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Modeling, Analysis, and Real-Time Design of Many-Antenna
MIMO Networks

Yongce Chen

(ABSTRACT)

Among the many advances and innovations in wireless technologies over the past twenty

years, MIMO is perhaps among the most successful. MIMO technology has been evolving

over the past two decades. Today, the number of antennas equipped at a base station (BS) or

an access point (AP) is increasing, which forms what we call “many-antenna” MIMO systems.

Many-antenna MIMO will have significant impacts on modern wireless communications, as

it will allow numerous wireless applications to operate on the vastly underexplored mid-band

and high-band spectrum and is able to deliver ultra-high throughput.

Although there are considerable efforts on many-antenna MIMO systems, most of them

came from physical (PHY) layer information-theoretic exploitation. There is a lack of inves-

tigation of many-antenna MIMO from a networking perspective. On the other hand, new

knowledge and understanding begin to emerge at the PHY layer, such as the rank-deficient

channel phenomenon. This calls for new theories and models for many-antenna MIMO in a

networking environment. In addition, the problem space for many-antenna MIMO systems

is much broader and more challenging than conventional MIMO. Reusing existing solutions

designed for conventional MIMO systems may suffer from inferior performance or require

excessive computation time.

The goal of this dissertation is to advance many-antenna MIMO techniques for networking

research. We focus on the following two critical areas in the context of many-antenna MIMO

networks: (i) DoF-based modeling and (ii) real-time optimization. This dissertation consists



of two parts that study these two areas. In the first part, we aim to develop new DoF models

and theories under general channel rank conditions for many-antenna MIMO networks, and

we explored efficient DoF allocation based on our new DoF model. The main contributions

of this part are summarized as follows.

• New DoF models and theories under general channel rank conditions: Ex-

isting DoF-based models in networking community assume that the channel matrix

is of full rank. However, this assumption no longer holds when the number of anten-

nas becomes many and the propagation environment is not ideal. In this study, we

develop a novel DoF model under general channel rank conditions. In particular, we

find that for IC, shared DoF consumption at both transmit and receive nodes is most

efficient for DoF allocation, which is contrary to existing unilateral IC models based

on full-rank channel assumption. Further, we show that existing DoF models under

the full-rank assumption are a special case of our generalized DoF model. The findings

of this study pave the way for future research of many-antenna networks under general

channel rank conditions.

• Efficient DoF utilization for MIMO networks: We observes that, in addition

to the fact that channel is not full-rank, the strength of signals on different directions

in the eigenspace is extremely uneven. This offers us new opportunities to efficiently

utilize DoFs in a MIMO network. In this study, we introduce a novel concept called

“effective rank threshold”. Based on this threshold, DoFs are consumed only to cancel

strong interferences in the eigenspace while weak interferences are treated as noise in

throughput calculation. To better understand the benefits of this approach, we study

a fundamental trade-off between network throughput and effective rank threshold for

an MU-MIMO network. Our simulation results show that network throughput under

optimal rank threshold is significantly higher than that under existing DoF IC models.



In the second part, we offered real-time designs and implementations to solve many-

antenna MIMO problems for 5G cellular systems. In addition to maximizing a specific

optimization objective, we aim at offering a solution that can be implemented in sub-ms to

meet requirements in 5G standards. The main contributions of this part are summarized as

follows.

• Turbo-HB—A novel design and implementation for ultra-fast hybrid beam-

forming: We investigate the beamforming problem under hybrid beamforming (HB)

architecture. A major practical challenge for HB is to obtain a solution in 500 µs,

which is an extremely stringent but necessary time requirement for its deployment

in the field. To address this challenge, we present Turbo-HB—a novel beamforming

design under the HB architecture that can obtain the beamforming matrices in about

500 µs. The key ideas of Turbo-HB are two-fold. First, we develop low-complexity SVD

by exploiting randomized SVD technique and leveraging channel sparsity at mmWave

frequencies. Second, we accelerate the overall computation time through large-scale

parallel computation on a commercial off-the-shelf (COTS) GPU platform, with special

engineering efforts for matrix operations and minimized memory access. Experimental

results show that Turbo-HB is able to obtain the beamforming matrices in 500 µs for an

MU-MIMO cellular system while achieving similar or better throughput performance

by those state-of-the-art algorithms.

• mCore+—A sub-millisecond scheduler for 5G MU-MIMO systems: We

study a scheduling problem in a 5G NR environment. In 5G NR, an MU-MIMO

scheduler needs to allocate RBs and assign MCS for each user at each TTI. In particu-

lar, multiple users may be co-scheduled on the same RB under MU-MIMO. In addition,

the real-time requirement for determining a scheduling solution is at most 1 ms. In

this study, we present a novel scheduler mCore+ that can meet the sub-ms real-time



requirement. mCore+ is designed through a multi-phase optimization, leveraging large-

scale parallelism. In each phase, mCore+ either decomposes the optimization problem

into a large number of independent sub-problems, or reduces the search space into a

smaller but more promising subspace, or both. We implement mCore+ on a COTS

GPU platform. Experimental results show that mCore+ can obtain a scheduling solu-

tion in ∼500 µs. Moreover, mCore+ can achieve better throughput performance than

the state-of-the-art algorithms.

• M3—A sub-millisecond scheduler for multi-cell MIMO networks under C-

RAN architecture: We investigate a scheduling problem for a multi-cell environ-

ment. Under Cloud Radio Access Network (C-RAN) architecture, the signal processing

can be performed cooperatively for multiple cells at a centralized baseband unit (BBU)

pool. However, a new resource scheduler is needed to jointly determine RB allocation,

MCS assignment, and beamforming matrices for all users under multiple cells. In ad-

dition, we aim at finding a scheduling solution within each TTI (i.e., at most 1 ms)

to conform to the frame structure defined by 5G NR. To do this, we propose M3—

a GPU-based real-time scheduler for a multi-cell MIMO system. M3 is developed

through a novel multi-pipeline design that exploits large-scale parallelism. Under this

design, one pipeline performs a sequence of operations for cell-edge users to explore

joint transmission, and in parallel, the other pipeline is for cell-center users to explore

MU-MIMO transmission. For validation, we implement M3 on a COTS GPU. We

showed that M3 can find a scheduling solution within 1 ms for all tested cases, while

it can significantly increase user throughput by leveraging joint transmission among

neighboring cells.
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Yongce Chen

(GENERAL AUDIENCE ABSTRACT)

MIMO is widely considered to be a major breakthrough in modern wireless communica-

tions. MIMO comes in different forms. For conventional MIMO, the number of antennas

at a base station (BS) or access point (AP) is typically small (< 8). Today, the number

of antennas at a BS/AP is typically ranging from 8 to 64 when the carrier frequency is

below 24 GHz. When the carrier frequency is above 24 GHz (e.g., mmWave), the number

of antennas can be even larger (> 64). We call today’s MIMO systems (typically with ≥ 8

antennas at some nodes) as “many-antenna” MIMO systems, and this will be the focus of

this dissertation.

Although there exists a considerable amount of works on many-antenna MIMO tech-

niques, most efforts focus on physical (PHY) layer for information-theoretic exploitation.

There is a lack of investigation on how to efficiently and effectively utilize many-antenna

MIMO from a networking perspective.

The goal of this dissertation is to advance many-antenna MIMO techniques for networking

research. We focus on the following two critical areas in the context of many-antenna MIMO

networks: (i) degree-of-freedom (DoF)–based modeling and (ii) real-time optimization. In

the first part, we investigate a novel DoF model under general channel rank conditions for

many-antenna MIMO networks. The main contributions of this part are summarized as

follows.



• New DoF models and theories under general channel rank conditions: In

this study, we develop a novel DoF model under general channel rank conditions. We

show that existing works claiming that unilateral DoF consumption is optimal no longer

hold when channel rank is deficient (not full-rank). We find that for IC, shared DoF

consumption at both Tx and Rx nodes is the most efficient scheme for DoF allocation.

• Efficient DoF utilization for MIMO networks: In this study, we proposed

a new approach to efficiently utilize DoFs in a MIMO network. The DoFs used to

cancel interference are conserved by exploiting the interference signal strength in the

eigenspace. Our simulation results show that network throughput under our approach

is significantly higher than that under existing DoF IC models.

In the second part, we offer real-time designs and implementations to solve many-antenna

MIMO problems for 5G cellular systems. The timing performance of these designs is tested

in actual wall-clock time.

• A novel design and implementation for ultra-fast hybrid beamforming: We

investigate a beamforming problem under the hybrid beamforming (HB) architecture.

We propose Turbo-HB—a novel beamforming design under the HB architecture that

can obtain the beamforming matrices in about 500 µs. At the same time, Turbo-

HB can achieve similar or better throughput performance by those state-of-the-art

algorithms.

• A sub-millisecond scheduler for 5G multi-user (MU)-MIMO systems: We

study a resource scheduling problem in 5G NR. We present a novel scheduler called

mCore+ that can schedule time-frequency resources to MU-MIMO users and meet the

∼500 µs real-time requirement in 5G NR.



• A sub-millisecond scheduler for multi-cell MIMO networks under C-RAN

architecture: We investigate the scheduling problem for a multi-cell environment

under a centralized architecture. We present M3—a GPU-based real-time scheduler

that jointly determines a scheduling solution among multiple cells. M3 can find the

scheduling solution within 1 ms.
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Chapter 1

Introduction

1.1 Background and Objective

Among the many advances and innovations in wireless technologies over the past 20 years,

MIMO is perhaps among the most successful. In the commercial sector, MIMO is the core

technology in wireless standards such as Wi-Fi (802.11n [1], IEEE 802.11ac [2]) and cellular

(4G LTE [3], 5G NR [4]). In the research community, MIMO continues to be a centerpiece

of wireless communications and networking.

The paradigms and applications of MIMO have been evolving. One of the most noticeable

evolutions is that the numbers of antennas at a base station (BS), an access point (AP),

and a mobile device, are continuously increasing. For conventional MIMO, the number of

antennas at a BS/AP is typically small (< 8) and the number of antennas at a user device

is even fewer. Today, the number of antennas at a BS/AP typically ranges from 8 to 64

when the carrier frequency is below 24 GHz. When the carrier frequency is above 24 GHz

(e.g., mmWave), the number of antennas can be even larger (> 64). We call today’s MIMO

systems (with ≥ 8 antennas) as “many-antenna” MIMO systems. Many-antenna MIMO

allows numerous wireless applications to operate on the vastly underexplored mid-band and

high-band spectrum and is able to deliver ultra-high throughput.

Although many-antenna MIMO is critical for high-performance wireless networks, most

1
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research efforts focus on physical (PHY) layer studies for information-theoretic exploitation

(e.g., [5, 6, 27, 34, 35, 72, 80, 81, 82, 84, 101, 162, 163] ). There is a lack of investigation

of many-antenna MIMO from a networking perspective. On the other hand, new knowledge

and understanding begin to emerge at the PHY layer, such as the rank-deficient channel

phenomenon. This calls for new theories and models for many-antenna MIMO in a network-

ing environment. In addition, the problem space for many-antenna MIMO systems is much

broader and more challenging than conventional MIMO. Reusing existing solutions designed

for conventional MIMO systems may suffer from inferior performance or require excessive

computation time.

To make a concrete step towards advancing many-antenna MIMO technologies for net-

working research, this dissertation identifies and focuses on the following two areas: (i)

Degree-of-Freedom (DoF)–based modeling and (ii) real-time optimization. Our motivation

and the limitations of existing works in these areas are summarized as follows:

(i) DoF-based Modeling for Many-Antenna MIMO Networks. DoF based models have

become very popular in the research community for modeling, analysis, and optimiza-

tion of MIMO networks [14, 15, 16, 17, 18, 19, 20, 21, 22, 50, 51, 52]. Due to their

simple abstraction of MIMO’s capabilities in spatial multiplexing (SM) and interfer-

ence cancellation (IC) [10, 11, 23, 60, 61], a DoF-based model can be used for resource

allocation for SM and IC, with simple “+/-” arithmetic calculations. By avoiding

complex matrix manipulation in resource allocation, DoF-based models are powerful

and tractable tools to analyze MIMO’s behavior in a network setting. A common

characteristic among existing DoF-based models is that they all assume the channel

matrix is of full rank (see, e.g., [14, 15, 16, 17, 18, 19, 20, 21, 22, 50, 51, 52]). This

assumption is mostly valid for conventional MIMO (with a small number of antennas)

in the rich-scattering environment. But when the number of antennas becomes many
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and the propagation environment is not ideal (e.g., lack of rich scattering or presence of

key-hole effect [30, 31]), this assumption no longer holds. As expected, a rank-deficient

channel will hinder many-antenna MIMO’s SM capability. Further, it undermines the

viability of existing DoF-based IC models. Although channel rank deficiency has been

recognized and studied for many-antenna MIMO [5, 6, 27, 34, 35, 72, 73], those efforts

have been mainly at the PHY layer. Little progress has been made so far for network-

ing research. As a result, there is hardly any result available on how to address rank

deficiency in the context of DoF models for many-antenna MIMO networks.

(ii) Real-Time Optimization for Many-Antenna Cellular Networks. For practical MIMO

systems, the available time to compute an optimal (or near-optimal) solution to a

scheduling problem can be very limited. In particular, the allowed computation time

is constrained by the physical properties of wireless channels. For example, the chan-

nel coherence time for mmWave systems can be as short as 1 ms for a mobile user

moving at a speed of 20 km/h. Therefore, a practical beamforming solution must be

offered within ∼500 µs (i.e, half of the channel coherence time) to be useful. Beyond

channel coherence time, the beamforming solution may lead to poor performance due

to the fast varying channel conditions. As a result, in modern cellular systems, the

standardization bodies have imposed stringent timing requirements in their radio in-

terface. For example, in 5G NR, one transmission time interval (TTI) is 1 ms under

numerology 0 [91]. Since the radio resources are allocated in each TTI in 5G, the so-

lution of resource allocation and beamforming matrices must be found within 1 ms to

meet the requirement. To support ultra-low latency applications, an even shorter TTI

may be needed (e.g., 500 µs under numerology 1). Such stringent timing requirement

becomes a serious challenge for many-antenna MIMO systems, due to the extremely

large solution space and high-dimensional matrix operations. On the other hand, most
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existing research has been largely limited to asymptotic complexity analysis (i.e., in

O(·)). Although such complexity analysis is of interest from a theoretical perspective,

it does not give any indication on how much actual time (“real-time”) is needed when

it is implemented on a given hardware platform. For a real-world cellular system, the

benchmark is real-time performance (as measured in wall-clock time in terms of µs or

ms), as there is a well-defined frame structure for data transmission.

The goal of this dissertation is to address the above challenges so as to advance research

in many-antenna MIMO networks. Specifically, we aim to:

(i) Develop new DoF models and theories under general channel rank conditions. The

presence of rank-deficient channels fundamentally changes the current understanding

of DoF models for many-antenna MIMO networks. We aim to address this problem by

developing a novel DoF model that can identify a feasible DoF region of any multi-link

MIMO networks under general channel rank conditions. Further, we explore efficient

DoF allocation based on our new DoF model.

(ii) Offer real-time designs and implementations for 5G cellular networks. In this dis-

sertation, we focus on critical MIMO problems in modern cellular networks, such as

hybrid beamforming, MU-MIMO scheduling, and joint transmission under C-RAN ar-

chitecture. In addition to maximizing the optimization objective, we want to offer

real-time (sub-ms) solutions so that they can be used in practice. We will pursue

implementation on real-world hardware, so that we can measure their actual running

time performance.
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Figure 1.1: Dissertation structure.

1.2 Dissertation Outline and Contributions

The goal of this dissertation is to make a concrete step towards advancing many-antenna

MIMO techniques in the networking research community. This dissertation consists of two

parts. In the first part (Chapters 2 and 3), we investigate DoF models and theories and

their utilization under general channel rank conditions. The second part (Chapters 4, 5 and

6) offers real-time designs and implementations for many-antenna MIMO problems. The

structure of this dissertation is shown in Fig. 1.1. The main contributions of this dissertation

are summarized as follows.

• In Chapter 2, we investigate the DoF-based model under general channel rank condi-

tions. Existing DoF-based models in networking community assume that the channel

matrix is of full rank. However, this assumption no longer holds when the number of

antennas becomes many and the propagation environment is not ideal. In this chapter,

we start with a fundamental understanding on how MIMO’s DoFs are consumed at

each node for SM and IC in the presence of rank-deficient channels. Based on this
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understanding, we develop a DoF model that can be used for identifying a feasible

DoF region of a multi-link MIMO network and for studying DoF scheduling in MIMO

networks under general channel rank conditions. In particular, we find that for IC,

shared DoF consumption at both transmit (Tx) and receive (Rx) nodes is critical for

efficient DoF allocation. Further, we show that existing DoF models under the full-

rank assumption become a special case of our generalized DoF model. Based on case

studies, we show that the general IC model can achieve larger feasible DoF regions or

improved objective values than existing unilateral IC models.

• In Chapter 3, we study DoF conservation in MIMO IC and exploit the difference

in interference signal strength in the eigenspace. Chapter 2 addresses the problem

of how DoFs should be allocated between Tx and Rx nodes to support SM and IC

with given channel ranks. In this chapter, we address a parallel question on how

to set channel ranks and efficiently utilize DoFs. We introduce a novel concept called

“effective rank threshold” to differentiate signal strength on an interference link. Based

on this threshold, DoFs are consumed only to cancel strong interfering signals in the

eigenspace while weak interfering signals are treated as noise in throughput calculation.

To better understand the benefits of this approach, we study a fundamental trade-off

between network throughput and effective rank threshold for an MU-MIMO network.

Our simulation results show that network throughput under optimal rank threshold is

significantly higher than that under existing DoF IC models. To ensure the new DoF

IC model is feasible at PHY layer, we propose an algorithm to set the weights for all

nodes that can offer our desired DoF allocation.

• In Chapter 4, we focus on a beamforming problem under the hybrid beamforming (HB)

architecture. A major practical challenge for HB is to obtain a solution in 500 µs, which

is an extremely stringent but necessary time requirement for its deployment in the
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field. We present Turbo-HB—a novel beamforming design under the HB architecture

that can obtain the beamforming matrices in about 500 µs. The key ideas of Turbo-

HB are two-fold. First, we identify the bottleneck of computation time is attributed

to the high-dimensional SVD operations. Our design cuts down the computational

complexity by utilizing randomized SVD technique and leveraging channel sparsity

at mmWave frequencies. Second, we propose to accelerate the overall computation

time through large-scale parallel computation on a commercial off-the-shelf (COTS)

GPU platform. Our design incorporates a large number of matrix transformations and

special engineering efforts such as minimized memory access. Experimental results

show that Turbo-HB is able to obtain the beamforming matrices in 500 µs for an MU-

MIMO cellular system while achieving similar or better throughput performance by

those state-of-the-art algorithms.

• In Chapter 5, we study a scheduling problem for 5G MU-MIMO systems. Per 5G speci-

fications, an MU-MIMO scheduler needs to determine RBs allocation and MCS assign-

ment to each user for each TTI. Under MU-MIMO, multiple users may be co-scheduled

on the same RB and each user may have multiple data streams simultaneously. In ad-

dition, the scheduler must meet the stringent real-time requirement (at most 1 ms)

during decision making to be useful. We present mCore+—the first 5G MU-MIMO

scheduler design and implementation that can meet the sub-ms real-time requirement.

The key idea of mCore+ is to perform a multi-phase optimization, leveraging large-

scale parallel computation. In each phase, mCore+ either decomposes the optimization

problem into a number of independent sub-problems, or reduces the search space into a

smaller but most promising subspace, or both. mCore+ is implemented and validated

on a COTS GPU platform with meticulous engineering considerations. Experimental

results show that mCore+ can offer a scheduling solution, as well as corresponding
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beamforming matrices, in ∼500 µs for up to 100 RBs, 100 users, 29 MCS levels and

4 × 12 MIMO scheduling. Moreover, mCore+ can achieve better throughput perfor-

mance than the state-of-the-art algorithms.

• In Chapter 6, we investigate a scheduling problem for a multi-cell MIMO system under

C-RAN architecture. C-RAN is a novel centralized architecture for cellular networks,

which can significantly improve spectrum efficiency by cooperative signal processing

for multiple cells at a centralized baseband unit (BBU) pool. However, a new resource

scheduler is needed before we can take advantage of C-RAN’s multi-cell processing

capability. The problem is how to jointly determine RB allocation, MCS assignment,

and beamforming matrices for all users under all covering cells so that the PF objective

can be maximized. In addition, the real-time requirement to determine a solution is

1 ms in order to conform to the frame structure defined by 5G NR. We propose M3—a

GPU-based real-time scheduler for a multi-cell MIMO system. M3 exploits indepen-

dency and parallelism through a multi-pipeline design. Specifically, M3 performs two

independent parallel pipelines, where one pipeline performs a sequence of operations

for cell-edge users to explore joint transmission, and in parallel, the other pipeline is

for cell-center users to explore MU-MIMO transmission. We implemented M3 on a

COTS Nvidia DGX Station. Through extensive experiments, we show that M3 can

find a scheduling solution within 1 ms for all tested cases.



Chapter 2

A General Model for DoF-based

Interference Cancellation with

Rank-deficient Channels

2.1 Introduction

Degree-of-freedom (DoF) models have become widely used to study MIMO network perfor-

mance [9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 50]. The concept of DoF was

first introduced by the information theory community (IT) to represent the multiplexing

gain of a MIMO channel [10, 11, 12, 13]. It was then extended by the wireless networking

community to characterize a node’s spatial freedom. In particular, DoF-based models (e.g.,

[14, 15, 16, 17, 18, 19, 20, 21, 22, 50]) leverage DoFs at nodes to characterize MIMO’s spa-

tial multiplexing (SM) and interference cancellation (IC) capabilities. For IC, zero-forcing

(ZF) precoding technique is used to create interference-free signals through beamforming in

the null space of interference signals [23, 24]. Using DoF as a metric, the so-called DoF

region can be used to characterize the performance envelope of SM for a set of links that

transmit simultaneously (free of interference) [25, 26]. Although not without limitations,

DoF-based models have served the wireless networking community well. By getting around

complex matrix manipulation, it is a simple and tractable tool to analyze MIMO’s SM and

9
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IC capability.

However, existing DoF-based models in the literature do suffer from one serious limita-

tion. They assume the channel matrix is of full-rank (see, e.g., [14, 15, 16, 17, 18, 19, 20, 21,

22, 50]) which is typically one would encounter when the number of antennas is small and

the propagation environment is ideal (i.e., rich scattering). But such an assumption quickly

falls apart as the number of antennas increases and the propagation environment is not

close to ideal (i.e., lack of rich scattering or presence of key-hole effect [27, 28, 29, 30, 31]).

As expected, a rank-deficient channel will hinder MIMO’s SM capability and undermine

the validity of existing DoF-based IC models, which all assume full-rank channels. With

FCC’s recent interest in communications in midband spectrum (between 3.7 and 24 GHz)

[32, 33], which is the spectrum where we expect to see many-antenna MIMO (typically

ranges from 12 to 64), issues associated with rank deficiency will become even more critical

and significant.

We use an example to illustrate issues with rank-deficient channels and motivate the need

of our research in this chapter. Consider two active transmissions in Fig. 2.1(a), where Tx

node i transmits zij data streams to Rx node j while Tx node k transmits zkl data streams

to Rx node l. Rx node j is interfered with by Tx node k. Suppose all the nodes have

12 antennas. Denote Hij,Hkl and Hkj as channel matrices of i → j, k → l and k → j,

respectively and let the ranks of Hij,Hkl and Hkj all be 9 (< 12, i.e., rank-deficient). Under

these rank-deficient channels, SM on links i → j and k → j are now each upper limited

to 9 (instead of 12). So it is infeasible to have zij or zkl to carry 12 data streams as under

full-rank assumption. To find the DoF region of the two links (i.e., feasible data streams

that can be carried on links i → j and k → j simultaneously), we need to consider how

the interference (from Tx node k to Rx node j) is cancelled. It was well understood that

for full-rank channels, DoF consumption for IC is most efficiently done by either Tx node
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(a) An interference link between two active trans-
missions.
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(b) DoF regions under different IC models

Figure 2.1: A motivating example showing different DoF regions for a two-link network.

k or Rx node j, but not both nodes. That is, either Rx node j (consuming zkl DoFs) or

Tx node k (consuming zij DoFs) can be used to cancel the interference from node k to j

[15, 16, 17, 21, 22]. This will result in a DoF region that is bounded by the inner pentagon

(dash lines) in Fig. 2.1(b). However, as we shall show in this chapter, such unilateral DoF

consumption for IC (at either Tx node or Rx node, but not both) is inefficient for general

rank-deficient channels. In fact, to maximize efficiency, DoF consumption must be shared

between Tx node k and Rx node j to cancel the interference from k to j. We will show that

through shared DoF consumption by both Tx node k and Rx node j for IC, a larger DoF

region can be achieved, as shown in the outer pentagon in Fig. 2.1(b), where the shaded area

is the gain in the feasible DoF region.
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The existence of rank-deficient channels for MIMOs with many antennas calls for a deeper

understanding of DoF-based IC models. Unfortunately, there is hardly any research results

available on this important problem in the wireless networking community. The goal of this

chapter is to explore this important area by developing a unified theory on DoF consumption

for SM and IC under general channel rank conditions. The main contributions of this chapter

are the following:

• Based on a rigorous analytical method for accounting of DoF consumption at a node,

we offer a theory on how DoFs at a node are consumed for SM and IC under general

channel rank conditions. Our theoretical development starts with a single SM link and

IC on a single interference link and then extends to multiple links. In particular, we

find that a shared DoF consumption for IC at both transmit and receive nodes is most

efficient for DoF allocation under rank-deficient conditions. This result is in contrast

to existing DoF models under full-rank conditions.

• We show that in the special case when channels are of full ranks, existing unilateral IC

models present themselves as a special case under our new model for general channel

rank conditions. That is, our general DoF model remains valid for both full-rank and

rank-deficient channel conditions.

• We further extend the general DoF model to analyze multi-link MIMO networks by

developing a set of mixed integer linear constraints. This allows our DoF model to

be used for identifying the DoF region of a multi-link MIMO network as well as for

studying DoF scheduling problems in MIMO networks.

• Through numerical studies, we show that the general DoF model can achieve larger

feasible DoF regions or improved objective values than existing unilateral IC models

under general channel rank conditions.
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The remainder of this chapter is organized as follows. In Section 2.2, we review existing

works on DoF-based IC models. In Section 2.3, we present a DoF IC model under general

channel rank conditions. In Section 2.4, we revisit previous DoF models that assume full-

rank conditions and show that they are a special case under our general DoF model. In

Section 2.5, we develop a DoF scheduling model for multi-link MIMO networks. Section 2.6

presents case studies and demonstrate the efficacy of our DoF model under general channel

conditions. Section 2.7 concludes this chapter.

2.2 Related Work

DoF-based IC models have been widely studied in the networking community. However,

these DoF models have been mainly established under the assumption of full-rank channels

[14, 15, 16, 17, 18, 19, 20, 21, 22, 50]. In [14], Bhatia and Li proposed to cancel interference

by consuming DoFs on both Tx and Rx nodes. But it is easy to show that consuming DoFs

at both sides only results in duplication in IC and is wasteful in DoF resources. In [50],

Sundaresan et al. proposed that IC could be done by consuming DoFs only at the Rx node.

This approach failed to explore the possibility of consuming DoFs at a Tx node and thus led

to a smaller solution space. In [15], Blough et al. showed that it is sufficient to consume

DoFs at either the Tx node or the Rx node to cancel the interference, but not both. Most

DoF-based IC models (e.g. [16, 17, 21, 22]) were developed along this ”unilateral” approach,

which is the most efficient DoF allocation under full-rank channel assumption. As we shall

show in this chapter, under general channel rank conditions (i.e., in the presence of rank-

deficient channels), a unilateral IC approach is no longer the most efficient and instead, a

shared DoF consumption at both Tx and Rx nodes is more efficient. Further, the existing

(unilateral) IC scheme for full-rank channels can be regarded as a special case of our new IC
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model when channels are of full ranks.

In the IT community, there have been some active research activities to understand

MIMO’s behavior under rank-deficient channels [25, 27, 34, 35, 36, 37, 39]. The focus there

has been to derive closed-form expressions of achievable/outer-bound DoF region for specific

link topology and rank settings. Some representative research includes achievable DoFs for

point-to-point MIMO channels with an arbitrary number of antennas and channel rank [27],

3-link MIMO with symmetric antenna number and channel rank [25, 27, 34], K-link MIMO

with symmetric antenna number and/or channel rank [27, 37], K-link MIMO with rank-

deficient channels only on interference links [35]. A few works also considered simple multi-

hop networks. In [36], Sun et al. studied the upper bound of the DoF region under 2× 2× 2

link topology. In [38], Chae et al. showed the achievable DoFs under relay-assisted K-link

topology with specific rank settings. In [39], Fanjul et al. proposed a scheme to construct

beamforming matrices given that the DoFs allocated for SM at each link are known and

feasible. None of these results can be used for DoF allocation for arbitrary network topology

and general channel rank conditions. In other words, there is a lack of study of rank-deficient

from a networking perspective, i.e., a lack of results that can be used for DoF allocation in

a MIMO network, which is the primary interest in the wireless networking community.

In the literature, another related interference management technique is known as inter-

ference alignment (IA) (see, e.g., [40, 41, 42]). The focus of IA is to jointly construct the

signals so that multiple interfering signals are aligned in the same direction at an unintended

receiver. In other words, the focus of IA is on signal alignment. In contrast, our proposed

scheme (DoF-based IC) focuses on how to eliminate interference with the fewest number of

DoFs without exploiting signal alignment. To better understand the relationship between

IA and DoF-based IC (our scheme), let’s compare the solution spaces, multiplexing gains

and tractability of these two schemes. First, since IA requires additional constraints (for
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signal alignment), the solution space for IA is a subspace of that for IC. Second, for both

IA and IC, the optimal multiplexing gain that can be achieved under a general multi-link

MIMO network remains an open problem. But generally speaking, a feasible IA scheme

provides higher multiplexing gain, as fewer DoFs are needed to cancel interference when

multiple interferences are aligned. Third, IA is much more complex than IC from a theoret-

ical perspective. To date, how to design a feasible IA scheme for general topologies (under

general rank conditions) remains unknown. IA is only understood for certain topologies

(e.g., [36, 39, 40]). On the other hand, this chapter offers a tractable approach for IC under

arbitrary topologies and general rank conditions.

2.3 DoF Consumption under General Channel Rank

Conditions: A Theory

In this section, we present a DoF IC model under general rank conditions. We say a chan-

nel is under general channel rank condition if the channel is either rank-deficient or full

rank. Throughout our exposition, we assume general channels unless we make an explicit

distinction between rank-deficient and full-rank conditions.

The concept of DoF was originally developed to represent the multiplexing gain of a

MIMO channel. For a multi-link network, the sum of DoFs in the network represents the

total number of data streams that can be transmitted simultaneously (free of interference) in

the network. This DoF concept was then extended to characterize a node’s spatial freedom

by its multiple antennas. DoFs at a node can be used for SM and IC.

As more and more DoFs are used for SM and IC at a node, its spatial freedom diminishes.

In this section, we develop a rigorous accounting method for DoF consumption at a node
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Table 2.1: Notations in Chapter 2

Symbol Definition
C A complete set of complex numbers
dR
ij Number of DoFs consumed by Rx node j to cancel

interference from Tx node i to Rx node j
dT
ij Number of DoFs consumed by Tx node i to cancel

interference from Tx node i to Rx node j
Hij Channel matrix from Tx node i to Rx node j
Im Identity matrix with dimension m×m.
Ii Set of nodes within node i’s interference range
K Set of nodes in the network
Ni Number of antennas at node i
rij Rank of Hij

Ti Set of nodes within node i’s transmission range
Ui Weight matrix at Tx node i
Vj Weight matrix at Rx node j
xi(t) A binary variable to indicate whether node i is a Tx node at time t
yi(t) A binary variable to indicate whether node i is an Rx node at time t
zi∗ Total number of outgoing data streams at Tx node i
z∗j Total Number of incoming data streams at Rx node j
zij Number of data streams from Tx node i to Rx node j
1R
ij A binary variable to indicate whether Rx node j

consumes DoFs for IC from i to j
1T
ij A binary variable to indicate whether Tx node i

consumes DoFs for IC from i to j
X† Hermitian transpose of matrix X
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that is tightly related to the number of constraints at the node. Based on this accounting

method, we offer a theory on how DoFs at a node are consumed for SM and IC under

general channel rank conditions. Our theoretical development begins with a fundamental

understanding of SM on a single link and IC on a single interference link. Then our theory

generalizes to multi-link MIMO networks via an additivity property.

We consider a multi-link MIMO network with an arbitrary topology. Some of the key

assumptions that we made in this chapter include the following. We assume channel state

information (CSI) is known at both Tx and Rx nodes, and the set of interfering nodes at a

node is also given. All channels are assumed to be generic. That is, the channel matrices

are randomly and independently generated from continuous distributions subject to rank-

constraints, without any special structure. Further, we do not consider diversity gain and

multi-cast channels.

2.3.1 DoF Consumption at Node

To quantify the DoFs consumption at a node, it is necessary to have an analytical method

for DoF accounting, which we formally describe as follows.

Assume node i has Ni antennas. Denote xij ∈ CNi×1 as the weight vector at node i

for the j-th stream, where Cm×n denotes a complex set with dimension m × n. With Ni

antennas, there can be at most Ni streams. Assume node i transmits or receives ns streams

(where ns ≤ Ni). Then its weight matrix Xi = [xi1,xi2, ...,xins ] ∈ CNi×ns . We first introduce

the definitions of total number of DoFs at a node and DoF consumption at a node. Then

we derive the remaining available DoFs at a node.

Definition 2.1. The total number of DoFs at node i is the maximum number of dimensions

that can be spanned by xi1,xi2, ...,xins .
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Definition 2.2. The number of consumed DoFs at node i is the number of linearly inde-

pendent constraints imposed on Xi.

The number of a node’s total DoFs is directly tied to its number of antennas. Initially,

when there is no constraint on Xi, each of its elements is undetermined and can be set

arbitrarily. There is a feasible region (a space) that includes all possible values by such an

unconstrained matrix. The initial DoFs of this feasible region is equal to the number of Xi’s

rows (or the number of antennas at the node), i.e., Ni, since Ni is the maximum number of

dimensions spanned by xi1,xi2, ...,xins . Thus, a node’s total number of DoFs is the number

of antennas at this node.

To perform SM and IC, a node’s weight matrix must satisfy certain constraints to achieve

interference-free transmission. Thus, some DoFs at the node will be consumed for SM or

IC. Assume some constraints are imposed on Xi in the form AXi = B, where A ∈ CM×Ni

and B ∈ CM×ns . That is, M linear constraints are imposed on each xij. Denote Φ as

the union solution space of each xij to problem AXi = B, i.e., Φ = {ϕ1 ∪ ϕ2 ∪ · · · ∪

ϕns|A[ϕ1 ϕ2 · · · ϕns ] = B}. Then the remaining available DoF at node i is the free

dimension of Xi, namely dim(Φ).

Lemma 2.3. Suppose node i has Ni antennas and its weight matrix Xi is constrained by

AXi = B. If rank([A B]) = rank(A), then the number of consumed DoFs at node i is

equal to rank([A B]), and the remaining available DoFs at node i is Ni−rank([A B]). If

rank([A B]) ̸= rank(A), then there is no feasible solution to AXi = B.

Proof. Initially, all the elements in Xi are undetermined and can be set arbitrarily. Ni is

the maximum number of dimensions spanned by xi1,xi2, ...,xins , i.e., the number of initial

available DoFs provided by Xi is Ni.

Let B = [b1,b2, ...,bns ]. For any A ∈ CM×Ni and bj ∈ CM×1, where j ∈ {1, ..., ns},
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ziji j

rank(Hij) = rij

Figure 2.2: Spatial multiplexing on a link.

if rank([A bj]) = rank(A), then the set of solutions to the non-homogeneous linear system

Axij = bj is an affine subspace of CNi×1, denoted as Φj. Since the solution dimension of a

non-homogeneous linear system is the same as its corresponding homogeneous linear system,

we have dim(Φj) = dim(nullspace(A)) = Ni − rank([A bj]). Note that non-homogeneous

linear systems Axij = bj (j = 1, ..., ns) are sharing the same corresponding homogeneous

linear system Axij = 0 (thus share the same homogeneous solutions). We conclude dim(Φ) =

dim(Φj) = Ni − rank([A B]). If rank([A bj]) ̸= rank(A), then there is no feasible solution

to Axij = bj. Consequently, if rank([A B]) ̸= rank(A), then there is no feasible solution to

AXi = B.

Lemma 2.3 shows that the number of consumed DoFs at a node is determined by the

number of linearly independent constraints imposed on its weight matrix. In particular, SM

and IC will appear in the form of constraints that are to be imposed on a node’s weight

matrix and will consume DoFs. That is, one DoF is consumed for each linearly independent

constraint imposed on Xi. The number of linearly independent constraints (DoFs consumed)

on Xi is equal to rank([A B]), and the remaining available DoFs at node i is Xi to be

Ni − rank([A B]). Based on this understanding, we study DoF consumption by SM and IC

separately under general channel rank conditions in the following two sections.
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2.3.2 DoF Consumption for SM under General Channel Rank

Conditions

Consider the single transmission link in Fig. 2.2, where the number of data streams trans-

mitted from Tx node i to Rx node j is zij, and rank(Hij) = rij. Then some DoFs at Tx

node i and Rx node j will be consumed for SM. As expected, the number of data streams

transmitted on channel Hij cannot exceed the rank of this channel.

Lemma 2.4. For transmission on a single link where node i is a transmitter and node j is

a receiver, zij data streams can be transmitted free of interference only if zij ≤ rij. Further,

the number of DoFs consumed by SM at node i and node j are both zij.

Proof. Denote Ui and Vj as the weight matrices at Tx node i and Rx node j, respectively.

Since the number of data streams transmitted from Tx node i to Rx node j is zij, U†
i and

Vj can be represented as [ui1 ui2 ...uizij ]
† and [vj1 vj2 ...vjzij ], respectively. To ensure

interference-free transmission of zij data streams, the following constraint must be satisfied:

U†
i

zij×Ni

· Hij
Ni×Nj

· Vj
Nj×zij

= Izij , (2.1)

where Izij denotes identity matrix with dimension zij × zij.

We first consider DoF consumption at Rx node j. We have

rank
([

U†
i

zij×Ni

· Hij
Ni×Nj

Izij

])
= zij. (2.2)

Note that rank(Hij) must be at least zij. Otherwise, rank(U†
iHij) ≤ min{rank(U†

i ),

rank(Hij)} < zij = rank([U†
iHij Izij ]), and Eq. (2.1) will have no solution. This means zij

data streams can be transmitted only if zij ≤ rij is satisfied. By (2.1), (2.2) and Lemma 2.3,
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Figure 2.3: Interference cancellation between two nodes.

the number of DoFs consumed by SM at Rx node j is zij.

Following the same token, one can show that at Tx node i, the number of DoFs consumed

for SM is also zij.

2.3.3 DoF Consumption for IC under General Channel Rank Con-

ditions

Consider a single-interference case as shown in Fig. 2.3, Tx nodes i and k are transmitting zij

and zkl data streams to Rx nodes j and l, respectively, where zij ≥ 1, zkl ≥ 1, and Rx node j

is interfered with by Tx node k, rank(Hkj) = rkj. Suppose channel matrix Hkj is of general

rank condition, (i.e., Hkj may be rank deficient). Then how to cancel the interference from

k to j so that data streams zij can be received at Rx node j free of interference?

Denote 1T
kj and 1R

kj as binary variables with the following definitions:

1T
kj =

 1 if Tx node k consumes DoFs for IC from k to j,

0 otherwise,

1R
kj =

 1 if Rx node j consumes DoFs for IC from k to j,

0 otherwise.

Then following theorem shows how the interference is cancelled by consuming DoFs at Tx
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node k and Rx node j.

Theorem 2.5. For the single-interference case, let Tx node k consume dT
kj DoFs and Rx

node j consume dR
kj DoFs for IC. Then interference from Tx node k to Rx node j is cancelled

if

dR
kj1

R
kj + dT

kj1
T
kj = min

{
zkl1

R
kj + zij1

T
kj, rkj

}
, (2.3a)

(
1R
kj,1

T
kj

)
̸= (0, 0). (2.3b)

Proof. To guarantee interference-free transmission, the following constraint must be satisfied:

U†
k

zkl×Nk

· Hkj
Nk×Nj

· Vj
Nj×zij

= 0
zkl×zij

. (2.4)

The theorem can be proved by enumerating all possibilities of
(
1R
kj,1

T
kj

)
.

Case I: Only Rx node j consumes DoFs for IC, i.e.,
(
1R
kj,1

T
kj

)
= (1, 0). This means we

impose constraint (2.4) on Vj. We have

rank
([

U†
k

zkl×Nk

· Hkj
Nk×Nj

0
zkl×Nj

])
≤ min{zkl, rkj}. (2.5)

This indicates node j may use fewer DoFs than min{zkl, rkj} to cancel interference. But

since Hkj is generic, without “special treatment” (case III) on Uk, we have to consider an

upper bound min{zkl, rkj} to guarantee interference-free transmission. Thus according to

Lemma 2.3, the number of DoFs consumed for IC at Rx node j is min{zkl, rkj}.

Case II: Only Tx node k consumes DoFs for IC, i.e.,
(
1R
kj,1

T
kj

)
= (0, 1). The proof is

similar to Case I and we omit the details to conserve space. The number of DoFs consumed

for IC at Tx node j is min{zij, rkj}.

Case III: Let both Tx node k and Rx node j consume DoFs for IC. i.e.,
(
1R
kj,1

T
kj

)
= (1, 1).
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Obviously, if zkl + zij ≤ rkj, Theorem 2.5 is trivial and can be proved based on the same

analysis as in Case I and Case II. Now we prove Theorem 2.5 when zkl + zij > rkj.

By singular value decomposition (SVD) of the interference channel, we have Hkj =

U′
k
†ΛkjVj

′, where U′
k
† and V′

j are Nk×Nk and Nj ×Nj unitary matrices, respectively. Λkj

is a Nk × Nj diagonal matrix with singular values of Hkj on the main diagonal and zeros

elsewhere. Denote Ūk = U′
kUk, V̄j = V′

jVj. Note that it is just linear transformation from

Uk to Ūk, Vj to V̄j, maintaining the same number of dimensions (the same rank). Also,

Uk can be easily derived by U′
k
−1Ūk. Therefore, it is equivalent to use Ūk, V̄j and Λkj in

the proof.

We can write Λkj and Ūk as

Λkj =



λ1

λ2

. . .

λrkj

0

. . .

0


Nk×Nj

,

Ūk =



u1

u2

...

uNk


Nk×zkl

.

According to Sylvester’s rank inequality: if A is an m × n matrix and B is an n × k



24

matrix, then

rank(AB) ≥ rank(A) + rank(B)− n. (2.6)

Thus we have rank
([

Ū†
k

zkl×Nk

· Λkj
Nk×Nj

])
≥ zkl + rkj − Nk. We can force the rank of[

Ū†
k

zkl×Nk

· Λkj
Nk×Nj

]
= [λ1u†

1 λ2u†
2 · · · λrkju†

rkj
0 · · ·0] to be at most r′, (zkl + rkj −Nk ≤ r′), by

adding the following rkj − r′ linear independent constraints on Ū†
k:

λr′+1u†
r′+1 = ω11λ1u†

1 + ω12λ2u†
2 + ...+ ω1r′λr′u†

r′ ,

λr′+2u†
r′+2 = ω21λ1u†

1 + ω22λ2u†
2 + ...+ ω2r′λr′u†

r′ ,

...

λrkju†
rkj

= ω(rkj−r′)1λ1u†
1 + ω(rkj−r′)2λ2u†

2 + ...

+ ω(rkj−r′)r′λr′u†
r′ ,

(2.7)

where scalars ωi1, ωi2, ..., ωir′ are not all zeros for 1 ≤ i ≤ rkj − r′.

Denote Ω =



ω11λ1 ω12λ2 · · · ω1r′λr′

ω21λ1 ω22λ2 · · · ω2r′λr′

... ... . . . ...

ω(rkj−r′)1λ1 ω(rkj−r′)2λ2 · · · ω(rkj−r′)r′λr′

−λr′+1 0 · · · 0 0 · · · 0

0 −λr′+2 · · · 0 0 · · · 0

... ... . . . ... ... . . . ...

0 0 · · · −λrkj 0 · · · 0


(rkj−r′)×Nk

.

(2.8)
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(2.7) is equivalent to

Ω · Ūk = 0 (2.9)

Obviously, the rank of [Ω 0] is rkj − r′ and thus rkj − r′ DoFs are consumed at node k

by Eq. (2.9) and Lemma 2.3.

Next, since the rank of
[

Ū†
k

zkl×Nk

· Λkj
Nk×Nj

0
zkl×zij

]
is at most r′, we can use r′ DoFs at node

j to force U†
kHkjVj = 0 according to Lemma 2.3. Thus we have dR

kj + dT
kj = rkj.

Theorem 2.5 shows that to cancel interference from Tx node k to Rx node j, DoFs can

be consumed either Tx node k, or Rx node j, or both nodes. The required number of DoFs

consumed at Tx node k and Rx node j are related to the number of data streams and rank

of the interference channel. By enumerating all possibilities of
(
1R
kj,1

T
kj

)
in (2.3b), IC can

be done by one of the following three cases:

• Case I:
(
1R
kj,1

T
kj

)
= (1, 0), i.e., only Rx node j consumes DoFs for IC and the number

of DoFs that Rx node j consumes is min{zkl, rkj}.

• Case II:
(
1R
kj,1

T
kj

)
= (0, 1), i.e., only Tx node k consumes DoFs for IC and the number

of DoFs that Tx node k consumes is min{zij, rkj}.

• Case III:
(
1R
kj,1

T
kj

)
= (1, 1), i.e., both Tx node k and Rx node j consume DoFs for

IC. If zkl + zij ≤ rkj, then dR
kj + dT

kj = zkl + zij. That is, a total of zkl + zij DoFs are

used for IC, which is more than that in the previous two cases (either transmitter or

receiver). On the other hand, if rkj < zkl + zij, it is possible to design U†
k and V†

j such

that (rkj − x) DoFs are consumed at Tx node k to guarantee the rank of
[
U†

k ·Hkj

]
is at most x. Then Rx node j will consume x DoFs to cancel this interference. Thus
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we have dR
kj + dT

kj = rkj. This is the most interesting case and is quite surprising.

It shows that a shared DoF consumption between Tx and Rx for IC is most efficient

under rank-deficient conditions.

To fully understand and appreciate the significance of the third (and new) case, let’s

revisit the motivating example in Section 2.1 (see Fig. 2.1). First, (zij, zkl) = (5, 7) is a

feasible solution and can be realized by Case I, i.e.,
(
1R
kj,1

T
kj

)
= (1, 0), because Rx node j

can consume 5 DoFs for SM and 7 DoFs for IC, and Tx node k uses 7 DoFs for SM. Second,

(zij, zkl) = (5, 7) can also be designed under Case II, i.e.,
(
1R
kj,1

T
kj

)
= (0, 1), where Tx node

k consumes 7 DoFs for SM and 5 DoFs for IC, and Rx node j consumes 5 DoFs for SM.

Following the same token, we can find a feasible region of the inner pentagon in Fig. 2.1(b).

However, for (zij, zkl) = (8, 7), it is impossible to have only Rx node j (Case I) or Tx node

k (Case II) alone to cancel this interference. But if we let Rx node j consumes 8 DoFs for

SM and 4 DoFs for IC, and Tx node k consumes 7 DoFs for SM and 5 DoFs for IC, then the

condition in Case III (i.e.,
(
1R
kj,1

T
kj

)
= (1, 1)) will be satisfied and we have a feasible solution.

That is, under channel rank-deficient condition, a shared DoF consumption between both Tx

node k and Rx node j can offer more feasible solutions than unilateral IC by only Tx node

or Rx node. The outer pentagon in Fig. 2.1(b) shows the extra feasible DoF region. This

finding is new and beyond the state-of-the-art.

2.3.4 Extension to Multiple Links and Additivity Property

The results in the previous two sections show DoF consumption for SM on a single link and

IC between a Tx node and a Rx node. Using these results as basic building blocks, we explore

DoF consumption for the general multiple-link case in this section. Consider Fig. 2.4, where

Tx nodes i1, i2, ..., iP are transmitting zi1j, zi2j, ..., ziP j data streams to Rx node j, respectively.
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Figure 2.4: Additivity of DoF consumption at Rx node j.
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Figure 2.5: Additivity of DoF consumption at Tx node i.
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Rx node j is also interfered with by Tx nodes k1, k2, .., kQ simultaneously. Suppose Tx nodes

k1, k2, .., kQ are transmitting zk1l1 , zk2l2 , ..., zkQlQ data streams to their respective receivers.

Suppose the number of consumed DoFs at Rx node j for cancelling interference from kn to

j is dR
knj

, where dR
knj

1R
knj

+ dT
knj

1T
knj = min

{
zknln1

R
knj

+ z∗j1
T
knj, rknj

}
,
(
1R
knj

,1T
knj

)
̸= (0, 0),

kn = k1, k2, ..., kQ. The following Lemma shows the required DoF consumption for SM and

IC at Rx node j.

Lemma 2.6. In a general multi-link case for a Rx node j, the number of consumed DoFs

for SM and IC at Rx node j is additive and constrained by channel ranks. If zimj ≤ rimj

for m = 1, 2, ..., P are satisfied, then the number of consumed DoFs for SM at Rx node j

is
∑P

m=1 zimj. The total number of consumed DoFs for IC at Rx node j is
∑Q

n=1 d
R
knj

. The

total number of consumed DoFs for SM and IC at Rx node j is
∑P

m=1 zimj +
∑Q

n=1 d
R
knj

.

Proof. Supposing Rx node j consumes dR
knj

DoFs to cancel interference from Tx node kn to Rx

node j, n = 1, 2, ..., Q. According to Lemma 2.3 and Theorem 2.5, we have rank([U†
k1

Hk1j]) ≤

dR
k1j

, rank([U†
k2

Hk2j]) ≤ dR
k2j

,..., rank([U†
kQ

HkQj]) ≤ dR
kQj. Now consider the general multi-

link case for a Rx node j (see Fig. 2.4). Weight matrix Vj of node j must satisfy



U†
i1

Hi1j

U†
i2

Hi2j

...

U†
iP

HiP j

U†
k1

Hk1j

U†
k2

Hk2j

...

U†
kQ

HkQj



Vj =



Izi1j 0 · · · 0

0 Izi2j · · · 0

... ... . . . ...

0 0 · · · IziP j

0 0 · · · 0

0 0 · · · 0

... ... . . . ...

0 0 · · · 0



(2.10)
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Thus we have

rank





U†
i1

Hi1j

U†
i2

Hi2j

...

U†
iP

HiP j

U†
k1

Hk1j

U†
k2

Hk2j

...

U†
kQ

HkQj

Izi1j 0 · · · 0

0 Izi2j · · · 0

... ... . . . ...

0 0 · · · IziP j

0 0 · · · 0

0 0 · · · 0

... ... . . . ...

0 0 · · · 0




≤zi1j + zi2j...+ ziP j + dR

k1j
+ dR

k2j
+ ...+ dR

kQj

=
P∑

m=1

zimj +

Q∑
n=1

dR
knj.

(2.11)

The first
∑P

m=1 zimj rows are with full rank
∑P

m=1 zimj; the remaining rows may have

rank lower than
∑Q

n=1 d
R
knj

and we consider the upper bound in this chapter. According to

(2.10), (2.11) and Lemma 2.3, the number of DoFs consumed for SM and IC at Rx node

j is
∑P

m=1 zimj +
∑Q

n=1 d
R
knj

. Note that zimj ≤ rimj,m = 1, 2, ..., P must be satisfied, and

the channels are assumed to be generic (i.e., row space of U†
in

Hinj for n = {1, 2, · · · , P}

are mutually linearly independent almost surely, and U†
in

Hinj and U†
kn

Hknj are mutually

linearly independent almost surely), otherwise Eq. (2.10) will have no feasible solution.

Next we consider the case of SM and IC at Tx node k as shown in Fig. 2.5, where Tx

node k is transmitting zkl1 , zkl2 , ..., zklQ data streams to Rx nodes l1, l2, ..., lQ, respectively.

Tx node k is also interfering with Rx nodes j1, j2, .., jP . Suppose Rx nodes j1, j2, .., jP are

receiving zi1j1 , zi2j2 , ..., ziP jP data streams from Tx nodes i1, i2, ..., iP , respectively. Supposing

the number of consumed DoFs at Tx node k for cancelling interference from k to jn is dT
kjn

,
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where

dR
kjn1

R
ijn + dT

kjn1
T
kjn = min

{
zk∗1

R
kjn + zinjn1

T
kjn , rkjn

}
,
(
1R
kjn ,1

T
kjn

)
̸= (0, 0), jn = j1, j2, ..., jP .

The following Lemma shows the required DoF consumption at Tx node k.

Lemma 2.7. In a general multi-link case for a Tx node k, the number of consumed DoFs

for SM and IC at Tx node k is additive and constrained by channel ranks. If zklm ≤ rklm for

m = 1, 2, ..., Q, then the number of consumed DoFs for SM at Tx node k is
∑Q

m=1 zklm. The

number of consumed DoFs for IC at Tx node k is
∑P

n=1 d
T
kjn

. The total number of consumed

DoFs for SM and IC at Tx node k is
∑Q

m=1 zklm +
∑P

n=1 d
T
kjn

.

The proof of Lemma 2.7 is similar to Lemma 2.6 and is omitted to conserve space.

2.4 A Special Case: Full-rank Channels

In this section, we show that, when channel has full rank, our general DoF model degenerates

into the well-known unilateral DoF consumption model in the literature (e.g., [14, 15, 16,

17, 21, 22]). Therefore, the existing full-rank DoF model is a special case of our model.

For SM, consider a single link transmission (see Fig. 2.2). If the channel matrix is of

full rank (i.e., rank(Hij) = min{Ni, Nj}), then at most min{Ni, Nj} data streams can be

transmitted over this link, and the number of DoFs consumed by SM at Tx node i and Rx

node j are both zij.

For IC, consider the single-interference link (see Fig. 2.3). When channel matrix Hkj has

full rank, we have rank(Hkj) = min{Nk, Nj}. We consider two existing IC schemes assuming

full-rank channels and show that they are a special case of our model.
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Scheme 1: IC by Tx or Rx node, but not both: As shown in the literature (e.g.

[15, 16, 17, 21, 22]), for IC, DoFs can be consumed unilaterally at either Rx node j (with zkl

DoFs), or at Tx node k (with zij DoFs). Without loss of generality, assume Nk ≤ Nj, then

we have rkj = min{Nk, Nj} = Nk.

Case 1: Rx node j consumes DoFs for IC. Since rkj = Nk ≥ zkl, this is consistent to

Theorem 2.5 when
(
1R
kj,1

T
kj

)
= (1, 0).

Case 2: Tx node k consumes DoFs for IC. Since zij ≥ 1, zkl ≥ 1, the available DoFs at

Tx node k for IC is no more than Nk − 1. Consequently the number of data streams that

can be received at Rx node j is no more than Nk − 1, i.e., zij ≤ Nk − 1. We have zij < rkj.

This is consistent to Theorem 2.5 when
(
1R
kj,1

T
kj

)
= (0, 1).

Scheme 2: IC by both Tx and Rx nodes: In this case, interference is cancelled at Rx

node j by consuming zkl DoFs, and at Tx node k by consuming zij DoFs as in [14]. Obviously

zij+zkl ≥ min
{
zkl1

R
kj + zij1

T
kj, rkj

}
. We can let dR

kj = zkl, d
T
kj = zij,

(
1R
kj,1

T
kj

)
= (1, 1), which

will satisfy the sufficient condition in Theorem 2.5. Although feasible, this scheme uses more

DoFs than necessary and is considered wasteful.

The next question to ask is: in full-rank case, is it possible for Tx and Rx nodes to share

DoF consumption for IC such that Tx node k consumes fewer than zij DoFs and Rx node j

consumes fewer than zkl DoFs as in rank-deficient case? The answer to this question is given

in the following Lemma.

Lemma 2.8. In full-rank case, in order to cancel interference from Tx node k to Rx node j

(as shown in Fig. 2.3), it is impossible to have both Tx node k consume fewer than zij DoFs

and Rx node j consume fewer than zkl DoFs, where zij ≥ 1, zkl ≥ 1.

Proof. Suppose Tx node k consumes x DoFs and Rx node j consumes y DoFs to cancel

interference from Tx node k to Rx node j, where x < zij and y < zkl. This means there are
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x linearly independent constraints imposed on Uk and y linearly independent constraints

imposed on Vj. We must have

rank
([

V†
j

zij×Nj

· H†
kj

Nj×Nk

0
zij×zkl

])
= x, x < zij, (2.12)

and

rank
([

U†
k

zkl×Nk

· Hkj
Nk×Nj

0
zkl×zij

])
= y, y < zkl. (2.13)

On the other hand, since Hkj is of full rank, according to Sylvester’s rank inequality [43],

we have

rank
([

V†
j

zij×Nj

· H†
kj

Nj×Nk

0
zij×zkl

])
≥ zij + min{Nk, Nj} −Nj, (2.14)

and

rank
([

U†
k

zkl×Nk

· Hkj
Nk×Nj

0
zkl×zij

])
≥ zkl + min{Nk, Nj} −Nk. (2.15)

But (2.14) and (2.15) contradict (2.12) and (2.13).

In fact, the outcome of this cancellation is

U†
k

zkl×Nk

· Hkj
Nk×Nj

· Vj
Nj×zij

elementary−−−−−−→
operations





y

0 · · · 0 · · · 0
... . . . ... . . . ...

0 · · · 0 · · · 0
... . . . ... C
0 · · · 0︸ ︷︷ ︸

x
zkl×zij

(2.16)

where C is a (zkl − y) × (zij − x) matrix which is not guaranteed to be 0 and interference

still exists.

Thus, it is infeasible to have Tx node k consume x < zij DoFs and Rx node j consume
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y < zkl, where zij ≥ 1 and zkl ≥ 1.

Lemma 2.8 shows that in full-rank case, there is no benefit to have both Tx node and Rx

node consume DoFs for IC, as doing so will incur more DoF consumption than necessary.

That is precisely the reason why existing DoF IC models only consider using DoFs unilaterally

at either Tx or Rx node for IC, but not both. But under general channel rank conditions

(i.e., with rank deficiency), things become different. IC burden is better to be distributed

between Tx and Rx nodes, as we have shown in Theorem 2.5.

2.5 DoF Scheduling in a Network

In Section 2.3, we developed a theory for DoF model under general channel rank conditions

for the most basic topologies. In this section, we apply this model to develop a set of con-

straints that can be used to characterize a feasible DoF scheduling region for an arbitrary

multi-link MIMO network. When outfitted with a proper objective function (e.g., the ex-

amples in Section 2.6.2), we will have a complete optimization problem involving a DoF

scheduling model with general rank conditions.

Consider multi-link MIMO network with an arbitrary topology. Denote K as the set of

nodes in the network. Denote Ti as the set of nodes that are within node i’s transmission

range and Ii as the set of nodes that are within node i’s interference range, respectively. We

consider a time-slot based scheduling (so that the model can be easily extended to multi-hop

applications with additional flow balance constraints [21, 44]). We have the following three

sets of constraints for DoF scheduling in a network.

Node Activity and SM Constraints We assume each node in the network is half-

duplex, i.e., a node can be either a Tx node, an Rx node, or idle at any time. Define a
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binary variable xi(t) to indicate whether or not node i is a Tx node at time t, i.e., xi(t) = 1 if

node i is transmitting at time t and 0 otherwise. Likewise, denote yi(t) as a binary variable

to indicate whether or not node i is a Rx node at time t, i.e., yi(t) = 1 if node i is receiving

at time t and 0 otherwise. Then half-duplex constraint at node i can be modeled as:

xi(t) + yi(t) ≤ 1, i ∈ K. (2.17)

If node i is an active Tx node (i.e., xi(t) = 1), then the total number of DoFs used for

transmitting data streams cannot exceed the total number of antennas Ni at this node, i.e.,

xi(t) ≤
∑
j∈Ti

zij(t) ≤ Nixi(t), i ∈ K. (2.18)

Similarly, if a node j is an active Rx node (i.e., yj(t) = 1), then the total number of DoFs

used for receiving data streams cannot exceed the total number of antennas Nj at this node,

i.e.,

yj(t) ≤
∑
i∈Tj

zij(t) ≤ Njyj(t), j ∈ K. (2.19)

Further, considering general channel rank condition, the number of data streams that

can be sent over a channel must satisfy the following constraint (Lemma 2.4):

zij(t) ≤ rij(t), i ∈ K, j ∈ K, i ̸= j. (2.20)

IC Constraints Consider a Tx node k that interferes a Rx node j in a network (see

Fig. 2.6). Tx node k may transmit multiple data streams to Rx nodes l ∈ Tk (other than j)

while Rx node j may also receive multiple data streams from Tx nodes i ∈ Tj (other than k).

To cancel interference from Tx node k to Rx node j, we apply Theorem 2.5 and Lemmas 2.6
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…

j

Nj

…
k

Nk

rkj

l ∈ Tk, l "= ji ∈ Tk, i "= k

zkl
zij

Figure 2.6: An interference link (k, j) in a network.

and 2.7 (with consideration of multiple outgoing data streams from node k and incoming

data streams to node j). We have the following constraints:

For every k ∈ K, j ∈ Ik, if xk(t) = 1 and yj(t) = 1, then



dT
kj(t)1

T
kj(t) + dR

kj(t)1
R
kj(t) =

min

1R
kj(t)

l ̸=j∑
l∈Tk

zkl(t) + 1T
kj(t)

i ̸=k∑
i∈Tj

zij(t), rkj(t)

 ,
(2.21)

(
1R
kj(t),1

T
kj(t)

)
̸= (0, 0). (2.22)

Node’s DoF Constraints A node can use its DoFs for both SM and IC, as long as the

total number of consumed DoFs does not exceed the total available DoFs at the node. If

node k is an active Tx node, by Lemmas 2.6 and 2.7, we have

If xk(t) = 1, then
∑
l∈Tk

zkl(t) +
∑
j∈Ik

dT
kj(t) ≤ Nk, k ∈ K. (2.23)
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Similarly, if node j is an active Rx node, we have

If yj(t) = 1, then
∑
i∈Tj

zij(t) +
∑
k∈Ij

dR
kj(t) ≤ Nj, j ∈ K. (2.24)

For constraint (2.23), it can be reformulated by incorporating binary variable xk(t) into

the expression as follows:

∑
l∈Tk

zkl(t) +
∑
j∈Ik

dT
kj(t) ≤ Nkxk(t) + (1− xk(t)) ·Bk, k ∈ K, (2.25)

where Bk is a large constant, which can be set as Bk =
∑

j∈Ik Nj to ensure that Bk is an

upper bound of
∑

j∈Ik d
T
kj(t).

Similarly, constraint (2.24) can be reformulated as follows:

∑
i∈Tj

zij(t) +
∑
k∈Ij

dR
kj(t) ≤ Njyj(t) + (1− yj(t)) ·Bj, j ∈ K, (2.26)

where Bj =
∑

k∈Ij Nk.

Reformulation of IC Constraints To make the IC constraints suitable for mathematical

programming, we need to remove ”if-then” statement for (2.21) and (2.22), non-linearity in

(2.21), and the joint statement in (2.22). First, we can relax (2.21) by substituting ”=” sign

by ”≥” sign. To remove ”if-then” statement for (2.21) and (2.22) and the joint statement in

(2.22), we incorporate binary variables xk(t) and yj(t) into (2.21) and (2.22), we have:
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For every k ∈ K, j ∈ Ik,[
2− xk(t)− yj(t)

]
rkj(t) + xk(t)yj(t)

(
dT
kj(t)1

T
kj(t) + dR

kj(t)1
R
kj(t)

)
≥ min

1R
kj(t)

l ̸=j∑
l∈Tk

zkl(t) + 1T
kj(t)

i ̸=k∑
i∈Tj

zij(t), rkj(t)

 ,

(2.27)

1R
kj(t) + 1T

kj(t) ≥ xk(t) + yj(t)− 1. (2.28)

When xk(t) = 1 and yj(t) = 1, one can easily verify that (2.27) is a relaxation of (2.21)

because of ”≥” sign. Note that such relaxation won’t introduce any infeasible DoF allocation

for IC. While (2.28) is equivalent to (2.22) by examining all possibilities of
(
1R
kj(t),1

T
kj(t)

)
other than (0, 0). For xk(t) ̸= 1 or yj(t) ̸= 1 (i.e., link k → j is not an interference link),

(2.27) and (2.28) always hold (i.e., the associated variables are unconstrained for IC).

Next we show how to reformulate the ”min” function in (2.27). First, (2.27) is equivalent

to

[
2− xk(t)− yj(t)

]
rkj(t) + xk(t)yj(t)

(
dT
kj(t)1

T
kj(t) + dR

kj(t)1
R
kj(t)

)
≥ 1R

kj(t)

l ̸=j∑
l∈Tk

zkl(t) + 1T
kj(t)

i ̸=k∑
i∈Tj

zij(t),
(2.29a)

or

[
2− xk(t)− yj(t)

]
rkj(t) + xk(t)yj(t)

(
dT
kj(t)1

T
kj(t) + dR

kj(t)1
R
kj(t)

)
≥ rkj(t).

(2.29b)

To remove the “or” statement in (2.29), we introduce a set of binary variables skj(t), and
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(2.29) can be reformulated as

1R
kj(t)

l ̸=j∑
l∈Tk

zkl(t) + 1T
kj(t)

i ̸=k∑
i∈Tj

zij(t)−
[
2− xk(t)− yj(t)

]
rkj(t)

− xk(t)yj(t)
(
dT
kj(t)1

T
kj(t) + dR

kj(t)1
R
kj(t)

)
≤M1 · skj(t),

(2.30a)

rkj(t)−
[
2− xk(t)− yj(t)

]
rkj(t)

− xk(t)yj(t)
(
dT
kj(t)1

T
kj(t) + dR

kj(t)1
R
kj(t)

)
≤M2 · (1− skj(t)),

(2.30b)

where M1 and M2 are big constants to ensure M1 is the upper bound of LHS of (2.30a), and

M2 is the upper bound of LHS of (2.30b). As an example, we can set M1 = Nk + Nj and

M2 = rkj(t). Therefore, when skj(t) = 0, (2.30a) becomes (2.29a) and (2.30b) holds trivially.

Likewise, when skj(t) = 1, (2.30b) becomes (2.29b) and (2.30a) holds trivially.

Now only the non-linear terms in (2.30), i.e., products of variables, need to be refor-

mulated. For this purpose, we employ the Reformulated-Linearization Technique (RLT) in

[45, 46], which is specifically designed for this purpose. For non-linear terms xk(t)yj(t)1
T
kj(t)

and xk(t)yj(t)1
R
kj(t) in (2.30), they can be linearized by introducing new variables and adding

new linear constraints. To do this, define binary variables ηkj(t) = xk(t)yj(t)1
T
kj(t) and

θkj(t) = xk(t)yj(t)1
R
kj(t). Constraint (2.30) can be reformulated as

1R
kj(t)

l ̸=j∑
l∈Tk

zkl(t) + 1T
kj(t)

i ̸=k∑
i∈Tj

zij(t)−
[
2− xk(t)− yj(t)

]
rkj(t)

− ηkj(t)d
T
kj(t)− θkj(t)d

R
kj(t) ≤M1 · skj(t)

rkj(t)−
[
2− xk(t)− yj(t)

]
rkj(t)− ηkj(t)d

T
kj(t)− θkj(t)d

R
kj(t)

≤M2 · (1− skj(t)) (2.31)

ηkj(t) ≥ xk(t) + yj(t) + 1T
kj(t)− 2,
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ηkj(t) ≤ 1T
kj(t),

ηkj(t) ≤ xk(t),

ηkj(t) ≤ yj(t),

θkj(t) ≥ xk(t) + yj(t) + 1R
kj(t)− 2,

θkj(t) ≤ 1R
kj(t),

θkj(t) ≤ xk(t),

θkj(t) ≤ yj(t).

Next, to remove non-linear terms ηkj(t)dT
kj(t), θkj(t)dR

kj(t), 1R
kj(t)

∑l ̸=j
l∈Tk zkl(t) and 1T

kj(t)
∑i ̸=k

i∈Tj zij(t)

in (2.31), we introduce new variables and add new linear constraints. For ηkj(t)dT
kj(t), define

new variables αkj(t) = ηkj(t)d
T
kj(t). Since ηkj(t) ∈ {0, 1}, and 0 ≤ dT

kj(t) ≤ Nk, then the

following constraints must hold:

(ηkj(t)− 0) ·
(
dT
kj(t)− 0

)
≥ 0,

(ηkj(t)− 0) ·
(
Nk − dT

kj(t)
)
≥ 0, (2.32)

(1− ηkj(t)) ·
(
dT
kj(t)− 0

)
≥ 0,

(1− ηkj(t)) ·
(
Nk − dT

kj(t)
)
≥ 0.

Substituting αkj(t) for ηkj(t)d
T
kj(t) in the above constraints, the new constraints among

αkj(t), ηkj(t) and dT
kj(t) are

αkj(t) ≥ 0,

αkj(t) ≤ Nk · ηkj(t), (2.33)

αkj(t) ≤ dT
kj(t),

αkj(t) ≥ Nk · ηkj(t) + dT
kj(t)−Nk.
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Similarly, by letting new variables βkj(t) = θkj(t)d
R
kj(t), γkj(t) = 1R

kj(t)
∑l ̸=j

l∈Tk zkl(t) and

δkj(t) = 1T
kj(t)

∑i ̸=k
i∈Tj zij(t), all non-linear terms in (2.31) can be removed with additional

linear constraints.

Therefore, (2.30) can be reformulated as a set of mixed integer linear constraints as

follows:

For every k ∈ K, j ∈ Ik,

γkj(t) + δkj(t)− [2− xk(t)− yj(t)]rkj(t)− αkj(t)− βkj(t)

≤ (Nk +Nj)skj(t),

rkj(t)− [2− xk(t)− yj(t)]rkj(t)− αkj(t)− βkj(t)

≤ rkj(t)(1− skj(t)),

ηkj(t) ≥ xk(t) + yj(t) + 1T
kj(t)− 2,

ηkj(t) ≤ 1T
kj(t),

ηkj(t) ≤ xk(t),

ηkj(t) ≤ yj(t),

θkj(t) ≥ xk(t) + yj(t) + 1R
kj(t)− 2,

θkj(t) ≤ 1R
kj(t),

θkj(t) ≤ xk(t),

θkj(t) ≤ yj(t),

αkj(t) ≥ 0,

αkj(t) ≤ Nk · ηkj(t),

αkj(t) ≤ dT
kj(t), (2.34)

αkj(t) ≥ Nk · ηkj(t) + dT
kj(t)−Nk,
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βkj(t) ≥ 0,

βkj(t) ≤ Nj · θkj(t),

βkj(t) ≤ dR
kj(t),

βkj(t) ≥ Nj · θkj(t) + dR
kj(t)−Nj,

γkj(t) ≥ 0,

γkj(t) ≤ Nk · 1R
kj(t),

γkj(t) ≤
l ̸=j∑
l∈Tk

zkl(t),

γkj(t) ≥ Nk · 1R
kj(t) +

l ̸=j∑
l∈Tk

zkl(t)−Nk,

δkj(t) ≥ 0,

δkj(t) ≤ Nj · 1T
kj(t),

δkj(t) ≤
i ̸=k∑
i∈Tj

zij(t),

δkj(t) ≥ Nj · 1T
kj(t) +

i ̸=k∑
i∈Tj

zij(t)−Nj.

In summary, (2.17)-(2.20), (2.25), (2.26), (2.28) and (2.34) together constitute a set of

feasibility constraints for SM and IC among all nodes in a network.

Existence of Weight Matrices If the above set of feasibility constraints for SM and IC

are satisfied among all nodes, then there exists a set of weight matrices that can offer the

desired data stream transmission free of interference almost surely. We formally state this

result in the following lemma.

Lemma 2.9. Given that the channels are generic (i.e., the channel matrices are randomly

and independently generated from continuous distributions subject to rank-constraints), if



42

DoF feasibility constraints (2.17)-(2.20), (2.25), (2.26), (2.28) and (2.34) are satisfied, then

there exists a set of weight matrices, with probability 1, such that

(i) the intended data streams are transmitted, i.e.,

U†
i

[
Hij1Vj1 · · ·Hij1VjQ

]
= Izi∗ , if zij1 , · · · , zijQ > 0,

U†
i1

Hi1j

...

U†
iP

HiP j

Vj = Iz∗j if zi1j, · · · , ziP j > 0,
(2.35)

and (ii) unintended interferences are cancelled, i.e.,

U†
kHkjVj = 0,

if k ∈ K, j ∈Ik, zk∗ > 0, z∗j > 0 and zkj = 0.

(2.36)

A Proof Sketch. At Rx node j, since all channels are randomly generated from a

continuous distribution (i.e., without any special structure), the row spaces of U†
i1

Hi1j,

U†
i2

Hi2j, · · · ,U
†
iP

HiP j are linearly independent with each other with probability 1. Also, the

row space of U†
in

Hinj (for any i ∈ {1, 2, · · · , P}) and the row space of U†
kHkj are linearly

independent almost surely. Similar properties hold for Tx node i. Further, the DoF allocation

satisfying constraints (2.17)-(2.20), (2.25), (2.26), (2.28) and (2.34) guarantees that the DoF

resources are sufficient for SM and IC at each node. Then following the DoF consumption

theory (Theorem 1, Lemmas 1, 2, 3 and 4) that we developed in Section 2.3, there exists

a feasible solution (i.e., a feasible Ui or Vj) at each node satisfying SM and IC constraints

(2.35) and (2.36).

Although Lemma 2.9 guarantees the existence of a feasible set of weight matrices, finding

such a set of weight matrices is not trivial from a computational perspective, due to the inter-
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dependency among Tx weights and Rx weights. One possible approach to design weight

matrices will be given in Chapter 3. The approach in Chapter 3 can find weight matrices

that offer desired DoF scheduling and suppress the unwanted interference signal strength

close to zero (rather than absolute zero). For practice purposes, this approach is sufficient

to meet our needs.

2.6 Case Studies

In this section, we use case studies to demonstrate the DoF regions obtained by our general

model and compare them to those obtained by other models. We also apply our general

model for DoF scheduling in MIMO networks and demonstrate its efficacy. For ease of

reference, we define the following notations for the several models under comparison:

• Rank-aware shared DoF consumption model, denoted as π(R, S). This is our general

model, where DoF consumption for IC is shared between Tx node and Rx node. This

is the most efficient IC model under general channel rank conditions.

• Rank-aware non-shared DoF consumption model, denoted as π(R, /S). Under this model,

the number of DoFs consumed for IC takes into consideration of channel rank, i.e., the

number of DoFs consumed for IC is no greater than the rank of interference channel.

IC is done by consuming DoFs unilaterally at either Tx node or Rx node, but not both,

as in existing models such as [15, 16, 17, 21, 22].

• Rank-blind non-shared DoF consumption model, denoted as π(/R, /S). Under this model,

channels are considered as full rank even though they are not. IC is done by consuming

DoFs unilaterally at either Tx node or Rx node, but not both, as in [15, 16, 17, 21, 22].
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Figure 2.7: A study of DoF region for a three-link network. (a) Transmission and interference
topology, number of antennas at each node, and rank of each link. (b) DoF region obtained
under different models.

2.6.1 Comparison of DoF Regions

We now study and compare DoF regions for some cases. For the two-link example in Fig. 2.1,

we showed that the general DoF model can expand the feasible DoF region. We now consider

a few more cases.

Fig. 2.7(a) shows a three-link example, where links 1 and 2 are interfering with each

other (in dashed lines) and links 2 and 3 are also interfering with each other (in dash lines).

Suppose that the numbers of antennas at Tx nodes 1, 3 and 5 are 12, 10 and 10 while the

number of antennas at Rx nodes 2, 4 and 6 are 12, 10 and 10, respectively. Also, suppose

the rank of each channel is given as shown in Fig. 2.7(a).

By examining all possible solutions under our general DoF model, the DoF region ob-

tained by π(R, S) is shown as the most outer polyhedron in Fig. 2.7(b). In the same figure,

we also show the DoF regions of π(/R, /S) and π(R, /S), both of which are polyhedrons that
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Figure 2.8: A study of DoF region for a four-link network.

are strictly contained inside the DoF region of π(R, S). The DoF region by π(R, S) is 51.2%

and 14.3% larger than those under π(/R, /S) and π(R, /S), respectively.

Next, we study DoF region for a four-link case as shown in Fig. 2.8, where the dashed lines

represent interfering links. The number of antennas and rank of each channel are depicted

in Fig. 2.8. Since the solution of DoF region is four-dimensional, which cannot be drawn, we

use a table to present our results.

Table 2.2 lists all the boundary points of the DoF regions under models π(R, S), π(R, /S)

and π(/R, /S). A boundary point is defined as a feasible point (z∗12, z
∗
34, z

∗
56, z

∗
78) and there

exists no other feasible point (z12, z34, z56, z78) ̸= (z∗12, z
∗
34, z

∗
56, z

∗
78) such that z12 ≥ z∗12, z34 ≥

z∗34, z56 ≥ z∗56 and z78 ≥ z∗78.

From the results in Table 2.2, we find that any boundary point achieved by π(/R, /S) is

inside the DoF region of π(R, /S). Further, π(R, S) achieves the largest DoF region. Any
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Table 2.2: Boundary points and hypervolumes of DoF regions for a four-link network

π(R, S) π(R, /S) π(/R, /S)
(1, 2, 3, 0) (2, 1, 3, 1) (2, 1, 3, 1)
(1, 3, 2, 0) (2, 2, 2, 2) (2, 2, 2, 2)
(2, 1, 3, 1) (2, 3, 1, 1) (2, 3, 1, 1)
(2, 2, 2, 2) (3, 0, 3, 1) (3, 0, 3, 1)
(2, 3, 1, 1) (3, 1, 2, 2) (3, 1, 2, 2)
(3, 0, 3, 2) (3, 1, 3, 0) (3, 1, 3, 0)
(3, 1, 2, 2) (3, 2, 1, 2) (3, 2, 1, 2)
(3, 1, 3, 0) (3, 3, 0, 1) (3, 3, 0, 1)

Boundary (3, 2, 1, 2) (3, 3, 1, 0) (3, 3, 1, 0)
Points (3, 2, 2, 0) (4, 0, 2, 2) (4, 0, 2, 2)

(3, 3, 0, 2) (4, 1, 1, 3) (4, 1, 1, 3)
(3, 3, 1, 0) (4, 1, 2, 1) (4, 2, 0, 2)
(4, 0, 2, 3) (4, 2, 0, 2) (5, 0, 1, 3)
(4, 0, 3, 1) (4, 2, 1, 1) (5, 1, 0, 3)
(4, 1, 1, 3) (5, 0, 1, 3)
(4, 1, 2, 1) (5, 1, 0, 3)
(4, 2, 0, 3) (5, 1, 1, 2)
(4, 2, 1, 1)
(4, 3, 0, 1)
(5, 0, 1, 3)
(5, 0, 2, 2)
(5, 1, 0, 3)
(5, 1, 1, 2)
(5, 2, 0, 2)

Hypervolume 77.3 61.5 59.5

boundary point achieved by π(R, /S) is inside the DoF region obtained by π(R, S). Finally,

by using Matlab-based Multi-Parametric Toolbox 3 [47], we can calculate the hypervolumes

of these 4-dimensional regions, which we show in Table 2.2. The hypervolumes of the DoF

region by π(R, S) is 29.8% and 25.8% larger than those by π(/R, /S) and π(R, /S), respectively.

In the last case study for DoF region, we consider a five-link network with random topol-

ogy as shown in Fig. 2.9. The transmission and interference links, number of antennas at

each node, and rank of each link are shown in the figure. Again, we find DoF regions under

π(R, S), π(R, /S) and π(/R, /S), respectively. Table 2.3 show the boundary points and hypervol-
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Figure 2.9: A study of DoF region for a five-link network with a random toplogy.

umes achieved under the three DoF IC models. We conclude that π(R, S) offers the largest

feasible DoF region.

Table 2.3: Boundary points and hypervolumes of DoF regions for a five-link network with
random topology.

π(R,S) π(R, /S) π(/R, /S)

(0, 3, 3, 1, 2) (1, 3, 3, 3, 1) (1, 2, 4, 1, 1)

(0, 3, 4, 1, 1) (2, 0, 3, 3, 3) (1, 3, 3, 3, 1)

Boundary (0, 4, 3, 1, 1) (2, 0, 4, 2, 2) (2, 0, 3, 3, 3)

Points (0, 4, 4, 0, 1) (2, 1, 2, 4, 3) (2, 0, 4, 2, 2)

(1, 1, 4, 2, 3) (2, 1, 3, 2, 3) (2, 1, 2, 4, 3)

(1, 2, 3, 3, 2) (2, 1, 3, 3, 2) (2, 1, 3, 2, 3)

Continue on next page
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Table 2.3 (Continued)

π(R,S) π(R, /S) π(/R, /S)

(1, 3, 2, 3, 2) (2, 1, 4, 1, 2) (2, 1, 3, 3, 2)

(1, 3, 3, 3, 1) (2, 2, 2, 4, 2) (2, 1, 4, 1, 2)

(1, 3, 4, 0, 1) (2, 2, 4, 0, 2) (2, 2, 2, 4, 2)

(1, 3, 4, 1, 0) (2, 2, 4, 2, 1) (2, 2, 4, 0, 2)

(1, 4, 1, 2, 3) (2, 3, 0, 3, 3) (2, 2, 4, 2, 0)

(1, 4, 1, 3, 2) (2, 3, 1, 2, 3) (2, 3, 0, 3, 3)

(1, 4, 3, 1, 0) (2, 3, 1, 3, 2) (2, 3, 1, 2, 3)

(2, 0, 4, 2, 3) (2, 3, 3, 2, 1) (2, 3, 1, 3, 2)

(2, 1, 3, 3, 3) (2, 3, 3, 3, 0) (2, 3, 3, 2, 1)

Boundary (2, 2, 2, 3, 3) (2, 4, 1, 2, 2) (2, 3, 3, 3, 0)

Points (2, 2, 3, 2, 2) (2, 4, 2, 1, 2) (2, 4, 0, 2, 2)

(2, 2, 4, 1, 2) (2, 4, 2, 2, 1) (2, 4, 1, 1, 2)

(2, 2, 4, 2, 1) (3, 0, 2, 4, 3) (2, 4, 2, 0, 2)

(2, 3, 1, 3, 3) (3, 0, 3, 3, 2) (2, 4, 2, 1, 1)

(2, 3, 1, 4, 2) (3, 1, 2, 3, 3) (2, 4, 2, 2, 0)

(2, 3, 3, 2, 1) (3, 1, 3, 2, 2) (3, 0, 2, 4, 3)

(2, 3, 3, 3, 0) (3, 1, 4, 2, 1) (3, 0, 3, 3, 2)

(2, 3, 4, 0, 0) (3, 2, 1, 4, 3) (3, 1, 2, 3, 3)

(2, 4, 0, 3, 2) (3, 2, 3, 1, 2) (3, 1, 2, 4, 2)

(2, 4, 1, 2, 2) (3, 2, 3, 3, 1) (3, 1, 3, 2, 2)

(2, 4, 2, 1, 2) (3, 2, 4, 1, 1) (3, 1, 4, 2, 1)

(2, 4, 2, 2, 1) (3, 3, 0, 3, 2) (3, 2, 1, 4, 3)

(2, 4, 3, 0, 1) (3, 3, 1, 2, 2) (3, 2, 2, 4, 1)

Continue on next page
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Table 2.3 (Continued)

π(R,S) π(R, /S) π(/R, /S)

(3, 0, 3, 3, 3) (3, 3, 2, 1, 2) (3, 2, 3, 1, 2)

(3, 0, 4, 3, 2) (3, 3, 2, 3, 1) (3, 2, 3, 3, 1)

(3, 1, 2, 4, 3) (3, 3, 3, 0, 1) (3, 2, 4, 0, 1)

(3, 1, 3, 2, 3) (3, 4, 1, 2, 1) (3, 2, 4, 1, 0)

(3, 1, 4, 2, 2) (3, 4, 2, 1, 1) (3, 3, 0, 3, 2)

(3, 1, 4, 3, 1) (4, 0, 4, 2, 1) (3, 3, 1, 2, 2)

(3, 2, 1, 4, 3) (4, 1, 3, 3, 1) (3, 3, 2, 1, 2)

(3, 2, 2, 2, 3) (4, 1, 4, 1, 1) (3, 3, 2, 3, 1)

(3, 2, 2, 4, 2) (4, 2, 1, 4, 2) (3, 3, 3, 0, 1)

Boundary (3, 2, 3, 3, 1) (4, 2, 2, 2, 2) (3, 4, 1, 2, 1)

Points (3, 2, 4, 0, 2) (4, 2, 2, 4, 1) (3, 4, 2, 1, 0)

(3, 2, 4, 1, 1) (4, 2, 4, 0, 1) (4, 0, 2, 4, 2)

(3, 3, 0, 4, 2) (4, 3, 1, 3, 1) (4, 0, 3, 3, 1)

(3, 3, 1, 3, 2) (4, 3, 2, 1, 1) (4, 0, 4, 2, 0)

(3, 3, 2, 2, 2) (4, 4, 1, 2, 0) (4, 1, 1, 4, 3)

(3, 3, 2, 3, 1) (4, 4, 2, 1, 0) (4, 1, 2, 3, 2)

(3, 3, 3, 0, 2) (5, 0, 3, 3, 1) (4, 1, 2, 4, 1)

(3, 3, 3, 1, 1) (5, 1, 1, 4, 3) (4, 1, 3, 2, 1)

(3, 4, 0, 4, 1) (5, 1, 2, 4, 2) (4, 1, 3, 3, 0)

(3, 4, 1, 3, 1) (5, 1, 3, 2, 1) (4, 1, 4, 1, 0)

(3, 4, 2, 1, 1) (5, 2, 1, 4, 1) (4, 2, 0, 4, 2)

(3, 4, 2, 2, 0) (5, 2, 2, 2, 1) (4, 2, 1, 3, 2)

(4, 0, 2, 4, 3) (5, 2, 3, 1, 1) (4, 2, 1, 4, 1)

Continue on next page
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Table 2.3 (Continued)

π(R,S) π(R, /S) π(/R, /S)

(4, 0, 3, 4, 2) (5, 3, 0, 3, 0) (4, 2, 2, 2, 2)

(4, 0, 4, 2, 2) (5, 3, 1, 2, 0) (4, 2, 2, 4, 0)

(4, 0, 4, 4, 1) (5, 3, 2, 1, 0) (4, 2, 3, 1, 1)

(4, 1, 2, 3, 3) (4, 2, 4, 0, 0)

(4, 1, 3, 3, 2) (4, 3, 0, 3, 1)

(4, 1, 3, 4, 1) (4, 3, 1, 2, 1)

(4, 2, 1, 4, 2) (4, 3, 1, 3, 0)

(4, 2, 2, 3, 2) (4, 3, 2, 1, 1)

(4, 2, 2, 4, 1) (4, 4, 0, 2, 0)

(4, 2, 3, 1, 2) (4, 4, 1, 1, 0)

Boundary (4, 2, 4, 1, 0) (4, 4, 2, 0, 0)

Points (4, 3, 1, 4, 1) (5, 0, 1, 4, 3)

(4, 3, 2, 2, 1) (5, 0, 2, 4, 1)

(4, 3, 3, 0, 1) (5, 0, 3, 3, 0)

(4, 3, 3, 1, 0) (5, 1, 0, 4, 3)

(4, 4, 0, 2, 1) (5, 1, 1, 4, 2)

(4, 4, 0, 4, 0) (5, 1, 2, 3, 1)

(4, 4, 1, 1, 1) (5, 1, 2, 4, 0)

(4, 4, 1, 3, 0) (5, 1, 3, 2, 0)

(4, 4, 2, 1, 0) (5, 2, 0, 4, 1)

(5, 0, 3, 3, 2) (5, 2, 1, 3, 1)

(5, 0, 3, 4, 1) (5, 2, 1, 4, 0)

(5, 0, 4, 3, 1) (5, 3, 0, 3, 0)

Continue on next page
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Table 2.3 (Continued)

π(R,S) π(R, /S) π(/R, /S)

(5, 1, 1, 4, 3) (5, 3, 1, 2, 0)

(5, 1, 2, 4, 2)

(5, 1, 3, 2, 2)

(5, 1, 3, 3, 1)

(5, 1, 4, 2, 1)

(5, 2, 0, 4, 2)

(5, 2, 1, 3, 2)

Boundary (5, 2, 1, 4, 1)

Points (5, 2, 2, 3, 1)

(5, 2, 3, 1, 1)

(5, 2, 4, 0, 1)

(5, 3, 0, 3, 1)

(5, 3, 1, 2, 1)

(5, 3, 1, 4, 0)

(5, 3, 2, 2, 0)

(5, 3, 3, 0, 0)

(5, 4, 0, 2, 0)

(5, 4, 1, 1, 0)

Hypervolume 664.8 541.1 511.3

2.6.2 DoF Scheduling for Multi-link Networks

To show how the new DoF model (π(R, S)) can be used in a multi-link network, we study a

throughput maximization problem using the DoF scheduling model developed in Section 2.5.

In this study, we choose the objective of maximizing the minimum throughput (cmin) among
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Figure 2.10: Topology of a 25-node network

a set of links L in a multi-link MIMO network. This objective aims to achieve fairness among

the MIMO links while maximizing the number of SM data streams in the network. For ease

of exposition, we assume that one data stream corresponds to one unit data rate, and use

normalized unit for distance. The transmission and interference ranges are 180 and 360,

respectively. The problem formulation becomes a mixed integer linear program (MILP) as

follows:

maximize cmin

s.t. Node activity and SM constraints:(2.17)− (2.20);

IC constraints:(2.28), (2.34);

Node’s DoF constraints:(2.25), (2.26).
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Figure 2.11: Topology of a 50-node network

This MILP problem is NP-hard in general. We use an off-the-shelf solver CPLEX to solve

it. CPLEX applies branch-and-cut algorithm to find a solution [48]. In our experiment, it

usually takes less than 1 second to obtain an optimal solution.

For the above throughput maximization problem, we consider a 25-node network topology

(Fig. 2.10) and a 50-node network topology (Fig. 2.11), respectively. For the randomly

generated 25-node network, we assume each node is equipped with 16 antennas. At time t,

there are six links transmitting simultaneously. The rank of each transmitting or interfering

channel is indicated next to each channel in the figure. The optimal objective value found by

CPLEX is 8. The DoF allocation at each active node is given in Table 2.4(a). The number

of DoFs consumed for SM at each active node is 8, number of DoF consumed for IC varies,

but the total number of DoFs consumed for SM and IC is no more than 16. Table 2.4(b)

shows the details of DoF allocation for IC on each interference link. One can easily verify
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Table 2.4: DoF scheduling solution for the 25-node network

(a) DoF allocation at each active node

Active Node Status DoF Allocation
SM IC Total

N0 Tx node 8 8 16
N3 Tx node 8 8 16
N5 Tx node 8 4 12
N9 Rx node 8 8 16
N14 Tx node 8 8 16
N11 Rx node 8 6 14
N13 Rx node 8 8 16
N16 Tx node 8 8 16
N19 Rx node 8 8 16
N21 Rx node 8 6 14
N22 Tx node 8 5 13
N23 Rx node 8 4 12

(b) DoF scheduling results for IC

Interference from rij
(
dT
ij, d

R
ij

)
Tx node i to Rx node j
i = 0, j = 9 6 (2, 4)
i = 0, j = 11 6 (6, 0)
i = 3, j = 11 5 (4, 1)
i = 3, j = 13 4 (4, 0)
i = 5, j = 19 4 (4, 0)
i = 14, j = 9 4 (2, 2)
i = 14, j = 13 4 (2, 2)
i = 14, j = 19 6 (4, 2)
i = 16, j = 9 5 (3, 2)
i = 16, j = 11 4 (0, 4)
i = 16, j = 21 6 (5, 1)
i = 16, j = 23 4 (0, 4)
i = 22, j = 11 4 (3, 1)
i = 22, j = 13 6 (0, 6)
i = 22, j = 19 6 (0, 6)
i = 22, j = 21 5 (0, 5)
i = 22, j = 23 5 (5, 0)

that Theorem 2.5 is satisfied for each interference link. In particular, on interference links

0→ 9, 3→ 11, 14→ 9, 14→ 13, 14→ 19, 16→ 9, 16→ 21 and 22→ 11, DoFs are consumed

both at Tx and Rx nodes for IC; on interference links 0→ 11, 3→ 13, 5→ 19 and 22→ 23,

DoFs are consumed only at Tx nodes while on interference links 16 → 11, 16 → 23, 22 →

13, 22 → 19 and 22 → 21, DoFs are consumed only at Rx nodes. In contrast, the objective

values achieved by π(/R, /S) and π(R, /S) are 4 and 6, respectively. That is, cmin under π(R, S)

is 100% and 33.3% more than that under π(/R, /S) and π(R, /S), respectively.

For the randomly generated 50-node network (Fig. 2.11), we assume each node is equipped

with 12 antennas. There are 10 concurrently active transmitting links. For this network, we

find that the objective value achieved by our model (π(R, S)) is 7. The DoF allocation at

each active node is given in Table 2.5(a). Table 2.5(b) shows the details of DoF allocation
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Table 2.5: DoF scheduling solution of a 50-node network

(a) DoF allocation at each active node

Active Node Status DoF Allocation
SM IC Total

N0 Tx node 7 4 11
N2 Tx node 7 4 11
N4 Rx node 7 4 11
N7 Tx node 7 4 11
N9 Rx node 7 4 11
N12 Tx node 7 4 11
N14 Rx node 7 4 11
N19 Tx node 7 4 11
N20 Tx node 7 4 11
N23 Rx node 7 4 11
N24 Rx node 7 5 12
N30 Tx node 7 4 11
N35 Rx node 7 2 9
N36 Rx node 7 4 11
N37 Tx node 7 4 11
N38 Tx node 7 4 11
N39 Rx node 7 0 7
N40 Tx node 7 5 12
N41 Rx node 7 4 11
N46 Rx node 7 0 7

(b) DoF scheduling results for IC

Interference from rij
(
dT
ij, d

R
ij

)
Tx node i to Rx node j
i = 0, j = 9 5 (4, 1)
i = 0, j = 41 4 (0, 4)
i = 2, j = 9 4 (1, 3)
i = 2, j = 24 4 (0, 4)
i = 2, j = 35 4 (3, 1)
i = 7, j = 14 4 (0, 4)
i = 7, j = 35 6 (4, 2)
i = 12, j = 23 4 (4, 0)
i = 19, j = 4 4 (0, 4)
i = 19, j = 35 5 (4, 1)
i = 20, j = 24 4 (3, 1)
i = 20, j = 36 4 (1, 3)
i = 37, j = 41 4 (4, 0)
i = 38, j = 36 5 (4, 1)
i = 40, j = 23 4 (0, 4)
i = 40, j = 41 5 (5, 0)
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for IC on each interference link. In contrast, the objective values achieved by π(/R, /S) and

π(R, /S) are 4 and 6, respectively. That is cmin under π(R, S) is 75% and 16.7% more than

those under π(/R, /S) and π(R, /S), respectively.

We have also generated other random topologies and all results are consistent, i.e., cmin

under π(R, S) is larger than that under π(/R, /S) and π(R, /S). This affirms the significance of

using the new DoF model under general channel rank conditions.

2.7 Chapter Summary

Most existing DoF-based models assume channel matrix is of full-rank, which will not hold

when more and more antennas are employed at a node and the channel condition is not

ideal. This chapter addresses this fundamental limitation in existing DoF-based models by

considering general channel rank conditions. We developed a general theory on how DoFs

are consumed at Tx and Rx nodes for SM and IC in the presence of rank deficiency. In

contrast to common belief developed for full-rank channels, we showed that a shared DoF

consumption at both Tx and Rx nodes for IC is most efficient and can achieve a larger

feasible DoF region than having only Tx or Rx node consume DoFs unilaterally for IC.

We also showed that DoF consumption under the existing full rank assumption is a special

case of our DoF model for general channel rank conditions. Based on this understanding,

we explored DoF scheduling in a general multi-link MIMO network by developing a set of

constraints to characterize a feasible DoF scheduling. Through extensive case studies on

DoF regions and DoF scheduling problems, we confirmed the efficacy of the new DoF model

for general channel rank conditions. Our findings in this chapter pave the way for further

research on MIMO-based wireless networks under general channel rank conditions.



Chapter 3

On DoF Conservation in MIMO

Interference Cancellation based on

Signal Strength in the Eigenspace

3.1 Introduction

Degree-of-Freedom (DoF) based models have become widely popular in the research com-

munity for modeling, analysis, and optimization of MIMO networks [14, 15, 16, 17, 18, 19,

20, 21, 22, 50, 51, 52]. Due to their simple abstraction of MIMO’s capabilities in spatial

multiplexing (SM) and interference cancellation (IC) [10, 11, 23, 60, 61], a DoF-based model

can be used for resource allocation for SM and IC with simple “+/-” arithmetic calcula-

tions. By avoiding complex matrix manipulation in resource allocation, DoF-based models

are powerful and tractable tools to analyze MIMO’s behavior in a network setting.

Under a DoF-based model, the total number of available DoFs at a node is the same as

its number of antennas, and a node can use its DoFs for either SM or IC [14, 15, 16, 17,

18, 19, 20, 21, 22, 50, 51, 52]. Existing DoF IC models require to consume DoFs to cancel

all interference in the channel, regardless of interference strength in different directions in

the eigenspace. However, interference strength varies greatly in different directions in the

57
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Figure 3.1: A portable 8-antenna wireless testbed.

eigenspace for the same link, as we shall see in the following experiment.

An Experiment We have conducted experiments to examine channel conditions in

an indoor environment. In this experiment, we build two nodes to form an 8 × 8 MIMO

channel. Each node is built with 8 USRP N210 devices [57], a OctoClock-G CDA-2990

device [58], a 10 GbE-switch, a desktop computer, and GNU radio software package [59].

The 8 USRP devices is connected to the 10 GbE-switch via CAT5E Ethernet cables and

synchronized using the OctoClock-G CDA-2990 device (providing external 1 PPS and 10

MHz reference clock), as shown in Fig. 3.1. We install GNU Radio (in Ubuntu) on the

desktop computer to control the USRP devices. Such a MIMO node can achieve 20 MHz of

instantaneous bandwidth for wireless signal transmission and reception. We perform a set

of experiments under LOS/NLOS and different antenna spacing settings (5 cm or 10 cm) in

an indoor environment to measure the MIMO channel matrices. Then we perform singular
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(a) LOS channel with 5 cm antenna spacing (b) LOS channel with 10 cm antenna spacing

(c) NLOS channel with 5 cm antenna spacing (d) NLOS channel with 10 cm antenna spac-
ing

Figure 3.2: SVD of an 8×8 MIMO channel in our experiment. Carrier frequency is 5.8 GHz.
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value decomposition (SVD) of measured 8 × 8 MIMO channel matrices. Fig. 3.2 presents

the singular values in each direction under different settings. As shown in Fig. 3.2, strictly

deficient channel rank (lower than the number of Tx/Rx antennas) can be seen throughout

our experiments, i.e., zero or near-zero for the least singular value. More important, in many

cases, we observe that the remaining singular values vary greatly. This means signals in

some directions are much stronger than the others on the same link. This phenomenon is

mainly due to the lack of rich multipath propagation and spatial separations, leading to

correlations among the spatial channels within the MIMO link [62, 63]. As a result, the

transmit power from a node is generally not uniformly distributed in all directions of the

channel’s eigenspace.

Based on our observation from the experiment, we ask the following question: Can we

exploit such disparity in singular values (interference signal strength) to conserve DoF in

IC?

To answer this question, we must first re-examine state-of-the-art IC strategies in existing

DoF models and understand their limitations. Under existing IC schemes, all interference

at an interference channel are cancelled at either Tx side or Rx side [14, 15, 16, 17, 18, 19,

20, 21, 22, 50, 51, 52]. The number of DoFs consumed in IC is solely based on the number

of interfering data streams, regardless of interference strength in different directions in the

eigenspace. That is, given the number of transmitting data streams, the number of DoFs

required by IC under a highly correlated interference channel would be exactly the same as

that under a channel with uniformly distributed singular values, without any discrimination

on channel conditions in different directions. The weakness of such an IC strategy is that

it turns a “blind eye” on interference signal strength and considers the impact of a weak

interference signal the same as a strong interference signal. As a result, the existing IC

models may not utilize DoF resources in the most efficient manner.
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In this chapter, we propose to make a major departure from the existing approach for

DoF IC. We propose to exploit the differences in interference signal strength among different

directions by examining singular values in the eigenspace and propose to expend DoFs only to

cancel strong interference. In other words, we want to conserve precious DoFs from cancelling

the weaker ones. Specifically, we introduce the concept called “effective rank threshold.”

If the singular value (i.e., the interference strength at the corresponding direction in the

eigenspace) is greater than the threshold, then such interference will be cancelled with DoFs.

But if the singular value is smaller than effective rank threshold, it will be treated as noise

before IC. Although there might be throughput loss due to un-cancelled weak interference,

precious DoFs can be saved to support more data streams which in return improves network

throughput. The main contributions of this chapter are summarized as the following:

• This is the first work on DoF IC models that exploits interference signal strengths in

the eigenspace. Existing DoF models cancel interference with precious DoFs on all

directions in the eigenspace. Instead, we propose to perform IC with DoFs only on

those directions with strong signals in the eigenspace.

• We introduced the concept of effective rank threshold to differentiate strong and weak

interference in different directions in the eigenspace on an interference link. Based

on this effective rank threshold, IC will only be performed for strong interference

corresponding to large singular values in the eigenspace, while weak interference will

be treated as noise in throughput calculation.

• We investigate the fundamental trade-off between throughput and effective rank thresh-

old, using a general MU-MIMO network. Through simulation results, we show that

there exists an optimal trade-off between throughput and effective rank threshold. We

show that the network throughput under optimal effective rank threshold setting is
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considerably higher than that under existing DoF models.

• To ensure our new IC model is feasible at the PHY layer, we propose an algorithm to

determine weights for all Tx and Rx nodes that can offer our desired DoF allocation.

Through an iterative process, our algorithm can successfully find the beamforming

weights for all Tx and Rx nodes such that the strong interferences beyond the effective

rank threshold can be suppressed close to zero, thus ensuring the feasibility of our new

IC model.

The remainder of this chapter is organized as follows. In Section 3.2, we use a motivating

example to illustrate our new IC idea. Section 3.3 shows how to determine the effective

channel rank of a link. In Section 3.4, we present the DoF IC model based on effective

channel rank. Section 3.5 analyzes the trade-off among total network throughput, DoFs for

SM, and effective channel rank. In Section 3.6, we develop an algorithm that can find Tx

and Rx weights at each node to ensure feasibility at PHY layer. In Section 3.7, we review

related works on DoF IC models. Section 3.8 concludes this chapter.

3.2 A Motivating Example

In this section, we use a motivating example to illustrate our main idea. Considering a

simple two-cell MIMO network shown in Fig. 3.3. There are two APs (AP1 and AP2) and

two users (u1 and u2). Suppose each node (AP or user) is equipped with 12 antennas. AP1

transmits z11 data streams to user u1 (marked with solid arrow lines) which interfere with

user u2 (marked with dashed arrow lines). Likewise, AP2 transmits concurrently z22 data

streams to user u2. For the time being, let’s neglect the interference from AP2 to user u1.1

1Such weak interference will be considered in throughput calculation (see Section 3.5).
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Figure 3.3: A motivating example with two APs and two users.

Consider the interference channel H12 in Fig. 3.3. We use the Kronecker channel model

to characterize the channel correlations [63]. We can write H12 as H12 = R1/2
tx HwR1/2

rx ,

where Hw is an 12×12 random matrix with zero-mean i.i.d. complex Gaussian entries, R1/2
tx

(R1/2
rx ) is the 12×12 square root matrix of the transmit (receiver) antenna correlation matrix.

The (i, j)-th element in the correlation matrix Rtx and Rrx is calculated as ρ
|i−j|
tx and ρ

|i−j|
rx ,

where ρtx ∈ [0, 1) and ρrx ∈ [0, 1) represent the level of correlation between any two adjacent

antennas (in a linear antenna array) at the respective Tx and Rx nodes [64, 65]).

For different values of ρtx and ρrx, we can simulate the expectations of singular values

σ of H†
12H12, which we show in Fig. 3.4. It is easy to see that for any given value of ρtx

and ρrx, the expectations of singular values vary significantly, which is consistent with our

experimental result for the 8 × 8 MIMO channel case in Fig. 3.2. Here, a high singular

value indicates that a large portion of AP1’s power is projected into the direction of the

corresponding singular vector. Likewise, a close-to-zero singular value indicates a close-to-

zero portion of AP1’s power is projected into the direction of the corresponding singular

vector. When the values of ρtx and ρrx increases (i.e., with increased channel correlation),

more and more expectations of singular values diminish toward zero.2

2Apart from correlation, singular values can also be zero due to the presence of “key-hole” effect [30, 31].
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Figure 3.4: Simulation results of expectations of singular values E[σ] under different levels
of correlation (ρtx and ρrx).
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Figure 3.4 suggests that the interference strength varies significantly in different directions

in its eigenspace. Under traditional IC scheme (see, e.g., [14, 15, 16, 17, 18, 19, 20, 21, 22, 50,

51, 52]), all interference from AP1 to u2 shall be cancelled by either AP1 (Tx side, using z22

DoFs) or u2 (Rx side, using z11 DoFs). This approach does not differentiate strong and weak

interferences in different directions and thus blindly cancels them all with precious DoFs.

To explore this potential opportunity, we propose to exploit the difference of interference

power strength in each direction and only cancel the strong interference with DoFs whiling

treating the weak ones just as noise. In other words, by exploiting the disparity in interference

signal strengths in the eigenspace, we could conserve precious DoFs from cancelling the

weaker ones.

Specifically, as shown in Fig. 3.4 ((c) and (d) in particular), the vast majority interference

power only appears in the directions corresponding to the high singular values of H12, which

can be properly cancelled by using a small number of DoFs. But the remaining weak (small)

interference power in these figures is better treated as noise, rather than to be cancelled

with precious DoFs. Although there may be some throughput loss due to un-cancelled

weak interference, the DoFs savings could be used to transport more data streams (SM). By

judiciously exploiting the threshold used to differentiate strong and weak interference, one

could achieve a better design objective (e.g., more data streams and/or higher throughput)

than blindly cancelling all interferences (weak or strong) with DoFs, as in existing approaches

[14, 15, 16, 17, 20, 21, 22, 50, 51, 52].

To show the potential benefits, suppose we set z11 = 12 in the example in Fig. 3.3.

Following traditional IC approach (i.e., no differentiation between strong and weak interfer-

ences), AP2 cannot send any data stream to user u2 as there is no DoF left at user u2 to

cancel interference from AP1. On the other hand, if u2 treats the interference coming from

AP1 in the direction corresponding to the least singular value of H12 as weak interference
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and does not use a DoF to cancel it, then it only needs to use 11 DoFs for IC from AP1 to

u2 and use the remaining one to support one data stream transmission from AP2 to u2. Fol-

lowing the same token, as more interferences from AP1 (corresponding to the least singular

values) are treated as weak interferences and thus not to be cancelled with DoFs, more DoFs

could be saved and be used to support SM from AP2 to u2.

As shown in Fig. 3.5(a), by increasing interference threshold η (more on this notation

in Section 3.3) to differentiate strong and weak interferences, more DoFs can be conserved

from cancelling a fewer number of weak interferences at u2 and more data streams (SM) can

be sent from AP2 to u2. Fig. 3.5(b) shows the total network throughput (in bits/s/Hz) on

all data streams (from AP1 to u1 and AP2 to u2) as a function of interference threshold

η. Clearly, there is a trade-off among total network throughput, DoFs for SM, and effective

channel rank. In particular, there is an optimal knee point that offers the best trade-off

between total throughput and effective channel rank (determined by interference threshold

η).

3.3 Determine Effective Channel Rank of a Link

In this section, we present the system model and introduce the concept of “effective channel

rank.” Consider a general MU-MIMO network (see Fig. 3.6) with a set KT of Tx nodes and

a set KR of Rx nodes, respectively. Each Tx node i ∈ KT and Rx node j ∈ KR are equipped

with NT
i and NR

j antennas, respectively. Under MU-MIMO, a Tx node is able to transmit to

multiple Rx nodes concurrently while each Rx node can receive from at most one Tx node.

For a Tx node i ∈ KT, denote KR
i as the set of its Rx nodes. For an Rx node j ∈ KR, denote

s(j) as its source Tx node. Table 3.1 lists key notations in this chapter.

We assume all links in the network are controlled centrally and all channel state infor-
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Table 3.1: Notations in Chapter 3

Symbol Definition
dR
ij Number of DoFs consumed by Rx node j to cancel

interference from AP i to Rx node j
dT
ij Number of DoFs consumed by Tx node i to cancel

interference from Tx node i to Rx node j
Hij Channel matrix from Tx node i to Rx node j
KT Set of Tx nodes
KR Set of Rx nodes
KR

i Set of Rx nodes for Tx node i
Lij Pathloss from Tx node i to Rx node j
NR

j Number of antennas at Rx node j
NT

i Number of antennas at Tx node i
Pi Transmission power at Tx node i
rij Effective rank of Hij

s(j) Rx node j’s serving Tx node
Ui Weight matrix at Tx node i
Vj Weight matrix at Rx node j
zi∗ Total number of outgoing data streams at Tx node i
z∗j Total number of incoming data streams at Rx node j
zij Number of data streams from Tx node i to Rx node j
η Normalized effective rank threshold
X[∗f ] The f -th column of matrix X
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Figure 3.5: Total DoFs for SM and throughput performance as a function of threshold setting
(used to differentiate strong and weak interferences). (a) Total number of data streams in
the network. (b) Network throughput.
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Figure 3.6: A general MU-MIMO network with multiple Tx nodes and Rx nodes.

mation (CSI) is sent to a central controller. CSI can be obtained by either explicit channel

feedback and implicit channel feedback [2, 53, 54, 55, 56]. For explicit feedback, the CSI

is compressed at each Rx node and then the compressed CSI is sent back to the Tx node.

For implicit feedback, we can take advantage of channel reciprocity and use the backward

CSI as the forward CSI; channel sounding can be conducted for the backward channel and

a relative calibration is performed for each node to maintain channel reciprocity.

3.3.1 Effective Rank of A Single Interference Link

We first differentiate strong and weak interferences on a single interference link and use

this differentiation to determine its effective rank. For a single interference link k → j,

instead of dealing directly with the fast fading channel matrix Hkj ∈ CNT
k ×NR

j , we take into

consideration of transmit power and path loss fading. Denote Pk as the transmit power at

Tx node k and Lkj as the path loss from Tx node k to Rx node j. Define Ykj as an NR
j ×NR

j

symmetric matrix by:
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Ykj =
PkLkj

NT
k

H†
kjHkj, (3.1)

where X† is the conjugate transpose of X. In matrix Ykj, each entry represents the received

interference power on the corresponding channel on interference link k → j. We will use Ykj

to determine the effective rank of interference link k → j.

To differentiate strong and weak interferences, we employ the so-called best rank-r ap-

proximation of a matrix [66]. Under this approximation, Ykj is decomposed through an SVD

process and we retain only the first r largest singular values and their corresponding singular

vectors and use them as an approximation.

Fact 1. For a matrix A ∈ Cm×n(m ≥ n), denote Ã as a rank-r matrix approximation of A

with r ∈ {1, 2, · · · , n}. The optimal solution to minimum approximation error

min
Ã∈Cm×n

∣∣∣∣∣∣A− Ã
∣∣∣∣∣∣

F
, s.t. rank(Ã) = r (3.2)

where || · ||F denotes Frobenius norm, is

Ã =
r∑

i=1

σiuiv
†
i ,

where σi, ui, and vi are singular value, left and right singular vectors respectively from the

SVD of A, i.e., A =
∑n

i=1 σiuiv
†
i and σ1 ≥ σ2 ≥ · · · ≥ σn. The minimum approximation

error (i.e., optimal objective value for (3.2)) is
√∑n

i=r+1 σ
2
i .

The SVD process in Fact 1 clearly shows the relative strength of interferences in different

directions. The larger the singular value is, the stronger the interference in that direction.

Based on the desired level of approximation error, we can approximate a rank-n matrix A

by a rank-r matrix Ã with the r-strongest singular values of A through (1).
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To apply best rank-r approximation on a single interference link Ykj, define θ as a

threshold for singular values and denote rkj as the effective channel rank of Hkj. Then rkj

is given by

rkj =

NR
j∑

l=1

1 {σl(Ykj) ≥ θ} , (3.3)

where σl(Ykj) is the l-th singular value based on SVD of Ykj, and 1{event} is an indicator

function, which is 1 if event is true and 0 otherwise.

3.3.2 Interference Threshold at an Rx Node

Note that in a network with a set KT of Tx nodes and a set KR of Rx nodes, the interference

threshold θ in (3.3) should be dependent upon the Rx node of this interference link. This

is because the received intended signal power (from its intended transmitter) differs at each

Rx node. As an example, consider Rx nodes j and l in Fig. 3.6. Rx node j is closer to its

(intended) Tx node i than Rx node l to its (intended) Tx node k. For the same transmit

power at i and k, Rx node j will receive a higher signal power (from its intended transmitter)

and could thus tolerate a stronger interference. Then, for the interference links at Rx node j

(k → j and m→ j), the threshold used to differentiate strong and weak interference should

be larger than that used to differentiate stronger and weak interference on interference links

(i→ l and m→ l) for Rx node l. Based on the above discussion, for an Rx node j, denote θ∗j

as the threshold for singular values on its interference link. Then we should have θ∗j > θ∗l.

In this chapter, instead of optimizing the settings of θ∗j for each individual Rx node j

based on its (intended) received power level at Rx node j, we introduce a common scaling

factor η across all receive nodes to normalize its received power and only optimize the setting

of this scaling factor for the entire network. We define η as follows:



72

θ∗j = η
Ps(j)Ls(j)j

NT
s(j)

.

Based on this definition of common scaling factor η, the effective rank rkj of Hkj can

be determined by the number of Ykj’s singular values that are greater than or equal to the

threshold η
Ps(j)Ls(j)j

NT
s(j)

. That is,

rkj =

Nj∑
l=1

1

{
σl(Ykj) ≥ η

Ps(j)Ls(j)j

NT
s(j)

}
, k ∈ KT, j ∈ KR, j ̸∈ KR

k . (3.4)

Note that any negligible interference for IC will be treated as noise in the throughput

calculation (see Section 3.5).

3.3.3 Effective Rank of An SM Link

For SM from node i to node j (intended transmission), the effective channel rank of Hij can

be determined by

rij =

NR
j∑

l=1

1

{
σl

(
H†

ijHij

)
≥ θSM

}
, i ∈ KT, j ∈ KR

i ,

where θSM is the rank threshold for singular values on SM link i → j. Note that the DoF

savings by exploiting strong and weak interference can be made available for SM (more

independent data streams) or diversity, both of which have the potential to increase the

throughput. To focus on using DoFs for IC at interference links, we do not explore SM-

diversity trade-off in this chapter. Therefore, we will try to transmit more data streams as

long as we have DoFs available for SM and assume θSM is a given constant throughout the

chapter.
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3.4 IC Based on Effective Channel Rank

In the last section, we showed how to differentiate strong and weak interference at an Rx

node by setting a threshold for singular value and use this threshold to determine effective

channel rank. In this section, we show how to perform IC (for strong interference only) in

an MU-MIMO network based on this effective channel rank.

Note that DoF allocation for IC cannot be done arbitrarily and must follow certain rules

to be feasible. By “feasible”, we mean that all the strong interference can be cancelled at the

PHY layer. Section 3.6 will present details on PHY layer feasibility for our DoF allocation.

If DoF allocation for IC and SM is feasible at the PHY layer, then multiple data streams

can be transmitted concurrently while all strong interference under best rank-r channels

is cancelled. The remaining (un-cancelled) weak interference will be treated as noise and

included in the throughput calculation in Section 3.5.

We employ the DoF-based IC model in Chapter 2 to perform DoF allocation. In Chap-

ter 2, the rank of a channel is assumed to be given a priori. But in this chapter, the rank of

a channel is a function of effective rank threshold.

3.4.1 Modeling of DoF Constraints

DoF Constraints for SM For an intended transmission from Tx node i to Rx node j,

denote the number of data streams on this link as zij. Denote xi(t) as a binary variable to

indicate whether Tx node i is active or not at time t, i.e., xi(t) = 1 if Tx node i is transmitting

at time t and 0 otherwise. Likewise, denote yj(t) as a binary variable to indicate whether

Rx node j is active or not at time t, i.e., yj(t) = 1 if Rx node j is receiving at time t and 0

otherwise.
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If Tx node i is transmitting, then the total number of data streams transmitted to

different receivers (under MU-MIMO) cannot exceed the total number of antennas at node

i (i.e., NT
i ). We have

xi(t) ≤
∑
j∈KR

i

zij(t) ≤ NT
i xi(t), i ∈ KT. (3.5)

Similarly, if Rx node j is active at time t, then the total number of DoFs used for reception

(from only one transmitter under MU-MIMO) cannot exceed the number of antennas at node

j (i.e., NR
j ). We have

yj(t) ≤ zij(t) ≤ NR
j yj(t), i ∈ KT, j ∈ KR

i . (3.6)

Taking into consideration of the effective rank of the SM link i → j, the number of

data streams that can be sent on this SM link cannot exceed the link’s effective rank (see

Section 3.3). We have

zij(t) ≤ rij(t), i ∈ KT, j ∈ KR
i . (3.7)

For Rx node l that is not Tx node i’s intended receiver, i.e., l ̸∈ KR
i , the transmission at

Tx node i is considered interference (instead of SM) and there is zero data streams over this

link. We have

zil(t) = 0, k ∈ KT, l ∈ KR, l ̸∈ KR
i . (3.8)

DoF Constraints for IC For interference from Tx node k to Rx node j, denote dT
kj(t) as
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the number of consumed DoFs at Tx node k and dR
kj(t) as the number of consumed DoFs at

Rx node j that are needed to cancel this interference. Based on Chapter 2, a collaborative

DoF consumption at both interfering Tx node k and Rx node j is the most efficient approach

for IC when the rank of the interference channel is not full, as in our case. Denote 1T
kj and

1R
kj as two binary variables to indicate whether Tx node i (or Rx node j) consumes any DoFs

for IC from k to j. That is, 1T
kj = 1 if Tx node k consumes DoFs for IC from k to j, 1T

kj = 0

otherwise; 1R
kj = 1 if Rx node j consumes DoFs for IC from k to j, 1R

kj = 0 otherwise.

If xk(t) = 1 and yj(t) = 1, then

dT
kj(t)1

T
kj(t) + dR

kj(t)1
R
kj(t) =

min

1R
kj(t)

l ̸=j∑
l∈KR

k

zkl(t) + 1T
kj(t)

i ̸=k∑
i∈KT

zij(t), rkj(t)

 ,
(3.9a)

(
1T
kj(t),1

R
kj(t)

)
̸= (0, 0), k ∈ KT, j ∈ KR (3.9b)

That is, the interference from k to j can be cancelled by consuming DoFs on Tx node k

only (when
(
1T
kj(t),1

R
kj(t)

)
= (1, 0)), Rx node only (when

(
1T
kj(t),1

R
kj(t)

)
= (0, 1)), or both

Tx and Rx nodes (when
(
1T
kj(t),1

R
kj(t)

)
= (1, 1)). Constraint (3.9) can be reformulated as

mixed integer linear (MIL) constraints, which is omitted here to conserve space.

DoF Constraints at A Node A node can use its DoFs for SM and/or IC, as long as

the total number of consumed DoFs does not exceed the total available DoFs at the node.

We consider DoF constraints at Tx and Rx nodes separately. If node i is an active Tx node,

we have

if xi(t) = 1, then
∑
j∈KR

i

zij(t) +
∑
l∈KR

dT
il(t)1

T
il(t) ≤ NT

i , i ∈ KT. (3.10)
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If node j is an active Rx node, we have

if yj(t) = 1, then
∑
i∈KT

zij(t) +
∑
k∈KT

dR
kj(t)1

R
kj(t) ≤ NR

j , j ∈ KR. (3.11)

For constraint (3.10), it can be reformulated by incorporating binary variable xi(t) into

the expression as follows:

∑
j∈KR

i

zij(t) +
∑
l∈KR

dT
il(t)1

T
il(t) ≤ NT

i xi(t) + (1− xi(t))B, i ∈ KT, (3.12)

where B is a large constant, which can be set as B =
∑

i∈KT NT
i +

∑
j∈KR NR

j to ensure that

B is an upper bound of
∑

l∈KR dT
il(t).

Similarly, constraint (3.11) can be reformulated as follows:

∑
i∈KT

zij(t) +
∑
k∈KT

dR
kj(t)1

R
kj(t) ≤ NR

j yj(t) + (1− yj(t))B, j ∈ KR. (3.13)

Constraints (3.12) and (3.13) can be reformulated as mixed integer linear constraints, which

are omitted here to conserve space.

3.4.2 An Example

As an example to illustrate the relationship between total achievable data streams (SM) in

the network and η (the common scaling factor to differentiate strong and weak interference

and effective channel rank), consider the simple MU-MIMO network in Fig. 3.7. Suppose

our objective is to maximize the sum of log of all data streams (SM) in the network with

the consideration of fairness [68]. Then we have the following optimization problem:
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max
∑
i∈KT

∑
j∈KR

log(zij)

s.t. SM constraints: (3.5)− (3.8);

IC constraints: (3.9);

Node’s DoF constraints: (3.12), (3.13),

where zij, d
T
kj, d

R
kj,1

T
kj and 1R

kj are variables while all other symbols are constants.

As discussed earlier, the constraints in the above formulation can be reformulated into

mixed integer linear constraints. However, the objective function (sum of log) remains non-

linear. Fortunately, the sum of log objective can be reformulated (along with the MIL

constraints) as a second order conic program (SOCP) [69]. Off-the-shelf optimization tools,

such as Gurobi [70], can solve this SOCP (with integer variables) optimally.

Some numerical results follow. Suppose the six Tx nodes in Fig. 3.7 are uniformly gen-

erated in a 400m× 400m space, with a minimum of 90m distance between every two nodes.

For each Tx node, there are two Rx nodes uniformly generated with a radius of 70m of the

Tx node. Unless otherwise, all parameters are fixed as follows. Each Tx and Rx nodes are

equipped with 16 and 12 antennas, respectively. Assume a fixed (constant) transmit power

for each Tx node i, with SNR Pi/n
2
0 = 80 dB, where n2

0 is the white noise power. Path loss is

modeled as Lij = D−3
ij , with Dij being the distance between Tx node i and Rx node j. Fast

fading is modeled by Kronecker channel model, i.e., Hij = R1/2
tx HwR1/2

rx , where R1/2
rx is an

NR
j × NR

j matrix with each entry containing square root of the receive antenna correlation

while R1/2
tx is an NT

i × NT
i matrix with each entry containing square root of the transmit

antenna correlation. Hw is an NT
i ×NR

j random matrix with its entries containing zero-mean

i.i.d. complex Gaussian random numbers. The (k, l)-th element of the correlation matrix
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Figure 3.7: An instance of MU-MIMO network topology.

Rrx and Rtx is taken here as ρ|k−l| with ρ ∈ {0.2, 0.4, 0.6}. The rank threshold for SM links

θSM is set to be 1.

Fig. 3.8 shows the effective ranks on three representative links (e→ n, e→ k and e→ g)

as a function of rank threshold scaling factor η (in log scale). We draw η in log scale since

singular value distribution is more like a log-shape other than a linear shape (see Fig. 3.4).

As expected, all effective channel ranks are decreasing steadily. For ρ = 0.2 shown in Fig.

3.8(a), note that ren remains full rank until η becomes greater than 0.4 while rek and reg

starts to decrease when η starts to increase from 0. This is because Rx node n is close

to the interfering Tx node e than k and g and thus experience much stronger interference

from Tx node e than k and g. On the other hand, reg drops very fast because Rx node g

is further away from Tx node e than n and k. When η is greater than 0.3, reg = 0 and

Rx node g is considered out of interference range of Tx node e. For ρ = 0.4 shown in Fig.
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3.8(b), effective ranks have a similar trend but drop faster than those when ρ = 0.2, since the

higher channel correlation causes interference strength more concentrated in few directions

(see Fig. 3.4). A similar conclusion can be found for ρ = 0.6, and we omit the figure to

conserve space. Clearly, the setting of rank threshold scaling factor η has different effect on

different interference links in terms of effective rank determination.

Fig. 3.9 shows the total number of data streams in the network from our optimal objective

(averaged over 10 random network instances similar to Fig. 3.7). As shown in this figure,

for a given ρ, the total number of data streams steadily increases from 24 to 96 and then

flattens out. This is because the higher the rank threshold scaling factor η, the lower the

effective channel ranks on interference links in the network. As a result, fewer DoFs are

needed to cancel interferences and more DoFs can be allocated for SM. When η is greater

than 10, the number of data streams cannot be further increased, either there is no room to

further decrease of effective ranks on interference links (all effective ranks are 0), or further

decrease of effective ranks on interference links will not improve objective value, due to the

bounds on effective ranks on SM links. We also observe that for the same rank threshold η,

a higher number of data streams can be achieved for higher channel correlation level, due to

lower effective ranks.

The above example demonstrates the impact of effective rank threshold setting on the

number of data streams that can be transported in the network. However, a larger number of

data streams in the network does not necessarily mean a higher throughput (in bits/s/Hz),

due to un-cancelled interference (considered as noise) and channel hardening effect [71]. In

the next section, we investigate the impact of effective rank threshold setting on achievable

throughput in the network.
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Figure 3.8: Effective ranks on interference links versus rank threshold scaling factor η.
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Figure 3.9: Total number of data streams in the network.

3.5 Throughput Calculation and Optimal Throughput-

η trade-off

In this section, we calculate the actual throughput for a given DoF allocation for SM and IC.

Then we explore the trade-off between throughput maximization and interference threshold

scaling factor η.

3.5.1 Throughput Calculation

Assume a DoF allocation for SM and IC is feasible for an MU-MIMO network. Then the

network throughput is the sum of the throughput achieved on each data stream under SM.

So the key question is how to calculate throughput for each SM stream.
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For each data stream, we can calculate its throughput by finding its SINR and then

apply the Shannon capacity formula. The only subtlety here is that the SINR calculation

should include all interferences that this data stream is suffering from, which includes all

un-cancelled interference at PHY layer and white noise. To do this, we need to go to the

PHY layer and work with the transmit and receive vectors for each data stream. Denote

Ui ∈ CNT
i ×zi∗ as the weight matrix at Tx node i with zi∗ outgoing SM data streams and

Vj ∈ CNR
j ×z∗j as the weight matrix at Rx node j with z∗j incoming SM data streams. Assume

we have additive white Gaussian noise (AWGN) with zero mean and variance n2
0. To satisfy

the transmit power constraint at node i and decoding power constraint at node j, the weight

matrices must satisfy

Tr(UiU†
i ) = 1, Tr(VjV†

j) = 1, (i ∈ KT, j ∈ KR).

In Section 3.6, we will show one implementation on how to derive Ui and Vj based on a

DoF allocation while guaranteeing PHY layer feasibility. For now, let’s assume the Ui’s and

Vj’s are already found. Define the partition of matrix Ui as [Ui,j1 Ui,j2 · · · Ui,jM ], where

j1, j2, · · · , jM are Tx node i’s M recipients, i.e., {j1, j2, · · · , jM} = KR
i , then Ui,j1 ,Ui,j2 , · · · ,Ui,jM

are sub-weights corresponding to Rx nodes j1, j2, ..., jM , with dimensions NT
i × zij1 , N

T
i ×

zij2 , · · · , NT
i × zijM (zi∗ =

∑M
n=1 zijn), respectively.

For any j ∈ KR
i , the signal-to-interference-plus-noise ratio (SINR) of the f -th stream on

link i→ j is then given by

SINRf
ij =

γf
ij

V[∗f ]†
j QjV[∗f ]

j − γf
ij

, (3.14)
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where (·)[∗f ] is the f -th column of (·) and

γf
ij = PiLijV[∗f ]†

j H†
ijU

[∗f ]
i,j U[∗f ]†

i,j HijV[∗f ]
j ,

Qj = n2
0INj

+
∑
k∈KT

PkLkjH†
kjUkU†

kHkj.

Finally, the network throughput in bits/sec/Hz is given by

C =
∑
i∈KT

∑
j∈KR

i

zij∑
f=1

log2

(
1 + SINRf

ij

)
. (3.15)

3.5.2 Optimal Throughput-η Trade-off

From the network throughput expression (3.15), it is evident that there exists a trade-off

between throughput and η. When η increases, more DoFs will be made available to support

a larger number of SM data streams zij (as shown in Section 3.4) and we have a larger

value of zij in (3.15) to increase throughput. On the other hand, higher η means more weak

interferences are not cancelled and left in the network. This will decrease the SINR term in

(3.15) and decrease throughput. Thus, we have a trade-off. Unfortunately, due to the non-

convex nature of (3.15), a closed-form expression to explore optimal throughput-η trade-off

remains unknown. In the rest of this section, we use simulation study to explore an optimal

throughput-η trade-off and gain insights.

We use the same MU-MIMO network setting in Section 3.4.2. We randomly generate

10 instances and evaluate the average performance among the 10 instances. Fig. 3.10 shows

network throughput vs. η under different channel correlation levels ρ. Note that η = 0

stands for traditional DoF IC which uses DoFs to cancel interference indiscriminately in all

directions in the eigenspace. For ρ = 0.2, we can see network throughput keep increasing

until threshold η = 0.3, as more data streams are supported (see Fig. 3.9) while weak (un-
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Figure 3.10: Performance of network throughput under increasing threshold η. Kronecker
model for both intended and interference channels.

cancelled) interference has negligible impact (Section 3.6 will show the interference level

versus η). However, as we further increase η, throughput decreases due to un-cancelled

interference. Throughput under η = 0.6 can be as good as that with traditional IC (i.e.,

η = 0). By increasing η larger than 0.6, even though more DoFs can be made available for

SM, un-cancelled interference will play a dominant role and will result in worse performance

than traditional IC. For ρ = 0.4 and 0.6, we can see a similar trade-off. For this network

setting, the optimal effective rank threshold η should be set to η = 0.3, 0.2 and 0.12 for

ρ = 0.2, 0.4 and 0.6, respectively. The peak throughput (achieved at optimal η) is 22.3%,

16.25%, 12.71% more than that achieved at η = 0 for ρ = 0.2, 0.4 and 0.6, respectively. We

also note that with a higher channel correlation level ρ, network throughput becomes lower.

This is because high channel correlation also hinders MIMO’s SM capability, which results

in a lower throughput performance.
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In the scenarios where intended links present low correlations while interference links

present high correlations (e.g., high correlation caused by poor scattering or “key-hole” effect

[30, 31]), our rank-based IC can be even more beneficial. To demonstrate this, we consider

two different scenarios. First, fast fading for intended links is modeled by Rayleigh channel

while fast fading for interference links is modeled by Kronecker model. Second, fast fading

for intended links is modeled by Rayleigh channel while fast fading for interference links is

modeled by reduced-rank model [28, 72, 73].

For Fig. 3.11(a), fast fading for intended links is modeled by Rayleigh channel, i.e.,

Hij = Hw (i ∈ KT, j ∈ KR
i ), while fast fading for interference links is modeled by Hij =

R1/2
tx HwR1/2

rx (i ∈ KT, j ∈ KR, j ̸∈ KR
i ), with ρ ∈ {0.4, 0.6, 0.8}. As shown in Fig. 3.11(a),

network throughput follows a similar trend as Fig. 3.10 as we increase effective rank threshold

η. However, we observe that for a higher channel correlation level ρ at interference links, we

obtain a much higher throughput gain by setting optimal effective rank threshold η. Specif-

ically, the peak throughput (achieved at optimal η) is 15.82%, 24.44%, 50.48% more than

that achieved at η = 0 for ρ = 0.4, 0.6 and 0.8, respectively. This is because well-conditioned

intended channels have the capability to achieve higher throughput when carrying more data

streams, thus can fully benefit from exploiting interference signal strength in the eigenspace

on correlated interference channels.

Different from Fig. 3.11(a), Fig. 3.11(b) shows the results that fast fading for intended

links is still modeled by Rayleigh channel while interference links are modeled by reduced-

rank channel model [72, 73]. Reduced-rank channel model generates channels by letting

Hij = AB, where A is an NT
i × r full-rank matrix with its entries containing zero-mean

i.i.d. complex Gaussian random variables, and B is a r ×NR
j full-rank rectangular unitary

matrix, where r ≤ min{NT
i , N

R
j }. This model can guarantee that the channel is of rank

r (with probability 1). In our simulation experiment, the rank of an interference channel
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Figure 3.11: Performance of network throughput under increasing threshold η. (a) Kronecker
model for interference channels and Rayleigh model for intended channels. (b) Rank-reduced
channel model for interference channels and Rayleigh model for intended channels.
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r is randomly chosen from {4, 5, · · · , 8} and {6, 7, · · · , 10}, respectively. Fig. 3.11(b) also

presents the throughput-η trade-off. We observe that the highest network throughput is

obtained when effective rank threshold η is equal to 0.3 in both setting, which is 40.95%

and 31.00% more than that achieved at η = 0 for r ∈ {4, 5, · · · , 8} and r ∈ {6, 7, · · · , 10},

respectively. The trade-off in Fig. 3.10 and 3.11 reaffirms that blind IC in all its directions

is not efficient from a throughput perspective.

3.6 Physical Layer Feasibility

In Section 3.5 we assumed feasible weight matrices Ui and Vj at the PHY layer are given

a priori corresponding to a particular DoF allocation. In this section, we show how to find

such weight matrices at each node.

As expected, finding these feasible at the PHY layer for an MU-MIMO network is not

trivial. First and foremost, the Tx weights and Rx weights are interdependent on each

other. That is, the Tx weights for IC depend on the corresponding Rx weights, while the Rx

weights for IC also on the corresponding Tx weights. There is no established guideline in the

literature on how to find feasible weight matrices corresponding to a DoF allocation such that

interference can be cancelled completely. Second, since we are exploring effective channel

ranks in this chapter and some weak interferences are not cancelled by DoFs, one cannot

guarantee the existence of feasible Ui and Vj to achieve perfect (100%) interference-free

transmission. This makes finding feasible weight matrices even more challenging.

In the rest of this section, we propose an iterative algorithm that is able to implement the

DoF allocation (based on the DoF solution for a specific objective as shown in Section 3.4),

where the strong interferences in best rank-r channels are “almost” cancelled. By “almost”,

we mean the remaining signal strength in the directions of strong interferences is close to
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zero.

3.6.1 Basic Idea

The main idea of our algorithm is as follows. For a given DoF allocation, we have the data

stream allocation (i.e. zij) on each SM link in the network, which we can use to determine

the dimension for each Ui and Vj. Then, under the original channel matrix Hij, to cancel

all the inter-stream and inter-node interference, we must have

U†
i [Hij1Vj1 Hij2Vj2 · · · ] = Λzi∗ , i ∈ KT, j1, j2... ∈ KR

i , (3.16)

U†
iHijVj = 0, i ∈ KT, j ∈ KR, j ̸∈ KR

i , (3.17)

where Λzi∗ is a zi∗ × zi∗ diagonal matrix with zi∗ non-zero diagonal elements.

Although (3.16) can always be satisfied for all SM links by standard ZF design, (3.17),

however, cannot be satisfied for all i ∈ KT, j ∈ KR, j ̸∈ KR
i if there are not enough remaining

DoFs to cancel those weak interference on some links. Recognizing that not all interference

can be perfectly cancelled, we focus our goal on cancelling all the strong interference, which

is based on the best rank−r approximate channel H̃ij =
∑rij

l=1 σlulv
†
l via SVD of Hij. That

is, we want to have

U†
iH̃ijVj = 0, for i ∈ KT, j ∈ KR, j ̸∈ KR

i . (3.18)

The weak (un-cancelled) interference will reduce network throughput and will be taken into

account in throughput calculation (as we did in Section 3.5).

Equations (3.16) and (3.18) constitute a system of bilinear equations and a general so-

lution to bilinear equations remains unknown [74]. Instead of finding a feasible solution to
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(3.16) and (3.18), we propose to minimize the LHS of (3.18) for all i ∈ KT, j ∈ KR, j ̸∈ KR
i ,

subject to (3.16). Denote ∆LI as the leakage interference in the network,3 which is defined

as

∆LI =
∑
i∈KT

j ̸∈KR
i∑

j∈KR

PiLij

∣∣∣∣∣∣U†
iH̃ijVj

∣∣∣∣∣∣2
F
. (3.19)

The problem to solve is to minimize ∆LI subject to (3.16).

To do this, we propose a simple yet effective approach to address the dependency between

Tx weight matrices Ui and Rx weight matrices Vj by updating each in an alternating fashion

(i.e., fixing Ui and update Vj and vice versa). Specifically, in each iteration, Tx weight

matrices Ui are optimized first with given Rx weight matrices Vj and channel information.

Then we optimize Rx weight matrices Vj with given Tx weight matrices Ui and channel

information. For each weight matrix (either at Tx or Rx node) optimization, the weight

matrix is updated by solving a minimization problem with the objective ∆LI and the updated

set of constraints. The iteration terminates if we find no improvement after a number of

consecutive iterations.

3.6.2 Algorithm Details

Now we describe in detail on how to find weight matrices.

Step 1: Initialization. Initially all the Tx and Rx weight matrices can be set arbitrarily

but have to be full rank matrices with dimension NT
i × zi∗ and NR

j × z∗j, respectively.

Step 2: Optimizing Tx Weights. In this step, channel information H̃ij and Rx weight

matrices Vj are given. We optimize Tx weight matrices Ui so as to minimize leakage
3Incidentally, a similar definition of leakage interference involving only channel matrix Hij is given in

[75, 76].
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interference. Denote ∆T
LI,i =

∑j ̸∈KR
i

j∈KR PiLij

∣∣∣∣∣∣U†
iH̃ijVj

∣∣∣∣∣∣2
F

as the leakage interference at Tx

node i, then

min
U1,U2,...,U|KT|

∆LI = min
U1,U2,...,U|KT|

∑
i∈KT

∆T
LI,i =

∑
i∈KT

min
Ui

∆T
LI,i. (3.20)

It follows that min∆LI can be solved separately by solving |KT| independent sub-problems

minUi
∆T

LI,i, i.e., one sub-problem for each Tx node. (Note that ∆LI =
∑

i∈KT ∆T
LI,i and

∆T
LI,i’s are independent among each other). The constraints of sub-problem i are based on

Tx node i’s IC responsibilities (i.e., the number of DoFs needed to cancel interference from

i to j at Tx node i (dT
ij) per our discussion in Section 3.4). For Tx node i (sub-problem i),

we have the following three cases to determine the sets of constraints to optimize Ui:

• dT
ij = 0, j ∈ KR. In this case, Tx node i is not responsible for cancelling interference

from Tx node i to Rx node j. Thus no constraint is needed in this case.

• dT
ij = z∗j and dT

ij < rij, j ∈ KR. In this case, Tx node i is responsible for cancelling

all the interference from Tx node i to Rx node j. Denote DT
i as the set of Rx nodes

that Tx node i is responsible for cancelling all its interference, i.e., DT
i = {j : dT

ij =

z∗j, dT
ij < rij, j ∈ KR, j ̸∈ KR

i }. Then the following set of constraints is needed for

optimizing Ui:

U†
iH̃ijVj = 0, j ∈ DT

i , i ∈ KT.

• dT
ij < z∗j or dT

ij = rij, j ∈ KR. In this case, the number of DoFs consumed to cancel

interference from Tx node i to Rx node j is shared between nodes i and j. That is, Tx

node i uses dT
ij DoFs to cancel interferences from dT

ij directions in the eigenspace, and

the remaining interferences (from dR
ij = rij − dT

ij directions in the eigenspace) will be

cancelled by Rx node j (when optimizing Rx weights later in Step 3), which guarantees
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the interference channel (based on best rank-r approximation) is cleared for data trans-

mission. Note that in this case Rx weight matrix Vj is not needed in the constraints

to update Ui; only the channel matrix H̃ij is needed. Let H̃[m,n]
ij =

∑n
l=m σlulv

†
l which

represents the channel information at directions corresponding to the m-th to the n-

th largest eigenvalues (recall that the SVD of Hij is Hij =
∑NR

j

l=1 σlulv
†
l ). Denote

D̃T
i = {j : 0 < dT

ij < z∗j or dT
ij = rij, j ∈ KR, j ̸∈ KR

i } as the set of Rx nodes that

Tx node i is partially responsible for cancelling its interference. Then we have the

following set of constraints:

H̃[1,dT
ij ]†

ij Ui = 0, j ∈ D̃T
i , i ∈ KT.

In addition, as a necessary condition to distinguish different data streams, Tx weight

matrix Ui must have linearly independent columns. We consider the following constraint to

guarantee the independency among the columns of Ui:

U†
iUi = I.

Putting together the objective function and all the constraints above, for each Tx node

i ∈ KT, we have the following optimization problem for Tx weight matrix Ui:

OPT-Tx-i min
Ui∈CNT

i
×zi∗

∆T
LI,i =

j ̸∈KR
i∑

j∈KR

PiLij

∣∣∣∣∣∣U†
iH̃ijVj

∣∣∣∣∣∣2
F
,

s.t. U†
iUi = I,

V†
jH̃

†
ijUi = 0, j ∈ DT

i ,

H̃[1,dT
ij ]†

ij Ui = 0, j ∈ D̃T
i .



92

where DT
i = {j : dT

ij = zi∗, dT
ij < rij, j ∈ KR}, D̃T

i = {j : dT
ij < zi∗ or dT

ij = rij, j ∈ KR} and

H̃[m,n]
ij =

∑n
l=m σlulv

†
l .

The optimal solution to problem OPT-Tx-i is given by the following lemma.

Lemma 3.1. The optimal solution to problem OPT-Tx-i is

Ui =



nullspace[1,zi∗]


BAB

C


 , if zi∗ ≤ NT

i − c

nullspace


BAB

C


 eig[NT

i −p+1,zi∗+c−p](BAB)

 ,

if zi∗ > NT
i − c

where p = rank(BAB), c = rank ([BAB
C ]), A =

∑j ̸∈KR
i

j∈KR PiLijH̃ijVjV†
jH̃

†
ij, B is a projection

matrix given by B = Izi∗ −C†(CC†)−1C, and C is given by

C =



V†
j̄1

H̃†
ij̄1

V†
j̄2

H̃†
ij̄2

...

H̃
[1,dT

iĵ1
]†

iĵ1

H̃
[1,dT

iĵ2
]†

iĵ2
...


with

{j̄1, j̄2, · · · } = DT
i

{ĵ1, ĵ2, · · · } = D̃T
i

.

nullspace[1,zi∗](X) denotes zi∗ orthonormal vectors in the nullspace of X, and eig[a,b](X) is

the eigenvectors of X corresponding to the a-th smallest to the b-th smallest eigenvalues.

Further, the optimal objective value is given by

zi∗+c−p∑
l=c−p+1

λl(BAB).
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where λl(X) is the l-th smallest eigenvalue of matrix X.

Proof. The objective function of OPT-Tx-i can be rewritten as

j ̸∈KR
i∑

j∈KR

PiLij

∣∣∣∣∣∣U†
iHijVj

∣∣∣∣∣∣2
F

=Tr

U†
i

j ̸∈KR
i∑

j∈KR

PiLijHijVjV†
jH

†
ij

Ui


=

zi∗∑
l=1

w†
l

j ̸∈KR
i∑

j∈KR

PiLijHijVjV†
jH

†
ij

wl,

(3.21)

where wl is the l-th column of matrix Ui. For ease of exposition, let matrix A be A =∑j ̸∈KR
i

j∈KR PiLijHijVjV†
jH

†
ij, and matrix C be

C =



V†
j̄1

H̃†
ij̄1

V†
j̄2

H̃†
ij̄2

...

H̃
[1,dT

iĵ1
]†

iĵ1

H̃
[1,dT

iĵ2
]†

iĵ2
...


with

{j̄1, j̄2, · · · } = DT
i

{ĵ1, ĵ2, · · · } = D̃T
i

.

Then for each term in the summation of objective function (3.21) (i.e., w†
l Awl), along with

the constraints of OPT-Tx-i, we have the following Lagrangian function

ϕ(wl, λl,β) = w†
l Awl − λl(w

†
lwl − 1) + 2βTCwl , (3.22)

where λl,β are Lagrangian multipliers. To find the KKT points of (3.22), we differentiate

(3.22) with respect to wl and let ∂ϕ
∂wl

= 0. We have
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Awl − λlwl + C†β = 0. (3.23)

By multiplying (CC†)−1C on both sides of (3.23) and using the constraint of Cwl = 0,

we have

β = −(CC†)−1CAwl. (3.24)

By substituting (3.24) into (3.23), we obtain

BAwl = λlwl, (3.25)

where B = INT
i
−C†(CC†)−1C. Note that Bwl =

(
INT

i
−C†(CC†)−1C

)
wl = wl. We have

BABwl = BAwl = λlwl.

This suggests that at the KKT points, λl is the eigenvalue of BAB and wl is the eigenvector

of BAB. Further, noting that Bwl = wl, we have

w†
l Awl = w†

l BABwl = λlw
†
lwl = λl . (3.26)

Eq. (3.26) suggests that at the KKT points, the objective value is
∑zi∗

l=1w
†
l Awl =

∑zi∗
l=1 λl.

Therefore, to minimize
∑zi∗

l=1w
†
l Awl, it is equivalent to find the eigenvectors of BAB cor-

responding to zi∗ smallest eigenvalues, while satisfying constraint CUi = 0.

Denote p = rank(BAB) and c = rank ([BAB
C ]) ≥ p. We have the following two cases:

i) zi∗ ≤ NT
i −c. In this case, the dimension of the nullspace of BAB is NT

i −p ≥ NT
i −c ≥

zi∗. Thus, the zi∗ smallest eigenvalues are zeros and the corresponding eigenvectors can be

found in the nullspace of BAB. That is, the optimal solution Ui satisfies BABUi = 0.
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In addition, we must satisfy constraint CUi = 0. Therefore, the optimal solution Ui can

be given by the first zi∗ columns of nullspace of [BAB
C ], and the optimal objective value of

OPT-Tx-i is 0.

ii) zi∗ > NT
i − c. In this case, the first (NT

i − c) columns of Ui can be derived in the

nullspace of [BAB
C ] (corresponding to zero eigenvalues). Then the remaining (zi∗ −NT

i + c)

columns of Ui are given by the eigenvectors of BAB corresponding to the (zi∗ − NT
i + c)

smallest positive eigenvalues. Note that the constraints CUi = 0 are already satisfied for

these eigenvectors correponding to positive eigenvalues (multiplying Ci on both sides of

(3.25)). Further, without loss of generality, we let λ1 ≤ λ2 ≤ · · ·λNT
i

. Then the optimal

objective value is given by
∑NT

i −p+1+(zi∗−NT
i +c)−1

l=NT
i −p+1

λl =
∑zi∗+c−p

l=NT
i −p+1

λl =
∑zi∗+c−p

l=c−p+1 λl.

In summary, the optimal solution to Problem OPT-Tx-i is given by

Ui =



nullspace[1,zi∗]


BAB

C


 , if zi∗ ≤ NT

i − c

nullspace


BAB

C


 eig[NT

i −p+1,zi∗+c−p](BAB)

 ,

if zi∗ > NT
i − c

with the optimal objective value

zi∗+c−p∑
l=c−p+1

λl(BAB).

To ensure our algorithm to converge, we let Ui be updated only when the current optimal
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objective value is smaller than that in the last iteration, i.e., ∆T
LI,i(t) < ∆T

LI,i(t−1). Otherwise

Ui remains unchanged as in the last iteration until updates in future iterations.

Step 3: Optimizing Rx Weights. Similar to optimizing Tx weight matrices, we have

|KR| independent sub-problems for |KR| Rx nodes, and each has three sets of constraints to

optimize Rx weight matrix Vj. Deriving these constraints is similar to Step 2. Then the

optimization problem for Rx weight matrix Vj is:

OPT-Rx-j min
Vj∈C

NR
j

×z∗j
∆R

LI,j =

i ̸=s(j)∑
i∈KT

PiLij

∣∣∣∣∣∣U†
iH̃ijVj

∣∣∣∣∣∣2
F
,

s.t. V†
jVj = I,

U†
iH̃ijVj = 0, i ∈ DR

j ,

H̃[dT
ij+1,rij ]

ij Vj = 0, i ∈ D̃R
j ,

where DR
j = {i : dR

ij = zi∗, dR
ij < rij, i ∈ KT, j ̸∈ KR

i } and D̃R
j = {i : 0 < dR

ij < zi∗ or dR
ij =

rij, i ∈ KT, j ̸∈ KR
i }.

Solving problem OPT-Rx-j is similar to that for problem OPT-Tx-i and we omit the

details to conserve space. To guarantee convergence, Vj is updated only when current

optimal objective value ∆R
LI,j(t) is smaller than ∆R

LI,j(t − 1) of last iteration. Otherwise Vj

remains the same until updates in future iterations.

Step 2 and Step 3 are iteratively performed until there is no improvement for W consec-

utive iterations, i.e., ∆LI(t− w − 1)−∆LI(t− w) < ϵ,w = 0, 1, ...,W − 1 is met for a given

convergence threshold ϵ.

Step 4: Cancelling Intra-node Interference. Within an intended link, there may

exist multiple data streams and they would also interfere with each other. In this step, we

cancel such intra-node interference to decode the desired data streams. This can be done by
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performing a linear transformation of Tx weight Ui by multiplying a matrix Fi. Such a linear

transformation can decode different intra-node data streams while not affecting inter-node

IC.

To show how such a linear transformation works, let’s denote

Γi = [Hij1Vj1 Hij2Vj2 · · · ] , j1, j2, ... ∈ KR
i , i ∈ KT.

Then we define Fi as

Fi = (U†
iΓi)

−1, i ∈ KT.

To perform a linear transformation on Tx weight matrix Ui, we multiply it by matrix Fi.

We have:

Ui ← UiF†
i , i ∈ KT. (3.27)

It is easy to verify that after such a transformation, we have U†
iΓi = Izi∗ .

Step 5: Power Allocation. We apply equal power allocation for each data stream,

subject to the total power constraints Tr(UiU†
i ) = 1,Tr(VjV†

j) = 1. We have

U[∗f ]
i ← 1

√
zi∗

U[∗f ]
i∣∣∣∣∣∣U[∗f ]
i

∣∣∣∣∣∣ ,∀i ∈ KT, f = 1, 2, ..., zi∗,

V[∗f ]
j ← 1

√
z∗j

V[∗f ]
j∣∣∣∣∣∣V[∗f ]
j

∣∣∣∣∣∣ ,∀j ∈ KR, f = 1, 2, ..., z∗j.

(3.28)

A pseudocode of our proposed algorithm to compute Tx and Rx weights is given in

Algorithm 3.1. A proof of the algorithm’s convergence is given as following.
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Proof. The objective function associated with Tx node i at iteration t in Step 2 is

∆T
LI,i(t) =

j ̸∈KR
i∑

j∈KR

∣∣∣∣∣∣U†
iHijVj

∣∣∣∣∣∣2
F
.

Thus the total leakage interference is given by the sum of ∆T
LI,i over all Tx nodes, i.e.,

∆LI(t) =
∑
i∈KT

j ̸∈KR
i∑

j∈KR

∣∣∣∣∣∣U†
iHijVj

∣∣∣∣∣∣2
F
=
∑
i∈KT

∆T
LI,i(t).

Therefore, at iteration t, each Tx weight Ui computed in Step 2 to minimize ∆T
LI,i(t−1) also

minimizes ∆LI(t− 1).

On the other hand, the objective function associated with Rx node j in Step 3 is

∆R
LI,j(t) =

i ̸=s(j)∑
i∈KT

∣∣∣∣∣∣U†
iHijVj

∣∣∣∣∣∣2
F
.

Thus the total leakage interference can also be given by the sum of ∆R
LI,j over all Rx nodes,

i.e.,

∆LI(t) =
∑
j∈KR

i ̸=s(j)∑
i∈KT

∣∣∣∣∣∣U†
iHijVj

∣∣∣∣∣∣2
F
=
∑
j∈KR

∆R
LI,j(t).

Therefore, at iteration t, each Rx weight Vj computed in Step 3 to minimize ∆R
LI,j(t − 1)

also minimizes ∆LI(t− 1).

Since ∆LI is lower bounded by 0 and ∆LI is monotonically non-increasing in each iteration,

Algorithm 3.1 must converge to some value no less than 0.

Although Algorithm 3.1 minimizes leakage interference in each iteration and is proven to

converge, the objective value upon this convergence may only be sub-optimal. Nevertheless,

we find that this algorithm is computationally efficient. The performance of the algorithm
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Algorithm 3.1: Computing Tx and Rx Weights
input : Hij, rij, zij, dR

ij, dT
ij, Pi, Lij

output : Ui, Vj

parameter: ϵ, W
1 Initialize: Start with arbitrary weight matrices:
2 Ui: NT

i × zi∗, rank(Ui) = zi∗;
3 Vj: NR

j × z∗j, rank(Vj) = z∗j;
4 NonImproveIter = 0 ;
5 while NonImproveIter < W , do
6 foreach i ∈ KT do
7 Solve optimization Problem OPT-Tx-i ;
8 if ∆T

LI,i(t) < ∆T
LI,i(t− 1) then

9 Ui ← solution to Problem OPT-Tx-i ;
10 end
11 end
12 foreach j ∈ KR do
13 Solve optimization Problem OPT-Rx-j ;
14 if ∆R

LI,j(t) < ∆R
LI,j(t− 1) then

15 Vj ← solution to Problem OPT-Rx-j ;
16 end
17 end
18 if ∆LI(t− 1)−∆LI(t) < ϵ then
19 NonImproveIter ← NonImproveIter + 1 ;
20 else
21 NonImproveIter = 0 ;
22 end
23 end
24 foreach j ∈ KR, i ∈ KT do
25 Ui ← performing linear transformation by (3.27) ;
26 Vj,Ui ← performing equal power allocation by (3.28) ;
27 end
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is presented in the following section.

3.6.3 Performance

In this section, we examine the effectiveness of Algorithm 3.1 in terms of cancelling the strong

interference. For evaluation, we first introduce the metric of normalized residual interference,

which is defined as the ratio of residual interference (i.e., the remaining portion of the strong

interference after applying the weights at the PHY layer for IC) to the interference power

before this IC.

Recall that H̃ij is the best rank-r approximate of channel Hij (defined in Section 3.6.1).

After applying the Tx and Rx weights found by Algorithm 3.1, the residual interference

power perceived at Rx node j is
∑i ̸=s(j)

i∈KT PiLij

∣∣∣∣∣∣U†
iH̃ijVj

∣∣∣∣∣∣2
F

, which we hope to be close to

0 (if our Algorithm 3.1 is effective). The interference power before IC can be expressed as∑i ̸=s(j)

i∈KT
Pi

NT
i
Lij ||Hij||2F . Then the normalized residual interference at Rx node j, denoted as

δ̃j, is

δj =

∑i ̸=s(j)

i∈KT PiLij

∣∣∣∣∣∣U†
iH̃ijVj

∣∣∣∣∣∣2
F∑i ̸=s(j)

i∈KT
Pi

NT
i
Lij ||Hij||2F

.

Denote δave as the average normalized residual interference over all Rx nodes. Then δave is

given by

δave =
1

|KR|
∑
j∈KR

δj.

We will use δave as the primary performance metric to show the effectiveness of Algorithm 3.1.

We consider the same network setting as in Section 3.5. For the parameters of Algorithm

3.1, we set ϵ = 0.01 and W = 5. Fig. 3.12 shows that, by applying Algorithm 3.1, the average

normalized residual interference is close to zero (less than 0.025) under all different network

settings (ρ = 0.2, 0.4 and 0.6) and different effective rank thresholds. This demonstrates
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Figure 3.12: The average normalized residual interference under different rank thresholds.

that the Tx and RX weights assigned by Algorithm 3.1 can successfully suppress the strong

interference close to zero in all cases. That is, for practical purpose, Algorithm 3.1 can

guarantee feasibility at the PHY layer for a given DoF allocation by the DoF IC model in

Section 3.4.

3.7 Related Work

DoF-based IC in MIMO networks has been widely studied in the literature. However, none

of the existing DoF models differentiate strong and weak interference in different directions

in the eigenspace per interference link, as we have done in this chapter.

In the Information Theory (IT) community, DoF characterizations are mainly based on

idealized channel models, i.e., either full rank (e.g. [12, 77]) or rank-deficient with zero

singular values (e.g. [25, 27, 34, 36]). Such idealized channel rank models do not exactly
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capture what happens in reality, where singular values for weak interference are not exactly

zero. As a result, they cannot closely represent channel behaviors in the real world.

In the networking community, most existing DoF-based models assume that channels

are of full rank [14, 15, 16, 17, 18, 19, 20, 21, 22, 50, 51, 52]. To measure the footprint of

interference (and its impact), the so-called protocol model (or disc model) has been widely

used [14, 15, 16, 17, 20, 21, 22, 50, 51, 52], where an Rx node within a predetermined

interference range is considered interfered and would require DoFs to cancel the interference,

while an Rx node outside that range is considered to experience negligible interference (i.e.,

no IC is needed). The main issue with this model is that, for the same Rx node (inside the

interference range), it does not differentiate interference strength in different directions in

the eigenspace and thus would require DoFs to cancel interference in all directions (for the

same Rx node) even though the signal strength in certain directions may be very weak. The

weakness of these models is further amplified when the number of antennas at Tx/Rx nodes

becomes large and channels exhibit high correlation. As a result, these models cannot exploit

the full potential of MIMO networks. In contrast, instead of using a disc (or interference

range), we differentiate interference strength by examining singular values in the eigenspace

regardless of the location of the Rx node. Strong interferences (corresponding to large

singular values) are cancelled by DoFs while weak interferences (corresponding to small

singular values) are treated as noise in throughput calculation. This approach provides

efficient DoF utilization that can offer higher throughput.

3.8 Chapter Summary

In this chapter, we developed a novel DoF IC strategy that exploited interference signal

strengths among different directions in the eigenspace. By decomposing an interference
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channel in its eigenspace and introducing an effective rank threshold to differentiate strong

and weak interference, we showed that precious DoFs can be conserved if we only use DoFs

to cancel those strong interference signals in the eigenspace. We investigated the trade-off

between network throughput and effective rank threshold and showed that network through-

put under the optimal effective rank threshold is significantly higher than that under existing

DoF IC models. To ensure the new DoF IC model is feasible at the PHY layer, we proposed

an algorithm to find the Tx and Rx weights such that the strong interferences beyond the

effective rank threshold can be suppressed close to zero.



Chapter 4

A Novel Design and Implementation

to Achieve Ultra-Fast Hybrid

Beamforming

4.1 Introduction

Communication over mmWave frequencies is defining a new era of wireless communication,

including the most recent cellular systems such as 5G NR [78, 79]. At mmWave frequencies,

a base station (BS) typically needs to employ hundreds or more antennas to overcome the

large path-loss fading. However, it is difficult to apply a dedicated RF chain for each antenna

as traditional MIMO under 6 GHz, due to hardware complexity and energy consumption

issues [79, 80]. To address this problem, the so-called “hybrid architecture” was proposed.

As illustrated in Fig. 4.1, the hybrid architecture uses a much fewer number of shared RF

chains to support a large number of antennas. This innovative design has attracted a lot of

attention from both the academic communities and the industry sections [81, 82, 83, 84, 85,

86, 87, 88, 89, 90].

Although attractive, hybrid architecture faces a critical challenge. Specifically, it must be

able to offer a beamforming solution in real-time to be practical. By real-time, we mean that a

104
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Figure 4.1: An HB architecture (BS side).

beamforming solution must be found within half of the channel coherence time.1 At mmWave

frequencies, this channel coherence time is extremely short, due to the severe Doppler effect.

In 5G NR, new frame structures with shorter TTIs (compared to 4G LTE) are designed

to support communications over short channel coherence time [91]. Specifically, under 5G

NR numerology 0, a TTI is 1 ms, while the TTIs for numerologies 1, 2 and 3 are 500 µs,

250 µs and 125 µs, respectively. The shorter TTIs allow 5G to cope with extremely short

coherence time at high frequencies and to support ultra-low latency applications. Therefore,

for a hybrid architecture to work under 5G NR, an HB solution must be found within each

TTI (corresponding to the applied numerology) to be useful. Further, a beamforming design

must consider a large number of resource blocks (RBs), with each RB supporting multiple

active users (MU-MIMO).

Although there exist a number of research works in the literature on HB design, few can

meet the real-time requirement with high throughput performance. For instance, physical

1For efficiency, we break up the channel coherence time into two halves. Within each half, we transmit
data based on beamforming matrices that are computed in the previous half and compute the beamforming
matrices for the next half.
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(PHY) layer research in this area attempted to jointly optimize analog and digital beam-

forming [81, 82, 83, 84]. Unfortunately, the iterative nature of these algorithms makes them

difficult to be implemented in real-time. In addition, a joint design requires explicit antenna-

to-antenna channel estimation and feedback, which involves a prohibitively high complexity

and a large amount of CSI that is too difficult to obtain in practice [85].

To avoid the issues associated with a joint design, a new and practical direction for

HB is to follow a sequential design [86, 87, 88, 89, 90]. Here, an analog beamforming

is optimized first and then used as the input to optimize the digital beamforming. For

analog beamforming, there have been successful designs and system demonstrations in the

literature, which are based on beam sweeping/discovering techniques without explicit channel

CSI [88, 89, 90]. After analog beamforming is applied to both the BS and a user’s side,

the effective channels seen at the baseband can be obtained through conventional channel

estimation approaches.

However, how to properly design digital beamforming in a sequential design remains a

challenge. Most existing works simply applied traditional beamforming methods such as

ZF, MMSE and Block Diagonalization (BD) [23] as the digital beamformers [86, 87, 88, 89].

Although simple, ZF and MMSE typically experience inferior throughput performance for

MU-MIMO and mmWave systems, particularly under ill-conditioned channels [88, 92, 93].

Although BD beamforming and its variants are shown to improve ZF/MMSE with a much

better throughput performance [23, 94], it requires many high-dimensional matrix SVD

operations, which are of high complexity and require significant computation time.

As expected, finding a beamforming scheme that can meet both real-time requirement

and high throughput performance is not trivial. But recent advances in parallel architectures

(based on the many-core technology) have shed new light on this problem. In particular, the

general-purpose GPU-based platform (e.g., those from Nvidia) is particularly promising. Its
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dedicated single-instruction-multiple-data (SIMD) architecture can solve a massive number

of structurally-identical problems at an extremely fast speed. It also comes with highly pro-

grammable tools such as CUDA, making the real-time implementation feasible and flexible

to many developers. A GPU-based parallel computing platform now offers a new possibility

to tackle many hard problems whose real-time solutions are once considered elusive [96].

In this chapter, we present Turbo-HB,2 a GPU-based novel design and implementation

to achieve ultra-fast digital beamforming. The key ideas of Turbo-HB are twofold. First, we

identify the bottleneck of computation time for BD-type beamforming, which attributes to

high-dimensional SVD operations. Turbo-HB cuts down this computational complexity by

utilizing randomized SVD technique. Second, Turbo-HB accelerates the overall computation

time through large-scale parallel computation on a commercial off-the-shelf (COTS) GPU

platform. It incorporates a large number of matrix transformations in parallel and special

engineering efforts such as minimized memory access. The main contributions of this chapter

are summarized as follows:

• This chapter presents Turbo-HB, the first successful HB design that can meet the

sub-ms real-time requirement. This design considers a large number of RBs with MU-

MIMO capability, which can be applied to 5G cellular systems. Our design only relies

on a COTS GPU platform and does not require any customized hardware.

• Turbo-HB relieves the computational burden of SVD significantly by leveraging the

sparsity at mmWave channels. Specifically, Turbo-HB is able to identify a small num-

ber of the most significant directions on a mmWave channel by exploiting randomized

SVD technique. By limiting operations only to the key information of interests, high-

dimensional SVD operations are transformed into lightweight lower-rank matrix op-

2By “Turbo,” we mean fast and efficient.
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erations. By judiciously choosing a proper target rank for lower-rank approximation,

our design can reduce the computation time dramatically.

• Turbo-HB is capable of parallelizing the MU-MIMO beamforming for a large number

of RBs and users. First, the MU-MIMO beamforming is transformed into a set of par-

allel single-user MIMO (SU-MIMO) beamforming. Second, with customized nullspace

calculation based on Given’s rotation method, Turbo-HB accelerates computation and

fully utilizes GPU’s processing cores. Third, by employing batched matrix operation

with proper indexing method and utilizing shared memory, Turbo-HB achieves large-

scale parallel matrix operations.

• We implement Turbo-HB on Nvidia DGX Station using the CUDA programming plat-

form. Extensive experiments are performed to examine both the timing performance

and throughput performance. Experimental results show that Turbo-HB is able to

obtain the beamforming matrices far less than 1 ms for all tested cases. Specifically,

Turbo-HB can meet the 125µs, 250 µs, and 500 µs timing requirement for 100 RBs

with up to 4, 8, and 10 MU-MIMO users on each RB, respectively. Turbo-HB can also

offer higher throughput performance for most cases compared to the state-of-the-art

(non-real-time) algorithms.

4.2 System Model

We consider a cellular communication scenario where a BS serves a set K of users, as il-

lustrated in Fig. 4.2. The BS is equipped with ABS antennas and MBS RF chains. Under

HB architecture, MBS < ABS. Each user is equipped with AU antennas and MU RF chains,

and MU < AU. Since the mathematical structure for uplink (UL) and downlink (DL) is

symmetric, it is sufficient to study one of them. We focus on DL in this chapter.
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Table 4.1: Notations in Chapter 4

Symbol Definition
ABS Number of antennas at BS
AU Number of antennas at user
B A set of RBs to be allocated in a time slot
FBB Baseband precoder at BS
FRF Analog precoder at BS
K A set of users
Kb A subset of users using RB b
MBS Number of RF chains at BS
MU Number of RF chains at user
Ns Number of data streams on a link
WBB,k Baseband combiner at user k
WRF,k Analog combiner at user k

Considering a typical cellular system (e.g., 4G LTE and 5G NR), we study time-slotted

scheduling over a wide bandwidth. Within each time slot, there is a set B of RBs over the

DL bandwidth. For each RB b ∈ B, a subset of users Kb ⊆ K is selected for MU-MIMO

transmission, based on some RB allocation strategy (see, e.g., [97, 98]). For the ease of

notation, suppose the BS sends Ns data streams to each user.3 At the user side, since

the number of received data streams cannot exceed the number of its RF chains, we have

Ns ≤MU. Likewise, at the BS we have |Kb|Ns ≤MBS.

Under the HB architecture, beamforming is performed in both digital and analog do-

mains, as shown in Fig. 4.1. At the BS side, the transmitted signal is first processed in the

digital domain by an MBS × |Kb|Ns baseband precoder FBB. Subsequently, an ABS ×MBS

analog precoder FRF (also known as RF precoder) based on analog circuitry (phase shifters)

is applied in the analog domain. Since complex matrix FRF is implemented with analog

phase shifters, each element in the matrix has the same amplitude and differs in its phase,

i.e, |(FRF)i,j| = 1√
ABS

, where (·)i,j denotes the (i, j)-th element of matrix (·). In addition, to

3With additional notation, our results can be extended to the case where the BS sends a different number
of data streams to different users.
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Figure 4.2: A cellular system consisting a large number of RBs (with MU-MIMO capability).

meet the total power constraint at the BS, FBB and FRF must satisfy ||FRFFBB||2F ≤ PT,

where PT is the total power at the BS and || · ||F denotes the Frobenius norm.

For wireless channels, let Hb
k ∈ CAU×ABS denote the channel matrix for user k ∈ K on

RB b ∈ B, and nb
k is the AU × 1 vector of i.i.d CN (0, σ2) additive complex Gaussian noise.

Let Fb
BB and Fb

RF denote the baseband precoder and analog precoder for RB b, respectively.

Then the received signal of user k on RB b is given by

yb
k = Hb

kFb
RFFb

BBs
b + nb

k, (k ∈ Kb, b ∈ B) (4.1)

where sb is the signal vector.

At the user side, a symmetric HB structure is employed except with a fewer number of

antennas AU and a fewer number of RF chains MU. The received signal is first processed

by an AU ×MU analog combiner WRF,k (subject to |(WRF,k)i,j| = 1√
AU

) in analog domain.

Then an MU ×Ns baseband combiner WBB,k is applied.

Denote Ĥb
k as the effective channel seen at the baseband, i.e., Ĥb

k = Wb†
RF,kHb

kFb
RF.

Denote Fb
BB,k as a sub-matrix of Fb

BB = [Fb
BB,1 · · ·Fb

BB,k · · ·Fb
BB,|Kb|], where Fb

BB,k consists of
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Ns columns and corresponds to the baseband signal sbk for user k. Then at user k and on

RB b, we have the following signal:

ỹb
k = Wb†

BB,kĤb
kFb

BB,ks
b
k +

i ̸=k∑
i∈Kb

Wb†
BB,kĤb

kFb
BB,is

b
i

+ Wb†
BB,kW

b†
RF,kn

b
k, (k ∈ Kb, b ∈ B)

where (·)† denotes the conjugate transpose of a matrix.

Therefore, the network throughput in b/s/Hz is

C =
∑
b∈B

∑
k∈Kb

log
(∣∣∣INs+

(Qb
k)

−1Wb†
BB,kĤb

kFb
BB,k Fb†

BB,kĤ
b†
k Wb

BB,k

∣∣∣) , (4.2)

where (Qb
k)

−1 is the covariance matrix of both interference and noise, which is given by

(Qb
k)

−1 =

i ̸=k∑
i∈Kb

Wb†
BB,kĤb

kFb
BB,iF

b†
BB,iĤ

b†
k Wb

BB,k

+ σ2Wb†
BB,kW

b†
RF,kWb

RF,kWb
BB,k.

Then the throughput optimization problem under the HB architecture can be stated as

following:

OPT-HB

max C
(
Fb

RF,Fb
BB,Wb

RF,k,Wb
BB,k

)
s.t. Power constraint: ||Fb

RFFb
BB||2F ≤ PT;

Constant modulus constraints:

|(Fb
RF)i,j| =

1√
ABS

, |(Wb
RF,k)m,n| =

1√
AU

;
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Index range: b ∈ B, k ∈ K,

i ∈ {1, 2, · · · , ABS}, j ∈ {1, 2, · · · ,MBS},

m ∈ {1, 2, · · · , AU}, n ∈ {1, 2, · · · ,MU}.

In problem OPT-HB, the variables are digital and analog beamformers Fb
RF,Fb

BB,Wb
RF,k

and Wb
BB,k, while PT, ABS, AU, MBS,MU are constants and B and Kb are given sets.

Ideally, a joint optimization of all digital and analog beamformers is required to find a

global optimal solution. However, several practical issues make such a joint design infeasible.

For example, the amount of CSI required is prohibitively large; it is unclear how to estimate

the antenna-to-antenna channel Hb
k through the lens of the RF precoding and combining

[85]. A new and practical direction to address HB optimization is to follow a sequential

design. Under this approach, analog domain is optimized first and then used as input to

optimize the digital design [86, 87, 88, 89, 90]. It has been shown that such a sequential

approach can offer a competitive performance (compared to those heuristics attempting to

solve joint optimization [82, 84, 86, 100]).

Even with a sequential method, for MU-MIMO systems, it would still require enormous

computational efforts to find a local optimum [101], due to the high complexity of high-

dimensional matrix operations (in addition to non-convex programming). We discuss this

problem in detail in the following section.
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4.3 Real-Time Requirement

In 5G NR, the frame structure is designed to be scalable to accommodate diverse services

and channel conditions. Under 5G frame structures, a beamforming solution (for all users

on all RBs) must be obtained within 1 ms (numerology 0), 500 µs (numerology 1), 250 µs

(numerology 2), or 125 µs (numerology 3). A shorter TTI can support applications with

shorter coherence time and more stringent latency requirement.

Note that under the HB architecture, analog beamforming is meant to overcome path-loss

fading by leveraging the large number of antennas [86, 90]. This part is done on a much larger

time scale. In contrast, digital beamforming can optimize capacity by managing interference

among data streams, which heavily depends on fast fading. This part has a much stringent

timing requirement. Therefore, under a sequential design, the stringent sub-ms real-time

requirement mainly comes from digital beamforming.

Technical Challenge Digital beamforming for MU-MIMO involves complex operations

of matrices with a large number of elements. Traditional techniques such as ZF and MMSE

typically experience inferior throughput performance for MU-MIMO and mmWave systems,

particularly under ill-conditioned channels [88, 92, 93]. On the other hand, BD-type beam-

forming is shown to achieve much better throughput performance compared to ZF/MMSE

[23]. But BD involves high-dimensional matrix SVD operations, whose computational com-

plexity makes BD unsuitable for practical use.

Objective The objective of this chapter is to determine digital beamformers (Fb
BB,k and

Wb
BB,k) in real-time. Specifically, we want to develop a design that can meet the stringent

sub-ms timing requirement while offering comparable (or better) throughput performance

than state-of-the-art approaches.
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4.4 A Novel Design for Real-time Beamforming

4.4.1 Main Ideas

Our main ideas consist of two parts.

Low-complexity SVD with high throughput First, we show the high computa-

tion time for BD-type beamforming is attributed to the high-dimensional SVD operations.

Then we propose to reduce this complexity by identifying only a small number for the

most significant dimensions, leveraging the sparsity of mmWave channels. Specifically, for

a (|Kb| − 1)MU × MBS matrix (for BD beamforming), a standard SVD algorithm takes

O
([

(|Kb| − 1)MU
]2
MBS

)
floating-point operations (flops) [108, 109]. Thus, applying BD

beamforming for |B| RBs and |Kb| users at each RB yields at least O
(
|B||Kb|

[
(|Kb| − 1)MU

]2 ·
MBS

)
flops. To reduce this high complexity, we propose to utilize randomized SVD [108] to

cut down the complexity to O
(
|B||Kb| · r2 ·

[
(|Kb| − 1)MU +MBS

])
, where r is much smaller

than (|Kb|−1)MU. In essence, randomized SVD is a lower rank SVD approximation method.

The reason why it works extremely well here is because of the limited number of scatterers

at mmWave frequencies and thus highly correlated channels. In addition, by limiting the

operations to the key information of our interest and applying the parallelizable Given’s

rotation method, the lower rank SVD can be done extremely fast in our implementation.

Interestingly, although Turbo-HB employs a lower rank SVD approximation, it does not

mean the throughput performance needs to deteriorate. Rather, Turbo-HB appears to offer

higher throughput performance in most cases. The science behind this behavior is attributed

to the following. First, since mmWave channels exhibit a high correlation property, a small set

of singular vectors in the lower rank SVD approximation is sufficient to capture the directions

of the most significant signals or interferences. Second, an exact (|Kb|− 1)MU×MBS matrix
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SVD (as in standard BD) aims to cancel all inter-user interference exactly (regardless of

how small it is). But canceling all inter-user interference requires to project users’ signals

onto mutually orthogonal subspaces. To achieve such orthogonality, the perceived strength

of desired signals at a user is reduced in the process. Since throughput is a function of SINR,

it does not help if the perceived strength of desired signals at a user is reduced (for perfect

orthogonality). On the other hand, a lower rank SVD approximation allows a certain level

of overlapping subspace of different users (as only a small number of major signals preserve

mutual orthogonality), which in return preserves greater desired signal strength. This offers

us an opportunity to explore the promising beamforming space that is missed by the BD

technique.

Fully functioning parallelism We argue that the asymptotic complexity analysis (i.e.,

those expressed in the big-O notation) does not directly translate into actual computation

time as measured by a wall clock for our problem. The latter heavily depends on the under-

lying problem structure, actual input size, convergence speed, memory access time, among

others. This motivates us to our second idea, which is to accelerate overall computing process

in real-time, rather than focusing on O(·) analysis. We propose to design a beamforming

algorithm with parallelizable implementation, incorporating special engineering efforts such

as minimizing memory access.

Specifically, the MU-MIMO beamforming is first transformed into a set of parallel SU-

MIMO beamforming. Then a large number of matrix operations are executed through batch

computing. To achieve batched matrix operations (for a large number of RBs and users),

Turbo-HB generates a large number of threads that fully occupy a GPU’s processing cores

and thus reaps the full benefits of GPU’s parallel processing capability. At each step through-

out our implementation, we meticulously minimize memory accesses to reduce time. For

example, batched matrix operations such as QR factorization and matrix multiplications are
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optimized with the use of fast on-chip shared memory. We carefully organize the storage of

a large number of matrices with proper indexing. By managing consecutive GPU threads to

read consecutive (and aligned) memory, multiple memory accesses can be combined into a

single transaction. Further, Turbo-HB limits operations to the key information of our inter-

ests (e.g., certain singular vectors) and thus eliminates unnecessary calculations, parameter

passing and memory access.

4.4.2 Design Details

The task of computing beamforming matrices can be split naturally into three computational

stages. The first is to transform the MU-MIMO channel into a set of parallel SU-MIMO

channels. The second is to apply randomized SVD with low computation complexity to

obtain certain singular vectors for beamforming. The third is to construct the final digital

beamforming matrices based on obtained singular vectors. Specifically, the objective of each

stage is described as follows.

• Stage A: Given the partial CSI Vb
k and Σb

k (from Ĥb
k = Ub

kΣ
b
kV

b†
k ) that are computed

and fed back by each user, we construct matrices Hb

k and H̃b
k such that Hb

k and H̃b
k

contain all the information that is needed to compute beamforming matrices Fb
BB,k

corresponding to user k. After this stage, the MU-MIMO channel is transformed into

a set of parallel SU-MIMO channels.

• Stage B: Given matrix H̃b
k, we apply randomized SVD technique for lower rank matrix

approximation (with lower computational complexity). Then we obtain Ṽb(−)
k , which

contains the necessary singular vectors to cancel inter-user interference.

• Stage C: With matrices Hb

k and Ṽb(−)
k , we construct the final digital beamforming

matrices Fb
BB,k.
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In the rest of this section, we offer details of each stage.

Stage A. Each user k estimates the effective channel Ĥb
k and computes its SVD as Ĥb

k =

Ub
kΣ

b
kV

b†
k . User k uses the first Ns columns of Ub

k as its digital combiner, i.e., Wb
BB,k is set

to the first Ns columns of Ub
k. Then to help form digital precoder at BS side, only partial

CSI, i.e., Vb
k and Σb

k, are required to feed back to the BS (note that Σb
k is diagonal and Vb

k

is unitary and thus can be efficiently compressed [2]). Let

Hb

k = Σb
kVb

k.

Then for our beamforming purpose, Hb

k (an MU×MBS matrix) captures sufficient information

of the intended channel from the BS to user k.

Denote H̃b
k as the concatenation of Hb

k’s of all users in Kb except intended user k, i.e., if

Kb = {k}
⋃
{1, · · · , k − 1, k + 1, · · · , |Kb|}, then

H̃b
k =

[
Hb†

1 · · ·H
b†
k−1 H†

k+1 · · ·H
b†
|Kb|

]†
is a (|Kb| − 1)MU ×MBS matrix that captures information of interference channels corre-

sponding to user k.

As Hb

k and H̃b
k are sufficient to construct the beamforming matrices Fb

BB,k corresponding

to user k, the MU-MIMO channel is transformed into a set of |Kb| parallel SU-MIMO channels

on each RB. Consequently, the remaining Stage B and Stage C can be processed in
∑

b∈B |Kb|

parallel flows, each of which contributes to one beamforming matrix for one user per RB.

Stage B. To construct beamforming matrix Fb
BB,k corresponding to user k’s signal, we

need to make sure that by applying Fb
BB,k most (if not all) of the interference to user k can
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be canceled. This can be realized with the help of SVD of interference channel H̃b
k. Let

H̃b
k = Ũb

k

 Σ̃
b

k 0

0 0

 [Ṽb(+)
k Ṽb(−)

k ]†, (4.3)

where Ṽb(−)
k is the last (MBS − r) columns of the right singular matrix corresponding to

the smallest (MBS − r) singular values of H̃b
k, Ṽb(+)

k is the remaining r columns of the right

singular matrix, and r is a constant.

Then, if the eigenvalues corresponding to Ṽb(−)
k are close to zero, we have

H̃b
kṼ

b(−)
k ≈ 0, (b ∈ B, k ∈ Kb).

It follows that

Ĥb
jṼ

b(−)
k Vb(+)

k ≈ 0, for j ̸= k,

for any Vb(+)

k (which is used to differentiate data streams within a user and will be determined

later). Therefore, by constructing Fb
BB,k as

Fb
BB,k = Ṽb(−)

k Vb(+)

k , (4.4)

most of the inter-user interference can be suppressed.

Now we have a real-time challenge. Stage B is computation-intensive as a high-dimensional

SVD (i.e., Eq. (4.3)) is required. H̃b
k is a (|Kb| − 1)MU ×MBS matrix with standard SVD

complexity of O
(
|B||Kb| ·

[
(|Kb| − 1)MU

]2
MBS

)
for |B| RBs. Its computation time can take

more than 70% of the total time when not optimized (from our experiment).

In fact, the computation time of matrix SVD (power method) is tightly related to the
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decaying speed of singular values [110]. For instance, suppose we have a matrix with 4

decreasing singular values σ1, σ2, σ3 and σ4. If σ1 ≫ σ2 ≫ σ3 ≈ σ4 ≈ 0, then it is computa-

tionally fast to obtain the first two singular values (and associated singular vectors), whereas

it would take much longer to obtain the last two singular values. This observation is espe-

cially important, since at mmWave frequencies, most signal strength will be concentrated at

a few directions due to the limited number of scatterers. As a consequence, it is likely that

we encounter several non-zero but close-to-zero singular values. Finding those small singular

values would take a long time and it does not help much in terms of throughput performance

(as we shall see in Section 4.4.3).

To verify the singular values of H̃b
k, we conduct the following experiment. We generate

100 instances of H̃b
k based on mmWave channel model to have Hb

k’s (using the widely adopted

mmWave channel model as described in [82]). For analog beamforming, we adopt the well-

known DFT-codebook based method [86, 111]. We set ABS = 128, AU = 8, MBS = 20,

MU = 4 and |Kb| = 5, thus H̃b
k is a 16× 20 matrix. We investigate two different scattering

scenarios: (a) The number of clusters Lcl and the number of rays within each cluster Lray are

both set to 3; (b) Lcl and Lray are both 6 (as typical number of paths for practical mmWave

channels [80, 88, 90, 112]). Averaged by 100 instances, the singular values of H̃b
kH̃

b†
k are

plotted in Fig. 4.3. As we expected, the singular values are decaying fast in the beginning

but then flatten out. The decaying speed is faster when the number of paths is smaller.

More importantly, the last several singular values are pretty small but very close. This

means the corresponding directions in the eigenspace have very weak signals but consume

much computational effort to differentiate them, which is wasteful.

Following the above analysis, our next objective is to implement a lower rank SVD

approximation with lower computational complexity. To this end, we apply randomized

SVD technique [108]. The key idea of randomized SVD is that with the help of a random
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Figure 4.3: Singular values of H̃b
k (averaged over 100 instances) under different number of

scatterers based on mmWave channel modelling.
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Algorithm 4.1: Raw Randomized SVD

Given an m× n matrix A, a target approximation rank r, and an exponent q (say
q = 1 or q = 2), this procedure computes an approximate rank-r factorization
A ≈ UΣV†:

1 Generate an n× r Gaussian matrix Ω.
2 Form the m× r matrix Y = (AA†)qAΩ by multiplying alternately with A and A†.
3 Construct an m× r matrix P whose columns form an orthonormal basis for the

range of Y.
4 Form the r × n matrix B = P†A.
5 Compute an SVD of the small matrix: B = ǓΣV†.
6 Set U = PǓ.

Gaussian matrix Ω we form a rank-r basis P, with r < (|Kb| − 1)MU < MBS, that captures

the dominant directions with the largest SVD singular values. Then the original matrix

is projected onto a lower-dimensional subspace (based on basis P) to compute a standard

rank-r SVD. We summarize this procedure in Algorithm 4.1 and call it Raw Randomized

SVD. H̃b
k will be used as input for Algorithm 4.1. As we see in Step 5 of Algorithm 4.1,

due to the lower rank r, only a small-scale SVD is required. The complexity of Step 5

is O
(
r2 ·

[
(|Kb| − 1)MU +MBS

])
, which has been reduced from O

([
(|Kb| − 1)MU

]2 ·MBS

)
.

How to choose a proper value of r will be discussed in the next section.

We now customize the Raw Randomized SVD to further expedite computation time.

Note that from Eq. (4.3) and Eq. (4.4) in Stage B, our interest is Ṽb(−)
k , the last (MBS − r)

columns of the right singular matrix corresponding to the smallest (MBS−r) singular values of

H̃b
k, while the singular values and left singular matrix are not necessary for the beamforming

design. However, by examining Algorithm 4.1, a thorough lower rank SVD is performed,

including the calculation of unnecessary singular vectors and singular values (see Steps 3 to

6). Therefore, we can customize Steps 3 to 6 to reduce time. First, note that Ṽb(−)
k is also the

nullspace of Y†A. The calculation of the orthogonalization and normalization of the range

of Y in Step 3 is not required in our case. Second, it is redundant to perform a complete
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SVD as in Step 5 to obtain the nullspace. Therefore, we apply the QR factorization based

on the Given’s rotation method [114] to directly obtain the nullspace of Y†A. Moreover, we

implement Given’s rotation based QR by exploiting parallelism. This is done by leveraging

the following two characteristics of Given’s rotation: i) at each iteration, all the rotated

elements (elements of two columns of Y) can be updated simultaneously; ii) at each iteration,

only two columns of Y are dependent. It is worth noting that the mathematical complexity

(in O(·)) for a complete SVD and Given’s rotation based QR may be the same, but in

practice the QR method can lead to dramatic acceleration for our problem in real-time.

This is because the QR method (with parallel implementation) can save a lot of redundant

calculations and memory write/read caused by operations such as column interchanges and

computing variables that are not of our interest. The revised algorithm is summarized in

Algorithm 4.2.

Algorithm 4.2 for Stage B significantly reduces the computation time of standard SVD

operations—the main bottleneck in BD beamforming. The only additional cost is a few

more matrix multiplications, which, fortunately, can be parallelized and computed efficiently

(more details in Section 4.5). Although randomized SVD is an approximation method, we

will not analyze its performance here, since it is only an intermediate step for beamforming.

Instead, we will discuss and show both the timing and throughput performance by applying

randomized SVD in Section 4.5.

Stage C. In this stage, we construct the digital beamforming matrices Fb
BB,k. For given

matrices Hb

k and Ṽb(−)
k , the product of Hb

k and Ṽb(−)
k effectively forms user k’s channel with

no (or minor) inter-user interference (recall Eq. (4.4.2)). Therefore, the optimal beamforming

strategy regarding the effective MU × (MBS − r) channel Hb

kṼ
b(−)
k can be realized based on
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Algorithm 4.2: Lightweight Nullspace Computation

Given an m× n matrix A, a target approximation rank r, and an exponent q (say
q = 1 or q = 2), this procedure computes an approximate last n− r right singular
vectors of A, denoted as V:

1 Generate an n× r Gaussian matrix Ω.
2 Form the m× r matrix Y = (AA†)qAΩ by multiplying alternately with A and A†.
3 Form a r × n matrix B = Y†A.
4 Compute QR decomposition of B† based on Given’s rotation: B† = QR.
5 Set V as the last n− r columns of Q.

its SVD, which is given by:

Hb

kṼ
b(−)
k = Ub

kΣ
b

k

[
Vb(+)

k Vb(−)

k

]†
, (4.5)

where Vb(+)

k is the first Ns columns of right singular matrix and Vb(−)

k is the remaining

columns. Finally, the digital beamforming matrix Fb
BB,k is given by

Fb
BB,k = Ṽb(−)

k Vb(+)

k . (4.6)

In Eq. (4.5), we encounter another SVD computation. Luckily, the dimension of this

to-be-factorized matrix is tied to the number of RF chains at one user, namely MU, which

is typically small (e.g., 1 to 4). Vb(+)

k can be derived with the help of Hermitian symmetric

matrix ED and matrix multiplication, through the following steps:

• Form an MU × (MBS − r) matrix Ab
k = Hb

kṼ
b(−)
k ;

• Form an MU ×MU matrix Bb
k = Ab

kA
b†
k ;

• Compute ED of the Hermitian matrix: Bb
k = Ub

kΛ
b
kU

b†
k ;

• Set Vb(+)

k to the first Ns columns of Ab†
k Ub

k.
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Note that when MU = 1 or 2, simple and exact closed-form solution for SVD exists [113]

and hence this stage can be completed very fast.

4.4.3 Approximation with Lower Rank

As we discussed in Section 4.4.2, Turbo-HB applies lower rank approximation to reduce

computational complexity. Interestingly, in most cases, our approximation does not sacrifice

throughput performance. In this section, we offer some intuition behind it. Then we address

the last problem, which is how to choose a proper value for r.

Let’s revisit the SVD of interference channel H̃b
k as in Eq. (4.3). In the MBS-dimensional

signal space [Ṽb(+)
k Ṽb(−)

k ], Ṽb(−)
k is an (MBS − r)-dimensional subspace corresponding to

the (MBS− r) smallest interference strengths, while Ṽb(+)
k is a r-dimensional subspace corre-

sponding to the r largest interference strengths. When standard SVD is performed, we have

r = (|Kb|−1)MU (as in conventional BD approach). Then Ṽb(−)
k lies exactly in the nullspace

of H̃b
k, and therefore all inter-user interference will be cancelled when Fb

BB,k is constructed

based on Ṽb(−)
k (i.e., Eq. (4.6)). In addition to high complexity, there is another drawback

of such a “perfect” interference cancellation. That is, to achieve mutual orthogonality, one

has to project the desired signal onto a subspace with a small number of dimensions. As a

result, the perceived desired signal strength at a user is reduced.

In Fig. 4.4, we use a simple example to illustrate this point. In a 3-dimensional signal

space, we have a strong interference f1 along the z axis and a weak interference f2 along

the y axis. Now we are going to project a desired signal s (originally in the xyz space) onto

some subspace to avoid interference (via beamforming). If perfect interference cancellation

is required, then s has to be projected along the x axis to achieve orthogonality to both f1

and f2, leading to a smaller-strength signal s′, as shown in Fig. 4.4(a). However, if only
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Figure 4.4: Signal is projected onto a lower dimensional subspace to avoid interference. (a)
Signal s is projected along the x axis, resulting in s′; (b) (a) Signal s is projected onto the
xOy plane, resulting in s′′.

the strong interference f1 is required to be cancelled, then one can project s into a larger

dimensional subspace, i.e., xOy plane, resulting in s′′ as shown in Fig. 4.4(b). Although s′′

is interfered with by a weak interference f2, s′′ can preserve higher signal strength than s′,

which will lead to a higher SINR (and throughput).

Turbo-HB is purposefully designed to explore such a design space by tolerating some level

of weak interference. When lower rank SVD approximation is performed, it is meant to only

identify r directions corresponding to r strongest interference. Without knowledge of how

remaining interference presents, the desired signal will be projected onto a larger dimensional

subspace only to avoid the identified interference, preserving greater desired signal strength.

This approach is especially effective for scenarios where there is high correlation among

the channels or SNR is low. Since in these scenarios, the last few singular values (i.e.,

corresponding weak interference strengths) are small compared to the power of white noise.
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Then the dominant term in the denominator of SINR becomes the power of noise, which

cannot be suppressed by interference cancellation. Thus, by tolerating weak interference,

desired signal strength is preserved to overcome a bigger issue (the noise), leading to a

higher SINR.

Now we address the question of how to choose a proper value for r. Since 0 < r ≤

rank(H̃b
k) = MBS − MU and r is an integer, we have (MBS − MU) possible values for r.

If we choose r to be too large (i.e., close to (MBS −MU)), then we will have to get into

high-dimensional SVD operations, which are what we try to avoid. On the other hand, if we

choose r to be too small, then we may experience serious sacrifice in throughput performance.

So the goal is to find an optimal r that offers the best trade-off. Unfortunately, finding the

optimal value of r (in terms of maximizing network throughput) is intractable, due to the

large search space and non-convex objective function.

To gain some insight into what value of r should be, we conduct the following experi-

ment. We randomly generate 1,000 channel instances under different settings following the

mmWave channel model. For each instance, we enumerate all possible r’s and calculate its

corresponding throughput C. For the time being, we focus only on the objective function

(throughput) and defer consideration of computation time till later. In the experiment, we

set Ns = 2 and use the same settings as those used in Section 4.4.2 except that we now vary

SNR values and the number of channel paths. Specifically, let’s consider a low SNR scenario

(5 dB) and a high SNR scenario (20 dB), each of which is in combination with a small number

of clusters and rays (Lcl = Lray = 3) or a large number of clusters and rays (Lcl = Lray = 10).

Fig. 4.5 shows the achieved network throughput as a function of approximation rank r under

these four scenarios. Note that when r = 16, the achieved throughput value (the first blue

bar in each figure) is what is achieved by standard SVD (as in traditional BD method).

For the first three scenarios, where the channels are experiencing at least low SNR or high
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Figure 4.5: Achieved network throughput (averaged over 1,000 instances) as a function of
approximation rank r under different SNR and number of channel paths.
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correlations, we observe that the throughput goes up at first and then goes down as the value

of r decreases. Only when the channels maintain both high SNR and low correlations (as

in scenario (d)), the network throughput would strictly decline as the value of r decreases.

However, scenario (d) is relatively rare for mmWave systems. This experiment suggests that

the lower rank r indeed offers the opportunity for higher throughput, especially at low SNR

or high correlation scenarios. Under this scenarios (a), (b) and (c), setting r = MBS
2

= 10

would offer better (or comparable) performance than that with r = 16 in most instances.

The results in Fig. 4.5 are averaged over 1,000 channel instances. However, our interest

is on a particular channel instance, and the optimal choice of r based on averaging over 1,000

channel instances may not perform well in this particular instance. Therefore, we propose

to employ multiple choices of promising r’s in parallel and derive multiple beamforming

candidates corresponding to these r’s. That is, we execute several different lower rank

approximations simultaneously, where the set of target rank is given by

R = {r − δ, · · · , r − 1 , r , r + 1 , · · · , r + δ}, (4.7)

where r is around MBS
2

(which may be adjusted according to empirical statistics), and δ is

a parameter to control the number of elements in R. As |R| different lower rank approxi-

mations are implemented, we will have |R| different solutions of Fb
BB,k for each user on each

RB after Stage C. Among these |R| solutions, we evaluate their throughput performance

(i.e., C in Eq. (4.2)) and choose the one that offers the largest objective value as the final

beamforming matrix.
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4.5 Implementation

In this section, we present the implementation of our design in Section 4.4. Our implemen-

tation is done on Nvidia DGX station—a COTS GPU platform. Our Nvidia DGX Station

consists of 4 V100 GPU cards but we use only two of them. Each V100 card includes 80

streaming multiprocessors (SMs), and each SM has 64 CUDA cores. The CPU of our DGX

station is Intel Xeon E5-2698 v4 2.2 GHz (20-core). The data communication between CPU

and GPU is based on a PCIe V3.0 architecture [115]. CUDA programming tool (version

10.2) [117] is used to realize our algorithm and schedule the memory and processing cores.

For a successful implementation of Turbo-HB, we must have a thorough knowledge of

the capability and limitation of the GPU and find a way to fit our problem optimally into

the platform. In general, the more parallelism and less overhead in the implementation, the

better the performance we can achieve. As such, we focus on the following two objectives in

our implementation:

1. fully utilize GPU processing cores,

2. minimize memory access time.

In the rest of this section, we present the details of our implementation based on the

above two objectives.

4.5.1 Workflow on GPU

The key to fully utilize GPU processing cores is to have a sufficient large amount of parallel

workloads in flight to feed all the GPU cores. By our design in Section 4.4, the computations

for beamforming matrice are independent among different RBs, different users, and different
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Figure 4.6: Workflow of implementing Turbo-HB on GPUs.

target ranks. Thus, we can spread out the computation tasks over all available processing

cores. At each step in the implementation, the computation tasks are broken into a number

of parallel processing flows. Each flow is a group of parallel threads that executes certain

operations. All the flows shall be mutually data-independent and have the same computation

procedures to take advantage of GPU’s SIMD architecture. Based on the architecture of our

GPU V100, every consecutive 32 parallel threads are assembled into a group called a warp

for executing exactly the same instructions (while handling different data). Therefore, it is

preferable that a flow consists of an integral multiple of (or close to an integral multiple of)

32 threads. As V100 has 80 SMs, the number of flows should be at least 80 to avoid idle

SMs.

As illustrated in Fig. 4.6, our implementation includes the following key steps.

Step 0: Initialization. The system first sets up global parameters, including the

number of RBs |B|, user sets Kb on RB b, and the number of RF chains at BS MBS and at



131

users MU, etc. Then we calculate and allocate the memory space needed on GPU for storing

the matrices and variables.

Step 1: Set up global parameters and transfer the compressed CSI from host

to GPU. At the beginning of each time slot, the host transfers
∑

b∈B |Kb| partial CSI

(i.e., Vb
k’s and Σb

k’s) from host memory to GPU global memory (also known as device global

memory). Since we use two V100 GPU cards, we divide the channel matrices into two halves.

The first half corresponds to the first |B|
2

RBs and is transferred to the first GPU card. The

second half will be handled by the second GPU card.

Step 2: Execute Stage A. The objective of this step is to generate H̃b
k for every

k ∈ Kb and b ∈ B on GPU. We generate a total number of
∑

b∈B |Kb| parallel flows, where

each flow corresponds to the beamforming matrix of one user on an RB. We program one

thread to calculate one element of H̃b
k, thus a total number of

∑
b∈B |Kb| ·Nthread threads are

spawned in this step, where Nthread = (|Kb| − 1)MU ×MBS is the total number of elements

in H̃b
k.

Step 3: Execute Stage B. As we discussed in Section 4.4.2, the main task of this stage

is to compute the approximate nullsapce of H̃b
k. We generate a total number of

∑
b∈B |Kb||R|

parallel flows, where each flow corresponds to the computation for one user on one RB with

one target rank. Each flow executes Algorithm 4.2 to derive matrix Ṽb(−)
k . In particular,

for the QR decomposition in Step 4 of Algorithm 4.2, we use Given’s rotation method.

The computation requires multiple iterations and each iteration would overwrite the pro-

cessing matrix. To reduce the memory access time for repeated accesses, we first transfer

the input matrix from GPU’s global memory to the fast on-chip shared memory, then the

iterative computations are performed based on shared memory access. The output matrix

is transferred back to global memory after QR decomposition is completed. Step 3 is the

most computation intensive step in our implementation. It consumes around 130 µs (for
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MBS = 16, MU = 2 and |Kb| = 8) after our optimization.

Step 4: Execute Stage C. In this step,
∑

b∈B |Kb||R| parallel flows are generated

to calculate Fb
BB,k. This step includes a small dimensional SVD operation. Note that when

MU = 1 or 2, simple closed-form expressions can be directly applied for SVD computation.

Step 5: Choose the best solution. After Step 4, we obtain |R| beamforming candi-

dates for each user on each RB. In
∑

b∈B |Kb||R| parallel flows, we evaluate their throughput

performance as in Eq. (4.2) for every beamforming candidate. The best Fb
BB,k that provides

the highest objective value C in Eq. (4.2) will be chosen as the final solution. To speed up

comparison, parallel reduction technique [116] is employed.

Step 6: Transfer beamforming solution from GPU to host. Once Step 5 is

accomplished, the final beamforming solution (i.e., Fb
BB,k for every k ∈ Kb and b ∈ B) is

transferred from GPU memory to the host memory.

4.5.2 Speed-Up Techniques

Now we discuss two specific techniques that we have employed in Turbo-HB to enhance

parallelism and reduce memory access time.

Batching Batched matrix operations are critical to our problem, as we have to execute

a large number of independent matrix operations following the same procedure. As an

example, suppose we need to execute hundreds or even thousands of matrix multiplications

simultaneously. The programmer needs to generate a kernel with a sufficient number of

threads and divide these threads into a number of groups. Then each group computes one

or a few matrix multiplications, such that this kernel is able to perform batched matrix

multiplications. Similarly, other matrix operations (following the same procedure), such as

a large number of independent matrix ED operations, should be programmed in a batched
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manner to fully occupy the processing cores.

Minimizing global memory access Compared to other types of memory access, access-

ing global memory is much more time-consuming. We identify two techniques that can help

minimize global memory access in our problem.

First, the programmer should carefully coalesce memory access, i.e., consolidating mul-

tiple memory accesses into a single transaction. This is particularly important when we

handle a large number of matrix operations. The key to memory coalescing is to store the

matrices consecutively in the memory with proper indexing. Then the programmer can allow

consecutive threads to read consecutive (and aligned) memory and minimize the number of

transactions.

Second, instead of global memory accesses, which is more time-consuming, we can use

on-chip shared memory accesses, which is much faster (but with limited storage space).

Suppose we want to compute a matrix multiplication Cm×n = Am×lBl×n. A straightforward

approach for parallelism is to program each thread to take care of one element of C. Then

we need to read A n times from the global memory and B m times. In contrast, if matrix

multiplication is based on shared memory [117], we only need to read A for (n / block size)

times from the global memory and B for (m / block size) times. The remaining computations

are done by accessing the shared memory.

4.6 Experimental Validation

In this section, we present our experimental results, with a focus on timing and throughput

performance. We also compare with other state-of-art sequential HB schemes. For analog

beamforming part, we apply the widely adopted DFT-codebook based method [86, 111] for
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all schemes. For digital beamforming schemes, we choose HB-BD [86], HB-MMSE and HB-

ZF for comparison. We also include one joint analog and digital HB method (JHB) [83] to

show its timing performance.

Experiment Setup We consider a cellular communication scenario with one BS and a

number of users. The number of available RBs is up to 100. The BS is equipped with

128 antennas and each user is equipped with 16 antennas (a typical number for hybrid

architecture at mmWave frequencies [80, 82, 86]). The number of RF chains at the BS

varies from 8 to 20, while the number of RF chains at a user is 2. Each active link is

assumed to transmit Ns = 2 data streams. The number of active users for MU-MIMO

transmission on each RB (i.e., |Kb|) varies in this study. For the wireless channels, we use

the widely considered cluster-based mmWave channel model [82]. The number of clusters

Lcl, the number of propagation paths Lray caused by each cluster and SNR (i.e., PT
σ2 ) will be

given under different settings. The angle spread σAS is set to 5 degrees. We set parameter

δ (as defined in Section 4.4.3) to 2.

Timing Performance We first verify that Turbo-HB can indeed offer the beamforming

solution in less than 1 ms for all settings in our experiments and even achieves as little as 125

µs execution time in some settings. Note that the time consumed for data transfer between

CPU and GPU is included in Turbo-HB’s total execution time.

We first run the experiments for 100 consecutive TTIs under different settings as fol-

lowing: (a) MBS = 8, |Kb| = 4, (b) MBS = 12, |Kb| = 6, (c) MBS = 16, |Kb| = 8 and (d)

MBS = 20, |Kb| = 10. For the sequential algorithms (Turbo-HB, HB-BD, HB-MMSE and

HB-ZF), we only count the computation time of digital beamforming part. But for the joint

algorithm (JHB), we have to count time consumed both for its digital beamforming and

analog beamforming since they are inseparable. Our GPU-based algorithm is run on CUDA

platform while others are run on Matlab platform. Fig. 4.7 shows the results of execution
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Figure 4.8: Average execution time of Turbo-HB vs. the number of available RBs |B| under
different MBS settings.

time by different schemes. JHB, HB-BD, HB-MMSE and HB-ZF require a computation time

on the order of 103 ms, 102 ms, 101 ms and 101 ms, respectively. Our experiments show

that Turbo-HB finds beamforming solution in 114 µs, 162 µs, 250 µs, and 335 µs averaged

by 100 TTIs under settings (a), (b), (c) and (d), respectively. Based on the numerologies

defined in 5G NR, Turbo-HB can meet the timing requirement for numerology 3 (125 µs

TTI), numerology 2 (250 µs TTI) and numerology 1 (500 µs TTI) for 100 RBs with up to

4, 8, and 10 MU-MIMO users on each RB, respectively.

Next, we conduct experiments to examine Turbo-HB’s total execution time under differ-

ent numbers of available RBs |B|. We consider the following settings: (a) MBS = 12, |Kb| = 6,

(b) MBS = 16, |Kb| = 8. and (c) MBS = 20, |Kb| = 10. Fig. 4.8 shows Turbo-HB’s execution

time performance (with value for each point being average over 100 TTIs) for the three

settings. Note that the execution time increases slowly (and close to linear) as the number
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Figure 4.9: Average execution time of Turbo-HB vs. the number of RF chains MBS at the
BS under different settings of available RBs |B|.

of RBs increases. This is because under Turbo-HB, computation among different RBs is

executed in parallel and is not very sensitive to the number of RBs. For a given MBS, the

network operator can set the upper bound for the number of RBs to meet a certain 5G

numerology. For example, when MBS = 16, if the number of RBs is no more than 95 (a large

number), we can meet 5G numerology 2 requirement (250 µs).

In Fig. 4.9, we vary the number of RF chains at the BS (i.e., MBS) to show its impact on

Turbo-HB’s execution time. For this study, we consider the settings of |B| ∈ {60, 80, 100}

and |Kb| = MBS
Ns

, while MBS varies from 8 to 20. As expected, the results in Fig. 4.9 show

that Turbo-HB’s average execution time is increasing with MBS. Compared with varying

|B|, Turbo-HB is more sensitive to the change of MBS. This is because the larger the MBS,

the higher dimensional matrix operations will be required, which leads to more computation

time. However, Turbo-HB is able to complete the computation in real-time, thanks to its
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design based on randomized SVD.

Throughput Performance We first evaluate throughput performance achieved by dif-

ferent schemes under varying SNR value. We consider two different settings: (a) MBS = 10,

|Kb| = 4, and (b) MBS = 20, |Kb| = 8. We set Ncl = Nray = 3 and SNR varies from −5 dB

to 25 dB in both cases. Fig. 4.10 shows that in both cases, throughput under conventional

HB-MMSE and HB-ZF methods are below the others, as MMSE and ZF are not designed

for mmWave systems and the poorly conditioned channel greatly degrades MMSE/ZF’s per-

formance [88, 92, 93]. In Fig. 4.10, Turbo-HB is able to achieve similar performance as the

classical HB-BD and is better than the others.

Next, we vary the channel correlation condition (by varying the number of propagation

clusters Lcl) and study its impact on throughput performance. We fix SNR = 20 dB,

MBS = 20, |Kb| = 8, and Nray = 3. We vary Lcl from 1 to 7. Fig. 4.11 shows the throughput

achieved by different schemes as a function of Ncl. The results show that the performance by

HB-MMSE and HB-ZF is significantly lower than the others, especially when the number of

clusters is small (and thus the channels are highly correlated). On the other hand, Turbo-HB

is able to achieve similar performance as HB-BD and offers high throughput than HB-MMSE

and HB-ZF. This is because both Turbo-HB and HB-BD are SVD-based and are capable of

identifying the best signal directions for beamforming. When the number of channel paths is

small, Turbo-HB is able to obtain even better performance than HB-BD. The reason behind

this was given in our discussions in Section 4.4.3.
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Figure 4.10: Comparison of throughput achieved by different schemes as a function of SNR
under different MU-MIMO scenarios.
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Finally, we present throughput performance under different numbers of RF chains MBS

at the BS. We consider the setting of SNR = 20 dB and Ncl = Nray = 3. MBS is chosen from

{8, 10, 12, 14, 16, 18, 20}, and |Kb| is chosen from {2, 3, 4, 5, 6, 7, 8} accordingly. In Fig. 4.12,

the results show that the network throughput is increasing with MBS for all schemes as

more users can be supported. The performance gap between Turbo-HB/HB-BD and HB-

MMSE/HB-ZF is also increasing with MBS as the SVD-based approaches can better reap the

benefits provided by additional RF chains. Again, we find that Turbo-HB can offer similar

performance as HB-BD and outperforms other schemes.

Summary of Results The experimental results show that Turbo-HB can meet the 1-

ms real-time requirement under all tested settings and can meet the 5G requirement with

appropriate numerology. On the other hand, all other schemes incur a computation time

that is of orders of magnitude higher than Turbo-HB and none of them can meet the 5G

timing requirement. Further, Turbo-HB is able to offer a throughput performance that is

better or comparable to the state-of-the-art algorithms.

4.7 Related Work

Hybrid beamforming design is an active research area and has attracted lots of research

efforts. However, most existing research has been largely limited to asymptotic complexity

analysis (i.e., in O(·)). Although such complexity analysis is of interest from theoretical

perspective, it does not give any indication on how much actual time (“real-time”) is needed

when it is implemented on a given hardware platform. On the other hand, for a real-world

5G system, the ultimate benchmark is real-time performance, as there is a stringent timing

requirement under its numerology.

In the literature, all kinds of HB designs involve some level of heuristics. One line of
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research is to jointly optimize analog and digital beamforming to offer a near-optimal solution

(see, e.g., [81, 82, 83, 84]). A common feature of these designs is that their algorithms must

run iteratively to update digital beamformers and analog beamformers. Due to a large

number of iterations that are needed in these designs, none of them can offer real-time

solutions under 5G requirement (sub-ms).

On the other hand, sequential designs are proposed to reduce the complexity by decou-

pling the analog domain and digital domain (see, e.g., [86, 87, 88, 89, 90]). However, the

mainstream of existing research works heavily relies on reducing the asymptotic complexity

(in O(·)) in their algorithms. Since asymptotic complexity analysis of an algorithm is only

concerned with when the input size n is sufficiently large (approaches to infinity), it does not

reflect how much actual time it will need when input data is finite, as in 5G. As a result, these

sequential algorithms do not meet the sub-ms timing requirement when they are tested by a

real timer. In addition, algorithms designed with extremely simple digital beamforming such

as ZF/MMSE may also suffer from considerable throughput loss at mmWave frequencies.

Recently, there has been a number of successful research works applying parallel tech-

niques to wireless networking and signal processing problems. Some representative works

include [95, 118, 119, 120, 121, 122]. Specifically, the authors in [95, 118, 119] implemented

real-time designs to address scheduling problems in 4G/5G networks. In [120], the authors

proposed MIMO detection algorithms that utilize parallelism to achieve high-performance

detection. The study in [121, 122] applied parallel processing to accelerate LDPC decod-

ing. These approaches were demonstrated on a GPU or FPGA platform. Among them, the

designs based on general-purpose GPU platform (e.g., those from [95, 118, 121]) provided

high level of parallelism and flexibility, thanks to GPU’s large-scale SIMD architecture and

highly programmable tools such as CUDA. However, these algorithms are designed to ad-

dress scheduling or decoding problems, and their approaches cannot be applied in solving a



143

complex beamforming problem under hybrid architecture, which is the focus of this chapter.

4.8 Chapter Summary

This chapter presents Turbo-HB, the first design and implementation that addresses the

real-time challenge for beamforming under HB architecture. To reduce computation time,

Turbo-HB exploits randomized SVD technique by leveraging channel sparsity at mmWave

frequencies. Further, Turbo-HB exploits large-scale parallel processing, with optimized ma-

trix operations and minimized memory accesses. We implemented Turbo-HB on COTS

Nvidia DGX Station with CUDA programming platform. Through extensive experimental

studies, we found that Turbo-HB is able to find beamforming matrices successfully under

1 ms for all tested cases. Specifically, Turbo-HB can meet the 125µs (numerology 3), 250

µs (numerology 2) and 500 µs (numerology 1) timing requirements for 100 RBs with up to

4, 8, and 10 MU-MIMO users on each RB, respectively. In the meanwhile, Turbo-HB offers

competitive throughput performance compared to the state-of-the-art algorithms.



Chapter 5

A Sub-millisecond Scheduler for 5G

MU-MIMO Systems

5.1 Introduction

In 5G NR, MU-MIMO is one of the most powerful technologies to increase network through-

put [123, 124, 125, 126, 127]. Under MU-MIMO, a base station (BS) is able to transmit

signals to multiple users simultaneously on the same frequency band. Compared to tra-

ditional cellular networks such as 4G LTE, where BSs are typically equipped with a few

number of antennas (e.g., < 8), BSs for 5G NR are likely to have a larger number of anten-

nas (e.g., 12 antennas). Therefore, 5G NR can accommodate much more MU-MIMO users

by exploiting the spatial diversity offered by many antennas. Per 5G specification[128], up

to 12 data streams can be co-scheduled on the same RB. That is 12 MU-MIMO users when

each user has one data stream. For a particular user, it may have up to 8 streams concur-

rently. In contrast, it is typical that only a small number of users and streams (e.g, 2-stream

SU-MIMO or 2-user MU-MIMO) is considered under 4G LTE [129, 130].

However, a number of technical challenges in the design of a 5G scheduler need to be

addressed before we can fully reap the fruit of MU-MIMO. Specifically, for a downlink

scheduling problem at a 5G BS (see Fig. 5.1), we have the following challenges.
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Figure 5.1: System model. (a) A 5G MU-MIMO BS serving a number of users. (b) Within
each time slot, the BS determines RB allocation, number of data streams, and MCS assign-
ment for each user.

• First, the scheduler should allocate a number of RBs to cell users for data transmission.

Under MU-MIMO, one RB can be allocated to multiple users. These users can decode

their desired signals by applying beamforming techniques. Note that a user’s achieved

SINR (and data rate) depends on the set of users that are co-scheduled with this user

on the same RB.

• Second, the scheduler needs to determine the number of data streams transmitted

from the BS to each user, exploiting the best tradeoff between diversity and spatial

multiplexing offered by MIMO channels. One practical constraint in 5G NR is that

the number of data streams used for a user must be identical across all RBs allocated

to this user [128].

• Third, the scheduler needs to choose the modulation and coding scheme (MCS) for

each user. Similar to the number of data streams, if a user is scheduled to receive data

on multiple RBs, then the user must use the same MCS across all RBs scheduled to
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her [4].1

Therefore, the scheduling problem tightly couples together RB allocation, stream number

determination, and MCS selection. This makes the MU-MIMO scheduling problem NP-hard

[131, 132, 133], with an extremely large solution space.

Further, we face a stringent real-time requirement for the 5G MU-MIMO scheduler. That

is, the scheduler must be able to offer the scheduling solution within each TTI to be useful.

In 5G NR, the frame structure is scalable to support a variety of 5G applications. Under 5G

numerology 0, 1 TTI is 1 ms. To support the applications with higher latency requirement,

the numerology 1 with 500 µs TTI may be considered. In this paper, we aim at offering the

scheduling solution (including RB allocation, data stream number determination and MCS

assignment) in ∼500 µs to meet the timing requirement of 5G numerology 1.

Designing a scheduler for cellular systems has been explored in the literature. However,

none of the existing research can offer an MU-MIMO scheduler that meets the 5G real-time

requirement. Some representative works include [95, 131, 132, 133, 134, 135, 136, 137, 138,

139]. The designs in [131, 132, 133, 134, 135, 136, 137, 138, 139] have one common feature—

their algorithms must run a large number of iterations. Due to this iterative nature, none of

these designs can offer a scheduling solution in real-time (∼500 µs). Further, there is hardly

any research that can jointly optimize the scheduling of RBs and MCS for MU-MIMO users.

For instance, the authors in [95] implemented a real-time 5G scheduler, but their design

only considered single-antenna deployment. Likewise, the designs in [133, 134, 136, 137]

are also only applicable to non-MIMO settings. The works in [131, 132, 135, 138, 139]

considered MIMO deployment to design schedulers. However, either MU-MIMO scheduling

or MCS assignment is missing in their models. It is also fair to presume that extending these
1We consider a typical configuration of applying one transport block at each user. When a user is

configured with two transport blocks, the data belonging to two different transport blocks may have two
different MCSs.
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algorithms to support the joint scheduling of RBs, MCS for MU-MIMO users would result

in even longer computation time.

In this paper, we present a novel design and implementation for 5G MU-MIMO systems

that can achieve ∼500 µs scheduling. We call our design “mCore+”, which is our acronym for

sub-millisecond scheduler with GPU cores, and the ”+” denotes an improved version of our

original design (mCore) in [119]. The success of mCore+ is built upon recent advances based

on the general-purpose GPU-based platform (see, e.g., [95, 96, 120, 145, 146, 147]). Thanks to

the massive computing cores offered by a GPU with the dedicated single-instruction-multiple-

data (SIMD) architecture, GPU is capable of solving a large number of structurally-identical

sub-problems at an extremely fast speed. A GPU-based platform offers a new possibility to

solve complex optimization problems with stringent real-time requirements. In our design

mCore+, we exploit GPU’s parallel computing capability through a multi-phase optimiza-

tion. At each phase, mCore+ either decomposes each problem into a large number of inde-

pendent sub-problems to utilize large-scale parallelism, or selects the most promising search

space leveraging channel conditions and user correlations, or performs both. mCore+ is im-

plemented on a commercial off-the-shelf (COTS) GPU platform. Special engineering efforts

are made to fit our problem into two GPU cards, such as minimizing the data transfer and

synchronizations between GPU cards. The main contributions of mCore+ are summarized

as follows:

• This paper presents the first design and implementation of a 5G MU-MIMO scheduler

that can offer a scheduling solution, as well as corresponding beamforming matrices,

in ∼500 µs. This design supports MU-MIMO transmission, allowing multiple users

to share the same time-frequency resources, and each user may have multiple data

streams concurrently. mCore+ can be applied to 5G NR numerology 0 and 1.
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• Our design exploits large-scale parallelism through a dedicated multi-phase optimiza-

tion design. Specifically, at each phase, mCore+ either decomposes the optimization

problem into a number of independent sub-problems along with one type of variable,

or restrict the search space for that type of variable into a smaller but most promising

subspace, or both. mCore+ takes advantage of channel conditions and user correla-

tions among MU-MIMO users to reduce the search space. In addition to the problem

decomposition/reduction, the exploration of parallel computing is carried out through-

out our design of mCore+, such as the user correlations and beamforming matrices are

calculated in parallel among RBs.

• mCore+ is implemented on a COTS GPU platform NVIDIA DGX Station. We used

two V100 GPU cards with the programming tool CUDA to perform our design. Special

engineering efforts are performed to fit our problem into the GPU, which includes min-

imizing the data transfer and synchronization between GPU cards, exploiting stream-

ing multi-processor’s compute capability, practicing a proper indexing method, using

shared memory wisely, etc. By taking advantage of GPU’s massive-core architecture,

mCore+ is able to accelerate the computation significantly.

• We validated mCore+’s performance through extensive experiments. The results show

that mCore+ can offer a scheduling solution in ∼500 µs for a cellular system with

up to 100 RBs, 100 users and 4 × 12 MIMO, which can meet the timing requirement

for 5G numerology 1. Further, mCore+ can achieve better or comparable throughput

performance compared with the state-of-the-art algorithms.

The rest of the paper is organized as follows. In Section 5.2, we review related work

on cellular scheduler designs and GPU-based designs. In Section 5.3, we formulate the

scheduling problem and state our objective. Section 5.4 presents our design of mCore+.
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In Section 5.5, we offer the detailed implementation of mCore+ NVIDIA DGX Station.

In Section 5.6, we show our experimental results to validate the performance of mCore+.

Section 5.7 concludes this paper.

5.2 Related Work

We review the related work along the following two research lines.

Schedulers for Cellular Systems In the literature, there have been a number of research

works that studied the design of cellular schedulers, including schedulers for single-antenna

deployment and for MIMO systems.

In [95], the authors proposed GPF, which is a proportional fair (PF) scheduler design

that allocates RBs and assigns MCS for users in a macro cell. This design can offer a

scheduling solution in ∼100 µs for a user population size of up to 100 in a cell. Their

experimental results show that GPF can achieve near-optimal performance per PF criterion.

In [95, 133, 134, 136, 137], the authors proposed different heuristic schemes to allocate

RB resources and determine MCS levels for each user. Unfortunately, all the designs in

[95, 133, 134, 136, 137] do not consider multiple antennas at the BS or users. Thus, neither

scheduling multiple users on an RB nor assigning multiple data streams for a user can be

supported by these designs.

The designs in [131, 132, 135, 138, 139, 140, 141] designed schedulers for MIMO systems,

which exploit the channel diversity and spatial multiplexing offered by MIMO channels.

However, in [132, 135, 138], MU-MIMO transmission is not supported in their models. In

[131, 139], their designs considered MU-MIMO transmission by allowing an RB to be shared

by multiple users. But MCS assignment is not developed by their designs. In [140, 141],
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the MU-MIMO scheduling problem is simplified as the problem is independent among RBs,

because the authors do not apply the constraint of using the same MCS and the number

of data streams across all RBs for a given user. In addition to the system models, all the

proposed schemes in [131, 132, 135, 138, 139, 140, 141] require a large number of iterations

to determine a solution. Due to the iterative nature of their algorithms, these designs cannot

meet the sub-millisecond real-time requirement for 5G NR.

GPU-based Designs Recent advances in applying GPU to solve complex optimization

problems have offered promising approaches to tackle the stringent real-time challenges.

Different from most existing research that are largely limited to asymptotic complexity

analysis (as in O(·)), GPU-based designs are usually examined by actual “wall-clock” time,

which is the ultimate benchmark in practice.

In the wireless communication community, GPU is employed in various areas of both PHY

layer and MAC layer. In PHY layer, the authors in [120, 142] designed MIMO detectors

that utilize GPU’s parallel computing capability. In [146], the authors proposed parallel

algorithms on GPU to accelerate LDPC decoding. The work [145] presented a GPU-based

real-time solution to find digital beamforming weights for MU-MIMO users under hybrid

architecture.

In MAC layer, the authors in [95] proposed a PF scheduler for 5G networks that can offer

a near-optimal solution in ∼100 µs by leveraging GPU’s massive parallel cores. In [143], the

authors applied GPU to solve an age-of-information (AoI) minimization problem. The design

in [144] solved a spectrum sharing problem based on chance-constrained programming, which

employed GPU platform to meet 5G’s timing requirement.

Unfortunately, all these GPU-based works are fundamentally different from the MU-

MIMO scheduling problem we are studying in this paper. Their proposed approaches cannot
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be applied to address our problem.

5.3 System Model

We consider a downlink (DL) scheduling problem for a 5G NR cellular system. As shown in

Fig. 5.1, a BS serves a set K of users. The BS is equipped with NT antennas and each user

is equipped with NR antennas (NT > NR). Table 5.1 gives the key notations that we use in

this paper.

We consider time-slotted scheduling over a wide bandwidth. Within each time slot, there

is a set B of RBs over the DL bandwidth. On each RB b ∈ B, a subset of users Kb ⊂ K is

selected for MU-MIMO transmission2. Denote xb
k(t) ∈ {0, 1} as a binary variable indicating

whether or not RB b ∈ B is scheduled by the BS for user k ∈ K in TTI t, i.e.,

xb
k(t) =


1, if RB b is used for user k in TTI t,

0, otherwise.

For xb
k(t), we have the following constraint.

Constraint 1. The maximum number of users scheduled in an RB cannot exceed the

number of antennas at the BS, i.e.,

∑
k∈K

xb
k(t) ≤ NT. (b ∈ B) (5.1)

Further, each user k ∈ K may have multiple data streams (also known as “layers” in

specifications [128]) simultaneously. However, to reduce the feedforward control signaling
2The smallest scheduling resolution in 5G can be a number of consecutive RBs, known as Resource Block

Group (RBG). Our design can be easily extended to RBG-based scheduling.
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Table 5.1: Notations in Chapter 5

Symbol Definition

B The set of RBs to be allocated in a time slot
Fb
k(t) The precoding matrix for user k used on RB b in

TTI t
Hb

k The channel matrix for user k on RB b
K The set of users
Kb A subset of users using RB b
M The set of MCSs
NR Number of antennas at each user
NT Number of antennas at BS
rb,f,mk (t) The instantaneous achievable data rate of user k’s

f -th data stream on RB b with MCS m in TTI t
Rk(t) The aggregate data rate of user k in TTI t
R̃k(t) The exponentially smoothed average data rate of

user k up to TTI t
xbk(t) A binary variable indicating whether or not RB b

is scheduled for user k in TTI t
yk(t) Number of data streams for user k in TTI t
zmk (t) A binary variable indicating whether or not MCS

m is used for user k in TTI t

overhead and signal processing complexity, 5G NR imposes the following constraint.

Constraint 2. If a user is scheduled to receive signals on multiple RBs, then the user

must have the same number of data streams across all RBs that are allocated to her [128].

Denote yk(t) (a non-negative integer) as the number of data streams for user k in TTI t

(which is the same across all allocated RBs). As yk(t) cannot be greater than the number

of receive antennas, we have

yk(t) ≤ NR. (k ∈ K)

Also, the total number of data streams on each RB for MU-MIMO transmission cannot
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exceed the number of antennas at the BS. We have

∑
k∈K

xb
k(t)yk(t) ≤ NT. (b ∈ B) (5.2)

In each TTI t, a setM of MCS is available for users for data transmission. We have the

following constraint for MCS selection.

Constraint 3. If a user is scheduled to receive data streams on multiple RBs, then the

user must use the same MCS across all data streams on all scheduled RBs [4].

Denote zmk (t) ∈ {0, 1} as a binary variable indicating whether or not MCS m ∈ M is

used by the BS for user k ∈ K in TTI t, i.e.,

zmk (t) =


1, if MCS m is used for user k in TTI t,

0, otherwise.

To guarantee only one MCS is used across all scheduled RBs for user k, we have

∑
m∈M

zmk = 1. (k ∈ K) (5.3)

The BS applies precoders to support MU-MIMO and multiple data streams. Let Fb
k(t)

be an NT × xb
k(t)yk(t) precoding matrix for user k used by the BS scheduler on RB b. To

meet the power constraint at the BS, we have
∑

k∈K ||Fb
k(t)||2F ≤ PT, where PT is the total

power for RB b at the BS and || · ||F denotes the Frobenius norm. Then the received signal

of user k on RB b is given by

cbk = Hb
kFb

ks
b
k + Hb

k

i ̸=k∑
i∈K

Fb
is

b
i + nb

k, (k ∈ Kb, b ∈ B)
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where Hb
k ∈ CNR×NT is the channel matrix for user k ∈ K on RB b ∈ B, nb

k is the NR × 1

vector of i.i.d CN (0, n2
0) additive complex Gaussian noise, sbk is the signal vector, and we

omit the notation (t) for matrices for brevity.

Each user k computes the SVD of Hb
k = Ub

k�bkV
b†
k , where (·)† denotes the conjugate

transpose of a matrix. The �bk and Vb
k are further compressed, quantized and fed back to the

BS (to assist precoding), and the leftmost yk columns of Ub
k, denoted as Ub(yk)

k , is used as

the combiner at user k. After this combiner, we have the following signal:

c̃bk = Ub(yk)†
k cbk = �b†k Fb

ks
b
k + �b†k

i ̸=k∑
i∈Kb

Fb
is

b
i + Ub(yk)†

k nb
k,

where �bk = [σb
k(1)v

b
k(1), · · · , σb

k(yk)v
b
k(yk)] is an NT × yk matrix, σb

k(i) is the i-th eigenvalue

of �bk, and vb
k(i) is the i-th column of Vb

k. Thus, �bk is the effective channel after applying

combiners at the users. Different precoding schemes can be used based on �bk. In this paper,

we apply ZF precoding scheme with equal power allocation for each data stream.3

For k ∈ K, the signal-to-interference-plus-noise ratio (SINR) of the f -th stream on RB b

is then given by

SINRb,f
k =

γb,f
k

Qb,f
k − γb,f

k

, (5.4)

where
γb,f
k = �b,f†k Fb,f

k Fb,f†
k �b,fk

Qb,f
k = n2

0 +
∑
i∈K

�b,f†k Fb
iF

b†
i �b,fk ,

and (·)b,fk is the f -th column of (·)bk.

The instantaneous achievable data rate depends on the SINR of each stream and the

selected MCS level. Specifically, for each user k ∈ K, a higher MCS level m corresponds to a

3Other linear precoding schemes (e.g., MMSE) can also be applied.
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higher data rate rm in transmission. However, a certain level of SINR at each stream of user

k is required in order to successfully decode the data. Denote θm as the SINR threshold for

each data stream to successfully decode the data with MCS m. Then we have the following

constraint.

Constraint 4. If the SINR of user k’s f -th data stream on RB b is greater than or

equal to θm, then the instantaneous achievable data rate of that stream is rm; otherwise the

achievable data rate drops to zero.

Denote rb,f,mk (t) as the instantaneous achievable data rate of user k’s f -th data stream

on RB b with MCS m in TTI t. Then

rb,f,mk (t) =


rm, if SINRb,f

k ≥ θm,

0, otherwise.

(f = 1, · · · , yk(t), k ∈ K, b ∈ B,m ∈M)

(5.5)

The aggregate achievable data rate of user k in TTI t can be given by

Rk(t) =
∑
b∈B

xb
k(t)

yk(t)∑
f=1

∑
m∈M

zmk (t)rb,f,mk (t),

where we define
∑yk(t)

f=1 (·) = 0 if yk(t) = 0.

Objective Function. To optimize the throughput performance with fairness considera-

tion, we apply the widely used PF data rate as our performance objective. Denote R̃k as the

long-term average data rate of user k. The PF objective function is then given by

∑
k∈K

logR̃k. (5.6)
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Our real-time scheduler aims to maximize (5.6) by making scheduling decisions in each

TTI t. A common approach is to maximize the sum of each user’s instantaneous rate

normalized by its exponentially smoothed average data rate over the past Tc TTIs [148, 149],

i.e., ∑
k∈K

Rk(t)

R̃k(t− 1)
, (5.7)

where

R̃k(t− 1) =
Tc − 1

Tc

R̃k(t− 2) +
1

Tc

Rk(t− 1).

It has been shown that maximizing (5.7) in each TTI is asymptotically approaching PF

objective (5.6) when Tc →∞.

Problem Statement. Our objective is to allocate RBs, MCSs, assign the number of

data streams, as well as compute precoding matrices for all users in each TTI, such that the

PF objective function (5.7) is maximized. This 5G MU-MIMO scheduling problem can be

written as follows.

OPT

max
∑
b∈B

∑
k∈K

∑
m∈M

yk(t)∑
f=1

rb,f,mk (t)

R̃k(t− 1)
xb
k(t)z

m
k (t)

s.t. RB allocation constraint: (5.1);

Data stream allocation constraints: (5.2);

MCS assignemnt constraint: (5.3);

SINR and instantaneous data rate: (5.4), (5.5);

xb
k(t) ∈ {0, 1}, (b ∈ B, k ∈ K)

yk(t) ∈ {0, 1, · · · , NR}, (k ∈ K)

zmk (t) ∈ {0, 1}. (k ∈ K,m ∈M)
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In problem OPT, xb
k(t), yk(t) and zmk (t) are decision variables, Fb(t), rb,f,mk (t) and R̃k(t−1)

are intermediate variables, and the others are given constants.

Real-Time Challenge Problem OPT is NP-hard [131, 132], and the solution space is

extremely large. The number of possible MCS assignments is |M||K|. Under the MU-

MIMO setting, the number of possible RB allocations is |B|
[(

|K|

1

)
+ · · ·+

(
|K|

NT

)]
.

Also, the number of possible data stream allocations is N
|K|
R . These give us a total number

of (|M|NR)
|K||B|

[(
|K|

1

)
+ · · ·+

(
|K|

NT

)]
possibilities in the solution space. In a typical

5G cellular system, this number can be as large as ∼10189 (when |M| = 29, |K| = 100, |B| =

100, NT = 8 and NR = 2).

On the other hand, we have a stringent timing requirement. A scheduler needs to find

its scheduling solution within each TTI. In 5G NR, the longest time interval for a TTI is

1 ms (numerology 0) [91]. To support ultra-low latency applications, the numerology 1 with

500-µs TTI may be applied. In this paper, we set the real-time requirement to

Treq = 500 µs (5.8)

for a 5G scheduler. With the high-complexity problem and stringent timing requirement,

none of the existing works can provide a solution to meet our goal.
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5.4 mCore+: A Novel Design of Real-Time MU-MIMO

Scheduler

5.4.1 Main Ideas and Road Map

The main ideas are twofold. First, mCore+ decomposes OPT into a large number of in-

dependent sub-problems. The goal is to leverage parallel computing resources to solve the

sub-problems concurrently. Second, mCore+ judiciously reduces the large search space into

a smaller but most promising search subspace, leveraging insights from channel conditions

and correlations.

As expected, decomposing OPT or narrowing the search space is not trivial, as we have

multiple sets of decision variables (i.e., xb
k(t)’s, yk(t)’s and zmk (t)’s) and they are tightly cou-

pled with each other. The combinations make the solution space extremely large. Therefore,

a simple parallel algorithm that exhaustively checks all possibilities is not possible. To ad-

dress this problem, mCore+ judiciously solves OPT through a multi-phase optimization. At

each phase, mCore+ focuses on one type of variable (i.e., xb
k(t)’s, yk(t)’s or zmk (t)’s). That

is, each phase will either decompose the optimization problem into a number of independent

sub-problems along with that type of variable, or restrict the search space for that type of

variable into a smaller but most promising subspace, or both.

The multi-phase optimization is illustrated in Fig. 5.2. At Phase 1, problem OPT is

decomposed along zmk (t) variables, which corresponds to an MCS selection problem. From

|M||K| possible MCS assignments, mCore+ selects NP1 promising candidates, based on chan-

nel conditions. Thus problem OPT is split into NP1 independent sub-problems, named

OPT-P1.

At Phase 2, we focus on reducing the search space along xb
k(t) variables, which implies a
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OPT
          Phase 1:

Decompose along    zmk (t)
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NP1

<latexit sha1_base64="RS0M0vKBIiIfrGrnxzAHWM5hsZU=">AAACEXicbVDLSsNAFJ34rPUVdSO4GSyCq5KIosuiG1dS0T6gKWEynbRDJw9mbsQS4k/4C251707c+gVu/RInbRa29cCFwzn3cu89Xiy4Asv6NhYWl5ZXVktr5fWNza1tc2e3qaJEUtagkYhk2yOKCR6yBnAQrB1LRgJPsJY3vMr91gOTikfhPYxi1g1IP+Q+pwS05Jr7TkBgQInAd2564zrAHiGt21nmmhWrao2B54ldkAoqUHfNH6cX0SRgIVBBlOrYVgzdlEjgVLCs7CSKxYQOSZ91NA1JwFQ3HX+Q4SOt9LAfSV0h4LH6dyIlgVKjwNOd+b1q1svF/7xOAv5FN+VhnAAL6WSRnwgMEc7jwD0uGQUx0oRQyfWtmA6IJBR0aFNbvCAr61Ds2QjmSfOkap9VrdvTSu2yiKeEDtAhOkY2Okc1dI3qqIEoekIv6BW9Gc/Gu/FhfE5aF4xiZg9Nwfj6BTVHnYw=</latexit>

SNP1

· · · · · ·

· · · · · ·

· · · · · ·

Select sub-problems

Select promising 
subspace

Select promising 
subspace

Figure 5.2: mCore+ solves OPT through a multi-phase process, leveraging parallel compu-
tation in each phase.
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user selection problem for MU-MIMO transmission. Phase 2 is composed of two steps. Step

A evaluates the channel qualities qbk normalized by long-term average R̃k(t − 1). Then the

allocation of RB b is restricted to a subset of users K̃b ⊂ K. In Step B of Phase 2, mCore+

measures the channel orthogonality among users K̃b, then the RB allocation is further limited

to a smaller user set Kb ⊂ K̃b (|Kb| ≤ NT) that offers good orthogonality among the users

within the set. After Phase 2, we still have NP1 independent sub-problems, named OPT-P2B,

while the number of RB allocation possibilities is reduced from |B|
[(
|K|

1

)
+ · · ·+

(
|K|

NT

)]

to |B|
[(
|Kb|

1

)
+ · · ·+

(
|Kb|

|Kb|

)]
.

At Phase 3, we focus on determining the number of data streams for each user, which is to

decide yk(t) variables. We also determine xb
k(t) variables in the meanwhile. Phase 3 has two

steps. In Step A, we relax yk(t) to a set of ybk(t)’s by allowing the number of data streams to be

different on different RBs. This effectively decouples problems OPT-P2B among different

RBs. Thus problems OPT-P2B are decomposed into NP1|B| independent sub-problems,

denoted as OPT-P3A. Each OPT-P3A is now a small problem that can be solved easily by

checking all promising solutions, leveraging massive parallel computing resources. In Step B,

we address the feasibility to the original problem OPT (i.e., those infeasible solutions due

to relaxation of yk(t)’s in Phase 3 Step A). This is done by another NP1|K| independent

sub-problems (denoted as OPT-P3B). After Phase 3, we have NP1 sets of promising and

feasible solutions as scheduling candidates.

Finally in Phase 4, among the NP1 intermediate best solutions, the best solution is chosen

as the final scheduling solution to problem OPT.
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5.4.2 Design Details

We have two main principles that will be carried out throughout the design of mCore+:

• Exploring parallelism: the decomposition should be able to generate a large number

of independent sub-problems that can be fit into a given GPU platform. Also, each

sub-problem should have an identical structure such that we can take advantage of

GPU’s single-instruction-multiple-data (SIMD) architecture for high efficiency.

• Finding the most promising search space: the search space is reduced into a smaller but

most promising area, leveraging the insights from channel conditions and correlations.

In the rest of this section, we present the design details of mCore+ based on the above

two principles.

Phase 1: MCS Selection. We first decompose problem OPT along zmk (t) variables,

which corresponds to fixing MCS in each sub-problem. If we enumerate all possibilities of

zmk (t)’s, this will give us |M||K| sub-problems in total, which is too large to be handled in

real-time. We now show how mCore+ chooses a promising subset of sub-problems.

First, we identify the largest possible MCS that can be used by a user. On RB b, the

largest possible SINR of user k happens when RB b is scheduled exclusively for user k (i.e.,

no co-scheduled MU-MIMO users) and only one data stream is transmitted to user k. In this

case, user k gets all transmit power PT exclusively and no inter-stream interference exists.

By (5.4), the best possible SINR of user k on RB b is PTσb
k(1)

2

n2
0

. Denote the largest eigenvalue

of user k’s channels over all RBs as σ∗
k, i.e., σ∗

k = max{σb
k(1)|b ∈ B}. Then we must have the

best possible SINR of user k’s streams across all RBs is PTσ∗
k
2

n2
0

, i.e.,

SINRb,f
k ≤

PTσ
∗
k
2

n2
0

. (b ∈ B, f ∈ {1, · · · , NR}) (5.9)
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Thus, the highest MCS that user k may use, denoted as mk, can be determined by the

user k’s best possible SINR. That is

mk = max
m∈M

{
m

∣∣∣∣PTσ
∗
k
2

n2
0

≥ θm
}
. (k ∈ K)

On one hand, simply applying mk to user k may not be the best choice, as a user may

use a lower MCS to support more RBs and streams at the same time. On the other hand,

choosing an MCS much lower than mk is not helpful. The intuition is that applying an MCS

much worse than channel quality is unlikely to improve the PF objective. Therefore, we

consider user k’s MCS to be chosen from the set Mk of top 10 highest MCS that can be

applied to user k, where Mk is given by

Mk = {m ∈M|0 ≤ mk −m < 10} ⊂ M.

Let M̃ be the Cartesian product of sets M1,M2 · · ·Mk, i.e.,

M̃ =M1 ×M2 × · · · ×M|K| ⊂M|K|.

Accordingly, the MCS selection for all users will be one of the elements in M̃. Now the

important step is that, instead of picking one element from M̃ at a time, we propose to

randomly select a number of elements from M̃ at once, as MCS candidates, to solve the

problem. There are different approaches to have the random selection. One approach is

based on the PDF extracted from previous experience and statistics. As the MCS setsMk’s

for each user are already promising candidates, we apply a simple uniform selection in this

paper, and show it will offer an adequate solution.

Suppose the number of elements we choose from M̃ is NP1, which will be determined
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based on GPU capability and PF performance in experiments. We then have NP1 indepen-

dent sub-problems, each of which corresponds to a given MCS assignment. Denote the i-th

random selection as mi (a length |K| vector). Then in the i-th sub-problem, zmk (t) is given

by

zmk (t) =


1, if m = mi(k),

0, otherwise,
(5.10)

where mi(k) is the k’s element of mi.

Denote SZ
i as MCS solution for the i-th sub-problem. Note that for each SZ

i we still

have
∑

m∈M zmk (t) = 1. Denote m∗
k as the (one and only one) MCS that satisfies zm

∗
k

k (t) = 1.

Then the problems we are going to solve after Phase 1 are NP1 independent sub-problems

as follows.

OPT-P1 (×NP1)

max
∑
b∈B

∑
k∈K

yk(t)∑
f=1

r
b,f,m∗

k
k (t)

R̃k(t− 1)
xb
k(t)

s.t. Constraints (5.1), (5.2), (5.4), (5.5).

Phase 1 is designed to be performed in parallel, as illustrated in Fig. 5.3. mCore+ first

generates |B||K| parallel threads, each of which holds one value of σb
k(1). Then by leveraging

parallel reduction technique [116], we find the largest eigenvalue σ∗
k over all RBs for each

user k. Next, through |K| independent threads, mCore+ calculates the best possible SINR
PTσ∗

k
2

n2
0

and also determines the highest possible MCS mk for each user. Now we have M̃

based on mk’s. mCore+ then spawns NP1|K| threads to randomly select MCS candidates.

Specifically, every |K| threads are used to pick one mi for |K| users in sub-problem i. All

the NP1|K| MCS candidates (for all NP1| sub-problems) are selected in parallel.
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User 1

RB 1

RB 2

RB 3

User 2 User 3 User 4

Parallel reduction 
User 1

Largest eigenvalue 
over RBs

User 2 User 3 User 4

User 1 User 2 User 3 User 4

User 1 User 2 User 3 User 4
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Figure 5.3: The illustration of the parallel design of Phase 1.
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Phase 2: User Selection. In Phase 2, we focus on finding promising xb
k(t)’s for problem

OPT-P1. This means to select a group of users on each RB to form MU-MIMO transmission.

For each b ∈ B, at most NT of xb
k(t)’s can be non-zero (i.e., at most NT users can be grouped

for MU-MIMO on each RB). This gives us a total number of |B|
[(
|K|

1

)
+ · · ·+

(
|K|

NT

)]
possibilities to assign xb

k(t)’s.

Generally speaking, scheduling too many users on the same RB is not helpful in terms

of improving data rate. This is because: 1) scheduling more users would cause higher

correlations among the users, which will deteriorate SINR due to interference; 2) transmit

power PT will be split among the users, thus more users do not necessarily mean a higher

sum rate. mCore+ identifies promising MU-MIMO users with the following two steps. In

Phase 2-A, we pinpoint a subset of users K̃b ⊂ K on each RB with better channel qualities

at current TTI t that are likely to lead to a high data rate. In Phase 2-B, a smaller subset

of users Kb ⊂ K̃b is chosen as the candidates for MU-MIMO transmission, which is based

on channel correlations. The number of possibilities to assign xb
k(t)’s is then reduced to

|B|

[(
|Kb|

1

)
+ · · ·+

(
|Kb|

|Kb|

)]
after Phase 2.

• Phase 2-A.

A subset of users K̃b ⊂ K on each RB is selected based on channel qualities normalized

by long-term average R̃k(t− 1). Similar to Phase 1, the achievable data rate is directly tied

to the channels’ eigenvalues. We consider the largest eigenvalue σb
k(1) of each user’s channel

on each RB. Then we determine K̃b based on the following metric:

qbk =
log
(

PTσb
k(1)

2

n2
0

)
R̃k(t− 1)

. (5.11)

Suppose we are going to select KP2A users on each RB, i.e., |K̃b| = KP2A (< |K|). We
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sort qbk’s on each RB and K̃b is determined by choosing KP2A users with the KP2A highest

qbk’s. That is, let πb be the descending ordering of {qb1, · · · , qb|K|}, and πb
k is the order of qbk,

then

K̃b = {k ∈ K|πb
k ≤ KP2A}. (b ∈ B)

The intuition behind this selection is that, once the user is experiencing a better channel

quality compared with its long-term average, it will have a higher chance to be scheduled.

This behavior will maximize PF objective.

After this step, the search space regarding users on each RB is limited to K̃b ⊂ K, and

the optimization problem can be written as:

OPT-P2A (×NP1)

max
∑
b∈B

∑
k∈K̃b

yk(t)∑
f=1

r
b,f,m∗

k
k (t)

R̃k(t− 1)
xb
k(t)

s.t. Constraints (5.1), (5.2), (5.4), (5.5).

• Phase 2-B.

This step determines a smaller user set Kb ⊂ K̃b for possible MU-MIMO transmission

on each RB. In Phase 2-A, we select users with plausible channel qualities. Another key

impact on SINR performance is channel correlations among co-scheduled users, as multiple

users co-scheduled in the same RB are mutually dependent. Generally speaking, the more

orthogonality the scheduled users have, the higher SINR (and thus higher data rate) can be

achieved after applying precoding schemes. This is because projecting co-scheduled signals

onto mutually orthogonal subspaces (via precoding) to avoid interference would sacrifice

more desire signal strength when the channels are less orthogonal.

In this step, we aim at identifying users with low channel correlations. To do this, we
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first calculate channel correlations between every two users in K̃b. mCore+ uses the metric

chordal distance to measure the channel correlations. The chordal distance represents the

angle between two subspaces A and B, which is given by [150]

1√
2
||AoA†

o −BoB†
o||F , (5.12)

where Ao and Bo are orthonormal bases for subspaces A and B. One of the characteristics

of chordal distance is that it can quantify the distance between multi-dimensional subspaces.

Thus it is useful to measure the orthogonality between users when both the BS and users

are with multiple antennas. Consequently, the chordal distance between two users can be

given by

dbc(k1, k2) =
1√
2
||Vb

k1
Vb†

k1
−Vb

k2
Vb†

k2
||F . (5.13)

mCore+ calculates dbc(k1, k2) for every two users k1, k2 ∈ K̃b on each RB b ∈ B. Then

mCore+ selects NS2B users (i.e., Kb) from K̃b on each RB as the candidates for MU-MIMO

transmission.

Kb is determined by the following rules. First, on each RB b, mCore+ adds the first user

(from K̃b) to Kb that has the highest qbk (from Phase 2-A). Next, mCore+ adds users to Kb

one by one by picking the largest average chordal distance to existing users in Kb, until we

have KP2B users in Kb. The process is computationally easy and can be simply expressed by

the following:

While |Kb| < KP2B:

k
b
= arg maxk∈K̃b

1
|Kb|
∑

k′∈Kb dbc(k, k
′);

Kb ← Kb ∪ k
b, K̃b ← K̃b/k

b.

Now the candidate users for MU-MIMO on RB b are restricted to Kb. Note that for
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k′ ̸∈ Kb, we have xb
k′ = 0. The final scheduled users on RB b will be determined in the next

phase. After Phase 2-B, the remaining problem is given by

OPT-P2B (×NP1)

max
∑
b∈B

∑
k∈Kb

yk(t)∑
f=1

r
b,f,m∗

k
k (t)

R̃k(t− 1)
xb
k(t)

s.t. Constraints (5.1), (5.2), (5.4), (5.5).

The number of problem OPT-P2B we are going to solve is the same as that of OPT-

P1, i.e., NP1. After Phase 2, the number of RB allocation possibilities is reduced from

|B|

[(
|K|

1

)
+ · · ·+

(
|K|

NT

)]
to |B|

[(
|Kb|

1

)
+ · · ·+

(
|Kb|

|Kb|

)]
.

Fig. 5.4 illustrates how we can execute Phase 2 in parallel. As the values of qbk’s are

independent among RBs and users, mCore+ can generate |B||K| parallel threads to calcu-

late them simultaneously. Next, every |K| threads are grouped as a block for cooperative

operation (allowing certain information exchange within a block), and in total we have |B|

independent blocks. Within b-th block, a sorting algorithm is performed on qbk’s for RB b.

The sorting results will determine K̃b, which completes Phase 2-A. In Phase 2-B, the chordal

distances are independent among RBs, and each distance only involves two users. There-

fore, by using |B| · 1
2
|K̃b|2 parallel flows, all dbc(k1, k2)’s can be obtained at once. Finally,

mCore+ applies |B||K̃b| threads to find MU-MIMO candidates Kb on each RB. Similar to

Phase 2-A, every |K̃b| threads are grouped in a block, and the b-th block is to find the best

|Kb| orthogonal users for RB b.

Phase 3: Determining Stream Number. In this phase, we focus on determining

yk(t) variables, and also decide xb
k(t) variables in the meanwhile. As a user k can transmit

from 0 data streams to NR data streams (across all scheduled RBs), the total number of
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q22
<latexit sha1_base64="BRPhTMRwrAxVCUuaWdgpQsrFLqI=">AAAB/HicbVA9TwJBEJ3DL8Qv1NJmIzGxIneo0ZJoY4mJByRwkr1lDzbs7p27eyaE4F+w1d7O2PpfbP0lLnCFgC+Z5OW9mczMCxPOtHHdbye3srq2vpHfLGxt7+zuFfcP6jpOFaE+iXmsmiHWlDNJfcMMp81EUSxCThvh4GbiN56o0iyW92aY0EDgnmQRI9hYyX/sVB7OOsWSW3anQMvEy0gJMtQ6xZ92NyapoNIQjrVueW5ighFWhhFOx4V2qmmCyQD3aMtSiQXVwWh67BidWKWLoljZkgZN1b8TIyy0HorQdgps+nrRm4j/ea3URFfBiMkkNVSS2aIo5cjEaPI56jJFieFDSzBRzN6KSB8rTIzNZ25LKMYFG4q3GMEyqVfK3kXZvTsvVa+zePJwBMdwCh5cQhVuoQY+EGDwAq/w5jw7786H8zlrzTnZzCHMwfn6BWwflOk=</latexit>

q32

<latexit sha1_base64="xxBjt/FcC+RTuagtm5UsV/5Lvdg=">AAAB/HicbVA9TwJBEJ3zE/ELtbTZSEysyJ0f0ZJoY4mJByRwkr1lDzbs7p27eybkgn/BVns7Y+t/sfWXuMAVAr5kkpf3ZjIzL0w408Z1v52l5ZXVtfXCRnFza3tnt7S3X9dxqgj1Scxj1QyxppxJ6htmOG0mimIRctoIBzdjv/FElWaxvDfDhAYC9ySLGMHGSv5j5+zB65TKbsWdAC0SLydlyFHrlH7a3ZikgkpDONa65bmJCTKsDCOcjortVNMEkwHu0ZalEguqg2xy7AgdW6WLoljZkgZN1L8TGRZaD0VoOwU2fT3vjcX/vFZqoqsgYzJJDZVkuihKOTIxGn+OukxRYvjQEkwUs7ci0scKE2PzmdkSilHRhuLNR7BI6qcV76Li3p2Xq9d5PAU4hCM4AQ8uoQq3UAMfCDB4gVd4c56dd+fD+Zy2Ljn5zAHMwPn6BWqNlOg=</latexit>

q13
<latexit sha1_base64="MhFhAuLdf789X5cSYWVPEdvyPac=">AAAB/HicbVA9TwJBEJ3DL8Qv1NJmIzGxIneo0ZJoY4mJByRwkr1lDzbs7p27eyaE4F+w1d7O2PpfbP0lLnCFgC+Z5OW9mczMCxPOtHHdbye3srq2vpHfLGxt7+zuFfcP6jpOFaE+iXmsmiHWlDNJfcMMp81EUSxCThvh4GbiN56o0iyW92aY0EDgnmQRI9hYyX/snD1UOsWSW3anQMvEy0gJMtQ6xZ92NyapoNIQjrVueW5ighFWhhFOx4V2qmmCyQD3aMtSiQXVwWh67BidWKWLoljZkgZN1b8TIyy0HorQdgps+nrRm4j/ea3URFfBiMkkNVSS2aIo5cjEaPI56jJFieFDSzBRzN6KSB8rTIzNZ25LKMYFG4q3GMEyqVfK3kXZvTsvVa+zePJwBMdwCh5cQhVuoQY+EGDwAq/w5jw7786H8zlrzTnZzCHMwfn6BWwhlOk=</latexit>

q23
<latexit sha1_base64="G5uaQ+hrJWGbiMn58GBUozpR9IE=">AAAB/HicbVA9TwJBEJ3DL8Qv1NJmIzGxInei0ZJoY4mJByRwkr1lDzbs7p27eyaE4F+w1d7O2PpfbP0lLnCFgC+Z5OW9mczMCxPOtHHdbye3srq2vpHfLGxt7+zuFfcP6jpOFaE+iXmsmiHWlDNJfcMMp81EUSxCThvh4GbiN56o0iyW92aY0EDgnmQRI9hYyX/sVB4qnWLJLbtToGXiZaQEGWqd4k+7G5NUUGkIx1q3PDcxwQgrwwin40I71TTBZIB7tGWpxILqYDQ9doxOrNJFUaxsSYOm6t+JERZaD0VoOwU2fb3oTcT/vFZqoqtgxGSSGirJbFGUcmRiNPkcdZmixPChJZgoZm9FpI8VJsbmM7clFOOCDcVbjGCZ1M/K3kXZvTsvVa+zePJwBMdwCh5cQhVuoQY+EGDwAq/w5jw7786H8zlrzTnZzCHMwfn6BW21lOo=</latexit>

q33

<latexit sha1_base64="apSRWtoCnhTId5TH0O2DftDTXGI=">AAAB/HicbVA9TwJBEJ3DL8Qv1NJmIzGxIndGoyXRxhITD0jgJHvLHmzY3Tt390zIBf+CrfZ2xtb/YusvcYErBHzJJC/vzWRmXphwpo3rfjuFldW19Y3iZmlre2d3r7x/0NBxqgj1Scxj1QqxppxJ6htmOG0limIRctoMhzcTv/lElWaxvDejhAYC9yWLGMHGSv5j9/zB65YrbtWdAi0TLycVyFHvln86vZikgkpDONa67bmJCTKsDCOcjkudVNMEkyHu07alEguqg2x67BidWKWHoljZkgZN1b8TGRZaj0RoOwU2A73oTcT/vHZqoqsgYzJJDZVktihKOTIxmnyOekxRYvjIEkwUs7ciMsAKE2PzmdsSinHJhuItRrBMGmdV76Lq3p1Xatd5PEU4gmM4BQ8uoQa3UAcfCDB4gVd4c56dd+fD+Zy1Fpx85hDm4Hz9AmwjlOk=</latexit>

q14
<latexit sha1_base64="oKWWpJ4tATq0Il77OT8DmIrUjoU=">AAAB/HicbVA9TwJBEJ3DL8Qv1NJmIzGxIncEoyXRxhITD0jgJHvLHmzY3Tt390wIwb9gq72dsfW/2PpLXOAKAV8yyct7M5mZFyacaeO6305ubX1jcyu/XdjZ3ds/KB4eNXScKkJ9EvNYtUKsKWeS+oYZTluJoliEnDbD4c3Ubz5RpVks780ooYHAfckiRrCxkv/YrT5UusWSW3ZnQKvEy0gJMtS7xZ9OLyapoNIQjrVue25igjFWhhFOJ4VOqmmCyRD3adtSiQXVwXh27ASdWaWHoljZkgbN1L8TYyy0HonQdgpsBnrZm4r/ee3URFfBmMkkNVSS+aIo5cjEaPo56jFFieEjSzBRzN6KyAArTIzNZ2FLKCYFG4q3HMEqaVTK3kXZvauWatdZPHk4gVM4Bw8uoQa3UAcfCDB4gVd4c56dd+fD+Zy35pxs5hgW4Hz9Am23lOo=</latexit>

q24
<latexit sha1_base64="5wlzH9xFo8fOTxb7FBs37pSrztk=">AAAB/HicbVA9TwJBEJ3DL8Qv1NJmIzGxIneK0ZJoY4mJByRwkr1lDzbs7p27eybkgn/BVns7Y+t/sfWXuHwUAr5kkpf3ZjIzL0w408Z1v53cyura+kZ+s7C1vbO7V9w/qOs4VYT6JOaxaoZYU84k9Q0znDYTRbEIOW2Eg5ux33iiSrNY3pthQgOBe5JFjGBjJf+xU3k47xRLbtmdAC0Tb0ZKMEOtU/xpd2OSCioN4VjrlucmJsiwMoxwOiq0U00TTAa4R1uWSiyoDrLJsSN0YpUuimJlSxo0Uf9OZFhoPRSh7RTY9PWiNxb/81qpia6CjMkkNVSS6aIo5cjEaPw56jJFieFDSzBRzN6KSB8rTIzNZ25LKEYFG4q3GMEyqZ+VvYuye1cpVa9n8eThCI7hFDy4hCrcQg18IMDgBV7hzXl23p0P53PamnNmM4cwB+frF29LlOs=</latexit>

q34
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Phase 2-A

<latexit sha1_base64="FzSo9FgQ2/CwImtxazmN2kWE5Wc=">AAACEXicbVDLSsNAFJ34rPUVdSO4GSyCq5KIosuiG8FNBfuAJpbJ5KYdOnkwM1FKqD/hL7jVvTtx6xe49UuctFnY1gMXDufcy733eAlnUlnWt7GwuLS8slpaK69vbG5tmzu7TRmngkKDxjwWbY9I4CyChmKKQzsRQEKPQ8sbXOV+6wGEZHF0p4YJuCHpRSxglCgtdc1955H5oBj3IXNCovqUcHwzuve6ZsWqWmPgeWIXpIIK1Lvmj+PHNA0hUpQTKTu2lSg3I0IxymFUdlIJCaED0oOOphEJQbrZ+IMRPtKKj4NY6IoUHqt/JzISSjkMPd2ZHylnvVz8z+ukKrhwMxYlqYKIThYFKccqxnkc2GcCqOJDTQgVTN+KaZ8IQpUObWqLF47KOhR7NoJ50jyp2mdV6/a0Urss4imhA3SIjpGNzlENXaM6aiCKntALekVvxrPxbnwYn5PWBaOY2UNTML5+AXzPnbU=</latexit>
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<latexit sha1_base64="sBQG5omUIfY/auRMgm3AvLo9ZKI=">AAACAnicbVDLSgMxFL3js9ZX1aWbYBFclRlRdFl002UF+4DpUDJppg3NJEOSEcrQnb/gVvfuxK0/4tYvMdPOwrYeCBzOuZd7csKEM21c99tZW9/Y3Nou7ZR39/YPDitHx20tU0Voi0guVTfEmnImaMsww2k3URTHIaedcHyf+50nqjST4tFMEhrEeChYxAg2VvJ7MTajMEKNvtevVN2aOwNaJV5BqlCg2a/89AaSpDEVhnCste+5iQkyrAwjnE7LvVTTBJMxHlLfUoFjqoNsFnmKzq0yQJFU9gmDZurfjQzHWk/i0E7mEfWyl4v/eX5qotsgYyJJDRVkfihKOTIS5f9HA6YoMXxiCSaK2ayIjLDCxNiWFq6E8bRsS/GWK1gl7cuad11zH66q9buinhKcwhlcgAc3UIcGNKEFBCS8wCu8Oc/Ou/PhfM5H15xi5wQW4Hz9AtQcl1g=</latexit>

H1
<latexit sha1_base64="+Dgd6DLf5c7dbBdcyoXSMIk309U=">AAAB/nicbVDLSgNBEOyNrxhfUY9eBoPgKeyKosegF48RzAOSJcxOZpMh81hmZoWwBPwFr3r3Jl79Fa9+iZNkDyaxoKGo6qa7K0o4M9b3v73C2vrG5lZxu7Szu7d/UD48ahqVakIbRHGl2xE2lDNJG5ZZTtuJplhEnLai0d3Ubz1RbZiSj3ac0FDggWQxI9g6qdWNBDK9oFeu+FV/BrRKgpxUIEe9V/7p9hVJBZWWcGxMJ/ATG2ZYW0Y4nZS6qaEJJiM8oB1HJRbUhNns3Ak6c0ofxUq7khbN1L8TGRbGjEXkOgW2Q7PsTcX/vE5q45swYzJJLZVkvihOObIKTX9HfaYpsXzsCCaauVsRGWKNiXUJLWyJxKTkQgmWI1glzYtqcFX1Hy4rtds8niKcwCmcQwDXUIN7qEMDCIzgBV7hzXv23r0P73PeWvDymWNYgPf1C+EMlbg=</latexit>s1

<latexit sha1_base64="4gcPk2qKMORABkRqsMQ1LGSl9Zk=">AAACAnicbVDLSgMxFL1TX7W+qi7dBIvgqsxIRZdFN11WsA9oh5JJM21okhmSjFCG7vwFt7p3J279Ebd+iZl2Frb1QOBwzr3ckxPEnGnjut9OYWNza3unuFva2z84PCofn7R1lChCWyTikeoGWFPOJG0ZZjjtxopiEXDaCSb3md95okqzSD6aaUx9gUeShYxgY6VeX2AzDkLUGNQG5YpbdedA68TLSQVyNAfln/4wIomg0hCOte55bmz8FCvDCKezUj/RNMZkgke0Z6nEgmo/nUeeoQurDFEYKfukQXP170aKhdZTEdjJLKJe9TLxP6+XmPDWT5mME0MlWRwKE45MhLL/oyFTlBg+tQQTxWxWRMZYYWJsS0tXAjEr2VK81QrWSfuq6l1X3YdapX6X11OEMziHS/DgBurQgCa0gEAEL/AKb86z8+58OJ+L0YKT75zCEpyvX9jYl1s=</latexit>

H4

<latexit sha1_base64="7XO2cN9VyfkpeCFGAUf1meyjrLE=">AAAB/nicbVBNSwMxEJ2tX7V+VT16CRbBU9kVRY9FLx4r2A9ol5Kk2TY0yS5JVihLwb/gVe/exKt/xau/xLTdg219MPB4b4aZeSQR3Fjf//YKa+sbm1vF7dLO7t7+QfnwqGniVFPWoLGIdZtgwwRXrGG5FaydaIYlEaxFRndTv/XEtOGxerTjhIUSDxSPOMXWSa0ukcj0Lnvlil/1Z0CrJMhJBXLUe+Wfbj+mqWTKUoGN6QR+YsMMa8upYJNSNzUswXSEB6zjqMKSmTCbnTtBZ07poyjWrpRFM/XvRIalMWNJXKfEdmiWvan4n9dJbXQTZlwlqWWKzhdFqUA2RtPfUZ9rRq0YO4Kp5u5WRIdYY2pdQgtbiJyUXCjBcgSrpHlRDa6q/sNlpXabx1OEEziFcwjgGmpwD3VoAIURvMArvHnP3rv34X3OWwtePnMMC/C+fgHlyJW7</latexit>s4

<latexit sha1_base64="yft9DNrBMRracrvMpDyqKEZWF50=">AAACAnicbVDLSgMxFL1TX7W+qi7dBIvgqsz4QJdFN11WsA+YDiWTZtrQJDMkGaGU7vwFt7p3J279Ebd+iZl2Frb1QOBwzr3ckxMmnGnjut9OYW19Y3OruF3a2d3bPygfHrV0nCpCmyTmseqEWFPOJG0aZjjtJIpiEXLaDkf3md9+okqzWD6acUIDgQeSRYxgYyW/K7AZhhGq9y575YpbdWdAq8TLSQVyNHrln24/Jqmg0hCOtfY9NzHBBCvDCKfTUjfVNMFkhAfUt1RiQXUwmUWeojOr9FEUK/ukQTP178YEC63HIrSTWUS97GXif56fmug2mDCZpIZKMj8UpRyZGGX/R32mKDF8bAkmitmsiAyxwsTYlhauhGJasqV4yxWsktZF1buuug9XldpdXk8RTuAUzsGDG6hBHRrQBAIxvMArvDnPzrvz4XzORwtOvnMMC3C+fgHXRJda</latexit>

H3

<latexit sha1_base64="m68XTm5/nHJs1kCSNIo/mDydHik=">AAAB/nicbVDJSgNBEK1xjXGLevTSGARPYcYFPQa9eIxgFkiG0NPpSZr0MnT3CGEI+Ate9e5NvPorXv0SO8kcTOKDgsd7VVTVixLOjPX9b29ldW19Y7OwVdze2d3bLx0cNoxKNaF1orjSrQgbypmkdcssp61EUywiTpvR8G7iN5+oNkzJRztKaChwX7KYEWyd1OxEApnuRbdU9iv+FGiZBDkpQ45at/TT6SmSCiot4diYduAnNsywtoxwOi52UkMTTIa4T9uOSiyoCbPpuWN06pQeipV2JS2aqn8nMiyMGYnIdQpsB2bRm4j/ee3UxjdhxmSSWirJbFGccmQVmvyOekxTYvnIEUw0c7ciMsAaE+sSmtsSiXHRhRIsRrBMGueV4KriP1yWq7d5PAU4hhM4gwCuoQr3UIM6EBjCC7zCm/fsvXsf3uesdcXLZ45gDt7XL+Q0lbo=</latexit>s3

Chordal distance

OPT-P2B

<latexit sha1_base64="c5TZklyLIUf5xVUlEHBP2C1Mxtw=">AAACA3icbVC7SgNBFL0bXzG+opY2g0GwCruiaBm0EWwimAdk1zA7mU2GzMwuM7NCCCn9BVvt7cTWD7H1S5xNtjCJBy4czrmXezhhwpk2rvvtFFZW19Y3ipulre2d3b3y/kFTx6kitEFiHqt2iDXlTNKGYYbTdqIoFiGnrXB4k/mtJ6o0i+WDGSU0ELgvWcQINlbyfYHNgGCO7h69brniVt0p0DLxclKBHPVu+cfvxSQVVBrCsdYdz01MMMbKMMLppOSnmiaYDHGfdiyVWFAdjKeZJ+jEKj0UxcqONGiq/r0YY6H1SIR2M8uoF71M/M/rpCa6CsZMJqmhksweRSlHJkZZAajHFCWGjyzBRDGbFZEBVpgYW9Pcl1BMSrYUb7GCZdI8q3oXVff+vFK7zuspwhEcwyl4cAk1uIU6NIBAAi/wCm/Os/PufDifs9WCk98cwhycr1+k65fM</latexit>

K1 <latexit sha1_base64="h1GrkYbGUWQ1UAz7Rvb1zP2i7GA=">AAACA3icbVC7SgNBFL3rM8ZX1NJmMAhWYTcoWgZtBJsI5gHZNcxOZpMhM7PLzKwQQkp/wVZ7O7H1Q2z9EmeTLUzigQuHc+7lHk6YcKaN6347K6tr6xubha3i9s7u3n7p4LCp41QR2iAxj1U7xJpyJmnDMMNpO1EUi5DTVji8yfzWE1WaxfLBjBIaCNyXLGIEGyv5vsBmQDBHd4/VbqnsVtwp0DLxclKGHPVu6cfvxSQVVBrCsdYdz01MMMbKMMLppOinmiaYDHGfdiyVWFAdjKeZJ+jUKj0UxcqONGiq/r0YY6H1SIR2M8uoF71M/M/rpCa6CsZMJqmhksweRSlHJkZZAajHFCWGjyzBRDGbFZEBVpgYW9Pcl1BMirYUb7GCZdKsVryLint/Xq5d5/UU4BhO4Aw8uIQa3EIdGkAggRd4hTfn2Xl3PpzP2eqKk98cwRycr1+mf5fN</latexit>

K2
<latexit sha1_base64="JwwE9R17GmyYdV57I80YsrcR9cE=">AAACA3icbVC7SgNBFL3rM8ZX1NJmMAhWYdcHWgZtBJsI5gHZNcxOZpMhM7PLzKwQQkp/wVZ7O7H1Q2z9EmeTLUzigQuHc+7lHk6YcKaN6347S8srq2vrhY3i5tb2zm5pb7+h41QRWicxj1UrxJpyJmndMMNpK1EUi5DTZji4yfzmE1WaxfLBDBMaCNyTLGIEGyv5vsCmTzBHd49nnVLZrbgToEXi5aQMOWqd0o/fjUkqqDSEY63bnpuYYISVYYTTcdFPNU0wGeAebVsqsaA6GE0yj9GxVbooipUdadBE/XsxwkLroQjtZpZRz3uZ+J/XTk10FYyYTFJDJZk+ilKOTIyyAlCXKUoMH1qCiWI2KyJ9rDAxtqaZL6EYF20p3nwFi6RxWvEuKu79ebl6nddTgEM4ghPw4BKqcAs1qAOBBF7gFd6cZ+fd+XA+p6tLTn5zADNwvn4BqBOXzg==</latexit>

K3

Figure 5.4: The illustration of the key steps of Phase 2, which is designed to be performed
in parallel.
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possibilities is (NR + 1)|K|. This can be a huge number as |K| can be ∼100. We apply the

following approach to reduce complexity.

We relax yk(t) by allowing user k to have a different number of data streams on different

RBs. Denoted ybk(t) as the number of user k’s data streams on RB b, where ybk(t) can

be different from yb
′

k (t) for b ̸= b′. Then one problem OPT-P2B can be divided into |B|

independent sub-problems. We first leverage parallel computing techniques to solve each

sub-problem in Phase 3-A, then in Phase 3-B, we address the feasibility to the original

problem OPT (i.e., to guarantee ybk(t) = yb
′

k (t) for all b ̸= b′ if xb
k(t) = xb′

k (t) = 1).

• Phase 3-A.

After the relaxation on yk(t)’s, we have the following sub-problem for each b ∈ B,

OPT-P3A (×NP1|B|)

max
∑
k∈Kb

ybk(t)∑
f=1

r
b,f,m∗

k
k (t)

R̃k(t− 1)
xb
k(t)

s.t. Constraints (5.1), (5.4), (5.5),

ybk(t) ≤ NR,∑
k∈K

xb
k(t)y

b
k(t) ≤ NT.

In problem OPT-P3A, we have a total number of (NR + 1)|K
b| possibilities for ybk(t)’s. In

practice, NR typically ranges from 2 to 4. mCore+ will limit ybk(t) to satisfy 0 ≤ ybk(t) ≤ 2, as

transmitting too many data streams on one user is not likely to improve sum rate [129, 130]

(the constraint for total number of data streams on one RB remains the same as (5.2)).

Then the total number possibilities for ybk(t)’s is 34 = 81 when |Kb| = 4. mCore+ conducts

an exhaustive search in parallel to evaluate the objective values of problem OPT-P3A. Note

that the assignment of xb
k(t) is implied by ybk(t). That is, when ybk(t) is assigned to be 0, then
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xb
k(t) = 0 (i.e., user k is not scheduled on RB b); when ybk(t) is assigned to be 1 or 2, then

xb
k(t) = 1 (i.e., user k is scheduled on RB b). We denote the optimal solutions for ybk(t) and

xb
k(t) as yb∗k (t) and xb∗

k (t), respectively.

• Phase 3-B.

Now we resolve the conflict of yb∗k (t) ̸= yb
′∗

k (t) for b ̸= b′ if xb∗
k (t) = xb′∗

k (t) = 1 (i.e., to

determine the final xb
k(t)’s and yk(t)’s). We apply the following heuristic to determine final

xb
k(t)’s and yk(t)’s. The final scheduling solution will be determined independently among

the users. When we determine a scheduling solution regarding user k, we fix all other users’

solution by letting xb
k′(t) = xb∗

k′ (t) and yk′(t) = yb∗k (t) for all k′ ∈ K, k′ ̸= k, b ∈ B. Then we

choose the solution of xb
k(t) and yk(t) from those satisfying feasibility constraints in OPT

(with MCS m∗
k from Phase 1). Denote v

(
xb
k, yk, {xb∗

k′}/xb∗
k , {yb∗k′ }/yb∗k

)
as the PF objective

value achieved by xb
k(t), yk(t), and xb

k′(t) = xb∗
k′ (t), yk′(t) = yb∗k (t) for all k′ ∈ K, k′ ̸= k, which

can be given by

v
(
xb
k, yk, {xb∗

k′}/xb∗
k , {yb∗k′ }/yb∗k

)
=

Kb∋k∑
b∈B

yk(t)∑
f=1

r
b,f,m∗

k
k (t)

R̃k(t− 1)
xb
k(t) +

∑
b∈B

k′ ̸=k∑
k′∈Kb

yb∗
k′ (t)∑
f=1

r
b,f,m∗

k′
k′ (t)

R̃k′(t− 1)
xb∗
k′ (t).

(5.14)

Note that the second term is a constant as all variables are being fixed. The only variables

are xb
k(t) and yk(t) in the first term. To guarantee the feasibility constraints related to xb

k(t)

and yk(t) in the original problem (i.e., constraints (5.1) and (5.2)), we impose xb
k(t) ≤ xb∗

k (t)

and xb
k(t)yk(t) ≤ xb∗

k (t)y
b∗
k (t) for all b ∈ B. As xb∗

k and yb∗k (t) are solutions to problem OPT-

P3A, they must satisfy feasibility constraints (5.1) and (5.2) on any particular RB b. It is

easy to verify such xb
k(t) and yk(t) will satisfy (5.1) and (5.2) with these imposed constraints.

Formally, for each k ∈ K, we have the following optimization problem to determine xb
k(t)
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and yk(t).

OPT-P3B (×NP1|K|)

max
Kb∋k∑
b∈B

yk(t)∑
f=1

r
b,f,m∗

k
k (t)

R̃k(t− 1)
xb
k(t)

s.t. Constraints (5.4), (5.5),

xb
k(t) ≤ xb∗

k (t), for all b ∈ B;

xb
k(t)yk(t) ≤ xb∗

k (t)y
b∗
k (t), for all b ∈ B.

In Phase 1, we have NP1 different assignments for MCS. As problem OPT-P3B is designed

to be independent for each user, we have |K|×NP1 independent problems of OPT-P3B. Each

problem is fairly simple, as yk(t) has only three possibilities and xb
k(t) is restricted within

a small set. Among the |K|NP1 problems, there are |K| problems that corresponds to one

MCS assignment SZ
i (from Phase 1). Denote the |K| solutions of xb

k(t)’s and yk(t)’s (for |K|

users), corresponding to the i’th MCS assignment as SX
i and SY

i , respectively. Then SX
i and

SY
i , along with corresponding MCS assignment SZ

i , constitute a complete solution set. We

denote the complete solution set as Si = (SX
i ,SY

i ,SZ
i ). After solving OPT-P3B, mCore+

obtains NP1 sets of feasible solutions S1,S2, · · · ,SNP1 to OPT.

Phase 3 is designed with the exploration to enable parallel implementation, as shown in

Fig. 5.5. In Phase 3-A, thanks to the design of relaxed problem OPT-P3A, the calculations

of SINR and objective values become independent among RBs. mCore+ uses NP1|B| parallel

flows to solve NP1|B| problems of OPT-P3A independently (where each flow includes many

threads to solve one problem). In Phase 3-B, the problems of OPT-P3B are constructed to

be mutually independent among users. Such design allows us to use NP1|K| independent

(but structurally identical) flows to solve each OPT-P3B.
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Figure 5.5: The illustration of the parallel design of Phase 3. It is designed to take advantage
of parallel computation.

Phase 4: Comparison and Finding Best Solution. In this phase, we find the

best MCSs zmk (t)’s, as well as corresponding xb
k(t)’s and yk(t)’s, that provide the best ob-

jective values. The approach is straightforward. Among all the promising solution sets

S1,S2, · · · ,SNP1 , the one that can offer the highest PF objective value will be chosen as the

final scheduling solution.

Note that all the objective values are already calculated in Phase 3. Here we just need to

apply parallel techniques, such as parallel reduction, to compare and find the best solution.

5.5 Implementation

In this section, we present our implementation of mCore+. mCore+ is implemented on

a COTS GPU platform—NVIDIA DGX Station. NVIDIA DGX Station includes 4 V100
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GPU cards, and we only use two of them. Each V100 GPU card consists of an array of

80 streaming multiprocessors (SMs) with 5120 CUDA cores (64 cores per SM). Each SM

includes 48 KB shared memory. The CPU of the DGX Station is Intel Xeon E5-2698 v4 2.2

GHz (20-core). The data communication between CPU and GPU is based on a PCIe V3.0

architecture, and data communication between different GPU cards is based on NVIDIA

NVLink architecture [151]. Our programming platform is CUDA v10.2 [117].

5.5.1 Fitting mCore+ into the GPU

In addition to the design of a parallelizable algorithm, it is important for a designer to have

full knowledge of the employed GPU and know how to fit the problems into the GPU to

achieve high performance. Generally speaking, it is desired that all the GPU cores can

keep busy calculating (to increase the so-called “achieved occupancy” [152]) with minimized

memory access time. Following this principle, mCore+ is implemented with the following

key considerations.

• Execute all computation on the GPUs, with nearly zero support from CPU. Our

DGX Station is equipped with PCIe V3.0 and NVLink architecture—a relatively high-

speed CPU-to-GPU, GPU-to-CPU, and GPU-to-GPU data transfer architecture. As

mCore+ has decomposed problem OPT to a level that is suitable for massive parallel

computation, we conclude that it is much faster to solely use GPUs for all computa-

tions. CPU will only be responsible for scheduling the kernels, controlling the data

transfer, and synchronizing different flows as needed, while no actual computation for

the problem is performed on CPU.

• Minimize the data transfer between GPU cards. Although high-speed data trans-

fer between GPUs can be realized, the cost of corresponding synchronization can be
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expensive. That is, the computation on both GPU cards may be suspended for send-

ing/receiving data. Also, the extra scheduling overhead for synchronization may cause

additional delay. To reduce such consumption, the best practice is to exploit inde-

pendency between GPU cards and minimize the need for data transfer. For mCore+,

most operations are independent among RBs. Therefore, the computation tasks are

distributed between GPUs based on RBs. Only a small amount of data transfer be-

tween GPU cards is needed, such as sharing the MCS candidates with all RBs, and

comparing the objective values on different RBs.

• Exploit SM’s compute capability. A V100 GPU card consists of 80 SMs, each of which

includes a set of computing resources: CUDA cores, registers, and shared memory, etc.

SMs are responsible for creating, scheduling, and executing the parallel threads. Im-

portantly, these threads are executed in groups, where a group is 32 consecutive threads

known as a warp. Threads within a warp will execute exactly the same instructions

simultaneously (while carrying different data). To fully utilize SM’s compute capa-

bility, we need to achieve two goals here. First, generate a sufficiently large number

of threads. Having a large number of threads in flight can keep all the GPU cores

on each SM busy with calculations and therefore complete the mission in time. This

number should be at least 80 × 32 = 2560, but can be much larger if the SM usage

is not limited by factors such as the usage of registers and shared memory. Second,

minimize the use of conditional branches (such as if-then-else statement) for threads

within a warp. When conditional branches are used in a warp, only the threads in

one of the branches can be executed in parallel, while threads in any other branches

have to be suspended, due to the warp architecture. Therefore, it is essential to have

every consecutive 32 threads (i.e., threads within a warp) follow the same instructions

to achieve high efficiency.
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Figure 5.6: Implementation of mCore+ on two V100 GPU cards.

• Use shared memory intelligently. The on-chip shared memory is much faster than the

global memory, but with limited storage space. In our problem, many operations that

repeatedly acquire a small size of data can benefit from shared memory. For example,

the parallel reduction technique with shared memory can be used to find the largest

number in a group, and matrix inversion is also performed on shared memory.

5.5.2 Key Steps

mCore+ is implemented with the considerations in Section 5.5.1 throughout programming.

As illustrated in Fig. 5.6, mCore+’s key steps in each TTI t is as follows.

• Step (i): Transfer data from host device to GPU device. To reduce the
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time consumption for transferring the channel information to GPU, mCore+ exploits the

parallelism between data transfer and GPU computation. Specifically, in TTI t, partial

CSI �bk and Vb
k for all users on all RBs that will be used in TTI t + 1 are transferred from

host device to GPU memory. The computation in current TTI t is based on the latest

channel information that was transferred in TTI t − 1. Therefore, the data transfer and

GPU computation can be executed concurrently. To guarantee the channel information is

still valid when we use it, the channel coherence time should be at least 3 TTIs (1 TTI for

data transfer, 1 TTI for GPU computation, and 1 TTI for actual transmission), which can

be satisfied for most communication scenarios under numerology 1. Further, since we use

two GPU cards, we divide the channel matrices into two halves. As most operations are

dependent among RBs by the design of mCore+, this division is based on RBs. That is, the

�bk’s and Vb
k’s corresponding to the first |B|

2
are transferred to the first GPU card. The second

half is transferred to the second GPU card.

• Step (ii): Execute Phase 1. On each GPU card, mCore+ generates |B|
2
|K| threads

to obtain the largest eigenvalue of user k’s channel over the first or second half of RBs.

Then, the second GPU card sends the results to the first GPU card, so that the first GPU

can obtain the largest eigenvalue σ∗
k over all RBs. Based on the σ∗

k’s, mCore+ generates

|K| threads to calculate mk (i.e., the highest MCS that user k can use) only using the first

GPU card. The cuRAND library [153] is applied to draw NP1 random selections of mi’s

from M̃ by NP1|K| threads. Subsequently, the first GPU card sends a copy of the MCS

selection results mi’s to the second GPU card, which will be needed for future calculation

on the second GPU. The value of NP1 can be determined empirically to strike an appropriate

trade-off between computation time and PF performance. That is, we choose NP1 to be large

enough (but not overly large) to obtain a satisfactory PF performance before consuming too

much computation time. After this step, we have NP1 problems of OPT-P1.
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• Step (iii): Execute Phase 2. The execution is independent between two GPU

cards throughout Phase 2. In Phase 2-A, we generate a kernel with |B|
2
|K| threads to calculate

qbk’s on each GPU card in parallel. This kernel also finds the NS2A highest qbk’s in each block

(for each RB), thus determines K̃b. In Phase 2-B, to compute the chordal distances between

every two users, a kernel with |B|
2
· |K̃b| ·N2

T first calculates Vb
kV

b†
k for each user. Then another

kernel with |B|
2
· 1
2
|K̃b|2 ·N2

T threads is created to calculate each element inside the Frobenius

norm (5.13). Subsequently, within this kernel, the parallel reduction technique [116] is used

to get the chordal distances dbc(k1, k2) for every two users in K̃b, b ∈ B. Finally, another

kernel with a size of |B|
2
× |K̃b| (block by thread) on each GPU card is applied to find the

best |Kb| orthogonal users on each RB.

• Step (iv): Execute Phase 3. To solve OPT-P3A, mCore+ first spawns |B|
2
(2 +

1)|K̃
b| ·NT · 2|K̃b| threads on each GPU card to calculate each element of precoding matrices

(with the dimension up to NT × 2|K̃b|) for all (2 + 1)|K̃
b| possibilities on each RB. Then

|B|
2
· 2|K̃b| · (2 + 1)|K̃

b| threads compute the SINRb,f
k for up to |B| · 2|K̃b| data streams for all

(2 + 1)|K̃
b| possibilities. After that, a kernel with NP1

|B|
2

blocks and (2 + 1)|K̃
b| threads per

block solves OPT-P3A, where one block finds the optimal solution to one OPT-P3A problem.

To solve problem OPT-P3B, the data communication between GPU cards is needed. First,

a kernel with NP1|K| blocks and |B|
2

threads per block is applied on each GPU card, where

one block finds the best solution to one OPT-P3B problem w.r.t. the first or second half

of RBs. Then the first GPU card calculates the optimal solution to OPT-P3B by accessing

the second GPU’s global memory. The first GPU card sends a copy of results to the second

GPU card for further operations. As described in Section 5.4.2, we now have NP1 sets of

feasible solutions S1,S2, · · · ,SNP1 .

• Step (v): Execute Phase 4. First, each GPU card launches a kernel with NP1
|B|
2

to obtain the sum of PF values over the first or second half of RBs. After the results are
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collected to the first GPU card, a kernel with NP1 threads is launched only on the first GPU

card to find the best solution S∗ that offers the highest PF objective value, among the NP1

candidates of Si’s. Parallel reduction technique is used to accelerate the comparison process.

• Step (vi): Transfer data from GPU to host device. Once the final solution

is determined, we transfer the scheduling solution S∗ and corresponding precoding matrices

from GPU devices to host device. The data transfer time will be counted toward mCore+’s

total execution time.

5.6 Experimental Results

In this section, we validate the performance of mCore+ based on our implementation in

Section 5.5.

5.6.1 Settings

We consider a DL scheduling problem in a 5G NR cellular environment, where one BS is

serving a number of users. The number of users |K| is chosen from {50, 100}, the number

of RBs is |B| is 100, and we have 29 different MCS levels in M. The BS is equipped with

up to 12 antennas, and each user has up to 4 antennas. For the wireless channel Hb
k(t), it

is composed by large scale fading Lk and small scale fading H̄b
k(t), i.e., Hb

k(t) = L−1
k H̄b

k(t).

Large scale fading Lk is uniformly chosen from [0dB 6dB] to reflect different user locations,

which does not vary in frequencies and TTIs. The small scale fading H̄b
k(t) is modeled

through Rayleigh fading [9], which differs among every user, RB and time slot. The SNR

(i.e., PT/n
2
0) is set to 10 dB. For the parameters of our algorithm, the number of possible MCS

assignments NP1 (see Phase 1 in Section 5.4.2) is set to 256, the numbers of promising users
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on each RB, |K̃b| and |Kb| (see Phase 2 in Section 5.4.2), are set to 10 and 4, respectively.

We compare our design with the following state-of-the-art PF schedulers: 1) SU-PF

(SU-MIMO PF scheduler from [135]), 2) MU-PF (MU-MIMO PF scheduler from [131]), and

3) Unified-PF from [132]. None of the existing works developed their system models as

comprehensive as ours. To compare with those algorithms, we made necessary extensions

based on the nature of those algorithms. Specifically, we extended SU-PF and MU-PF to

support MCS scheduling following their idea of choosing 1 or 2 data streams (diversity mode

or multiplexing mode) for each user. We extended Unified-PF by allowing 2-user MU-MIMO

based on how they iteratively select MCS and RBs.

All the algorithms are running on the same machine as we described in Section 5.5.

mCore+ is run by CUDA platform while other algorithms are implemented on MATLAB.

For any of the algorithms used for comparison, we terminate the algorithm once the execution

time exceeds 5 hours. Therefore, for any partial curves, the last points of the curves represent

the cutoff of 5-hour running time.

5.6.2 Case Studies

In this section, we use two network settings as case studies to validate mCore+’s timing

performance and throughput performance. We consider the following two typical settings:

(a) |B| = 100, |K| = 50, NT = 8, NR = 2; (b) |B| = 100, |K| = 100, NT = 12, NR = 4.

Results for network setting (a) We first examine the performance of mCore+ under

the setting (a) |B| = 100, |K| = 50, NT = 8, NR = 2. In Fig. 5.7, we compare the execution

time of mCore+ and the other three schedulers for 200 consecutive TTIs. The results show

that mCore+ can offer the scheduling solution within 500 µs across all TTIs. The average

running time is 411 µs. This demonstrates that mCore+ can meet the timing requirement of
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Figure 5.7: Timing performance comparison under different algorithms for setting (a) |B| =
100, |K| = 50, NT = 8, NR = 2.

5G numerology 1 under the setting (a). On the other hand, the average computation time

of SU-PF, MU-PF, and Unified-PF is 2.5 ms, ∼ 6× 103 ms, and ∼ 2× 105 ms, respectively,

which are far beyond 5G’s sub-ms real-time requirement.

In Figs. 5.8 and 5.9, we evaluate mCore+’s throughput performance. We consider two im-

portant performance metrics for PF schedulers, including the PF objective
∑

k∈K log2(R̃k(t)),

and the network throughput
∑

k∈K R̃k(t). Figs. 5.8 and 5.9 show the achieved PF objec-

tive value and network throughput under different algorithms for 200 consecutive TTIs,

respectively. The results suggest that mCore+ can obtain better or comparable PF values

compared to other state-of-the-art algorithms. As expected, the algorithms that support

MU-MIMO transmission (mCore+, MU-PF and Unified-PF) achieve better throughput per-

formance than the algorithm SU-PF that only supports SU-MIMO scheduling.

Results for network setting (b) Now we evaluate mCore+’s performance under the
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Figure 5.8: Achieved PF objective value under different algorithms for setting (a) |B| =
100, |K| = 50, NT = 8, NR = 2.
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Figure 5.10: Timing performance comparison under different algorithms setting setting (b)
|B| = 100, |K| = 100, NT = 12, NR = 4.

setting (b) |B| = 100, |K| = 100, NT = 12, NR = 4. Fig. 5.10 shows the timing performance

under different algorithms for 200 consecutive TTIs. As shown in Fig. 5.10, the execution

time of mCore+ is ∼500 µs. In contrast, the average computation time of SU-PF and MU-

PF is ∼4 ms and ∼ 3×104 ms, respectively. Unified-PF requires > 106 ms to find a solution

under this setting. Its computation time is too large to fit in the scale of the figure.

In Figs. 5.11 and 5.12, we show the achieved PF objective value and network throughput

under different algorithms. As shown in Figs. 5.11 and 5.12, mCore+ can achieve the highest

PF values and highest network throughput compared to other algorithms. Compared with

the setting (a) (where the number of users and antennas are smaller), the performance gap

between mCore+ and other algorithms becomes larger. This is because their algorithms can

only schedule up to 2 streams per RB, while mCore+ can better take advantage of the spatial

diversity brought by many antennas, thanks to the large-scale parallel design to support up
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Figure 5.11: Achieved PF objective value under different algorithms for setting (b) |B| =
100, |K| = 100, NT = 12, NR = 4.
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Figure 5.12: Network throughput under different algorithms for setting (b) |B| = 100, |K| =
100, NT = 12, NR = 4.
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to 4-user MU-MIMO transmission. SU-PF achieves the least PF values as the algorithm

only supports SU-MIMO scheduling.

5.6.3 Varying Network Parameters

In this section, we evaluate the behavior of mCore+ by varying different network parameters

such as the number of RBs, users, and antennas.

In Fig. 5.13, we vary the number of RBs |B| to study its impact on mCore+’s execution

time. We vary |B| from 20 to 100. The number of users is |K| = 100. Fig. 5.13(a) shows

mCore+’s execution time (mean, max and min values over 200 consecutive TTIs) as a

function of RB numbers when NT = 8, NR = 2. The results demonstrate that mCore+’s

execution time is well below 500 µs under all cases. The mean values are 277 µs, 333 µs,

393 µs, 411 µs, and 461 µs when |B| is 20, 40, 60, 80, and 100, respectively. In Fig. 5.13(b),

we show mCore+’s execution time when NT = 12, NR = 4. Fig. 5.13(b) shows the mean

values are 305 µs, 365 µs, 422 µs, 459 µs, and 509 µs when |B| is 20, 40, 60, 80, and 100,

respectively. The execution time is slightly higher than the case when NT = 8, NR = 2,

as the matrix operations become more intensive when the numbers of antennas are larger.

Across 200 consecutive TTIs, the execution time is well below 500 µs for up to 80 RBs, and

it is around 500 µs when |B| = 100.

Next, we study the timing performance as a function of the number of users |K|. We vary

|K| from 20 to 100. The number of RBs |B| is 100. Fig. 5.14(a) shows mCore+’s average

execution time with the maximum and minimum values over 200 consecutive TTIs when

NT = 8, NR = 2. The results show that mCore+ is able to find the solution within 500 µs

under all cases. We note that although the execution time increases with the number of

users, the rate of increase is fairly slow as the number of users increases. This is because
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Figure 5.13: mCore+’s total execution time (mean, max and min values over 200 consecutive
TTIs) as a function of the number of RBs. (a) NT = 8, NR = 2, (b) NT = 12, NR = 4.



187

20 40 60 80 100
|K|

(a) Nt = 8, Nr = 2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Ex
ec

ut
io

n 
Ti

m
e 

(m
s)

20 40 60 80 100
|K|

(b) Nt = 12, Nr = 4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Ex
ec

ut
io

n 
Ti

m
e 

(m
s)

500 us

500 us
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TTIs) as a function of the number of users. (a) NT = 8, NR = 2, (b) NT = 12, NR = 4.
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that mCore+ can identify a small but most promising subset of users to form MU-MIMO

transmission, and therefore the time-consuming operations (such as calculating beamforming

matrices and SINR) only need to be performed for a small set of users. When NT = 12, NR =

4, Fig. 5.14(b) indicates that mCore+’s execution time is lower than 500 µs for up to 60

users, and it is around 500 µs for up to 100 users.

In Fig. 5.15, we present the network throughput performance
∑

k∈K R̃k(t) as a function

of the number of antennas NT at the BS under different algorithms. NT is varying from

6 to 12, and we consider two different settings: (a) (a) NR = 2, |K| = 50, |B| = 100, (b)

NR = 4, |K| = 100, |B| = 100. We didn’t include the performance of Unified-PF in the figure,

as it is not able to converge to its long-term average throughput after 5 hours of running the

algorithms. The results in in Fig. 5.15 show that under both settings (a) and (b), the network

throughput just slightly increases with NT under MU-PF and SU-PF. However, mCore+ can

better take advantage of additional antennas to achieve much higher throughput. This is

because mCore+ utilizes the knowledge of channel correlations among users and supports up

to 4-user MU-MIMO transmission, and therefore it can better exploit the spatial diversity

offered by many antennas compared with other algorithms.

In summary, the experimental results show that mCore+ is the only algorithm that can

find the scheduling solution in ∼500 µs under all tested cases (for up to 100 RBs, 100 users,

4 MIMO, and 4 users per RB). Further, the throughput performance achieved by mCore+

is better or comparable to other algorithms.

5.7 Chapter Summary

This paper presents the design and implementation of mCore+. mCore+ is the first MU-

MIMO scheduler for 5G NR that achieves ∼500-µs real-time scheduling. By the design of
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mCore+, RB allocation, number of data stream determination and MCS assignment are

jointly optimized. In particular, multiple users may share the same RB resources by our

design. To address the real-time challenge, mCore+ employs a multi-phase optimization,

with each phase exploiting large-scale parallelism. The search space is reduced through

the knowledge of channel conditions and user correlations. We implemented mCore+ on a

COTS GPU platform to examine its performance. Through extensive experiments, we show

that mCore+ can obtain a scheduling solution with ∼500 µs for up to 100 RBs, 100 users,

4×12 MIMO systems. Moreover, mCore+ is able to offer a better or comparable throughput

performance compared with other state-of-the-art algorithms.



Chapter 6

A Sub-millisecond Scheduler for

Multi-Cell MIMO Networks under

C-RAN Architecture

6.1 Introduction

To increase spectrum efficiency and reduce the operation cost for the next-generation cellular

systems, the so-called “C-RAN architecture” has been explored [154, 155, 156, 157, 158]. As

shown in Fig. 6.1, C-RAN is based on a centralized architecture—a baseband unit (BBU)

pool located at a centralized site serving several remote radio heads (RRHs). The BBU pool

is responsible for the data processing at upper PHY layer (i.e., baseband signal processing),

MAC layer and network layer for all RRHs under its coverage. Each RRH is equipped

with multiple antennas—they are responsible for lower PHY layer signal processing, i.e.,

performing the radio frequency functions and emitting the signals.1 Connection between the

BBU pool and the remote RRHs is through high-capacity, low-latency optical fronthauls.

Per 5G specifications, the maximum allowed end-to-end one-way latency of functional spilt

between upper PHY and lower PHY is 250 µs [160], which is sufficiently small compared

1The point of separation between BBU pool and RRHs in functionalities may vary and depends on
different options in 5G [159].
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Figure 6.1: Under C-RAN architecture, a centralized BBU pool is scheduling resources for
users covered by a set of RRHs. A user can receive its data from one or multiple RRHs at
the same time.

with the channel coherence time for most communication scenarios. Therefore, the real-time

scheduling can be performed at the center BBU pool.

A goal of C-RAN is to support joint transmission—a coordinated beamforming scheme

that can significantly improve spectrum efficiency [154, 155, 156, 160, 161]. By “joint trans-

mission”, we mean a user can receive its data from multiple RRHs simultaneously (see user

A in Fig. 6.1). As future networks become smaller and denser, there is opportunity from

joint transmission. Likewise, effective management of inter-cell interference becomes even

more important. Thanks to centralized architecture in C-RAN, the virtual BS (i.e., BBU

pool) can ease the sharing of signaling, traffic data and channel state information (CSI) that
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are needed for joint transmission from different cells.

However, significant challenges remain in the design of a C-RAN scheduler for joint

transmission. To concretize our discussion, let’s consider a downlink scheduling problem in

C-RAN. We face the following critical challenges.

• First, the centralized scheduler must allocate a number of RBs and decide the beam-

forming matrices at each RRH. Under joint transmission, the same RBs but from

neighboring RRHs may be transmitted to the same user. As such, in each TTI, solu-

tions to RB allocation and beamforming matrices must be done jointly across different

cells at the virtual BS.

• Second, the scheduler must assign MCS and number of data streams for each user.

Under 5G NR [4], a user’s receiver must have the same MCS level and number of data

streams across all RBs that are allocated to her (even they come from different RRHs).

• Third, to achieve high throughput, MU-MIMO transmission should be used under

C-RAN. Thus, an RB may be allocated to multiple users.

• In addition to the above challenges on the scheduler side, we also have a stringent

timing requirement—the scheduler must find its scheduling solution within one TTI.

Under 5G numerology 0, one TTI is 1 ms. Then the C-RAN scheduling solution must

be found within 1 ms to be useful. To support ultra-low latency applications, an even

shorter TTI may be needed (e.g., 500 µs under numerology 1).

To date, there has been a number of studies on scheduling or beamforming problems under

C-RAN (see, e.g., [162, 163, 164, 165, 166, 167, 168, 169]). However, none of these studies

considered real-time requirement for their proposed solutions. For example, the authors in

[162, 163, 164, 165, 166] designed coordinated beamforming schemes for C-RAN, but these
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designs are based on iterative optimization, which requires excessive amount of computation

time. Further, none of these existing works jointly optimizes RB allocation, MCS assignment

and beamforming matrices for a multi-cell system. For the studies in [162, 163, 164, 165,

166, 167, 168, 169], although coordinated beamforming is considered, either RB allocation

or MCS assignment is missing. For example, the design in [163] is a representative research

work that considers coordinated beamforming without the consideration of RB and MCS

allocation. We made an experiment to run the algorithm in [163] (for a single RB without

MCS selection) on Matlab platform. The execution time is ∼70 seconds per TTI on average.

Such designs relying on iterative optimization cannot be used in real-time.

In this chapter, we present the design and implementation of M3—the first sub-Millisecond

scheduler for Multi-cell MIMO networks under 5G C-RAN architecture. M3 is capable of

finding a solution to RB allocation, MCS selection, data stream assignment, as well as the

precoding matrices, in real-time for each TTI (at most 1 ms). We tackle the crucial tim-

ing problem through a novel parallel design on a commercial off-the-shelf (COTS) GPU

platform. Our main contributions can be summarized as follows:

• M3 is the first C-RAN scheduler that can meet the 1 ms real-time requirement. The

success of M3 is built upon a judicious parallel design and validated on a COTS GPU.

The design of M3 is developed in accordance with the time-frequency resource structure

defined by 5G NR, and it is applicable to centralized multi-cell systems.

• M3 exploits independency and parallelism through a multi-pipeline design. Specifi-

cally, M3 first divides all users into two groups: non-edge users and cell-edge users

by leveraging their channel properties. Then M3 performs two independent parallel

pipelines, with one pipeline focusing on a sequence of operations for cell-edge users

(to explore joint transmission) and the other pipeline for non-edge users (to explore
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MU-MIMO transmission). After both pipelines complete their operations in parallel,

M3 determines the final solutions for all users.

• M3 achieves large-scale parallelism in addition to the multi-pipeline structure. Through-

out our design of M3, the exploration of parallel computing is carried out by leveraging

GPU’s capability. For instance, within each pipeline, most operations are purposefully

designed to be independent among RRHs and RBs. By taking advantage of mas-

sive parallel computation all the way, our design can reduce the computation time

dramatically.

• M3 is implemented on a COTS GPU platform—Nvidia DGX Station. We conduct

extensive experiments to verify M3’s timing performance as well as its throughput

performance. Our experimental results show that M3 is able to offer the scheduling

solution within 500 µs for a C-RAN system with 7 RRHs, 100 users, 100 RBs, and

2 × 8 MIMO. For a 2 × 12 MIMO system, M3 can also meet the 1 ms requirement

under all tested cases. In the mean time, M3 achieves ∼40% throughput gain under

joint transmission.

6.2 System Model

We consider a downlink (DL) scheduling problem under C-RAN architecture. As shown

in Fig. 6.1, a centralized BBU pool is connected to a set L of RRHs, which serve a set K

of users. Each RRH is equipped with NT antennas while each user is equipped with NR

antennas and NT > NR. Table 6.1 gives the key notations that we use in this chapter.

Fig. 6.2 illustrates our scheduling problem, which we elaborate mathematically in the

rest of this section.
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Table 6.1: Notations in Chapter 6

Symbol Definition

B A set of RBs to be allocated in a time slot
Fb
l,k(t) Precoding matrix for user k used by RRH l

on RB b in TTI t
Hb

l,k Channel matrix from RRH l to user k on RB b

K The set of users from all RRHs
K/E The subset of non-edge users in K
KE The subset of cell-edge users in K
L A set of RRHs
M A set of MCSs
NR Number of antennas at each user
NT Number of antennas at an RRH
rb,f,mk (t) The instantaneous achievable data rate of user k’s

f -th data stream on RB b with MCS m in TTI t
Rk(t) The aggregate data rate of user k in TTI t
R̃k(t) The exponentially smoothed average data rate of

user k up to TTI t
xbl,k(t) A binary variable indicating whether or not RRH l

is transmitting data to user k on RB b in TTI t
x̂bk(t) A binary number indicating whether or not user k is

receiving data from at least one RRH on RB b in
TTI t

yk(t) Number of data streams for user k in TTI t
zmk (t) A binary variable indicating whether or not MCS

m is used for user k in TTI t
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User Association and RB Allocation Consider a frequency reuse system, where a wide

frequency band is reused at every RRH. Per 3GPP, the frequency band is divided into a set

B of RBs. In each TTI, B is available at each RRH for DL transmission. Under C-RAN

architecture, a user can receive its signals from one or multiple RRHs on an RB. Under joint

transmission [156, 161], when user k is receiving its signals on RB b from multiple RRHs,

the user data sbk is identical from these RRHs. Denote xb
l,k(t) ∈ {0, 1} as a binary variable

indicating whether or not RRH l is transmitting data to user k on RB b in TTI t, i.e.,

xb
l,k(t) =


1, if RRH l is transmitting data

to user k on RB b in TTI t,

0, otherwise.

Denote Lb
k(t) as the set of RRHs that are transmitting data to user k on RB b in TTI

t, i.e., Lb
k(t) = {l ∈ L|xb

l,k(t) = 1}. Denote x̂b
k(t) ∈ {0, 1} as a binary number indicating

whether or not user k is receiving data from at least one RRH on RB b in TTI t, i.e.,

x̂b
k(t) =


1, if

∣∣Lb
k(t)
∣∣ > 0,

0, otherwise.
(6.1)

Also note that under MU-MIMO, an RRH can transmit to multiple users on the same

RB. As the maximum number of users scheduled on an RB cannot exceed the number of

antennas at the RRH, we have the following MU-MIMO constraint for xb
l,k(t):

∑
k∈K

xb
l,k(t) ≤ NT. (b ∈ B, l ∈ L) (6.2)

Number of Data Streams A user may have multiple data streams on each RB that



198

RB1

RB2

RB99

RB100

…
…

A time slot

f

UE1

UE2

UE3

…
…

One stream

t

Two streams

RB1

RB2

RB99

RB100

…
…

Same time slot

f

t

RRH1 RRH2

UE4

High MCS level
Low MCS level

Figure 6.2: Within each time slot, the virtual BS jointly determines RB allocation, number
of data streams, and MCS assignment for all users under all RRHs.
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is allocated to her. But when a user receives its data streams on multiple RBs, then the

number of data streams must be identical across all these RBs [128].

Denote yk(t) as the number of data streams for user k in TTI t (which is the same across

all allocated RBs). As yk(t) cannot be greater than the number of receive antennas, we have

yk(t) ≤ NR. (k ∈ K) (6.3)

Also, at each RRH, the total number of data streams on each RB for MU-MIMO transmission

cannot exceed the number of its antennas. We have

∑
k∈K

xb
l,k(t)yk(t) ≤ NT. (b ∈ B, l ∈ L) (6.4)

Achieved SINR at Users Each RRH applies precoders to support joint transmis-

sion and/or MU-MIMO transmission. Let Fb
l,k(t) be an NT × xb

l,k(t)yk(t) precoding ma-

trix for user k used by RRH l on RB b. Under the power constraint at an RRH, we have∑
k∈K ||Fb

l,k(t)||2F ≤ PT for all l ∈ L, where PT is the total power (per RB) at the RRH and

|| · ||F denotes the Frobenius norm. Then the received signal of user k on RB b is given by

cbk =
∑
l∈Lb

k

Hb
l,kFb

l,ks
b
k +

∑
l∈L

i ̸=k∑
i∈K

Hb
l,kFb

l,is
b
i + nb

k,

where Hb
l,k ∈ CNR×NT is the channel matrix from RRH l to user k on RB b, nb

k is the NR× 1

vector of i.i.d CN (0, n2
0) additive complex Gaussian noise, sbk is the signal vector, and we

omit the time-dependent notation (t) for matrices for brevity.

Then each user applies an NR × yk(t) combiner Wb
k for the received signals. After this
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combiner, we have the following signal for user k on RB b:

c̃bk = Wb†
k c

b
k

=
∑
l∈Lb

k

Wb†
k Hb

l,kFb
l,ks

b
k︸ ︷︷ ︸

desired signal

+
∑
l∈L

i ̸=k∑
i∈K

Wb†
k Hb

l,kFb
l,is

b
i︸ ︷︷ ︸

interference

+Wb†
k n

b
k,

(6.5)

where (·)† denotes the conjugate transpose of a matrix. Different beamforming schemes can

be applied based on Hb
l,k. In this chapter, we apply MMSE precoding scheme at the RRH

side (based on Hb
l,k) with equal power allocation for each data stream and MMSE combiner

at the user side (based on Hb
l,kFb

l,k).

For each k ∈ K, the signal-to-interference-plus-noise ratio (SINR) of the f -th stream on

RB b is then given by

SINRb,f
k =

Eb,f
k

Qb,f
k + n2

0W
b,f†
k Wb,f

k

, (6.6)

where

Eb,f
k =

∣∣∣∣∣∣
∑
l∈Lb

k

Wb,f†
k Hb

l,kF
b,f
l,k

∣∣∣∣∣∣
2

Qb
k =

∑
i∈K

yi(t)∑
f ′=1

∣∣∣∣∣∑
l∈L

Wb,f†
k Hb

l,kF
b,f ′

l,i

∣∣∣∣∣
2

− Eb,f
k ,

and (·)b,fk is the f -th column of (·)bk.

MCS Assignment In each TTI t, a setM of MCSs is available for data transmission for

each user k ∈ K. However, if a user is scheduled to receive data streams on multiple RBs,

3GPP requires that the user employs the same MCS across all data streams on all scheduled

RBs [4]. Denote zmk (t) ∈ {0, 1} as a binary variable indicating whether or not MCS m ∈M
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is used by the virtual BS for user k ∈ K in TTI t, i.e.,

zmk (t) =


1, if MCS m is used for user k in TTI t,

0, otherwise.
(6.7)

To guarantee only one MCS is used across all scheduled RBs for user k, we have

∑
m∈M

zmk = 1. (k ∈ K) (6.8)

Instantaneous Data Rate The instantaneous achievable data rate depends on the SINR

of each stream and the selected MCS level. Specifically, with a higher MCS level m, the user

data is encoded with a higher data rate rm. However, to successfully decode the user data at

a higher MCS level m, a higher level of SINR is required, or the data cannot be successfully

decoded (i.e., a data rate of zero). Denote θm as the SINR threshold for successfully decoding

the data with MCS m, and rb,f,mk (t) as the instantaneous achievable data rate of user k’s

f -th data stream on RB b with MCS m in TTI t. Then we have

rb,f,mk (t) =


rm, if SINRb,f

k ≥ θm,

0, otherwise.

(f = 1, · · · , yk(t), k ∈ K, b ∈ B,m ∈M)

(6.9)

where SINRb,f
k is defined in Eq. (6.6).

The aggregate achievable data rate of user k in TTI t can be given by

Rk(t) =
∑
b∈B

x̂b
k(t)

yk(t)∑
f=1

∑
m∈M

zmk (t)rb,f,mk (t), (6.10)
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where x̂b
k(t) is defined in Eq. (6.1), and we define

∑yk(t)
f=1 (·) = 0 if yk(t) = 0.

Proportional Fair Metric Users that are far away from their RRH(s) may experience

low SINR for a long period. Therefore, the consideration of fairness is essential for a C-RAN

scheduler. A common scheduling objective is to maximize the PF metric. Specifically, a

PF-oriented scheduler aims at maximizing the utility function
∑

k∈K logR̃k, where R̃k is the

long-term average data rate of user k.

For a time-slotted system, a widely used approach is to maximize the sum of normalized

data rates in each time slot [95, 148, 169],

∑
k∈K

Rk(t)

R̃k(t− 1)
, (6.11)

where the long-term average data rates R̃k(t−1) are updated using an exponentially weighted

filter:

R̃k(t− 1) =
Tc − 1

Tc

R̃k(t− 2) +
1

Tc

Rk(t− 1).

Problem Statement Our objectives are 1) to determine the users’ RRH association and

allocate RBs (xb
l,k(t)’s), assign the number of data streams (yk(t)’s) and MCSs (zmk (t)’s), as

well as compute precoding matrices (Fb
l,k(t)’s) for all users, such that the PF metric (6.11)

is maximized; and 2) to ensure the scheduling solution can be found within each TTI (i.e.,

at most 1 ms) to meet 5G’s timing requirement. This C-RAN scheduling problem can be

written as follows.
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OPT

max
∑
b∈B

∑
k∈K

∑
m∈M

yk(t)∑
f=1

rb,f,mk (t)

R̃k(t− 1)
x̂b
k(t)z

m
k (t),

s.t. User association and RB allocation constraint: (6.2);

Data stream allocation constraints: (6.4);

MCS assignemnt constraint: (6.8);

SINR and instantaneous data rate: (6.6), (6.9);

xb
l,k(t) ∈ {0, 1}, yk(t) ∈ {0, 1, · · · , NR}, zmk (t) ∈ {0, 1}.

In problem OPT, xb
l,k(t), yk(t) and zmk (t) are decision variables, Fb

l,k(t), Wb
k(t), x̂b

k(t),

rb,f,mk (t) and R̃k(t−1) are intermediate variables which can be determined with given xb
l,k(t),

yk(t) and zmk (t). The others are given constants.

Problem OPT is a nonlinear integer problem. The decision variables are tightly coupled

together with extremely large search space. Further, the stringent timing requirement adds

another level of challenge to design a solution for OPT.

6.3 M3: Key Ideas and Road Map

Before we present the design blueprint of M3, let’s first offer some insights on the C-RAN

scheduling problem. Different from traditional single-cell resource scheduling, C-RAN ar-

chitecture has the potential to further improve PF objective through cooperative scheduling

among neighboring cells. For cooperative scheduling, we first need to address the critical

question of how to allocate RBs at each RRH for potential joint transmission. We have the
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Figure 6.3: A flow chart for M3.
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following two options:

• (i) Multiple RRHs use this RB to form joint transmission to a user;

• (ii) Each RRH uses this RB separately for different users.

There is a trade-off betwen the above two options. On the one hand, if an RB is used

for joint transmission at multiple RRHs, potential interfering signals are effectively trans-

formed into desired signals, which can significantly improve a receiver’s data rate. On the

other hand, joint transmission consumes more RB resources—a user that is supported by

joint transmission requires all cooperative RRHs to use this RB for her. Without joint

transmission, these RRHs may use this RB separately (and independently) to support more

users.

M3 tackles the RB allocation problem with the following ideas. First, it is clear that

not every user can benefit from joint transmission. Under a virtual BS, we have multiple

adjacent RRHs, forming multiple adjacent cells in the system. Then only cell-edge users may

benefit from receiving signals from multiple RRHs, while other (non-edge) users are better

served solely by their own RRHs. Therefore, M3 reduces the search space by dividing all

users into two groups: cell-edge users KE and non-edge users K/E. Only users in KE have the

opportunity for joint transmission. This division should be based on large-scale path loss

and can be determined based on long term measurements.

Second, based on above user division, M3 exploits parallelism to determine RB allocation,

along with MCS and number of data streams, to problem OPT. Specifically, M3 employs

two independent parallel pipelines, where one pipeline is a sequence of operations focusing

on cell-edge users (to explore joint transmission) and the other pipeline is for non-edge users

(to explore MU-MIMO transmission). To determine whether an RB b is better used for

KE or K/E in terms maximizing the PF metric, M3 will check both cases in parallel by
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using those two pipelines. That is, M3 allows both pipelines to use each RB, determines

the scheduling solutions by each pipeline (for KE or K/E), and then obtains the PF values

achieved on each RB in both cases by these pipelines. Then, by comparing the PF values

obtained by each pipeline, M3 makes the final decision on how each RB is allocated, as well

as corresponding assignment of MCS and number of data streams. Note that in addition

to the multi-pipeline structure, parallelism is carried out throughout the design within each

pipeline. For example, many operations are purposely designed to be independent among

RRHs and RBs, and therefore they can be implemented in parallel.

Fig. 6.3 shows a flow chart of M3, which consists of the following key steps.

• Stage I: User classification. M3 divides all users into two groups: cell-edge users KE

and non-edge users K/E, based on large-scale path loss. For each user k, M3 identifies

its potential serving set Lk.

• Stage II: Find promising solutions of RB allocation, as well as MCS assignment and

number of data streams, for both cell-edge and non-edge users, by performing two

independent parallel pipelines:

– P1: Cell-Edge Pipeline. P1 finds promising solutions for k ∈ KE, assuming each

RB is used for cell-edge users.

– P2: Non-Edge Pipeline. P2 finds promising solutions for k ∈ K/E, assuming each

RB is used for non-edge users.

• Stage III: Compare the PF metrics provided by each pipeline and determine the final

solution.
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6.4 M3: Design Details

In this section, we described the operations of M3 in detail at each stage.

6.4.1 Stage I: User classification

In this stage, we divide all users into two groups: cell-edge users KE and non-edge users

K/E. For non-edge users, they are likely to experience much better channel qualities from

their closest RRH than other RRHs. Therefore, users identified in K/E will only be served

by their closest RRH. Also, an RRH may perform MU-MIMO transmission to multiple non-

edge users under this RRH to achieve higher throughput. On the other hand, for cell-edge

users, they are likely to experience similar signal strength from at least two RRHs. To

reinforce the desired signal strength, users identified in KE will be served by multiple RRHs

simultaneously. M3 only applies SU-MIMO transmission for cell-edge users, as MU-MIMO

transmission is not beneficial for improving each individual user’s SINR, which is what a

cell-edge user needs.

M3 determines whether a user is a non-edge user or a cell-edge user, as well as its RRH(s),

based on the relative large-scale path loss from different RRHs to this user. Fast fading and

beamforming gain are not considered in this stage. Let gl,k be the path loss from the RRH

l to user k. Then the set of user k’s RRH(s) is given by

Lk =

{
l ∈ L

∣∣∣∣ gl,k
minn∈L gn,k

≤ δ

}
, (k ∈ K)

where δ (δ ≥ 1) is a pre-defined threshold to determine the subset of RRHs.

Next, if Lk for user k has more than one RRH, then user k is classified as a cell-edge user.

Denote KE as the set of all cell-edge users. Then KE = {k||Lk| > 1, k ∈ K}. Otherwise,
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if Lk for user k has only one RRH, then user k is classified as a non-edge user. Denote

K/E as the set of all non-edge users. Then K/E = {k||Lk| = 1, k ∈ K}. Further, denote

K/E
l as the subset of non-edge users in K/E that are receiving service from RRH l. Then

K/E
l = {k|Lk = {l}, k ∈ K/E}.

Since the decision of user-RRH association largely depends on the user’s location, Lk can

be updated based on long-term measurement. Therefore, Stage I will not be counted toward

M3’s total execution time.

Upon the completion of Stage I, the search space for xb
l,k(t) variables will be narrowed

down. That is, we have xb
l,k(t) = 0 if l ̸∈ Lk. Stage I lays the foundation for employing

independent parallel pipelines, which we will describe in Stage II.

6.4.2 Stage II: Find promising solutions for cell-edge and non-edge

users

Stage II consists of two independent pipelines that can be implemented in parallel. Each

pipeline is a sequence of operations to find promising solutions for users in KE and K/E,

respectively. Within each pipeline, we have three key steps. Each step focuses on one type

of variable (i.e., xb
l,k(t)’s, yk(t)’s or zmk (t)’s) for KE or K/E. That is, in each step, M3 will

restrict the search space for that type of variable into a small but promising subspace. As

RB allocation is the key problem for joint transmission under C-RAN, we start with xb
l,k(t)

variables first under both pipelines. Then it is followed by steps for yk(t) and zmk (t) variables.

Pipeline 1: Edge-Users It consists of the following two steps.

Step 1-A: Determine RB Allocation for Cell-Edge Users. In this step, we focus on the

xb
l,k(t) variable for cell-edge users. That is, M3 identifies a subset BE

k of promising RBs from
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B for each user k ∈ KE. Note that all RRHs for user k (i.e., all l ∈ Lk) must use the same

RBs to perform joint transmission to user k.

To maximize the PF objective function (6.11), it is equivalent to maximize each user’s

instantaneous data rate normalized by its long-term data rate (i.e., Rk(t)

R̃k(t−1)
). For a cell-edge

user under joint transmission, the instantaneous data rate is tightly related to the aggregated

channel quality (
∑

l∈Lk

√
PT||Hb

l,k||F )2. Intuitively, when user k is experiencing high channel

qualities from all its RRHs on an RB b, scheduling this RB jointly by Lk is likely to achieve

a high data rate for this user. The achievable data rate can be approximated based on

the channel capacity formula, i.e., log2

(
1 +

(∑
l∈Lk

√
PT||Hb

l,k||F
)2 1

n2
0

)
. Further, the data

rate should be normalized by the user’s long-term average data rate R̃k(t − 1) in order to

maximize the PF objective. Therefore, we consider the following metric to determine BE
k :

qb,Ek =
log2

(
1 +

(∑
l∈Lk

√
PT||Hb

l,k||F
)2 1

n2
0

)
R̃k(t− 1)

,

where ||Hb
l,k||F is the Frobenius norm of Hb,E

l,k .

Fig. 6.4 illustrates how M3 finds BE
k . First, M3 creates |B||KE| independent parallel

flows, each of which calculates one qb,Ek for a user k and RB b. Second, M3 generates |B|

independent flows, where each flow sorts {qb,E1 , qb,E2 , · · · , qb,E|KE|} in descending order. The

sorting result indicates each user’s priority to use an RB b. Third, with |B| independent

flows, M3 allocates each RB based on the priority list and resolves the potential conflicts

among RRHs. We describe the conflict resolution process through a simple example (see

the bottom half in Fig. 6.4). For RB 4 in Fig. 6.4, RRHs 1 and 3 allocates RB 4 to user

3 because user 3 has the highest priority on this RB. Subsequently, user 1 cannot have RB

4, as RRH 1—one of its RRHs, has reserved this RB for user 3. But user 2 can have RB 4

because none of its RRHs have allocated RB 4 to a user with a priority higher than user 2.
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Figure 6.4: An illustration of Step 1-A in Pipeline 1.
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Now we have the RB allocation results BE
k for each cell-edge user, which restricts the

decision of xb
l,k(t) variables. That is, if k ∈ KE and b ̸∈ BE

k , then we have xb
l,k(t) = 0

for all l ∈ Lk. For k ∈ KE and b ∈ BE
k , a potential (promising) solution could be to let

xb
l,k(t) = 1. But the final decision will be made later (after we compare the solution from

non-edge pipeline).

Step 1-B: Determine Number of Data Streams for Cell-Edge Users. In this step, we

focus on the yk(t) variables for cell-edge users. There exists a trade-off between the achievable

data rate and number of data streams for a user. On one hand, more data streams have the

potential to increase a user’s total data rate, leveraging the spatial multiplexing for MIMO

channels. On the other hand, transmitting too many data streams may cause performance

loss, due to power splitting and interference among the streams.

To gain some insights on how we should decide the value of yk(t), let’s first consider

a single-link MIMO channel H. Consider the eigenmode beamforming and equal power

allocation. The achievable data rate can be given as a function of the number of data

streams [9], i.e.,

r(y) =

y∑
i=1

log
(
1 +

PT
y
[σ(i)]2

n2
0

)
, (6.12)

where y is the number of data streams on channel H (y ≤ rank(H)) and σ(i) is the i-th

largest eigenvalue of H. Eq. (6.12) shows the fundamental relationship between achievable

data rate and the number of streams on a single-link MIMO channel, which is tightly related

to per-stream SNR ( PT
y n2

0
) and singular values σ(i).

Inspired by Eq. (6.12), we propose the following approach to determine the value of

yk(t) in the context of joint transmission. First, recall that a user must use the same MCS

across all streams. This suggests that we should consider the lowest SINR among user k’s all

streams. If user k is receiving f streams, then we evaluate an estimated SINR of the stream
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with the f -th largest eigenvalue, which is defined as

γE
k (f) =

(∑
l∈Lk

√
PT
f

Eb[σ
b
l,k(f)]

)2
n2
0

.

In the above expression, σb
l,k(f) is the f -th largest eigenvalue of Hb

l,k and Eb[σ
b
l,k(f)] is the

average eigenvalue over all b ∈ BE
k . Obviously, we have γE

k (1) > γE
k (2) > · · · ≥ γE

k (NR) for

any user k.

Next, let m̄E
k (f) be the largest MCS level in M that can be used to satisfy user k’s

estimated SINR γE
k (f), i.e.,

m̄E
k (f) = max

m∈M
m

s.t. γE
k (f) ≥ θm.

We must have m̄E
k (1) ≥ m̄E

k (2) ≥ · · · ≥ m̄E
k (NR) for any user k ∈ KE. As the data rate

corresponding to m̄E
k (f) is rm̄E

k (f), the sum rate of f streams can be given by f · rm̄E
k (f), if all

streams are successfully received.

Finally, we determine the number of data streams yk(t) for a user k ∈ KE by choosing

an f that maximizes f · rm̄E
k (f), i.e.,

yk(t) = arg max
f≤NR

f · rm̄E
k (f).

Note that determination of yk(t) is independent among the cell-edge users and therefore can

be implemented in parallel.

Step 1-C: Determine Candidate MCS for Cell-Edge Users. In this step, we focus on zmk (t)

variables. In Step 1-B, we identified the largest MCS level m̄k(yk(t)) based on the estimated

SINR γE
k (f). However, simply applying MCS m̄k(yk(t)) to user k can be overly optimistic
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for a number of reasons. First, γE
k (f) is approximated based on channels’ eigenvalues, while

non-SVD based beamforming techniques, such as MMSE and ZF, cannot process signals in

the eigenspace and will result in an inferior performance. Second, γE
k (f) does not consider

inter-cell interference from RRHs l ̸∈ Lk. Third, γE
k (f) is based on averaged eigenvalues

over all b ∈ BE
k . Applying a lower MCS for user k has the potential to facilitate successful

transmissions on more RBs and thus achieve a higher sum rate.

Therefore, instead of simply applying MCS m̄E
k (yk(t)) to user k, we propose to picking

up multiple MCS candidates that are lower than m̄E
k (yk(t)) simultaneously. Then M3 can

process multiple MCS choices for a user in parallel. How to determine its final MCS jointly

with all other users will be discussed in Stage III. Now let’s focus on determining the MCS

candidates for a particular cell-edge user k.

Note that any MCS that is much less than m̄E
k (yk(t)) is not a promising candidate, as it

can only support a low data rate. Therefore, M3 only chooses a candidate MCS that is lower

than m̄E
k (yk(t)) but the difference between m̄E

k (yk(t)) and this MCS is within a pre-defined

value M∆. Formally, M3 determines the candidate MCS set for user k through the following

expression:

ME
k = {m ∈M|0 ≤ m̄E

k (yk(t))−m < M∆}.

After this step, we have zmk (t) = 0 if k ∈ KE and m ̸∈ ME
k . As described in problem

OPT, the choice of a user’s MCS is coupled with other (both cell-edge and non-edg) users.

How to finalize MCS selection in ME
k for all users will be discussed in Stage III (after we

discuss MCS selection for non-edge users).

Pipeline 2: Non-Edge Users This pipeline is designed for non-edge users K/E, assuming

that each RB is available only for non-edge users. Note that for a user k ∈ K/E, it receives

much higher signal strength from its own RRH than that from any other RRHs. Thus,
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when finding promising scheduling solutions at an RRH l, we can reply solely on the channel

information within RRH l, while treating the inter-cell interference as noise. This allows

M3’s decision for non-edge users to be independent among different RRHs and therefore

achieves a higher level of parallelism. Pipeline 2 consists of the following three steps.

Step 2-A: Select Promising MU-MIMO Users on Each RB under Each RRH. In this

step, we deal with xb
l,k(t) variables for non-edge users K/E

l . Compared to cell-edge users,

non-edge users experience better SINR on average. To exploit this property for a higher

throughput, we employ MU-MIMO transmission for non-edge users, which is not used for

cell-edge user. Under MU-MIMO transmission, more than one user will be selected on each

RB under each RRH.

M3 selects users on each RB for MU-MIMO transmission through two operations. First,

M3 finds a subset K̃b,/E
l of promising users from K/E

l based on channel quality. Second, M3

further selects a subset Kb,/E
l of promising users from K̃b,/E

l based on the channel correlation

among users to form MU-MIMO transmission. We now describe each operation in detail.

First, M3 intensifies promising MU-MIMO users on each RB based on channel quality.

Similar to Pipeline 1, we introduce a metric qb,/El,k to approximate user k’s data rate normalized

by its long-term data rate, except that we now consider only one RRH for each non-edge user.

Specifically, M3 creates
∑

l∈L |B||K
/E
l | independent parallel flows, each of which calculates one

qb,
/E

l,k for l ∈ L, k ∈ K/E
l and b ∈ B and qb,

/E
l,k is given by:

qb,
/E

l,k =
log2

(
1 + PT

n2
0
||Hb

l,k||2F
)

R̃k(t− 1)
.

Then, M3 generates |L||B| independent parallel flows, each of which sorts {qb,/El,1 , q
b,/E
l,2 , · · · , q

b,/E
l,|K/E

l |
}

in descending order for a RRH l ∈ L and a RB b ∈ B. Let πb
l,k be the order of qb,

/E
l,k in
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{qb,/El,1 , q
b,/E
l,2 , · · · , q

b,/E
l,|K/E

l |
}. Suppose M3 selects KQ (< |K/E

l |) candidate users based on channel

qualities, then the subset K̃b,/E
l of promising users is determined by

K̃b,/E
l = {k ∈ K/E

l |π
b
l,k ≤ KQ}. (b ∈ B, l ∈ L)

Second, we identify promising users from K̃b,/E
l on each RB to form MU-MIMO transmis-

sion based on channel correlations. That is, among the users in K̃b,/E
l for each b ∈ B, l ∈ L,

M3 selects a subset Kb,/E
l (⊂ K̃b,/E

l ) of users, such that the users in Kb,/E
l have low channel

correlations among themselves. The rationale behind this operation is that, in general, the

lower correlations among the co-scheduled users, the higher sum of data rate can be achieved.

This is because mutually orthogonal channels can better preserve the desired signal strength

after applying beamforming matrices [23, 51].

We evaluate channel correlations based on chordal distance [150], which measures the

angle between two multi-dimensional subspace. A larger value of chordal distance means

more orthogonality between these two subspaces. Let H̊b
l,k be the orthonormal base of Hb

l,k.

Then the chordal distance between Hb
l,k1

and Hb
l,k2

is given by:

dbl (k1, k2) =
1√
2
||H̊b†

l,k1
H̊b

l,k1
− H̊b†

l,k2
H̊b

l,k2
||F .

M3 computes dbl (k1, k2) for all k1 ∈ K/E
l , k2 ∈ K

/E
l , k1 ̸= k2, which can be executed in

parallel on each RB b ∈ B and l ∈ L. Suppose we are going to select KMU (< |K/E
l |)

users for MU-MIMO transmission. Then the subset Kb,/E
l of candidate users is determined

by the following. M3 adds the first user to Kb,/E
l that has the highest qb,

/E
l,k , i.e., Kb,/E

l =

{arg max
k∈K/E

l
qb,

/E
l,k }. Subsequently, we add users one at a time to Kb,/E

l , by picking the user

with the largest average chordal distance to existing users in Kb,/E
l , until we have KMU users
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in Kb,/E
l .

After Step 2-A, M3 restricts the users that can be scheduled on RB b under RRH l. That

is, for any k ∈ K/E
l and k ̸∈ Kb,/E

l , we have xb
l,k(t) = 0. On the other word, under each RRH

and each RB, the total number of possibilities to allocate RBs is reduced to 2KMU , as xb
l,k(t)

can be either 1 or 0 and |Kb,/E
l | = KMU. The final decision will be made in Stage III (after

we have MCS solutions and evaluate the corresponding objective values).

Step 2-B: Determine Number of Data Streams for Non-edge Users. In this step, we

work on yk(t) variables for non-edge users. Similar to cell-edge users, we consider a metric

of estimated SINR as a function of the number of streams. But for a non-edge user, we only

need to consider its own RRH. That is, if RRH l’s non-edge user k is receiving f streams,

the estimated SINR per stream is given by

γ
/E
l,k(f) =

PT

f

Eb[σ
b
l,k(f)]

2

n2
0

,

where Eb[σ
b
l,k(f)] is the average eigenvalue over all b ∈ B/E

k , and B/E
l,k is the set of candidate

RBs for non-edge user k under RRH l, i.e., B/E
l,k = {b ∈ B|k ∈ K

b,/E
l }.

Next, following the same rationale as cell-edge users, let m̄/E
k (f) be the largest MCS that

satisfies γ
/E
l,k ≥ θm̄

/E
k (f). Then the number of data streams yk(t) for a non-edge user k is

determined by choosing the f that maximizes f · rm̄
/E
k (f), i.e.,

yk(t) = arg max
f≤NR

f · rm̄
/E
k (f).

Step 2-C: Determine Candidate MCS for Non-edge Users. The MCS m̄
/E
k (yk(t)) found

in Step 2-B for a non-edge user is also an optimistic choice, because the transmit power PT

shall be shared with other non-edge users due to the MU-MIMO transmission. Similar to the
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approach for cell-edge users, M3 only chooses a candidate MCS that is lower than m̄
/E
k (yk(t))

and the difference between m̄
/E
k (yk(t)) and this MCS is within a pre-defined value M∆. That

is, the candidate MCS set for non-edge user k is given by

M/E
k = {m ∈M|0 ≤ m̄

/E
k (yk(t))−m < M∆}.

After this step, we have zmk (t) = 0 if m ̸∈ M/E
k for a non-edge user k.

6.4.3 Stage III: Determine final solution

In this stage, we show how M3 performs comparison among different candidate solutions

and selects the final solution to problem OPT. The key steps of Stage III are illustrated in

Fig. 6.5.

M3 will enumerate all possible xb
l,k(t) and yk(t) assignments from each pipeline in Stage II.

However, for zmk (t) variables, the search space is too large for enumeration. Fortunately, the

MCS candidates ME
k and M/E

k for cell-edge and non-edge users (identified by Stage II) are

already promising MCS solutions. Therefore, M3 can further identify a smaller subset of

MCS solution space based on ME
k ’s and M/E

k ’s. Specifically, let M̃ be the MCS solution

space, i.e.,

M̃ =ME
1 × · · · ×ME

|KE| ×M
/E
1 × · · · ×M

/E
|K/E| ⊆M

|K|,

where × denotes the Cartesian product. Then each element from M̃ (a 1 × |K| vector)

is a feasible MCS solution for all users. Supposing we are going to try MS different MCS

solutions in parallel, M3 will randomly select MS elements from M̃ in parallel. As eachMk

is a set of promising MCS candidates for user k, we can apply a simple yet effective approach

to determine MCS solutions—by randomly (uniform) picking MS elements from M̃.
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Figure 6.5: Stage III determines the final scheduling solutions for all users under all RRHs.
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After this step, we have MS candidate MCS solutions (i.e., MS sets of feasible zmk (t)’s),

denoted by Z1,Z2, · · · ,ZMS , respectively. Now we can enumerate zmk (t) variables, calculate

PF metrics, and perform comparisons.

After obtaining Zi’s, M3 calculates SINR of each data stream and PF metrics under a

given zmk (t). Specifically, M3 enumerates all possible xb
l,k(t) and yk(t) assignments for cell-

edge and non-edge users from Stage II. With the given xb
l,k(t)’s and yk(t)’s, we derive the

corresponding beamforming matrices (based on MMSE beamforming) at each RRH and each

user under a given scheduling solution, and then calculate SINR for every stream. When

calculating user k’s SINR, we exploit independency and reduce the computational burden by

only considering the beamforming gain from user k’s RRHs Lk. That is, for interference from

RRHs other than Lk, we only consider their transmit power PT and pathloss attenuation,

without using their beamforming matrices to obtain the inter-cell interference.2 Although

such a simplification has little impact on SINR accuracy, it can decouple SINR calculations

among the RRHs and make it possible for parallel implementation.

Next, with given SINRs and zmk (t)’s, we can obtain PF metric
∑yk(t)

f=1
rb,f,mk (t)

R̃k(t−1)
for each

user on each RB. We conduct two-level comparisons to determine the final decision. At the

first level, we focus on a given Zi and determine whether an RB b should be allocated to a

cell-edge user or a non-edge user (and all RBs are evaluated in parallel). If RB b is used for

a cell-edge user k, then the PF value can be computed by

V b,E
k =

yk(t)∑
f=1

r
b,f,m∗

k
k (t)

R̃k(t− 1)
, (6.13)

where m∗
k is user k’s MCS level under the given Zi. On the other hand, if this RB is used

2All beamforming matrices will be considered for throughput evaluation in Sec. 6.6.
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for non-edge users separately by user k’s RRHs Lk, then the PF value can be computed by

V b,/E
Lk

=
∑
l∈Lk

max
xb
l,k′

∑
k′∈Kb,/E

l

yk′ (t)∑
f=1

r
b,f,m∗

k′
k′ (t)

R̃k′(t− 1)
xb
l,k′(t), (6.14)

where V b,/E
Lk

is maximized over 2KMU cases (for MU-MIMO user selection) under each RRH

(see Step 2-A).

In MS|KE||B| parallel flows, M3 compares V b,E
k with V b,/E

Lk
(under a given Zi). If V b,E

k ≥

V b,/E
Lk

, then we allocate RB b to cell-edge user k at RRHs Lk, i.e., xb
l,k(t) = 1 for all l ∈ Lk,

and xb
l,k′(t) = 0 for all l ∈ Lk, k

′ ∈ K/E
l . Otherwise, we allocate RB b to non-edge users

at each RRH in Lk, corresponding to the MU-MIMO user selection that maximizes V b,/E
Lk

.

Note that if an RRH is not associated with any cell-edge users by Stage I, then xb
l,k(t) can

be directly determined based on MU-MIMO user selection, without any comparison with

cell-edge users. After the first level of comparison, we complete the xb
l,k(t) assignment, along

with corresponding yk(t)’s, under a given Zi. Thus the objective value under each Zi is

obtained.

At the second level of comparison, among MS intermediate best solutions under each

Zi, we choose the Zi that offers the highest objective value to problem OPT, along with

corresponding xb
l,k(t)’s and yk(t)’s. This gives the final solution to problem OPT.

In this section, we described in detail the three stages of M3. Throughout our design, the

exploration of independent operations is carried out, which makes it possible for a parallel

implementation. In the following section, we move forward to implement M3 on an actual

hardware for our ultimate goal—offering a solution to problem OPT in real-time.
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6.5 A Real-Time GPU-based Implementation

In this section, we present our implementation of M3. We choose a COTS GPU platform as

our hardware for implementation. For optimal implementation, one must have a thorough

knowledge of a given GPU’s capability as well as its limitations. In the rest of this section,

we document our implementation efforts.

Platform We implement M3 on a NVIDIA DGX station, which comes with 4 COTS V100

GPU cards. We will only use two of them. Each V100 card has 5120 CUDA cores. Data

communication between CPU and GPU is based on a PCIe V3.0 architecture, and the GPU-

to-GPU data communication is based on NVIDIA NVLink architecture [151]. The CPU of

the DGX Station is Intel Xeon E5-2698 v4 2.2 GHz (20-core). The programming platform

is CUDA v10.2 [117].

Independent Pipelines Traditional parallel designs have only one pipeline, within which

all parallel threads have the same computation procedures (see e.g., [95, 119, 120]). In con-

trast, Our M3 has two independent pipelines, as described in Sec. 6.4. The computation

procedures for different threads are identical within the same pipeline while they are differ-

ent from those in the other pipeline. This is possible on GPU by employing a programming

method called streams that is offered by CUDA. A stream can execute a sequence of oper-

ations (e.g., Pipeline 1) successively on a GPU, while the operations executed by another

stream (e.g., Pipeline 2) may run concurrently. By employing the streams, GPU cores can

be utilized more efficiently. That is, whenever the computing operations in one pipeline do

not fully occupy all the GPU cores, the GPU’s streaming multiprocessor (SM) can schedule

the remaining cores for the other pipeline.

Using Multiple GPU Cards As most of M3’s operations on RBs are designed to be

independent, we can distribute computation tasks to multiple GPU cards based on RBs.
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Figure 6.6: An illustration of parallel operations of pipelines and data transfer.

Specifically, with two GPU cards, the first card can handle operations for the first |B|/2 RBs

for both pipelines, and the second card will handle the remaining RBs. A small amount of

operations requires the information on all RBs, such as computing the candidate MCS set

Mk. These operations will be performed on only one GPU card after a data transfer from

the other GPU card.

Data Exchange between Pipelines / GPU Cards Although different pipelines may

run concurrently, their completion time is unpredictable. M3 requires data exchange between

pipelines occasionally, e.g., when we perform PF metric comparisons. Thus, it is important

to do a synchronization before data exchange. Likewise, the computation progress in one

GPU card may differ from the other. When data exchange between GPU cards is required, a

device-level synchronization is needed. As a synchronization will pause part of the program

and also introduce CPU’s scheduling overhead, we must keep such an operation to a minimum

and only use it when it is absolutely necessary.

Large-Scale Parallelism In addition to multi-pipeline and multi-GPU, parallelism is

carried out throughout our implementation. For example, the operations for different RRHs

under non-edge users’ pipeline are independent and implemented in parallel. The operations

of matrix inversions for computing the beamforming matrices are implemented in parallel

and the fast on-chip shared memory is employed to reduce the memory access time.

Data Transfer between Host and GPU Data transfer time between host memory and
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GPU memory also needs to be considered. Fortunately, data transfer and GPU computing

can be done in parallel if the computation does not rely on the data that is being transferred.

To take advantage of this property, we propose the following structure for data transfer (see

Fig. 6.6). In TTI t, GPU computes the solution to problem OPT based on the channel

information transferred in the previous TTI (i.e., TTI t − 1), and the computation in TTI

t+1 will be based on information transferred in TTI t, and so forth. This method is valid as

long as channel coherence time is at least 3 TTIs (which is the case for most communication

scenarios [170]) and can effectively mask out the transfer time of channel information from

host to GPU.

6.6 Experimental Evaluation

6.6.1 Settings

We consider a C-RAN architecture, where a centralized BBU pool is serving multiple small

cells. We randomly generate |L| = 7 RRHs in a circle within a radius of 700 m. The

minimum distance between every two RRHs is 350 m. |K| users are randomly deployed in

the circle, and |K| = 100 unless stated otherwise. Fig. 6.7 shows an instance of the network

topology and the results of user classification done by Stage I. In Fig. 6.7, the red circles are

the cell-edge users and the blue circles are non-edge users. Fig. 6.7 shows that we have 17

cell-edge users (out of 100 users) in this case (δ = 3 dB).

The number of antennas at each RRH is chosen from {8, 12} and the number of antennas

at each user is 2. The number of MU-MIMO users in a cell KMU is chosen from {2, 4}.

The number of RBs |B| is 100 unless indicated otherwise. For the wireless channels, Hb
l,k(t)

includes both large-scale fading gl,k and small-scale fading H̄b
l,k(t), i.e., Hb

l,k(t) = g−1
l,k H̄b

l,k(t).
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Figure 6.7: An instance of network topology with 7 RRHs and 100 users. Classification of
cell-edge and non-edge users is done by Stage I with δ = 3 dB.

Large-scale fading gl,k is given by 140.7 + 36.7 log10(dl,k) (in dB), where dl,k is the distance

between RRH l and user k (in km). The small-scale fading H̄b
l,k(t) is modeled by Rayleigh

channel model. We set transmit power PT to be 36 dBm. The background noise power is

set to -169 dBm/Hz and the channel bandwidth is 20 MHz. For parameters δ, KQ, M∆, and

MS in our algorithm (see Sec. 6.4), we set δ = 3 dB, KQ = 10,M∆ = 6,MS = 300.

6.6.2 Timing Performance

We first verify that M3 can meet the 1 ms real-time requirement, which is a major criterion

for it to be useful for 5G C-RAN. We conduct experiments for 300 consecutive TTIs under

two different settings: (a) |K| = 50, NT ∈ {8, 12}, and (b) |K| = 100, NT ∈ {8, 12}.

The experimental results are shown in Fig. 6.8. We find that that M3 is able to offer a
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Figure 6.8: M3’s execution time. (a) |K| = 50, NT ∈ {8, 12}, and (b) |K| = 100, NT ∈
{8, 12}.
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scheduling solution within 1 ms under all cases and TTIs in our experiments. Specifically,

when NT = 12, M3’s average execution time is 626 µs and 712 µs for |K| = 50 and |K| = 100,

respectively, which can meet the timing requirement for 5G NR numerology 0 (1 ms). When

NT = 8, the average execution time is 351 µs and 435 µs for |K| = 50 and |K| = 100,

respectively, which can meet 5G NR numerology 1 (500 µs).

Next, we vary the number of users |K| from 50 to 150 to show its impact on M3’s execution

time. We consider the following settings: (a) NT = 8, KMU = 2, and (b) NT = 12, KMU = 4.

|B| is 100. Fig. 6.9 shows M3’s average execution time with the maximum and minimum

values over 100 consecutive TTIs. The results indicate that M3 finds the solution within

500 µs and 800 µs for up to 150 users under settings (a) and (b), respectively. Although the

execution time increases with the number of users, Fig. 6.9 suggests that M3 can still meet

5G NR timing requirement (1 ms). Further, the rate of increase is much slower than that of

the number of users. This is because that by the design of Step 1-A and Step 2-A in Stage II,

M3 identifies a subset of the most promising users based on channel quality. Thus, only for

a fixed and small number of users we need to perform those time-consuming calculations,

such as beamforming matrices and SINR.

Now we study the timing performance as a function of the number of available RBs |B|.

We vary |B| from 20 to 100. The number of users is |K| = 100. The results in Fig. 6.10(a)

demonstrate that when NT = 8, the total execution time is well below 500 µs under different

numbers of RBs. The increase of computation time is much slower than that of the number

of RBs, because GPU has sufficient computing resources to accommodate parallel operations

among different RBs. When NT = 12, Fig. 6.10(b) shows that the execution time is within

800 µs for all cases, and it is lower than 500 µs for up to ∼60 RBs. The increase in

computation time w.r.t. the number of RBs is slightly faster than the case for NT = 8. This

is because matrix operations are much more intensive on each RB when NT = 12, leading
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Figure 6.9: M3’s execution time (mean, max and min values over 100 consecutive TTIs) vs.
the number users. (a) NT = 8, KMU = 2, and (b) NT = 12, KMU = 4.
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Figure 6.10: M3’s execution time (mean, max and min values over 100 consecutive TTIs)
vs. the number of available RBs. (a) NT = 8, KMU = 2, and (b) NT = 12, KMU = 4.
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Table 6.2: Comparison of user throughput at different percentiles when NT = 8, KMU = 2.

Percentile Without JT With JT Gain
(Mbps) (Mbps)

5th 0.52 0.64 23%
10th 0.56 0.72 28%
15th 0.72 0.97 34%
20th 0.98 2.57 161%
25th 1.37 3.05 122%
30th 2.42 3.71 53%
35th 2.74 3.82 40%
40th 3.09 3.95 28%
45th 3.18 4.03 27%
50th 3.54 4.30 22%

to more computation time. However, M3 is able to complete the computation in real-time

(within 1 ms) for all cases by taking advantage of the large-scale parallelism.

6.6.3 Throughput Performance

We now evaluate M3’s throughput performance. Under the topology in Fig. 6.7, we compare

the throughput performance achieved under joint transmission (with δ = 3 dB) with the case

when joint transmission is not used (i.e., δ = 0 dB). We consider two different settings: (a)

NT = 8, KMU = 2, and (b) NT = 12, KMU = 4.

Fig. 6.11 shows the cumulative distribution functions (CDF) of users’ long-term average

throughput. For example, in Fig. 6.11(a), the point (3.09 Mbps, 0.4) on the blue curve

indicates that the 40th lowest user throughput (among 100 users) is 3.09 Mbps. The results in

Fig. 6.11 suggest that the design of M3 is able to offer a better throughput performance when

joint transmission (JT) is employed. To have a clear picture of the performance improvement

over non-joint transmission, we use Tables 6.2, 6.3 and 6.4 to offer more details.

Table 6.2 shows the comparison of user throughput at different percentiles (ranging from
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Figure 6.11: Comparison of CDFs of users’ long-term average throughput.
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Table 6.3: Comparison of each cell-edge users’ throughput when NT = 8, KMU = 2.

Cell-edge user Without JT With JT Gain
(Mbps) (Mbps)

1 2.90 4.07 40%
2 4.50 4.37 -3%
3 1.26 4.61 266%
4 2.15 3.78 76%
5 3.11 3.97 28%
6 0.38 4.31 1030%
7 0.41 4.76 1054%
8 3.88 3.57 -8%
9 0.97 6.11 530%
10 1.42 4.50 216%
11 0.97 6.07 525%
12 3.07 3.97 29%
13 1.30 4.57 250%
14 3.12 8.95 187%
15 2.25 3.92 74%
16 2.77 3.69 33%
17 2.52 3.85 53%

Average 2.18 4.65 113%

5th to 50th percentile) with and without joint transmission for the setting (a) NT = 8, KMU =

2. The results suggest that the user throughput can be significantly improved by employing

joint transmission. Specifically, the user throughput is increased by at least 20% at all

examined percentiles and can be up to 160% for some cases. We have also examined the

performance for the setting (b) NT = 12, KMU = 4 and have a similar observation.

In Table 6.3, we study the throughput performance for each cell-edge user in KE under

setting (a) NT = 8, KMU = 2. Among the 17 cell-edge users, 15 users achieved a much

higher throughput after joint transmission is employed, while only two users experienced a

marginal decrease. By examining those two users in detail, we find that they can already

achieve high throughput without joint transmission. Therefore, they would be better off not

being classified as cell-edge users in Stage I. Even under such a “mis-classification”, M3 is
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Table 6.4: Comparison of average user throughput under different settings.

Setting Without JT With JT Gain
(Mbps) (Mbps)

(a) NT = 8 3.25 4.58 40.5%

(b) NT = 12 5.33 6.45 20.9%

able to offer comparable high throughput for these users. The most significant throughput

improvement (∼ 10×) is observed at user 7. This is because user 7 is closely located to

both of its RRHs, and the distances between user 7 and each RRH are almost identical

(see, Fig. 6.7). Therefore, user 7 receives strong and similar signal strength from its RRHs

and can benefit much from joint transmission. On average, the throughput performance for

cell-edge users KE is increase by 113% in our case study.

In Table 6.4, we show the average throughput of all 100 users. Table 6.4 shows that the

average user throughput is improved by 40.5% and 20.9% through joint transmission under

the two settings. The detailed experimental results in Tables 6.2, 6.3 and 6.4 demonstrate

that M3 can deliver the desired throughput improvement under C-RAN.

6.7 Related Work

C-RAN Schedulers C-RAN’s ability to better manage inter-cell interference has attracted

much attention in the research community. For example, the designs in [162, 163, 164, 165,

166, 167, 168, 169] developed coordinated scheduling/beamforming schemes for multi-cell

systems. But none of them has considered actual running time of their algorithm (in “wall-

clock” time), which is the ultimate benchmark in practice. In particular, many algorithms

in the literature (see, e.g., [162, 163, 164, 165]) are based on an iterative optimization (each

iteration includes an optimization problem to solve). These designs cannot be applied to
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practical cellular systems due to their poor real-time performance. In addition, prior works

did not jointly optimize the RB allocation, MCS assignment and beamforming matrices for

a multi-cell system as we did in this chapter. For instance, the designs in [162, 163, 164,

165, 166] developed cooperative scheduling or beamforming schemes for multi-cells without

the consideration of RB allocation or MCS assignment. In [167], RB allocation was not

considered in their models, and MCS selection was not considered in [168, 169].

Single-cell Schedulers In the literature, there have been active research works on the

design of 5G schedulers for a single cell [95, 119, 131, 138]. These designs can offer (real-time

or non-real-time) scheduling solutions at a traditional BS (serving a single cell). However,

none of them can take advantage of the potential cooperation in C-RAN, such as joint

transmission by multiple cells.

GPU-based Real-time Designs Applying GPU to solve complex optimization problems

is not new. Indeed, recent years have witnessed a number of successful research works that

leveraged GPU’s large-scale parallel computation capability (see, e.g., [95, 119, 120, 146]).

For example, the authors in [95, 119] designed real-time schedulers for a single cell based on

GPU platform. In [146], the authors employ GPU to accelerate LDPC decoding. The work

in [120] studied a MIMO detection problem based on a parallel design. Our GPU-based

design and implementation are inspired by these prior arts. However, the problem that we

studied in this chapter is new and has never been studied in these previous efforts.

6.8 Chapter Summary

This chapter presents M3—the first real-time scheduler for a multi-cell MIMO system under

C-RAN architecture. M3 jointly optimizes RB allocation, MCS assignment, and beamform-

ing matrices for all users under all RRHs and is able to offer a solution within 1 ms. To
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address the stringent real-time requirement, we developed a novel multi-pipeline design that

exploits large-scale parallelism. For validation, we implemented M3 on a COTS Nvidia

DGX Station. Through extensive experiments, we showed that M3 can find a scheduling

solution within 1 ms for all tested cases, while it can significantly increase user throughput

by leveraging joint transmission among neighboring cells.



Chapter 7

Summary and Future Work

7.1 Summary

In this dissertation, we studied many-antenna MIMO techniques from a networking per-

spective. As new knowledge and understanding of many-antenna MIMO at the PHY layer

begin to emerge, there is a critical need to explore many fundamental problems in terms

of throughput, latency, reliability, among others. The objective of this dissertation is to

address the many-antenna MIMO networking research in two critical areas: (i) DoF-based

modeling and (ii) real-time optimization.

This dissertation consists of two parts. In the first part (Chapters 2 and 3), we studied

DoF-based modeling for MIMO networks and developed a new general model for DoF-based

interference cancellation under general channel rank conditions. Based on our new DoF

model, we explored how to efficiently allocate DoFs to improve network throughput. We

summarize the main contributions and findings of this part as follows.

• In Chapter 2, we developed novel DoF models and theories under general channel rank

conditions, with the rank of a MIMO channel given a priori. We showed that the

existing works claiming unilateral DoF consumption is optimal no longer hold when

channel rank is deficient (not full). We found that for IC, shared DoF consumption

at both Tx and Rx nodes is the most efficient for DoF allocation. Further, we showed

235
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that DoF consumption under the existing full-rank assumption is a special case of

our generalized DoF model. Based on this theory, we explored DoF allocation in a

general multi-link MIMO network by formulating a set of constraints to characterize a

feasible DoF scheduling. Through extensive case studies, we showed that the general

IC model can achieve larger feasible DoF regions or improved objective values than

existing unilateral IC models.

• In Chapter 3, we studied how to set channel ranks and exploited efficient DoF uti-

lization. We observed that, in addition to the fact that channel is not full-rank, the

strength of signals on different directions in the eigenspace is extremely uneven. This

offers a much more general approach to define rank-deficiency, comparing to deficiency

being defined in a strictly zero-signal sense. We introduced a novel concept called “ef-

fective rank threshold.” Based on this threshold, we proposed efficient DoF utilization

on an interference link. Specifically, DoFs are consumed only to cancel strong inter-

ferences in the eigenspace while weak interferences are treated as noise in throughput

calculation. To better understand the benefits of this approach, we studied the funda-

mental trade-off between network throughput and the effective rank threshold for an

MU-MIMO network. Our simulation results showed that network throughput under

the optimal rank threshold is significantly higher than that under existing DoF IC

models.

In the second part (Chapters 4, 5 and 6), we offered real-time designs and implemen-

tations to solve many-antenna MIMO problems for 5G cellular systems. We studied three

critical MIMO problems for 5G—hybrid beamforming, MU-MIMO scheduling, and joint

transmission under C-RAN architecture. All our solutions offered in this part were validated

on COTS GPU and examined by wall-clock time. A brief summary of these three chapters

is given below:
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• In Chapter 4, we studied the beamforming problem under the HB architecture. The

objective was to offer a beamforming solution in real-time (sub-ms) with desired

throughput performance. To address this problem, we presented Turbo-HB, an ultra-

fast beamforming design under HB architecture. To reduce the computation time,

we developed low-complexity SVD by exploiting the randomized SVD technique and

leveraging channel sparsity at mmWave frequencies. Further, we developed fully func-

tioning parallelism for Turbo-HB, with optimized matrix operations and minimized

memory accesses. We validated Turbo-HB by implementing it on a COTS Nvidia

GPU. Extensive experiments were performed to examine both the timing performance

and throughput performance. Our experimental results showed that Turbo-HB is able

to find beamforming matrices successfully in ∼500 µs. Turbo-HB also offers competi-

tive or higher throughput performance compared with state-of-the-art algorithms.

• In Chapter 5, we investigated a scheduling problem in 5G MU-MIMO system. The

scheduler needs to determine RB allocation, number of data streams and MCS assign-

ment for each user in each TTI. The real-time requirement for determining a scheduling

solution is at most 1 ms. To address this challenge, we presented mCore+—the first

5G MU-MIMO scheduler that achieves 500-µs scheduling. To accelerate computation,

mCore+ consists of a multi-phase optimization, leveraging large-scale parallel compu-

tation. In each phase, mCore+ either decomposes the optimization problem into a

number of independent sub-problems, or reduces the search space into a smaller but

most promising subspace, or both. We implemented mCore+ on a COTS GPU plat-

form. Experimental results showed that mCore+ can obtain a scheduling solution in

∼500 µs. At the same time, mCore+ is able to offer a better or comparable throughput

performance compared with other state-of-the-art algorithms.

• In Chapter 6, we studied the scheduling problem for a multi-cell MIMO system un-
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der C-RAN architecture. Our objective was to jointly optimize RB allocation, MCS

assignment, and beamforming matrices for all users under all RRHs so that the PF

objective is maximized. In addition, we aimed to find a scheduling solution within

each TTI (i.e., at most 1 ms) to conform to the frame structure defined by 5G NR.

We proposed M3—a novel multi-pipeline design that exploits large-scale parallelism.

Under M3, one pipeline performs a sequence of operations for cell-edge users to explore

joint transmission, and in parallel, the other pipeline is for cell-center users to explore

MU-MIMO transmission. We implemented M3 on a COTS GPU. Experimental results

showed that M3 is capable of offering a scheduling solution within 1 ms for a C-RAN

system. Meanwhile, M3 offers ∼40% throughput gain on average by employing joint

transmission among multiple cells.

7.2 Future Work

MIMO technology remains to be the core of modern wireless communications and continues

to evolve at a fast pace. Our work in this dissertation advances many-antenna MIMO

techniques for networking research. Research in this area is still limited and there are

many open problems that need to be explored. We outline some open problems from this

dissertation as follows.

• Open problems from Chapter 3 (efficient DoF utilization). In Chapter 3,

we introduced the concept of “effective rank threshold”. Based on this concept, we

proposed efficient DoF utilization on an interference link, aiming at conserving DoF

and maximizing throughput. One limitation of the proposed approach in Chapter 3

is that we only focused on using conserved DoFs for SM (i.e., supporting more data

streams), but did not consider to DoFs for diversity. That is, we did not explore the
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SM-diversity trade-off in this chapter. We expect there exists an optimal trade-off on

SM-diversity beyond IC based on effective channel rank. Given that DoFs can also be

used for diversity (instead of SM) to increase throughput, a future research direction is

how to allocate DoFs for diversity, in addition to SM and IC. The intricate dependency

of these variables (effective rank setting, DoF allocation for diversity, SM, and IC) and

their unique impacts on throughput make the overall problem both challenging and

intriguing.

• Open problems from Chapter 4 (ultra-fast hybrid beamforming). Our work

in Chapter 4 is the first effort that achieves real-time beamforming with high through-

put performance under the hybrid architecture. Some open problems are listed as fol-

lows. First, our study focused on digital beamforming with given analog beamforming.

But in some applications, such as tracing fast-moving mobile devices, analog beam-

forming also has a very stringent timing requirement. Therefore, a real-time solution

of analog beamforming (or joint analog and digital beamforming) for these applica-

tions deserves future research. Second, designing a beamforming scheme with limited

feedback/CSI is an important issue. Due to a large number of antennas for mmWave

systems, the estimation and feedback of the full channel require a prohibitively large

amount of CSI that is difficult to obtain in practice. The consideration of limited CSI

can help with a more accurate modeling and a more robust solution. As expected, it

will also add more complexity to the beamforming design. How to design a real-time

beamforming solution with limited CSI remains an open problem.

• Open problems from Chapters 5 and 6 (real-time 5G schedulers). The

results in Chapters 5 and 6 offered real-time schedulers for 5G systems, with a focus

on scheduling RB resources, MCS, and MIMO users. Although beamforming matrices

are calculated and applied at BSs and users, we employed simple linear beamforming
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techniques, such as ZF and MMSE. There are opportunities to improve the throughput

performance by employing a more advanced beamforming technique. For example,

the weighted minimum mean square error (WMMSE) algorithm [101, 162] can offer

near-optimal beamforming solutions to a weighted sum-rate maximization problem.

However, WMMSE algorithm is a non-linear beamforming scheme based on iterative

optimization, which is very challenging to be implemented in real-time. How to offer a

near-optimal beamforming solution (in terms of maximizing throughput) and address

its real-time challenge remains an open problem.
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