beam.

Nevertheless it seems useless to study the resulting circuit as the finite cascade of
a finite circuit, since it would be characterized by a great amount of simple equations,
which would not lead to the physical understanding of the problem.

Thus we will go back to the differential equation, adopting a clever procedure called
homogenization, which roughly consists of the substitution of many lumped circuits by
a set of cables each of them characterized by distributed parameters.

Hence a further step of our analysis is the homogenization of the finite circuit
approximating the beam, in order to get a distributed circuit, i.e. an infinite circuit
governed by the same set of differential equations characterizing the entire beam.

As a preliminary step we have to introduce the variables defining the distributed
circuit at every point x. Thus let us call V; (¢, x) the voltage drop at the time ¢ and
abscissa x between the first pair of cables, V5 (¢, x) the voltage drop at the time ¢ and
abscissa x between the second pair of cables. Furthermore we will denote by I (¢, z)
the current flowing in the positive x direction in the first cable, which is equal to the
current flowing in the negative x direction in the second cable and we will denote by
I5 (t,z) the current flowing in the positive x direction in the third cable, which is equal

to the current flowing in the negative x direction in the fourth cable.
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The set of differential equations written, in dimensionless variables is clearly:

!/

(;bl (777 5) (;bl (777 5)
@2 (777 5) @2 (777 5)
- B (6.95)
A (777 5) 0 (777 5)
i2 (777 5) i2 (777 5)

where the derivation is with respect to the dimensionless variable ¢.

Here ¢ (7,¢) is the first dimensionless voltage drop at e, ¢, (7,¢) is the second di-
mensionless voltage drop at e, and i1 (7, ) is the first dimensionless current and s (7, €)
is the second dimensionless current.

The dimensionless variables are related to the dimensional ones as follows:

1 N 1 -~
o1 (T,¢) = Vovl (t,z) = @1 (n,e) = %Vl (s,7)

1 i 1 -
P (1,6) = 3z Va (t,2) = @y (n,€) = 3= Va (s, 2)

~ Voto
1 ; 1 ; (6.96)
3 (7—75) = I_OII (t,l’) = U (7776) = %Il (va) '
1 N 1 -
L2 (7—75) = I_OIQ (t,l’) = 12 (7776) = EIQ (va)
% N 1 - . 1 -
I_O = RO = ¥ (7776) - ROIOtOVi (S,J’J), P2 (7775) - ROI()tOVYQ (S,l‘)

where Ry is the resistance introduced in the previous section.

The dimensionless variables of the distributed circuit are related in the refined

circuit by:
(;bl (777 mé) i8] (777 m6)
D5 (N, MO o (m, mo
@3 (n,mod) _ My () 2 (1, md) (6.97)
gbl (777 (m + 1) 6) —l (777 (m + 1) 6)
@2 (777 (m + 1) 6) —12 (777 (m + 1) 6)

175



where m is an arbitrary natural number, specifying the m—th modulus.

Notation 279 Let us introduce a compact notation to better handle the following cal-

culations:
(;bl (777 m6)
3 P9 (1, md) P (1)
Pm (1) = =
$1(n,(m+1)0) @ (0)
P2 (n,(m+1)0)
(6.98)
71 (n, md)
2 (m, mé [
£ (n) = (n,mo) _ (n)

—t1 (1, (m +1)6)

—ig (n,(m+1)96)
Modification of the governing equation of the distributed circuit dictated
by the introduction of distributed current sources in parallel with the

distributed capacitors in the cascade load.

Consider the finite dimensionless circuit simulating the m—th beam-element, and

introduce two dimensionless current sources t,, (7,m8) ¢ and tg, (1, m8) 6% in parallel

connection with ¢; and cs respectively.

Let us assemble these current sources into a current source column vector:

- _ zgl (777 m6) 6 (699)

Lgm (T’) =
z92 (777 m(S) 63
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By the superposition principle the voltages at the ports of the network will be

modified as follows:

@m (1) = MBtn (n) + @, (1) (6.100)

where @, is temporarily an unknown.

Supposing that all the ports of the network are open circuited, i.e. (n) = 0, then:

P (1) = @g,. (1) (6.101)

If all the ports are open circuited, then the current through all the ports of the

transformer is zero and the voltage at all the ports is determined only by the current

sources by:
- - - - Qol _ Q01Z02,2zgm
@m (1) = Qozoly,, = @y, (1) = Qozoly,, = Zolg,, =
Q02 Q02Z02,2zgm
(6.102)
with:
2 =0
. 21 0 2
Q=17 = m% (6.103)
2 0
0 2
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Sbl (777 5)
@2 (777 5)

At (7776)

2 (7776)

!

tions defining the circuit with the distributed sources:

Sbl (777 5)
@2 (777 5)

At (7776)

2 (7776)

+b(n,¢)

Now let us turn our attention back to the non-homogeneous set of differential equa-

(6.104)

where b (n,¢) is a temporarily unknown that has to be determined.

The solution of the non-homogeneous system is given by, see Pease (1965)[14]:

ébl (777 6) ébl (777 60)
Ps (n,¢) $2 (1,€0) e
_ Ble—z0) b oBe / e Beb(n.a)da  (6.105)
~ ~ €0
i1(n,¢e) i1 (n,€0)
o (n,€) 72 (1, €0)

Then referring eq.(6.105) to the m—th beam-element, we can state that the gov-

erning equation for that element is:

~+ ~_—
@m (1) @ (1) (m+1)é
_ B L Blmt1)s / e Bob (n,a)da (6.106)
5 — Jméb
now setting:
& mb (6.107)

we obtain:

.(m+1)§ - £ _
6B<m+1)6 / eiBab (777 Oé) do = eB(m+1)6 / eiBab (777 54) dov

e~ B(at+méd) (777 @) da = B /
J0

Jméb JO

(6.108)
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Substituting the previous equation into eq.(6.106) we obtain:

-6
/ e B% (n,a)da = —
J0

If 6 is small enough then:

Jo e B% (n,a) da =~ 8§ b (1,&)|5_g = 8 b (1,)|y_ms = b (n,m0)

e B ~ (1 - BY¢)

and eq.(6.109) yields:

thus from eq.(6.102):

Qol Z()ng

61)(”77n6) =

02x1

manipulating the previous equation we get:

&b (n,md) =

((202‘_ (Qol)zozgm

021
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+(1-6B)

- 0B

Q02 Z()ng

02x1

Qo,Zolg,,

02x1

(6.109)

(6.110)

(6.111)

(6.112)

(6.113)

(6.114)



Now let us focus our attention on all the terms in eq.(6.114)

2 0 0 1
Q02 = 1{0% + 5%0% = Q82 -+ 5Q(1)2
0 2 0 0
2 0 0 1
Qo, = Fo Y2 — dko V2 = Qf, +6Q4,
0 2 0 0
2 5 (g,mé)
_ . ﬁ 0 lg, (m,mo) 6 1] w232 T
ZoLgm = E = E
- 24
0 535;553 Lgo (n’mé) 63 ﬁZQQ (777 mé)
kG5
(6.115)
from the above set of expressions it is easy to see that:
V2
Qf, = Q), =ro~ 1o, Qf, =—Qg, (6.116)
Hence the first term in eq.(6.114) becomes:
112V/2
- Zoly,, 5 (2Q}.) zoty,, ————1g, (n,md)
(Qo, — Qo,) 2oty _ (2Qq, ) 2oty _s| e 6.117)
02x1 02x1 031
and the second becomes:
Qo,Zoly,, Q3,2oty,, Qo,20, 2.,
sB| " =B " oy ~sB| (6.118)
02x1 02x1 02x1
with
112v/2.
——1g, (n,md
QY, zoty,, 0
R S (6.119)
O2x1 ——lg, (777m5)
Ko
0
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Finally, substituting eq.(6.117) and eq.(6.119) into the expression for b (1, md) (6.114),

we obtain:
1122,
L (n,md)
0
b (777 mé) = -
0
0

If the mesh is refined enough, then the previous equation yields:

b(nve) -

112v/2.
——t
n kB

0

(n, mé)

V2.

_K/_OLgl (777 ’ITI,(S)

0

V2

+K:_Ozgl (1, md)

(6.120)

(6.121)

where 7,4, (,¢) is a current source acting on the unit of length, while 7y, (n,¢) is com-

pletely useless since it does not influence the non homogeneous term of the governing

equation for the circuit. That is for every element of the circuit of dimensionless length

6 a current source of total value 874, (n,¢) is applied.

Substituting eq.(6.28) and eq.(6.121) into eq.(6.105), we obtain

/

o1 (n,€) 0 Lo
P9 (1,€) B 0 0 0
i1(n,¢€) 3 0 0
T2 (n,€) 0 0 -1

0 @1 (n,€)
-n P9 (1,€)
0 71 (n,e)
0 T2 (n,€)
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Thus:

()bl (7776) @2 (7776) 0
Po (1,€) —niz (1,¢) 0
= + 3 (6.123)
5] (7776) _5277@1 (7775) F&_ozgl (7775)
l2 (777 6) - (777 5) 0

Assembling the equations in a system, we get:

(

&1 (n,€) = @2 (n,€)

95/2 (777 5) = _7722 (777 5)

6.124
; - 3 (6.124)
7 (m,€) = =1 (,€) + <=Tg: (1:€)
L ZIQ (7775) =N (7775)
Differentiating the first equation of.(6.124) and substituting the second we get:
P (n,€) = =iz (1,€) (6.125)
Differentiating eq.(6.125) and substituting the fourth equation of (6.124):
@' (n,€) = i1 (n, €) (6.126)

Differentiating eq.(6.126) and substituting the third equation of (6.124), we finally ob-

tain:

. . V2.

&" (n,e) = =B°1°@y (n,e) + Mo Lo (1:) (6.127)
In the time domain this becomes

(10/1”, (7—76) = _BQSbl (T7 5) + \K{_OiLgl (7”6) (6128)
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and the dimensional equation becomes:

l4 )\l4 t2 . \/Qto .
V(4 _ 07 (¢ XTI (¢ 6.129
‘/0 1 (71:) t(Q)k]V[‘/O 1(7x)+1€[0 !]1(733) ( )
A - Roto v2
Vi () = — 2V (1) + DO Y2 ) (g o (6.130)
k]y[ 4 Ko

Hence, finally:

- Kov2 A @
‘/1”” (t)x) = _k—M‘/l (t7 :r) + 02 k—Mc—ll g1

(t,z) (6.131)
Expression of the voltage across the first capacitor as a function of the
voltage V1

Consider the m-th finite dimensionless circuit simulating the m—th beam element,

and let us call ¢p (n,md) the voltage across the first capacitor ¢;.

The voltage @p (1, md) can be expressed as the product between the current through

the capacitor and the impedance of the capacitor:

. ~ 1
Pp (n,mé) =1p (n,md) — (6.132)
nc

The current Zp (1, md) can be expressed in terms of the load current 7y, (n, md) and

the current source 67,4, (7, md) by:
ip (n,md) = —big, (n,md) + ir, (n, md) (6.133)

furthermore the load current iy, (7, md) can be expressed in terms of the port-current
vector L, (17) using the relation that the ideal transformer establishes between the cur-
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rents at its ports:

g (n,mé) = — ’ Tm (1) (6.134)

Substituting the expression(6.50) for the approximate turns-ratio matrix of the

transformer into (6.134) we get:

T
2 71 (n, md)
3 5| 0 T2 (n, md) 5 5
A p— = — 02 (1 () = 1 (. (m + 1))
(6.135)
Thus the current through the capacitor ¢; can be expressed as:
. . V2 . .
i (1, m8) = —8ig, (1,m8) — K02 (12 (n,mb) =1 (n, (m+1)8))  (6.136)

2

and the voltage becomes:

Gp (n,mb) = — <6Zg1 (n,mé) + Féog (i1 (n,m8) — 1y (n, (m +1) 5))) % (6.137)

Now we can substitute in the previous equation the expression of the capacitance

62
c1 = /@%T, to obtain:
. ig, (n,m8) . V2
@p (n,mé) = —2%2) — (ta(n,mé) =11 (n,(m+1)6)) —— (6.138)
nB°kKG ko376
If 6 is small enough then:
[ 2

o (n.e) =~ L V2 (6139

nB%kE KB
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but from the system(6.124):

- i V2.
7 (n,e) = =0°n@y (n,) + ol (1,9) (6.140)
then:
~ 3 (777 6) \/§ 2.~ \/5*‘ \/§ 7
) = -2 2 + - ) +— ) = )
Pp (n,€) PR R —s Fon@r (n€) + =l (1,€) o P1(m:e)
(6.141)
In the time domain the voltage ¢p (7,¢) can be easily seen to be:
V2
op(T,€) = P (1,¢) (6.142)
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Figure 6.11: Circuit’s modulus
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Figure 6.12: Three dimensional beam

Figure 6.13: Imaginary cables, representing the distribuited circuit

N o
Loy, Tog, Toss los,

IEXLE
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°

Figure 6.14: Sub-network of the m—th circuit’” modulus
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Figure 6.15: Circuit’s modulus with applied current sources
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Figure 6.16: Subnetwork of the circuit modulus, with applied current sources
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Chapter 7

Piezoelectromechanical beam

Electro-mechanical structures

Once we have introduced the main concepts of the theory of networks and of the
structural analysis it is time to merge this knowledge in the study of the piezoelectric
actuators, which belong to a wider class of devices that we will call electro-mechanical
devices.

As we have done for electric networks and structures, we will use again a black box
approach in the description of the electro-mechanical devices we are interested in.

We will limit our considerations to the electro-mechanical devices which can be
modelled as black boxes, communicating with the outer world by a finite number of
terminals 7;.

The state of each terminal 7; is completely characterized by a pair of 4—tuples
(v, T;) = ((vi,vé,wi, VZ) , (tli, E,Mi,li)), where the pair (vi,vé) represents the veloc-
ities and w’ the angular velocity, at the terminal 7;, with respect to a given observer O
characterized by an origin o and a basis (e1,ey) of the space of translations, while V;
represents the voltage at the terminal 7; with respect to a given potential reference.

The 3—tuple ( Lt M 1) represents the contact actions, force and bending moment,
applied at a Cauchy cut at the terminal 7;, with respect to O, while I; represents the
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current entering the terminal 7;.

Figure 7.1: Representation of an electromechanical structure

Notation 280 For a n—terminal electro-mechanical device, we will group the state

variables with the following convention:

toth M' L
T o =(t1,t2, M,I) =
oty M™ I,
As we have so far in done dealing with networks and structures, we will suppose

that the signal space is still D,.

Definition 281 Given a binary relation Cgpr on Dﬁ“ X Di”, an electro-mechanical
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structure EM is:

EM = {((Vl,Vg,w,V) R (tl,tQ,M,I)) S D$X4 X ’Diﬂl, (Vl,Vg,w,V) CE]VI (tl,tQ,M,I)}

(7.2)

Remark 282 All the beam-structures and the networks are electromechanical struc-
tures, since both Cg and Cy can be seen as a restriction of Cgas on a particular subspace
of Diﬂl X Dfﬁx‘i. In particular Cs can be the restriction of Cpp to D x D} while Cy

can be imagined as the restriction of Cgar to Dixs X Dﬁx‘?’.

Piezoelectric actuators

In what follows we will not develop a general theory for the electro-mechanical
structures, but will limit our observation to a particular class: the piezoelectric actua-

tors.

Definition 283 A bending piezoelectric actuator, BPA for brevity, is an electro-mechanical

structure defined by:

Cppa = M? Kom Kime (w2 — wl) (7.3)

IQ Kem Kee Vé - Vi

/

where all the entries of the matrix are real numbers, and lp is the length of the actuator.

Remark 284 The previous relations establish the constitutive relations of the actuators.
Furthermore for the fourth matriz equation integrating both terms of the expression leads
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to:

M Kmm  Kme X
= (7.4)
QP Kem Kee VP
where
M = [{ M?dt = M?
Qp = [} Ldt
0 (7.5)

4
X = '[0 (w2 — wl) dt
Ve fy (Vo= Vi)t

in particular observe that Qp is the charge entrapped in the actuator and x is the

difference of attitude at the two terminals divided by the length of the actuator.

% %M
L

Figure 7.2: Schematic plot of a bending piezoelectric actuator

Remark 285 All the elements of the previous matriz have a precise physical meaning:

o Kpum i the stiffness rigidity of the actuator if the terminals are short-circuited.

o K. is the capacitance of the actuator if w? = w'

o K is the bending moment corresponding to a unit voltage applied if w? = w!.
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o K., is the current corresponding to w?>—w' = 1 if the terminals are short-circuited.

Axiom 286 The bending piezoelectric actuator is conservative

Proposition 287 Requiring the actuator to be conservative leads to the following re-

sults:

e Kpm € RT

o K. €RT

o Kemp = —Kpme

Proof. The work done on a virtual ”displacement” (6x,0Qp) is assumed to be:

OW = Méx + VpéQp (7.6)

We require the existence of an energy € (x,Qp) such that

d€& =6W (7.7)
thus:
o€ o€
— =M — =V 7.8
9x ogr 7 (78)
From (7.4) we get:
Kemee Kme
M:<Kmm— - >X+K Qp
) " ee ee (79)
Vp = KeeQP - KZLX
Thus:
ag Kemee Km@
8_:<Kmm_ K >X+K QP
X ee ee (710)
o€ _ 1 Op — Kem,
aQP B Kee P Kee X
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And

Kme
K xQp
ee (7.11)

KemK
5:%<Kmm_w>x2+%

1 2
+
Kee ee QP

K,

Imposing € to be positive semidefinite we get the other two results. m

Kemee

Remark 288 The coefficient KO = <Kmm -
ee

) in the constitutive relation(7.9)

expresses the stiffness rigidity of the actuator when the terminals are open-circuited.

From an electrical point of view the actuator, by means of (7.4) can be considered
as the parallel connection of a capacitor, the capacitance of which is equal to K., and

a current source equal to K, (w2 — wl) = Kem X-

KL éy&m(o&w)

Vp
+

Figure 7.3: Electrical representation of a bending piezoelectric actuator

Model of the piezoelectromechanic beam

Consider now an Euler beam, of length [, and suppose n equally spaced bending
actuators are glued on it; if n is sufficiently big, we can imagine these actuators to form a
thin piezoelectric layer on the beam. Furthermore consider the electric circuit analog to
the transversally vibrating Euler beam that we have studied in chapter(6), and suppose
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the m—th actuator to be connected as the capacitor C7 of the m—th modulus of the

circuit.

circuit

—o
............. °

' i\ cables connecting
,,,,,,,, Sl v the actuators on
' V1 the beam 1o the circuit

Figure 7.4: Piezoelectromechanical beam

The constitutive equations for the piezoelectromechanic beam, disregarding the

extension, become:

M (x,t) = (Yhmm + K75 O (2,1) + YK e Ve (2, 1)
(7.12)
u' (x,t) =9 (x,t)

where k7 is the rotational stiffness of the beam and ky,,, is the rotational stiffness per

unit length of the actuators:

and 7 is defined as the influence factor of each actuator, i.e. the ratio between the

length of the actuator {p and the size of the modulus x, in symbols:

vi= = (7.14)



Introducing a modified rotational stiffness

kar = (Yomm + ERp)

(7.15)

representing the rotational stiffness of the piezoelectric beam when all the actuators are

short-circuited, we can write the constitutive equation as:
M (z,t) = kprd (2, t) + YEKme Ve (2, )
u (x,t) =9 (x,t)
While the balance equations are:
M' (z,t) + T (x,t) =0
T (z,t) + Xt (z,t) =0
After simple manipulations we get:

k™ (2,8) + Y EmeVp (2,1) = —Aii (2, )

Now non-dimensionalizing the previous equation we obtain:

r Vi g, -
ku¢" (€.7) + g Kmedh (6,7) = =g A (e,7)
0
4
Introducing again the constant 5% = 5 we get:
tok]V[
Vol -
" (e7) + gy Kmeh (6,7) = =3 (6,7)

Considering the velocity instead of the vertical displacement we get:

Vol?
W—OKmeSbIIID (57 T) = _/62’}C (67 T)

V! (e, T) +
< ( ) Tok]\,[

(7.16)

(7.17)

(7.18)

(7.19)

(7.20)

(7.21)

Now let us turn our attention to the circuit analog of the Euler beam, where by

means of the introduction of the actuators we have:
C) = Ko 61y, (z,t) = ke (1)
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where ke, represents the electromechanical coupling effect per unit length:

kem = Kemlp (7.23)
then:
83% to 1 1 1o
Kee = ’437?0 Ly, (,7) = I_O‘[.‘h (z,t) = keml_otol—%yg (e,7) (7.24)
The dimensionless governing equation for the circuit becomes:
\/5 1 To . .
@ (e,7) — kemﬁ—ol—ot(ﬂ—gévg (e,7) = —B%p; (e,7) (7.25)
and the voltage across the actuator becomes:
V2
op (6,7) = =201 (67) (7.26)
Substituting the previous expression into eq.(7.21) we get:
Vol? 2
(o) + Ko D (200 1)) =~ e (7.7
‘ rokas Ko ‘
remembering that K, = —K,,, we obtain:
kem = _KmelP (728)
and:

kem V2 YVol? . .
\/77 0 ()0/1, (577—) = _/621/( (677—) (729>
lp ko rokar

V’C’” (e,7) +

Grouping the two governing equations for the evolution of the piezoelectromechan-

ical beam:

V21 o .,

P (€7) ~ hem g st (€)= =By (e:7)

(7.30)

kem V2 YVol2 . .
Zem VIR o (e,7) = —B%0c (e, 7)

1
lp Ko Toknr

IJZH (e,7) +
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Now we want to choose [y such that the two coupling terms in the previous equations

are equal:

\/_ 21 To kem \/_'VVE)ZQ

7.31
em Ko IO t0l25 lp Ko Tok]\,[ ( )
this yields:
Ko To Al P
Vo=—7=— 7.32
0 \/§ to 'VKee ( )
. . . . o Kee . . .
introducing a capacitance per unit length ke := ; the previous equation yields:
P

KQ To )\
Vo=—4—/— 7.33
P V2t \ ke (7.33)

Substituting this expression into the coupled equations we have:

Sollm ( ) QV/C/ (577—) = _BQSbl (577—)

(7.34)
vl (e,7) + 0@ (e,7) = =B%¢ (,7)
with
1 k: l \/ ee ot k \/_
OrpMLP O~M (7‘35)

,62

Consider the ratio of the two previously defined parameters as an index of the

coupling effect:

0 to |
I .= ? == Keml—2 )\k;ee (736)

which as we expected increases as the coefficient Ky, increases and as the density of
the actuators over the beam represented by + increases.

Furthermore it increases as the capacitance per unit length k.. decreases, this effect
can be understood thinking of the topology of the circuit we have synthesized. In fact as
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the capacitance decreases the impedance of the capacitor C ,in the circuit’s modulus,
increases; hence the voltage drop across it increases since the current source is fixed,

hence the voltage ¢ increases.

Energy considerations

Energy of the dimensionless Euler beam

In section (3) we have proved that the energy of a free transversally vibrating beam

is:
"o 1 " 2 1. 2
E W' 0) = QkM (v (2,1))" + §Au (x,t)*ds (7.37)
Jo

Let us express this energy in terms of the dimensionless variables used all over this

section:
. kard (11 M2l [t
E ((”,() _ DMTo / = (¢" (5,7’))2(15—1— L20 —((e,7)* de (7.38)
B Jy 2 ts Jo 2
introduci haracteristi €= "OFM 4 o dimension] ") =
Intro ucmg a cnaracteristic energy 0 — l3 and a dilmensioniess energy €Em <C ,C) =
5—0 we get:
"o e 1 2 L oo s 2
en (¢C) =5 [ (") de+38 [ {(e7)de (7.39)
JO JO
or:
: 1 [t 1o (12
em (g”,g) - - / FrnCde + =3 / Fde (7.40)
2 0 2 0

Furthermore let us introduce the dimensionless mechanical kinetic energy and po-

tential mechanical energy:

.1 -1
%ﬁ€@4¢@#¢ U 1= AEM@@W% (7.41)

DO =
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Energy of the dimensionless circuit analog of the Euler beam

Since the circuit we have synthesized is completely analog to the Fuler beam, the

dimensionless energy of this circuit can be expressed by:

1

€o (¢",¢) =3 ./(;1 (v (6,7’))2d€ + %62 ./:1'#(5,7)2 de (7.42)

where 1) is defined as the integral of the voltage ¢;:

V= /0 "o (e,7) dr (7.43)

We need to introduce the integral of the voltage drop, because the voltage ¢, is anal-
ogous to the dimensionless velocity v instead of being analogous to the dimensionless
displacement (.

Introducing the dimensionless current s analogous to Fis eq.(7.42) becomes:

€ (w”,qb) - % /0 1 Lo de + 352 /O 1 b de (7.44)

Furthermore let us introduce the dimensionless kinetic electrical energy and poten-

tial electrical energy:

1

1 1 1
He 1= 552 '/0 ¥ (e,7)* de Ve 1= 5 ./0 o (V" (e,7)) de (7.45)

Energy of the piezoelectromechanical beam

In terms of the dimensionless displacement ¢ and the dimensionless integral of the

representative voltage ¢ eq.(7.34) becomes:

" (e,7) — 0l (e,7) = =% (e,7)

" (e,7) + 0 (e,7) = =5 (e,7)

(7.46)
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Now we want to find an expression for the energy of the piezoelectromechanical
beam and show that the system is conservative.

The first step of our analysis is to heuristically seek for a Lagrangian of the system,
which we will suppose to be the sum of the Lagrangian of the uncoupled system and a

contribution representing the coupling:
L (% ¢, C”) = 3t + Sm — Um — Ve + Lo (7.47)

Furthermore we will assume the coupling Lagrangian to be constituted by two terms:
Lye and Ly, the first representing the mechanical— electrical coupling, and the latter

the electro—mechanical coupling:
ch = »Cme + ﬁem (748)

Consider the constitutive equation for the bending moment of the piezoelectrome-
canical beam, neglecting the rigidity of the actuators with respect of the rigidity of the

beam:
M (x,t) = kpyu” (2,t) + kme Ve (2, 1) (7.49)

in dimensionless variables it becomes:

1 Fme Vol?
Fy (67 T) = C (57 T) + Pp (577—) (750)
Tok]\,[
substituting (7.26) we get:
2 ke Vol?
Far () = ¢ () — Y2 RmeOE (o (7.51)
Ko Toknr



considering the integral of the voltage and the definition of the constant ¢ given in

(7.35):
Fu(e,7) = (" (e,7) + 0% (&,7) (7.52)

Substituting (7.52) into (7.41) we get:

q .
3] (e +oiEn) ¢ (e de = v+ Lo (7.5
then:

. 1 /1.

Lo (9:6") = o3 [ )¢ ) ae (754
Now we will assume that

. ‘1 .

Lon (C0) 1= o5 [ Cem em)de (7.55)

and we will show that the Lagrangian given in eq.(7.47) is such that the coupled set of
equations (7.34) are the Euler-Lagrange equations for this Lagrangian.

Let us introduce the Action:

“To

AW = / (540 + 367y — Ve — Uy + Lome + Lom) dr (7.56)

1

As we have done is chapter(3) consider the Action corresponding to the functions

1 and ( variated by the quantities 69 and 4(:

2 ! 8 a " 14
Awrouc+80 = [ [ (G o0 SEC+00) 0+ 80 80)" ) dedr
(7.57)

with J defined as a Lagrangian density per unit length:

T (67, ¢") = 589" + 588 — 5 (@) — 5 () — 5oi” + s0lu”  (7589)
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since the differentiation with respect to the independent variables 7 and € is commutative

with the 6 operator, from the previous equation we get:

.T2 .1 . . . .
A+ 00,0 +80 = [ [T (80,8060 + 607, ¢" 00" ) dedr (7.5
JT1 - 0
but:

J (¢+6¢ C+6¢, " + 69", ¢ +54"> -7 (Q'ﬂ,éwu,gu) N
oF aJ a7

@6¢+6_<6C+6¢”w + 507

—=6¢" +0(8%)

Then the first variation of the Action is:

SA = / / ¢ U g,é{”dedr (7.60)

Consider now the first term of the integral in (7.60) and integrate by parts with

respect of the time variable:

/ /_wczd -/ ‘97 de—/ /&( )wddf (7.61)

Consider now the second term of the integral in (7.60) and integrate by parts with

respect of the time variable:

/ /—5Cdd = 8‘7 d —/ /87( )6(dsd7 (7.62)

Consider the third term of the integral in (7.60) and integrate twice by parts with

respect of the space variable:

" _ 07
/ / 8¢,,6@/z dedr = . 307

dT -/ (aw”)
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Finally for the fourth term we get:

NS L

1

=1

Lo ()

(7.64)

Substituting these results into eq.(7.60) we get:

) de+
T=T1

-1 8j T=T2 aj
5,4:/ A
. 0(8¢ v -, OC (

e=1

+8‘7

72 =l /a7 =t /a7 -
/ (81,&” ¢ o <a¢//> 6¢ L CH o <8€/I> 0) dr+
" aj
1GR3 ﬂ)ww”/ () -5 (5)) s

(7.65)

5C

Considering synchronous variations the first term in (7.65) immediately vanishes,

while from the second term we get the transversality conditions:

e=1
oJ > <&7 )
7] =0 7 =0
<a¢ -0 o -1 (7.66)
aj / aj !
—0 =0 —0 0
aCII C —0 aCII C 1

=0

(&7) —0 <6J>
8<—II 0 aCII

Focusing our attention on the last two integrals in eq.(7.65) we get the Euler-

e=1

Lagrange equations:

(7.67)
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Substituting the expression of the Lagrangian given in (7.58) into the Euler-Lagrange
equations (7.67) we obtain:

(~o +300)" = 2 (59— bac") = 0

(~¢" o)~ 2= (¢ + 3o =0

(7.68)

or:

1 .
" — ol + B2 =0
(7.69)
i .
"+ oY+ B =0
Thus we have proven that the Euler-Lagrange equations of the assumed Action are

the coupled equations (7.46).

The transversality conditions become:

(i

(0" @) + el (7)) 80 (1,7) =

(=u (0,7) + %o’ (0,7)) 69 (0,7) = 0

(v (1,7)) 59 (1,7) =0 770,
(—¢" 0,7) — $ed (0,7)) 6¢'(

(=¢" (1,m) = $ed (1,7)) 6¢'(

(~¢" 0,7 -4 (0,7))5g(0 ) =0

@@%Lﬂ—%wuLﬂ)&mnozo
Now we want to prove that the piezoelectric beam is conservative, this is a require-
ment that should be absolutely satisfied since all the subnetworks of the circuit are
lossless, the beam and the actuators are conservative.
We explicitly remark that the Lagrangian we have found before does not explicitly
depend on the time variable 7, thus the conservation of the energy is somehow intuitive.
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Consider the dimensionless Energy € defined by:

¢ @,é,zp",g”) = ./; (é%—‘z + @b% - J> de (7.71)
then:
¢ (1;,,@,1/,"@") = /1 (g’“ ([326 + %W”) +9 (%B% - %9(”)) N
— (3897 487 - () - 3 (¢")” — Soid” + holy”) de
or:

(¢")" de = e (") +em ($,¢")

oo oA\ 11 2 1 9.2 1 "\ 2 1
e(bndwcr) = [ 500+ 50 45 )+ 5

(7.73)
as, we expected the energy of the piezoelectromechanical beam is equal to the sum of
the electrical and the mechanical energy.

d
Now we want to show that d—e = 0, hence consider the total derivative of the

-
energy:
d d [Y(.0T 0T
this yields:
d (Y(:07 .007 -0J 00 0
d—Te—/O <C8—C+ Ea—€+¢%+¢5@—§j> de (7.75)

thus, substituting the Euler-Lagrange equations and differentiating the Lagrangian den-

sity with respect of the time variable, we get:

d -1 a_j . 8_j " a_j . a_j ”_ 3;7 a_j - a_j o
56_./0 (Caé H(BC”) Waqbw(@@b”) <¢6¢+486 v (W”)H (

(7.76)
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finally:

d (Yo rog\" | L (0TN" n(O0TN (0T
R R R G R ¢ K

Substituting the expression (7.58):

d 1 A\ . A - . 1 .
e [ e(er—geb) i (e gel) =i (v gel) =8 (<= god) e

(7.78)
hence:
L, - . i -1 ; i .
o= [ (e g ) i (e el ) =i (v el ) =8 (< - o) e
(7.79)

integrating twice by parts the last two terms of the integral we get:

[l

e= 0

[ (= 100) de = (= 400) 0] 7o (7~ 4el') b

0 e=0

/ : & <<H - %W) de={ (CH * %9@ :) - (C"' + %912/) [; + / :é“ (C’”’ + %gd/') de

(7.80)

the first two terms of both the expressions are forced to vanish by the transversality

conditions:
\/Al ¢” (w” B lQC) d6 _ /1 w (w//// _ lQCII) d&‘
0 2 0 2
Ty, . L <
[ & (o) de= [ G+ doi”) e
0 0
thus the derivative of the energy becomes:
d 1 1 n : 1 . : VAN 1 n
— = / g _CHII _ _Q¢ _’_w _¢I//I/ + _Qg _’_w wl/l/ _ _Qg +<— CI”/ + _Q¢ dc‘f
dr Jo 2 2 2 2
(7.82)
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rearranging the terms, we can finally show that:

d 1, 1 .» 1 -n . 1 .» 1 .»
—e= /0 C(—C””—§Q¢ +(" + 500 > +1) <—¢””’+§g< + 9" =S ) de =0

(7.83)

Free vibrations of a piezoelectromechanical beam clamped at both

ends.

In this section we want to study the free vibrations of the piezoelectromechanical

beam, when we clamp the beam at both ends and short-circuit the ports at both side

of the circuit.

i
—

Figure 7.5: Piezoelectromechanical beam clamped at both ends

The boundary conditions for this problem are:
w(0,t) =0 V1(0,t)=0
9(0,t) =0 V2(0,t)=0
(7.84)
u(l,t)=0 Vi(l,t)=0

9(1,t)=0 Va(l,t)=0

208



in dimensionless variables and considering the dimensionless integrals of the voltage:

Py (e,7) = [y 1 (e,7) dT

(7.85)
Vo (e,7) = fg p2(e,7)dT
we get:
C(OaT):O 1/]1(077—)20
9(077—):0 1/]2(077—)20
(7.86)
C(laT):O ’(/]1(177—)20
9(177—):0 1/]2(177—)20
Taking into account that ¢’ = 6 and ¢/} = 1), we finally get:
C(OaT):O 1/]1(077—)20
¢"(0,7)=0 ¢7(0,7)=0
(7.87)
C(LT):O 1/]1(177—)20
¢(1,7)=0 ¢1(L,7)=0
Hence, we have to study the system of equations:
7 (e,7) = 0C" (e,7) = =% (e,7)
(7.88)
" (e,7) + 0¥ (e,7) = =B (e,7)
with the boundary conditions (7.87).
Now we have to consider the initial conditions in dimensionless variables:
((£,0) =¢"(e) 1 (e,0) = 4](e)
(7.89)

. . O

C(2,0)=C(e) ¥y (e,0) = ¥h(e)

Notation 289 Furthermore we will denote the integral of the potential 1y by

As a preliminary to the spectral analysis of the coupled equations (7.46), let us
introduce some topics in Functional Analysis that we will need in the following.
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Basis functions

Let us consider the subset M of Ly ([0, 1]) defined by:

4

:{@z;eLg([o,u):¢<o>=¢<1>=o, ¥ (0) = &/ (1) = 0 and d—@/JELz([OalD}

(7.90)
where - denotes the strong derivative,clearly M is a linear manifold of Ls ([0,1]) and
C*([0,1]) c M.

Furthermore consider the subset V of La ([0, 1]) defined by:
V={4eL([0,1]):¢(0) =2 (1) =0, ¥ (0) =4 (1)} (7.91)
clearly M C V, and V is a closed linear manifold of L (]0,1]).
Let us introduce the differential operator ® defined on M such that:
d4
v DY = — 7.92
pEM  DY=y (792
Proposition 290 The differential operator ® is self-adjoint.
Proof. Since Ly ([0,1]) is an Hilbert space, then ® is self-adjoint if:
WeMepeM  (DY,0) = (¢, Dy) (7.93)
Thus, we have to prove that:
dt 1 g4
¥ / d’p
N = —d 7.94
e MpeM /O s = [ s (7.94)

integrating four times by parts the left hand side of the previous equation we get:

dy |
dx d*x |,

42y dp|'

da? dx |,

d4
_/0 dx?t AP = a3

dw3
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Remembering that ¥ € M,p € M the previous equation yields:

/0 d 4““””_/ VB

Proposition 291 The differential operator ® is positive-definite.

Proof. ® is positive-definite if:

VOEM, v#£0  (1,D¢) >0

Thus, we have to prove that:

4

S|
Vi €M, 1 #£0 /0%«/»0

integrating twice by parts, we get:

/Al d4¢¢ d3¢
, dit d3?

b dydy

© da? dx

WV

0

-1 d2’(/1 2 1 d2¢ 2
() e ()

Furthermore, if (1, ©v¢) =0 then

-1 d2’l7b d2w
,/0 <@> dx 0:><d 2>_0:>¢—a:v+b a,beR

Since ¥ € M then both a and b should be equal to zero. m

(7.96)

(7.97)

(7.98)

Vi € M

(7.99)

(7.100)

Now let us find the spectrum and the eigenfunctions of ®, since we have proven

that © is positive-definite and self-adjoint, then all the eigenvalues are real and strictly

positive.

Hence, we have to find a real number A\ € IR™ and a function 1) € M such that:

d4
DY =M= =M
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The solution of the previous differential equation can be written in the form:
¥ (x) = Aj cosh vV Az + Agsinh v Az + Ag cos V Az + Agsin vz (7.102)

with v\ € RT.

Imposing the boundary conditions, i.e. ¢ € M, we get:

h \/4 m \/4 m
U, (T) = A (COSh VA — cos v/ A + Cs?rslh {‘/i_ — ;O; .t ))\\ (Sin VA — sinh v/ )\mx))

(7.103)

with An, given by the following trascendental equation:

cosh v/ A\, cos v/ A, = 1 (7.104)

or
cosr = ! (7.105)
~ coshr ’
with r = V.
The first four solutions of this equation are:
r1 =~ 4.73004 ro >~ 7.8352 r3 ~ 10.9956 rq ~ 14.1372 (7.106)
If 7 > r4 then the trascendental equation can be approximated by:
cosr ~ 0 (7.107)
giving the solutions:
7T
TE=5 + kn (7.108)
For instance the previous expression gives:
7T
=g + 57 =17.279 (7.109)
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while the right result is approximately:
rs = 17.27876 (7.110)

this shows how good is the approximation (7.108).

Let us list the approximate values of the eigenvalues in the following table:

A1 ~ 500.56
Ay ~ 3768.8
A3 ~ 14618 (7.111)
Ag ~ 39944.

T 4
)\k:(§+k7r> with k > 4

Since © is a self adjoint linear operator, then its eigenfunctions span all the space
V, i.e. every function f(x) € V can be expanded in terms of these eigenfunctions;
furthermore all the eigenvalues are distinct, thus the set S = {1,,} is orthogonal and it
is possible to choose the constants A,, such that S is orthonormal. More details can be

found in Friedman (1966)[17].

By the previous considerations we can state:

VIEV f=) it ¥ (7.112)

Spectral analysis of the problem

Since both the functions ¥ and ( are C°° with respect of the variable € in the
interval [0, 1] and fulfill the given boundary conditions they belong to M (when regarded
as function of €): then both of them can be expanded in terms of the orthonormal set
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(Y} as:

U (e,T) =30 Pm (T) ¥, (€)

(7.113)
C(e,7) =220 (T) ¥y (e)
The same reasoning still holds for the initial conditions:
W0 (e) = X (e ) Y (€)
-+ 0 _ .0

(&) = Yo (V0 ) U (€)
(€)= S () U (2)

d2
Furthermore introducing the coupling operator € (+) := o2 () defined on M, the
e

set of coupled differential equations(7.46) can be written in compact form as:

DY — 0€¢ =~
(7.115)
D( + ot = —%
Substituting eqgs.(7.113) into egs.(7.115) we get:
> P (T) Dy (&) = 032, G (T) €y, (€) = =2 3, i (7) U ()
(7.116)

> G (T) Dy, (€) + 032 Gon (7) €y (€) = =232, G (7) ¥y, (€)

Taking into account that 1, is an eigenfunctions of © with eigenvalue A, we get:

o AP (T) U () = 032 n (7) €y () = =B 3o, B (7) i () 117)
> Anttn (T) Wy (€) + 032, i (T) €y (€) = =B 32, Gin (7) 0y, (€)

Taking the inner product of the two previous equations by the same eigenfunctions
Yy, (€) we get:
APk (T) = 032, Crk G (1) = =Bk (7)

(7.118)
Mk (T) + 03, Conts @ (T) = — %G (T)
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with:
Cij = (Cy, ;) (7.119)

Let us investigate the generic term C; ;:

) gl d2 ;
Ci = (@isiy) = | e (7.120)
Jo @&
integrating by parts, we get:
d, | o, dip; Udap, dip;
= i | — 1 de = — t_Jd 121
Cig de ¥s 0 /0 de de © /0 de d= © (7.121)

since ¢; and ¢; belong to M, then C; ; = Cj;.
Now let us find an approximate solution of the problem, projecting the functions
¢1 (e,7) and v (¢,7) on a finite dimensional subspace of M which is spanned by the first

M eigenfunctions of ®:

b (e,7) = 3 P (T) Uy (€)
C(e:) =20 gn (1) ¥y, (€)

(7.122)

and for the initial conditions, we get:

3 () = o (V0 ) ¥ (&)
b (€)= T () 0 6)
(&) = L () ¥ (4)

(&) = 320 (€ ¥ ) ¥ (0)

(7.123)
~0
¢
-~0
¢

Going through all the steps detailed before, we finally get:

Aepi () = 030 Co e 4 (1) = —B%k (1)
(7.124)

et (7) + 0 M Crpoie G () = =% (7)
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This system can be written in matrix form as:

3B () — eCa(r) + Ap (1) =0

(7.125)
B4 (1) + 0Cp (1) + Aq (1) =0
or:
.| P Onrrscnr —C P A Onrxar P 0
g +o + =
q C Onrx q Onrxnr A q 0
(7.126)
with:
b1 q1
p= q=
Pm aMm
Aro.. 0 (7.127)
A =1 ... ... .
0 AM
Ty, dv
Ci; =— L —1d
J /0 de de ©
The initial conditions are, remembering that § is an orthonormal set:
$ 0
<¢07¢1> <17b 717b1>
p(0) = p(0) =
£ 0
(W0, ¥ar) (8" var)
(7.128)
20
(% vn) (&)
q(0) = q(0) =
10
(SR (& vur)
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To solve the system of ordinary equations(7.126) it is better to write the system of

equations in the so called normal form:

x = Ax (7.129)
with:
P 0 0 1 0 o)
q 0 0 0 1 q
X = A= (7.130)
p —#A 0 0 £C p
q 0 —#A -%C 0 q
and the initial conditions:
p (0)
q(0)
x(0) = (7.131)
p (0)
q(0)

The solution of the system can be expressed by:
x (1) = e7x (0) (7.132)

A

where /7 can be computed with the techniques developed in section(5).

Energy considerations

We have shown that the potential elastic energy and the kinetic energy for the
dimensionless Euler beam are:

1 1

1 ! " ( )2d = =32 .1'( )2 d (7.133)
vm.—2'/0 (( 6,7’) 2 %m.—2 '/04“6,7' e .
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while for the circuit, we have:
I " 2 [P t 2
Vel = = (V" (e,7))" de M 1= 55 Y (e,7)" de
0 Jo

Now let us find approximate values for these energies, substituting into the previous

(7.134)

equations the approximate expressions (7.122).

It is easy to show:
Z—ZM APy (7) %m——BQZn 1 D5 (7)
(7.135)

. 1 .
Vel = 5 22121 AnGh (T) g = _62 Zn 1 gn (7)
Uncoupled equations
In this section we want to study the set of equations(7.46) when o = 0, i.e. the free
vibrations of the beam and the free vibrations of the circuit, for more details on the
vibrations of a beam fixed at both ends see McLachlan [18].
¢IIH (57 T) = _52{& (57 T)
(7.136)
4”” (57 T) = _52€ (57 T)
Going through all the steps detailed in the previous section, we get by eq.(7.118)
Mepr (1) = =3, (7)
(7.137)

et (T) = =Gy (1)

Since all these equations are uncoupled the general solution of the previous set of

equation is:

P () = Aj cos (%O + Bisin <%T> (7.138)

ge (7) = Al cos (%) + Bldn <%>

where the coefficients are determined by the initial conditions (7.114)
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The dimensionless eigenpulsations of the system are:

wE = 3 (7.139)
while the eigenfrequencies are:
1 VA [km
- M 7.140
=o' (7.140)
For the beam studied in chapter(6)
k]y[ =14 Nm2
A =0.162 Kgm™! (7.141)
l=1m
then the eigenfrequecies are:
fr >~ 0.46788+/ A\ Hz (7.142)
Let us list these eigenfrequencies in the following table, using table(7.111):
f1 ~10.468 Hz
fo~ 28724 Hz
f3 ~ 56.567 Hz (7.143)

f1>~9351Hz

2
fo = 0.46788 (g + lmr) Hz with k > 4

Then, considering the restriction imposed by eq.(??) we can state that the Laurent

expansion is valid until the mode k such that:
T - \2
[0.46788 (5 + lm> } = 1033.7 (7.144)

that is:

1
Il
—_
W

(7.145)
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Numerical Example

Consider the beam discussed in chapter (6) which has the following mechanical

properties:

l=1m
ro = 0.57736 mm
(7.146)
kTo=1.4N m?
A=0.162Kg/m

Suppose to glue on the beam n = 10 actuators, each of them having the same

constitutive parameters:

Kee = 0.6 uF
Kepy = —2NmmV~1
(7.147)
Kopm =20Nm
lp=2cm
then the influence factor v become:
x l 2cm
i lp nlp 10cm 0 (7.148)

and the modified rotational stiffness kp;:

ke = KT 4 Yhmm = kT + Y EKmlp = (1.4 + 0.2 x 20 x 0.02) N m? = 1.48 N m?
(7.149)

Let us choose the characteristic time tg to be the period of the first mode:

o Lo B JA L S22 99916 x 10725 = 92.916 ms (7.150)
T T NV T 50056V 148 =0 :
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then the two parameters g and 3% become:

Keml? [X (—0.002) (1) 0.162
— 2 A= V0.2 = —0.47796
0= Gt VeV (9.2916 x 10=2) (1.48) \/(0.6 % 10-6) /(0.02)
A4 0.162) (1)*
3 = = (0.162) (1) =12.679

© kv (9.2916 x 10-2)2 (1.48)
(7.151)

and the ratio I' is:

0 to [ (9.2916 x 1072) 0.2 o
F=2 = K2, [ = (—0.002 = —3.7698 x 10
32 Z\ e = ) (1) (0.162) (0.6 * 10-6) / (0.02) s

(7.152)

then we have a coupling effect which can be estimated to by more or less equal to 4%.

Finally the characteristic voltage Vj is, choosing kg = %:

= 0.54715V

Vo

koo [ A 1 1 (057736 x 107?) 0.162
V2t Yhee V22 (8.6696 x 10-2) \/ (0.2) (0.6 + 10-5) / (0.02)

(7.153)

221



Bibliography

[1] Molly C.T. (1958) Four Pole Parameters in Vibration Analysis in Mechanical
impedance Methods for Mechanical Vibrations edited by R. Plunkett.

2] Titchmarsh E.C. (1939) The Theory of Functions (second edition).

[3] Newcomb Robert W. (1966) Linear Multiport Synthesis.

[4] Cristescu R. & Marinescu G. (1973) Applications of the theory of distributions.
[5] Friedlander F.G. (1998) Introduction to the theory of distributions

[6] Treves F. (1967) Topological vector spaces, distributions and kernels.

[7] Beltrami E.J. & Wohlers M.R. (1966) Distributions and the Boundary Values of
Analytic Functions.

(8] Schwartz L. (1978) Theorie des distributions
[9] Schwartz L. (1966) Mathematics for the Physical Sciences

[10] Zinn M.K. (1951) Network Representation of Trascendental impedance Functions
in The Bell System Technical Journal.

222



[11]

[12]

Dah-You Maa (1943) A General Reactance Theorem for Electrical, Mechanica, and
Acoustical Systems in Proceedings of the . R.E.

Firestone Floyd A. Twixt Earth and Sky with Rod and Tube; the Mobility and
Classical Impedance Analogies edited in The Journal of the Acoustical Society of
America.

Firestone Floyd A. The Mobility and Classical impedance Analyses edited in Amer-
ican Institute of Physics Handbook.

Pease M.C. III (1965) Methods of Matriz Algebra.

Baher H. (1984) Synthesis of Electrical Networks.

Martinelli & Salerno (1986) Fondamenti di Elettrotecnica.

Friedman B. (1966) Principles and techniques of applied mathematics.

McLachlan N.W. Theory of Vibrations.

223



VITA

Maurizio Porfiri was born to Gianni Porfiri and AnnaMaria Carullo on November 19,
1976 in Rome, Italy. He graduated from high school in 1995 at Liceo Scientifico Cavour,
Rome.

Upon graduation from high school, Mr. Porfiri enrolled at Universita’ di Roma ”La

Sapienza”, Rome. He graduated with a Bachelor degree in Electrical Engineering in

1998.

In the fall 1999, Mr. Porfiri enrolled at Virginia Tech Polytechnic Institute and State

University for master work in Engineering Science and Mechanics.

224



