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Special Cases of Density Theorems in Algebraic Number Theory

Nathaniel A. Gaertner

(ABSTRACT)

This paper discusses the concepts in algebraic and analytic number theory used in the proofs
of Dirichlet’s and Cheboterev’s density theorems. It presents special cases of results due to
the latter theorem for which greatly simplified proofs exist.
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Chapter 1

Introduction and Construction of
Basic Algebraic Structures

1.1 Introduction

In this thesis, we will develop the concepts necessary to understand density theorems in the
field of number theory. To begin, the concept of density can be thought of as a way to
compare the relative size of a set to some larger set containing it. For finite sets, this is a
trivial problem. We can just compare the number of elements in each set. If we are dealing
with infinite sets, comparison becomes more difficult. Certainly there are meaningful ways
in which we can compare the size of two infinite sets. Consider the set of integers which end
in 1. This set contains every tenth integer, so we would be inclined to say it is a tenth the
size of the set of all integers, or that the density of the smaller set in the larger set is 1

10
.

This is still not that interesting a result, but say we take as our larger set the set of all prime
integers and as our smaller set the set of all prime integers that end in 1. Now we have two
sets for which it is far more difficult to make any meaningful comparison. The question of
whether it is possible to define density in some way which will give us information about
these types of sets (in particular sets of prime integers) will be discussed. In fact, we will
see that, given a certain definition of density, the density of the primes that end in 1 in the
set of all primes is still 1

10
. This is due to a theorem proved by Dirichlet in 1837, which

states that the primes relatively prime to any given integer m are distributed equally over
the equivalence classes of Z/(m)∗.

In algebraic number theory, the theory of algebraic field extensions is used to explore the
structures created by adjoining an algebraic number to the field of rational numbers Q, which
is itself the quotient field of the integers. Using this material, many theorems pertaining to
the integers can be generalized to larger structures. Indeed, each finite algebraic extension
of Q contains a subring which can be thought of in an analogous way to the subring Z of

1
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Q, and there is a generalization of Dirichlet’s theorem for these larger rings. For reasons
we shall see, this theorem, proven by Nikolai Cheboterev in 1922, makes a statement about
the prime ideals (that is, ideals for which modding out by the ideal produces an integral
domain) of these rings, rather than prime elements. Since this theorem is a generalization
of Dirichlet’s theorem, we will develop the algebraic number theory necessary to understand
the broader theorem first.

After we have discussed the Cheboterev theorem, we will note some results due to the
theorem which, it turns out, can be shown without resorting to calculations of density at all!
Briefly, the statement the theorem makes about the distribution of prime ideals over certain
equivalence classes of ideals can be weakened in some cases to a statement merely indicating
the presence of prime ideals in those equivalence classes, and this statement remains useful
in the proofs of certain results.

1.2 Extending the Integers

The most basic structure involved in this discussion is the number field. Simply, a number
field is a finite algebraic extension of the rational numbers, Q. In particular, we will be
concerned with number fields which are also Galois extensions of Q. Not all the statements
made will apply only to Galois extensions, but eventually, it will become necessary to restrict
ourselves to eliminate complications which arise in non-Galois extensions. Since all number
fields are algebraic extensions of the rational numbers, they must all lie inside the complex
numbers, C, since C is an algebraically closed extension of Q. Another important subset
of C is the set of algebraic integers A. We define this set as the set of all roots of monic
polynomials over the integers, Z. (We say such a root is integral over Z). Then we say the set
of algebraic integers of a number field, K is the intersection K∩A. Certainly all elements of
Z are algebraic integers, but it is easily seen that there are others.

√
2 for example is a root

of x2− 2, and the imaginary number ı is a root of x2 + 1. We might hope that the algebraic
integers of Q are exactly the normal integers, so that we may think of the algebraic integers
as an extension of the integers into larger number fields. This is indeed the case.

Proposition 1.1. The algebraic integers in Q are exactly the normal integers Z.

Proof. Let α be the root of a monic polynomial in Z[x]. Then

αn + an−1α
n−1 + · · ·+ a1α + a0 = 0

for some an−1 · · · a0 ∈ Z. Assume α = b/c with b, c ∈ Z, and gcd(b, c)= 1. Then

cnαn + an−1α
n−1 + · · ·+ a1α + a0 = bn + an−1cb

n−1 + · · ·+ a1c
n−1b + a0c

n = 0.

But then c|bn and b and c are relatively prime, so c = 1; hence, α is an integer and Q∩A =
Z.
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Next we wish to see that the algebraic integers form a ring. It suffices to show that the set
is closed under addition and multiplication. It is not obvious that α + β and αβ are roots of
monic integer polynomials, so we take a different tack and prove a more general result which
will serve to prove what we want.

Lemma 1.2. Let α be an element of C. The following are equivalent:

1. α is integral over Z.

2. Z[α] is a finitely generated Z-module.

3. Z[α] is contained in a subring of C which is a finitely generated Z-module.

4. There is a Z[α]-module M such that M is a finitely generated Z-module, and the only
element a of Z[α] such that aM= 0 is 0.

Proof. (1)⇒(2): If α is a root of a monic n-th degree polynomial, it is easily seen that
1, α, · · · , αn−1 form a basis for Z[α] over Z. (2)⇒(3): Z[α] is contained in itself. (3)⇒(4):
The subring of C from (3) satisfies the requirements for M, since it contains 1. (4)⇒(1): Let
m1, m2, · · · , mn be a set of generators for M over Z. Let

αmi =
n∑

j=1

aijmj.

Let A = αI − [aij] and let B be the adjoint matrix of A. Then BA =det(A)I, so

A(m1, m2, · · · , mn)T = 0 ⇒ BA(m1, m2, · · · , mn)T = 0 ⇒ det(A)(m1, m2, · · · , mn)T = 0,

so det(A)M= 0. By assumption, det(A)= 0. Then

f(x) = det(xI − [aij])

is a monic polynomial with α as a root.

Now we have that A is a ring: let x and y be integral over Z. Then Z[xy] and Z[x + y] are
contained in Z[x, y], which is finitely generated over Z, so by (3)⇒(1) of the lemma, they
are both integral.

Thus the algebraic integers of a number field form a subring (called the number ring) of the
number field.

Definition. If R is an integral domain, the integral closure of R in its field of fractions K
is the set of all elements of K which are integral over R.

We say R is integrally closed if it is its own integral closure. We next wish to see that number
rings are integrally closed in their number fields.
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Proposition 1.3. For any number field K, R= A ∩K is integrally closed in K

Proof. Let α be integral over R. Then

αn + an−1α
n−1 + · · ·+ a1α + a0 = 0,

with the ai’s in R. Then
Z[a0, a1, · · · , an−1]

is finitely generated over Z and α is integral over

Z[a0, a1, · · · , an−1],

so
Z[a0, a1, · · · , an−1, α]

is finitely generated over
Z[a0, a1, · · · , an−1],

and thus also over Z. It follows that Z[α] must also be finitely generated over Z by (3)⇒(2)
in the Lemma above.

Now, all number fields are separable extensions of Q, since charQ = 0. This implies that,
given any number field K, K= Q(α) for some α ∈ K. We can actually choose α to be in the
number ring R of K. To see this, say

anx
n + an−1x

n−1 + · · ·+ a1x + a0

is the minimal polynomial for α. Then anα has minimal polynomial

xn + an−1x
n−1 + anan−2x

n−2 + · · ·+ an−2
n a1x + an−1

n a0,

and anα must still generate K over Q, since 1
an
∈ Q implies α ∈ Q(anα). Given that we can

now assume that α is in R, it is tempting to guess that R is Z(α). Unfortunately, it is not
even always the case that R can be generated over Z by a single element. (However, this
actually is the case for quadratic extensions, as we will see later.)

Proposition 1.4. There exist number rings which are not of the form Z[α]

Proof. Let K= Q(
√

7,
√

10). To illustrate that R cannot be generated by only one algebraic
integer α over Z, we will produce four elements of R, α1, α2, α3, α4 with the property that
for i 6= j, αiαj/3 is an algebraic integer but for i = j, αiαj/3 is not. To see the significance of
this, let f(x) be the minimal polynomial of α over Z, and let fi(x) be such that αi = fi(α).
Such a polynomial must exist under the assumption that R= Z[α]. Now, for any polynomial
g(x), let g(x) denote the reduction of g(x) mod(3). (That is, we reduce the coefficients of
g(x) modulo 3). Now we want to see that g(α) is divisible by 3 in Z[α] ⇔ f(x)|g(x) Assume
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g(α) divisible by 3 in Z[α]. Then g(α)/3 ∈ Z[α]. This implies that α is a root of g(x). In
fact, since g(σ(α))/3 ∈ Z[α] for all σ in the Galois group, we know that all σ(α) are roots
of g(x). Thus g(x) is of at least degree 4, and has as roots all of the the roots of f(x),
which is of at most degree 4. This implies that f(x)|g(x). Going in the other direction,
f(x)|g(x) implies that α is a root of g(x), which immediately implies that 3 divides g(α) in
Z[α]. Now we see that if we can produce the desired αi’s, we will have produced fi(x)’s such
that f(x)|fi(x)fj(x) ⇔ i 6= j. This implies that f(x) has distinct factors not dividing each
fi(x). Since there are 4 fi(x)’s, this implies that f(x) splits into 4 distinct linear factors.
This is ridiculous, since Z/(3)[x] only contains 3 linear polynomials. The task now is to
demonstrate that these αi’s exist. Getting back to our chosen field K, we choose

α1 = (1 +
√

7)(1 +
√

10), α2 = (1 +
√

7)(1−
√

10),

α3 = (1−
√

7)(1 +
√

10), α4 = (1−
√

7)(1−
√

10).

These are all algebraic integers, since for any number γ = a + b
√

m, γ is a root of the
polynomial

x2 − 2ax + a2 − b2m,

and we have shown R is closed under multiplication. Now any product αiαj, i 6= j contains
either

(1 +
√

7)(1−
√

7) = −6 or (1 +
√

10)(1−
√

10) = −9.

So all these products are divisible by 3. All that remains is to show that the square of any
αi is not divisible by 3. To this end, we define the trace function of K over Q.

Definition. The trace of an element, Tr(γ), is defined by

Tr(γ) = σ1(γ) + σ2(γ) + · · ·+ σn(γ),

where the σi’s are all the elements of the Galois group.

A useful attribute of the trace function that we will use is that the trace of an algebraic
integer is an integer. This is seen by observing that, given an algebraic integer γ, the
minimal polynomial of γ splits into

(x− γ)(x− σ1(γ)) · · · (x− σn(γ))

in any normal extension of K and that if we multiply this out, the negative of the coefficient
of xn−1 is the sum of the constant terms in every factor. This is exactly the trace of γ.
(Alternatively we could note that the trace is a symmetric sum of algebraic integers, and
thus fixed by the Galois group. This implies that Tr(γ) ∈ A ∩ Q = Z). Armed with this
observation, we note that

Tr(αn
i ) = αn

1 + αn
2 + αn

3 + αn
4

and that, because 3|αiαj, i 6= j, this is congruent to

(α1 + α2 + α3 + α4)
n mod 3.
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Summing the αi’s, we see that

Tr(αn
i ) ≡ 4n ≡ 1 mod 3.

Then Tr(αn
i /3) /∈ Z, so αn

i /3 is not an algebraic integer.

We have now succeeded in showing that there exist number fields with number rings not
generated by one element over Z.

1.3 Number Rings are UFD’s for Ideals

Another complication that presents itself is the fact that arbitrary number rings are not nec-
essarily principal ideal domains and consequently, not unique factorization domains either.
Examples of this are more easily created than in the above discussion. R = Z[

√
−13] is a

good example (We’ll see why this is definitely a number ring later). In this ring, the number
14 admits to its usual factorization: 2 · 7 = 14. It also factors into two different numbers:
(1−

√
−13)·(1+

√
−13). The question now becomes: are these really different factorizations?

Right now we could have an example no more remarkable than saying 18 · 2 = 36 = 9 · 4.
The relevant concern is whether or not these are irreducible factors. All elements of R are
of the form a + b

√
−13, so let us try to factor 2 and 7. Say

(a + b
√
−13) · (c + d

√
−13) = 2.

Then we know that
(a− b

√
−13) · (c− d

√
−13) = 2,

since 2 is in the fixed field of the Galois group. Multiplying both equations together, we get

(a + 13b2) · (c + 13d2) = 4,

implying that a+13b2 and c+13d2 can only be 1, 2, or 4. Thus b = d = 0, so the factorization
can only be the normal factorization of 2 in Z, which is trivial. The same argument works
for 7, so we have demonstrated that 2 and 7 are irreducible in R. Now, it is possible that
(1−

√
−13) and (1 +

√
−13) differ from 2 and 7 only by units, in which case we would have

a situation analogous to factoring a number into its positive and negative divisors. If this is
true, either (1−

√
−13)/2 or (1+

√
−13)/2 should be a unit of R. When we later discuss the

number rings of quadratic number fields, we will see that this is impossible, since neither of
these are even elements of R, much less units. Thus we have demonstrated that R is not
a UFD and hence not a PID either. The next point of curiosity is to actually produce a
non-principal ideal. This is not particularly difficult. (2, 1+

√
−13) suffices. To demonstrate

that this is indeed a proper ideal, we note that

(2, 1 +
√
−13)2 = (4, 2 + 2

√
−13,−12 + 2

√
−13)
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(we are defining ideal multiplication in the usual way, with the elements of a product of ideals
being sums of the products of every pairing of generators), and that we can manipulate these
generators to see that 2 is contained in this ideal, and thus that the ideal (2) is contained in
it as well. Since all the generators are multiples of 2, this shows that

(2, 1 +
√
−13)2 = (2).

We argue that (2, 1+
√
−13) 6= R. Otherwise, its square would also be R, and we know that

it cannot be principle, since this would require a common divisor of both generators, which
we’ve shown does not exist in R. This factorization of the ideal (2) raises an interesting
question: we couldn’t factor the number 2, but we could factor the ideal. What then will
happen if we find factorizations of the rest of the relevant principal ideals? It turns out that
we get

(1−
√
−13) = (2, 1 +

√
−13) · (7, 1−

√
−13), (1 +

√
−13) = (2, 1 +

√
−13) · (7, 1 +

√
−13),

and (7) = (7, 1 +
√
−13) · (7, 1−

√
−13).

This result seems to imply that, if we factor our divisors of 14 further into ideals, these two
factorizations are actually the same. In fact, number rings do have the unique factorization
property, but for ideals rather than for elements. We show that this holds for a larger class
of rings known as Dedekind domains.

Definition. An integral domain is a Dedekind domain if the following hold:

1. It is Noetherian.

2. Every nonzero prime ideal is maximal.

3. It is integrally closed.

We will begin by noting that we have already shown that number rings satisfy the third
condition. It remains to show that they satisfy the first two. Before we do that, let us see
what exactly is relevant about these conditions. In particular, let us see how these conditions
are related to the problem of unique factorization for ideals. To do this, we will look at some
examples of rings which do not satisfy these conditions and see how unique factorization can
fail.

First, we look at a non-Noetherian ring. Consider the ring R generated over Z by all pn-th
roots of 2 for some prime p. Then we can make an infinitely ascending chain of ideals by
simply taking the chain A1 ⊂ A2 ⊂ A3 . . . where Ai = (21/pi

). The problem is immediately
apparent. Any member of this chain has an infinite number of factors. A factorization like
this really isn’t that useful to us. What we’re really after is the ability to talk about the
entire set of ideals as generated by a subset of irreducibles.
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Second, take a ring which does not satisfy the second property, but is Noetherian and
integrally closed. R = F[x, y], F a field, will work. We know that R is Noetherian by the
Hilbert Basis Theorem. Now, consider the ideal (x2, y2). Any prime ideal containing this
ideal contains both x and y, so the only candidate is (x, y). Hence, if (x2, y2) is a product of
prime ideals, it must be some power of (x, y).

(x, y)2 = (x2, xy, y2), and (x, y)3 = (x3, x2y, xy2, y3).

The former must contain (x2, y2) properly, since xy is not in (x2, y2), and the latter must be
properly contained in (x2, y2), since it does not contain x2 or y2. Note also that if we let K
be the field of fractions of R; and we try to find an inverse of (x, y), we will fail: Assume
such an inverse exists. Call it N. N(x, y) = R, so 1 ∈ N(x, y). Then N must contain the
inverse of some polynomial in (x, y), say g(x, y)−1. Then xg(x, y)−1 ∈ R, so

xg(x, y)−1 = f(x, y)

for some polynomial f(x, y). Then

x = g(x, y)f(x, y).

The only possiblities for g(x, y) and f(x, y) are then x and 1. 1 is not in (x, y), so g(x, y) = x,
but if we replace x with y in this argument, we have g(x, y) = y. This is a contradiction, so
N cannot exist.

We start out proof of unique factorization of ideals with the following definition:

Definition. An ideal A is said to be invertible if there exists an R-module A−1, finitely
generated by elements of K, such that AA−1 = R.

Now we will show that in a Dedekind domain, prime ideals are invertible. Given P, define
N as {a : a ∈ K, aP ⊆ R}. For any a ∈ P, aN ⊆ R, so N ⊆ a−1R. R is Noetherian,
and a−1R is a finitely generated R module, so N must be as well. P ⊆ PN ⊆ R. Hence
PN = P or R. Say it equals P. Then for any n ∈ N; a ∈ P, nia ∈ P for all i. Thus we have
that B =

∑∞
i=1(n

ia) is an ideal of R. R is Noetherian, so this must be finitely generated.
Say {nia : i ∈ I, I a finite set of natural numbers} generates B. Then let j be any natural
number not in I.

nj =
∑
i∈I

niari

for some ri ∈ R. Thus we have that all n ∈ N are integral over R. Since R is integrally
closed, this implies N ⊆ R. If we can show that this is not true, we must have NP = R.
Given any a ∈ P, we have that PC ⊆ (a) for some ideal C not contained in (a). Thus there
exists b ∈ C with the property bP ⊆ (a). Then b

a
∈ N, but b

a
/∈ R, because b /∈ (a). Now we

have our contradiction, and NP must be R. Thus we have that prime ideals are invertible.

We can use this to show that Dedekind domains have the unique factorization property for
ideals. Given any ideal A ⊂ R, we know that A must contain some product of prime ideals.
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If not, there must exist a maximal ideal B that does not contain a product of primes, by
the fact that R is Noetherian. B cannot be prime, so there must be some elements a and b
of R with ab ∈ B. Then (a)(b) ⊆ B. But then (a) and (b) must contain products of primes,
since they properly contain B. Then (a)(b) contains the product of the products of primes
contained in (a) and (b), so B must also contain this product. Now say P1P2 · · ·Pn ⊆ A is
the shortest product of primes contained in A. (That is, n is minimal.) If n = 1, A is prime
and we are done. For n ≥ 1, A is not prime, so there exists a prime ideal P containing A.
Then P contains the product P1P2 · · ·Pn, so P contains one of the Pi. Since primes are
maximal, Pi = P. Say i = 1. Then we have

PP−1 ⊆ AP−1 ⊆ P2P3 · · ·Pn.

Then, inducting, AP−1 is a product of prime ideals. Thus A must be this product multiplied
by P. Finally, to show that the factorization must be unique, let

P1P2 · · ·Pn = Q1Q2 · · ·Qm.

Then for each Pi, we have
Q1Q2 · · ·Qm ⊂ Pi,

so Qj = Pi for some Qj. Multiplying both sides by P−1
i = Q−1

j gives a shorter product on
both sides, and continuing this process must eventually lead us to the equivalence of the two
factorizations.

Now we finish by proving the following:

Proposition 1.5. Number rings are Dedekind domains.

Proof. We will require the following definition:

Definition. The norm of an element α ∈ R is defined as

N(α) =
∏
σ∈G

σ(α)

where G is the galois group of the extension.

We’ve already shown that number rings are integrally closed. We need to show that the
other two conditions hold. Showing that each nonzero prime ideal is maximal hinges on
being able to show that R is Noetherian: We know that R/P is an integral domain for any
prime ideal P. If we can show that it is finite, we will have shown that it is a field, and
thus that P is maximal. Certainly, P contains the norms of its elements, which are in Z,
so the order of R/P is less than the order of R/(m) for some integer m. If we can show
that R is a finitely generated Z module, we will have both the Notherian and the maximal
ideal requirements. We have shown already that R cannot necessarily be generated over Z
by one element of R, but since K is a separable extension of Q, we know it is equal to Q(θ)
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for some θ ∈ K. In fact, we can choose θ to be in R, since multiplying θ by any integer does
not affect its ability to generate K, as K contains all of Q. So we can choose some θ ∈ R
with Z[θ] ⊆ R ⊂ Q[θ]. This leads us to prove the following lemma:

Lemma 1.6. There exists a finite set of elements of Q[θ] which generate R.

Proof. Let α be any element of R and set

α = q0 + q1θ + · · · qn−1θ
n−1, qi ∈ Q.

Now we form the matrix equation:
1 θ · · · θn−1

1 σ1(θ) · · · σ1(θ
n−1)

1 σ2(θ) · · · σ2(θ
n−1)

...
...

...
...

1 σn−1(θ) · · · σn−1(θ
n−1)




q0

q1

q2
...

qn−1

 =


α

σ1(α)
σ2(α)

...
σn−1(α)


We can solve for the qi’s using Cramer’s rule to get qi = Ai/det(σi(θ

j)) where Ai is the
determinant of the matrix obtained from replacing the i’th column of (σi(θ

j)) with the
vector on the right. The important thing to note is that these Ai’s are in R, and det(σi(θ

j))
is an algebraic integer which itself is not fixed by the Galois group, but whose square is
(the determinant of a matrix may have its sign changed by re-ordering the rows, but the
magnitude remains the same.) Say d = (det(σi(θ

j)))2, then dqi = Aidet(σi(θ
j)) ∈ R. But

dqi ∈ Q as well, so it is in Z.

Now we have shown that θ does generate R over 1
d
Z, or more familiarly,

R = Z[1/d, θ/d, θ2/d, · · · , θn−1/d].

Thus R is a finitely generated Z module of at most degree n, the degree of the field extension
K over Q. Indeed, we know that 1, θ, θ2, · · · , θn−1 are linearly independent in R, so R is
exactly an nth degree Z module. Since Z is a Noetherian ring, this gives us that R is
Noetherian. Of course, this immediately implies that all prime ideals are maximal by the
work we did above.

We have now shown that number rings satisfy all the conditions for being Dedekind domains.

1.4 Fractional Ideals and the Class Group

Definition. A fractional ideal is an R-module which is finitely generated by elements of K.
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When we are discussing fractional ideals, we refer to ideals contained in R as integral ideals.
If we define multiplication on fractional ideals in the same way as we did for integral ideals,
it is easy to see that the fractional ideals form a group. They are certainly closed under
multiplication, and R serves as the identity. It remains to show that inverses exist for every
element. We have already shown that inverses exist for prime ideals in R. Given a fractional
ideal M, we can find an element a of R such that aM ⊆ R. Then aM has a unique
factorization into prime ideals. Let

aM = P1P2 · · ·Pn

M = a−1P1P2 · · ·Pn

M−1 = aP−1
1 P−1

2 · · ·P−1
n .

Thus the fractional ideals form a group, which we refer to as the ideal group.

We can go further than this and form a smaller group out of the ideals by defining an
equivalence relation which places all the principal ideals in a class together. We call this
group the class group. We say two fractional ideals A and B are equivalent if there exist
a and b in K such that aA = bB. Since multiplication is commutative, this is symmetric.
Setting a = b = 1 gives us reflexivity, and if aA = bB and cB = dC, then aA = bB = bdc−1C,
so the relation is transitive. Multiplication on the set of equivalence classes is defined in the
obvious way: [A][B] = [AB]. To see that this is well defined, let aA = bB, cC = dD.
Then acAC = bdBD. We set the equivalence class of principal ideals to be the identity,
and the existence of inverses is automatic from the existence of inverses in the ideal group.
Notice that every equivalence class must contain an integral ideal. This gives us the result
that, given any integral ideal, there must be another integral ideal such that their product
is principal. If the class group is finite, we further have that given any integral ideal, some
power of that ideal must be principal. The class group will show up later in the discussion of
density of ideals in a subset of the ideal group, but for now we move on to some discussion
of the behavior of primes in field extensions.



Chapter 2

Application of Galois Theory to
Number Fields

2.1 Factoring a prime of Z in R

Given a prime number p in Z, we know pR is an ideal of R, but not necessarily a prime
ideal. We can see this in an example: Z[

√
−5]. 3 is a prime number, but the ideal 3R is not

prime at all. 1 +
√
−5 and 1 −

√
−5 are not in 3R, but their product, 6, is. On the other

hand, we know that ideals of R are products of prime ideals, so pR = Pa1
1 · · ·P

ag
g .

3R = (3, 1 +
√
−5)(3, 1−

√
−5),

for example. Note that these ideals are conjugates of each other. In general, we can make
the following statements:

Proposition 2.1. 1. Given any σ in the Galois group G of K over Q, σ(p) = p.

2. σ(P) is a prime ideal sitting over p for any prime ideal P sitting over p.

3. Given P1, P2, there exists σ ∈ G such that σ(P1) = P2.

Proof. 1. This is obvious, since p is in the fixed field of G.

2. Given any ab ∈ σ(P), we have σ−1(ab) ∈ P. Since σ−1 is a homomorphism, one of
σ−1(a), σ−1(b) must be in P. Thus one of a, b must be in σ(P). So σ(P) must be a
prime ideal. What’s more, it must contain p, since p = σ(p) ∈ P. So σ(Pi) = Pj for
some 1 ≤ j ≤ g.

3. Given a prime P sitting over p, say there is no σ ∈ G such that σ(P) = Pi for a
certain Pi sitting over p. Then we can find an element α which is in P, but such that

12
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σ(α) /∈ Pi for any σ. But we know that N(α) ∈ P∩Z which must be a prime ideal of
Z and thus must be p. This is a contradiction, since p ⊂ Pi.

So we have that G permutes the primes sitting over p transitively. Now we have actually
obtained the fact that in a normal extension, all the exponents of the primes dividing p must
be equal. That is, we actually have p = (P1 · · ·Pg)

e for some integer e. It is tempting now
to assume that the product σ1(P) · · ·σn(P) = pR. Unfortunately, this is not actually the
case; we may have a prime ideal of Z which is also prime as an ideal of R. As an example,
the number ring of the field Q[

√
7] is Z[

√
7], and the prime 5 in Z remains prime in Z[

√
7]:

let
(a + b

√
7)(c + d

√
7) = 5α

for some α ∈ Z[
√

7]. Then taking the norms of both sides, we have

(a2 − 7b2)(c2 − 7d2) = 25k

for some integer k. Thus

(ac)2 − 7((bc)2 + (ad)2) + 49(bd)2 = 25k,

so (ac)2 ≡ 7 mod(25), which implies (ac)2 ≡ 2 mod(5), which is impossible, since 2 is not a
square mod(5). Then the product σ1(5)σ2(5) = 25, not 5, as we hoped. On the other hand,
R/(5) is a finite field of order 25, which leads us to wonder: is∏

σ∈G

σ(P) = |R/P|R?

If so, then we also have ∏
σ∈G

σ(P) = |R/Pi|R

for any Pi sitting over p, since there is a natural isomorphism between R/P and R/Pi given
by the element σ of the Galois group which sends P to Pi. The result we rely on to answer
this question is the analog for ideals of the Chinese Remainder Theorem for the integers.

Theorem 2.2. (Chinese Remainder Theorem) Given a set of ideals with the property that
we can choose elements u, v from any pair of the ideals such that u+ v = 1, then we can find
an element of R such that the element is congruent to a given value in the residue field of
each ideal.

Proof. For two ideals, A1, A2, this is easy. Let x1 and x2 be the two desired values in the
residue fields. Then set x = x2u + x1v Since v ≡ 1 mod(A1) and u ≡ 1 mod(A2), the result
follows. We then induct on the number of ideals by finding an element of R which is in all
the ideals we have previously dealt with, but which is congruent to 1 mod our new ideal.
Our condition says that this is possible. Therefore we can map R surjectively to the direct
sum ⊕R/An.
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The kernel of the map is the product of all the ideals, so in the case of the primes di-
viding p above, we have R/(p) ∼= ⊕R/Pe

n. Mapping R/Pe into R/Pe−1 by the obvious
homomorphism, we see that the kernel of the map is Pe−1/Pe. Thus

|R/Pe| = |R/Pe−1||Pe−1/Pe|.

Inducting, we can see that

|R/Pe| =
n∏

i=1

|Pi−1/Pi|.

The invertibility of prime ideals gives us an isomorphism between Pi−1/Pi and R/P. Thus
|R/Pe| = e|R/P|. Now from the Chinese Remainder Theorem, we have

pn = |R/(p)| =
∏
|R/Pe

n| = |R/Pn|eg,

where g is the number of primes dividing p. It follows then that |R/Pn| = pn/eg. We say
f = n/eg is the inertial degree or just degree of Pn. With one more clarification, this gives
that ∏

σ∈G

σ(P) = |R/P|R.

Definition. The decomposition group D of a prime P is the subgroup of G that fixes P (not
necessarily element-wise.)

Let σD be a coset of D in G. Then since G permutes the primes sitting over p transitively,
there exists a σ such that σ(Pi) = Pj for all Pj sitting over p and if σ1(P) = σ2(P), then
σ−1

2 σ1 ∈ D , so there are exactly g cosets of D in G, implying that |D | = ef . Now we know
there must be exactly ef copies of each Pi in

∏
σ∈G σ(P). Since p = (P1 · · ·Pg)

e,∏
σ∈G

σ(P) = pfR,

just as we suspected.

2.2 The Frobenius Substitution

Since we now know that the residue field R/P of a given prime ideal P sitting over p is
a finite field of order pf , we know that it can be thought of as a finite field extension of
Z/(p). Consequently, there must be a generator σ for the Galois group G of R/P which
acts on elements of the residue field by σ(x) = xp. This generator is called the Frobenius
automorphism of the Galois group.
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Definition. The Frobenius substitution of P is a (not necessarily unique) pre-image of the
Frobenius automorphism under the obvious homomorphism from the decomposition group
D into G.

To show that it always exists, we must show that this homomorphism is actually onto.

Proposition 2.3. The natural homomorphism from D to G is onto.

Proof. Let T be the kernel of the homomorphism. Then T consists of all σ ∈ D such that
σ(x) ∼= x mod(P). Since we know |D| = ef and |G| = f , our task is to show that |T | = e.
We know that we have a tower of fields:

K ⊃ KT ⊃ KD ⊃ Q,

where KT and KD are the fixed fields of T and D respectively. If we can show that the
degree of the extension KT over KD is f , this will imply our desired result. Say PD is the
prime in RD sitting under P. Then P is the only prime sitting over PD, since D is the
Galois group of K over KD, and D fixes P. Additionally, there can only be one prime sitting
between them in RT . Given any α ∈ R/P, we can create a symmetric polynomial

f(X) =
∏
σ∈T

(X − σ(α))

which then must be in RT /PT . But then

f(X) = (X − α)|T | mod (P).

Since any minimal polynomial for α must divide f(X), we have a trivial Galois group for
R/P over RT /PT . Thus the relative degree of P over PT is 1. It follows that the relative
degree of PT over PD must be f , since we also have a tower of field extensions:

R/P ⊃ RT /PT ⊃ RD/PD ⊃ Z/(p).

(Technically, these containments are the result of embedding each field in the larger ones via
a homomorphism.) Thus |D/T | ≥ f , but we’ve already seen that D/T is embedded in G,
so its order can be no larger than f .

We now have what we want, D/T ∼= G. Now we know the Frobenius substitution exists,
with one hitch. The pre-image of the Frobenius automorphism is actually a coset of T in D.
If we wish to have a unique Frobenius substitution for each prime sitting over p, we require
the prime decomposition of pR to only contain single powers of primes. When this is the
case, we say p is unramified. Not surprisingly, if p is divisible by some higher power of a
prime, we say p is ramified. Now, given a Frobenius substitution φ for P, we know that
every other prime sitting over p is τ(P) for some τ ∈ G. Accordingly, the decomposition
group of τ(P) is τDτ−1, and its Frobenius substitution is τφτ−1.



Nathaniel A. Gaertner Chapter 2. Application of Galois Theory to Number Fields 16

2.3 A Test for Ramification

With one more tool, we will be ready to move on to the density theorems which interest us.
We just stated that we want to deal with unramified primes, as this allows us to uniquely
define the Frobenius substitution. The question now arises: is there an easy test for ramifi-
cation? The answer is yes, and the key to figuring this out is noting that for ramified primes
the intersection of all the primes dividing p properly contains p, but at the same time, for
each P dividing p, P ∩ Z = Zp. For example, in Z[

√
−5],

(2) = (2, 1 +
√
−5)2.

1+
√
−5 ∈ (2, 1+

√
−5), but certainly 1+

√
−5 /∈ (2). Now, since we have found an element

which is in every divisor of p (simple in our example, since there is only one divisor,) every
image of our element under the operation of the Galois group is in every divisor. Most
tellingly, it turns out, the trace of our element is in every divisor. The trace is symmetric
and must be in Z, as we showed earlier. This implies that the trace of our element must be
in p. Our example bears this out, as Tr(1 +

√
−5) = 2. This is unique to ramified primes,

since in the unramified case, in order for the trace of an element to be in any of the divisors,
the element must be contained in all of the divisors, which in the unramified case simply
means it is contained in p. Not so now, as we have found an element α such that Tr(αβ) = 0
in R/(p) for any β ∈ R/(p). Thus the bilinear form (γ, β) = Tr(γβ) defined on R/(p) is
degenerate. We could certainly leave it at that and use the degeneracy of this bilinear form
as our test for ramification, but a handy mechanism offers itself. If we let α1, · · ·αn be a
generating set for R over Z, then the bilinear form defined above is completely defined by its
action on the generating set. Let [(αi, αj)] be the matrix with (αi, αj) in the i, jth position.
Note that this matrix is equal to

σ1(α1) σ2(α1) · · · σn(α1)
σ1(α2) σ2(α2) · · · σn(α2)

...
...

...
...

σ1(αn) σ2(αn) · · · σn(αn)




σ1(α1) σ1(α2) · · · σ1(αn)
σ2(α1) σ2(α2) · · · σ2(αn)

...
...

...
...

σn(α1) σn(α2) · · · σn(αn)

 .

Since the αi’s are a generating set for R over Z, we know our particular

α = m1α1 + m2α2 + · · ·+ mnαn.

Thus, multiplying [(αi, αj)] by [m1, m2, · · · , mn]T gives us a vector with entries of the form

n∑
j=1

∑
σ∈G

σ(αiαjmj) =
∑
σ∈G

σ(
n∑

j=1

αiαjmj) = 0 mod(p)

by the degeneracy of the bilinear form. Thus the determinant of the matrices above must
be 0 mod(p). The determinant of the above product of matrices is important enough that



Nathaniel A. Gaertner Chapter 2. Application of Galois Theory to Number Fields 17

we name it. It is called the discriminant of the generating set α1, α2, · · · , αn. If it seems
familiar, we used the discriminant of another generating set when we proved that R was
finitely generated over Z.

We have now seen that primes which are ramified must divide the discriminant. This is
in fact an if and only if statement. Assume that p|disc(α1, α2, · · · , αn). This means that,
modulo p, [(αi, αj)] is singular. Thus the rows and columns must be linearly dependent
modulo p. So we can find coefficients m1, m2, · · · , mn, not all divisible by p, such that for
all j,

n∑
i=1

miTr(αiαj)

is divisible by p. Since the αj’s form a basis for R, This means we have an element

α = m1α1 + m2α2 + · · ·+ mnαn

with Tr(αR)∈ pZ. Of course, since not all the mi’s are divisible by p, α is not divisible
by p, since the αi’s form a basis for R. This implies that the bi-linear form defined by
(γ, β) =Tr(γβ) is degenerate modulo p. We already said this can only happen if p is ramified.
If it is not, there is no way to find an element which is in every divisor of p but not in p
itself.



Chapter 3

Use of Analysis for Density
Computation

3.1 Analytic and Dirichlet Density for the Integers

Now we look at methods of calculating the relative size of subsets of the set of primes. If
the set of primes were finite, we would simply compare the number of primes in the subset
to the number of primes overall. Unfortunately, we know that this is not the case. We will
actually prove this using the techniques we will develop here, but to see this fact simply,
Euclid’s proof suffices: given a finite list of primes p1, · · · , pn; p1 · · · pn + 1 must be divisible
by some prime not in the list, since any prime dividing p1 · · · pn and p1 · · · pn + 1 must also
divide 1, which is impossible. Note that this proof basically develops an infinite list of primes
inductively, and thus does not particularly give us any information about any infinite set of
primes as a whole, but rather deals with arbitrarily large finite subsets. It is this kind of
thinking which leads us to what is probably the most intuitive measure of the relative size
of a set of primes. Say I is the set of all primes, and S ⊆ I.

Definition. The analytic density of S, δ(S) =

lim
n→∞

|{p : p ∈ S, p ≤ n}|
|{p : p ∈ I, p ≤ n}|

(This is assuming that this limit exists. In all our definitions of density, we say that a set S
has a density only if this lim does exist.) Unfortunately, when we are dealing with infinite
sets, considering any finite subset really gives us no information about the value of the limit
above. Without any pre-existing concept of the distribution of the primes being considered,
the limit above seems incalculable. Take for example the primes congruent to 3 mod(10) (the
primes with last digit 3). There is nothing in particular that says the fraction of primes less

18
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than, say, 50 which are congruent to 3 is even close to the fraction of such primes less than
10, 000. This problem becomes even more vexing if we consider prime ideals of a number
ring, which do not necessarily have a complete ordering. As we have seen before, we can use
the norm to bring our calculations back into the realm of the normal integers, but then, for
a set of ideals S, we are faced with a definition such as

lim
n→∞

|{P : P ∈ S, N(P) ≤ n}|
|{P : P ∈ R, N(P) ≤ n}|

If the limit involving primes of the integers doesn’t seem to submit to any easy solution, this
certainly doesn’t either! We need a meaningful way to compare a measure of all the primes
in a given set to a measure of all the primes in general by using finite values. The tool we
use is convergent infinite series. Consider the series

∑
p∈I

1

ps

Then for any s ∈ R > 1, we know this series converges to some finite value, since we certainly
have

∑
p∈I

1

ps
≤

∞∑
n=1

1

ns

and we know the sum on the right is convergent for any s > 1. So now, instead of taking the
limit as we count primes in some bounded set, we can take the limit of these sums involving
all the primes as s → 1. We define the Dirichlet density of a set S of primes.

Definition. The Dirichlet density of a set of primes S, is δ(S) =

lim
s→1

∑
p∈S

1
ps∑

p∈I
1
ps

Now, if we let s be in C, we can think of these sums as complex functions which are analytic
on the half plane Re(s) > 1. To get some handle on their behavior we create a correspondence
between the behavior of the series f(s) =

∑
p∈I

1
ps and the zeta function ζ(s) =

∑∞
n=1

1
ns ,

then show that ζ(s) can be continued to a meromorphic function in a neighborhood of 1.
(More precisely, we show that (s − 1)ζ(s) can be continued to an analytic function in a
neighborhood of 1, which also gives us the order of the pole at 1.) This correspondence will
be extremely useful to us later when we will have to manipulate this series in some specific
density calculations.
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Proposition 3.1. ∑
p∈I

1

ps
= log(ζ(s)) + g(s)

for some function g(s) which is analytic around 1.

Proof. To begin, we represent ζ(s) as the product

∏
p∈I

(1 +
1

ps
+

1

p2s
+

1

p3s
· · · ) =

∏
p∈I

(
1

1− 1
ps

).

ζ(s) is equal to the first product, since each integer n is uniquely representable as a product of
primes; and the first product equals the second simply by the familiar identity for geometric
series. Given this infinite product, which must converge normally on the half plane Re(s) > 1,
We can define a branch of log(z), slitting along the negative real axis, such that we have the
Laurent series expansion − log(1− z) = z + z2

2
+ z3

3
+ · · · . Then we can define the log of the

infinite product above as the sum of the logs of each of its terms (at least on the half plane
of normal convergence) and get

log(
∏
p∈I

(
1

1− 1
ps

)) =
∑
p∈I

− log(1− 1

ps
) =

∑
p∈I

(
1

ps
+

1

2p2s
+

1

3p3s
+ · · · ) =

∞∑
n=1

∑
p∈I

(
1

pns
) =

∑
p∈I

(
1

ps
) +

∞∑
n=2

∑
p∈I

1

npns

If we can prove that the summation over all n ≥ 2 in the last statement is bounded in
a neighborhood of 1, we will have shown that the summation over the primes has poles
precisely where log(ζ(s)) does with precisely the same orders. For s near 1, we have

∞∑
n=2

1

npns
≤

∞∑
n=2

1

2pns
<

1

p2s
.

Now the final term in our above sum is less than∑
p∈I

1

p2s
<

∞∑
n=1

1

n2
< ∞

for s near 1.

We know our log function will be defined and finite everywhere that ζ(s) is finite and not
on the negative real axis. Since we know ζ(s) takes on positive real values on the real axis
in a neighborhood of s, we know that we can find a neighborhood of 1 small enough in C
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such that ζ(s) has positive real part on that neighborhood. Thus log(ζ(s)) will be defined
everywhere in this neighborhood, with poles precisely where ζ(s) has poles. Now it remains
to prove the following proposition:

Proposition 3.2. (s− 1)ζ(s) can be continued to an analytic function in a neighborhood of
1.

Proof. Consider the function

ζ ′(s) =
∞∑

n=1

(−1)n+1

ns

which is convergent (and thus analytic) in a neighborhood of 1. ζ ′ = ζ(s) − 1
2s−1 ζ(s).

Reorganizing, we have ζ(s) = (1− 1
2s−1 )

−1ζ ′(s), which has a first order pole wherever 2s−1 = 1,
that is, where s = 1 + 2kπi/ log(2).

Now, log((s− 1)ζ(s)) = log(s− 1) + log(ζ(s)). So we now have

lim
s→1

∑
p∈I

1

ps
+ log(s− 1) + g(s) = log((s− 1)ζ(s))

for some function g(s) which is analytic in a neighborhood of 1. Thus, since (s − 1)ζ(s) is
analytic around 1, we have

∑
p∈I

1

ps
= − log(s− 1) + g(s)

for some function g(s) analytic around 1. More generally, we have

lim
s→1

∑
p∈I

1
ps

− log(s− 1)
= 1 + lim

s→1

g(s)

− log(s− 1)
= 1

This automatically gives us another proof that there are an infinite number of primes. If
there were a finite number, then the series would be convergent and the limit above would
be 0. We can now reformulate our definition of Dirichlet density as follows:

lim
s→1

∑
p∈S

1
ps∑

p∈I
1
ps

=
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lim
s→1

∑
p∈S

1
ps

− log(s− 1) + g(s)
= lim

s→1

∑
p∈S

1
ps

− log(s− 1)

Now, since we have unique factorization into prime ideals for ideals in any number ring, we
can perform all the same manipulations with the series

∑
A⊆R

1
N(A)s to get

log(
∑
A⊆R

1

N(A)s
) =

∑
P⊆R

1

N(P)s
+ g(s)

where the P are prime ideals of R. If we want to obtain the same result about the poles
of the sum over norms of ideals as we did for the sum over integers, we need to obtain
some bound for the number of ideals with a specific norm. Doing this is actually quite
difficult. The results obtained in this realm involve mapping R into the Euclidean space Rn

and viewing ideals as lattices with specific volumes. The work that leads to the results in
this realm is due to Minkowski, for discussion of the work, see [1]. We will not cover this
here, but simply assume the results. Before we state the actual results, we need to discuss
another topic further, as we actually obtain formulae more specific than we desire for the
above calculations, and which depend on defining a new equivalence relation on ideals. These
formulae will be extremely useful in the discussion ahead. We will start by constructing a
motivating problem.

3.2 A Particular Case of The Cheboterev Density The-

orem

Theorem 3.3. (Cheboterev Density Theorem) Given an extension of number fields K ⊂ L
and σ ∈ G an element of the Galois group of L over K, the set of prime ideals p in K with
p ⊂ P, where P is a prime ideal of L with Frobenius substitution σ, has density equal to the
number of conjugates of σ in G divided by the order of G.

To illustrate some of the concepts this theorem entails, take the case of the generic quadratic
extension of Q,K = Q(

√
m), m square-free. Now there are three possibilities for prime

splitting in R:

1. a prime p of Z may remain prime in R, in which case we have e = g = 1, f = 2.

2. p may split into two distinct primes in R, in which case we have e = f = 1, g = 2.

3. p may be the square of a single prime in R, in which case f = g = 1, e = 2.
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Since we only care about unramified primes, we may ignore this last case. Actually, since
ramified primes must divide the discriminant, we know there can be only finitely many such
primes. Thus, intuitively, throwing them out shouldn’t skew our density calculations at
all. Now, we know that the Galois group of this extension must be the group with two
elements, Z/(2). Then, since this group is abelian, every element has only one conjugate.
Thus, viewing the Galois group as an additive group, the primes with Frobenius substitution
0 must have density 1

2
, as should the primes with Frobenius substitution 1. Now, from the

definition of the Frobenius substitution, we know that, in this case, primes that remain prime
in R should have a Frobenius substitution of order 2, and primes that split into two primes
in R should have a Frobenius substitution of order 1. (This results from the fact that the
order of the Frobenius substitution is f , the inertial degree of p.) Thus, what the theorem
states in this case is that the density of the set of primes that split and the density of primes
that remain prime is 1

2
. There is a simple way to characterize each of these sets:

Proposition 3.4. p remains prime in R if and only if m is not a square mod(p).

Proof. The polynomial X2 −m has a root in R/P for any prime P sitting over p but does
not have a root in Z/(p). Thus p has inertial degree > 1, so it must be 2, so p must remain
prime. On the other hand, if m is a square mod(p), then given any a+b

√
m+P ∈ R/P, the

minimal polynomial of this element must have a root in Z/(p), since we can find r ∈ Z/(p)
such that r2 = m.

Now our statement has become: the density of primes p such that a given square-free integer
m is a square mod(p) is 1

2
. In the following arguments, we might be concerned about the

case where p|m. We have actually already thrown out these cases by getting rid of ramified
primes. We know that such primes are exactly those which divide the discriminant, and in
this case the discriminant is divisible by m (to see why, see the discussion in the last section
of this paper.) Now, we want to flip this around, so we have a statement about the residues
of p mod(m) which implies our result for the residues of m mod(p). The result we wish to
use is Dirichlet’s famous theorem on primes in arithmetic progressions:

Theorem 3.5. (Dirichlet’s theorem) Given any integer n and any i in Z/(n)∗, the set of
primes congruent to i mod(n) has density 1

φ(n)
. Generally, the primes not dividing n are

distributed equally among the residues of n.

Proposition 3.6. For a quadratic extention Q(
√

m), Dirichlet’s theorem implies Cheboterev’s
theorem.

Proof. First, consider ( q
p
) where q is an odd prime. If q ≡ 1 mod(4), ( q

p
) = (p

q
) for all p.

Since half the residues mod any integer are squares, this gives us our result in the case where
q ≡ 1 mod(4), since exactly φ(q)

2
residues are squares mod(q) and the density of the set of

primes congruent to each residue is 1
φ(q)

, so the density of primes which are squares mod(q)
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is
φ(q)

2

1

φ(q)
=

1

2
,

and the primes that are squares mod(q) are exactly the primes for which q is a square. In
the other case, q ≡ 3 mod(4), there is more difficulty. Now, if p ≡ 1 mod(4), ( q

p
) = (p

q
),

but if p ≡ 3 mod(4), ( q
p
) = −(p

q
). To deal with this, consider Dirichlet’s theorem applied to

4q. This tells us that the density of the primes in each equivalence class of Z/(4q)∗ is 1
φ(4q)

.
The Chinese remainder theorem says that exactly half these equivalence classes contain the
primes congruent to 1 mod(4). Thus, if we consider only the set of primes congruent to 1
mod(4), the primes in this set congruent to a given a ∈ Z/(q)∗ must have density 1

φ(q)
. For

primes in this set, ( q
p
) = (p

q
), so the density of primes in this set for which q is a square

must be 1
2
. Considering the set of primes congruent to 3 mod(4), the fact that the density

of primes in this set which are not squares mod(q) must be 1
2

gives us the same result. Thus
the density of all primes for which q is a square must be 1

2
. Now, if we let m = q1q2 · · · qn

where all the qi are distinct, we can obtain the same result if we consider that the primes
congruent to 1 mod(4) are equally distributed over Z/(m)∗ and that for primes p in this set,

(
q1q2 · · · qn−1

p
)

is completely determined by the residue of p mod(q1q2 · · · qn−1). Then if we consider the
subset A of these primes congruent to a given a mod(q1q2 · · · qn−1), the subset of primes in
A congruent to a given b mod(qn) must have density 1

φ(qn)
in A. Then

(
m

p
) = (

q1q2 · · · qn−1

p
)(

qn

p
).

For primes in A, the former factor is constant, and the set of primes for which the latter
factor is 1 has density 1

2
. Thus m is a square mod(p) for half the primes in A. Since a was

arbitrary, the density of primes congruent to 1 mod(4) for which m is a square must be 1
2
.

A similar argument applies for the primes congruent to 3 mod(4), so we achieve our result
in general: the density of primes for which a given m is a square is 1

2
.

3.3 The Definition of the Ray Class Group and Minkowski’s

Counting Result for Ideals

Now to prove our special case of the Cheboterev density theorem, we need to prove Dirichlet’s
theorem. We reformulate its statement in a way which will allow us to use Minkowski’s
formulae.

Definition. The localization RP of a ring at a prime ideal P is RS−1 where S = R−P.



Nathaniel A. Gaertner Chapter 3. Use of Analysis for Density Computation 25

Definition. α ≡∗ β mod(pn) if α and β ∈ Q∗, α = a
b
, β = c

d
, with a, b, c, d relatively prime

to pn and α and β are in the same coset of 1 + pnZp in Q∗. Then α ≡∗ β mod(m) if α ≡∗ β
mod(pn) for all pn|m.

Definition. Qm,1 is the set of α ∈ Q∗, α ≡∗ 1 mod(m), or alternatively, the set of x
y
, x, y ∈ Z,

x, y relatively prime to m such that x ≡∗ y mod(m).

Proposition 3.7. The cosets of Qm,1 in Q∗ − {a
b
, a or b dividing m} are aQm,1, where

a ∈ Z/(m)∗.

Proof. Say αQm,1, βQm,1 are two cosets of Qm,1. Then the two cosets are the same if and only
if αβ−1 ∈ Qm,1, which is to say, α ≡∗ β mod(m). Say α not an integer. Then α = a

b
, a, b ∈ Z,

and since for some integer x relatively prime to m, αQm,1 = xQm,1 means α ≡∗ x mod(m),
or

a

b
= x + xpnr/s,

with s relatively prime to pn, we can manipulate this last expression to read

a = bx + bxpnr/s.

Choosing s = bx, which is fine, since both b and x are relatively prime to pn, we have
a = bx + pnr. Since r is arbitrary, this is equivalent to saying a ≡ bx mod(pn). By the
Chinese remainder theorem, we can find an x that satisfies this for all pn dividing m. Thus
there is an integer relatively prime to m such that the coset xQm,1 = αQm,1. So we can
assume α and β are integers. Now, if two cosets αQm,1 and βQm,1 are equal, this means
α ≡∗ β mod(m), or

α = β + βpnr/s

for all some r, s for all pn dividing m. We can choose s to be β and now we have simply
that α ≡ β mod(pn). Thus there is a bijection between residues in Z/(m)∗ and cosets of
Qm,1.

This construction may seem somewhat overwrought, but we may extend our definition to
any number field K and let m be any product of prime ideals, and instead of considering
cosets in Q∗−{a

b
, a or b dividing m}, consider cosets in the fractional ideal group generated

by all prime ideals not dividing m. Note that this is a generalization of what we did with
the Q case, since Z is a PID. Now all the above arguments still hold. (To be thorough,
the complete definition of this equivalence relation also includes the condition that if we
choose a finite number of real embeddings σ ∈ G of K (that is, elements of the Galois group
which map K into R,) a ≡∗ b only if σ(a) has the same sign as σ(b). We don’t require this
condition for the work we will be covering, so we may assume there are no real embeddings
being considered in the definition of the equivalence relation.) Now let the fractional ideal
group defined above be called Im

K. Then we have the following definition:
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Definition. The group Im
K/Km,1, where Km,1 is defined in an analogous way to Qm,1, is

called the ray class group of K.

Now we may reformulate our desired result for the Dirichlet theorem as the statement that
the density of primes in each coset of Qm,1 is the same, and thus must be the inverse of the
index of Qm,1 in Im

Q , which we now know is 1
φ(m)

.

The ray class group gives us the structure for which the results of Minkowski’s work on
counting ideals holds. Say k is any coset of Km,1. Then define ζK(k, s) to be

∑
A∈k,A⊂R

1

N(A)s

The result we now wish to use is:

Theorem 3.8. (Minkowski) lims→1(s− 1)ζK(k, s) is a finite constant gm independent of the
coset k.

We are also given that there are finitely many cosets, so this gives us that ζK(s) is meromor-
phic in a neighborhood of 1 with a single order pole at 1. Since we have unique factorization
of ideals of R, we can extend the arguments we used in the case where K = Q to obtain

log(ζK(s)) =
∑

P∈Im
K,P⊂R

1

N(P)s
+ g(s)

where g(s) is analytic at 1, and accordingly

− log(s− 1) =
∑

P∈Im
K,P⊂R

1

N(P)s
+ g(s)

for some g(s) analytic at 1. We may now extend our definition of Dirichlet density to primes
of an arbitrary number ring in the expected way as

lim
s→1

∑
P∈S

1
N(P)s

− log(s− 1)
.

Here is one result that quickly falls out of this definition

Proposition 3.9. The primes of inertial degree 1 have density 1.
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Proof. Let S be the set of primes with inertial degree 1. Then the norm of any prime of R
not in S must be pf where p is some prime of Z and f ≥ 2 There can be at most n primes
of R sitting over a given prime of Z, so if we sum over the primes not in S, we obtain

lim
s→1

∑
P/∈S

1

N(P)s
<

∑
p∈I

n

p2
<

∞∑
m=1

n

m2
.

We know that the series on the right converges, so the limit in our definition of density must
be 0. Since we can certainly make the statement

lim
s→1

∑
P∈S

1
N(P)s

− log(s− 1)
+ lim

s→1

∑
P/∈S

1
N(P)s

− log(s− 1)
= lim

s→1

∑
P⊂R

1
N(P)s

− log(s− 1)
= 1

we have that the density of primes in the complement of any set S is equal to 1 minus the
density of primes in S. So the primes of inertial degree 1 have density 1.

3.4 Characters, L-Series, and the Proof of Dirichlet’s

Theorem

Unfortunately, we cannot do the same manipulations with each ζK(k, s) that we made with
ζK(s), since there is no guarantee that the primes dividing an ideal in a given coset are in
that coset. (For example, say K = Q and m = 3. Then 11∗17 ≡ 1 mod(3), but 11 ≡ 17 ≡ 2
mod(3).) Looking back to our motivating problem (that of showing the density of primes in
each coset of Qm,1 is equal to 1 over the number of cosets), we desire a way to capture the
index of a coset in our density calculation. To this end, we define a generalization of our
zeta functions which will employ characters of the group Im

K/Km,1.

Definition. A character of a finite abelian group is an injective homomorphism from the
group to the unit circle in C.

There are two formulae involving characters which will be particularly useful to us.

Proposition 3.10. Let A be a finite abelian group and let A be the set of characters of A.
Let χ0 be the character that sends all elements of A to 1. Then

∑
a∈A

χ(a) =

{
0 χ 6= χ0

|A| χ = χ0

,
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∑
χ∈A

χ(a) =

{
0 a 6= 1

|A| a = 1

Proof. In the first formula, the case where χ = χ0 is obvious. If χ 6= χ0 then we can find
b ∈ A with χ(b) 6= 1. We know Ab = A and χ(ab) = χ(b)χ(a). Thus we have

∑
a∈A

χ(a) =
∑
a∈A

χ(ab) = χ(b)
∑
a∈A

χ(a)

Since χ(b) 6= 1, the sum must be 0. To confirm the second formula in a similar way, we
show that A is a group. Define multiplication by χ1χ2(a) = χ1(a)χ2(a). The product is still
a homomorphism, and the unit circle in C is closed under multiplication, so the product is
still a character of A. With this multiplication, χ0 becomes the identity. Given any χ ∈ A,
χ−1 must be defined by χ−1(a) = (χ(a))−1. We need to see that χ−1 is a character of A.
Certainly, (χ(a))−1 is in the unit circle.

χ−1(ab) = (χ(ab))−1 = (χ(a)χ(b))−1 =

(χ(a))−1(χ(b))−1 = χ−1(a)χ−1(b).

So χ−1 is a character of A. There remains one further obstacle to confirming the formula.
Given an a ∈ A with a 6= 1, is it always possible to find a character χ such that χ(a) 6= 1? We
answer this in the affirmative by noting that if a has order n in A; and θn is a primitive nth
root of unity, then the map sending at to θt

n and all other elements of A to 1 is a character
of A. Now, given a ∈ A, a 6= 1, let χ1 be such that χ1(a) 6= 1. Then

∑
χ∈A

χ(a) =
∑
χ∈A

χ1(a)χ(a) = χ1(a)
∑
χ∈A

χ(a)

Since χ1(a) 6= 1, the sum must be 0. The case where a = 1 is obvious.

It is these summation formulae that give us our tool for capturing the index of a given
subgroup of the ray class in our density calculations. We generalize our zeta functions as
follows:

Definition. An L-series of a subgroup H of the ray class is a series

L(χ, s) =
∑
A∈Im

K

χ(A)

N(A)s

where χ is a character of Im
K/H, and χ(A) is actually χ(AH), a given coset of H.
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Note that if we take H = Km,1,

L(χ, s) =
∑
k

χ(k)ζ(s,k).

Also, there is nothing that stops us from doing the same manipulations on the L-series that
we did on the zeta functions to achieve the result that

log(L(χ, s)) =
∑

P∈Im
K

χ(P)

N(P)s
+ gχ(s)

where gχ(s) is analytic at 1. Additionally, we know that (s− 1)L(χ, s) is analytic at 1, since
(s− 1)ζK(k, s) is finite for each coset. Now we state one of the useful results that we obtain
from the introduction of characters:

∑
χ∈Im

K/H

χ(P) =

{
0 P /∈ H

|Im
K/H| P ∈ H

So if we sum over the logs of all the L-series of H, we obtain

∑
χ6=χ0

(log(L(χ, s)) + gχ(s)) + log(L(χ0, s)) + gχ0(s) =

|Im
K/H|

∑
P∈H

χ0(P)

N(P)s
= |Im

K/H|
∑
P∈H

1

N(P)s

Now, we know that Km,1 is a subgroup of H, so we may split up any L-series of H into a
sum of zeta functions of cosets of Km,1 over the cosets of H:

L(χ, s) = |H/Km,1|
∑

l cosets of H

χ(l)ζ(s,k)

Accordingly, we know that

lim
s→1

(s− 1)L(χ, s) =

{
0 χ 6= χ0

g > 0 χ = χ0

by the summation results we proved for characters. This tells us that L(s, χ) is actually
finite for χ 6= χ0. Thus log(L(χ, s)) is bounded away from positive infinity. Since L(χ0, s) is
exactly ζ(s) with a finite number of primes removed, we have that the density of the primes
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in H is bounded by 1
|Im

K|
and is in fact equal to this quantity if and only if all the (L(χ, s))

are non-zero at 1. Going back to our attempt to prove Dirichlet’s theorem, we now know
that the density of the set of primes contained in Qm,1 is at most 1

φ(m)
. We are a step closer

to showing that it is exactly this. We prove the other direction:

Proposition 3.11. The density of the primes in Qm,1 is 1
φ(m)

.

Proof. Consider the cyclotomic extension Q(θm) where θm is a primitive mth root of unity.
The Galois group of this extension is well known to be isomorphic to Z/(m)∗, which has order

1
φ(m)

. We wish to show that the set of primes that split completely (that is, primes with

f = e = 1) in Q(θm) accounts for almost all the primes in Qm,1. Take any prime p ∈ Qm,1.
Then p ≡ 1 mod(m). So raising to the pth power is equivalent to the identity automorphism
in Q(θm). Thus, if we take any prime P that sits over one of these p’s, we have that the
Frobenius Substitution of P, which acts on R/P by x → xp and generates the Galois group
of R/P over Z/(p) must be the identity, which in turn implies that P has inertial degree
1. Since only a finite number of primes in Q(θm) are ramified, this implies that almost all
of the p’s in Qm,1 split completely (have f = e = 1). Reversing these arguments, we see
that if a prime splits completely, the residue field of any prime sitting over it must have a
trivial Galois group, so that the automorphism that acts by x → xp must be the identity on
the residue field. Since the inertial group is trivial e = 1 for all but a finite set of primes,
this means that p ≡ 1 mod(m) for almost all primes p that split completely. Also since
e = 1 for almost all primes of Q(θm), we have that the primes that sit over primes that split
completely are almost all the primes with inertial degree 1 Thus the set of primes sitting
over primes that split completely has density 1. Say the set of primes that split completely
is S, then we have

∑
P:p⊂P,p∈S

1

N(P)s
= φ(m)

∑
p∈S

1

ps

since N(P) = p and there are exactly φ(m) primes sitting over each p ∈ S. So the density
of the primes that split completely is 1

φ(m)
.

We have seen that this implies that L(χ, s) 6= 0 at 1 for all characters of Qm,1. Now we need
to somehow extend this result to all cosets of Qm,1. This is actually another fairly simple
application of the summation rules for characters.

Proposition 3.12. The density of the primes in any coset of Qm,1 is 1
φ(m)

.

Proof. Let l be any coset of Qm,1. Then sum together the logs of all the L-series of Qm,1:

log(L(χ0, s)) +
∑
χ6=χ0

log(L(χ, s)) =
∑

χ∈Im
Q /Qm,1

∑
p∈Im

Q

(
1

ps
+ gχ(s)) =
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∑
k∈Im

Q /Qm,1

∑
χ∈Im

Q /Qm,1

χ(k)
∑
p∈k

1

ps
+ g(s)

where g(s) is some function analytic at 1. Now if we multiply each term of the sum over the
characters by χ(l−1), we obtain

log(L(χ0, s)) +
∑
χ6=χ0

χ(l−1) log(L(χ, s)) =
∑

k∈Im
Q /Qm,1

∑
χ∈Im

Q /Qm,1

χ(kl−1)
∑
p∈k

1

ps
+ g(s)

Now, we know that the log(L(χ, s)), χ 6= χ0 are bounded, and we know that the sum over
the characters on the right is 0 except when k = l, when it equals φ(m), so this equation
collapses quite a bit to give

log(L(χ0)) = φ(m)
∑
p∈l

1

ps
+ g(s)

where g(s) is analytic at 1. We have seen that this implies the density of primes in l is
1

φ(m)
.

At long last we have proven Dirichlet’s theorem, and consequently, Cheboterev’s theorem
for quadratic number fields.



Chapter 4

Algebraic Proofs of Results from
Cheboterev’s Theorem

4.1 Lenstra and Stevenhagen’s Lemma, with a Specific

Formula for Quadratic Extensions

To continue down the path of the previous chapter and complete the proof of the full
Cheboterev density theorem requires that we prove that the L-series of any subgroup of
Im
K are non-zero for all characters, and also involves a fair degree of class field theory. In-

stead of delving into this subject, we switch to thinking about some results due to this
theorem which don’t necessarily require that we talk about density or engage in analysis.

Assuming we have proven in general that the primes of a field are evenly distributed across
the cosets of Km,1, and knowing that the primes of intertial degree 1 over primes of Q account
for all the density, we obtain the fact that the primes of inertial degree 1 generate the entire
ray class. Noting that if we take m = 1, the ray class actually becomes the class group,
this implies that the class group is also generated by the primes of inertial degree 1. In [2],
H.W. Lenstra and P. Stevenhagen show how this result can be obtained without the use of
analysis or density arguments. The proofs are dependent on the following lemma:

Lemma 4.1. Given number fields K and L = K(α) for some algebraic integer α, and R
and S the number rings of K and L respectively, choose d 6= 0 ∈ R such that dS ⊆ Rα. Let
Q be a prime of S that does not divide dS. If the inertial degree f of Q = f > 1, then there
exists an element x 6= 0 of S such that x ≡ 1 mod dS and Sx = Q

∏t
i=1 Bi, where the Bi’s

are primes of S of degree < f . (This part of the lemma is sufficient to establish the results of
the first theorem, which only deals with the equivalence relations of the class group. The next
part allows us to also establish relations in the ray class) Additionally, for a finite number
of real embeddings of S, x can be chosen so that it is positive under all the embeddings.

32
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It would be pointless to rewrite the entire proof of the general case here, but a few details
should be pointed out to elucidate the calculations done in the specific cases covered. Specif-
ically, the element x is obtained from Kummer’s theorem, which states as one of its results
the fact that Q can be generated by PS and an element of S produced by reducing the
minimal polynomial of β = dα mod P and plugging β into the factor associated with Q by
the theorem. Additionally, it is always possible to choose d to be the discriminant of S [1].

Let us first look at the general quadratic case where K= Q and L= K(
√

m), where m is
square-free. Since the degree of the extension is 2 in this case, the only primes with f > 1
are those which remain prime in S. So we need to determine d and also which primes of R
remain prime in S. Though we will complete it anyway, the former is actually unnecessary
for applying the lemma to quadratic number fields, since the number ring is generated by a
single element already:

Proposition 4.2. If L= Q(
√

m), then

S =

{
Z[
√

m] if m ≡ 2, 3 mod(4)

Z[1+
√

m
2

] if m ≡ 1 mod(4)

Proof. Any element a
b

+ c
f

√
m of L is a root of the polynomial

x2 + 2
a

b
x + (

a

b
)2 −m(

c

f
)2,

so a
b
+ c

f

√
m is an algebraic integer iff the coefficients of this polynomial are in Z. From the

first degree coefficient, we see that b|2, so a
b

= a
2

with a not necessarily relatively prime to 2.
Case 1: m ≡ 2 mod(4). Then we have

a2

4
− (2 + 4k)

c2

f 2
= l

for some integer l and m = 2 + 4k. Clearing denominators, we get

a2f 2 − (2 + 4k)4c2 = lf2.

So f 2 divides (2 + 4k)4c2. Since m is square free, it is evident from looking at the prime
decompositions of both f 2 and 4mc2 that f 2|4c2. Thus f |2c, so c

f
= e

2
, and we have

a2

4
− (2 + 4k)

e2

4
= l.

From this, the requirement that l be an integer implies

a2 − 2e2 ≡ 0 mod(4).

Since 2 is not a square mod(4), this can only happen if

a2 ≡ e2 ≡ 0 mod(4).
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This implies that both a
b

and c
f

are integers, and the first case is complete.

Case 2: m ≡ 3 mod(4). The argument is exactly the same as above, except that we wind
up with

a2 − 3e2 ≡ 0 mod(4).

Since 3 is not a square mod(4), the same result follows.
Case 3: m ≡ 1 mod(4). Once again, the argument goes exactly the same up to the equiva-
lence

a2 − e2 ≡ 0 mod(4).

Now there is no restriction implying that a2 and e2 must be divisible by 4. The equivalence
does imply that a ≡ b mod(2), as required, and now it is obvious that the element given
does indeed generate the number ring in this case.

Since we already have a single generator for our number ring, we could technically set d = 1
in the statement of the lemma, but in order to better illustrate the calculations involved
in the proof, we will use the discriminant of S for d. Since in this case the discriminant is
the discriminant of the minimal polynomial of our generator, we have d = 4m if m ≡ 2, 3
mod(4); and d = m if m ≡ 1 mod(4).

Now we are ready to go through the construction of the lemma. We deal with the cases
seperately: First assume m ≡ 2, 3 mod(4) and let β = dα = 4m

√
m. Then the minimal

polynomial for β is x2 − 16m3. Since p is relatively prime to β, we know that β generates
S/pS. Thus x2− 16m3 is irreducible mod(p), since if it were reducible, the inertial degree of
pS over p would be < 2. Thus the polynomial generated by Kummer’s theorem, which we
will be manipulating to obtain the desired element, is x2 − 16m3. So the element we start
with is β2 − 16m3 = 0. As we alter this element to fit the conditions of the lemma, we will
always denote it by z We wish for this element to be nonzero yet still have the property
that it generate pS along with pS. (This statement is ridiculously trivial in this case, but in
cases where the prime of S we are concerned with is not necessarily a prime of Z as well, it
makes more sense). Obviously in this case, any element of pS will do, so adding p to z would
suffice for this condition. We also want z ≡ 1mod(d). Merely adding p will not necessarily
suffice for this condition. Fortunately, p is relatively prime to dZ, so adding pφ(d) (where φ
is the totient function) will work fine. Thus, the first condition on z is ensured. The next
manipulation ensures the second condition. (that all the primes aside from pS dividing z
have inertial degree < f). We want the coefficient of the 1st degree term of our polynomial
in β (f − 1st degree term in the general case) to not be a sum of 2 (generally, f) conjugates
of −β. In this case, that means we want the first degree term to not be 0. Adding p to this
coefficient works nicely in this case, as it is the simplest way of retaining the inclusion of z
in pS while satisfying the condition. In the general case, there is an additional requirement
that the constant term must be divisible by each prime which is relatively prime to p and
also divides

y =
∏
c∈C

(p + vf−1)
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where C is the collection of sums of f conjugates of β and vf−1 is the f − 1st coefficient of
our polynomial. This condition is trivial in our case, since vf−1 = p. The previous condition
suffices for us, as we now have a z which is equal to pβ + pφ(d), which is in pS but not in p
and thus must have a prime decomposition in S,

z = pS
t∏

i=1

Bi,

where the Bi’s are relatively prime to pS and congruent to 1 mod(dS). To see that each Bi

is of intertial degree 1, it is sufficient to note that β must generate S/Bi and satisfies the
polynomial pX + pφ(d), since Bi divides z.

The second case turns out to be a trivial variation of the first. Assume m ≡ 1 mod(4) and
let

β = dα =
m + m

√
m

2
.

Then the minimal polynomial for β is

x2 −mx +
m−m3

2
.

The same argument as in the first case shows that this is the polynomial used to generate
z, thus we still begin with z = 0 and proceed exactly as above.

In either case, there are only real embeddings of L if m > 0, in which case there are two: the
identity automorphism, and the automorphism sending

√
m to −

√
m. In the former case,

z is positive without any manipulation. In the latter case, increasing the constant term to
pmφ(d) will suffice, since

pm > pm > p
√

m.

4.2 The Formula for a Specific Cyclotomic Extension

The calculations for cyclotomic fields get ugly fast. Even calculating the discriminant for a
generic cyclotomic field is fairly messy. For example, the formula for the discriminant of the
prth cyclotomic field is

ppr−1(pr−r−1).

Instead of trying to complete all the necessary calculations for the general cyclotomic field,
we apply the lemma to a specific cyclotomic field which will exhibit more complex behavior
than the quadratic fields. We choose the 8th cyclotomic field, Q(e2ıπ/8). The degree of this
extension of Q is well known to be φ(8) = 4 with minimal polynomial x4+1. To calculate the
discriminant of this field, we could use the formula given above, but since we haven’t derived
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it, that doesn’t seem quite honest. Instead, we note that the discriminant of a number ring
S ⊂ L = Q(α) is the square of the Van Der Monde determinant equal to∏

1≤i<j≤n

(αi − αj)

where the αi’s and αj’s are the conjugates of α. If one expands N(f ′(α)), it is easily seen
that this quantity is equal to the Van Der Monde determinant described above. Applying
this to our chosen field,

f ′(eıπ/4) = 4e3ıπ/4 so N(f ′(eıπ/4)) = 44N(e3ıπ/4) = 44.

For this field, β = dα = 44eıπ/4, so the minimal polynomial for β is x4 + 416. Now we wish
to choose a prime in Z which splits into primes of inertial degree > 1 in the number ring of
Q(eıπ/4). We employ the following proposition:

Proposition 4.3. Let L= Q(α) be the mth cyclotomic field, S its number ring, and p be
a prime of Z not dividing m. Then any prime Q of S sitting over p has inertial degree
f =ord(p) mod(m).

Proof. It is well established that the Galois group of the mth cyclotomic field is isomorphic
to Zm, and that the automorphism associated with the equivalence class of a given q ∈ Zm

acts by raising α to the qth power. Thus, if f is the order of p mod(m), αpf
= α. S/Q

is a field of order pa for some a, and we know that the Galois group for the field extension
from Fp to Fpa is the cyclic group of order a generated by the automorphism which acts by
sending every element to its pth power. Since S/Q is generated as a field extention of Zp by
α, the inertial degree of Q can be no more than f . We now seek to prove equality. Assume
αpa ≡ α mod(Q). pa ≡ x mod(m) with 1 ≤ x ≤ m, so we have αx ≡ α mod(Q), and thus
αx−1 − 1 ≡ 0 mod(Q). Now from the equality

ym−1 + ym−2 + · · ·+ y + 1 =
ym − 1

y − 1
=

m−1∏
i=1

(y − αi)

we obtain
m−1∏
i=1

(1− αi) = m

implying that αx−1 − 1 divides m in S, further implying that m ∈ Q if x > 1. This is
impossible, since p does not divide m, so x = 1 and we have proven that a > f . Thus the
inertial degree of Q must be f .

With this proposition in place, our task becomes one of finding a prime with order mod(8)
greater than 1. Since we’d also like to deal with a situation fairly different from the quadratic
case, we’d also like a prime that does not remain prime in the extension. Thus we look for
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a prime of order 2. In fact, it would be quite difficult to find an odd prime that doesn’t fit
this requirement, as every element of Z∗8 has order 2. At random, we choose 7. The first
thing to do is reduce the minimal polynomial for β mod(7). Unlike the quadratic case, this
is not trivial. 44 ≡ 4 mod(7), so the polynomial reduces to

x4 + 4 = (x2 + 2x + 2)(x2 − 2x + 2).

Again choosing at random, let

Q = 7S + (β2 + 2β + 2).

Then z = β2 + 2β + 2. z is obviously non-zero, so the first condition to concern ourselves
with is for z ≡ 1 mod(d). Currently, we have z ≡ 2 mod(d). So we’d like to add a multiple
of 7 which is congruent to -1 mod(256). Applying the trusty Euclidean algorithm, we find
that 511 = 73 ∗ 7 works, so z becomes β2 + 2β + 513. 2 is fairly obviously not the sum of
2 conjugates of −β, so we don’t need to modify the term at all. On the other hand, the
element

y =
∏
c∈C

(p + vf−1)

where P is the collection of sums of f conjugates of β no longer presents us with a trivial
case for the final condition. In our case, y comes out to 34,359,738,336, which factors into
25 ∗ 32 ∗ 7 ∗ 11 ∗ 31 ∗ 151 ∗ 331. The final condition requires that the constant term of our
polynomial in β be divisible by all primes dividing y which do not divide dp. In our case,
dp = 7 ∗ 28, so our constant term must divide 3, 11, 31, 151, and 331. Of course, we also
must maintain the condition that the constant term be congruent to 1 mod(256), and we
must satisfy these conditions by adding multiples of 7. This is merely a matter of applying
the Chinese Remainder Theorem. After much crunching of large numbers, we obtain an
appropriate value: 51,283,954,689. So our z becomes

β2 + 2β + 51, 283, 954, 689.

z then factors into prime ideals:

Q

t∏
i=1

Bi,

where the Bi’s do not divide d or p. (Because z ≡ 1 mod(d) and because if Bi divided p,
Bi would contain Q). Now, since β satisfies

β2 + 2β + 51, 283, 954, 689 ≡ 0 mod(Bi)

for each Bi, and the Bi’s don’t divide βS, each Bi must have inertial degree ≤ f . We want
them to have intertial degree strictly less than f , and it turns out we do (good thing too,
after all that). For each Bi,

β2 + 2β + 51, 283, 954, 689
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must divide the minimal polynomial of β mod(Bi), so we must have 2 ≡ c mod(Bi) for some
c ∈ C. But then y ≡ 0 mod(Bi), so the prime sitting under Bi must divide y, but cannot
divide dp, so we must have

51, 283, 954, 689 ≡ 0 mod(Bi).

This implies that β2 + 2β ≡ 0 mod(Bi), which implies our desired result.

4.3 Results Obtained From the Lemma

Once the lemma is in place, it is fairly easy to show the following proposition:

Proposition 4.4. Both the class group and the ray class group can be generated by the ideal
classes (ray classes) of primes of inertial degree 1 which lie outside a given finite set S.

Proof. First we must see that the groups can be generated by the ideal classes of primes
outside a finite set S. In the case of the class group, let [A] be any ideal class. Let
{P1, P2, · · ·Pg} be the set of primes in S. Then A = Pa1

1 · · ·P
ag
g B for some ideal B

which is not divisible by any primes in S. Let αi be an element of Pi which is not in P2
i and

is congruent to 1 modulo each Pj with j 6= i. Let α =
∏g

n=1 αai
i . Then α−1A will not be

divisible by any primes lying in S. Therefore the class group is generated by ideal classes of
primes lying outside of S. To get the analogous result for the ray class group, we only need
to extend our definition of the αi’s to be congruent to 1 (under the congruency used to define
the ray class) modulo the product of primes used to define the ray class. (note that we don’t
have to worry about Pi being in this product, since we are only dealing with ideals which
are not divisible by those primes.) This shows that the class group and ray class group are
generated by classes of primes outside any given finite set. Now we show that these primes
can be chosen to be of inertial degree 1. Let [P] be a prime ideal not in S, of inertial degree
f > 1. We know from the lemma that there are primes Qi not in S with inertial degree < f
such that P

∏
Q−1

i = x. It follows that [P] =
∏

[Q−1
i ]. If we induct on the inertial degree

of the primes, assuming that all ideal classes generated by primes of inertial degree < f are
in the set generated by primes of inertial degree 1, then we are finished. Similarly, since we
can assume x ≡ 1 modulo any prime dividing d in the lemma, if we choose d divisible by all
primes in the set S and all primes in the product used to define the ray class group, we may
apply the same induction arguement to prove the result for the ray class group.

Now the result is proven, without resorting to density arguments.

In some proofs, the statement that the primes of degree 1 generate the ray class group may
be used to replace the statement that the primes of degree 1 have density 1. The latter
certainly implies the former, and for some results, the former is all that is required. As an
example, we present one such proof.
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Proposition 4.5. Let K be a number field and let L be an extension of K. If almost all
primes of degree 1 in K split completely in L, then K = L.

Proof. We know that the primes that split completely in L split completely in the normal
closure L′ of L over K. Let K′ be an extension of K such that L′ sits over K′ and the
Galois group of this extension is cyclic. If L′ 6= K, we can assume [L′ : K′] > 1. Then
by the fundamental equality of class field theory, we know that for a given ray class group
IK′

m/K′
m,1,

[IK′
m : NL′/K′(IL′

m)K′
m,1] > 1.

But we know that NL′/K′(IL′
m) contains all primes of K′ that split completely in L′. By the

assumption, it also contains almost all the primes of degree 1 of K′. Then by the lemma, it
must be the entire ray class group. This is a contradiction, so K = L.
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