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Predicting Spatial Variability in Soil Organic Carbon Among Delmarva Bays 

 

Kinsey Blumenthal 

 

Abstract 

 

 

Agricultural productivity, ecosystem health, and wetland restoration rely on soil organic 

carbon (SOC) as vital for microbial activity and plant health. This study assessed: (1) accuracy of 

topographic-based non-linear models for predicting SOC; and (2) the effect of analytic strategies 

and soil condition on performance of spectral-based models for predicting SOC. SOC data came 

from 28 agriculturally converted Delmarva Bays sampled down to 1 meter. R
2
 was used as an 

indicator of model performance. For topographic-based modeling, correlation coefficients and 

condition indices reduced 50 terrain-related values to three datasets of 16, 11, and 7 variables. 

Five types of non-linear models were examined: Generalized Linear Mondel (GLM) ridge, GLM 

LASSO, Generalized Additive Model (GAM) non-penalized, GAM cubic splice, and partial 

least-squares regression. Carbon stocks varied widely, 50 to 219 Mg/ha, with the average around 

93 Mg/ha. Topography shared a weak relationship to SOC with most attributes showing a 

correlation coefficient less than 0.3. GLM ridge and both GAMs achieved moderate accuracy at 

least once, usually using the 16 or 11 variable datasets. GAMs consistently performed the best. 

Prior to carbon analysis, hyperspectral signatures were recorded for the topmost soil horizons 

under different conditions: moist unground, dry unground, and dry ground. Twenty-four math 

treatment and smoothing technique combinations were run on each hyperspectral dataset. R
2
 

varied greatly within datasets depending on analytic strategy, but all datasets returned an R
2
 

greater than 0.9 at least twice. Moist unground soil models outperformed the others when 

comparing the best models among datasets. 
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Abstract 

 

 

 Delmarva Bays are depressional landforms found throughout the Delmarva Peninsula that 

provide habitat for a number of endangered amphibian and plant species. Due to the prevalence 

of these Bays on the peninsula and their location in a highly agriculturalized landscape, many 

Delmarva Bays have been converted from wetlands into farmland. Whether a Bay is a wetland or 

agricultural land, organic carbon is an important soil property for a large number of 

microorganisms and plant health. Increased levels of soil organic carbon (SOC) have been linked 

with more diversity in soil biota and increased nutrient availability, which affect cropland 

productivity and ecosystem health. SOC stock and distribution is useful information to help 

formulate land management practices. However, SOC varies horizontally across a landscape and 

traditional methods for gathering data are time intensive. This study looked at the potential 

accuracy of two types of models for predicting SOC variation in agriculturally converted 

Delmarva Bays: 1) models based on terrain-related attributes, and 2) models based on soil 

spectral data. Using data collected from 28 agriculturally converted Bays, moderate to high 

potential accuracy was returned for both types of models. Results suggest terrain-related and 

spectral-based models may be useful alternatives to traditional soil sampling for looking at SOC 

variation to inform land management decisions regarding these Bays. 
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1 Introduction 

The terrestrial global ecosystem contains a vast quantity of carbon, the majority of which 

is stored below ground. Natural carbon stores are not evenly distributed across the globe and 

wetlands hold a disproportionately large share of the world’s terrestrial carbon (Lou and Zhou, 

2006). However, not all wetlands can store carbon to the same extent and some are even emitters 

of greenhouse gases like CH4 and N2O (Bridgham et al, 2006; Morse et al, 2012). Concerns 

regarding global climate change and greenhouse gas emissions have fueled research into the role 

of wetlands in the global carbon cycle. Beyond their potential to store high amounts of carbon, 

wetlands provide a wide range of environmental, social, and economic functions and services at 

the local, regional, and global level (Millennium Ecosystem Assessment, 2005). Soil organic 

carbon (SOC) is crucial for many of these functions as an integral component of soil microbial 

activity and plant health and development. 

A significant body of soil science literature on the spatial distribution of SOC at variety 

of geographic scales exists, especially pertaining to agriculture. Spatial variation within and 

among depressional wetlands in the same landscape has been a subject of some study. However, 

such research tends to involve small sample sizes (less than 10 wetlands) and, when included, 

oversimplified topography represented by only one or two variables (e.g., Craft and Casey, 2000; 

Stolt et al., 2001).  

Soil–landscape modeling is a method which has been used to study and predict SOC 

distribution in a number of studies. Through the use of geospatial data some research using soil–

landscape analysis has given more detailed attention to topography by including various terrain 

attributes. Although linear models are commonly used for soil–landscape analysis, non-linear 

models have been used as well.  Some researchers have suggested non-linear models are superior 

to linear models for simulating the relationship between topography and soil properties 
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(Thompson et al., 2006; McKenzie and Ryan, 1999). Non-linear models are a large group of 

statistical analyses, but the generalized linear model (GLM) and random forest have been 

routinely mentioned as potential models for soil–landscape analysis. However, just as the 

relationship between topography and SOC distribution cannot be assumed to be the same 

between regions, the performance of specific non-linear models in predicting SOC using 

topography may vary depending on geographic location and scale. 

Spectroscopy is a second technique widely used to spatially study soil properties like 

SOC, particularly in agriculture. Despite increased use of spectroscopy to study soil, little 

research addresses selection of analytic strategies for processing hyperspectral data and potential 

implications on model performance. The majority of soil spectroscopy research has been 

conducted in the lab on dry ground soil, but point and imaging spectroscopy record soil under 

field conditions. Soil spectra under field conditions may be affected by math treatment and 

smoothing technique to a different extent than dry ground soil. Although this study focused on 

agriculturally converted Delmarva Bays, most of which are historic wetlands, the findings have 

implications for spectral research of natural wetland, historical wetland, and upland soils.  

As an essential element of soil and plant health SOC is an important factor for general 

land management in addition to wetland management and restoration. An understanding of SOC 

distribution and factors affecting its movement are particularly important in agricultural areas 

where wetlands can be prevalent, but are frequently drained for cultivation, as in the Delmarva 

Peninsula. The traditional approach of studying SOC distribution solely through collecting and 

analyzing soil samples in the lab is frequently time and resource intensive. Predictive models of 

SOC distribution with at least moderate accuracy could provide more timely data for land 
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management decisions, especially if models are based on more readily available data such as 

terrain-related attributes or spectra. 

 

Research Questions 

(1) To what extent can topographic variables be used to predict SOC variation among 

depressional landforms in a low relief landscape? 

(2)  Do analytic strategies for analyzing hyperspectral data and/or the conditions under which 

soil spectra are recorded affect the performance of spectral-based models for estimating SOC 

concentration? 

 

Objectives 

(1) Determine the variation of SOC levels among agriculturally converted Delmarva Bays; 

(2) Identify the relationship of individual topographic attributes to SOC concentration among 

agriculturally converted Delmarva Bays;  

(3) Evaluate the performance of five topography-based non-linear models in estimating SOC 

stocks among agriculturally converted Delmarva Bays; and 

(4) Assess the effect of moisture and particle size on SOC prediction accuracy of hyperspectral 

data using four smoothing techniques and six math pretreatments on soil samples recorded in 

three states: moist unground, air dried unground, and air dried ground. 
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2 Literature Review 

2.1 Wetlands 

 According the U.S. Corps of Engineers (2010), wetlands are defined as being 

characterized by hydrophytic vegetation, hydric soil, and hydrology sufficient for the first two 

criteria to occur. However, wetlands are a highly variable category of ecosystem lacking a 

uniform classification system regarding types of wetlands (Tiner, 2015). Wetlands come in many 

forms and, as a group, provide a vast array of services at local, regional, and global levels. There 

are six categories of services and functions provided by wetlands: socioeconomic, water quality, 

water control, food, habitat, and biogeochemical cycling and storage.  Individually, wetlands 

typically do not perform every function equally as conditions necessary for one service can 

preclude others (Zedler, 2003; Morse et al., 2012 Brinson and Eckles, 2011).  

The USDA is currently engaged in a nationwide Conservation Effects Assessment 

Project (CEAP) in which one component focuses on wetlands. CEAP–Wetlands aims at 

gathering and synthesizing existing information on wetlands and conservation practices, and 

conducting studies to fill in research gaps to better inform conservation decisions regarding 

wetlands and agricultural areas (Eckles, 2011). CEAP focuses on seven geographic regions, 

including the Piedmont–Coastal Plain, which includes the Delmarva Peninsula. Wetlands in the 

Piedmont–Coastal Plain typically provide one or more of the following services: habitat; 

biodiversity support; enhanced water quality; and greenhouse gas regulation (Brinson and 

Eckles, 2011). Brinson and Eckles (2011) identifed depressional as a dominate wetland type in 

their regional synthesis of the Piedmon–Coastal Plain along with riverine and flats (organic-soil 

and mineral-soil). The role of wetlands in the global carbon cycle forms a topic of particular 
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interest due to growing concerns regarding global climate change and its link to human-induced 

and naturally occurring greenhouse gas emissions. 

2.1.1 Delmarva Bays 

Delmarva Bays are depressional wetlands found only on the Delmarva Peninsula. 

Morphologically, Delmarva Bays share traits characteristic of Carolina Bays: elliptical shape, 

sandy rim, and the northwest-southeast orientation of the major axis ( Stolt and Rabenhorst, 

1987; Fenstermacher et al., 2014). Due to their much smaller size and more circular shape, 

Delmarva Bays are considered a special subset of Carolina Bays. Likely formed by wind 

blowouts, Fenstermacher et al. (2014) hypothesize that the peninsula’s proximity to the 

Laurentide Ice Sheet in the Pleistocene indirectly restricted sizes of Delmarva Bays. 

In their undisturbed state Delmarva Bays are typically forested, although they can 

occasionally be found as natural herbaceous ecosystems (Fenstermacher et al., 2014; Stolt and 

Rabenhorst, 1987). Intensive agricultural activity on the Delmarva Peninsula has led to the 

conversion of wetlands to farmland on a massive scale by draining the Bays (McCarty et al., 

2008; Fenstermacher et al., 2014). Large scale draining of these Bays is contributing to loss of 

biodiversity through destruction of habitat for endangered amphibian and plant species 

(Maryland Department of Natural Resources, 2005). The biggest threats to Delmarva Bays are 

drainage for agriculture, silviculture, and urban development (Tiner et al., 2002). While 

Delmarva Bays are present throughout the peninsula, they are heavily concentrated in the area 

near the Maryland-Delaware border that includes the Choptank River watershed (Stolt and 

Rabenhorst, 1987; Tiner et al., 2002; Maryland Department of Natural Resources, 2005).  

Despite their seemingly isolated nature, natural and historic Delmarva Bays have been 

found to hydrologically connect with other surface waters via ephemeral and intermittent water 
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channels (McDonough et al., 2015). Extensive drainage ditch networks found throughout the 

Delmarva Peninsula provide a link between Bays and streams or rivers (McCarty et al., 2008). 

Ditches provide a constant avenue for the movement of nutrients and sediment from agricultural 

runoff to other waters, but the use of flow control structures may help reduce the export of some 

nutrients (McCarty et al., 2008).  

2.2 Soil Organic Carbon: Importance and Influencing Factors 

 SOC is an essential element for vegetation productivity and a large number of soil 

microorganisms. Benefits of increasing SOC include greater diversity of soil biota and increasing 

soil nutrient availability. The importance of SOC in crop production, coupled with loss of soil 

carbon associated with traditional farming practices has made monitoring and evaluation of this 

soil property of particular importance in agricultural landscapes. A significant portion of 

agricultural sciences, particularly the conservation agriculture subset, is focused on researching 

and advocating farming practices less destructive to the soil, including techniques for preserving 

or increasing SOC. While cropland does have lower SOC stocks than grassland and forest 

(Murty et al., 2002), there is debate regarding the magnitude of differences. For example, 

Wiesmeirer et al. (2012) and Wu (2014) argue that the percent decrease in carbon of cropland 

soils has been routinely over estimated.  

Beyond the role SOC plays in maintaining soil and plant health, concerns regarding 

global warming caused by high carbon dioxide emissions from burning fossil fuel, agriculture, 

and deforestation have increased attention placed on the role of soil in the carbon cycle 

(Edenhofer et al., 2014). Ecosystems in which the rate of organic matter entering the soil is 

higher than the rate of decomposition will increase SOC concentration until equilibrium is 

reached. Soil is responsible for storing a significant portion of the world’s terrestrial carbon 
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(Batjes, 1996), but is not evenly distributed. Disturbed soils—such as agricultural land—are 

considered out of equilibrium and therefore have potential to store a larger amount of carbon 

(Brown, 2016). However, a number of factors may preclude agricultural and other disturbed soils 

from reaching pre-disturbance carbon levels (Bruce et al., 1999).  

With the exceptions of Spodosols, the topmost soil horizons contain the most carbon. 

Organic carbon in wetlands primarily enters the soil via litter biomass becoming available for use 

in the soil through decomposition (Lou and Zhou, 2006). According to the detailed account of 

soil respiration mechanisms and regulators of Lou and Zhou (2006), a number of interconnecting 

factors impact the rate of decomposition and contribute to spatial variation of soil carbon 

content. For example, warm temperatures tend to increase decomposition rates by increasing 

microbial activity, while soil water saturation decreases decomposition rates through limiting 

availability of gaseous O2 (Lou and Zhou, 2006).  

Wetlands tend to have higher SOC concentration than surrounding uplands, largely 

because of their distinctive hydrology (Lou and Zhou, 2006). Due to naturally higher capacities 

of some wetlands to store carbon in the soil, the restoration or creation of wetlands has been 

suggested as an avenue for helping offset some of a nation’s CO2 emissions. Three caveats of 

this avenue are that: (1) the restoration and creation of wetlands can be extremely difficult to 

achieve (Zedler, 2003); (2) disturbed soils can require upwards of a century to reach carbon 

storage equilibrium (Bruce et al., 1999); and (3) at the same time as wetlands act as net sinks of 

atmospheric CO2 they can be net sources of other greenhouse gases, such as CH4 and N2O 

(Bridgham et al., 2006; Morse et al., 2012).  

2.3 Spatial Variation of Soil Organic Carbon  

A wide body of literature exists examining the spatial distribution of SOC with emphasis 
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on topographic attributes. In general, topography is correlated with SOC (e.g., Veneteris et al., 

2004; Thompson et al., 2006; Schwanghart and Jarmer, 2011). Universal correlations between 

individual topographic attributes and horizontal spatial distribution of SOC do not exist, and the 

impact of terrain components can vary within the same landscape decreasing the strength of soil–

landscape prediction models (Thompson et al., 2006; Schwanghart and Jarmer, 2011). Spatial 

variation of soil properties results from a number of compounding factors in addition to 

topography, including climate, organisms, anthropogenic influence, and geologic 

activity/history. Land use, land use history, and land management can be particularly strong 

factors influencing SOC that can overshadow the significance of topography in attempts to 

understand the spatial distribution of this soil property (Veneteris et al., 2004; Bedard-Haughn et 

al., 2006).  

Incorporation of subsurface water system information has the potential to increase the 

prediction accuracy of SOC landscape models. Subsurface hydrologic data is notably missing 

from many such studies (e.g., Veneteris et al., 2004; Thompson et al., 2006; Schwanghart and 

Jarmer, 2011; Moore et al., 1993; McKenzie and Ryan, 1999; Pastick et al., 2014). In a study of 

bog microtopography Weltzin et al. (2001) found vertical distance of vegetation from the water 

table a key determinant in Sphagnum moss productivity—an important component for net 

increase in SOC. Ju and Chen (2005) found that the inclusion of a hydrological submodel 

improved a model of soil carbon distribution across Canada’s wetlands by simulating soil 

moisture patterns for different topographic conditions. Conversely, in a study of wetlands across 

West Siberia, a detailed model of carbon flux and methane emission revealed only very slight 

differences between a uniform and heterogeneous subsurface water system (Bohn et al., 2013). 

Despite a lack of significant or definitive differences between the subsurface water system 
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models, the authors caution dismissal of the heterogenous water table scheme. The findings of 

these studies regarding what impact, if any, subsurface water plays on SOC spatial variability 

illustrate the need for such data to be included in more soil–landscape studies. While information 

concerning subsurface water could provide important additional insight into SOC distribution, it 

is difficult and time intensive data to collect. 

2.3.1 Spatial Distribution of Soil Organic Carbon in Depressional Wetlands 

Depressional wetlands are known for their internally uneven distribution of SOC due to 

their concave shape (Reese and Moorhead, 1996; Craft and Casey, 2000; Bedard-Haughn et al., 

2006). Observed variability occurs both horizontally and vertically, with highest SOC levels 

concentrated in the Bay’s center and in the A horizon, respectively (Reese and Moorhead, 1996). 

The horizontal variation is attributed to: (1) the down slope movement of SOC down basin sides, 

and (2) the collection of water in the Bay’s center. Internal spatial variation in SOC 

concentration can be clearly evident even in a wetland that is intermittently inundated and/or 

saturated to the soil surface.  

While internal variation of SOC in depressional wetlands is attributed to topography (i.e. 

shape), focus on connections with vegetation and land use tend overshadow terrain. Stolt et al. 

(2001) found Palustrine wetlands located at higher elevations had lower SOC levels in Virginia, 

but no real conclusion could be drawn from the observation. This finding, in conjunction with 

the lack of a significant relationship between SOC and elevation when wetlands were grouped by 

vegetation, is by no means conclusive given (1) a sample size of five, (2) the wetlands came 

from a mix of agricultural and non-agricultural areas, and (3) depressional wetlands may not 

have been in the study as Palustrine is a large class of wetlands. When independently 

investigated in different landscapes, land use (Bedard-Haughn et al., 2006) and vegetation (Craft 
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and Casey, 2000) were found to have a significant correlation with variation in SOC.  

In terms of spatial variability of soil carbon among non-bog depressional wetlands, 

relatively little attention appears to focus on these wetlands and the impact of terrain. However, 

it should be noted that depressional wetlands are a category of wetland from the 

hydrogeomorphology classification scheme (Brinson, 1993). Lack of a universal classification 

method and a tendency of some studies to identify wetlands solely by one feature, such as 

vegetation type, means it is very likely more research has been done examining SOC and 

topography among depressional wetlands but it is not readily identified as such. 

2.4 Spectroscopy of Soil Carbon 

Spectral measurements of soil can be taken at three levels: 1) in the lab (lab 

spectroscopy); 2) on the ground in the field (point spectroscopy); and 3) via airborne or satellite 

sensors (imaging spectroscopy). An ever growing body of work also exists on the use of 

spectroscopy in soil science, particularly with regards to soil carbon. In particular, Croft et al. 

(2012) provides a comprehensive overview of optical remote sensing techniques used and 

difficulties faced in the study of SOC and soil organic matter. Numerous spectroscopic studies 

have been conducted in laboratory settings (and some in the field) demonstrating the use of 

reflectance data in estimating SOC amounts and their spatial distributions. Remote sensing of 

soil carbon is typically completed through examination of spectral signatures in the visible and 

near-infrared portions of the electromagnetic spectrum (Bartholomeus et al., 2008). Mid-infrared 

spectroscopy can also be used to help predict SOC outperforming near-infrared accuracy and 

creating more robust models (McCarty et al., 2002; Rossel et al., 2006; McCarty and Reeves, 

2006). Despite the better models produced based on this data, mid-infrared remains much less 

widely used than visible or near-infrared, especially for field data collection, due to the expense 
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of such sensors. 

Through lab spectroscopy, Bartholomeus et al. (2008) demonstrated reflectance in the 

visible portion of the spectrum (4.0-7.0 µm) decreasing as SOC content increases and the shape 

of the spectral signature shifting from convex to concave to flat. Lab spectroscopy provides high 

accuracy estimates of the percentage of organic carbon in soil, but high model accuracy based on 

these data requires the targeted soil to fall within the soil type and mineralogical range of the 

spectral indices library used for calibrating/training the data (Bartholomeus et al., 2008). 

Moisture, shading, and light refracted from other surfaces—a few factors that can be impossible 

to avoid or control outside the lab—can affect soil spectral signatures and interfere with SOC 

estimates (Gomez et al., 2008; Croft et al., 2012). Chang et al. (2005) examined effects of soil 

moisture on near-infrared (NIR) measurements of soil properties, reporting that even small 

increases in moisture can significantly increase the baseline of the spectral signature and 

emphasizing signature peaks at 1400nm and 1900nm. Although the NIR prediction models 

returned different accuracies for carbon estimates between air-dried and moist soil readings, the 

difference was slight. 

Imaging spectroscopy, particularly satellite-based, is less widely used than lab 

spectroscopy to develop SOC prediction models. Satellite-based models can be highly variable, 

yielding very low accuracy (Gomez et al., 2008) or high accuracy (Croft et al., 2012), where R
2
 

is commonly given as an indicator of prediction strength and may not have been validated with 

outside data. Common caveats of using imaging spectroscopy include greater preprocessing 

requirements, spatial resolution limitations, and atmospheric interference. These drawbacks are 

compounded when the objective is to gather information on soil properties but vegetation cover 

mixes with or completely obscures the soil signature. Imaging spectroscopy, where the aim is to 
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study or estimate soil properties, is rarely used outside agricultural areas or other geographic 

regions where vegetation is sparse.  

2.4.1 Wetlands 

Extensive literature exists on remote sensing in wetland studies, and on remote sensing of 

carbon in wetlands. Increasingly remote sensing is used to study wetlands and, in particular, 

estimate wetland carbon storage. However, remote sensing study of wetland carbon is almost 

exclusively confined to above-ground storage. Use of remote sensing to study soil properties is 

generally limited to open or sparsely vegetated areas, which is likely why so few wetland studies 

attempt to use such data to study subsurface carbon storage. 

As a result, very few studies employ spectroscopy to examine wetland soils despite 

potential benefits of such an approach. Bouchard et al. (2003) found NIR reflectivity taken over 

the winter useful in predicting carbon and nitrogen content of leaf litter in salt marshes. VIS and 

NIR-based chemometric models are effective predictors of a number of soil properties, including 

carbon (Cohen et al., 2005). Cohen et al. (2007) found VIS and NIR lab spectroscopy of wetland 

soils from three different ecoregions effective predicting the phosphorous absorption capacity of 

wetland soils.  

Most carbon studies in vegetated areas involving soil are closer to the strategy applied by 

Suchenwirth et al. (2012) which considered estimated carbon as a combination of that stored in 

the soil and of biomass. A non-exhaustive account of imaging spectroscopy of soil carbon 

provided by Anne et al. (2014) illustrates the large number of studies carried out on this subject.  

Due to relationships between moisture and soil carbon, inundation, saturation, and soil 

moisture can be used as proxy measurements of SOC. Inherent in the total carbon estimate 

approach of Suchenwirth et al. (2012) is the assumption that a strong relationship exists between 
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vegetation types and SOC. The study by Anne et al. (2014) using Hyperion and Landsat TM 

imagery to detect and differentiate stable and labile carbon found a correlation between carbon 

and vegetation spectra, thereby supporting the idea that soil properties and vegetation spectral 

reflectance may be related. While hyperspectral models were successful in modeling both forms 

of carbon, there is a wide range of accuracies among the models generated. Although their focus 

was upon phosphorous, Rivero et al. (2007) found that inclusion of satellite-derived spectral 

indices from vegetation in a geospatial model of environmental variables returned higher 

prediction accuracy on the spatial distribution of soil phosphorous in the Florida Everglades. The 

applicability of this method for studying other soil properties remains in question. 

While the presence of dense vegetation can impede use of imaging spectroscopy, not all 

wetlands feature dense plant growth. Point spectroscopy could be used as a less destructive and 

quicker method for gathering soil data from wetlands that allows for more intensive sampling of 

vulnerable ecosystems. Field and lab based studies of wetland soils, while useful on their own, 

could be used to create spectral libraries to increase prediction accuracy of imaging 

spectroscopy-based models.  
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3 Topographic-based Non-Linear Modeling of Soil Organic Carbon Stocks Among 

Agriculturally Converted Delmarva Bays 

3.1 Introduction 

Delmarva Bays are a dominant feature of the Eastern Shore found throughout the 

peninsula. While estimates regarding the number of Delmarva Bays vary widely, the latest 

estimate based on LiDAR data is around 17,000 in the Maryland and Delaware sections of the 

Delmarva Peninsula (Fenstermacher et al., 2014). Due to the highly agricultural nature of the 

Delmarva Peninsula the majority of Delmarva Bays has been converted into crop- and pasture 

land. While some studies have been done on Delmarva Bays and soil carbon, they have focused 

on the internal variation of soil carbon. Variation of soil carbon stock among the Bays has yet to 

be examined.  

Spatial variation of soil carbon at the field level has been the focus of a number of studies 

in and around the Delmarva area. Higher concentrations of soil carbon are typically confined to 

lower areas in the fields, which for sites located on the Eastern Shore may be agriculturally 

converted Bays. (‘Agriculturally converted bays’ refers to Delmarva Bays which are currently 

being used for cropland. Agriculturally converted Bays may or may not be prior converted 

croplands as defined in Section 514.30 of the National Food Security Act Manual in which 

wetlands have been altered and used for commercially growing crops prior to December 23, 

1985 (USDA Natural Resources Conservation Service, 2010)). Attempts have been made to link 

specific topographic factors with soil carbon distribution, but all correlation found so far has 

been weak and poorly performing topography based predictive models have resulted (e.g., 

Veneteris et al., 2004; Hively et al., 2011). 

While Veneteris et al. (2004) used linear modeling they suggested the use of non-linear 

models as a potential avenue for predictive modeling in low relief environment. Linear models 
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are most commonly used (Veneteris et al., 2004; Schwanghart and Jarmer, 2011; Moore et al., 

1993), but non-linear models have been used and suggested by others as a superior means for 

simulating the relationship between topography and soil properties (Thompson et al., 2006; 

McKenzie and Ryan, 1999). This study focused on agriculturally converted Delmarva Bays and 

aims to: (1) determine the variation in SOC stock among these Bays, (2) examine the relationship 

between terrain-related attributes and SOC stock in Bays, and (3) assess the performance of five 

non-linear models to predict SOC stocks among Bays. 

3.2 Methods 

3.2.1 Field Sampling 

Field sampling took place over the last two weeks of December 2015 in the Maryland 

portion of the Upper Choptank River watershed (Figure 1). Prior to fieldwork, Delmarva Bays 

were identified based on their morphology using LiDAR-derived DEMs of the area. For the sake 

of accessibility, Bays of interest were confined to those on properties owned by people who had 

had previously granted site access for USDA related studies. Twenty-eight Bays from six 

properties were sampled. 

 
Figure 1. Map of study area in the Delmarva Peninsula. Light blue represents the Tuckahoe 

Creek watershed and dark blue the Upper Choptank River watershed. The watersheds overlap 

Kent County, DE (outlined in purple), and Talbot, Caroline, and Queen Anne’s counties in MD 

(outlined in orange).  
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Soil was sampled down to one meter at three spots in each Bay using a 3.25 inch 

diameter bucket auger. Three points within each basin were arbitrarily selected for sampling. 

Major soil horizons were identified and one or two samples taken of each one for later carbon 

analysis. Two samples were taken from A horizons thicker than 20 cm (one near the top and one 

near the bottom). The percentage of SOC for these samples was then averaged to give a more 

accurate representation of the horizon’s carbon. The depth to freestanding water, if encountered, 

was also recorded. A total of 350 horizons were recorded for the 84 sampled pedons. Eleven soil 

series were sampled in all with over half coming from three series, Lenni, Ingleside, and 

Woodstown (Figure 2). Soils were predominately clay loam. 

 

Figure 2. Percentage of soil samples that belong to each soil series. 

3.2.2 Soil Organic Carbon Analysis 

All soil samples were air dried, powder ground, and run through a 2 mm sieve before 

analysis. Total carbon and total organic carbon were determined via combustion analysis using a 

VarioMax CN Elemental Analyzer. To convert SOC from point data to carbon stock a 

pedotransfer function (PTF) was utilized to obtain bulk density.  
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3.2.2.1 Bulk Density Pedotransfer Function 

Organic carbon/organic matter, soil texture, and depth are generally considered to be the 

biggest factors affecting bulk density. A bulk density pedotransfer function (PTF) for the study 

area’s region was created based on training data gathered from Fenstermacher (2011) and the 

NRCS National Soil Service database. Only horizons from soil series sampled in this study and 

accompanied by SOC data were included. From the data available for use as the training dataset 

four horizons were discarded as outliers in relation to horizons collected  in this study—O, 2Bx, 

Bhs, and ^AC. A horizons situated directly below Ap horizons generally have higher bulk 

density than other A horizons. As the only A horizons found in the data collected for this study 

were directly below an Ap horizon, all A horizons not directly under an Ap horizon were 

excluded from the training data. All horizons missing SOC data were also excluded. As only four 

horizon classes were present in the data collected during this study the horizon designation 

groups were largely confined to divisions by major soil horizon and t horizons. The remaining 

161 horizons of the training data were consolidated into seven horizon designation classes (Table 

1). The training dataset and this study’s data were grouped by horizon class into three soil texture 

groups—sand, clay, and loam (Table 2). 

Table 1. Horizon designations for the bulk density pedotransfer function. 

Consolidation of Horizons Sampled in Previous Studies Horizons Sampled in this Study 

Ap: Ap, Ap1, Ap2 

A or AB: A, 2A, A1, A2, A3, Ab1, Ab2, Ag, AE, AB, ABg, A/B 

CB + C: C, C1, C2, Cg, Cg2, 2C, CB, CBg, 3CBg 

BC: BC, 2BC, BCg, BCg1, BCg2, 2BCg 

B: B, Bg, Bg1, Bg2, Bg3, 2Bg, 2Bg2, 3Bg3, 2Bg3, Bgb1, Bw, 

Bw1, Bw2, Bw3, 2Bw’2, 3Bw’3 

Bt + BCt: Bt, Bt1, Bt2, Bt3, Btg, Btg1, Btg2, Btg3, 2Btg1, 2Btg2, 

BCt, 2BCt, BCtg 

E: E, Eg, EB, E/A 

Ap: Ap, Ap1, Ap2 

A 

B: B, B1, B2, B3, Bg, Bg1, Bg2, Bg3 

Bt: Bt, Bt1, Bt2, Btg, Btg1, Btg2, Btg3, Btg4 
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Table 2. Number of samples by horizon and texture class 

Training Data 
  

Number of Horizons This Study’s 

Data 
Number of Horizons 

Texture 

 

Texture  

Horizon S L C Total Horizon S L C Total 

Ap 0 43 0 43 Ap 1 92 0 93 

A or AB (directly under Ap) 0 5 0 5 A 1 56 0 57 

B 13 46 1 60 B  14 114 0 128 

Bt + BCt 7 29 2 38 Bt  0 94 0 94 

BC 12 4 0 16      

CB + C 7 5 0 12      

E 2 3 0 5      

 

Bulk density and SOC mean and standard deviation were calculated for each horizon by 

texture group. Analyses were run in RStudio version 3.3.1. When SOC is used in a bulk density 

PTF regression it is usually transformed using a log or square root (see De Vos et al. (2005, 

p.502) and Kaur et al. (2002, p. 852) for tables listing equations used in various studies). 

Untransformed, log10, ln, and square root SOC were run in single regression models for bulk 

density and the best method selected (Table 3). Square root was the best SOC transformation 

based on root mean squared error (RMSE) and R
2
 value. To determine correlation of horizon, 

texture class, depth (to middle of horizon), and SOC with bulk density, a number of additional 

regression models were run (Table 4). SOC and depth were the only variables of significance. 

Table 3. Comparison of SOC transformations for modeling training data bulk density. 

Regression Models  

(B and BC separate) 

Multiple 

R² 

Adjusted 

R² 

RMSE Significant variables 

(p<0.05) 

lm(BulkDensity ~ SOC) 0.45 0.45 0.13 SOC 

lm(BulkDensity ~ sqrtSOC) 0.48 0.48 0.13 sqrtSOC 

lm(BulkDensity ~ LnSOC) 0.41 0.40 0.14 LnSOC 

lm(BulkDensity ~ Log10SOC) 0.41 0.40 0.14 Log10SOC 
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Table 4. Regression model statistics of training before B and BC horizons were combined 

Regression Models  

(B and BC separate) 

Multiple 

R² 

Adjusted 

R² 

RMSE Significant variables 

(p<0.05) 

lm(BulkDensity ~ sqrtSOC) 0.48 0.48 0.13 sqrtSOC 

lm(BulkDensity ~ Texture) 0.04 0.03 0.18 None 

lm(BulkDensity ~ Horizon) 0.08 0.04 0.17 None 

lm(BulkDensity ~ Depth) 0.09 0.09 0.17 Depth 

lm(BulkDensity ~ sqrtSOC + Depth) 0.50 0.49 0.13 sqrtSOC 

Depth 

 

Due to the similarity in bulk density and SOC, the BC and B horizons of the training data 

were combined and the regression models were run again (Table 5). The consolidation of 

horizons resulted in lower R
2
 values and higher RMSE except for SOC and the combined SOC 

and depth model. The PTF for predicting bulk density selected for this study was the multiple 

regression using SOC and depth based off the B and BC consolidation of the training data.  

Table 5. Regression model statistics of training after B and BC horizons combined 

Regression Models  

(B and BC separate) 

Multiple 

R² 

Adjusted 

R² 

RMSE Significant variables 

(p<0.05) 

lm(BulkDensity ~ sqrtSOC) 0.51 0.51 0.13 sqrtSOC 

lm(BulkDensity ~ Texture) 0.04 0.02 0.18 None 

lm(BulkDensity ~ Horizon) 0.07 0.05 0.18 None 

lm(BulkDensity ~ Depth) 0.09 0.08 0.18 Depth 

lm(BulkDensity ~ sqrtSOC + Depth) 0.54 0.53 0.12 sqrtSOC 

Depth 

 

While SOC is widely acknowledged as being strongly correlated with bulk density, 

efforts were made to increase prediction accuracy of the bulk density PTF by incorporating 

horizon designation and soil texture class. Run individually and as part of a standard multiple 

linear regression, horizon class and texture group were not significant factors in predicting bulk 

density. In working to create a model for predicting bulk density in pedons when the bulk density 

of some horizons were missing and SOC data unavailable, Sequeira et al. (2014) used variables 
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including soil textural class and horizon designation in a random forest model. For their model 

predicting bulk density, textural class and horizon were found be the second and fourth most 

important variables, respectively. However, known bulk density of some horizons within the 

pedon of interest was by far the strongest factor in determining the missing values. Random 

forest was not applicable for use in the current study given the small data size. The use of percent 

sand and percent clay may have increased the prediction accuracy of the model, but such lab 

determined data was missing from much of the training data and only tactile determination of 

soil class was done for the data gathered in this study due to time constraints. 

Prediction power of the selected model had a mean square error of 0.016 using leave-one-

out cross-validation (cv.lm function of the ‘DAAG’ package set with folds equal to the number 

of observations). Application of the PTF to this study’s data could not be validated against 

measured bulk density. Accuracy of bulk density predictions for this study’s data were not 

assumed to be significantly lower than the cross validation results of the training data given (1) 

the training data used to build the PTF came from the same region, and (2) there were similar 

distribution ratios of horizon and texture class between the two datasets.  

3.2.2.2 Mass Carbon Stock 

 In order to estimate the mass of carbon within each Delmarva Bay the percent SOC by 

weight was converted into Mg/ha for each sampled point using equation one from Wiesmeier et 

al. (2012) where volumetric fraction of rock fragment is zero: 

 SOC Stock  Mg ha      SOC concentration   BD   depthn
i 1                       [EQ.1] 

Where n is the number of soil horizons identified and sampled, SOC concentration is in g/kg, BD 

is bulk density in g/cm
3
, and depth is horizon thickness in cm. The SOC stock for each Bay was 

calculated as the average of the three points sampled within the basin.  
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3.2.3 Topographically Related Metrics 

LiDAR-derived DEMs for the Maryland counties containing the Upper Choptank River 

watershed were obtained from MD iMap, sinks were filled to create a depressionless DEM, and 

drainage ditches were masked. Due to the extensive research conducted on SOC and topography 

a wide range of terrain parameters have been incorporated to study this correlation. Commonly 

used topographic attributes relevant to this study are listed in Table 6. Due to this study’s focus 

on depressional wetlands, additional variables to those in Table 6 were examined. All 

topographically related metrics used in this study are listed in Table 7.  

Table 6. Common topographic attributes used to study spatial distribution of SOC. 

Topographic Attributes Studies 

Curvature 

- Profile 

- Planar 

- Tangential 

- Total 

Moore et al. (1993); 

McKenzie and Ryan (1999); 

Veneteris et al. (2004); 

Thompson et al. (2006); 

Schwanghart and Jarmer (2011) 

Wetness Index 

- Topographic Wetness Index (TWI) 

Moore et al. (1993); 

Veneteris et al. (2004); 

Thompson et al. (2006); 

Schwanghart and Jarmer (2011); 

Pastick et al. (2014) 

Slope/Gradient Moore et al. (1993); 

McKenzie and Ryan (1999); 

Veneteris et al. (2004); 

Thompson et al. (2006); 

Schwanghart and Jarmer (2011); 

Pastick et al. (2014) 

Slope length/Flow length Moore et al. (1993); 

Veneteris et al. (2004); 

Thompson et al. (2006); 

Schwanghart and Jarmer (2011) 

Elevation Moore et al. (1993); 

McKenzie and Ryan (1999); 

Thompson et al. (2006); 

Pastick et al. (2014) 

Upslope Area/(Specific) Catchment Area Moore et al. (1993); 

McKenzie and Ryan (1999); 

Thompson et al. (2006); 

Schwanghart and Jarmer (2011) 
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Table 7. Topographically related metrics used in this study. 

Categorical Data Continuous Data 

Known Drainage 

Covered Drains 

Pipes 

Tile Drains 

Ditches 

Redox Iron Concentrations 

Grey Redox Depletions 

Free Standing Water 

Samples Soil Series 

Bay Area (BA) 

Average Basin Elevation 

Bay Slope Maximum                                                                             

Ditch Width Average 

Ditch Depth Average 

Upslope Catchment Area (UCA)  

Upslope Catchment Area to Bay Area Ratio (UCA:BA) 

Aquifer Thickness (max, min, mean) 

Upslope Catchment Area (min, max, mean) 

Upslope Catchment Area Maximum Flow Length                                                                                     

Upslope Catchment Area Curvature (min, max, mean):  

- Total, planar, platform, tangential 

Bay Curvature (min, max, mean): 

- Total, planar, platform, tangential 

Topographic Wetness Index (TWI)                                                            

Terrain Characterization Index (TCI) 

NDVI (min, max, mean) 

 

The following terrain metrics were calculated from a depressionless DEM using ESRI’s 

ArcGIS version 10.3: Bay area, elevation, width and depth of ditches, upslope catchment area, 

upslope catchment area to basin area ratio, slope, upslope flow length, curvature of Bays and 

curvature of upslope area (total, planar, platform, and tangential), topographic wetness index 

(TWI), and terrain characterization index (TCI). Tangential curvature was calculated using 

equation two following Thompson et al. (2006): 

                                                                        [EQ. 2] 

Where Kt is the tangential curvature, Kc is the planar curvature, and S is the slope in percent. 

 TWI is the most common wetness index used in studies of soil carbon distribution as a ratio of 

specific catchment area to slope following equation three from Beven and Kirkby (1979):  

          
 

    
                                                           [EQ. 3]  

Where α is the specific upslope catchment area and β is the slope (in percent). TCI, though less 

commonly used than TWI, was included in this analysis following the study by Thompson et al. 
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(2006) that found TCI to be negatively correlated with soil organic matter. TCI is an estimate of 

soil transport capacity using equation four from Park et al. (2001):  

                                                                                           [EQ.4] 

Where α is the specific upslope catchment area and K is total curvature. 

Additional topographically related metrics not derived from the DEM included in the 

analysis were normalized difference vegetation index (NDVI); aquifer thickness; known 

drainage; type of drainage; soil series; and presence or absence of redox iron concentrations, 

grey redox depletions, and free standing water within the first meter. NDVI is a measure of 

photosynthetic activity (greenness), which is affected by a number of factors including water 

availability. NDVI was included to assess its use in predicting SOC levels as an indicator of Bay 

wetness under the assumption that wetter Bays contain a higher concentration of SOC. While 

NDVI is not frequently used as a predictor of soil properties its use is not unprecedented (e.g., 

McKenzie and Ryan, 1999). NDVI was calculated in ESRI’s ArcGIS version 10.3 from 2013 

NAIP imagery of the study area.  

Although a hydrologic study of the subsurface water system was beyond this study, an 

aquifer thickness map for the Delmarva Peninsula was recently made available for use in this 

research. The map is a raster layer of the thickness of the unconfined surficial aquifer underlying 

the Delmarva Peninsula (Denver and Nardi, 2015). Thickness refers to the difference between 

the surface of the land and the bottom of the aquifer. 

Seven basins had clear evidence of a drainage system: four had ditches, and three had 

covered drains leading to subsurface pipes situated at the basins’ lowest point. Water was found 

within the first meter in seven Bays, but only four of these had visible signs of artificial drainage.  
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Seventy of the 84 total soil profiles taken had redoximorphic iron concentrations within 

the first meter (Figure 3). Seventy-eight profiles had grey redoximorphic depletions within one 

meter. While redoximorphic features are indicative of long-term, long-duration water table 

height, absence of these features is not proof hydrologic flux does not bring water into the first 

meter. The duration of time the water table is elevated may be shorter than needed to produce 

redoximorphic features. A wide rang in diversity was seen in the soil profiles among the Bays 

sampled for this study (Figure 4). 

                   

Figure 3. Redoximorphic features found in some of the profiles: soil horizons with heavy redox 

iron concentration (left), and horizons with oxidized root channels in a depleted matrix (right). 

 

Figure 4. Photo of soil profiles showing the range in soil variation found among the sampled 

Bays. Markers indicate augered depth in 20 cm increments.  
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3.2.4 Carbon–Terrain Analysis 

Although linear regression tends to be the most widely used method for soil–landscape 

modeling, models that can handle nonlinear data may produce more accurate predictions 

(Thompson et al., 2006). Veneteris et al. (2004) found no strong correlation between topographic 

parameters and SOC concentration in agricultural fields situated within a low relief area using 

stepwise regression and suggested non-linear modeling may yield different results. Generalized 

linear models (GLM) have been used to model spatial predictions of soil properties—including 

carbon—with respect to a wide range of environmental factors (McKenzie and Ryan, 1999), and 

have been mentioned as a model with potential for studying the relationship between soil 

properties and topography (Thompson et al., 2006). While GLM has been explicitly mentioned, a 

number of non-linear statistical models exist that may prove useful in predictive modeling of 

soil. 

3.2.4.1 Collinearity of Variables 

As a high level of correlation was expected to be present in the terrain attributes, 

especially among the curvature variables, correlation analysis and condition index (CI) were run. 

All analyses were carried out using RStudio version 3.3.1 software. Correlation analyses were 

performed to assess the strength and direction of the relationship among the 50 terrain attributes 

and between each terrain attribute and Bay carbon stock. Due to the mix of continuous and non-

continuous data Pearson’s and Spearman’s rank correlation coefficients were used with a 

standard 0.05 p-value. The extent of multicollinearity in the terrain data was assessed using the 

CI (colldiag function of the ‘perturb’ package). Collinearity usually refers to the presence of two 

or more variables that are measurements of the same hidden variable (Dormann et al., 2013). The 

presence of highly correlated variables can adversely affect model predictions by over 
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emphasizing some variables and masking the importance of others. While correlation is different 

referring to interdependence between variables, high correlation between variables can be 

interpreted as collinearity (Dormann et al., 2013). In this study high correlation was assumed to 

indicate high collinearity due to use of variables which were all terrain attributes or were related 

to topography. 

A cluster-independent method of removing sources of high collinearity among the 

independent variables prior to analysis was used based on methods discussed by Dormann et al. 

(2013). Two maximum CI thresholds, 30 and 10, were used to identify significant collinearity 

among the examined variables, and a maximum absolute value of correlation coefficient 

threshold of 0.7 (|r|>0.7) was used. First, correlation coefficients were used to reduce the original 

50 variables down to 16. Then, CI was run on these 16 to get two more reduced datasets (one 

using a CI threshold of 30 and one using 10).  

3.2.4.2 Non-Linear Models 

The selected four datasets of variables were used using five non-linear models: GLM 

with LASSO regularization, GLM with ridge regularization, generalized additive model (GAM) 

with no penalization, GAM with cubic splice, and partial least squares regression (PLSR). 

LASSO and ridge regularization were run for comparison of the GLM since LASSO can perform 

variable selection and ridge is more resistant to collinearity. Due to the flexibility of GAM and 

its ability to overfit data, an unpenalized and cubic spliced version of this model was run for 

comparison. All models were validated using leave-one-out cross-validation. 

GLM, GAM, and PLSR were selected for comparison due to their ability to model non-

linear relationships and varying robusticity to highly collinear data (see Dormann et al. (2013) 

for an overview of correlation, collinearity, and their effects on non-linear predictive models). 
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Models were compared based on goodness of fit (R
2
) and root mean square error (RMSE) 

calculated using the following equations: 

       -  
    -     

 

     -   
                                                    [EQ. 5] 

        
     -     

 

  -  
                                                   [EQ. 6] 

Where    is the observed SOC stock concentration,     is the predicted SOC stock concentration, 

  is the mean of the observed SOC stock concentration, and n is the number of observations. The 

number of components for PLSR was selected based on the minimum PRESS statistic. GLM 

predictions were generated based on the minimum lambda. For the purpose of this study R
2
 was 

used as an indicator of each model’s predictive strength so that performance among models 

could be compared. While all R
2
 values were the product of leave-one-out cross validation, data 

from all sampled Bays were used as model inputs. As a result, no verification of actual accuracy 

of predictions for Bays outside the 28 sampled for this study could be calculated.   

3.3 Results and Discussion 

3.3.1 Soil Organic Carbon Variation Among Delmarva Bays  

Overall concentration of SOC within the first meter ranged from 0.25% to 2.2%, using a 

weighted average for differences in horizon thickness. In general, the top horizon contained the 

greatest concentration of carbon. The difference in carbon concentration between the top horizon 

and the horizon with the greatest percentage of carbon was less that 0.90% for all but four 

profiles. There were eight sample locations (5 Bays) in which the top horizon did not contain the 

highest concentration of SOC.  Low SOC concentration  within the first meter was found for 

these eight sample locations (17.8–39.3%). Even including these eight points, on average, 

approximately 50% of the  SOC stock within the first meter was situated in the top horizon for 
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the 28 sampled Bays (Table 8). SOC stocks among the sampled Bays varied widely ranging from 

approximately 50 Mg/ha to 219 Mg/ha. The range in carbon stock falls within that found by 

Fenstermacher (2011), but the mean in this study is substantially lower—93 Mg/ha compared to 

200 Mg/ha. The higher mean found by Fenstermacher (2011) is unsurprising given that study’s 

inclusion of natural Delmarva Bays and that decreases in carbon are associated with land 

conversion to agriculture. 

Table 8. Summary statistics regarding variation in SOC concentration and horizon thickness of 

the top most horizons for all sampled points, and variation in SOC stock among sampled Bays.  

 SOC within Top Horizon  

(% of SOC stock within first meter) 

Top Horizon 

Thickness (cm) 

Average SOC Stock 

(Mg/ha) 

Minimum 18.5 13 49.5 

Maximum 83.4 53 219.2 

Mean 49.8 25 93.2 

Median 46.6 20 84.8 

Standard Deviation 15.6 8 41.3 

Range 64.8 40 169.6 

Bays sampled in this study range in size, but variation in SOC stock can only be partly 

attributed to differences in Bay area. A Pearson’s correlation of 0.3 was found between Bay area 

and SOC stock, where SOC stock is the average from the three sampled points within each Bay 

and reported as SOC per unit area (Mg/ha) based on a 54.11 cm
2
 sampled area for each point. 

The Bays sampled for this study had areas ranging from 0.44 ha to 3.52 ha with a mean of 1.58 

ha and standard deviation of 0.82 ha making it representative of the majority of Delmarva Bays 

in terms of size (Fenstermacher et al., 2014). There was one extreme outlier with an area of 9.82 

ha formed from the overlap of at least three Bays. The three Bays with the highest SOC stock—

219.2 Mg/ha, 132.4 Mg/ha, and 114.6 Mg/ha—were all ones in which the highest concentration 

of SOC was found below the topmost soil horizon at two or more of the Bays’ sample locations. 

While Weismeier et al. (2012) found sample depth in agricultural land to affect soil carbon 

estimates, their advocacy for sampling down to the parent material and measuring all soil 
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parameters is an idealized method for determining ‘true’ soil carbon stock. Sampling down to the 

parent material is impractical for areas like the Delmarva Peninsula where the C horizon is more 

than two meters below the ground surface (Fenstermacher, 2011). Although the carbon stock 

estimates in this study are based on samples that did not reach the parent material, samples were 

taken down to one meter where the majority of soil carbon is stored (and approximately the same 

depth where the parent material began at the Weismeier et al. (2012) study site).  

3.3.2 Collinearity and Variable Selection  

Using the results of Pearson’s correlation coefficient, the 24 curvature variables were 

pared down to eight (one variable for Bay and upslope area total, planar, profile, and tangential 

curvature). Minimum bay tangential curvature was the first variable selected because it had the 

strongest relationship to Bay SOC stock. The remaining seven curvature variables were selected 

in descending order of the strength of their correlation to bay SOC stock. Selection of the 

variable was also contingent on an absence of a strong correlation (   ≥0.7) with previously 

chosen variables. A CI was run after the eight curvature variables were chosen to assess 

multicollinearity. The CI was over 30 (the maximum value for collinearity), but fell under the 

threshold with removal of the minimum Bay profile curvature. 

A number of the categorical data are highly correlated to a number of other terrain 

attributes, but had very little relationship to Bay SOC stock. Only two of these variables—known 

drainage and ditches—have a strong relationship with SOC stock at or over the desired 95% 

confidence interval. Known drainage was chosen over ditches for its higher correlation to SOC 

stock and strong relationship with a number of excluded variables. Lacking significant 

correlation with known drainage and the rest of the terrain attributes, maximum aquifer thickness 

was selected to represent subsurface hydrology due to a greater correlation to SOC stock than 
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found for the minimum or average. All aquifer values had weak negative correlation with SOC 

stock suggesting either aquifer thickness has little influence on soil carbon or the estimates of 

aquifer thickness were not calculated at a scale that makes this data meaningful for this type of 

Bay level analysis.  

Based on 2013 NAIP taken over the summer, maximum NDVI is positively correlated 

with Bay SOC stock. Minimum NDVI and average NDVI are both negatively correlated with 

Bay SOC stock. While rainfall can vary significantly even over relatively small areas, reception 

of precipitation was assumed to be equivalent for all Bays. Of the three NDVI value, average 

Bay NDVI was chosen for inclusion in the models due its higher correlation to Bay SOC stock.  

TWI and TCI are highly correlated with TCI chosen for inclusion in the analysis due a 

slightly stronger correlation to Bay SOC stock and the high correlation between TWI and the 

average Bay planar curvature. Bay area (BA), upslope catchment area (UA), and the UA to BA 

ratio do not have high correlation with SOC stock. Despite the higher r value of Bay area with 

SOC stock the UA to BA ratio was selected under the assumption higher values for this variable 

are linked to a higher volume of surface water runoff from precipitation entering the Bay relative 

to Bay size and hence greater SOC stock. Maximum flow path was excluded due to strong 

correlation with UA to BA ratio and a weak relationship to SOC stock. Both Bay slope variables 

were removed due to high correlation with curvature variables that had stronger relationships to 

SOC stock. Bay slope maximum was selected over Bay slope average due to a higher correlation 

with SOC stock. Ditch depth average was selected over ditch depth width for the same reason.   

With this refined data set of 16 variables (Table 9), a CI was run before proceeding with 

the carbon–terrain analysis. As the CI returned high values (>80) variables, all attributes 

weighted more than 0.7 for CI’s over 30 were removed and the CI run again. This process was 
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repeated until the highest CI fell below 30 with 11 variables remaining. Variables continued to 

be removed in this method until the highest CI fell below 10 with 7 attributes left (Table 9).  

Table 9. Terrain attributes with the reduced datasets of 16, 11, and 7 variables. 

16 Variables 11 Variables 7 Variables 

Ditch Depth Average (m) Ditch Depth Average (m) Ditch Depth Average (m) 

Elevation (m) Upslope Area to Bay Area ratio Upslope Area to Bay Area ratio 

Upslope Area to Bay Area ratio Bay Slope Max (percent rise) Upslope Total Curvature Average 

Average NDVI Upslope Total Curvature Average Upslope Profile Curvature Average 

Max Aquifer Thickness (m) Upslope Profile Curvature Average Bay Planar Curvature Average 

Bay Slope Max (percent rise) Bay Total Curvature Max Upslope Flow Path Length Max  

Upslope Total Curvature Average Bay Planar Curvature Average Known Drainage 

Upslope Planar Curvature Max Bay Tangential Curvature Min  

Upslope Profile Curvature Average TCI Average  

Upslope Tangential Curvature Max Upslope Flow Path Length Max   

Bay Total Curvature Max Known Drainage  

Bay Planar Curvature Average   

Bay Tangential Curvature Min   

TCI Average 

Upslope Flow Path Length Max 

  

Known Drainage    

Most of the resulting variables in the refined datasets have been used in previous soil–

landscape models. Definitions of the 16 variables are provided in Table 13. Some studies that 

have used these 16 variables are listed in Table 10 and 11. Four of the 16 variables were not used 

in any of the soil–landscape studies reviewed in Tables 10 or 11: upslope area to Bay area ratio, 

maximum aquifer thickness, ditch depth average, and known drainage.  

Upslope area to Bay area ratio was not explicitly used in the studies examined here, but 

catchment area was a common input (refer back to Table 6). Given the focus of this study on 

topographically enclosed depressional landforms upslope catchment area to Bay area ratio was 

considered to provide catchment area data that were normalized for basin area. As discussed in 

the previous chapter, data on subsurface water is commonly missing from soil–landscape 

modeling, but has the potential to increase model predictive accuracy. In the absence of 

hydrologic groundwater data, aquifer thickness, ditch depth, and known drainage were used to 

provide information on Bay wetness and the relationship of the Bays to groundwater. Aquifer 
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thickness of the surficial aquifer was used in place of depth to the top of the surficial aquifer 

(from the ground surface) as this data was unavailable for the sampled Bays. 

Table 10. Definitions of the 16 variables from the original reduced dataset and previous soil–

landscape modeling studies in which they have been used. 

16 Variables Definition Previous Studies 

Elevation 
Bay basin height above sea-

level 

Moore et al. (1993); 

McKenzie and Ryan (1999);  

Thompson et al. (2006) 

 Pastick et al. (2014) 

Upslope Area to Bay Area Ratio 
Ratio of upslope catchment 

area to Bay area 
 

Average NDVI 
Average NDVI of Bay 

(excluding ditches) 
McKenzie and Ryan (1999) 

Maximum Aquifer Thickness 
Maximum depth from land 

surface to aquifer bottom 
 

Bay Slope Max (percent rise) Steepest slope in the Bay 

Moore et al. (1993); 

McKenzie and Ryan (1999); 

Venteris et al. (2004); 

Thompson et al. (2006); 

Schwanghart and Jarmer (2011);  

Pastick et al. (2014) 

Total Curvature: 

- Upslope Average 

- Bay Maximum 

Combination of horizontal and 

vertical curvature 

See Table 14 

Planar Curvature: 

- Upslope Maximum 

- Bay Average 

Horizontal curvature 

Profile Curvature:  

- Upslope Average 
Vertical curvature 

Tangential Curvature: 

- Upslope Maximum 

- Bay Minimum 

Measure of local flow 

convergence (planar curvature 

times slope gradient) 

TCI Average 
Average soil transport capacity 

of upslope area 
Thompson et al. (2006) 

Upslope Flow Path Length Max 

Maximum flowpath for surface 

water in the upslope catchment 

area 

Moore et al. (1993); 

Venteris et al. (2004); 

Thompson et al. (2006); 

Schwanghart and Jarmer (2011) 

Ditch Depth Average 
Average depth of ditches 

running through Bays 

 

Known Drainage 

Presence or absence of obvious 

evidence of anthropogenic 

drainage in the Bay (e.g., 

ditches, covered grates leading 

to underground pipes) 

 

 



33 | P a g e  

 

Table 11. Previous soil–landscape studies that have used curvature as topographic attributes 

and the types of curvature examined. 

Moore et al. 

(1993) 

McKenzie and Ryan 

(1999) 
Venteris et al. (2004) 

Thompson et al. 

(2006) 

Schwanghart and 

Jarmer (2011) 

Profile Profile Profile Profile Profile 

Planar Planar Planar Planar Planar 

 Tangential Cross sectional Tangential  

  Longitudinal Total  

  Maximum, minimum, 

and mean in any plane 

  

 

According to Smedema et al. (2004) in their handbook/textbook on modern land 

drainage, good drainage engineering and management requires attention to subsurface hydrology 

and topography. Moderate to high correlation was found between SOC stock and known 

drainage (r = 0.495) and SOC and average ditch depth (r = 0.736). That either variable could 

achieve a correlation coefficient greater than 0.3 given the very low correlations of most of the 

other variables to SOC stock may be significant. One possibility could be that deeper average 

ditch depth and the obvious presence of anthropogenic drainage systems are linked to wetter 

Bays due, in part, to the Bay basin being closer to the top of the surficial aquifer. Alternatively, 

the relatively strong correlations to SOC stock may be artifacts of the small sample size (7 Bays 

with known drainage and 4 Bays with ditches). Drainage of these Bays may not have been 

explicitly planned or designed with regards to topography or subsurface water as advocated by 

Smedema et al. (2004).  

3.3.3 Carbon–Terrain Analysis 

 GLM, GAM, and PLSR models were run using 16, 11, and 7 variables (Table 12). GLM 

and PLSR were also run using all of the original variables, but GAM was unable to handle 50 

variables for only 28 observations. All data collected for this study was input into building the 

five models. Despite running leave-one-out cross validation, high R
2
 values are used as an 
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indication of potential predictive power or accuracy. While comparison of model performance in 

this section is based on R
2
, there has been no outside validation using additional data. 

GLM with ridge regularization greatly out performed LASSO. While LASSO did return 

R
2
 values greater than ridge, examination of the selected variables using LASSO showed only 

variables relating to ditches were used, making this model useless for Bays lacking ditches. 

Ridge regularization of GLM forced the model to assign values to all variables making this 

model more accurate and useful. GLM ridge performance is negatively impacted by collinear 

variables, but a CI threshold of 30 is sufficient to return fairly strong prediction accuracy. Due to 

the nature of the terrain attributes, i.e., overall weak correlation to SOC stock, as few variables 

should be removed as possible. A low CI threshold of 10 begins to decrease model fit by 

removing too many variables when compared with a CI threshold of 30. 

Table 12. Statistics for GLM, GAM, and PLSR predictive models of SOC stock. The number of 

variables that produced the best goodness of fit (R
2
) for each model is italicized.  

GLM, LASSO GLM, Ridge 

Variables 
Percent 

Deviance 
R

2 
RMSE Variables 

Percent 

Deviance 
R

2 
RMSE 

7 0.378 0.378 7.4 7 0.402 0.402 6.7 

11 0.378 0.378 7.4 11 0.599 0.599 6.4 

16 0.439 0.439 7.2 16 0.015 0.154 7.7 

All 0.499 0.499 6.9 All 0.031 0.221 7.2 

 

GAM Models 

Variables 
Non-penalized 

Variables 
Cubic Splice 

R
2 

RMSE R
2 

RMSE 

7 0.674 4.6 7 0.632 6.0 

11 0.784 7.6 11 0.679 6.6 

16 0.882 4.9 16 0.434 7.8 

 

PLSR 

Variables Components Min. PRESS Statistic RMSEP R
2 

RMSE 

7 2 51712.1 42.9 0.005 8.4 

11 2 40458.9 38.0 0.202 7.7 

16 2 45744.6 40.4 0.326 5.8 

All 2 45445.4 40.3 0.370 5.3 
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Unlike the other models PLSR does not look at the relationship between the independent 

and dependent variables, but acts in a manner more like principal component analysis (PCA). 

Contrary to the prediction of Dormann et al. (2013) regarding variables with weaker correlation 

the use of a latent variable method (PLSR) did not out perform penalization and variable 

selection. Although PLSR can be used for analyses involving many variables and highly 

collinear data, the poor performance of this model compared to GLM and GAM suggest it is not 

appropriate for modeling or predicting spatial variation of soil in the study area. 

Despite an inability to handle all of the variables, the GAM models performed the best 

based on R
2
 and RMSE values. The relatively small changes in R

2
 and RMSE between 16, 11, 

and 7 included variables for both the un-penalized and cubic spliced GAM suggests a greater 

resilience to collinear variables than the GLM. Despite the use of leave-one-out cross-validation 

a second independent dataset is suggested to assess overfitting of the un-penalized GAM. Such 

an assessment was beyond the scope of this study. Therefore, cubic splice GAM using variables 

with a maximum CI threshold of 30 is considered the best of these models. The ability of GAM 

and GLM using ridge regularization to generate models with R
2
 values greater than 0.5 

demonstrates that the idea in Thompson et al. (2006) and Venteris et al. (2004) regarding the 

applicability of non-linear models for soil–landscape modeling works for low relief landscapes.  

While a large number of terrain attributes were examined in this study, a number of 

factors were unable to be incorporated. As briefly discussed in the previous chapter, land use can 

impact SOC levels but changes in soil carbon—whether increasing or decreasing—occurs over 

time. Three potentially significant unexplored variables are tied to land use: time since 

conversion, type of crop(s) cultivated on the sites, and land management/agricultural practices 

(e.g., fertilization, tillage, crop rotation). A fourth important variable for consideration is the 
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initial SOC stock prior to conversion. All four of these factors contribute to the rate of change in 

SOC and potentially could drastically increase model prediction accuracy (Goidts and van 

Wesemael, 2007). Unfortunately, such data are difficult, if not impossible, to obtain. 

3.4 Conclusion 

SOC stock varies widely among prior converted Delmarva Bays ranging from 49.5 

Mg/ha to 219.2 Mg/ha with a mean around 93 Mg/ha. In keeping with previous work in this area 

a weak relationship was found between terrain attributes and soil carbon. By using a number of 

the attributes together, moderately accurate predictive models (R
2
 >0.5) were created based 

solely on topography. The wide range of results among the five models examined show (1) non-

linear modeling can be used to predict soil carbon distribution in low relief landscapes, and (2) 

the choice of model and CI threshold can greatly affect prediction accuracy. While a large 

number of terrain attributes were examined in this study they do not encompass all topographic 

factors. The inclusion of variables pertaining to land use and land use history in particular may 

increase topography based prediction models of soil carbon in the study area. 



37 | P a g e  

 

4 Effects of Analytic Strategies and Soil Condition on Spectral-based Predictions of Soil 

Organic Carbon Among Agriculturally Converted Delmarva Bays  

4.1 Introduction 

Hypersectral soil data analysis in the lab is almost always performed on dried and powder 

ground samples to get an idealized ‘pure’ spectral signature devoid of influence from moisture 

and non uniform texture. While such data do have uses, research based on dry ground soil 

provides little  guidance for using spectroscopy under field conditions. Studies such as McCarty 

et al. (2010) reveal predictive accuracy of hyperspectral models can change when data is 

recorded in the field versus in the lab. Mid-infrared data is more robust to changes between field 

and lab soil spectra than the near-infrared and visible regions, but mid-infrared is less accessible.   

Chang et al. (2005) found soil moisture has little impact on prediction accuracy of soil 

carbon despite drastically changing the appearance of a soil’s spectra. However, the moist 

samples were ground before hyperspectral readings were taken so the combined effect of 

moisture on unground samples remains in questions. Additionally, the soil Chang et al. (2005) 

studied had much lower soil moisture content than would likely be encountered in a wetland 

which might affect model performance. 

Spectral data has been and is increasingly used to study soil properties and wetlands, yet 

literature implementing spectroscopy in the study of wetland soil remains almost non-existent. 

Of these studies, none could be found in which the hyperspectral soil data was collected on un-

dried and/or unground samples. This study examines the relationship of hyperspectral data to 

carbon concentration in prior converted Delmarva Bays. The goals of this study is to assess how 

applicable point spectroscopy is for studying wetland soil properties by (1) evaluating prediction 

accuracy of hyperspectral data using four smoothing techniques on moist unground, air dried 
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unground, and air dried ground soil samples; and (2) examining the effect of moisture and non 

uniform particle size on hyperspectral estimates of soil carbon. 

4.2 Methods 

4.2.1 Spectroscopy 

Spectral signatures for all first horizons were taken in the lab using an ASD FieldSpec 3, 

which records 350 nm to 2500 nm with sampling intervals of 1.4 nm from wavelengths 350 nm 

to 1000 nm and 2 nm for 1000 nm to 2500 nm. The spectroradiometer was set to take and 

average 10 readings every second. All readings taken used a contact probe and the instrument 

was recalibrated after each reading using Spectralon for the white reference. Although the ASD 

FieldSpec was used in a lab setting, this equipment and method for recording the spectral 

signatures can be used in the field. Spectroscopy was carried out on a subset—the topmost soil 

horizons—of the soil samples collected in the previous chapter. 

Spectral profiles for all 84 first horizons were collected after the samples had been air dried, 

ground, and passed through a 2 mm sieve, in preparation for the carbon analysis. The spectral 

profile for each sample was taken four times from different locations in the sample and averaged 

following the method described by Cohen et al. (2005). For 18 of these samples, spectral 

signatures were taken two additional times: when the samples were moist, and when the samples 

were dry and unground. The percent of water present in the moist samples was calculated using 

the difference in weight between before and after the samples were air-dried (Table 13). Sampled 

during winter, several Bays were becoming inundated with water puddling at the surface during 

field data collection due to a rising water table and frequent rainfall (Figure 5). 
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Figure 5. Puddling of water in one of the sampled Bays during fieldwork.  

Table 13. Percent of water present in the samples of the moist dataset. 

Wet Weight (g) Dry Weight (g) Percent Water 

407.9 282.7 30.7 

317.3 267.2 15.8 

352.9 252.4 28.5 

367.5 296.7 19.3 

320 235.3 26.5 

360.9 271.0 24.9 

348.8 258.9 25.8 

286.4 237.9 16.9 

266.7 214.9 19.4 

291.3 239.1 17.9 

310.3 265.8 14.4 

307.5 233.3 24.2 

334.6 246.4 26.4 

268.6 215.4 19.8 

335.9 258.9 22.9 

337.5 255.2 24.4 

309.1 254.8 17.6 

302.9 249.4 17.7 

Minimum 14.4 

Maximum 30.7 

Mean 21.8 

4.2.2 Statistical Analysis 

After it was determined no large steps were present in any of the data, spectral data were 

transformed into reflectance and splice correction carried out to interpolate data for small jumps 

using ViewSpec Pro. Reflectance data were exported from ViewSpec Pro into RStudio 3.3.1 for 
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processing and analysis. Following Hively et al. (2011) and Stein et al. (2014) a number of math 

pretreatments were used to compare which was best suited for the task, namely capturing slight 

variations in SOC concentration of the topmost soil horizon: reflectance (R), log (1/R), first 

derivative, and second derivative. Logarithmic transformation of reflectance data into absorption 

is common practice in hyperspectral studies (Steine et al., 2014). First and second derivatives 

magnify features and are also frequently used with spectral data. Based on the partial least 

squares regression (PLSR) goodness of fit (R
2
) results associated with soil carbon in Hively et al. 

(2011) 2 gap and 4 gap first derivatives and 16 gap and 4 gap second derivatives were used. In 

Hively et al. (2011) these gaps produced the two highest R
2
 values for the first and second 

derivatives for predicting soil carbon in agricultural fields situated within the Upper Choptank 

watershed.  

As smoothing can remove information as well as noise, and as there are a wide number of 

smoothing techniques (Vaiphasa 2006), the SOC predictive capacity of unsmoothed data were 

compared with mean centered and second order Savitzky-Golay filtering. In order to make the 

Savitzky-Golay filtering comparative to previous work on wetland soils (i.e., Cohen et al., 2005; 

Cohen et al., 2007) and previous work done on soils in the study area (i.e., Hively et al., 2011), 

this smoothing was applied and analyzed twice: on the original reflectance data using a 20 nm 

gap, and on reflectance data resampled to 10 nm resolution and using a 20 nm gap. PLSR 

analysis with leave-one-out cross-validation was run to generate predictive models for all math 

pretreatments and smoothing transformations. The number of factors chosen for the PLSR was 

determined using the minimum root mean PRESS statistic (McCarty et al., 2002; Hively et al., 

2011). The best model for each smoothing model was selected based on the smallest minimum 

PRESS statistic for the three dataset—moist unground, air dried unground, and air dried ground 
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soil samples. Performance of models using these three datasets were compared using goodness of 

fit (R
2
) and root mean square error (RMSE) as calculated in chapter two. 

 Although the majority of soil carbon contained in non Spodosols is usually found in the 

top horizon and hyperspectral data can provide accurate predictions on carbon concentration of 

individual horizons, variation in top horizon carbon concentration between locations does not 

necessarily correspond with variation in carbon stock of the first meter. A linear model was run 

to assess the relationship between 1 m carbon stock and carbon concentration of the top soil 

horizon.  

4.3 Results and Discussion 

 Using the six selected math treatments, almost all smoothing techniques returned 

R
2
 values greater than 0.9 for the model with the minimum PRESS (Table 14). Three exceptions 

are both versions of the Savitzky-Golay filter when performed on dry unground samples, and the 

resampled Savitzky-Golay filter when run on the moist unground samples. All spectral data 

collected for this study went into building the models. No validation of actual model 

performance was run using additional data. R
2
 analysis, which was validated using leave-one-out 

cross validation, is assumed to represent potential model performance based solely on the 

training data. Verification of these models with a separate dataset may reveal a disconnect 

between internal R
2
 values and actual performance. 

In general, reflectance and log math treatments return the best models, although all 

datasets had derivatives return the best models when the resampled Savitzky-Golay filter was 

used. Dry ground sample models use more components than the other two datasets and return 

higher minimum PRESS statistics. However, the higher numbers of components and minimum 

PRESS statistics for dry unground soil is expected given that a much higher number of samples  



42 | P a g e  

 

Table 14. Effects of math treatments and smoothing on SOC stock predictions of dry ground, dry 

unground, and moist unground samples. The math treatment of each smoothing technique 

resulting in the smallest minimum PRESS is italicized for each dataset. 

 No Smoothing 

 
Math Treatment Components 

Min PRESS 

Statistic 
RMSEP

 % Variance 

Explained 
R

2 
RMSE 

D
ry

  

G
ro

u
n

d
 

S
a

m
p

le
s 

Reflectance 16 8.51 0.318 100 0.925 0.134 

Log 18 8.79 0.324 100 0.961 0.097 

1
st
 Derivative, 2 gap 3 11.39 0.368 64.0 0.710 0.264 

1
st
 Derivative, 4 gap 4 9.59 0.338 83.7 0.736 0.252 

2
nd

 Derivative, 4 gap 1 14.69 0.419 12.9 0.406 0.378 

2
nd

 Derivative, 16 gap 7 8.85 0.325 91.4 0.811 0.213 

D
ry

 

U
n

g
ro

u
n

d
 

S
a

m
p

le
s 

Reflectance 6 1.31 0.270 99.9 0.788 0.151 

Log 9 0.81 0.212 99.9 0.983 0.043 

1
st
 Derivative, 2 gap 1 2.18 0.348 14.8 0.528 0.225 

1
st
 Derivative, 4 gap 1 2.05 0.337 26.2 0.310 0.272 

2
nd

 Derivative, 4 gap 1 2.36 0.362 15.9 0.473 0.238 

2
nd

 Derivative, 16 gap 1 1.96 0.330 33.8 0.227 0.288 

M
o

is
t 

U
n

g
ro

u
n

d
 

S
a

m
p

le
s 

Reflectance 14 1.23 0.261 100 0.999 0.004 

Log 1 1.69 0.306 69.9 0.199 0.293 

1
st
 Derivative, 2 gap 9 1.24 0.262 94.9 0.999 0.006 

1
st
 Derivative, 4 gap 7 1.65 0.302 97.9 0.987 0.038 

2
nd

 Derivative, 4 gap 6 1.31 0.270 78.5 0.998 0.016 

2
nd

 Derivative, 16 gap 4 1.42 0.281 95.2 0.757 0.162 

        

 Mean Centering 

 
Math Treatment Components 

Min PRESS 

Statistic 
RMSEP

 % Variance 

Explained 
R

2 
RMSE 

D
ry

 

G
ro

u
n

d
 

S
a

m
p

le
s 

Reflectance 14 8.46 0.317 99.9 0.908 0.149 

Log 16 8.23 0.313 100 0.939 0.121 

1
st
 Derivative, 2 gap 3 12.39 0.385 48.4 0.685 0.275 

1
st
 Derivative, 4 gap 5 9.99 0.345 79.2 0.765 0.237 

2
nd

 Derivative, 4 gap 1 15.39 0.429 11.9 0.369 0.389 

2
nd

 Derivative, 16 gap 8 8.74 0.323 92.1 0.832 0.201 

D
ry

 

U
n

g
ro

u
n

d
 

S
a

m
p

le
s 

Reflectance 5 1.34 0.273 99.9 0.734 0.169 

Log 9 0.82 0.327 99.9 0.928 0.088 

1
st
 Derivative, 2 gap 1 2.32 0.359 13.5 0.559 0.218 

1
st
 Derivative, 4 gap 2 2.32 0.359 54.2 0.563 0.217 

2
nd

 Derivative, 4 gap 1 2.61 0.380 20.0 0.350 0.264 

2
nd

 Derivative, 16 gap 1 2.06 0.339 20.3 0.327 0.269 

M
o

is
t 

 

U
n

g
ro

u
n

d
 

S
a

m
p

le
s 

Reflectance 12 1.53 0.292 99.9 0.997 0.019 

Log 1 1.70 0.317 72.2 0.191 0.294 

1
st
 Derivative, 2 gap 6 1.12 0.249 81.8 0.998 0.015 

1
st
 Derivative, 4 gap 7 1.29 0.268 95.7 0.994 0.025 

2
nd

 Derivative, 4 gap 8 1.15 0.252 70.7 0.999 0.010 

2
nd

 Derivative, 16 gap 6 1.13 0.250 98.1 0.927 0.089 
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 Savitzky-Golay Filtering, 21nm window 

 
Math Treatment Components 

Min PRESS 

Statistic 
RMSEP

 % Variance 

Explained 
R

2 
RMSE 

D
ry

 

G
ro

u
n

d
 

S
a

m
p

le
s 

Reflectance 18 7.89 0.307 100 0.912 0.146 

Log 15 8.59 0.319 100 0.88 0.170 

1
st
 Derivative, 2 gap 4 9.03 0.328 89.3 0.708 0.265 

1
st
 Derivative, 4 gap 4 8.99 0.327 90.1 0.703 0.267 

2
nd

 Derivative, 4 gap 4 10.59 0.356 61.9 0.766 0.237 

2
nd

 Derivative, 16 gap 7 8.52 0.319 92.2 0.804 0.217 

D
ry

 

U
n

g
ro

u
n

d
 

S
a

m
p

le
s 

Reflectance 6 1.24 0.262 99.9 0.800 0.146 

Log 5 1.17 0.255 99.9 0.762 0.159 

1
st
 Derivative, 2 gap 2 1.88 0.324 68.3 0.373 0.259 

1
st
 Derivative, 4 gap 2 1.86 0.321 69.9 0.363 0.261 

2
nd

 Derivative, 4 gap 1 2.25 0.353 15.9 0.474 0.238 

2
nd

 Derivative, 16 gap 1 1.99 0.333 36.3 0.199 0.293 

M
o

is
t 

U
n

g
ro

u
n

d
 

S
a

m
p

le
s 

Reflectance 12 1.31 0.270 100 0.982 0.045 

Log 1 1.69 0.307 72.2 0.191 0.294 

1
st
 Derivative, 2 gap 4 1.57 0.296 97.0 0.646 0.195 

1
st
 Derivative, 4 gap 4 1.57 0.295 97.4 0.610 0.204 

2
nd

 Derivative, 4 gap 1 1.62 0.299 42.9 0.251 0.283 

2
nd

 Derivative, 16 gap 4 1.38 0.277 97.8 0.669 0.188 

  

 Savitzky-Golay Filtering, 21nm window – 10nm re-sampled data 

 
Math Treatment Components 

Min PRESS 

Statistic 
RMSEP

 % Variance 

Explained 
R

2 
RMSE 

D
ry

  

G
ro

u
n

d
 

S
a

m
p

le
s 

Reflectance 22 7.43 0.298 100 0.888 0.164 

Log 26 6.47 0.278 100 0.925 0.134 

1
st
 Derivative, 2 gap 25 6.18 0.271 100 0.934 0.126 

1
st
 Derivative, 4 gap 29 6.91 0.287 100 0.933 0.127 

2
nd

 Derivative, 4 gap 11 8.69 0.322 99.4 0.792 0.224 

2
nd

 Derivative, 16 gap 8 8.70 0.322 99.5 0.703 0.267 

D
ry

 

U
n

g
ro

u
n

d
 

S
a

m
p

le
s 

Reflectance 8 1.22 0.26 100 0.866 0.119 

Log 7 1.24 0.263 99.9 0.796 0.148 

1
st
 Derivative, 2 gap 7 1.04 0.241 99.9 0.807 0.144 

1
st
 Derivative, 4 gap 8 1.35 0.274 99.7 0.887 0.110 

2
nd

 Derivative, 4 gap 4 1.93 0.328 94.2 0.660 0.191 

2
nd

 Derivative, 16 gap 2 1.92 0.327 90.3 0.116 0.308 

M
o

is
t 

 

U
n

g
ro

u
n

d
 

S
a

m
p

le
s 

Reflectance 1 1.73 0.309 92.1 0.142 0.303 

Log 1 1.71 0.308 81.3 0.171 0.298 

1
st
 Derivative, 2 gap 1 1.73 0.321 97.6 0.142 0.303 

1
st
 Derivative, 4 gap 3 1.49 0.288 96.6 0.561 0.217 

2
nd

 Derivative, 4 gap 4 1.48 0.287 99.6 0.643 0.196 

2
nd

 Derivative, 16 gap 3 1.47 0.286 99.3 0.465 0.239 

 

went into creating this dataset, 84 versus 18. Components and PRESS statistics may be lowered 

if the minimum PRESS model is used as a starting point and selection of the optimum model is 
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based on t-tests run between the RMSE of the minimum PRESS model and the RMSE of the 

lower component models (Rossel et al., 2006).  

From comparison of the best models, those based on moist unground samples returned 

the highest R
2
 for all smoothing techniques except for the resampled Savitzky-Golay filter. The 

ability of PLSR to produce high-accuracy predictive models from moist samples, as reported by 

Change et al. (2005) when analyzing moist ground samples, was reaffirmed using samples with 

much higher soil moisture content. Based on results of the current study the influence of soil 

texture on predictive accuracy appears to be masked by effects of water when moisture is present 

in the samples. The findings of this study also support the work of Cohen et al. (2005) and Cohen 

et al. (2007) in their conclusion that hyperspectral data forms a viable means for studying spatial 

distributions of wetland soil properties. However, the poor performance of the resampled 

Savitzky-Golay filter method on the moist unground data argues against use of this smoothing 

technique for in situ data collection of carbon data within wetland soils. 

The various smoothing techniques examined here can return strong predictive models of 

soil carbon, but they are dependent on analytical strategies and the degree of soil processing 

(drying and grinding). High-accuracy prediction models using data collected from soil samples 

with non-uniform texture and high moisture levels demonstrate the potential for point 

spectroscopy as a useful and nondestructive way to study the spatial distribution of soil carbon. 

However, the choice of math treatment and smoothing technique used for point spectroscopy 

should not be selected ad hoc based on performance of air-dried ground lab samples. The results 

of this study support the use of a quantitative approach to selecting smoothing methods as 

advocated by Vaiphasa (2006) run on either in situ field sampling data or lab hyperspectral data 

of unprocessed samples (e.g., unground and not dried). 
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The linear regression between the carbon stock and top layer carbon concentration 

showed a very strong relationship at a 95% confidence interval. Despite the strong relationship, 

top layer carbon concentration only accounted for half (R
2
 = 0.493) of the variation seen in 

carbon stock within the upper first meter. While most top soil layers contained the highest 

concentrations of carbon, some of the wetlands examined in this study have their highest carbon 

concentrations below the surface. Therefore, it is important to remember hyperspectral data can 

only provide estimates of SOC concentration in the soil layer it is reading. Hyperspectral 

estimates of the spatial distribution of top layer soil carbon should not be interpreted as 

necessarily representing absolute variation in soil carbon stock, rather they can serve as a starting 

point or an additional input of data to strengthen predictive models. 

4.4 Conclusion 

Effects of smoothing on hyperspectral soil data are highly variable with multiple 

techniques having little impact on predictive models and others severely influencing the 

outcome. The physical state of soil samples, i.e., ground versus unground and moist/wet versus 

dry, effects the math treatment and smoothing technique best suited for the study area when 

selection is based on minimum PRESS statistic. Due to the overall high R
2
 for the predictive 

models of near-infrared and visible hyperspectral data of moist unground soil samples point 

spectroscopy is a viable and non-destructive method for studying carbon, and potentially other 

soil properties, in wetland soils. Despite the success of Cohen et al. (2005) and Cohen et al. 

(2007) in predicting soil carbon using the resampled Savitzky-Golay filter on dried ground 

samples, this technique is not advised for data collected from moist unground samples. As the 

dried ground dataset proved the most robust in terms of the R
2
, selection of smoothing and math 
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treatment for hyperspectral data collected in situ should not be chosen based on what has 

previously worked well when using processed soil samples.
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5 Conclusions 

SOC stocks found in prior converted Delmarva Bays can vary widely, from 50 to 218 

Mg/ha. Individual terrain attributes tend to have weak correlation with Bay carbon stock, but 

topography can account for a significant portion of soil carbon distribution as assessed by non-

linear models. GAM and GLM using ridge regularization return moderately strong topographic-

based predictive models of Bay carbon stock (R
2
 > 0.5). Model strength was highest when 

variables had a CI lower than 30 and greater than 10. The decrease in potential model 

performance with the lower CI threshold is likely a result of the overall weak relationship 

between individual terrain attributes and SOC. Performance of GAM and GLM ridge Bay SOC 

models may increase with the additional input of hyperspectral soil data. Hyperspectral data of 

the visible and near-infrared can provide highly accurate predictions (R
2
 > 0.9) of Bay SOC 

concentration regardless of soil moisture or texture uniformity. However, both Savitzy-Golay 

smoothing techniques had little effect on the dried ground sample model and decreased model 

accuracy of the dried unground and moist unground samples. 

A large number of terrain attributes, 50 in all, were examined with regards to Bay SOC 

stock, but they are not an exhaustive list of how topography may influence soil carbon 

distribution. It was beyond the scope of this study to examine effects of four specific topographic 

factors that may strongly impact SOC stock: time since conversion, choice of crop(s) cultivated 

on the sites, land management/agricultural practices, and initial SOC stock before agricultural 

conversion. 

Non-linear topography-based models can provide a means for predicting the spatial 

distribution of soil properties. When dealing with low relief landscapes where linear models have 

been previously unsuccessful and data is highly collinear the model type is very important. 
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While GLM is the more commonly known non-linear alternative for modeling soil–landscape 

interaction, GAM can perform very well, although caution should be applied concerning the 

latter’s tendency to overfit data.   

PLSR generates a poor topography-based predictive model of soil carbon, but can create 

strong predictive models using hyperspectral data of near-infrared and visible wavelengths. 

While hyperspectral data can predict soil carbon concentration distribution horizontally across 

the top soil horizon, surface variation should not be assumed to represent variation of soil 

property stock (mass). Based on results of moist unground soil samples, in situ hyperspectral 

data collection could provide accurate predictions of relative soil carbon, and potentially other 

soil properties’, distribution. However, when deciding on how to process hyperspectral data 

collected in the field, experimentation may be necessary to select the best method for the soil 

property under examination. 
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Appendix A – Statistics on Pedotransfer Function Training Data 

Table 1. Bulk density average and standard deviation of training data 

Training Data Bulk Density 

 

Average Standard Deviation 

  Texture Texture 

Horizon S L C S L C 

Ap --- 1.561628 --- --- 0.17992 --- 

A or AB (directly under Ap) --- 1.574 --- --- 0.110589 --- 

CB + C  1.688571 1.814 --- 0.109762 0.055498 --- 

BC 1.719167 1.6625 --- 0.096621 0.176328 --- 

B 1.690769 1.643696 1.76 0.142036 0.221032 0 

Bt + BCt 1.614286 1.676207 1.765 0.152737 0.134468 0.035355 

E 1.68 1.653333 --- 0.098995 0.280416 --- 

 

Table 2. Soil Organic Carbon average and standard deviation of data 

Training Data Soil Organic Carbon 

 

Average Standard Deviation 

  Texture Texture 

Horizon S L C S L C 

Ap --- 1.167368 --- --- 1.040088 --- 

A or AB (directly under Ap) --- 0.532 --- --- 0.453949 --- 

CB + C  0.042857 0.21 --- 0.031472 0.19799 --- 

BC 0.09 0.18 --- 0.085706 0.127279 --- 

B  0.092308 0.354565 0.06 0.110314 0.564674 0 

Bt + BCt 0.151429 0.240455 0.09 0.049809 0.196747 0.042426 

E 0.185 0.445 --- 0.049497 0.091924 --- 

 

This Study’s Data Soil Organic Carbon 

 

Average Standard Deviation 

  Texture Texture 

Horizon S L C S L C 

Ap 0.954421 1.269699 --- 0 0.556906 --- 

A 0.588549 1.040234 --- 0 0.469024 --- 

B 0.101 0.348286 --- 0.078412 0.606866 --- 

Bt --- 0.497072 --- --- 0.602241 --- 
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Table 3. Bulk density statistics of training data after B and BC horizons were combined.  

Training Data Bulk Density 

 

Average Standard Deviation 

  Texture Texture 

Horizon S L C S L C 

Ap --- 1.561628 --- --- 0.17992 --- 

A or AB (directly under Ap) --- 1.574 --- --- 0.110589 --- 

CB + C  1.688571 1.814 --- 0.109762 0.055498 --- 

B + BC 1.7044 1.6452 1.76 0.12073 0.216326 0 

Bt + BCt 1.614286 1.676207 1.765 0.152737 0.134468 0.035355 

E 1.68 1.653333 --- 0.098995 0.280416 --- 
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Appendix B – Correlation Between Terrain Attributes and SOC 

Table 1. Correlation of continuous terrain variables to Bay SOC stock 

Continuous Variables Pearson’s Correlation 

Coefficient (r) 

1. Ditch Width Average (m) 0.647 

2. Ditch Depth Average (m) 0.736 

3. Elevation (m) 0.476 

4. Bay Area (ha) 0.300 

5. Upslope Catchment Area (m) 0.088 

6. Upslope Catchment Area to Bay Area ratio -0.161 

7. Average NDVI -0.409 

8. Minimum NDVI -0.320 

9. Maximum NDVI 0.117 

10. Average Aquifer Thickness (m) -0.061 

11. Minimum Aquifer Thickness (m) -0.055 

12. Maximum Aquifer Thickness (m) -0.064 

13. Bay Slope Average (percent rise) -0.032 

14. Bay Slope Maximum (percent rise) 0.137 

15. Upslope Catchment Area Total Curvature Average 0.153 

16. Upslope Catchment Area Total Curvature Minimum -0.022 

17. Upslope Catchment Area Total Curvature Maximum 0.292 

18. Upslope Catchment Area Planar Curvature Average 0.152 

19. Upslope Catchment Area Planar Curvature Minimum -0.036 

20. Upslope Catchment Area Planar Curvature Maximum 0.267 

21. Upslope Catchment Area Profile Curvature Average 0.064 

22. Upslope Catchment Area Profile Curvature Minimum -0.169 

23. Upslope Catchment Area Profile Curvature Maximum 0.182 

24. Upslope Catchment Area Tangential Curvature Average 0.144 

25. Upslope Catchment Area Tangential Curvature Minimum -0.053 

26. Upslope Catchment Area Tangential Curvature Maximum 0.197 

27. Bay Total Curvature Average 0.088 

28. Bay Total Curvature Minimum -0.318 

29. Bay Total Curvature Maximum 0.488 

30. Bay Planar Curvature Average -0.139 

31. Bay Planar Curvature Minimum -0.160 

32. Bay Planar Curvature Maximum 0.428 

33. Bay Profile Curvature Average -0.229 

34. Bay Profile Curvature Minimum -0.447 

35. Bay Profile Curvature Maximum 0.252 

36. Bay Tangential Curvature Average -0.197 

37. Bay Tangential Curvature Minimum -0.544 

38. Bay Tangential Curvature Maximum 0.496 

39. Upslope Catchment Area Maximum Flow Path Length (m) -0.072 

40. TWI Average -0.088 

41. TCI Average -0.092 
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Table 2. Correlation of non-continuous terrain variables to Bay SOC stock 

Binary and Categorical Data 

Spearman’s Rank 

Correlation 

Coefficient 

p-value 

42. Grey Redox Depletions 0.069 0.7 

43. Redox Iron Concentrations  0.226 0.2 

44. Freestanding Water within the First Meter 0.158 0.4 

45. Known Drainage  0.495 0.007 

46. Pipes 0.102 0.6 

47. Tile Drain  0.131 0.5 

48. Ditches  0.474 0.01 

49. Bay Overlap 0.233 0.2 

50. Sampled Soil Series -0.154 0.4 
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Appendix C – Pearson’s Correlation Coefficient of Continuous Terrain Attributes  

All terrain attribute pairs with a Pearson’s correlation coefficient greater than 0.5 are in bold italics. A terrain 

attribute abbreviation key is on page 60. 

DWA DDA Elevation BA UA UA:BA NDVI_avg NDVI_min NDVI_max

DWA 1 0.695 0.343 0.641 0.275 -0.098 -0.223 -0.246 0.086

DDA 0.695 1 0.161 0.140 -0.020 -0.088 -0.379 -0.293 0.057

Elevation 0.343 0.161 1 0.317 0.163 -0.358 -0.026 0.088 0.225

BA 0.641 0.140 0.317 1 0.518 -0.156 0.035 -0.200 0.224

UA 0.275 -0.020 0.163 0.518 1 0.498 -0.052 0.026 -0.147

UA:BA -0.098 -0.088 -0.358 -0.156 0.498 1 -0.230 0.065 -0.623

NDVI_avg -0.223 -0.379 -0.026 0.035 -0.052 -0.230 1 0.357 0.244

NDVI_min -0.246 -0.293 0.088 -0.200 0.026 0.065 0.357 1 -0.321

NDVI_max 0.086 0.057 0.225 0.224 -0.147 -0.623 0.244 -0.321 1

AQ_thck_avg 0.186 0.137 0.282 0.302 0.323 0.054 0.236 0.230 -0.109

AQ_thck_min 0.203 0.137 0.297 0.317 0.327 0.051 0.228 0.229 -0.108

AQ_thck_max 0.179 0.132 0.264 0.316 0.326 0.042 0.253 0.219 -0.099

BaySlope_avg -0.105 0.108 -0.163 -0.048 -0.175 -0.346 -0.036 0.040 -0.130

BaySlope_max 0.083 -0.024 0.109 0.273 0.429 0.149 -0.209 -0.188 -0.249

UATotalC_avg -0.077 -0.050 -0.289 -0.110 -0.155 -0.086 0.209 -0.175 0.268

UATotalC_min -0.222 -0.040 -0.106 -0.411 -0.524 -0.284 -0.008 0.066 -0.030

UATotalC_max 0.297 0.192 0.249 0.262 0.568 0.367 -0.291 -0.174 0.017

UAPlanarC_avg 0.296 0.098 0.508 0.104 -0.038 -0.142 0.085 0.096 0.266

UAPlanarC_min -0.274 -0.143 0.103 -0.257 -0.565 -0.547 0.218 0.251 0.094

UAPlanarC_max 0.257 0.078 0.292 0.267 0.556 0.274 -0.245 -0.170 0.134

UAProfileC_avg 0.198 -0.072 0.419 0.102 0.132 0.119 -0.007 0.034 0.182

UAProfileC_min -0.187 -0.154 -0.176 -0.237 -0.621 -0.355 0.188 0.149 0.006

UAProfileC_max 0.259 0.099 0.268 0.375 0.529 0.293 -0.083 -0.118 0.057

UATanC_avg 0.300 0.238 0.369 0.111 0.053 -0.078 -0.079 -0.124 0.240

UATanC_min -0.209 -0.070 0.031 -0.344 -0.532 -0.358 0.214 0.178 0.227

UATanC_max 0.252 0.069 0.193 0.308 0.573 0.303 -0.270 -0.184 -0.138

BayTotalC_avg 0.227 -0.008 0.393 0.395 0.199 -0.217 0.161 -0.007 0.422

BayTotalC_min -0.326 -0.262 -0.212 -0.358 -0.341 0.099 -0.057 0.285 -0.237

BayTotalC_max 0.460 0.475 0.459 0.148 0.215 -0.104 -0.384 -0.104 0.110

BayPlanarC_avg -0.049 -0.082 0.104 -0.097 -0.101 -0.084 0.094 0.146 0.143

BayPlanarC_min -0.254 -0.189 -0.188 -0.316 -0.371 0.069 0.091 0.234 -0.159

BayPlanarC_max 0.428 0.456 0.346 0.188 0.197 -0.136 -0.259 -0.170 0.182

BayProfileC_avg -0.176 -0.104 -0.061 -0.319 -0.208 0.014 0.053 0.203 -0.039

BayProfileC_min -0.463 -0.372 -0.473 -0.286 -0.245 0.150 0.348 0.141 -0.172

BayProfileC_max 0.337 0.254 0.254 0.227 0.250 -0.111 -0.062 -0.204 0.201

BayTanC_avg -0.115 -0.229 0.094 -0.066 -0.070 -0.079 0.142 0.125 0.184

BayTanC_min -0.478 -0.794 0.009 -0.155 -0.111 0.096 0.262 0.344 -0.038

BayTanC_max 0.508 0.418 0.274 0.341 0.345 -0.146 -0.368 -0.295 0.028

UAFlowPath 0.252 -0.065 -0.007 0.218 0.810 0.723 -0.140 0.076 -0.354

TWI_avg -0.174 -0.332 0.008 0.085 0.176 0.129 0.111 0.095 -0.090

TCI -0.218 -0.380 -0.048 0.134 0.152 0.093 0.123 0.112 0.034
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AQ_thck_avg AQ_thck_min AQ_thck_max BaySlope_avg BaySlope_max UATotalC_avg

DWA 0.186 0.203 0.179 -0.105 0.083 -0.077

DDA 0.137 0.137 0.132 0.108 -0.024 -0.050

Elevation 0.282 0.297 0.264 -0.163 0.109 -0.289

BA 0.302 0.317 0.316 -0.048 0.273 -0.110

UA 0.323 0.327 0.326 -0.175 0.429 -0.155

UA:BA 0.054 0.051 0.042 -0.346 0.149 -0.086

NDVI_avg 0.236 0.228 0.253 -0.036 -0.209 0.209

NDVI_min 0.230 0.229 0.219 0.040 -0.188 -0.175

NDVI_max -0.109 -0.108 -0.099 -0.130 -0.249 0.268

AQ_thck_avg 1 0.995 0.996 -0.060 0.220 -0.347

AQ_thck_min 0.995 1 0.988 -0.107 0.206 -0.346

AQ_thck_max 0.996 0.988 1 -0.026 0.223 -0.343

BaySlope_avg -0.060 -0.107 -0.026 1 0.297 -0.173

BaySlope_max 0.220 0.206 0.223 0.297 1 -0.130

UATotalC_avg -0.347 -0.346 -0.343 -0.173 -0.130 1

UATotalC_min -0.378 -0.388 -0.371 0.433 -0.319 0.130

UATotalC_max 0.224 0.252 0.199 -0.492 0.410 -0.143

UAPlanarC_avg 0.296 0.335 0.270 -0.732 -0.355 -0.037

UAPlanarC_min -0.239 -0.259 -0.234 0.447 -0.249 0.165

UAPlanarC_max 0.023 0.052 0.005 -0.563 0.333 -0.073

UAProfileC_avg 0.182 0.225 0.142 -0.887 -0.210 -0.097

UAProfileC_min -0.300 -0.311 -0.284 0.272 -0.608 0.144

UAProfileC_max 0.308 0.318 0.302 -0.509 0.318 -0.098

UATanC_avg 0.330 0.367 0.312 -0.605 -0.139 -0.122

UATanC_min -0.299 -0.288 -0.291 -0.022 -0.768 0.230

UATanC_max 0.237 0.249 0.219 -0.132 0.804 -0.165

BayTotalC_avg 0.122 0.168 0.101 -0.545 -0.010 -0.095

BayTotalC_min -0.201 -0.204 -0.195 0.261 -0.322 -0.138

BayTotalC_max 0.005 0.055 -0.025 -0.319 0.120 -0.215

BayPlanarC_avg -0.281 -0.246 -0.304 -0.307 -0.209 -0.132

BayPlanarC_min -0.280 -0.303 -0.267 0.253 -0.345 0.061

BayPlanarC_max 0.016 0.066 -0.003 -0.348 0.002 -0.137

BayProfileC_avg -0.386 -0.366 -0.403 -0.118 -0.265 -0.125

BayProfileC_min 0.011 -0.033 0.032 0.261 -0.331 0.127

BayProfileC_max 0.183 0.209 0.167 -0.358 0.201 0.072

BayTanC_avg -0.245 -0.204 -0.269 -0.413 -0.182 -0.069

BayTanC_min -0.266 -0.255 -0.272 -0.197 -0.256 -0.046

BayTanC_max 0.062 0.089 0.055 -0.028 0.404 -0.107

UAFlowPath 0.214 0.226 0.190 -0.384 0.296 -0.178

TWI_avg 0.275 0.264 0.280 -0.001 0.243 0.186

TCI 0.149 0.122 0.158 0.055 0.142 0.229  
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UATotalC_min UATotalC_max UAPlanarC_avg UAPlanarC_min UAPlanarC_max

DWA -0.222 0.297 0.296 -0.274 0.257

DDA -0.040 0.192 0.098 -0.143 0.078

Elevation -0.106 0.249 0.508 0.103 0.292

BA -0.411 0.262 0.104 -0.257 0.267

UA -0.524 0.568 -0.038 -0.565 0.556

UA:BA -0.284 0.367 -0.142 -0.547 0.274

NDVI_avg -0.008 -0.291 0.085 0.218 -0.245

NDVI_min 0.066 -0.174 0.096 0.251 -0.170

NDVI_max -0.030 0.017 0.266 0.094 0.134

AQ_thck_avg -0.378 0.224 0.296 -0.239 0.023

AQ_thck_min -0.388 0.252 0.335 -0.259 0.052

AQ_thck_max -0.371 0.199 0.270 -0.234 0.005

BaySlope_avg 0.433 -0.492 -0.732 0.447 -0.563

BaySlope_max -0.319 0.410 -0.355 -0.249 0.333

UATotalC_avg 0.130 -0.143 -0.037 0.165 -0.073

UATotalC_min 1 -0.696 -0.320 0.809 -0.709

UATotalC_max -0.696 1 0.331 -0.762 0.919

UAPlanarC_avg -0.320 0.331 1 -0.167 0.405

UAPlanarC_min 0.809 -0.762 -0.167 1 -0.692

UAPlanarC_max -0.709 0.919 0.405 -0.692 1

UAProfileC_avg -0.462 0.532 0.868 -0.398 0.601

UAProfileC_min 0.714 -0.915 -0.110 0.703 -0.816

UAProfileC_max -0.815 0.855 0.445 -0.681 0.832

UATanC_avg -0.535 0.533 0.859 -0.396 0.571

UATanC_min 0.708 -0.573 0.222 0.686 -0.506

UATanC_max -0.582 0.827 -0.005 -0.600 0.713

BayTotalC_avg -0.384 0.398 0.557 -0.126 0.521

BayTotalC_min 0.697 -0.631 -0.275 0.471 -0.660

BayTotalC_max -0.327 0.601 0.418 -0.302 0.650

BayPlanarC_avg 0.011 0.115 0.243 0.125 0.235

BayPlanarC_min 0.708 -0.678 -0.288 0.530 -0.708

BayPlanarC_max -0.370 0.538 0.438 -0.306 0.606

BayProfileC_avg 0.196 -0.056 0.036 0.211 0.033

BayProfileC_min 0.405 -0.590 -0.342 0.289 -0.666

BayProfileC_max -0.553 0.662 0.460 -0.417 0.692

BayTanC_avg -0.030 0.124 0.309 0.122 0.255

BayTanC_min 0.305 -0.347 0.058 0.324 -0.201

BayTanC_max -0.314 0.467 0.150 -0.240 0.503

UAFlowPath -0.476 0.617 0.105 -0.658 0.565

TWI_avg -0.048 -0.024 -0.016 -0.016 -0.099

TCI -0.013 -0.167 -0.134 0.061 -0.194  
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UAProfileC_avg UAProfileC_min UAProfileC_max UATanC_avg UATanC_min

DWA 0.198 -0.187 0.259 0.300 -0.209

DDA -0.072 -0.154 0.099 0.238 -0.070

Elevation 0.419 -0.176 0.268 0.369 0.031

BA 0.102 -0.237 0.375 0.111 -0.344

UA 0.132 -0.621 0.529 0.053 -0.532

UA:BA 0.119 -0.355 0.293 -0.078 -0.358

NDVI_avg -0.007 0.188 -0.083 -0.079 0.214

NDVI_min 0.034 0.149 -0.118 -0.124 0.178

NDVI_max 0.182 0.006 0.057 0.240 0.227

AQ_thck_avg 0.182 -0.300 0.308 0.330 -0.299

AQ_thck_min 0.225 -0.311 0.318 0.367 -0.288

AQ_thck_max 0.142 -0.284 0.302 0.312 -0.291

BaySlope_avg -0.887 0.272 -0.509 -0.605 -0.022

BaySlope_max -0.210 -0.608 0.318 -0.139 -0.768

UATotalC_avg -0.097 0.144 -0.098 -0.122 0.230

UATotalC_min -0.462 0.714 -0.815 -0.535 0.708

UATotalC_max 0.532 -0.915 0.855 0.533 -0.573

UAPlanarC_avg 0.868 -0.110 0.445 0.859 0.222

UAPlanarC_min -0.398 0.703 -0.681 -0.396 0.686

UAPlanarC_max 0.601 -0.816 0.832 0.571 -0.506

UAProfileC_avg 1 -0.324 0.570 0.751 0.002

UAProfileC_min -0.324 1 -0.822 -0.386 0.702

UAProfileC_max 0.570 -0.822 1 0.626 -0.490

UATanC_avg 0.751 -0.386 0.626 1 -0.020

UATanC_min 0.002 0.702 -0.490 -0.020 1

UATanC_max 0.222 -0.905 0.684 0.213 -0.790

BayTotalC_avg 0.651 -0.369 0.464 0.520 -0.045

BayTotalC_min -0.297 0.671 -0.711 -0.492 0.495

BayTotalC_max 0.468 -0.511 0.423 0.569 -0.183

BayPlanarC_avg 0.343 -0.126 0.120 0.248 0.199

BayPlanarC_min -0.344 0.715 -0.664 -0.598 0.508

BayPlanarC_max 0.432 -0.446 0.418 0.625 -0.121

BayProfileC_avg 0.112 0.028 -0.077 0.057 0.270

BayProfileC_min -0.427 0.590 -0.499 -0.508 0.310

BayProfileC_max 0.445 -0.648 0.669 0.676 -0.319

BayTanC_avg 0.436 -0.120 0.127 0.282 0.204

BayTanC_min 0.151 0.428 -0.324 -0.221 0.361

BayTanC_max 0.154 -0.464 0.331 0.373 -0.349

UAFlowPath 0.349 -0.597 0.521 0.148 -0.498

TWI_avg 0.007 0.036 0.020 -0.150 -0.074

TCI -0.096 0.175 -0.107 -0.295 -0.042  
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UATanC_max BayTotalC_avg BayTotalC_min BayTotalC_max BayPlanarC_avg

DWA 0.252 0.227 -0.326 0.460 -0.049

DDA 0.069 -0.008 -0.262 0.475 -0.082

Elevation 0.193 0.393 -0.212 0.459 0.104

BA 0.308 0.395 -0.358 0.148 -0.097

UA 0.573 0.199 -0.341 0.215 -0.101

UA:BA 0.303 -0.217 0.099 -0.104 -0.084

NDVI_avg -0.270 0.161 -0.057 -0.384 0.094

NDVI_min -0.184 -0.007 0.285 -0.104 0.146

NDVI_max -0.138 0.422 -0.237 0.110 0.143

AQ_thck_avg 0.237 0.122 -0.201 0.005 -0.281

AQ_thck_min 0.249 0.168 -0.204 0.055 -0.246

AQ_thck_max 0.219 0.101 -0.195 -0.025 -0.304

BaySlope_avg -0.132 -0.545 0.261 -0.319 -0.307

BaySlope_max 0.804 -0.010 -0.322 0.120 -0.209

UATotalC_avg -0.165 -0.095 -0.138 -0.215 -0.132

UATotalC_min -0.582 -0.384 0.697 -0.327 0.011

UATotalC_max 0.827 0.398 -0.631 0.601 0.115

UAPlanarC_avg -0.005 0.557 -0.275 0.418 0.243

UAPlanarC_min -0.600 -0.126 0.471 -0.302 0.125

UAPlanarC_max 0.713 0.521 -0.660 0.650 0.235

UAProfileC_avg 0.222 0.651 -0.297 0.468 0.343

UAProfileC_min -0.905 -0.369 0.671 -0.511 -0.126

UAProfileC_max 0.684 0.464 -0.711 0.423 0.120

UATanC_avg 0.213 0.520 -0.492 0.569 0.248

UATanC_min -0.790 -0.045 0.495 -0.183 0.199

UATanC_max 1 0.261 -0.559 0.427 0.034

BayTotalC_avg 0.261 1 -0.472 0.552 0.621

BayTotalC_min -0.559 -0.472 1 -0.531 -0.187

BayTotalC_max 0.427 0.552 -0.531 1 0.506

BayPlanarC_avg 0.034 0.621 -0.187 0.506 1

BayPlanarC_min -0.574 -0.502 0.855 -0.645 -0.209

BayPlanarC_max 0.313 0.577 -0.627 0.944 0.559

BayProfileC_avg -0.096 0.267 0.001 0.348 0.921

BayProfileC_min -0.550 -0.614 0.552 -0.913 -0.486

BayProfileC_max 0.536 0.535 -0.869 0.691 0.380

BayTanC_avg 0.050 0.685 -0.175 0.460 0.953

BayTanC_min -0.341 0.020 0.602 -0.434 0.145

BayTanC_max 0.509 0.373 -0.620 0.789 0.267

UAFlowPath 0.595 0.128 -0.191 0.181 -0.031

TWI_avg 0.073 -0.253 0.266 -0.491 -0.743

TCI -0.074 -0.303 0.346 -0.598 -0.696  
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BayPlanarC_min BayPlanarC_max BayProfileC_avg BayProfileC_min BayProfileC_max

DWA -0.254 0.428 -0.176 -0.463 0.337

DDA -0.189 0.456 -0.104 -0.372 0.254

Elevation -0.188 0.346 -0.061 -0.473 0.254

BA -0.316 0.188 -0.319 -0.286 0.227

UA -0.371 0.197 -0.208 -0.245 0.250

UA:BA 0.069 -0.136 0.014 0.150 -0.111

NDVI_avg 0.091 -0.259 0.053 0.348 -0.062

NDVI_min 0.234 -0.170 0.203 0.141 -0.204

NDVI_max -0.159 0.182 -0.039 -0.172 0.201

AQ_thck_avg -0.280 0.016 -0.386 0.011 0.183

AQ_thck_min -0.303 0.066 -0.366 -0.033 0.209

AQ_thck_max -0.267 -0.003 -0.403 0.032 0.167

BaySlope_avg 0.253 -0.348 -0.118 0.261 -0.358

BaySlope_max -0.345 0.002 -0.265 -0.331 0.201

UATotalC_avg 0.061 -0.137 -0.125 0.127 0.072

UATotalC_min 0.708 -0.370 0.196 0.405 -0.553

UATotalC_max -0.678 0.538 -0.056 -0.590 0.662

UAPlanarC_avg -0.288 0.438 0.036 -0.342 0.460

UAPlanarC_min 0.530 -0.306 0.211 0.289 -0.417

UAPlanarC_max -0.708 0.606 0.033 -0.666 0.692

UAProfileC_avg -0.344 0.432 0.112 -0.427 0.445

UAProfileC_min 0.715 -0.446 0.028 0.590 -0.648

UAProfileC_max -0.664 0.418 -0.077 -0.499 0.669

UATanC_avg -0.598 0.625 0.057 -0.508 0.676

UATanC_min 0.508 -0.121 0.270 0.310 -0.319

UATanC_max -0.574 0.313 -0.096 -0.550 0.536

BayTotalC_avg -0.502 0.577 0.267 -0.614 0.535

BayTotalC_min 0.855 -0.627 0.001 0.552 -0.869

BayTotalC_max -0.645 0.944 0.348 -0.913 0.691

BayPlanarC_avg -0.209 0.559 0.921 -0.486 0.380

BayPlanarC_min 1 -0.700 -0.014 0.653 -0.869

BayPlanarC_max -0.700 1 0.402 -0.820 0.760

BayProfileC_avg -0.014 0.402 1 -0.288 0.205

BayProfileC_min 0.653 -0.820 -0.288 1 -0.676

BayProfileC_max -0.869 0.760 0.205 -0.676 1

BayTanC_avg -0.221 0.524 0.831 -0.453 0.340

BayTanC_min 0.510 -0.457 0.174 0.387 -0.507

BayTanC_max -0.675 0.810 0.138 -0.744 0.648

UAFlowPath -0.262 0.098 -0.086 -0.161 0.222

TWI_avg 0.250 -0.598 -0.786 0.389 -0.401

TCI 0.375 -0.659 -0.705 0.491 -0.557
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BayTanC_avg BayTanC_min BayTanC_max UAFlowPath TWI_mean TCI

DWA -0.115 -0.478 0.508 0.252 -0.174 -0.218

DDA -0.229 -0.794 0.418 -0.065 -0.332 -0.380

Elevation 0.094 0.009 0.274 -0.007 0.008 -0.048

BA -0.066 -0.155 0.341 0.218 0.085 0.134

UA -0.070 -0.111 0.345 0.810 0.176 0.152

UA:BA -0.079 0.096 -0.146 0.723 0.129 0.093

NDVI_avg 0.142 0.262 -0.368 -0.140 0.111 0.123

NDVI_min 0.125 0.344 -0.295 0.076 0.095 0.112

NDVI_max 0.184 -0.038 0.028 -0.354 -0.090 0.034

AQ_thck_avg -0.245 -0.266 0.062 0.214 0.275 0.149

AQ_thck_min -0.204 -0.255 0.089 0.226 0.264 0.122

AQ_thck_max -0.269 -0.272 0.055 0.190 0.280 0.158

BaySlope_avg -0.413 -0.197 -0.028 -0.384 -0.001 0.055

BaySlope_max -0.182 -0.256 0.404 0.296 0.243 0.142

UATotalC_avg -0.069 -0.046 -0.107 -0.178 0.186 0.229

UATotalC_min -0.030 0.305 -0.314 -0.476 -0.048 -0.013

UATotalC_max 0.124 -0.347 0.467 0.617 -0.024 -0.167

UAPlanarC_avg 0.309 0.058 0.150 0.105 -0.016 -0.134

UAPlanarC_min 0.122 0.324 -0.240 -0.658 -0.016 0.061

UAPlanarC_max 0.255 -0.201 0.503 0.565 -0.099 -0.194

UAProfileC_avg 0.436 0.151 0.154 0.349 0.007 -0.096

UAProfileC_min -0.120 0.428 -0.464 -0.597 0.036 0.175

UAProfileC_max 0.127 -0.324 0.331 0.521 0.020 -0.107

UATanC_avg 0.282 -0.221 0.373 0.148 -0.150 -0.295

UATanC_min 0.204 0.361 -0.349 -0.498 -0.074 -0.042

UATanC_max 0.050 -0.341 0.509 0.595 0.073 -0.074

BayTotalC_avg 0.685 0.020 0.373 0.128 -0.253 -0.303

BayTotalC_min -0.175 0.602 -0.620 -0.191 0.266 0.346

BayTotalC_max 0.460 -0.434 0.789 0.181 -0.491 -0.598

BayPlanarC_avg 0.953 0.145 0.267 -0.031 -0.743 -0.696

BayPlanarC_min -0.221 0.510 -0.675 -0.262 0.250 0.375

BayPlanarC_max 0.524 -0.457 0.810 0.098 -0.598 -0.659

BayProfileC_avg 0.831 0.174 0.138 -0.086 -0.786 -0.705

BayProfileC_min -0.453 0.387 -0.744 -0.161 0.389 0.491

BayProfileC_max 0.340 -0.507 0.648 0.222 -0.401 -0.557

BayTanC_avg 1 0.261 0.292 -0.004 -0.568 -0.514

BayTanC_min 0.261 1 -0.546 0.006 0.254 0.353

BayTanC_max 0.292 -0.546 1 0.185 -0.340 -0.392

UAFlowPath -0.004 0.006 0.185 1 0.175 0.071

TWI_avg -0.568 0.254 -0.340 0.175 1 0.905

TCI -0.514 0.353 -0.392 0.071 0.905 1  
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Continuous Terrain Attribute Abbreviation Key 

DWA – Ditch Width Average 

DDA – Ditch Depth Average 

BA – Bay Area 

UA – Upslope Catchment Area 

AQ_thick – Aquifer Thickness 

UATotalC – Upslope Catchment Area Total Curvature 

UAPlanarC – Upslope Catchment Area Planar Curvature 

UAProfileC – Upslope Catchment Area Profile Curvature 

UATanC – Upslope Catchment Area Tangential Curvature 

BayTotalC – Bay Total Curvature 

BayPlanarC – Bay Planar Curvature 

BayProfileC – Bay Profile Curvature 

BayTanC – Bay Tangential Curvature 

UAFlowPath – Upslope Catchment Area Maximum Flow Path Length 
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Appendix D – Correlations of Categorical Terrain Attributes 

Table 1. Significant correlations of terrain attributes with ditches (p-value ≤0.05) 

Terrain Attributes 

Spearman’s Rank 

Correlation 

Coefficient 

p-value 

Freestanding Water Encountered within the First Meter 0.479 0.01 

Known Drainage 0.706 0.00003 

Ditch Width 0.99 0.0000 

Ditch Depth 0.996 0.0000 

Elevation 0.377 0.05 

Bay Area 0.529 0.004 

Upslope Catchment Area Total Curvature Maximum 0.406 0.03 

Upslope Catchment Area Profile Curvature Minimum -0.382 0.04 

Bay Total Curvature Maximum 0.426 0.02 

Bay Planar Curvature Maximum 0.474 0.01 

Bay Profile Curvature Minimum -0.523 0.004 

Bay Profile Curvature Maximum 0.446 0.02 

Bay Tangential Curvature Maximum 0.486 0.009 

 

Table 2. Significant correlations of terrain attributes with known drainage (p-value ≤0.05) 

Terrain Attributes 

Spearman’s Rank 

Correlation 

Coefficient 

p-value 

Freestanding Water Encountered within the First Meter 0.429 0.02 

Pipes 0.48 0.01 

Ditches 0.706 0.00003 

Ditch Width Average 0.705 0.00003 

Ditch Depth Average 0.704 0.00003 

Elevation 0.455 0.02 

Bay Area 0.567 0.002 

Upslope Catchment Area 0.444 0.02 

Upslope Catchment Area Total Curvature Minimum -0.434 0.02 

Upslope Catchment Area Planar Curvature Minimum -0.383 0.04 

Upslope Catchment Area Planar Curvature Maximum 0.434 0.02 

Upslope Catchment Area Profile Curvature Maximum -0.454 0.02 

Bay Total Curvature Minimum -0.424 0.02 

Bay Tangential Curvature Maximum 0.424 0.02 

 

Table 3. Significant correlations of terrain attributes with pipes (p-value ≤0.05) 

Terrain Attributes 

Spearman’s Rank 

Correlation 

Coefficient 

p-value 

Known Drainage 0.48 0.01 

NDVI Maximum 0.437 0.02 
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Table 4. Significant correlations of terrain attributes with water hit (p-value ≤0.05) 

Terrain Attributes 

Spearman’s Rank 

Correlation 

Coefficient 

p-value 

Known Drainage 0.429 0.02 

Ditches 0.479 0.01 

Ditch Width Average 0.47 0.01 

Ditch Depth Average 0.478 0.01 

Bay Area 0.424 0.02 

NDVI Minimum -0.434 0.02 

NDVI Maximum 0.419 0.03 

Bay Total Curvature Average 0.434 0.02 

Bay Planar Curvature Maximum 0.373 0.05 

 

Table 5. Significant correlations of terrain attributes with grey redox depletions (p-value ≤0.05) 
 

Terrain Attributes 

Spearman’s Rank 

Correlation 

Coefficient 

p-value 

Bay Slope Average -0.447 0.02 

Upslope Catchment Area Total Curvature Average -0.378 0.05 

Upslope Catchment Area Total Curvature Minimum -0.446 0.02 

Upslope Catchment Area Total Curvature Maximum 0.446 0.02 

Upslope Catchment Area Planar Curvature Average 0.446 0.02 

Upslope Catchment Area Planar Curvature Minimum -0.446 0.02 

Upslope Catchment Area Planar Curvature Maximum 0.446 0.02 

Upslope Catchment Area Profile Curvature Average 0.446 0.02 

Upslope Catchment Area Profile Curvature Minimum -0.446 0.02 

Upslope Catchment Area Profile Curvature Maximum 0.446 0.02 

Upslope Catchment Area Tangential Curvature Average 0.446 0.02 

Upslope Catchment Area Tangential Curvature Maximum 0.429 0.02 

Bay Total Curvature Average 0.395 0.04 

Bay Total Curvature Minimum -0.447 0.02 

Bay Total Curvature Maximum 0.446 0.02 

Bay Planar Curvature Average 0.446 0.02 

Bay Planar Curvature Minimum -0.447 0.02 

Bay Planar Curvature Maximum 0.446 0.02 

Bay Profile Curvature Minimum -0.446 0.02 

Bay Profile Curvature Maximum 0.446 0.02 

Bay Tangential Curvature Average 0.395 0.04 

Bay Tangential Curvature Minimum -0.429 0.02 

Bay Tangential Curvature Maximum 0.446 0.02 

TWI Average -0.369 0.05 

TCI -0.429 0.02 
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Table 6. Significant correlations of terrain attributes with bay overlap (p-value ≤0.05) 

Terrain Attributes 

Spearman’s Rank 

Correlation 

Coefficient 

p-value 

Bay Area 0.487 0.009 

Upslope Area 0.5 0.007 

Aquifer Thickness Average 0.471 0.01 

Aquifer Thickness Minimum 0.417 0.03 

Aquifer Thickness Maximum 0.503 0.006 

Bay Slope Maximum 0.48 0.01 

Upslope Catchment Area Total Curvature Minimum -0.372 0.05 

Upslope Catchment Area Total Curvature Maximum 0.376 0.05 

Upslope Catchment Area Planar Curvature Minimum -0.422 0.03 

Upslope Catchment Area Planar Curvature Maximum 0.43 0.02 

Upslope Catchment Area Profile Curvature Minimum -0.37 0.05 

Bay Profile Curvature Average -0.367 0.05 

Upslope Catchment Area Maximum Flow Path Length 0.385 0.04 
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Appendix E – Soil Profile Descriptions with Pictures 
All markers in pictures indicate augered depth in 20 cm increments. Textural class is reported as 

field texture. 

 

P6B20S1 

Caroline County 

Mapped Soil Series: Lenni 

Horizon Depth (cm) Texture Matrix Color 

Ap1 27 Loam 10YR 5/3 

Ap2 44 Clay Loam 10YR 5/3 

Bg 68 Sandy Clay Loam 10YR 7/1 

Bgt1 86 Silty Clay Loam 10YR 7/1 

Btg2 100+ Silty Clay Loam 7.5YR 6/1 

Additional Notes 

Depth to grey redox depletions: 44 cm 

Depth to redox iron concentrations: 44 cm 

 
 

 

 

 

P6B20S2 

Caroline County 

Mapped Soil Series: Lenni 

Horizon Depth (cm) Texture Matrix Color 

Ap 20 Loam 10YR 5/3 

A 46 Sandy Loam 10YR 5/3 

B 67 Sandy Clay Loam 10YR 7/3 

Btg 82 Sandy Clay Loam 10YR 7/1 

Bg 100+ Clay Loam 10YR 6/1 

Additional Notes 

Depth to grey redox depletions: 66 cm 

Depth to redox iron concentrations: 0 cm 

 
 

 

 

 

 



 

69 | P a g e  

 

P6B20S3 

Caroline County 

Mapped Soil Series: Lenni 
Horizon Depth (cm) Texture Dominate Color 

Ap 20 Sandy Loam 10YR 5/4 

A 38 Clay Loam 10YR 5/4 

Bg1 62 Clay Loam 10YR 6/2 

Bg2 80 Sandy Clay Loam 10YR 7/1 

Bg3 100+ Sandy Clay Loam 10YR 7/2 

Additional Notes 

Depth to grey redox depletions: 38 cm 

Depth to redox iron concentrations: 38 cm 

 
 

 

 

 

 

 

 

P6B0S1 

Caroline County 

Mapped Soil Series: Lenni 

Horizon Depth (cm) Texture Dominate Color 

Ap 20 Silty Clay Loam 10YR 5/3 

A 30 Sandy Clay Loam 10YR 5/3 

Bg1 38 Silty Clay Loam 10YR 7/1 

Bg2 100+ Clay Loam 10YR 7/1 

Additional Notes 

Depth to grey redox depletions: 30 cm 

Depth to redox iron concentrations: 30 cm 
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P6B0S2 

Caroline County 

Mapped Soil Series: Lenni 
Horizon Depth (cm) Texture Dominate Color 

Ap 20 Sandy Loam 10YR 5/3 

A 32 Sandy Clay Loam 10YR 5/3 

Bg1 40 Silty Clay Loam 10YR 6/1 

Bg2 100+ Silty Clay Loam 10YR 7/1 

Additional Notes 

Depth to grey redox depletions: 32 cm 

Depth to redox iron concentrations: 40 cm 

 
 

 

 

 

 

 

 

P6B0S3 

Caroline County 

Mapped Soil Series: Lenni 
Horizon Depth (cm) Texture Dominate Color 

Ap 20 Sandy Loam 7.5YR 4/2 

A 52 Silty Loam 7.5YR 4/2 

Bg 66 Silty Loam 10YR 7/1 

Btg1 89 Clay Loam 10YR 6/1 

Btg2 100+ Silty Clay Loam 10YR 6/1 

Additional Notes 

Depth to grey redox depletions: 52 cm 

Depth to redox iron concentrations: 65 cm 
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P3B25S1 

Queen Anne’s County 

Mapped Soil Series: Hammonton 
Horizon Depth (cm) Texture Dominate Color 

Ap1 20 Sandy Clay Loam 10YR 4/4 

Ap2 40 Sandy Loam 10YR 4/4 

B1 52 Sandy Clay Loam 10YR 4/6 

B2 85 Sandy Loam 10YR 6/6 

B3 100+ Sandy Clay Loam 7.5YR 6/8 

Additional Notes 

Depth to redox iron concentrations: 84 cm 
 

 
 

P3B25S2 

Queen Anne’s County 

Mapped Soil Series: Hammonton 

Horizon Depth (cm) Texture Dominate Color 

Ap 20 Sandy Loam 10YR 4/3 

A 40 Sandy Clay Loam 10YR 4/3 

B1 60 Sandy Clay Loam 10YR 4/4 

B2 100+ Clay Loam 10YR 5/4 

 

 
 

P3B25S3 

Queen Anne’s County 

Mapped Soil Series: Hammonton 

Horizon Depth (cm) Texture Dominate Color 

Ap 32 Sandy Loam 10YR 4/4 

B1 80 Sandy Loam 10YR 4/6 

B2 100+ Sandy Loam 10YR 6/6 
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P3B26S1 

Queen Anne’s County 

Mapped Soil Series: Hammonton 
Horizon Depth (cm) Texture Dominate Color 

Ap 20 Loam 10YR 4/4 

A 40 Sandy Clay Loam 10YR 4/4 

B1 51 Sandy Clay Loam 10YR 3/4 

B2 80 Sandy Clay Loam 10YR 5/4 

Bt 100+ Sandy Clay Loam 10YR 5/6 

 

 
 

 

 

 

 

 

 

P3B26S2 

Queen Anne’s County 

Mapped Soil Series: Hammonton 

Horizon Depth (cm) Texture Dominate Color 

Ap 30 Sandy Loam 10YR 4/4 

B1 58 Sandy Clay Loam 10YR 5/4 

B2 76 Sandy Clay Loam 10YR 5/6 

Bt 100+ Sandy Clay Loam 10YR 6/8 

Additional Notes 

Depth to redox iron concentrations: 76 cm 

 
 

 

 

 

 

 



 

73 | P a g e  

 

P3B26S3 

Queen Anne’s County 

Mapped Soil Series: Hammonton 
Horizon Depth (cm) Texture Dominate Color 

Ap 20 Sandy Loam 10YR 4/4 

A 40 Clay Loam 10YR 4/4 

B1 90 Sandy Clay Loam 10YR 5/4 

B2 100+ Sandy Clay Loam 10YR 6/6 

Additional Notes 

Depth to redox iron concentrations: 90 cm 

 
 

 

 

 

 

 

 

P2B2S1 

Caroline County 

Mapped Soil Series: Woodstown 
Horizon Depth (cm) Texture Dominate Color 

Ap 20 Clay Loam 10YR 4/2 

A 50 Silty Clay Loam 10YR 4/2 

Btg 80 Clay Loam 10YR 5/1 

Bt 100+ Silty Clay Loam 10YR 3/2 

Additional Notes 

2 subsurface pipes draining this bay 

Depth to grey redox depletions: 0 cm 

Depth to redox iron concentrations: 0 cm 

No hydric soil indicators – insufficient redox iron concentrations in Ap for F3 
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P2B2S2 

Caroline County 

Mapped Soil Series: Woodstown 
Horizon Depth (cm) Texture Dominate Color 

Ap 13 Sandy Clay Loam 10YR 5/2 

Btg1 70 Silty Clay Loam 10YR 6/1 

Btg2 92 Silty Clay Loam 10YR 7/1 

Btg3 100+ Sandy Clay Loam 10YR 7/1 

Additional Notes 

2 subsurface pipes draining this bay 

Depth to grey redox depletions: 0 cm 

Depth to redox iron concentrations: 0 cm 

 
 

 

 

 

 

 

 

P2B2S3 

Caroline County 

Mapped Soil Series: Woodstown 
Horizon Depth (cm) Texture Dominate Color 

Ap 20 Sandy Clay Loam 10YR 5/2 

A 33 Clay Loam 10YR 5/2 

Btg1 53 Clay Loam 10YR 7/1 

Btg2 100+ Silty Clay Loam 10YR 7/1 

Additional Notes 

2 subsurface pipes draining this bay 

Depth to grey redox depletions: 0 cm 
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P2B10S1 

Caroline County 

Mapped Soil Series: Lenni 
Horizon Depth (cm) Texture Dominate Color 

Ap 29 Sandy Clay Loam 10YR 5/2 

Btg1 58 Sandy Clay Loam 10YR 6/2 

Bg 100+ Loamy Sand 10YR 7/1 

Additional Notes 

Depth to grey redox depletions: 29 cm 

Depth to redox iron concentrations: 29 cm 

 
 

 

 

 

 

 

 

P2B10S2 

Caroline County 

Mapped Soil Series: Lenni 

Horizon Depth (cm) Texture Dominate Color 

Ap 20 Loam 10YR 5/2 

A 40 Sandy Clay Loam 10YR 5/2 

Btg1 58 Clay Loam 10YR 7/1 

Btg2 81 Silty Clay Loam 10YR 7/1 

Btg3 100+ Silty Clay Loam 10YR 6/1 

Additional Notes 

Depth to grey redox depletions: 40 cm 

Depth to redox iron concentrations: 58 cm 
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P2B10S3 

Caroline County 

Mapped Soil Series: Lenni 
Horizon Depth (cm) Texture Dominate Color 

Ap 20 Clay Loam 10YR 4/2 

A 35 Silty Clay Loam 10YR 4/2 

Btg1 61 Clay Loam 10YR 7/1 

Btg2 100+ Silty Clay Loam 10YR 7/1 

Additional Notes 

Depth to grey redox depletions: 35 cm 

Depth to redox iron concentrations: 61 cm 

 
 

 

 

 

 

 

 

P2B14S1 

Caroline County 

Mapped Soil Series: Ingleside 
Horizon Depth (cm) Texture Dominate Color 

Ap 48 Sandy Loam 10YR 5/2 

B 68 Sandy Clay Loam 10YR 3/3 

Bg 100+ Sandy Clay Loam 10YR 7/1 

Additional Notes 

Depth to grey redox depletions: 65 cm 

Depth to redox iron concentrations: 20 cm 
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P2B14S2 

Caroline County 

Mapped Soil Series: Ingleside 
Horizon Depth (cm) Texture Dominate Color Notes 

Ap 20 Sandy Loam 10YR 4/2  

A 62 Sandy Clay Loam 10YR 4/2 

Pieces of darker 

soil (10YR 2/2) 

appear in this layer 

starting at 55 cm 

Bg 100+ Loamy Sand 10YR 7/1  

Additional Notes 

Depth to grey redox depletions: 62 cm 

Depth to redox iron concentrations: 62 cm 

 
 

 

 

 

 

 

 

P2B14S3 

Caroline County 

Mapped Soil Series: Ingleside 

Horizon Depth (cm) Texture Dominate Color 

Ap 39 Sandy Clay Loam 10YR 4/2 

B 50 Sandy Clay Loam 10YR 3/2 

Bg 100+ Sandy Loam 10YR 7/1 

Additional Notes 

Depth to grey redox depletions: 51 cm 

Depth to redox iron concentrations: 51 cm 
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P2B11S1 

Caroline County 

Mapped Soil Series: Ingleside 
Horizon Depth (cm) Texture Dominate Color 

Ap 53 Silty Clay Loam 10YR 5/3 

Btg 100+ Sandy Clay Loam 10YR 7/1 

Additional Notes 

Depth to grey redox depletions: 53 cm 

Depth to redox iron concentrations: 0 cm 

 
 

 

 

 

 

 

 

P2B11S2 

Caroline County 

Mapped Soil Series: Ingleside 
Horizon Depth (cm) Texture Dominate Color 

Ap 20 Sandy Clay Loam 10YR 5/2 

A 33 Silty Clay Loam 10YR 5/2 

Bt 60 Silty Clay Loam 10YR 5/3 

Btg 100+ Clay Loam 10YR 7/1 

Additional Notes 

Depth to grey redox depletions: 60 cm 

Depth to redox iron concentrations: 60 cm 
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P2B11S3 

Caroline County 

Mapped Soil Series: Ingleside 
Horizon Depth (cm) Texture Dominate Color 

Ap 20 Silty Clay Loam 10YR 5/2 

A 60 Silt Loam 10YR 5/2 

Bt 70 Sandy Clay Loam 10YR 5/2 

Btg 100+ Clay Loam 10YR 7/1 

Additional Notes 

Depth to grey redox depletions: 70 cm 

Depth to redox iron concentrations: 70 cm 

 
 

 

 

 

 

 

 

P2B12S1 

Caroline County 

Mapped Soil Series: Woodstown 

Horizon Depth (cm) Texture Dominate Color 

Ap 23 Sandy Loam 10YR 5/3 

B1 53 Sandy Loam 10YR 6/4 

B2 100+ Sandy Clay Loam 10YR 6/4 

Additional Notes 

Depth to redox iron concentrations: 23 cm 
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P2B12S2 

Caroline County 

Mapped Soil Series: Woodstown 
Horizon Depth (cm) Texture Dominate Color 

Ap 33 Sandy Clay Loam 10YR 5/2 

B1 80 Sandy Clay Loam 10YR 7/1 

B2 100+ Sandy Loam 2.5Y 7/1 

Additional Notes 

Depth to grey redox depletions: 33 cm 

Depth to redox iron concentrations: 33 cm 

 
 

 

 

 

 

 

 

P2B12S3 

Caroline County 

Mapped Soil Series: Woodstown 
Horizon Depth (cm) Texture Dominate Color 

Ap 20 Sandy Loam 10YR 5/2 

A 48 Sandy Clay Loam 10YR 5/2 

Bg 74 Sandy Clay Loam 10YR 7/1 

Btg 100+ Sandy Clay Loam 10YR 6/1 

Additional Notes 

Depth to grey redox depletions: 48 cm 

Depth to redox iron concentrations: 48 cm 
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P2B13S1 

Caroline County 

Mapped Soil Series: Ingleside 
Horizon Depth (cm) Texture Dominate Color 

Ap 40 Sandy Loam 10YR 5/2 

Btg1 71 Clay Loam 2.5Y 5/2 

Btg2 89 Clay Loam 10YR 7/1 

Bg 100+ Sandy Clay Loam 2.5Y 6/1 

Additional Notes 

Depth to grey redox depletions: 40 cm 

Depth to redox iron concentrations: 40 cm 

 
 

 

 

 

 

 

 

P2B13S2 

Caroline County 

Mapped Soil Series: Ingleside 
Horizon Depth (cm) Texture Dominate Color 

Ap 31 Sandy Loam 10YR 5/2 

Btg1 56 Sandy Clay Loam 10YR 6/1 

Btg2 100+ Sandy Clay Loam 2.5Y 7/1 

Additional Notes 

Depth to grey redox depletions: 31 cm 

Depth to redox iron concentrations: 31 cm 
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P2B13S3 

Caroline County 

Mapped Soil Series: Ingleside 
Horizon Depth (cm) Texture Dominate Color 

Ap 36 Sandy Loam 10YR 5/2 

Btg1 60 Sandy Clay Loam 10YR 7/1 

Btg2 80 Sandy Clay Loam 2.5Y 6/1 

Bg 100+ Sandy Loam 2.5Y 6/1 

Additional Notes 

Depth to grey redox depletions: 36 cm 

Depth to redox iron concentrations: 36 cm 

 
 

 

 

 

 

 

 

P2B24S1 

Caroline County 

Mapped Soil Series: Corsica 
Horizon Depth (cm) Texture Dominate Color 

Ap1 20 Sandy Clay Loam 10YR 2/1 

Ap2 40 Silty Clay Loam 10YR 2/1 

Bt 54 Silty Clay Loam 10YR 4/1 

Btg 100+ Silty Clay Loam 2.5Y 7/1 

Additional Notes 

Two ditches running through this bay 

Depth to grey redox depletions: 54 cm 

Depth to redox iron concentrations: 54 cm 

Depth to freestanding water: 26 cm 

 
 

 

 

 

 



 

83 | P a g e  

 

P2B24S2 

Caroline County 

Mapped Soil Series: Corsica 
Horizon Depth (cm) Texture Dominate Color 

Ap1 20 Sandy Loam 10YR 2/1 

Ap2 32 Sandy Clay Loam 10YR 2/1 

B 54 Sandy Clay Loam 10YR 3/1 

Bt 75 Sandy Clay Loam 10YR 4/1 

Bg 100+ Sandy Loam  10YR 7/1 

Additional Notes 

Two ditches running through this bay 

Depth to grey redox depletions: 53 cm 

Depth to redox iron concentrations: 53 cm 

Depth to freestanding water: 27 cm 

 

 
 

 

 

 

 

 

 

P2B24S3 

Caroline County 

Mapped Soil Series: Corsica 
Horizon Depth (cm) Texture Dominate Color 

Ap 42 Sandy Clay Loam 10YR 3/1 

B 64 Silty Clay Loam 2.5Y 2.5/1 

Bt1 88 Silty Clay Loam 2.5Y 3/1 

Bt2 100+ Sandy Clay Loam  10YR 4/1 

Additional Notes 

Two ditches running through this bay 

Depth to freestanding water: 34 cm 
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P2B1S1 

Caroline County 

Mapped Soil Series: Lenni 
Horizon Depth (cm) Texture Dominate Color 

Ap 37 Sandy Clay Loam 10YR 5/2 

Bg 62 Silty Clay Loam 10YR 7/1 

Btg1 86 Silty Clay Loam 10YR 6/1 

Btg2 100+ Clay Loam  2.5Y 7/1 

Additional Notes 

One underground pipe drains this bay 

Depth to grey redox depletions: 37 cm 

Depth to redox iron concentrations: 63 cm 

 
 

 

 

 

 

 

 

P2B1S2 

Caroline County 

Mapped Soil Series: Lenni 
Horizon Depth (cm) Texture Dominate Color 

Ap 20 Sandy Clay Loam 10YR 5/2 

A 31 Clay Loam 10YR 5/2 

Bg 51 Silty Clay Loam 10YR 7/1 

Btg 100+ Silty Clay Loam  2.5Y 7/1 

Additional Notes 

One underground pipe drains this bay 

Depth to grey redox depletions: 31 cm 

Depth to redox iron concentrations: 51 cm 

Depth to freestanding water: 33 cm 
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P2B1S3 

Caroline County 

Mapped Soil Series: Lenni 
Horizon Depth (cm) Texture Dominate Color 

Ap 20 Silty Clay Loam 10YR 5/2 

A 33 Sandy Clay Loam 10YR 5/2 

Bg 83 Clay Loam 10YR 7/1 

Btg 100+ Silty Clay Loam  2.5Y 7/1 

Additional Notes 

One underground pipe drains this bay 

Depth to grey redox depletions: 33 cm 

Depth to redox iron concentrations: 33 cm 

 
 

 

 

 

 

 

 

P5B3S1 

Caroline County 

Mapped Soil Series: Hurlock 

Horizon Depth (cm) Texture Dominate Color 

Ap 20 Sandy Loam 10YR 5/2 

A 37 Sandy Clay Loam 10YR 5/2 

Bg1 53 Sandy Clay Loam 2.5Y 5/2 

Bg2 74 Sandy Clay Loam  2.5Y 6/1 

Bg3 100+ Sandy Clay Loam 2.5Y 7/1 

Additional Notes 

Depth to grey redox depletions: 65 cm 

Depth to redox iron concentrations: 37 cm 
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P5B3S2 

Caroline County 

Mapped Soil Series: Hurlock 
Horizon Depth (cm) Texture Dominate Color 

Ap 20 Sandy Loam 10YR 5/2 

A 32 Sandy Clay Loam 10YR 5/2 

Btg 72 Clay Loam 10YR 7/1 

Bg1 81 Sandy Loam 10YR 7/1 

Bg2 92 Loamy Sand  10YR 7/2 

B 100+ Loamy Sand 10YR 4/6 

Additional Notes 

Depth to grey redox depletions: 32 cm 

Depth to redox iron concentrations: 32 cm 

 
 

 

 

 

 

 

 

 

P5B3S3 

Caroline County 

Mapped Soil Series: Hurlock 

Horizon Depth (cm) Texture Dominate Color 

Ap 32 Sandy Clay Loam 10YR 5/2 

B 45 Sandy Clay Loam 2.5Y 5/2 

Bg1 58 Sandy Clay Loam 2.5Y 7/1 

Bg2 72 Sandy Loam  2.5Y 6/2 

Bg3 100+ Sandy Loam 2.5Y 7/2 

Additional Notes 

Depth to grey redox depletions: 45 cm 

Depth to redox iron concentrations: 58 cm 
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P5B4S1 

Caroline County 

Mapped Soil Series: Ingleside 
Horizon Depth (cm) Texture Dominate Color 

Ap 20 Sandy Loam 10YR 4/3 

A 28 Sandy Clay Loam 10YR 4/3 

Bt 75 Sandy Clay Loam 10YR 5/2 

Bg 100+ Sandy Loam  10YR 6/2 

Additional Notes 

Depth to redox iron concentrations: 55 cm 

 
 

P5B4S2 

Caroline County 

Mapped Soil Series: Ingleside 

Horizon Depth (cm) Texture Dominate Color 

Ap 39 Sandy Clay Loam 10YR 5/3 

Bg 55 Sandy Clay Loam 10YR 5/2 

B1 87 Sandy Clay Loam 10YR 6/3 

B2 100+ Sandy Clay Loam  10YR 7/3 

Additional Notes 

Depth to redox iron concentrations: 39 cm 

 
 

P5B4S3 

Caroline County 

Mapped Soil Series: Ingleside 

Horizon Depth (cm) Texture Dominate Color 

Ap 20 Sandy Loam 10YR 4/3 

A 28 Sandy Clay Loam 10YR 4/3 

B 46 Sandy Clay Loam 2.5Y 5/4 

Btg 84 Sandy Clay Loam  10YR 5/2 

Bg 100+ Sandy Loam 10YR 5/2 

Additional Notes 

Depth to redox iron concentrations: 46 cm 
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P5B29S1 

Caroline County 

Mapped Soil Series: Hurlock 
Horizon Depth (cm) Texture Dominate Color 

Ap 34 Sandy Clay Loam 10YR 4/2 

Btg 40 Sandy Clay Loam 10YR 6/1 

Bg 60 Silty Clay Loam 10YR 7/1 

Btg 100+ Silty Clay Loam  10YR 5/1 

Additional Notes 

Depth to grey redox depletions: 34 cm 

Depth to redox iron concentrations: 55 cm 

 
 

 

 

 

 

 

 

P5B29S2 

Caroline County 

Mapped Soil Series: Hurlock 
Horizon Depth (cm) Texture Dominate Color 

Ap 31 Sandy Clay Loam 10YR 5/2 

Bg1 45 Sandy Clay Loam 2.5Y 6/1 

Bg2 90 Loamy Sand 2.5Y 5/1 

Bg3 100+ Sandy Clay Loam  2.5Y 5/1 

Additional Notes 

Depth to grey redox depletions: 31 cm 

Depth to redox iron concentrations: 44 cm 
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P5B29S3 

Caroline County 

Mapped Soil Series: Hurlock 
Horizon Depth (cm) Texture Dominate Color 

Ap 21 Clay Loam 10YR 5/2 

Bg1 31 Sandy Clay Loam 2.5Y 6/1 

Bg2 55 Silty Clay Loam 2.5Y 5/2 

Btg1 67 Clay Loam  10YR 6/1 

Btg2 100+ Silty Clay Loam 10YR 7/1 

Additional Notes 

Depth to grey redox depletions: 21 cm 

Depth to redox iron concentrations: 31 cm 

 
 

 

 

 

 

 

 

P5B9S1 

Caroline County 

Mapped Soil Series: Woodstown 

Horizon Depth (cm) Texture Dominate Color 

Ap 23 Sandy Clay Loam 10YR 5/2 

B 48 Sandy Clay Loam 2.5Y 5/2 

Bg1 88 Sandy Clay Loam 10YR 6/1 

Bg2 100+ Sandy Clay Loam  2.5Y 6/1 

Additional Notes 

Depth to grey redox depletions: 48 cm 

Depth to redox iron concentrations: 48 cm 

Depth to freestanding water: 0.5 cm above the surface 
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P5B9S2 

Caroline County 

Mapped Soil Series: Woodstown 
Horizon Depth (cm) Texture Dominate Color 

Ap 31 Sandy Clay Loam 2.5Y 5/2 

Bg1 52 Clay Loam 2.5Y 6/2 

Bg2 87 Sandy Clay Loam 10YR 6/1 

Bgt 100+ Clay Loam 10YR 6/1 

Additional Notes 

Depth to grey redox depletions: 31 cm 

Depth to redox iron concentrations: 87 cm  

Depth to freestanding water: 29 cm 

 
 

 

 

 

 

 

 

P5B9S3 

Caroline County 

Mapped Soil Series: Woodstown 
Horizon Depth (cm) Texture Dominate Color 

Ap 20 Loam 10YR 5/2 

A 32 Clay Loam 10YR 6/2 

Btg 89 Sandy Clay Loam 10YR 6/1 

Bg 100+ Sandy Loam 10YR 6/1 

Additional Notes 

Depth to grey redox depletions: 32 cm 

Depth to redox iron concentrations: 32 cm  

Depth to freestanding water: 40 cm 
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P5B6S1 

Caroline County 

Mapped Soil Series: Ingleside 
Horizon Depth (cm) Texture Dominate Color 

Ap 20 Sandy Clay Loam 10YR 5/2 

A 56 Silty Clay Loam 10YR 5/2 

Btg 93 Sandy Clay Loam 2.5Y 6/1 

Bg 100+ Sandy Loam 2.5Y 6/1 

Additional Notes 

Depth to grey redox depletions: 56 cm 

Depth to freestanding water: 24 cm 

 
 

 

 

 

 

 

 

P5B6S2 

Caroline County 

Mapped Soil Series: Ingleside 

Horizon Depth (cm) Texture Dominate Color 

Ap 34 Loam 10YR 5/2 

Btg 62 Clay Loam 10YR 7/1 

Bg 100+ Sandy Loam 7.5YR 6/1 

Additional Notes 

Depth to grey redox depletions: 42 cm 

Depth to redox iron concentrations: 62 cm  
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P5B6S3 

Caroline County 

Mapped Soil Series: Ingleside 
Horizon Depth (cm) Texture Dominate Color 

Ap 20 Clay Loam 10YR 5/2 

A 31 Sandy Clay Loam 10YR 5/2 

Btg 69 Sandy Clay Loam 10YR 6/1 

Bg1 80 Sandy Clay Loam 10YR 7/1 

Bg2 100+ Sandy Loam 10YR 7/1 

Additional Notes 

Depth to grey redox depletions: 31 cm 

Depth to redox iron concentrations: 31 cm  

 
 

 

 

 

 

 

 

P5B5S1 

Caroline County 

Mapped Soil Series: Woodstown 

Horizon Depth (cm) Texture Dominate Color 

Ap 20 Sandy Loam 10YR 5/2 

A 33 Sandy Clay Loam 10YR 5/2 

B 70 Sandy Clay Loam 2.5Y 6/3 

Bg 100+ Sandy Clay Loam 10YR 7/1 

Additional Notes 

Depth to grey redox depletions: 70 cm 

Depth to redox iron concentrations: 33 cm  

 
 

 

 

 

 

 

 

 

 



 

93 | P a g e  

 

P5B5S2 

Caroline County 

Mapped Soil Series: Woodstown 
Horizon Depth (cm) Texture Dominate Color 

Ap 20 Sandy Clay Loam 10YR 5/2 

A 31 Sandy Loam 10YR 5/2 

Btg 71 Sandy Clay Loam 10YR 6/2 

Bg 100+ Sandy Clay Loam 10YR 7/2 

Additional Notes 

Depth to grey redox depletions: 31 cm 

Depth to redox iron concentrations: 31 cm  

Depth to freestanding water: 59 cm 

 
 

 

 

 

 

 

 

P5B5S3 

Caroline County 

Mapped Soil Series: Woodstown 
Horizon Depth (cm) Texture Dominate Color 

Ap 20 Loam 10YR 5/2 

A 30 Sandy Clay Loam 10YR 5/2 

Bg1 66 Sandy Clay Loam 10YR 5/1 

Bg2 100+ Sandy Cay Loam 10YR 7/1 

Additional Notes 

Depth to grey redox depletions: 30 cm 

Depth to redox iron concentrations: 30 cm  

Depth to freestanding water: 66 cm 

 
 

 

 

 

 

 

 



 

94 | P a g e  

 

P5B8S1 

Caroline County 

Mapped Soil Series: Galestown 
Horizon Depth (cm) Texture Dominate Color 

Ap 20 Loamy Sand 10YR 4/2 

A 27 Sandy Loam 10YR 4/2 

Bg1 40 Sandy Loam 10YR 5/1 

Bg2 70 Sandy Loam 2.5Y 6/1 

Bg3 100+ Sandy Loam 2.5Y 7/1 

Additional Notes 

Depth to grey redox depletions: 27 cm 

 
 

P5B8S2 

Caroline County 

Mapped Soil Series: Galestown 

Horizon Depth (cm) Texture Dominate Color 

Ap 31 Sandy Loam 10YR 3/2 

Bg1 40 Loamy Sand 2.5Y 6/2 

Bg2 100+ Loamy Sand 2.5Y 7/2 

Additional Notes 

Depth to grey redox depletions: 31 cm 

 
 

P5B8S3 

Caroline County 

Mapped Soil Series: Galestown 
Horizon Depth (cm) Texture Dominate Color 

Ap 43 Sandy Loam 10YR 3/2 

Bg1 66 Loamy Sand 2.5YR 6/1 

Bg2 100+ Sandy Loam 2.5Y 7/1 

Additional Notes 

Depth to grey redox depletions: 43 cm 
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P5B7S1 

Caroline County 

Mapped Soil Series: Ingleside 
Horizon Depth (cm) Texture Dominate Color 

Ap 20 Sandy Loam 10YR 5/2 

A 38 Sandy Clay Loam 10YR 5/2 

Bg 68 Sandy Clay Loam 2.5Y 6/1 

Btg 100+ Sandy Loam 2.5Y 7/1 

Additional Notes 

Depth to grey redox depletions: 38 cm 

Depth to redox iron concentrations: 38 cm  

 
 

P5B7S2 

Caroline County 
Mapped Soil Series: Ingleside 

Horizon Depth (cm) Texture Dominate Color 

Ap 20 Sandy Loam 10YR 4/2 

A 40 Sandy Clay Loam 10YR 4/2 

Bg 51 Sandy Clay Loam 2.5Y 6/2 

Btg 100+ Sandy Loam 2.5Y 6/2 

Additional Notes 

Depth to grey redox depletions: 40 cm 

Depth to redox iron concentrations: 51 cm  

 
 

P5B7S3 

Caroline County 

Mapped Soil Series: Ingleside 
Horizon Depth (cm) Texture Dominate Color 

Ap 42 Sandy Clay Loam 10YR 4/2 

Bg 100+ Loamy Sand 10YR 7/1 

Additional Notes 

Depth to grey redox depletions: 42 cm 

Depth to redox iron concentrations: 42 cm  
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P1B21S1 

Caroline County 

Mapped Soil Series: Fallingston 
Horizon Depth (cm) Texture Dominate Color 

Ap 20 Silty Loam 10YR 2/2 

A 43 Silty Clay Loam 10YR 2/2 

Bt 53 Silty Clay Loam 10YR 2/1 

Btg 100+ Silty Cay Loam 10YR 6/1 

Additional Notes 

One ditch draining this Bay 

Depth to grey redox depletions: 53 cm 

Depth to redox iron concentrations: 53 cm  

Depth to freestanding water: 53 cm 

 
 

 

 

 

 

 

  

P1B21S2 

Caroline County 

Mapped Soil Series: Fallingston 

Horizon Depth (cm) Texture Dominate Color 

Ap 20 Sandy Loam 10YR 4/1 

A 34 Sandy Clay Loam 10YR 4/1 

B 60 Silty Clay Loam 10YR 3/1 

Bt 80 Silty Clay Loam 2.5Y 2.5/1 

Btg 100+ Silty Cay Loam 10YR 6/1 

Additional Notes 

One ditch draining this Bay 

Depth to grey redox depletions: 80 cm 

Depth to redox iron concentrations: 80 cm  

Depth to freestanding water: 81 cm 
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P1B21S3 

Caroline County 

Mapped Soil Series: Fallingston 
Horizon Depth (cm) Texture Dominate Color 

Ap 20 Clay Loam 10YR 3/1 

A 51 Silty Clay Loam 10YR 3/1 

B 69 Silty Clay Loam 10YR 2/1 

Btg 100+ Silty Cay Loam 10YR 6/1 

Additional Notes 

One ditch draining this Bay 

Depth to grey redox depletions: 69 cm 

Depth to redox iron concentrations: 69 cm  

 
 

 

 

 

 

 

 

P1B22S1 

Caroline County 

Mapped Soil Series: Hambrook 
Horizon Depth (cm) Texture Dominate Color 

Ap 20 Clay Loam 10YR 4/1 

A 41 Sandy Clay Loam 10YR 4/1 

Bg1 58 Sandy Clay Loam 2.5Y 6/1 

Bg2 73 Loamy Sand 2.5Y 6/1 

Bg3 100+ Loamy Sand 2.5Y 7/1 

Additional Notes 

Tile drainage in this Bay 

Depth to grey redox depletions: 41 cm 

Depth to redox iron concentrations: 41 cm  
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P1B22S2 

Caroline County 

Mapped Soil Series: Sassafras 
Horizon Depth (cm) Texture Dominate Color 

Ap 20 Clay Loam 10YR 4/1 

A 32 Sandy Clay Loam 10YR 4/1 

Btg 52 Clay Loam 10YR 6/1 

Bg1 63 Sandy Clay Loam 10YR 6/1 

Bg2 100+ Sandy Clay Loam 2.5Y 7/1 

Additional Notes 

Tile drainage in this Bay 

Depth to grey redox depletions: 32 cm 

Depth to redox iron concentrations: 32 cm  

 
 

 

 

 

 

 

 

P1B22S3 

Caroline County 

Mapped Soil Series: Hambrook 

Horizon Depth (cm) Texture Dominate Color 

Ap 45 Sandy Clay Loam 10YR 4/1 

Btg1 59 Clay Loam 2.5Y 6/1 

Btg2 72 Silty Clay Loam 10YR 6/1 

Btg3 100+ Sandy Cay Loam 2.5Y 7/1 

Additional Notes 

Tile drainage in this Bay 

Depth to grey redox depletions: 45 cm 

Depth to redox iron concentrations: 45 cm  
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P1B16S1 

Caroline County 

Mapped Soil Series: Fallingston 
Horizon Depth (cm) Texture Dominate Color 

Ap 20 Clay Loam 10YR 4/1 

A 31 Silty Clay Loam 10YR 4/1 

Btg1 57 Silty Clay Loam 2.5Y 5/1 

Btg2 69 Clay Loam 2.5Y 6/1 

Btg3 100+ Sandy Cay Loam 10YR 5/1 

Additional Notes 

Depth to grey redox depletions: 31 cm 

Depth to redox iron concentrations: 69 cm 

  

 

 

 

 

 

 

P1B16S2 

Caroline County 

Mapped Soil Series: Fallingston 
Horizon Depth (cm) Texture Dominate Color 

Ap 20 Sandy Clay Loam 10YR 4/2 

A 31 Sandy Loam 10YR 4/2 

Bg1 51 Sandy Clay Loam 2.5Y 6/1 

Bg2 76 Sandy Loam 10YR 7/1 

Bg3 100+ Loamy Sand 2.5Y 7/2 

Additional Notes 

Depth to grey redox depletions: 31 cm 

Depth to redox iron concentrations: 50 cm 
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P1B16S3 

Caroline County 

Mapped Soil Series: Fallingston 
Horizon Depth (cm) Texture Dominate Color 

Ap 19 Sandy Clay Loam 2.5Y 5/2 

A 41 Clay Loam 2.5Y 5/2 

Btg 61 Sandy Clay Loam 2.5Y 7/1 

Bg1 79 Sandy Loam 2.5Y 6/1 

Bg2 100+ Loamy Sand 2.5Y 7/2 

Additional Notes 

Depth to grey redox depletions: 40 cm 

Depth to redox iron concentrations: 40 cm 

 
 

P1B15S1 

Caroline County 

Mapped Soil Series: Hambrook 

Horizon Depth (cm) Texture Dominate Color 

Ap 36 Sandy Loam 10YR 4/2 

B 61 Sandy Loam 10YR 5/3 

Bg1 82 Sandy Clay Loam 10YR 5/2 

Bg2 100+ Sandy Clay Loam 10YR 7/1 

Additional Notes 

Depth to grey redox depletions: 61 cm 

Depth to redox iron concentrations: 61 cm 

 
 

P1B15S2 

Caroline County 

Mapped Soil Series: Hambrook 
Horizon Depth (cm) Texture Dominate Color 

Ap 20 Loam 10YR 4/2 

A 37 Sandy Clay Loam 10YR 4/2 

Bg 100+ Sandy Clay Loam 10YR 6/1 

Additional Notes 

Depth to grey redox depletions: 37 cm 

Depth to redox iron concentrations: 37 cm 
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P1B15S3 

Caroline County 

Mapped Soil Series: Hambrook 
Horizon Depth (cm) Texture Dominate Color 

Ap 20 Sandy Loam 10YR 5/2 

A 41 Sandy Clay Loam 10YR 5/2 

Bg1 78 Sandy Clay Loam 2.5Y 5/1 

Bg2 100+ Sandy Clay Loam 2.5Y 6/2 

Additional Notes 

Depth to grey redox depletions: 41 cm 

Depth to redox iron concentrations: 41 cm 

 
 

 

 

 

 

 

 

P1B19S1 

Caroline County 

Mapped Soil Series: Lenni 
Horizon Depth (cm) Texture Dominate Color 

Ap 20 Silty Clay Loam 10YR 4/1 

A 34 Clay Loam 10YR 4/1 

Btg1 46 Silty Clay Loam 10YR 7/1 

Btg2 82 Silty Clay Loam 10YR 6/1 

Bg 100+ Sandy Loam 2.5Y 7/1 

Additional Notes 

Depth to grey redox depletions: 34 cm 

Depth to redox iron concentrations: 34 cm  

Depth to freestanding water: 77 cm 
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P1B19S2 

Caroline County 

Mapped Soil Series: Lenni 
Horizon Depth (cm) Texture Dominate Color 

Ap 20 Sandy Loam 10YR 4/1 

A 34 Sandy Clay Loam 10YR 4/1 

Btg1 69 Clay Loam 10YR 4/1 

Btg2 100+ Silty Clay Loam 10YR 7/1 

Additional Notes 

Depth to grey redox depletions: 69 cm 

Depth to redox iron concentrations: 34 cm  

Depth to freestanding water: 9 cm 

 
 

 

 

 

 

 

 

P1B19S3 

Caroline County 

Mapped Soil Series: Lenni 
Horizon Depth (cm) Texture Dominate Color 

Ap 20 Sandy Loam 10YR 4/1 

A 36 Sandy Clay Loam 10YR 4/1 

Btg1 46 Sandy Clay Loam 10YR 2/1 

Btg2 63 Sandy Clay Loam 10YR 4/1 

Btg3 82 Silty Clay Loam 10YR 5/1 

Bg 100+ Sandy Cay Loam 2.5Y 6/1 

Additional Notes 

Depth to grey redox depletions: 63 cm 

Depth to freestanding water: 76 cm 
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P1B18S1 

Caroline County 

Mapped Soil Series: Hambrook 
Horizon Depth (cm) Texture Dominate Color 

Ap 20 Silty Loam 10YR 5/2 

A 37 Loamy Sand 10YR 5/2 

B 73 Sandy Loam 10YR 5/3 

Bg 100+ Loamy Sand 10YR 7/2 

Additional Notes 

Depth to grey redox depletions: 73 cm 

Depth to redox iron concentrations: 37 cm  

 
 

 

 

 

 

 

 

P1B18S2 

Caroline County 

Mapped Soil Series: Hambrook 

Horizon Depth (cm) Texture Dominate Color 

Ap 20 Silty Clay Loam 10YR 4/3 

A 37 Loam 10YR 4/3 

B 62 Sandy Clay Loam 2.5Y 5/3 

Bg1 86 Silty Cay Loam 10YR 5/1 

Bg2 100+ Sandy Clay Loam 10YR 5/1 

Additional Notes 

Depth to grey redox depletions: 62 cm 

Depth to redox iron concentrations: 40 cm  

 
 

 

 

 

 

 

 



 

104 | P a g e  

 

P1B18S3 

Caroline County 

Mapped Soil Series: Hambrook 
Horizon Depth (cm) Texture Dominate Color 

Ap 20 Clay Loam 10YR 4/3 

A 40 Silt Loam 10YR 4/3 

Bg 64 Clay Loam 10YR 6/1 

Btg 100+ Sandy Cay Loam 2.5Y 6/1 

Additional Notes 

Depth to grey redox depletions: 40 cm 

Depth to redox iron concentrations: 40 cm  

 
 

 

 

 

 

 

 

P1B17S1 

Caroline County 

Mapped Soil Series: Sassafras 

Horizon Depth (cm) Texture Dominate Color 

Ap 20 Sandy Loam 10YR 4/2 

A 40 Sandy Clay Loam 10YR 4/2 

Bg1 67 Sandy Loam 2.5Y 5/2 

Bg2 100+ Loamy Sand 2.5Y 5/2 

Additional Notes 

Depth to grey redox depletions: 67 cm 

Depth to redox iron concentrations: 67 cm  
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P1B17S2 

Caroline County 

Mapped Soil Series: Fallingston 
Horizon Depth (cm) Texture Dominate Color 

Ap 20 Clay Loam 10YR 4/2 

A 43 Sandy Clay Loam 10YR 4/2 

Bg1 73 Sandy Clay Loam 10YR 6/1 

Bg2 100+ Sandy Cay Loam 10YR 7/1 

Additional Notes 

Depth to grey redox depletions: 43 cm 

Depth to redox iron concentrations: 43 cm  

 
 

 

 

 

 

 

 

P1B17S3 

Caroline County 

Mapped Soil Series: Sassafras 

Horizon Depth (cm) Texture Dominate Color 

Ap 20 Clay Loam 10YR 4/2 

A 50 Sandy Loam 10YR 4/2 

Bg1 82 Sandy Clay Loam 10YR 5/1 

Bg2 91 Sandy Loam 10YR 6/1 

Btg 100+ Sandy Clay Loam 2.5Y 7/1 

Additional Notes 

Depth to grey redox depletions: 70 cm 

Depth to redox iron concentrations: 60 cm  
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P1B28S1 

Caroline County 

Mapped Soil Series: Lenni 
Horizon Depth (cm) Texture Dominate Color Notes 

Ap 20 Sandy Loam 2.5Y 4/2  

A 36 Sandy Clay Loam 2.5Y 4/2  

Bg1 53 Sandy Clay Loam 10YR 5/1  

Bg2 68 Sandy Loam 10YR 5/1 Seashell fragments 

present Bg3 100+ Sandy Loam 10YR 6/1 

Additional Notes 

Depth to grey redox depletions: 36 cm 

Depth to redox iron concentrations: 36 cm  

 
 

 

 

 

 

 

 

P1B28S2 

Caroline County 

Mapped Soil Series: Lenni 
Horizon Depth (cm) Texture Dominate Color Notes 

Ap 20 Sandy Clay Loam 10YR 4/2  

A 38 Sandy Loam 10YR 4/2  

Btg1 64 Sandy Clay Loam 2.5Y 6/1  

Btg2 100+ 
Sandy Clay Loam 2.5Y 7/1 Seashell fragments 

present 

Additional Notes 

Depth to grey redox depletions: 38 cm 

Depth to redox iron concentrations: 38 cm  
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P1B28S3 

Caroline County 

Mapped Soil Series: Lenni 
Horizon Depth (cm) Texture Dominate Color 

Ap 20 Sandy Loam 2.5Y 4/2 

A 42 Sandy Clay Loam 2.5Y 4/2 

Bg1 72 Silty Clay Loam 2.5Y 6/1 

Bg2 85 Sandy Clay Loam 2.5Y 6/1 

Bg3 100+ Sandy Clay Loam 2.5Y 7/1 

Additional Notes 

Depth to grey redox depletions: 42 cm 

Depth to redox iron concentrations: 42 cm  

 


