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Abstract 

 

The early diagnosis of CP (Cerebral Palsy) in infants is important for developing 

meaningful interventions. One of the major symptoms of the CP is lack of the 

coordinated movements of a baby. The bilateral coordinated movement (BCM) is that a 

baby shows in the early development stage. Each limb movement shows various 

ranges of speed and angle with fluency in a normal infant. When a baby has CP the 

movements are cramped and more synchronized. 

 

A quantitative method is needed to diagnose the BCM. Data is collected from 3-

axis accelerometers, which are connected, to each limb of the baby. Signal processing 

the collected data using short time Fourier transforms, along with the formation of time-

dependent transfer functions and the coherence property is the key to the diagnostic 

approach. Combinations of each limb’s movement and their relationship can represent 

the correlated movement. Data collected from a normal baby is used to develop the 

technique for identifying the fidgety movement. Time histories and the resulting 

diagnostic tool are presented to show the regions of the described movement. The 

evaluation of the transduction approach and the analysis is discussed in detail. 

 

The application of the quantitative tool for the early diagnosis of CP offers 

clinicians the opportunity to provide interventions that may reduce the debilitating impact 

this condition has on children. Tools such as this can also be used to assess motor 

development in infants and lead to the identification and early intervention for other 

conditions. 
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Index term- Accelerometer, fidgety movement, cerebral palsy diagnostic 

symptoms, coherence, short time Fourier transform, weighted average of window 

function. 
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1 Introduction 

1.1 Background to problem 

 

Cerebral Palsy (CP) is a neurological disorder caused by a non-progressive brain 

injury or malformation that occurs while a child’s brain is developing. [1]The main 

symptom is the difficulty of body movement and muscle coordination. There are a 

couple of methods which can diagnose CP. If CP can be diagnosed earlier than the 

current techniques allowed, there is some evidence that early intervention may improve 

the long-term outcomes. This research focuses on the method to detect one of the 

symptoms of CP, the lack of general movements (GM) of the baby. 

 

CP mainly affects the body movement. Most of the patients experience difficulty 

in walking, involuntary movement, muscle rigidity and problems with coordination [2].CP 

is caused by brain injury before, during or after the birth of a baby, so the early detection 

of these symptoms are main keys for better care and treatment. In Chapter 2, detailed 

benefits of early detection and intervention will be discussed. This research can provide 

an early detection method of CP.  

 

One of the major symptoms of CP is developmental delay [1]. There is a growth 

chart for developmental evaluation in table 2.2 [3]. For example, at three to four months, 

a baby can reach for toys. This chart can be used as a diagnostic tool as well as provide 

milestones for slow starters who will ‘catch up.’ However, CP diagnoses takes time. 

There are several processes to diagnose CP. The baby can be diagnosed soon after 

birth, but for the majority of cases, diagnosis can be made in the first two years [1]. The 

average age of diagnosis for a child with CP is 18 months. If the early diagnosis is 

possible, early intervention can support the child who will ‘catch up’ to the normal 

development phase earlier. Also early detection can help to find the benefits to offset 

the cost of raising a child with cerebral palsy. This new method which uses the BCM 

makes it possible to engage early intervention. 
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The financial aspect of CP was studied in ““Economic Costs Associated with 

Mental Retardation, Cerebral Palsy, Hearing Loss, and Vision Impairment – United 

States, 2003.” [4]Because CP needs continuous medical care, treatment and social 

support during lifetime, the expenses of the family is one of the serious issues. Here is 

the expense data for a person lifetime. [4] 

Of the $921,000 estimated per person expense of cerebral palsy: 

 

Indirect costs – 80.6%, or approximately $742,326. 

Direct medical costs – 10.2%, or $93,942. 

Direct non-medical costs – 9.2%, or $84,732. 

 

This cost increases when the patient has severe symptoms and dependency to 

maintain a quality of life. Therefore, a family needs financial support. According to the 

same study in 2003, the national expense for the CP was a total of up to $11.5 billion. If 

doctors can provide an early intervention and the patient can have a highly independent 

life, the expense will decrease. This is the reason why early detection is necessary for a 

family experiencing CP. [4] 

 

1.2 Background to signal processing approach 

 

There are two ways to detect CP: brain scanning and expert observation. 

Because CP is caused by brain injury, CP can be diagnosed by brain scanning such as 

CT scans and MRIs [1] .Also a trained expert can observe the lack of GMs of a baby 

and diagnose CP, and other related diseases caused by brain damage. However, this 

training takes time and there are fewer experts than are needed. In addition, this 

method is less accurate than brain scanning because of the potential for human error. 

There are a couple of existing methods that studied CP diagnosis based on the GMs: 

Prechtl’s assessment [5]and computer-based video analysis (CBV) [6] 
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GMs are a part of the spontaneous movements until the baby is 6 months old. [5] 

GMs involve the whole body in a variable sequence of arm, leg, neck and trunk 

movement. [5]Prechtl defined abnormal GM as an indication of CP as following; “Two 

specific abnormal GM patterns reliably predict later cerebral palsy: 1) a persistent 

pattern of cramped-synchronized GMs. The movements appear rigid and lack the 

normal smooth and fluent character. Limb and trunk muscles contract and relax almost 

simultaneously. 2) The absence of GMs of fidgety character. So-called fidgety 

movements are small movements of moderate speed with variable acceleration of neck, 

trunk, and limbs in all directions. Normally, they are the predominant movement pattern 

in an awake infant at 3 to 5 months.” Trained experts can observe these movements 

and can diagnose brain damage from lack of GMs, specifically fidgety movement. In this 

research, it is hypothesized the relationship between limbs will be coordinated on xyz 

axis and can specify the GM by signal processing. 

 

Figure 1.1 explains the GM classification according to the infant age by Prechtl 

[5]. As shown below, following the growth of the infant after birth, the infant shows the 

featured movements, General Movement., right after birth. From birth to week 5, an 

infant should show writhing movement. From 5 weeks to 20 weeks after birth, in normal 

development, the infant shows so called ‘Fidgety movement’ which demonstrates 

smooth and various rotation of each limb of the infant. Finally, after this period, the 

infant can control the limbs intentionally and move against gravity. Figure 1.2 shows 

how the deficient quality of these GMs relates to the outcome especially to the brain 

damaged syndromes like CP. Though the entire prognosis from deficient GMs quality 

was not directly connected to the CP, it is highly related to the motor disorder 

symptoms. 
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Figure 1.1 General movement development 

 

Figure 1.2 Relationship between abnormal GMs and its outcome 

 

Prechtl’s assessment of GM showed the high relationship between the lack of the 

Fidgety movement and CP. The researchers recorded the quality of the GMs in different 

ages of infants. In addition, they tracked the history of CP symptoms if a baby showed 

poor GM. Therefore, they could predict the later development of CP at a much earlier 

age than previously possible. In addition, the qualitative assessment of GMs could be 

possible without brain scanning at earlier age. 
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The CBV method compared the movement patterns between healthy babies and 

the babies with CP symptoms. They converted the recorded video of body movement of 

the babies into pixels from each frame of the video and compared the pixel area 

qualitatively and quantitatively. However, there is still low prediction rate (19.7%) to 

predict a future CP patient [5]. These two approaches to diagnose CP from lack of 

fidgety movement will be discussed in detail in chapter 2. 

 

 Therefore, the lack of fidgety movement is the main key to detect CP without 

brain scanning methods. The fidgety movement depends on the baby's limb movements 

which should demonstrate variety in speed and rotation. Therefore, we had an idea that 

the attachment of accelerometers to each of the infants’ limbs would capture the 

movement of infants. 

 

1.3  Problem statement 

 

The purpose of the thesis is to develop and validate a signal processing 

technique that can be used to track the coordinated motion in developing post term 

infants. It has been suggested that tracking this development process may provide a 

quantitative assessment of infant coordinated movement development leading to a 

possible early diagnosis of brain damage associated with CP. 

 

The goals of this paper are to find an appropriate signal processing method to 

evaluate the correlated movement of the baby automatically through these following 

points: 

 

 -Relationship between GMs and CP diagnosis 

-Diagnostic methods and coordinated for movements of the infant 

-Difference between stationary and non-stationary data in terms of signal 

processing  
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 -Classical analytic methods for stationary (time invariant) data 

 -Time-frequency analysis for non-stationary data  

 -Coherence analysis in terms of time-frequency method 

-Time-frequency coherence analysis of generated correlated data 

-Time-frequency coherence analysis of acquired data of coordinate movements 

from accelerometers 

 -Time-frequency coherence analysis of acquired data from the infant 

-Future opportunity 

 

It is known that healthy baby’s movements become more coordinated gradually 

as the baby grows. Before 6 months, this coordinated movement is typically not 

exhibited. FM at this stage is less correlated, or less coordinated among the limbs. 

 

 The signal processing method to evaluate the coordinated movement is 

generated from a computer based program and applied this method to the sample 

signals which are collected from accelerometer. Finally, this method was compared and 

validated to real data collected from the infant.  

 

 The novel method to assess fidgety movement automatically without trained 

experts and it showed highly reliable result by literature review. [7] This method can be 

expanded to the other diseases related to the motor disturbance. In addition, there is a 

possibility that accelerometers can be replaced with wearable smart devices which 

include accelerometers and gyroscopes. 

   

In the treatment of CP, there is need for early detection and an affordable 

diagnostic tool. One of the major symptoms of CP is lack of general movements in the 

early development of baby. This movement signals can be acquired by accelerometers 

and analyzed by signal processing. We expect this new method can assess correlated 

movements of GMs and help to detect CP in early phase. 

 



 

7 
 

1.4   Organization of the thesis 

 

This thesis is organized by the following 5 chapters.  

 

Chapter 1:  

Introduces the definition of the CP and the background of the need for early 

detection and early intervention of CP. The diagnostic methods and the main idea 

where this research originated are introduced. The GM categorize the development of 

the normal baby and lack of the fidgety movement indicates the high possibility of CP 

syndrome. Overall, chapter 1 introduces the background to understand the goals and 

principles findings of this thesis. 

 

Chapter 2 : 

Explains more details of the causes and the symptoms of CP. Bilateral 

coordinated movement, which demonstrates the correlated movement between limbs is 

discussed, and the related research which explains the relationship of the lack of the 

coordinated movement and CP is introduced. Other signal processing approaches to 

detect CP automatically in early phase are discussed and compared to the time 

frequency method. Chapter 2 provides the literature review which defines the symptoms 

of CP, signal processing techniques and backgrounds. 

 

Chapter 3 :  

Examines and discusses the mathematical theory of the research. Auto spectrum 

and cross spectrum with regard to the time-frequency analysis are defined. The 

correlated motion and the signal that came from the motion can be quantified by 

coherence analysis. The researcher generated data from Matlab and verified the idea of 

coherence with respect to expected time-frequency method. Chapter 3 explains the 

principle theory of signal processing for generated correlated signal from a computer 

based program, Matlab. 

 

Chapter 4 :  
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Applies the signal processing technique verified in chapter 3 to the real data 

collected from accelerometers. The hardware system to acquire the signals is 

introduced and examined in this chapter. The correlated movement simulating the 

baby’s limb movement was generated in a different perspective. The result based on 

these signal data is presented and discussed. From this result, the researcher can 

define the correlated movement between limbs. Chapter 4 applies the new signal 

processing method to the real data from accelerometers and compares the result to the 

expected result. 

 

Chapter 5 :  

Discusses the results from chapter 4 to the CP diagnosis and showed the possibility 

of applying this signal processing technique to the other diseases which have motor 

disturbance symptoms. Also, hardware improvement suggestions are listed with an 

explanation of how this finding can be beneficial to the CP diagnoses. Chapter 5 

summarizes results and discusses the future possibilities of the findings. 

 

2 Literature Review 

 

Cerebral Palsy (CP) is a syndrome described by loss or impairment of motor 

function which is caused by brain damage. The brain damage is caused by brain injury 

or abnormal development of the brain that occurs while a child’s brain is still developing 

before birth, during birth, or immediately after birth. Cerebral palsy affects body 

movement, muscle control, muscle coordination, muscle tone, reflex, posture and 

balance. It can also influence fine motor skills, gross motor skills and oral motor 

functioning [1]. According to the current data for cerebral palsy, 1 out of 250 [1] newborn 

infants have CP [1]. 

2.1  Cerebral Palsy (CP) 
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CP is not a disease but it is a syndrome which is caused by brain damage at any 

birth stage. This brain injury can happen in the developing fetus, as well as during and 

after the birth. The Table 2.1 explains the main causes of the brain damage which can 

cause CP. These causes can include a bleeding in the developing brain and deficiency 

of oxygen. [8] 

 

Table 2.1 The main causes of CP 

Phase of development Causes 

Before the birth prenatal disinfection(especially first 

3months), radiation treatment, drug 

addiction, placenta disorder, umbilical 

cord disorder, and anoxi during 

pregnancy 

During the birth premature baby, respiratory obstruction, 

and amniotic fluid infection  

After the birth head injury, infection(encephalitis, 

meningitis) and brain tumor 

  

For the case of CP, the brain damage itself will not be expanded to the other part 

of the brain or worsen after it happened, but the symptoms will be changed with the 

growth of the infant. The perfect medical treatment of CP does not exist, but there are 

many treatments which can help patients to live independently with a quality of life. The 

infant with CP can get support by the following development chart in Table 2.2 [9] which 

indicates the cognition and motion control tasks at each stage after birth. The research 

shows promise of better life quality with the earlier treatment. [9] Therefore, the early 

diagnose of CP is the necessary task to initiate the early intervention. 
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2.2  Diagnosis techniques 

 

The early engagement for the treatment of CP can help patients to have less 

complications and promise better life quality in the future. To attain early intervention 

and diagnosis of CP, it is necessary to perform the physical examinations: brain 

CT(computerized tomography), brain MRIs(magnetic resonance imaging), EPS(evoke 

potential study) and electroencephalography. Also, a detailed medical history of the 

infant can provide information related to brain damage. 

 

CP is rerely correctly diagnosed in infants younger than 12 months old because 

these examination devices cannot be correctly used for infants. “For all the benefits of 

early diagnosis, delayed diagnosis does occur – predominantly because the disorder is 

difficult to diagnose and doctors worry about the impact on parents. Receiving a 

diagnosis of cerebral palsy can be devastating, and doctors fear parents may withdraw 

and further hamper the child’s development.” [10] However, the signs of development 

like crawling, standing when supported and pointing to things can be a milestone, as 

described in Table 2.2. If these expected signs are not observed, the infant has trouble 

controlling all of their limbs, or a lack of vitality, parents are recommended to see a 

doctor. Also severe jaundice of the newborn, as well as an abnormal history of birth and 

early birth can be signs of risk to CP.  

 

An infant with CP may have some delays in development. For example, there are 

some signature movements the infant is supposed to show in normal developmental 

phases: controlling head (3months), sitting independently (6 months), crawling (8 months), 

standing holding object (8 to 12 months), and walking independently (12-17 months). [3] 

Most of babies with CP have delayed motion controls in each phase in the development 

chart. 
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Table 2.2 Development Milestone of 1yr old baby in movement, physical development 
and cognition [3] 

Movement and  

physical development  

Cognitive  

Gets to a sitting position without help 

Pulls up to stand, walks holding on to 

furniture (“cruising”) 

May take a few steps without holding on 

May stand alone  

Explores things in different ways, like 

shaking, banging, throwing 

Finds hidden things easily 

Looks at the right picture or thing when 

it’s named 

Copies gestures 

Starts to use things correctly; for 

example, drinks from a cup, brushes 

hair 

Bangs two things together 

Puts things in a container, takes things 

out of a container 

Lets things go without help 

Pokes with index (pointer) finger 

Follows simple directions like “pick up 

the toy” 

 

Also, when the infant with CP can walk independently, standing and running 

posture are observed under the effects of abnormal coordination. Pediatricians can 

confirm CP under these symptoms with the help of technical examinations: brain scanning, 

MRIs, CT, neurological examination and blood testing. Other than abnormal gestures due 

to the neurological disorders, the infant with CP can experience accompanied symptoms 

like intelligence disorder, epileptic seizure, visual impairment and other symptoms.  

However, the most obvious symptom of CP is motor disturbance. 

 

From Prechtl’s paper [5], motor disturbance also affects the infant by showing 

deficient Fidgety movements which is the one of the stages in the General Movement 
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(GM). “General movements are part of the spontaneous movement repertoire and are 

present from early fetal life onwards until the end of the first half a year of life.  GMs are 

complex, occur frequently, and last long enough to be observed properly. The limbs are 

wax and wane in intensity, force and speed, and they have gradual beginning and end. 

Rotations along the axis of the limbs slight changes in the direction of movements make 

them fluent and elegant and create the impression of complexity and variability. If the 

nervous system is impaired, GM loses their complex and variable character and become 

monotonous and poor.” [5] 

 

By Prechtl, 2002, [5] there are multi- stages in GM. “from the many distinct 

movement patterns appearing during the course of development from fetus to young 

infant. (Figure 1.1), at 6 to 9 weeks’ post-term age, are called writhing movement [Hopkins 

and Prechtl, 1984].” [10] “Writhing movements are characterized by small to moderate 

amplitude and by slow to moderate speed. Typically they are elliptical in form.” [5] 

 

  “At 6 to 9 weeks’ post-term age, GMs with a writhing character gradually disappear 

and whereas fidgety GMs gradually emerge” [10, 5]. Fidgety movements are present up 

to the end of the first half a year of life when intentional and anti-gravity movements start 

to dominate. “Fidgety movements are of small amplitude, moderate speed, and variable 

acceleration of neck, trunk, and limbs in all directions continually in the awake infant 

except during fussing and crying. The quality of GMs is probably modulated by 

corticospinal and reticulospinal pathways and, hence can be affected by impairments of 

these structures. Therefore, if there is under damage related to brain and neurological 

system, GMs will be also affected.” By Prechtl’s [5], “If fidgety movement are never 

observed from 9 to 20 weeks post-term, we call this abnormality “absence of fidgety 

movement”, The absence of fidgety movements is highly predictive for later neurological 

impairment: particularly for CP” [10] [5] figure 2.1 represent how absence and abnormality 

of GMs can be related to CP and other mild neurological deficits. 

 

Under the circumstances we discussed, the early diagnosis of CP is the one of the 

most important keys to start early intervention. The analysis of GMs can provide the 
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earlier clinical practice guidelines (CPGs). This method is a more economical diagnostic 

tool compared to the other brain scanning diagnostic methods. Currently, the average CP 

diagnosis with brain scanning techniques takes up to 18 months [1]. However, in figure 

1.2, critically, the absence of FM can predict future CP for infants younger than 6 months. 

2.3  Signal processing approaches  

 

“Qualitative assessment of GMs is totally non-intrusive, easily learned, and cost-

effective”. [5] Also the quality of FM can be judged by trained experts within only 5-10 

minutes [5].This GMs assessment skill can be obtained by training. “There a standardized 

basic and advanced training courses, lasting 4 to 5 days are provided by the General 

Movements Trust” [11] In 2015,  we have many experts who completed the training for 

GMs assessment. However, compared to the occurrence of CP as 1 out of 250 newborn 

babies in United States, we need more objective assessment method than the current 

subjective method for GM. Gestalt perception, which is the guideline for GMs assessment, 

still relies on the observer’s subjective decision. There is a high risk regarding consistency 

due to the prejudice of the observers. For better quality of the diagnosis for CP, we need 

an unbiased and objective GMs assessment method.    

 

There are a couple of approaches to evaluate FM automatically as anon-subjective 

method. For example, there are two research studies, one of which dealt with video 

assessment and the other used accelerometers. [12] [13]. These two approaches 

attempted to quantify the quality of FM. 

 

The first study title is ‘Using computer-based video analysis in the study of fidgety 

movement’. The research showed the video assessment to detect FM patterns to relate 

the patterns for CP. The general movement toolbox (GMT) is a quantitative tool which 

originally came from music gesture toolbox (MGT). MGT is a tool for calculation and 

filtering of motion images of the recorded moving object in the camera. (Figure 2.1). The 

researchers advanced this MGT to GMT to find a pattern in absence of FMs. The 

researcher could extract motiongram, which describes movement comparison results 
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frame by frame. After this procedure, the researchers set a regression model, and 

assessed FMs quantitatively. Consequently, the absence of FMs showed low mean 

quantitative value and higher variability of the centroid motion in the motiongram. 2 out of 

82 babies under this study were referred to the pediatric clinic because the absence of 

FMs was recorded. After 2 years of follow-up studies, these two babies had neurological 

issues. However, only 2 subjects for the statistical research had limitations and there is 

difficulty to find and to get enough statistical data due to the limited subjects with CP.  

 

Figure 2.1 GMT captured and calculated image 

 

Table 2.3 Between-group differences between present and absent FMs in variables 
derived from the GMT. 

 

Present 

FMs (110) 

Absent FMs 

(27) 

Between-group differences 

 

Mean (SE) Mean (SE) p-value 95% CI 

Qmean(%) 2.95 (0.15) 1.79 (0.17) < .001 (0.71, 1.62) 

Qmax(%) 32.70 (1.87) 29.04 (2.70) .269 (− 2.92, 10.24) 
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QSD(%) 3.20 (0.13) 2.41 (0.17) < .001 (0.37, 1.22) 

Cxmean 4.65 (0.06) 4.49 (0.15) .328 (− 0.17, 0.50) 

Cymean 4.31 (0.06) 4.01 (0.17) .107 (− 0.69, 6.73) 

CSD 2.17 (0.05) 2.82 (0.10) < .001 (− 0.09, − 0.04) 

VSD 6.35 (0.18) 8.29 (0.42) < .001 (− 2.86, − 1.01) 

ASD 1.03 (0.03) 1.35 (0.07) < .001 (− 0.48, − 0.17) 

Qmean = quantity of motion mean; Qmax = quantity of motion maximum; QSD = quantity of 

motion standard deviation; Cxmean = centroid of motion in x-direction mean; Cymean = 

centroid of motion in y-direction mean;CSD = centroid of motion standard deviation; VSD = 

velocity standard deviation; ASD = acceleration standard deviation. 

 

The next research [13] is used for the statistical analysis for FMs. The researcher 

used 6 sensors: 4 limbs, and head and torso of the subject. Each sensor can provide a 

placement information as xyz coordinate. Based on the signals coming from these 

sensors, the absence of GMs appeared as monotonous signal with a lack of variation. 

Therefore, it showed a more periodic appearance. The researcher quantified the FM 

patterns with different parameters with autoregressive and moving average model 

(ARMA). Figure 2.2 and Figure 2.3 represent the analytic methods used to quantify the 

FMs. The signals came from both normal and abnormal babies at 25Hz sampling 

frequency. Varying window size K, the study differentiated the area the signal value from 

the moving average value from normal and abnormal cases. The other statistical methods 

were applied with standard deviation Figure 2.3. The second method used the original 

approach of Moving Average (MA), but it also considered areas off from the standard 

deviation. Finally, the researcher used severability statistically to find the FM features. 

The distance between the signal and the MA and its occurrence was considered as an 

important parameter. The statistical method needs parameters which can comprehend 

FMs. Thus, the author changed those parameters to get the optimal classification result. 
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At the optimal settings of parameters, he got 90% specificity and 86% sensitivity in studies 

of 81 subjects to find absence of FMs. The researcher showed statistical methods to 

classify FM with sensors and left the result open to future research about clinical 

applications. 

 

Figure 2.2 The comparison signal which represent normal to abnormal GM using MA. 



 

17 
 

 

 

Figure 2.3 The comparison signal which represent normal to abnormal GM using MA 
with standard deviation. 

 

In this research, it was assumed that the symmetric motor disturbance so called 

bilateral movements would be gradually changed according to the brain development. It 
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means that the limbs will move in correlation with each other. Most of the babies with CP 

have trouble controlling the limbs relatively. Therefore, the researcher expected that the 

bilateral coordination would be continuously changing during the FM stage. And in the 

study of “Efficacy of Constraint-Induced Movement Therapy for Children With Cerebral 

Palsy With Asymmetric Motor Impairment. Edward Taub, Sharon Landesman Ramey, 

Stephanie DeLuca, Karen Echols”, [7] the researcher studied about constrained induced 

(CI) movement therapy. The main point of the paper is that how CI can affect infant with 

CP according to their ages. It was shown that the early intervention affects their future 

quality of life and independency. In the paper, the researcher said “impaired hand function 

is a major disability in children with hemiplegic cerebral palsy (CP). As a result, children 

with hemiplegic CP often fail to use the involved upper extremity and learn to perform 

most tasks exclusively with their noninvolved upper extremity (ie, developmental disuse).” 

Therefore, they lack controllability of symmetric correlated movement, so called bilateral 

coordinate movement can imply high possibility of brain damage. 

 

 2.4  Time frequency response analysis 

 

 In this research, FM was assumed as the correlated changes in brain development. 

The FMs represent gradual movement with various speeds and different angles. If the 

uncorrelated movement disappears with growth, the brain and the nervous system are 

attaining functionalities to control the limbs. The discrimination of FM will be presented 

by using a frequency response (FR) approach with moving average (MA). Because FM 

does not occur constantly over time (non-stationary), the limbs’ correlated movement 

with respect to time change is influenced. The signal processing in the time frequency 

method will be discussed in detail in the next chapter to evaluate signal’s characteristic 

according to the time changes. 
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3    Theory 

 

 As introduced above, the characteristics of FMs and brain development in the 

neurological system is highly related to the spontaneous limbs’ movement of the infants. 

Also in the statistical ARMA model in the literature review, the torso and the neck 

sensor does not affect recognitions of the GMs. Therefore, it is safe to say that the 

coordinated motions are highly related to the brain development without consideration 

of neck and torso movement. The relationship label between the limbs can be 

represented as correlation in time domain, or coherence in frequency domain. Both time 

domain and frequency domain with the moving average of time will be considered. This 

research assumed that the high coherence would represent the limbs’ coordinated 

movements of the infants. Before applying the signal processing method to the data 

acquired from the infant, the generated signals which the characteristics of the signal is 

already known will be analyzed as time- frequency method to the generated signals. 

 

3.1  Frequency domain and time domain 

 

In the signal-processing point of view, the signal is presented in the time domain or 

frequency domain. The signal in time domain shows the changes in respect of time, 

also the signal in frequency domain shows the signal’s amplitude with respect of the 

frequency. In other words, the frequency domain shows the characteristics of the signal 

in frequency point of view. These two different domains can be transferred by using 

Fourier transform (FT), and the transfer equations is shown underneath. [Equations 3.1] 

and  [Equations 3.2] are the classical Fourier transform pair. Continuous representation 

is bounded by  ± ∞, therefore it requires the signal to be bounded. It cannot be applied 

to the real data. Transitioning to discrete sampled data requires the additional 

assumption of periodicity. 

 

Continuous-continuous FT 
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2( ) ( ) j ftX f x t e dt







   ( 3.1 ) 

 
2( ) ( ) j ftx t X f e dt





   ( 3.2 ) 

  

 When acquiring a signal, one of the most important features the researcher 

should care about is the difference between the continuous and discrete (or digital) 

feature. For collecting data from a digital device, even those with the most advanced 

and the highest sampling frequency, the data must be discrete. In other words, real data 

is always discrete. Only in the ideal case, the continuous data can be acquired from the 

sample with sampling frequency as infinity.  Therefore, in the real data, the Fourier 

transform in the discrete time and discrete frequency will be applied. This transfer 

equation is shown underneath. The transform is called as fast Fourier transform (FFT) 

or discrete Fourier transform (DFT). In the paper, all transforms used FFT to find the 

frequency characteristic of the data. 

 

Discrete-discrete FT 
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For example, sinusoidal signal with frequency as f0=1Hz was generated, y =

sin (2πt). The generated signal has the sampling frequency fs = 50Hz. By Shannon’s or 

Nyquist theorem, the sampling frequency should be larger than twice of the original 

signal’s frequency. Therefore, fs =50Hz can be considered as high enough for sampling 

frequency. Figure 3.1 represents the signal in the time domain and  in the frequency 
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domain. The frequency domain signals include the real part, imaginary part and 

modulus value of the signal.  

 

 

Figure 3.1 Sinusoidal signal of 1Hz in time domain and Fourier transformed response in 
frequency domain 

3.2  Stationary model analysis  

 

The relationship between the signals can be represented as correlation in time domain. 

In the time domain, if the input and output are the same, the correlation is called as 

auto-correlation. If the input and output signal are different, the correlation is called as 

cross correlation. The equations is shown below and it has   as time convolution,   

 

Auto correlation for continuous model,  

 
1

( ) { ( ) ( )} lim( ) ( ) ( )
2

T

T
xx

T

R E x t x t x t x t dt
T

  




     ( 3.5 ) 

 Auto correlation for discrete model, 
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Cross correlation for continuous and discrete 
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 Figure 3.2 shows the autocorrelations of white noise and sinusoidal wave @1Hz. Every 

signal shows highest correlated values at 𝜏 =0 sec in time domain in autocorrelation. In 

the same manner for the frequency domain, if the input and the output signals are the 

same, it is called as auto spectrum. If the input and the output are different, cross-

spectrum is used to see the relationship in the frequency domain. The auto spectrum 

and cross spectrum in frequency domain will be used in detail in the later part of this 

chapter. Because of the convolution, cross spectrum is not commutative. Therefore,  

xy yxG G .  

2( ) ( ), ( ) ( ) j ft

xx xx xx xxR t G f R t G f e df



                       ( 3.9 )
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Figure 3.2 Autocorrelations of a white noise and the 1Hz sinusoidal wave from the right 
signals 

 

 

3.5  Coherence estimation 

 

Coherence show the relativeness between two signals in frequency domain. An 

output signal came from an input was generated, and the output is the filter result from 

LPF in Figure 3.3. In the ideal case, it was assumed that the signal does not have noise. 

The output signal totally depends on the input before the cutoff frequency fc. This 

dependency can be quantified in the frequency domain by coherence analysis. There 

are two equations to get the coherence, but they are eventually the same.  

 

Coherence in frequency domain 
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Coherence is always bounded as 20 ( ) 1mF   , 2 ( )mF =1 means completely 

correlated and 2 ( )mF =0 means completely uncorrelated. However, in the finite real 

data in the discrete domain, the ‘averaging’ is needed to get the meaningful coherence 

by this equation of                         
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( 3.12). ( )X f  and ( )Y f  are the DFT forms of ( )x t and ( )y t  for entire time block 

accordingly.                      
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Total length of the data is L and the coherence result in the real discrete data are 

always unity because the numerator and denominator terms are the same in equation                         
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                     ( 3.12). Therefore, it is 

necessary to take an average to evaluate the relevant coherence. The coherence 

equation with averaging over k time block equations is indicated below                         
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*[ ( ) ( )]k kE X f Y f  is the average the components.  
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Figure 3.3 Two highly correlated signals, output signal is the filtered signal with 
Butterworth LPF @ 25Hz. 

 

Figure 3.4 Red: Input signal with white noise and 10Hz sinusoidal, Green: filtered input 
signal from 6th order LPF @ 25Hz 
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Figure 3.5 Coherence plot showing unity = 1 till 25Hz, which is the cut off frequency by 
6th order Butterworth filter. 

 

 In this paper, it is important how the infant’s limbs move related each other according to 

the time changes. With STFT, the coherence between two signals with respect to time 

and frequency can be attained. The coherence value will be calculated continuously 

along the time changes to see the limbs’ correlation in the later chapter. 

3.3  Frequency Response Function (FRF) Review 

 

Frequency response function, also called FRF, shows the relationship between two 

signals like the input signal and the output signal in the frequency domain.  

 

Convolution in time is output. A linear system can be defined by the convolution 

of the impulse response of the system with the input. Rather than performing the time 

domain convolution of the signal, it is significantly computationally easier to transform 

the input signal and output signal into the frequency domain where the relationship now 

becomes a multiplication problem. FRF is defined as [Equation 3.5] and the FRF 
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estimator H1 can be used also, by the assumption that we have no noise in the input 

signal. 

             

Continuous and discrete FRF equation  

                           ( ) ( ) ( ) ( ) ( ) ( )Y f H f X f y t h t x t d 
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Discrete-Discrete FRF equation  
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Figure 3.6 Top: blue is the white noise at standard deviation =1, red is filtered white 
noise fc= 25Hz. Bottom: FRF of Butterworth LPF at 25Hz 

 

The Figure 3.6 shows the FRF of the filtered signal from low pass filter (LPF). The 

generated white noise and the filtered through LPF for the entire time range were 

compared. Therefore, in the frequency range after fc=25Hz, FRF would be reduced 

because of the LPF. The green line shows the expected characteristics of the FRF.  

   

3.4  Time frequency review 

 

  

This FRF signal processing can be useful for the stationary data or a time 

invariant case, which means that the data for the entire time has a common 

characteristic like top plot of the Figure 3.9. In other words, for non-stationary data, some 

features of the signal only presents in a specific time section in the acquired signal like 

in the bottom plot of the Figure 3.9.  In the Figure 3.9, the top is the stationary sinusoidal 
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signal at f0=10Hz and the other is the non-stationary signal which has white noise 

component only until N=0 to N=211. After N= 211, it has the same sinusoidal wave with 

the stationary plot of f0 =10Hz. Both signals are sampled at 100Hz and number of 

sample is N=212=4096. The non-stationary data have the different signals before 

N=211=2048. Frequency changing functions of time. For FRF in entire time section, the 

white noise component placed first half of the signal will reduce the response at 10Hz 

compared to separated time section method. Therefore, it is required to separate the 

signal into two time sections and it will produce FRF between input and output 

according to the time changes. The FRF result of entire time section is shown in Figure 

3.12 and Figure 3.13.  

 

GMs will be observed in specific time section inconsistently. It is safe to assume 

that the GM has the characteristic of a non-stationary signal and GM will be changed 

according to the growth of the infant, so the frequency response analysis with respect to 

the different time sections is necessary to find the relationship of the limbs. This 

analysis is called time frequency analysis. 

 

Coherence demonstrates the correlated movements in frequency domain. 

However, the issue arisen from the classical method is that the coherence analysis can 

be useful in the stationary data only (the time invariant case). The infant does not show 

a constant or continuous movement. However, the infant moves only when she or he 

likes to move. Accordingly, the researchers need to analyze the response in certain time 

ranges when the infant shows significant movement. Therefore, the time frequency 

analysis technique can be helpful for a non-stationary signal. Figure 3.7 demonstrates 

the technique as flow chart and figure 3.5 shows the example of how the time-frequency 

method works. In figure 3.5, to simulate the real data acquired in chapter 4, the signal 

was assumed to be collected at fs=200Hz during 200secwith a sample length of 

N=40,000.  This signal has different frequency features in different time sections, as 

non-stationary data. Thus, the normal coherence analysis could not be used to get the 

features of this signal because the entire time data was averaged to get the frequency 

response. Instead of calculating coherence on full data set, like in figure 3.5, coherence 
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was calculated for the first 50 seconds, N=10,000 . After the coherence of first block of 

data was calculated, the coherence of 91 blocks with 90% overlapping data were 

calculated, Figure 3.8 the next record data size of N=10,000 from N=100 to N=10100 

was used to find the next coherence characteristic. The same schematic repeated until 

the end of data recorded. The coherence which represents the correlated signals 

according to time and frequency can be established by this signal processing method.  

 

 

Figure 3.7 Flow chart of signal processing as time frequency analysis 

 

 

Figure 3.8 Signal processing example of time frequency analysis 
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Figure 3.9 Stationary of sinusoidal signal of 10Hz and non-stationary data with white 
noise before 20 sec and same sine wave after 20sec 

 

Figure 3.10 Zoomed Non-stationary signal in bottom and stationary signal on top. 
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Figure 3.11 Auto spectrum of stationary and non-stationary data for entire time section 

 

Figure 3.12  FRF of between these signals in dB for entire time section 
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Figure 3.13 Time separated FRF in dB of between these signals before N= 211 =2048 

and after N= 211 

The graph in Figure 3.12 shows that the entire time section FRF shows lower 

magnitude at 10Hz than Figure 3.12. Moreover, the entire time FRF does not represent 

that two signals after 5.12sec, N= 211are the same. However, with the two separated 

section FRF, it does represent that after 5.12sec, N= 211, the input and output are the 

same.  Figure 3.3 shows that the FRF between input and output is the same, 0dB after 

5.12 sec.  

 

In the Figure 3.13, for non-stationary data, FRF with respect to different time 

sections is necessary to see the frequency characteristics. The time section is called 

block size; the optimal size of the block will be discussed in the further section of this 

chapter and introduce short time Fourier transform, which can present the different size 

of block to transfer from time domain to frequency domain.  

 

Accordingly, if a signal shows certain frequency characteristics in specific time, 

we need to extract those time sections and find the frequency characteristics as we did 

in Figure 3.13.  Figure 3.9 represents that in the first half shows white noise and the other 

half shows 10Hz sinusoidal output. In the above, we can clearly see the different in the 
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pattern changes in the signal at 211. Thus the signal can be parsed as half at 211. 

However, generally, it is hard to find out the specific time where the frequency features 

show certain characteristic especially when the signal is mixed with multiple frequency 

components. In this case, it is needed to change the time section continuously and see 

the FRF result changes by the change of the time section. In Figure 3.13 shows the two 

different time section before and after N= 211 because at this point, it was obvious 

change was observed where the pattern changes. For example, we could try to 

separate as four quarters in time section with reduced averaged block size. FRF in the 

various times section, window, it is so called as short time Fourier transform (STFT).  

3.4  Short Time Fourier Transform (STFT) Review 

 

The STFT is a signal processing technique which has both information about time and 

frequency domains. The common method to evaluate the relationship between two 

signals for entire time as whole is not valid for time-variant signal in this research. 

Therefore, the STFT which considers the signal as the locally stationary was suggested.  

 

Continuous time STFT <-> time domain  
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Window function h is at time , and energy spectrum at time t and the frequency f is 

shown underneath, 
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FRF in time-frequency analysis 
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Defining the optimal size of the block and finding the frequency response of the 

block are important. Mostly, for normal baby’s GMs, the frequency range cannot be 

exceed higher than 10Hz by estimation and observation in the lab. Through a brute 

force method and trial and error, we found that the block size of N=1000 is the most 

appropriate size for the process when fs=200Hz. 

  

Therefore, in case of the non-stationary data, to figure out the frequency 

component, moving average Fourier transform, STFR will be the useful.  In addition, as 

discussed before, in the FRF, coordinated of movement of infant highly related to the 

coherence. To define this idea, in the last section of the chapter, the two highly 

correlated signals would be generated and the resulted coherence with respect to time 

and frequency will be presented in 3D plot using SFTF. 

 

3.6  Time-frequency Coherence analysis  

  

Two different signals were generated to observe the dependency with respect to 

time and frequency. For example, the input signal is the mixing of signals at 5Hz, 10Hz, 

40 Hz and white noise.  In this analysis, the sampling frequency is 400Hz to get a fine 

frequency resolution. Therefore, a signal which has higher frequency than 200Hz 

cannot be regenerated. (By Nyquist and Shannon’s theorem). From the input signal, in 

the second quarter of the entire time, only 5Hz component pass through LPF fc = 20 

resulted to the output. The time frequency method expects the high coherence at 

second quarter of the time at 5Hz.  With the same manner, the different input frequency 

characteristics pass through LPF according to four quarters time sections. The total 

number of sample is 212 and every quarter, different frequency component can pass 

through LPF accordingly, white noise, 5Hz, 10Hz and 40Hz. In the time frequency signal 

process, high coherence at 5Hz, 10, 40Hz with respect to time will be expected. The 

noise in the input signal does not correlate to the output ideally. It means that the signal 
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noise came from one accelerometer does not correlated to the other accelerometer’s 

noise when the signal is acquired through the accelerometer from the infant.  

 

 

Figure 3.14 Input signals, red signal is combined of white noise, 5Hz,10Hz,40Hz , 

number of data N=212=4096 

 

In the Figure 3.14, we can see that the input signal has high frequency component 

at 5Hz, 10Hz, and 40Hz as designed. The white noise presented in the entire frequency 

range. In the first quarter of the time section, 0~2.56sec , the filter passed only the white 

noise to the output, 2.56~5.12 sec passed 5Hz, 5.12~7.68  sec passed 10Hz, 

7.68~10.24 sec passed 40Hz  by using LPF @ cutoff frequency of 20Hz. So at each 

quarter of the time section, a different frequency feature would present as high 

coherence in FRF. Though the input is stationary data, the output came from filter has 

non-stationary as designed. If the coherence was evaluated for the entire time, Figure 

3.17 will be shown. As seen, the high coherence peaks at expected time section at 
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expected frequency were unclear. Usually, higher than 0.7 coherence was considered 

as highly related signals.  

 

Figure 3.15 Auto spectrum of the input signal which is combined of white noise, 5Hz, 
10Hz and 40Hz 

 

Figure 3.16 Input signals which has different frequency features as stationary and the 
output signals which has different frequency characteristic as non-stationary 
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Figure 3.17 FRF, H1 estimation between input and output for entire time range 

 

Figure 3.18 Coherence analysis for entire time range 
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Figure 3.19 Time-frequency coherence analysis between input and output. Three 
frequency features of 5Hz, 10Hz, and 40Hz as designed in figure 3.16 

 

When we are applying moving average with respect to time, the appropriate 

window size was 29 =512 sample data. From 3 to 6 at 5Hz, from 6 to 9 at10Hz, from 9 

to10 at 40Hz shows the high coherence at 0.9~1 coherence. White noise consistently 

shows the low coherence. Unlike Figure 3.18, time frequency analysis shows the 

expected high coherence at the time and frequency as designed in Figure 3.19. The high 

coherence shows as yellow and the correlated signals was defined in the plot in y axis 

as frequency and in x axis as time. According to the original design, both input and 

output signals in the second quarter of the time and the 5Hz frequency region are highly 

correlated. The plot resulted as yellow block as the researcher expected. And the third 

quarter and the last quarter showed the same result as designed. The same method will 
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be applied to the real data from the accelerometers and the correlated signals will be 

generated from the accelerometers to apply the time frequency analysis. 

 

4     Application to real data 

 

As we discussed in chapter 3, the signals from two 3 axis accelerometers were 

acquired to verify the time frequency analysis to evaluate the correlated movements 

between the limbs of the infant. The signals were collected with sampling frequency of 

fs=200Hz, and the size of the data bin N= 20,000. To generate correlated movements 

between the limbs, two accelerometers are attached to the researcher’s each arm 

separately and the researcher moved both arms correlatively intentionally. During 3 

minutes total, the signals were acquired. The first 1 minute was measured as calm and 

stationary, no movement the next 1 min was measured with correlated shaking 

(assumed less than 10Hz frequency) and the last minute was observed in correlated 

rotation change to get continuous x-y-z axis changes. The first 1minute was assumed 

that baby showed no movement at all. However, it does not mean that the transducer 

cannot capture any signal because the infant and the researcher who was simulating 

the stable movement cannot be 100% hold state.  If the assumption and the analysis 

were correct, the high coherence peak at different frequency along each 1 min block 

time section would be observed. 

4.1   Hardware and its testing  

 

The device setting was evaluated for appropriateness. The data acquisition 

system was consisted of NI-9107 ADC, and MEMS accelerometer, MMA7331LC. The 

NI9107 with 12 bit ADC system works at ±10V which means that least significant bit 

(LSB) of 4.9mV/bit 

20

212 − 1
= 4.9𝑚𝑉/𝑏𝑖𝑡  
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The supply voltage of the accelerometer system was 3.3V. With the supply voltage of 

3.3V, the offset is 1.405V by the spec sheet. For the testing, the graph in Figure 4.1 

shows the output voltages came from two accelerometers with no external force except 

the earth gravity. The first 20 seconds is for the adjustment period, adjusting the sensor. 

The resultant, vector sum voltage output from both accelerometers should be 2.63V for 

1g from the spec sheet of 4G sensitivity and 3.3V supplied voltage. The data sheet 

states the characteristic of the MEMS accelerometer as Radiometricity, which means 

that the offset voltage and the sensitivity linearly scale with the supply voltage. 

Accordingly, the sensitivity according to the supply voltage, V= 3.3V is 319.375mV by 

spec sheet. The actual resultant voltage from accelerometer 1 was 2.66V and from the 

accelerometer 2 was 2.83V in figure 4.2. Ideally, by the datasheet, the ideal resultant 

voltage should be 2.63V under 1g gravity.  The errors are 1.10% and 7.95% 

accordingly. These errors are still reliable because this research studies the dynamic 

correlate changes between the signals from accelerometer. In the later part of the 

chapter, the assumption will be verified. 

 

 
Figure 4.1 Voltage outputs from accelerometers without external force after 20sec 
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Figure 4.2  Resultant vector plot and the average to calculate 1G voltage assumption 
Acc1 =2.66V Acc2=2.83V 

Table 4.1 Characteristics of the accelerometer in spec sheet according to the supply 
voltage 3.3V 

Supply voltage(V) Offset voltage(V) Sensitivity(mV/g) 
Resultant voltage  

from 3 axis(V) under 1G 

3.3 1.405 319.4 2.6 

4.2   Sample data analysis 

 

The Figure 4.3 shows the raw voltage output with respect to time domain. In the 

first 3 minutes and extra 20second, the signals came from accelerometers were 

collected in total 200sec. Because the sample rate was 200Hz, the total length of data, 

or number of sample is N= 40,000. The data unrelated to the coordinated movement 

after 200sec was deleted.  The rotational parts of the signal after 120 sec was explicit. 

The accelerometers also send the output voltage of any vibration in the measurement 

environment. Therefore, the high frequency noise was also contained in the signal due 

to the current flow and mass of the MEMs accelerometer(mechanical noise in MEMS). 

The shacking section from 1~2 min was not significantly shown due to these factors in 

the raw voltage. So the low pass filter (LPF) was considered to remove this high 

frequency factors.  
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Figure 4.3 Raw data plots from two accelerometers. Left column: acc1, Right column: 
acc2 
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Figure 4.4 Signals acquired from accelerometers and filtered through 10Hz LPF 

 

There are the pre-process before the time frequency analysis. As discussed before, the 

high frequency factor should be removed to observe the signature movement in Figure 

4.2 and Figure 4. Also practically, the baby cannot shaking their limbs higher than 10Hz. 

Clear movement of shacking was obtained between 80 sec to 120sec compared to the 
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raw signal plots in Figure 4.3. The first 20-second unstable data is due to the human 

factor. 6th order Butterworth LPF was designed to get rid of the high frequency 

component and the result is shown in Figure 4. FRF of the designed filter presented in  

  

Figure 4.5 FRF of 6th order LPF @ fc=10Hz 

 

Figure 4.6 Auto spectrum of 1 voltages came from accelerometer 1 
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To see the filter to remove the high frequency above 10Hz, the FRF for entire time was 

shown in Figure 4.6. We can see that 6th order Butterworth filter @ 10Hz was applied 

and the signal shows low amplitude after 10Hz 

 

To find out the relationship between the signals, generated cross spectrum between 

each signals for entire time range was presented in Error! Reference source not 

ound. . We can see the peak at 4~5Hz that is what we expected. (Low frequency high 

peak is the DC factor) 

The phase difference was not considered in this signal processing, because the 

coherence does not depend on phase shift.  

 

 

 

Figure 4.7Coherence of these 9 combinations for entire time range  
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As discussed in the plots above, in the real data from baby, we use four accelerometers 

which are composed of 3 axis each. In this chapter, 3 axis outputs from each 

accelerometer were considered. It means 6 signal outputs and 9 combinations exist to 

find the correlation between the limbs. The high peaked combinations in these 9 

combinations between the accelerometer will be analyzed as time frequency method. In 

the Figure 4., the high peak above 0.7 was shown in 1-8,2-8,3-8 combinations.  The 

STFT output between these combinations was analyzed in Error! Reference source 

ot found..   

 

Figure 4.4 Zoomed (from 1Hz to 15Hz) auto spectrum in STFT, time frequency analysis 
of 6 voltages 

 

The figure shows the Auto spectrum STFT result, if you see the STFT, the auto 

spectrum with time frequency response shows the filtering affect after 10Hz shows blue 

and green below 100 db. All nine combinations FRF were shown in this graph. Block 

size N=1000, total 5sec and averaged recorded time N=10,000 coherence result was 

also demonstrated. And the increment was every N=100.   
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Figure 4.5 Time-frequency Coherence analysis applied Rectangular window 1000, block 
10,000 index 100 
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Figure 4.6 Time-frequency Coherence analysis applied triangular window 1000, block 
10,000 index 100 

 

Figure 4.7 Time-frequency Coherence analysis applied Hanning window 
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Figure 4.8 Time-frequency Coherence analysis applied Hamming window 

 

Figure 4.9 Time-frequency Coherence analysis applied weighted average method for 1 
to 15Hz frequency graph, rectangular window 
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4.3   Sample data analysis 2  

 

In the Figure 4.10, from 100 to 200 time index shows the high coherence at 

certain frequency range, which represents shacking correlated movement from 69sec to 

139sec. The bilateral coordination movements between limbs can be displayed by this 

technique. Therefore, the two other correlated movements were considered to prove the 

method is correct. Two different correlated movements collected with same sampling 

frequency and collected in 3 min and 20 sec, N=40000. The first data collected shaking 

vertically both hand with different amplitude and speed at certain time. The other 

movement data was collected changing amplitude and the rotating both hands at the 

same time to simulate the babies correlated movement between the limbs.  

 

 

Figure 4.10 Top row: Low frequency High frequency with weighted average from two 
accelerometers, Bottom row: smooth rotational movement from two upper limbs. 
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Figure 4.11 Time-frequency Coherence analysis applied weighted average method from 
1 to 15Hz frequency graph, rectangular window for Low frequency High frequency 
shaking movement with respect to time changing 
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Figure 4.12 Time-frequency Coherence analysis applied weighted average method from 
1 to 15Hz frequency graph, rectangular window for gradual rotational movement with 
weighted average 
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Figure 4.13 Time-frequency Coherence analysis applied weighted average method for 1 
to 15Hz frequency graph, rectangular window gradual rotational movement without 
weighted average 

 

Two extra movements were analyzed to verify the time frequency method. The 

Figure 4.11 represents the correlated movements of different frequencies. In the first 

part, the tester shook as low frequency and in the later part shook high frequency. All 9 

combinations of the signals shows that a high coherence at low frequency section at the 

beginning. In the later time, it shows high coherence at high and low frequency at the 

same time as expected. It can be conclude that the analysis can capture the correlated 

movement with respect time and frequency.  

 

Secondly, the movement which simulates the baby’s upper arms, rotating and 

shaking arms smoothly and continually was shown in Figure 4.11 and Figure 4.12. All xyz 

from each accelerometer was well related. The wide range of frequency indicates the 

high coherence in the wide range of time.  Smooth change of correlated motion of the 

baby can be interpreted quantitatively in these graphs. 



 

55 
 

In these 3 analysis, the correlated movement represented as the high coherence 

at the time section and frequency range. However, the rotating movement does not 

affect coherence a lot. As defined in chapter 2, literature review, the coordinated 

motions of the infant from 4 to 6months will be changed gradually, we can apply this 

time frequency analysis technique to measure the correlation as quantitatively.  

  

4.4   Sample data analysis from infant  

 

 

Finally, to verify the analysis to the real infant data, the researcher collected the 

signals from the 2-month-old infant with the same hardware setting. The data should be 

acquired from the infant spontaneously, so the baby creep is equipped in the calm and 

low light intensity in Figure 4.14Figure 4.14. In the literature review, the infant before 20 

weeks shows low alternating kicking movement, which is one of the BCMs. In the 

assumption, two-month-old infant will show the low correlated movement, therefore, will 

show the low coherence under 0.7. 

 

 

Figure 4.14 two months of an infant with accelerometers and the environmental setting  
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Figure 4.15 3D coherence plot of upper limbs movements under 15Hz. 

 

 

Figure 4.16 3D coherence plot of lower limbs movements under 15Hz. 

 

The 3D coherence plots which evaluated two upper limb and two lower limbs support the 

assumption of the research. Both plots shows consistently low coherence in the entire time 

range before 15 Hz because the subject infant cannot show the coordinated movement at this 

developmental stage. By observing, the shifting patterns according to the infant age can show 

clearer patterns of normal and abnormal neurological development. 
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5   Result and Conclusion 

 

As shown in Chapters 3 and 4, the correlated signals were generated by 

computer and accelerometers. The graphs using time frequency moving average 

method was shown in the same chapters too. We expected to see the infant movement 

under the frequency of 10Hz.  The researcher could see the high coherence at 

expected time range and frequency range. The importance of CP diagnosis was 

discussed in Chapter 2 using the movement of an infant. The infant will show the high 

correlated movement between the limbs according to the brain development after the 

FM stage. The bilateral coordinated movement will gradually increase. It can be 

quantified by the time frequency approach. The researches not only can measure the 

correlated movements quantitatively, but also can detect the abnormal development of 

motor disturbance as a result of the brain damage in this early phase. The infant who 

has brain damage will have low correlated motions. This research can quantify the 

relationship.  

 

5.1  Analysis of data for CP diagnostics 

 

 One of the major CP symptoms, discussed in the literature review in chapter 2, is 

the motor disturbance which cannot control the limbs correlatively. The average time to 

diagnose the CP is 18 months with the brain scanning methods. The new signal 

processing approach can reduce the current time to reach a final diagnosis. With the 

earlier intervention, the baby can have a better and more independent quality of life. 

Under 6 months, the baby is supposed to show so called Fidgety Movement: a smooth 

and continuous movement of each limb. The Fidgety movement will be developed into 

the intentional and antigravity movement according to the GM’s development 

classification. The researcher assumed that in the normal case, the movement between 

the limbs is correlated with each other and the brain development will affect the 

correlated movement. The literature review supported the assumption.  Therefore, at 
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the end of Fidgety movement, after 6 months, if the correlated movement was not 

observed, it can be considered one of the signs of the brain related issue. To detect this 

correlation, the accelerometer data was collected and analyzed using the time-

frequency method. The coherence in the time and frequency spectrum could 

demonstrate the correlation in the data collected from the accelerometers which is 

attached to the arms of the tester. In the future research, the expert can tell whether the 

infant is experiencing brain damage by collecting the accelerometer data from the infant 

before the brain scanning method. The standard coherence can be quantified in the 

future research from the wide survey from new born babies under CP and normal 

development.  

5.2  Reliability of data 

 

Trained experts of GM can detect the baby movement by observation and it is 

related to the correlation of the movements of the infant. As shown in chapter 4, two 

correlated signals in the low frequency and the high frequency were generated in order 

at specific time period. The calculated coherence was near 1 (perfectly correlated) at 

these specific time range and frequency accordingly. The time frequency method was 

validated as researcher designed. In addition, the final data analysis was done and 

showed that the coherence was low because of the age of the infant, which was 

younger than 6 months. The specific coherence can be attained by future study.  

5.3  Future work 

 

 This analysis can be applied to the other diseases or syndromes which 

demonstrate bilateral coordination disturbances. Also the severity classification can be 

measured by this method. As discussed in the previous part of the chapter, statistical 

data needs to be collected to set a specific range in order to decide the normal and 

abnormal bilateral movement. It is necessary that the future research target broad and 

expanded data from infants under CP or normal development. Thus, the coherence 

threshold to diagnose CP will be studied in the future research. Finally, the research 
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defined the relationship of the limb’s movement quantitatively, so the method can be 

applied to the other diseases or syndromes which affect motor disturbances.  

 

One of the possible applications is to estimate the severity about Parkinson ‘s 

disease. One of the major symptoms in Parkinson’s disease is the motor disturbance 

and the difficulty controlling all limbs correlatively. The Parkinson’s disease does not 

have a perfect cure at this point. Instead of that, the early intervention is recommended 

for the better quality of life and independent life. This new signal processing approach 

can be used to measure the progress of the disease. Also, the massive research for the 

statistical analysis is needed to acquire the appropriate standards. Quantitative analysis 

based on the movement can provide the blue print of the progression of the stages of 

the disease.  

  

 Currently, the data acquisition system is made of four xyz axis accelerometers 

with wire. The signal was collected through DAQ acquisition system through LabVIEW. 

This system is a prototype to test the data analysis but there are possible improvements 

in the current hardware system. First of all, the system can be upgraded from wired to 

the wireless by implementing a new microcontroller which supports Bluetooth function. 

Secondly, researcher used NI-9107 12bit ADC, and it was good enough hardware to 

collect the signal, but there is possibility to increase the resolution of LSB (least 

significant bit) by upgrading the ADC. Also in the current system, the changing of the 

angle was not actively considered to calculate the correlation, but the embedded 

gyroscope can provide a user better chance to analyze the data in a different 

perspective point of view. Lastly, the testing device was not easily assessable. The 

recent development of wearable devices which includes accelerometers and gyroscope 

can provide easy access to anyone. In other words, with wearable devices such as, 

apple-watch, android smart watch and fitness wearable devices, this research can 

provide a tool for users who need continuous self-observations suffering from Parkinson 

syndrome or CP syndrome. The patients who have these diseases need to practice 

activities that enhance the functionality of the nervous system. These wearable devices 
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can easily collect signals and observe the motor disturbance over the time by the time-

frequency analysis technique.  

 

In this research, the researcher tested time-frequency averaging method to 

quantify the bilateral coordinate movements. Therefore, the resulted plots showed as 

expected by representing high coherence at targeted time and frequency. The method 

can help the people who need to monitor the correlated motions according to the time 

changes. 
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6.2  Accelerometer spec sheet 

http://www.farnell.com/datasheets/1789311.pdf 

7 Appendix 

A  LabVIEW code 

B  Matlab code 

%%3.1 figures 

  
fs=50; 
Ts=1/fs; 
t=[Ts:Ts:2]; 
N=length(t); 
y=sin(2*pi*t); 
yf=fft(y); 
Fr=fs/N; 
F=Fr*[0:N-1]; 
figure 
subplot(4,1,1) 
scatter(t,y) 
xlabel('time(sec)') 
ylabel('amplitude') 
title('sin(2*pi*t) , T=1 sec and fs=50Hz') 
subplot(4,1,2) 
plot(F,real(yf)); 
xlabel('frequency(Hz)') 
ylabel('amplitude') 
title('Real part of FFT') 
subplot(4,1,3) 
plot(F,imag(yf)); 
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xlabel('frequency(Hz)') 
ylabel('amplitude') 
title('Imaginary part of FFT') 
subplot(4,1,4) 
plot(F,abs(yf)); 
xlabel('frequency(Hz)') 
ylabel('amplitude') 
title('Modulus of FFT') 

 

 

%%chapter 3.2 
fs=100; 
Ts=1/fs; 
N=1024; 
t=Ts*[0:N-1]; 
Fr=fs/N; 
%%white noise 
x1=randn(1,N); 
%%sinosoidal 1Hz 
x2=cos(2*pi*t); 

  
[R1,k] = xcorr(x1,x1); 
[R2,k] = xcorr(x2,x2); 

  
tau=Ts*k; 

  
figure 
subplot(2,2,1) 
plot(t,x1) 
subplot(2,2,2) 
plot(tau,R1) 
subplot(2,2,3) 
plot(t,x2) 
subplot(2,2,4) 
plot(tau,R2) 

  
%%chapter 3.3 
fs=100; 
N=2^10; 
Ts=1/fs; 
t=Ts*[0:N-1]; 
%stationary signal 
y1=cos(20*pi*t); 
%non-stationary signal 
y2=y1; 
whiteN=randn(1,N); 
for i=1:round(N/2) 
    y2(i)=whiteN(i); 
end 

  

  
figure 
subplot(2,1,1) 
plot(t,y1) 
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xlabel('time(sec)') 
ylabel('amplitude') 
title('stationary data of sinosoidal of 10Hz') 
subplot(2,1,2) 
plot(t,y2) 
xlabel('time(sec)') 
title('non- stationary data white noise and sinosoidal of 10Hz') 
ylabel('amplitude') 

  

  
nfft = 2^8; 
wndo = nfft; 
ovlp = nfft/2; 

  
[Pxx1,FR] = pwelch(y1,wndo,ovlp,nfft,fs); 
[Pxx2,FR] = pwelch(y2,wndo,ovlp,nfft,fs); 

  
Pxx1=Pxx1*fs/2; 
Pxx2=Pxx2*fs/2; 

  

  
figure 
subplot(2,1,1) 
semilogx(FR,20*log10(abs(Pxx1)),'Linewidth',1.5); 
grid on 
xlabel('frequency(Hz)') 
ylabel('magnitude(dB)') 
subplot(2,1,2) 
semilogx(FR,20*log10(abs(Pxx2)),'Linewidth',1.5); 
grid on 
xlabel('frequency(Hz)') 
ylabel('magnitude(dB)') 

  
% stationay analysis 
u=y1; 
y=y2; 

  
[Suu,fr] = cpsd(u,u,wndo,ovlp,nfft,fs); 
%[Snn,fr] = cpsd(n,n,wndo,ovlp,nfft,fs); 
[Syy,fr] = cpsd(y,y,wndo,ovlp,nfft,fs); 
%[Sun,fr] = cpsd(u,n,wndo,ovlp,nfft,fs); 
[Syu,fr] = cpsd(y,u,wndo,ovlp,nfft,fs); 
[Suy,fr] = cpsd(u,y,wndo,ovlp,nfft,fs); 
%[Syn,fr] = cpsd(y,n,wndo,ovlp,nfft,fs); 

  
Suu=Suu*fs/2; 
Syu=Syu*fs/2; 
Suy=Suy*fs/2; 
Syy=Syy*fs/2; 

  
H1 = Syu ./ Suu; 
H2 = Syy ./ Suy; 

  
%H = squeeze(freqresp(plant,2*pi*fr)); 
%gamma1 = (Syu .* Suy) ./ (Suu .* Syy); 
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%gamma2 = mscohere(u,y,wndo,ovlp,nfft,fs); 
figure 
semilogx(fr,20*log(abs(H1))); 
grid on 
xlabel('frequency(Hz)') 
ylabel('magnitude(dB)') 

  

  
%%% non-stationary analysis 
nfft = 2^7; 
wndo = nfft; 
ovlp = nfft/2; 

  
%part 1 
u=y1(1:2^9); 
y=y2(1:2^9); 

  
[Suu,fr] = cpsd(u,u,wndo,ovlp,nfft,fs); 
%[Snn,fr] = cpsd(n,n,wndo,ovlp,nfft,fs); 
[Syy,fr] = cpsd(y,y,wndo,ovlp,nfft,fs); 
%[Sun,fr] = cpsd(u,n,wndo,ovlp,nfft,fs); 
[Syu,fr] = cpsd(y,u,wndo,ovlp,nfft,fs); 
[Suy,fr] = cpsd(u,y,wndo,ovlp,nfft,fs); 
%[Syn,fr] = cpsd(y,n,wndo,ovlp,nfft,fs); 

  
Suu=Suu*fs/2; 
Syu=Syu*fs/2; 
Suy=Suy*fs/2; 
Syy=Syy*fs/2; 

  
H11 = Syu ./ Suu; 
H2 = Syy ./ Suy; 

  
figure 
semilogx(fr,20*log(abs(H1))); 
grid on 
xlabel('frequency(Hz)') 
ylabel('magnitude(dB)') 

  
%part 2 
u=y1(2^9+1:2^10); 
y=y2(2^9+1:2^10); 

  
[Suu,fr] = cpsd(u,u,wndo,ovlp,nfft,fs); 
%[Snn,fr] = cpsd(n,n,wndo,ovlp,nfft,fs); 
[Syy,fr] = cpsd(y,y,wndo,ovlp,nfft,fs); 
%[Sun,fr] = cpsd(u,n,wndo,ovlp,nfft,fs); 
[Syu,fr] = cpsd(y,u,wndo,ovlp,nfft,fs); 
[Suy,fr] = cpsd(u,y,wndo,ovlp,nfft,fs); 
%[Syn,fr] = cpsd(y,n,wndo,ovlp,nfft,fs); 

  
Suu=Suu*fs/2; 
Syu=Syu*fs/2; 
Suy=Suy*fs/2; 
Syy=Syy*fs/2; 
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H12 = Syu ./ Suu; 
H2 = Syy ./ Suy; 

  
figure 
subplot(2,1,1) 
semilogx(fr,20*log(abs(H11))); 
grid on 
xlabel('frequency(Hz)') 
ylabel('magnitude(dB)') 
subplot(2,1,2) 
semilogx(fr,20*log(abs(H12))); 
grid on 
xlabel('frequency(Hz)') 
ylabel('magnitude(dB)') 

  

  

  

  

  

  

  

  
%%%chapter 3.6 and 3.7  
figure 
subplot(2,1,1) 
semilogx(FR,10*log10(abs(Pxx1*(fs/2))),'r'); 
grid on 
xlabel('frequency(Hz)') 
ylabel('FRF of stationary data of sinosoidal of 10Hz(dB)') 

  
subplot(2,1,2) 
semilogx(FR,10*log10(abs(Pxx2*(fs/2))),'r') 
xlabel('frequency(Hz)') 
grid on 
ylabel('FRF of non-stationary data of white noise and sinosoidal of 10Hz ') 

  
figure 
[S,F,T] = spectrogram(x3,wndo,ovlp,fr,fs); 
contour(T,F,S) 

  
%%half half  

nfft = N/8; 
wndo = nfft; 
ovlp = nfft/2; 
x3_h1=zeros(1,2^11); 
x3_h2=x3_h1; 

  
x3_h1=y2(1:2^11); 
x3_h2=y2((2^11+1):2^12); 

  
[Pxxh1,FR] = pwelch(x3_h1,wndo,ovlp,nfft,fs); 
[Pxxh2,FR] = pwelch(x3_h2,wndo,ovlp,nfft,fs); 
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figure 
subplot(1,2,1) 
semilogx(FR,10*log10(abs(Pxxh1*(fs/2))),'r') 
xlabel('frequency(Hz)') 
ylabel('dB') 
grid on 
title('FRF of non stationary data only for white noise time section') 

  
subplot(1,2,2) 
semilogx(FR,10*log10(abs(Pxxh2*(fs/2))),'r') 
xlabel('frequency(Hz)') 
ylabel('dB') 
grid on 
title('FRF of non stationary data only for sin wave time section') 

  

  

  

  

 

 

 
%%chapter 3.7 
fs=400; 
Ts=1/fs; 
N=2^12; 
Fr=fs/N; 
t=Ts*[0:N-1]; 
fr=Fr*[0:N-1]; 

  
f1=5; 
f2=10; 
f3=40; 

  
x0=randn(1,N); 
x0=x0/sqrt(N) 
x1=cos(2*pi*t*f1); 
x2=cos(2*pi*t*f2); 
x3=cos(2*pi*t*f3); 

  
x=x0+x1+x2+x3; 

  
nfft = 2^10; 
wndo = nfft; 
ovlp = nfft/2; 

  

  
%%x1=x1/sqrt(N); %normalized 
figure 
subplot(5,1,1) 
plot(t(1:100),x0(1:100)) 
title('White noise') 
subplot(5,1,2) 
plot(t(1:100),x1(1:100)) 
title('cosine @5Hz') 
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subplot(5,1,3) 
plot(t(1:100),x2(1:100)) 
title('cosine @10Hz') 
subplot(5,1,4) 
plot(t(1:100),x3(1:100)) 
title('cosine @20Hz') 
subplot(5,1,5) 
plot(t(1:100),x(1:100),'r') 
xlabel('time(sec)') 
ylabel('Amplitude') 
title('5Hz, 10Hz,20Hz and whiteNoise') 

  
nfft = 2^10; 
wndo = nfft; 
ovlp = nfft/2; 
u=x; 
y=y; 

  
[Suu,fr] = cpsd(x,x,wndo,ovlp,nfft,fs); 
Suu=Suu*fs/2; 

  
figure 
semilogx(fr,20*log10(abs(Suu)),'r','LineWidth',1.5); 
xlabel('frequency(Hz)') 
ylabel('Mag(dB)') 
title('Frequency response of signal @5Hz,@10Hz,4Hz and noise') 
grid on 

  
%design filter 
[num,den]=butter(8,0.2); %cutoff freqeuncy as 200*0.1=40Hz 

  
y0=filter(num,den,x0); %pass through filter white noise 
y1=filter(num,den,x1); %pass through filter 5Hz 
y2=filter(num,den,x2); %pass through filter 10Hz 
y3=filter(num,den,x3); %pass through filter 40Hz 

  
y=zeros(1,N); 
%combine all these output as one plot with different time section 
y(1:2^10)=y0(1:2^10); 
y(2^10+1:2^11)=y1(2^10+1:2^11); 
y(2^11+1:2^10*3)=y2(2^11+1:2^10*3); 
y(2^10*3+1:2^12)=y3(2^10*3+1:2^12); 

  

  
%%plot u and y 

  
figure 
subplot(2,1,1) 
plot(t,x) 
xlabel('time(sec)') 
ylabel('input') 
title('sinosoidal combined input @5, 10, 40Hz and white noise') 
subplot(2,1,2) 
plot(t,y) 
title('ouput pass through LPF @0.1*200Hz at different time section ') 
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xlabel('time(sec)') 
ylabel('output') 

  
u=x; 
nfft = 2^8; 
wndo = nfft; 
ovlp = nfft/2; 

  
[Suu,fr] = cpsd(u,u,wndo,ovlp,nfft,fs); 
%[Snn,fr] = cpsd(n,n,wndo,ovlp,nfft,fs); 
[Syy,fr] = cpsd(y,y,wndo,ovlp,nfft,fs); 
%[Sun,fr] = cpsd(u,n,wndo,ovlp,nfft,fs); 
[Syu,fr] = cpsd(y,u,wndo,ovlp,nfft,fs); 
[Suy,fr] = cpsd(u,y,wndo,ovlp,nfft,fs); 
%[Syn,fr] = cpsd(y,n,wndo,ovlp,nfft,fs); 

  
Suu=Suu*fs/2; 
Syu=Syu*fs/2; 
Suy=Suy*fs/2; 
Syy=Syy*fs/2; 

  
H1 = Syu ./ Suu; 
H2 = Syy ./ Suy; 
%H = squeeze(freqresp(plant,2*pi*fr)); 
gamma1 = (Syu .* Suy) ./ (Suu .* Syy); 
gamma2 = mscohere(u,y,wndo,ovlp,nfft,fs); 
figure 
semilogx(fr,20*log(abs(H1))); 

  

  

  
figure 
semilogx(fr,gamma1,'r','Linewidth',1.5); 
grid on 
xlabel('frequency(Hz)') 
ylabel('coherence') 
title('coherence of output') 

  
nfft = 2^8; 
wndo = 2^8; 
ovlp = wndo/2; 
gamma =zeros(4,129); 

  
[Su,Fu,Tu,Pu]=spectrogram(u,wndo,ovlp,nfft,fs); 
[Sy,Fy,Ty,Py]=spectrogram(y,wndo,ovlp,nfft,fs); 

  
surf(Ty,Fy,10*log10(abs(Py)),'EdgeColor','none');  

  
nfft = 2^8; 
wndo = 2^8; 
ovlp = wndo/2; 
gamma=zeros(8,nfft/2+1); 

  
for i=1:8 
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    strt= (i-1)* 2^9+1; 
    ed=i*2^9; 
    [gamma(i,:),f]=mscohere(u(strt:ed),y(strt:ed),wndo,ovlp,nfft,fs); 
end 
figure 
tg=[0:8-1]*N*Ts/7; 
surf(tg,f,gamma','EdgeColor','none') 
colorbar 

  
  

%%%%chapter 3.6 figure 
fs=100; 
N=2^12; 
Ts=1/fs; 
t=Ts*[0:N-1]; 
%signal input 
x1=randn(1,N); 
sample=x1; 

  
[num,den]=butter(6,0.25); 
y1=filter(num,den,x1); 

  
figure 
subplot(2,1,1) 
plot(t,x1) 
xlabel('time(sec)') 
ylabel('amplitude') 
title('input signal of sinosoidal of 10Hz') 
subplot(2,1,2) 
plot(t,y1) 
xlabel('time(sec)') 
title('output signal filted with butterworth low pass at 25Hz') 
ylabel('amplitude') 

  
%y1=filtfilt(num,den,x1); 

  
figure 
plot(t,x1,'r') 
hold on 
plot(t,y1,'g') 
xlabel('time(sec)') 
ylabel('amplitude') 
legend('input signal','output signal') 
title('filtfilt function with no tim shift') 

  

  
nfft = 2^10; 
wndo = nfft; 
ovlp = nfft/2; 
u=x1; 
y=y1; 
[Suu,fr] = cpsd(u,u,wndo,ovlp,nfft,fs); 
%[Snn,fr] = cpsd(n,n,wndo,ovlp,nfft,fs); 
[Syy,fr] = cpsd(y,y,wndo,ovlp,nfft,fs); 
%[Sun,fr] = cpsd(u,n,wndo,ovlp,nfft,fs); 
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[Syu,fr] = cpsd(y,u,wndo,ovlp,nfft,fs); 
[Suy,fr] = cpsd(u,y,wndo,ovlp,nfft,fs); 
%[Syn,fr] = cpsd(y,n,wndo,ovlp,nfft,fs); 
H1 = Syu ./ Suu; 
H2 = Syy ./ Suy; 
H = squeeze(freqresp(plant,2*pi*fr)); 
gamma1 = (Syu .* Suy) ./ (Suu .* Syy); 
gamma2 = mscohere(u,y,wndo,ovlp,nfft,fs); 

  
figure 
semilogx(fr,gamma1,'b'); 
grid on 
xlabel('frequency(Hz)') 
ylabel('coherence') 
title('coherence of output filted by 25Hz') 

  

 
%1G test and chapter 4 

  
N=40000; 
Gtest00=data01(5000:N,1:3); 
Gtest01=data01(5000:N,7:9); 
N=40000; 
fs=200; 
ts=1/fs; 
t=[5000:N]*ts; 
figure 
plot(t,Gtest00(:,1),'r') 
hold on 
plot(t,Gtest00(:,2),'b') 
hold on 
plot(t,Gtest00(:,3),'y') 
title('raw data of acc 00') 

  
figure 
plot(t,Gtest01(:,1),'r') 
hold on 
plot(t,Gtest01(:,2),'b') 
hold on 
plot(t,Gtest01(:,3),'y') 
title('raw data of acc 01') 

  

  
% low pass filter without  mean zero 
[num,den]=butter(6,0.1); %fc=10 
for i=1:3 
    Gtest00(:,i)=filtfilt(num,den,Gtest00(:,i)); 
    Gtest01(:,i)=filtfilt(num,den,Gtest01(:,i)); 
end 
figure 
plot(t,Gtest00(:,1),'r') 
hold on 
plot(t,Gtest00(:,2),'b') 
hold on 
plot(t,Gtest00(:,3),'y') 
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title('6th order filter 10Hz=fc for acc 00') 

  
figure 
plot(t,Gtest01(:,1),'r') 
hold on 
plot(t,Gtest01(:,2),'b') 
hold on 
plot(t,Gtest01(:,3),'y') 
title('6th order filter 10Hz=fc for acc 01') 

  
%% just tried to see the result of the gravity  
G=zeros(N,1); 
for i=1:N 
    G(i)=Gtest00(i,1)^2+Gtest00(i,2)^2+Gtest00(i,3)^2; 
    G(i)=sqrt(G(i)); 
end 
figure 
plot(t,G) %% plot the square result of the data 

  
%% STFT of each 1,2,3 graph  
nfft=1000; 
wndo=nfft; 
ovlp=wndo/2; 
fr=fs/nfft; 
[S001,F,T] = spectrogram(Gtest00(:,1),wndo,ovlp,nfft,fs); 
[S002,F,T] = spectrogram(Gtest00(:,2),wndo,ovlp,nfft,fs); 
[S003,F,T] = spectrogram(Gtest00(:,3),wndo,ovlp,nfft,fs); 

  
figure 
h=surf(T,F(1:25),abs(S001(1:25,:)),'EdgeColor','none') 
title('acc00 x axis') 
xlabel('time') 
ylabel('frequency(Hz)') 
figure 
surf(T,F(1:25),abs(S002(1:25,:)),'EdgeColor','none') 
title('acc00 y axis') 
xlabel('time') 
ylabel('frequency(Hz)') 
figure 
surf(T,F(1:25),abs(S003(1:25,:)),'EdgeColor','none') 
title('acc00 z axis') 
xlabel('time') 
ylabel('frequency(Hz)') 
%% STFT of each 7,8,9 graph 
    nfft=1000; 
wndo=nfft; 
ovlp=wndo/2; 
fr=fs/nfft; 
f=fr*[1:N-1]; 
[S011,F,T] = spectrogram(Gtest01(:,1),wndo,ovlp,nfft,fs); 
[S012,F,T] = spectrogram(Gtest01(:,2),wndo,ovlp,nfft,fs); 
[S013,F,T] = spectrogram(Gtest01(:,3),wndo,ovlp,nfft,fs); 

  
figure 
h=surf(T,F(1:25),abs(S011(1:25,:)),'EdgeColor','none') 
title('acc00 x axis') 
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xlabel('time') 
ylabel('frequency(Hz)') 
figure 
surf(T,F(1:25),abs(S012(1:25,:)),'EdgeColor','none') 
title('acc00 y axis') 
xlabel('time') 
ylabel('frequency(Hz)') 
figure 
surf(T,F(1:25),abs(S013(1:25,:)),'EdgeColor','none') 
title('acc00 z axis') 
xlabel('time') 
ylabel('frequency(Hz)') 
%%mscohere of these 9 combination 

  
[Cxx,F] = mscohere(Gtest00(:,1),Gtest01(:,1),wndo,ovlp,nfft,fs,'onesided');  
[Cxy,F] = mscohere(Gtest00(:,1),Gtest01(:,2),wndo,ovlp,nfft,fs,'onesided');  
[Cxz,F] = mscohere(Gtest00(:,1),Gtest01(:,3),wndo,ovlp,nfft,fs,'onesided');  
figure 
plot(F,Cxx) 
figure 
plot(F,Cxy) 
figure 
plot(F,Cxz) 

  
%time frequency method  
nfft=1000; 
wndo=rectwin(1000); 
ovlp=900; 
Block size B=10,000 
increment 100 rectangular window with weighted average 
l=1; 
figure 
for j=1:3 
    for k=1:3 

         
        Gamma=zeros(251,nfft/2+1); 
        gamma=zeros(90,nfft/2+1); %will store the time-frequency coherence 
        strt=1; 
        ed=10000; 

         
        for i=1:251 

             
            strtW=strt; 
            edW=strtW+1000; 

             
            Gxy=zeros(90,nfft/2+1); 
            Gyx=zeros(90,nfft/2+1); 
            Gxx=zeros(90,nfft/2+1); 
            Gyy=zeros(90,nfft/2+1); 
            window size 1000, incremenet 100(overlapping 90%) and total size 

of the block = 10,000 
            for o=1:90 

                 
                X=fft(Gtest00(strtW:edW,j)); 
                Y=fft(Gtest01(strtW:edW,k)); 
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                X=X(1:nfft/2+1); 
                Y=Y(1:nfft/2+1); 
                X(2:nfft/2)=2*X(2:nfft/2); 
                Y(2:nfft/2)=2*Y(2:nfft/2); 

                 
                Gxy(o,:)=X.*conj(Y); 
                Gyx(o,:)=Y.*conj(X); 
                Gxx(o,:)=X.*conj(X); 
                Gyy(o,:)=Y.*conj(Y); 

                 
                strtW=strtW+100; 
                edW=edW+100; 
            end 

             
            weightV=[[1:45] [45:-1:1]]; 
            AvGxy=sum(weightV*Gxy,1)/sum(weightV); 
            AvGyx=sum(weightV*Gyx,1)/sum(weightV); 
            AvGxx=sum(weightV*Gxx,1)/sum(weightV); 
            AvGyy=sum(weightV*Gyy,1)/sum(weightV); 

             
            gamma=(AvGyx .* AvGxy) ./ (AvGxx .* AvGyy); 
            Gamma(i,:)=gamma;             
            strt=strt+100; 
            ed=ed+100; 

             

             
        end 

                 
        ti=sprintf('coherence between acc0 %d and acc1 %d',j,k); 
        Tu=[1:251];     %time index doesnot mean the time  
        subtightplot(3,3,l,[0.1,0.05,0.1]) 
        l=l+1; 
        Fu=[1:501]*100/500; 
        surf(Tu,Fu,Gamma','EdgeColor','none') 
        axis([1 251 1 15 0 1]) 
        xlabel('time index') 
        ylabel('frequency') 
        zlabel('coherence') 
        title(ti) 
                colorbar       

         
    end 
end 

    

    

  
figure 
A=mscohere(Gtest00(1:10000,1),Gtest01(1:10000,1),wndo,ovlp,nfft,fs,'twosided'

); 

  
l=1; 
for j=1:3 
    for k=1:3 
        Mxx=zeros(251,nfft/2+1); 
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        %gamma1=zeros(251,nfft/2+1); 
        strt=1; 
        ed=10000; 
        for i=1:251 
            [Mxx(i,:),F] = 

mscohere(Gtest00(strt:ed,j),Gtest01(strt:ed,k),wndo,ovlp,nfft,fs,'onesided'); 
%              
%             Pxx=pwelch(Gtest00(strt:ed,j),wndo,ovlp,nfft,fs,'onesided') ; 
%             Pyy=pwelch(Gtest01(strt:ed,k),wndo,ovlp,nfft,fs,'onesided'); 
%             

Pxy=cpsd(Gtest00(strt:ed,j),Gtest01(strt:ed,k),wndo,ovlp,nfft,fs,'onesided'); 
%             

Pyx=cpsd(Gtest01(strt:ed,k),Gtest00(strt:ed,j),wndo,ovlp,nfft,fs,'onesided'); 
%             gamma1(i,:) = (Pyx .* Pxy) ./ (Pxx .* Pyy); 
            strt=strt+100; 
            ed=ed+100; 
        end 

         

         
        ti=sprintf('coherence between acc0 %d and acc1 %d',j,k); 
        Tu=[1:251]; 
%         figure 
%         %surf(t,F(5:501),Mxx(:,5:501)','EdgeColor','none') 
%         surf(Tu,F(5:75),Mxx(:,5:75)','EdgeColor','none') 
%         title(ti) 
%          
        subtightplot(3,3,l,[0.1,0.05,0.1]) 
        l=l+1; 
        Fu=[1:501]*100/500; 
        surf(Tu,Fu,Mxx','EdgeColor','none') 
        axis([1 251 1 15 0 1]) 
        xlabel('time index') 
        ylabel('frequency') 
        zlabel('coherence') 
        title(ti) 
        %         colorbar       

         
    end 
end 

  
{ 
Pxx=fft(Gtest00(:,1)); 
Pyy=fft(Gtest01(:,2)); 
Pxy=Pxx.*Pyy; 
Pyx=Pyy.*Pxx; 
Pxx=Pxx.*Pxx; 
Pyy=Pyy.*Pyy; 
gamma1 = (Pyx .* Pyx) ./ (Pyy .* Pxx); 
figure 
plot(fr,gamma1) 
} 
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