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1 Introduction

In a seminal paper, Strominger wrote down the conditions for the most general geometric

compactification of heterotic string theory which gives rise to an N = 1 theory with a

maximally symmetric N = 1 vacuum [1] (see also [89] for an early example of a non-

Kähler heterotic compactification). A question of principal importance for the use of these

spaces in string phenomenology is the nature of their moduli space. The massless charged

matter of the theory is required, in a realistic compactification, to be compatible with
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our experimental observations. The uncharged moduli of the theory must be fixed, or

stabilized, at vevs resulting in realistic values for the gauge and Yukawa couplings.

In the special case of a Calabi-Yau compactification, it is well known how to compute

the field content of the low energy theory. Naively, the moduli of such a heterotic solution

are the metric and bundle moduli, which, via theorems by Yau, Donaldson, and Uhlenbeck

and Yau, are counted by the dimensions of the cohomology groups H1(TX), H1(TX∨)

and H1(End0(V )). Even in this case, there are some subtleties in counting the number

of massless fields due to the gauge field structure in the problem, as has recently been

discussed in [2–4].

In addition to Calabi-Yau compactifications, there has also been considerable interest

in non-Kähler solutions of the heterotic string, see for example [5–8, 10–42]. In particular,

as Yau’s theorem can no longer be applied to relate metric moduli to deformations of the

complex and Kähler structure, a longstanding problem in non-Kähler heterotic compacti-

fications has been to understand their massless degrees of freedom.

A proposal for the physical moduli of non-Kähler solutions to the Strominger system

was given in [5], at zeroth order in α′ (see e.g. [43, 44] for other related work). The analysis

revolved around computing supersymmetric marginal operators in the (0,2) supersymmet-

ric worldsheet theory. Such worldsheet-based computations are only valid for backgrounds

associated to weakly coupled nonlinear sigma models, and in non-Kähler heterotic com-

pactifications, the existence of such a weakly coupled regime is not always clear. Similar

comments can be made when working to a fixed order in α′ in a spacetime, supergravity-

based approach. Nevertheless, such analysis is relevant for those cases where the volume is

large compared to the string scale. Given the hierarchy of scales which is seen in nature,

this may well be the type of compactification of interest in heterotic string phenomenology.

In addition, such work might act as a starting point for a more general discussion.

In this paper, we return to the question of moduli in non-Kähler solutions to the

Strominger system, utilizing the complementary approach of studying the low-energy su-

pergravity. We derive results valid through first order1 in α′, a technical improvement over

the discussion of [5], with our results being in agreement with that work in the limit where

α′ → 0. On the other hand, unlike [5], we ‘overcount’ the massless degrees of freedom of

the compactification as, as we will describe, we shall only analyze a subset of the conditions

imposed upon the system by Strominger. Our supergravity deformation analysis will also

be restricted to compactifications on spaces satisfying the ∂∂-lemma, which can be stated

as follows:

Lemma Let X be a compact Kähler manifold. For A a d-closed (p, q)-form, the following

statements are equivalent.

A = ∂C ⇔ A = ∂C ′ ⇔ A = dC ′′ ⇔ A = ∂∂C̃ ⇔ A = ∂Ĉ + ∂Č (1.1)

for some C,C ′, C ′′, C̃ and Č.

We define a ∂∂-manifold to be any manifold, Kähler or not, which satisfies this lemma.

1For a discussion of the α′ expansion in heterotic theories see [1, 84] and recent related work [87, 88].
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There are many known examples of Strominger compactifications on spaces which obey

the ∂∂-lemma (which is an open condition in complex structure moduli space [9]). These

include standard and non-standard embeddings on Calabi-Yau threefolds, as well as “fully

non-Kähler” possibilities [10]. It is known that the ∂∂-lemma holds for manifolds in the

class C of Fujiki [45, 46]. That is for manifolds which are compact and the meromorphic

image of a compact Kähler space (which is not necessarily Kähler). It is also interesting

to note that requiring the ∂∂-lemma leads to balanced structure of a metric being stable

under small deformations (see [47] for a recent discussion).

We will describe how the metric, spin connection, and bundle deformations of such

examples of the Strominger system are described as subspaces of ordinary bundle valued

Dolbeault cohomology groups. These subspaces are given by nested kernels of maps be-

tween familiar cohomologies, such as H1(TX) and H2(End0(V )). The maps involved are

defined by the geometric data of the compactification. Equivalently, the deformations are

described by the first cohomology of a bundle which is not simply TX ⊕ TX∨ ⊕ End0(V )

but rather a non-trivial merging of these components (and H1(End0(TX))). Our results

can be expressed in the structure of Atiyah and Courant algebroids, and have tantalizing

connections with Hitchin’s generalized geometry.

In order to explain the structure we will present, it is helpful to make a compari-

son to a case which is already well known in the literature — that of the Atiyah class

stabilization of complex structure moduli in Calabi-Yau threefold compactifications of het-

erotic theories [2–4, 49]. Gauge fields in such a compactification must obey the Hermitian

Yang-Mills equation at zero slope:

Fab = 0 , (1.2)

gabFab = 0 . (1.3)

The first equation does not depend on the metric, but merely on the complex structure

and gauge bundle of the system. It states that the gauge bundle must be holomorphic.

The second equation, which does depend upon the metric, states that the gauge bundle is

poly-stable and of zero slope (in the Mumford sense).

Since equation (1.2) depends explicitly on the complex structure of the compactifica-

tion, it is of no surprise that it leads to a stabilization of some of the complex structure

moduli of the base Calabi-Yau threefold. The unstabilized complex structure moduli can

be described as the kernel of the map,

H1(TX)
[F ]
−→ H2(End0(V )) . (1.4)

The map, as indicated in (1.4), is determined by the cohomology class of the field strength

of the gauge connection. The crucial point is that the moduli of the system can still be

described in terms of a subspace of the ordinary bundle valued Dolbeault cohomologies,

despite the extra structure in the system due to the gauge bundle. The constraint (1.4),

due to the equation (1.2), can be reproduced in the four dimensional theory by F-term

constraints [50]. The constraints imposed by the condition (1.3), on the other hand, are
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reproduced by D-terms [50]. The D-term structure is, of course, entirely determined by the

charges of the matter content of the theory, together with the metric on the field space.

Let us compare this discussion to the case described in the present paper. The most

pertinent equations can be written as follows:

Fab = 0 , H =
i

2

(

∂ − ∂
)

J , (1.5)

gabFab = 0 , gbcHbca = −6∂aφ . (1.6)

As with the Atiyah discussion, the first two equations are again the focus of our

discussion. The first of these is in fact, once more, the condition for bundle holomorphy,

and as such we expect the Atiyah kernel (1.4) to be part of the result. We find that the

fluctuations consistent with the other equation in (1.5) and the heterotic Bianchi identity

are also subgroups of the Dolbeault cohomology groups with the maps determined by the

field configurations.

We will show that the fluctuations in the metric, spin connection, and bundle moduli

of this system are a subspace of H1(TX)⊕H1(TX∨)⊕H1(End0(V ))⊕H1(End0(TX)). In

a Calabi-Yau compactification the first three of these would be referred to as the complex

structure, Kähler and bundle moduli respectively (whereas the last piece corresponds to a

redundant description of the perturbations of the spin connection). In view of the differ-

ent situation being considered here, we will refer to H1(TX∨) as being associated to the

“Hermitian” rather than “Kähler” moduli. We will show that the unstabilized deformations

consistent with (1.5) are given by H1(H), described in the following form

H1(H) =











ker(H1(Q) → H2(TX∨))

⊕

H1(TX∨) ,

(1.7)

where

H1(Q) =











H1(End0(V ))⊕H1(End0(TX))

⊕

ker(H1(TX) → H2(End0(V ))⊕H2(End0(TX))) .

(1.8)

These results subsume the Atiyah stabilization, and the maps are once again defined by

the background fields of the solution to the Strominger system under consideration (see

section 3 for details). As we have mentioned, as described in the equations above, H1(H) is

a subgroup not of H1(TX)⊕H1(TX∨)⊕H1(End0(V )) but rather H1(TX)⊕H1(TX∨)⊕

H1(End0(V )) ⊕H1(End0(TX)). The extra contribution, in H1(End0(TX)), corresponds

to perturbations of the spin connection. In a Calabi-Yau compactification, for example,

these degrees of freedom are redundant with the metric moduli. It turns out to be simpler

in the analysis to treat these perturbations as separate from those of the metric, however,

and their presence helps in linking the structure to the mathematics of Courant algebroids

— hence their appearance here.

As in the case of the Atiyah stabilization we expect the equations (1.6) to be encoded

in terms of D-terms in the four dimensional theory. We will not however address these
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further restrictions in this paper. The crucial point is once more that, despite all of the

extra structure of the Strominger system, the moduli are once again subspaces of the same

cohomology groups that are familiar from Calabi-Yau compactifications, in the case where

the compactification obeys the ∂∂-lemma.

We would like to highlight that, as we were finishing this work, we were made aware

of closely related work that will appear concurrently with this paper [51].

The rest of this paper is structured as follows. In section 2 we perform a field theory

perturbation analysis of the Strominger system. We emphasize we are only considering lin-

ear perturbations in this work and not higher order obstructions to moduli directions. In

section 3 we relate this field theory discussion to a cohomological description, as described

above. In section 4 we describe the relationship of this analysis to previous work [52, 53]

relating the Strominger system to transitive Courant algebroids. We also discuss the rela-

tionship of the deformations we describe to that of a generalized complex structure on the

total space of a specific bundle. In section 5 we describe the relationship of our work to

previous research in the context of NLSM’s. Finally, in section 6, we conclude and discuss

possible future directions of research. A technical appendix provides some details on the

mathematics of Courant algebroids which are required in the text.

2 Perturbing the Strominger system

Strominger has written down the conditions which are necessary and sufficient for a com-

pactification of heterotic string theory to four dimensions to exhibit a maximally symmetric

vacuum with N = 1 supersymmetry [1]. They are,

• the compactification manifold must admit an integrable complex structure.

• The fundamental form Jab̄ = igab̄ must obey the following two equations:2

∂∂J =
1

30
iα′TrF ∧ F − iα′trR ∧R , (2.1)

d†J = i
(

∂ − ∂
)

ln||ω|| . (2.2)

In the above expression, ||ω|| is the norm of the holomorphic (3, 0) form associated

to the SU(3) structure admitted by the compactification manifold. The gauge trace

is taken in the adjoint representation.

• The Yang-Mills field strength must satisfy

Jab̄Fab̄ = 0 , (2.3)

Fab = Fāb̄ = 0 . (2.4)

2The curvature of the Levi-Civita connection appears in (2.1) rather than a connection modified by

terms involving H because of the counting in α′. The field strength H is order α′ thanks to the nature

of the Bianchi identity and flux quantization conditions. In particular in equation (2.8) we will see that

H may be written as a piece H̃ and terms which are explicitly first order in α′. The contribution H̃ is

quantized in units of α′ and thus also appears at first order in this quantity. Thus modifying the curvature

that appears in (2.1) by terms involving H will only modify the discussion at second order in α′. In this

paper we will restrict ourselves to the first non-trivial order in the expansion.
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It is useful to split up the above conditions by introducing new quantities in the form

of the NS-NS field strength H and the dilaton φ. In addition to making certain parallels

between the equations for J and F manifest, this will be useful when we come to consider

the effects of flux quantization in this setting.

Following Strominger, we use the solution for H, given by the expression

H =
i

2

(

∂ − ∂
)

J , (2.5)

and φ, via

φ =
1

8
ln||ω||+ φ0 , (2.6)

where φ0 is a constant.

Using these expressions we can rewrite some of the conditions of the Strominger system.

From the Bianchi identity, equation (2.1), we then have that

dH = −
1

30
α′trF ∧ F + α′trR ∧R , (2.7)

⇒ H = H̃ −
1

30
α′ωYM

3 + α′ωL
3 , (2.8)

where the difference in Chern Simons terms is well defined thanks to the anomaly cancela-

tion condition. In this expression dH̃ = 0 and H̃ obeys an integer valued flux quantization

condition [48]. It should be noted that, while H is gauge invariant, the individual terms

on the right hand side of (2.8) are not. Thus this expression denotes forms which must

be patched together with both gauge and coordinate transformations on coordinate patch

overlaps.

We can also rewrite the equation (2.2) in terms of H and φ, using (2.5) (this is also

done, for example, in [54]). We have, by definition, that
(

d†J
)

a
= ∇bJab , (2.9)

whereas, from (2.5),

Habc =
3

2
i∂[aJbc] =

3

2
i∇[aJbc] , (2.10)

⇒ Habcg
cb =

3

4
i
(

gcb∇aJbc − gcb∇bJac

)

(2.11)

= −
3

4
i∇cJac . (2.12)

Given this, we find the following:

d†J = i
(

∂ − ∂
)

8φ , (2.13)

⇒
4

3
iHabcg

cb = −8i∂aφ , (2.14)

⇒ Hbcag
bc = −6∂aφ . (2.15)

Similarly we find

Hbcag
bc = 6∂aφ , (2.16)

which is just the conjugate of (2.15).
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Thus, finally, we obtain the form we shall use for the Strominger equations. We have,

dH = −
1

30
α′trF ∧ F + α′trR ∧R , (2.17)

H =
i

2

(

∂ − ∂
)

J , (2.18)

Fab = Fab = 0 , (2.19)

as the equations involving no contractions with the metric, and

Hbcag
bc = −6∂aφ , Hbcag

bc = 6∂aφ and gabFab = 0 (2.20)

for the remaining relations.

Our expectation is that the first set of equations above are the generalizations to the

Strominger system of the Bianchi identity and holomorphy conditions of the Calabi-Yau

case. As such the restrictions they enforce on the moduli space of the system, that we

anticipate is the space of F-flat fluctuations, should be describable as kernels of maps

between ordinary Dolbeault cohomologies. We will show that this is so, in this section

and the next, for a manifold satisfying the ∂∂-lemma. The second set of equations is

the generalization of poly-stability to the non-Kähler situation. As such we expect these

conditions to be more involved, and case dependent, in their analysis. We shall not discuss

these conditions in detail in this paper.

To understand how the equations (2.17)–(2.19) restrict the moduli space, we assume

we have a solution to the system, and perturb the complex structure, the fundamental two

form, the spin connection, the gauge fields and the Neveu-Schwarz two form about that

configuration. We begin with equation (2.18).

2.1 Perturbing equation (2.18) and flux quantization

The expression for H, (2.18), as written, explicitly involves complex coordinates. In order

to facilitate analysis of perturbations of this equation under fluctuations of the complex

structure, we rewrite the equation in terms of real coordinates as follows.

Hijk =
i

2

(

Π
(+)l
i Π

(+)m
j Π

(−)n
k +Π

(+)l
i Π

(−)m
j Π

(+)n
k +Π

(−)l
i Π

(+)m
j Π

(+)n
k

)

dJlmn (2.21)

−
i

2

(

Π
(−)l
i Π

(−)m
j Π

(+)n
k +Π

(−)l
i Π

(+)m
j Π

(−)n
k +Π

(+)l
i Π

(−)m
j Π

(−)n
k

)

dJlmn ,

where

Π
(±)j
i =

1

2
(1± iJ) j

i (2.22)

are the projectors onto holomorphic and anti-holomorphic coordinates.

The perturbation to H̃, as defined in equation (2.8) also has to be of the form dδB. This

is because the integral of H̃ over any three cycle is quantized. If there were a harmonic part

to the perturbation in δH̃ (the other possibility) this would violate the integer quantization.

Given this, we have,

3d[iδBjk] −
1

30
α′δωYM

3ijk + α′δωL
3ijk = δHijk , (2.23)

where Hijk is given by equation (2.21).

We now analyze this equation, order by order in α′.
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2.1.1 Zeroth order in α′

To understand the implications of equation (2.23) we now examine its components in terms

of complex coordinates adapted to the original, unperturbed complex structure. Taking

i, j, k = ā, b̄, c̄ we find,

3∂[āδBb̄c̄] =
i

2

(

−
i

2
δJ c

c dJabc −
i

2
δJ b

b
dJabc −

i

2
δJ a

a dJabc

)

, (2.24)

=
3

4

(

δJ d
c d[aJbc] + δJ d

b
d[aJcc] + δJ d

a d[cJbc]

)

δcd , (2.25)

= 3δJ d
[c daJbc]δ

c
d , (2.26)

= 3δJ d
[c∇aJbc]δ

c
d , (2.27)

= 3∇[a(δJ
d
c Jbc])δ

c
d , (2.28)

=
3

2
∇[a(δJ

d
c Jb]c)δ

c
d , (2.29)

= −
3

2
i∂[aδJcb] . (2.30)

In the above we have used that δJ ∈ H1(TX) and, given that Jij is a (1, 1) form,

J j
i JjlJ

l
k = Jik , (2.31)

⇒ δJ j
i JjlJ

l
k + J j

i δJjlJ
l
k + J j

i JjlδJ
l
k = δJik , (2.32)

⇒ δJcb = δJ c
c Jcb(−i) + (−i)δJcb(−i) + (−i)JccδJ

c
b
, (2.33)

⇒ δJcb = iδJ c
[cJb]c . (2.34)

Given (2.30), any change in (0, 2) component of J can be compensated for by an

appropriate change in B (which therefore becomes part of the reduction ansatz):

δBb̄c̄ =
1

2
iδJb̄c̄ + δB′

b̄c̄
. (2.35)

Here δB′ is an arbitrary ∂ closed (0, 2) form.

Returning to (2.23) we now consider the remaining possibility for the components (up

to conjugation), i, j, k = ā, b̄, c.

3d[āδBb̄c] =
i

2
(dδJ)abc+

i

2

(

i

2
δJ d

a dJdbc+
i

2
δJ d

b
dJadc +

i

2
δJ d

a dJdbc+
i

2
δJ d

b
dJadc

)

, (2.36)

=
i

2
(dδJ)abc −

1

2
δJ d

[adJb]cd −
1

2
δJ d

[adJb]cd , (2.37)

= i∂[aδJb]c +
i

2
∂cδJab − δJ d

[adJb]cd . (2.38)

Expanding out the left hand side as well we obtain

2∂[aδBb]c + ∂cδBab = i∂[aδJb]c +
1

2
i∂cδJab − δJ d

[adJb]cd . (2.39)

Now we use our solution (2.35) in the previous equation:

⇒ 2∂[āδBb̄]c + ∂cδB
′
āb̄

= −δJd
[ā∂Jb̄]cd + i∂[āδJb̄]c . (2.40)
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As stated earlier, we will consider manifolds satisfying the ∂∂-lemma (1.1). Given that

δB′ is ∂ closed, we see that ∂cδB
′
ab

is d closed and thus, by the lemma, ∂cδB
′
ab

= ∂[aΛb]c

for some (1, 1) form Λ. We then find that (2.40) gives us the following:

δJd
[ā∂Jb̄]cd = i∂[āδJb̄]c − 2∂[āδBb̄]c − ∂[aΛb]c . (2.41)

This is the form of the fluctuation equation, to zeroth order in α′, that we will require for

the rest of the paper.

2.1.2 First order in α′

We now wish to add the first order Chern-Simons terms back into our analysis of (2.23).

For this we need to know the variation of a Chern-Simons term in an appropriate form:

1

3!
ωYM
3ijk = δxyA

x
[i∂jA

y

k] +
2

3
fxyzA

x
[iA

y
jA

z
k] . (2.42)

⇒
1

3!
δωYM

3ijk = δxyδA
x
[i∂jA

y

k] + δxyA
x
[i∂jδA

y

k] + 2fxyzδA
x
[iA

y
jA

z
k] , (2.43)

= δxyδA
x
[i∂jA

y

k]+δxy∂[j

(

Ax
i δA

y

k]

)

−δxy∂[j(A
x
i )δA

y

k]+2fxyzδA
x
[iA

y
jA

z
k] , (2.44)

= δxy∂[i

(

δAy
jA

x
k]

)

+ δxyδA
x
[iF

y

jk] . (2.45)

Here x, y, z are the gauge indices and, naturally, we have similar expressions for ωL
3 . Taking

W to be the spin connection we have

1

3!
ωL
3ijk = Wαβ

[i ∂jW
βα

k] +
2

3
Wαβ

[i W βγ
j W γα

k] , (2.46)

⇒
1

3!
δωL

3ijk = ∂[i

(

δWαβ
j W βα

k]

)

+ δWαβ

[i Rβα

jk] . (2.47)

With these expressions in hand we can return to (2.23). Consider the āb̄c̄ component

below:

3∂[āδBbc] −
2

10
α′

(

∂[a

(

δAy

b
Ax

c]δxy

))

+ 6α′
(

∂[a

(

δWαβ

b
W βα

c]

))

= −
3

2
i∂[āδJc̄b̄] . (2.48)

In the above we have used the vanishing of the (0, 2) component of the background field

strength and curvature two form.3 This leads to the generalization of (2.35)

δBb̄c̄ =
2

30
α′

(

δAy

[b
Ax

c]δxy

)

− 2α′
(

δWαβ

[b
W βα

c]

)

+
i

2
δJb̄c̄ + δB′

b̄c̄
, (2.49)

where δB′ is a ∂ closed form. The only other component of (2.23), up to conjugation,

is the abc one. Making use of our previous analysis for the zeroth order pieces, and

3One easy way to see that the (0, 2) component of the curvature two form vanishes is via the α′ expansion

and the relation of the Levi-Civita and Chern connections. It is well known that the curvature of the Chern

connection is a (1, 1) form (see [6] for an example of a discussion of this in the current context). The

curvature of the Levi-Civita connection is the same as this at zeroth order in α′. Therefore, in this term

which is already order α′ we can take the curvature two form to be zero while working to linear order.
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equations (2.45) and (2.47), we find the following:

2∂[āδBb̄]c + ∂cδBāb̄ − α′ 1

30
δωYM

3abc
+ α′δωL

3abc
(2.50)

= i∂[āδJb̄]c − δJ d
[ā∂Jb̄]cd +

1

2
i∂cδJab ,

⇒ δJ d
[a∂Jb]cd+∂c

2

30
α′

(

δAy

[aA
x
b]
δxy

)

−2α′∂c

(

δWαβ

[a W βα

b]

)

−
1

30
α′δωYM

3abc
+α′δωL

3abc
, (2.51)

= −2∂[aδBb]c + i∂[aδJb]c − ∂cδB
′
ab

,

⇒ δJ d
[a∂Jb]cd −

2

30
α′∂[a

(

δAy

b]
Ax

c δxy

)

+
2

30
α′∂[a

(

Ay

b]
δAx

c δxy

)

−
4

30
α′δxyδA

x
[aF

y

b]c
(2.52)

+ 2α′∂[a

(

δWαβ

b]
W βα

c

)

− 2α′∂[a

(

Wαβ

b]
δW βα

c

)

+ 4α′δWαβ

[a Rβα

b]c

= −2∂[aδBb]c + i∂[aδJb]c − ∂cδB
′
ab

,

⇒ δJ d
[a∂Jb]cd −

4

30
α′δxyδA

x
[aF

y

b]c
+ 4α′δWαβ

[a Rβα

b]c
= i∂[aδJb]c − 2∂[aδBb]c − ∂[aΛ

α′

b]c
. (2.53)

Here Λα′

is the order α′ corrected version of the (1, 1) form Λ seen in the zeroth order result

and we have once again made use of the ∂∂-lemma. This is the form of the perturbation

equation (2.41), corrected to order α′, that we will require in the rest of the paper.

2.2 Overview of the F-flat conditions from the Strominger system

The above analysis in fact completes our field theoretic discussion of the fluctuations of the

Bianchi identity and “F-term” relations (2.17)–(2.19). That the fluctuations are compatible

with the Bianchi identity (2.17) is guaranteed by the form of H which we perturbed, (2.8).

The constraint of bundle holomorphy, equation (2.19), has already be analyzed, in the fash-

ion being discussed here, in the literature [2–4]. In addition, it will be useful in what follows

to add the equation describing how the holomorphic tangent bundle remains holomorphic

under deformations.

Combining these results we have the following constraints on the fluctuations of the

Strominger system on a manifold satisfying the ∂∂-lemma:

δJ d
[a∂Jb]cd −

4

30
α′δxyδA

x
[aF

y

b]c
+ 4α′δWαβ

[a Rβα

b]c
= i∂[aδJb]c − 2∂[aδBb]c − ∂[aΛ

α′

b]c
, (2.54)

iδJ d
[aFb]d = 2D[aδAb] , (2.55)

iδJ d
[a R̂b]d = 2∇̂[aδŴb] . (2.56)

Note that the last of these equations contains hatted quantities which refer to curvatures,

derivatives and perturbations associated with the Chern connection. The content of (2.56)

is simply the well known fact [55] that the curvature of the Chern connection of a holo-

morphic tangent bundle is a (1, 1) form (and can remain so under perturbation). We will

only require the zeroth order result in our analysis of the Strominger system to first order

in α′ because of the explicit α′ factors appearing in (2.54). In such a situation, one may re-

move the hats from equation (2.56) and everywhere replace the Chern with the Levi-Civita

connection (which it reduces to at zeroth order in α′).
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In the next section we will show how these constraints can be understood in cohomo-

logical terms. More precisely, we will show that fluctuations satisfying (2.54) and (2.55)

are classified by the cohomology H1(H) of a bundle H that we will specify. In section 5

we will see that, in the limit α′ → 0, the equations above precisely duplicate the cocycle

conditions found in the worldsheet analysis of [5].

3 Sequences, maps in cohomology and interpreting the fluctuations of

the Strominger system

We define a generalization of the Atiyah groupoid as follows. First we construct the Atiyah

groupoid itself [49] associated to V ⊕ TX. In other words, we will be interested in con-

sidering the holomorphy of the bundle which is the direct sum of the gauge and tangent

bundles. The pertinent extension is

0 → End0(V )⊕ End0(TX) → Q → TX → 0 , (3.1)

where, in the standard form for Atiyah structures, the extension class is determined by

F + R̂ ∈ H1
(

End0(V )⊗ TX∨
)

⊕H1
(

End0(TX)⊗ TX∨
)

.

We then define a further bundle, H, in terms of Q. This bundle (or rather its dual) has

already been examined, in detail, in the context of Strominger systems by Baraglia and

Hekmati, in a paper studying T-duality properties of the heterotic string [52]:

0 → TX∨ → H → Q → 0 . (3.2)

In the limit α′ → 0, the extension is determined by ∂J , and for nonzero α′, by non-

trivial combinations of ∂J , F and R, as we shall discussion in section 3.1.4. We claim the

metric, spin connection, and bundle (“F-flat”) deformations of the Strominger system, as

described by the fluctuation analysis in the previous section, are given by H1(H). The

physical moduli are a subset of these fields determined by the “D-term” equations (2.20)

and a removal of the redundancy in the fluctuation of the spin connection.

In subsection 3.1 we will show that the above claim is true by comparing the coho-

mology group H1(H) to the field theory analysis of the previous section. In doing so we

will assume that there is a well defined extension (3.2) associated with the Strominger

system. Once we have shown that the matching between unconstrained field fluctuations

and cohomology groups described above holds, we will then return to the definition of (3.2)

and discuss the nature of the extension class picked out by the supergravity data. We em-

phasize once more that the extension class for (3.2) associated to the Strominger system

has been discussed in the literature in [52].

3.1 Matching to the field theory perturbation analysis

From the long exact sequence associated to (3.2) we find

H0(Q) → H1
(

TX∨
)

→ H1(H) → H1(Q) → H2
(

TX∨
)

. (3.3)
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This leads to the following expression for the cohomology H1(H):

H1(H) =











ker
(

H1(Q) → H2 (TX∨)
)

⊕

coker
(

H0(Q) → H1 (TX∨)
)

.

(3.4)

From the long exact sequence in cohomology associated to (3.1) we have that,

H1(Q) =











coker(H0(TX) → H1(End0(V ))⊕H1(End0(TX)))

⊕

ker(H1(TX) → H2(End0(V ))⊕H2(End0(TX))) ,

(3.5)

and H0(Q) = ker(H0(TX) → H1(End0(V ))⊕H1(End0(TX))) . (3.6)

Combining equations (3.4), (3.5) and (3.6) we see that H1(H) is a subspace of

H1(End0(V )) ⊕ H1(End0(TX)) ⊕ H1(TX) ⊕ H1(TX∨). One should think of these as

the relevant fluctuations of the gauge connection, spin connection, complex structure, and

Hermitian two form respectively.

In order to see that the constraints in (3.4) correspond to those seen in the field theory

analysis of the proceeding section we will, in the next subsection, consider the case where

H0(TX) = 0. This specialization is not necessary but simplifies the ensuing discussion,

making the extraction of the salient points much easier. In subsection 3.1.3 we will return

to the case with H0(TX) 6= 0 to complete our discussion.

3.1.1 The H0(TX) = 0 case

In cases where H0(TX) = 0 the cohomology H1(H) simplifies as follows:

H1(H) =











ker
(

H1(Q) → H2 (TX∨)
)

⊕

H1 (TX∨) .

(3.7)

In this expression we have

H1(Q) =











H1(End0(V ))⊕H1(End0(TX))

⊕

ker(H1(TX) → (H2(End0(V ))⊕H2(End0(TX)))) .

(3.8)

To compare these expressions with (2.54), (2.55) and (2.56) we start by considering

the expression for H1(Q).

First, note equation (2.55) states that any allowed fluctuation in δJ ∈ H1(TX) can

be mapped by the field strength F into a D exact form. Similarly, equation (2.56) states

that an allowed fluctuation maps via R into an exact End0(TX) valued two-form. This is

precisely the content of the second line in (3.8), if we take the map involved to be given

by the cohomology classes [F ] and [R̂]. This is the standard Atiyah class story [2–4, 49],

as applied to the direct sum of the holomorphic gauge and tangent bundles.
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Next, let us write down the most general fluctuations in A that are allowed by

equation (2.55). They take the form,

δAb = δAδJ
b

+ δA0
b
, (3.9)

where δAδJ is any specific chosen solution to (2.55) and δA0 is any D closed form which

defines, up to gauge transformations, an element of H1(End0(V )). Note that δAδJ is only

defined up to the addition of a closed piece, or, given the possibility of gauge transforma-

tions, up to the addition of an element of H1(End0(V )). This will be of importance shortly.

The contributions δA0 are what are normally referred to as bundle moduli. By contrast,

δAδJ is a part of the reduction ansatz of the theory to four dimensions which describes

how the gauge field adjusts to remain holomorphic under a change in complex structure

of the base [2–4]. The fluctuations δA0 are, up to gauge transformations, exactly what is

described by the first term in the first line of (3.8). An exactly analogous discussion can

be made for the fluctuations of the spin connection, δW , in equation (2.56).

The proceeding two paragraphs show that equations (2.55) and (2.56) describe precisely

the content of (3.8). We shall now analyze the content of H1(H) in equation (3.7) and

compare it to (2.54).

We begin with the first line of (3.7). This kernel contains two pieces, one lying inside

H1(End0(V ))⊕H1(End0(TX)), (3.10)

and the other inside

H1(TX) . (3.11)

• We first consider the bundle moduli and spin connection fluctuation piece. Consider

the solution to (2.55) in (3.9). We shall consider a variation where δA0 is non-

vanishing but where the perturbation of the complex structure (and so δAδJ) and

spin connection are set to zero. Substituting this expression for the gauge field

fluctuation into (2.54) we find the following:

−
4

30
α′δxyδA

0x
[a F

y

b]c
= i∂[aδJb]c − 2∂[aδBb]c − ∂[aΛ

α′

b]c
. (3.12)

The right hand side of (3.12) is of the form ∂[aΓb]c for some Γ. Raising the index c

we then see that this is exactly the content of the bundle modulus dependent part

of the first line of (3.7), where we take the relevant map4 to be given by − 4
30α

′[F ].

Exactly parallel comments can be made for the fluctuation of the spin connection

and the third term in equation (2.54).

• The piece of the first line of (3.7) lying inside H1(TX) can be understood in a similar,

albeit less direct, fashion. At zeroth order in α′ the first term on the left of (2.54)

4One might be concerned that variations of the other two terms on the left hand side of (2.54) would allow

for more general possible bundle modulus variations. This is indeed the case if one simultaneously considers

other variations besides δA0. This reflects the composite nature of the kernel present in (3.7) and is also

reproduced by the sequence structure. We are treating the various types of perturbation independently

here for ease of exposition.
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is the one which depends directly on complex structure variation. We then see that

this must be equal to an exact (1, 1) form. Raising the index c with the metric

this is precisely the content of the H1(TX) contribution to H1(Q) in the kernel

in (3.7) where the relevant map is taken to be ∂J . (As a map in cohomology we can

equally take this zeroth order map to be 2iH = (∂ − ∂)J as the ∂J term is trivial in

cohomology.)

At first order in α′ this discussion gets somewhat modified. Via the solution (3.9) to

equation (2.55) the second term in (2.54) also depends on the complex structure vari-

ation (the reduction ansatz for the gauge field in heterotic compactifications depends

upon complex structure moduli as has been described in [2–4]). Similarly, the third

term in equation (2.54) also depends on δJ via equation (2.56). In fact, keeping δA0

and the analogous quantity for the spin connection δW 0 fixed, we find the following:

δJ d
[a∂Jb]cd −

4

30
α′δxyδA

xδJ
[a F y

b]c
+ 4α′δW δJ αβ

[a Rβα

b]c
= “exact.” (3.13)

This expression should be regarded as a complicated linear map of the complex struc-

ture fluctuation δJ ∈ H1(TX) under consideration — with the complex structure

dependence of δAδJ and δW δJ being defined by (2.55) and (2.56) respectively. Com-

parison to the right hand side of (3.13) tells us that δJ should be taken by this

implicitly defined map to an exact form. This defines the order α′ map between

H1(TX) (inside H1(Q)) and H2(TX∨) in (3.7) to first order in α′. We define a form

M by

δJ d
[a∂Jb]cd −

4

30
α′δxyδA

xδJ
[a F y

b]c
+ 4α′δW δJ αβ

[a Rβα

b]c
= δJ d

[aMb]cd (3.14)

so that (3.13) becomes

δJ d
[aMb]cd = “exact.” (3.15)

Note that there must be a free index on δJ on the left hand side of (3.15) as there

is in (2.54), (2.55) and (2.56). Were this not to be the case then, for specific choices

of the values of the free indices, the right hand side of (3.14) would depend upon

components of δJ which do not appear on the left hand side. That this is indeed a

good map in cohomology to this order will be shown in the next subsection, where

we will also be somewhat more explicit about the nature of M .

All that remains for us to do in showing that the content of (2.54), (2.55) and (2.56)

is the same as that of (3.7) and (3.8) is to demonstrate that the allowed Hermitian fluctu-

ations ((1, 1) perturbations of the two form J , together with any associated compensating

variations in the reduction ansatz for the other fields) are indeed counted by H1(TX∨).

This is almost clear from (2.54), however the third term on the left hand side would require

some algebra to analyze properly in this regard. For this piece of the analysis it is, in fact,

easier to recombine the equations we split up with the introduction of H at the start of

the paper and simply consider such fluctuations in equation (2.1) (which has the same

content as (2.54)). As has already been noted in [54], allowed (1, 1) variations of J in this
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equation correspond to Aeppli cohomology classes [56]. This is simply because variations

in the right hand side are d exact and can, therefore, by the ∂∂-lemma be written as ∂∂ of

something. The allowed fluctuations (keeping complex structure fixed as we have already

discussed its variation) are therefore a combined fluctuation of J(1,1) and the gauge field

(the latter introducing a new piece into the reduction ansatz of the theory as (2.55) did for

variations in the complex structure) which is ∂∂ closed. Modding out by changes which

can be induced by coordinate transformations this leads to the fluctuations being counted

by the Aeppli cohomology group. However, on a ∂∂-manifold the Aeppli and Dobeault co-

homology groups are isomorphic [45, 57], hence the allowed fluctuations in the Hermitian

moduli are exactly as described in the second line of (2.54).

In short, the allowed fluctuations of the Hermitian two form, gauge field, NS two

form, complex structure and spin connection, under variation of the “F-term” equations in

the Strominger system, (2.54) and (2.55), are exactly characterized by H1(H) as defined

in (3.2). In the next subsections, we will show that all of the maps we have derived are good

maps in cohomology and we will complete our discussion in the case where H0(TX) 6= 0. In

addition, we will show that the extension class associated to (3.2), defined by the Strominger

system, is indeed an element of the correct cohomology group.

3.1.2 Well-definedness of the map in cohomology

We have established that the tangent space to the moduli space of the Strominger system is

a subspace of H1(H) as given by (3.7) and (3.8). We must now demonstrate that the maps

in these expressions, as given by (2.54), (2.55) and (2.56), are good maps in cohomology.

In the case of the Atiyah groupoid, (3.8) and (2.55) and (2.56), this is already well known

and established [2–4, 49]. Thus, we need only focus on the map in (3.7) and (2.54).

For a map to be well defined between cohomologies the following properties should hold:

1. the image does not depend upon the representative used to describe the element of

the source,

2. the image of a closed form is a closed form,

3. the map on cohomology is gauge invariant.

Zeroth order in α′. To zeroth order in α′ the structure is easy to verify. We reiterate

the structure we are investigating at this order here for ease of presentation.

H1(H)=















ker

(

ker{H1(TX)
[F ],[R]
−→ H2(End0(V ))⊕H2(End0(TX))}

∂J
−→H2(TX∨)

)

⊕

H1(End0(V ))⊕H1(End0(TX))⊕H1(TX∨) .

(3.16)

Note that the non-trivial maps acting on the bundle moduli and spin connection fluctua-

tions are order α′ in (2.54) and thus drop out above.

At this order in α′ the Bianchi identity is simply ∂∂J = 0. From here it is trivial to see

that a form δJc
a = ∇av

c for some vc maps to an exact form, and thus the map image does

not depend upon the representative used in a given class. The same Bianchi identity also
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makes it clear that the map ∂J always takes the source to closed forms. Finally the map

is clearly gauge invariant under all symmetries in the problem and thus, at zeroth order in

α′, the maps we have obtained are well defined between the cohomology groups.

First order in α′. At first order in α′ the map ∂J is replaced byM , as implicitly encoded

in equations (3.13) and (3.15). In addition the maps on δA0 in (3.9) appearing in (2.54),

and the analogous structure for the perturbations in H1(End0(TX)), are non-zero at this

order in α′. Given all of this, the structure we now have is as follows.

H1(H) =











































ker

(

ker{H1(TX)
[F ],[R]
−→ H2(End0(V ))⊕H2(End0(TX))}

M
−→ H2(TX∨)

)

⊕

ker

(

H1(End0(V ))
− 4

30
α′[F ]

−→ H2(TX∨)

)

⊕ ker

(

H1(End0(TX))
4α′[R]
−→ H2(TX∨)

)

⊕

H1(TX∨) .

(3.17)

To the order in α′ at which we are working, the maps − 4
30α

′[F ] and 4α′[R] can trivially

be shown to be both maps into closed forms and independent of representatives of the

source element used within a class in H1(End0(V )) or H1(End0(TX)) by a simple use of

the Bianchi identities DF = 0 and ∇̂R̂ = 0. Thus the second line in (3.17) is well defined.

The Atiyah map, determined by [F ] and [R̂], in the first line of (3.17) is essentially

unchanged from zeroth order and is well known to be well defined. Thus we need only

analyze the map M , as given in (3.14).

To see that M always maps to closed forms we simply take the ∇ exterior derivative

of the left hand side of (3.14). We find,

δJ d
[a∇c∂Jb]cd −

4

30
α′δxyD[cδA

xδJ
a F y

b]c
+ 4α′∇[cδW

δJ αβ
a Rβα

b]c
(3.18)

= δJ d
[a∇c∂Jb]cd −

2

30
iα′δxyδJ

d
[c F

x
a|d|F

y

b]c
+ 2α′iδJ d

[cR
αβ

a|d|R
βα

b]c
,

=
1

2
δJ d

[a

(

1

30
iα′trF∧F−iα′trR∧R

)

bc]cd

−α′ 1

2

1

30
iδJ d

[c (trF∧F )ab]cd+i
1

2
α′δJ d

[c (trR∧R)ab]cd ,

= 0 .

Thus we find that the left hand side of (3.14) is closed as desired. In (3.18) we have used

the Bianchi identity for the gauge field, the heterotic Bianchi identity, and equations (2.55)

and (2.56).

It should be noted that the calculation in (3.18), together with the proceeding discus-

sion in this section, shows that we can write M as

M = ∂J + i
1

30
α′ωYM

3 − iα′ωL
3 +M0 , (3.19)

where M0 is a ∂-closed from. This form of M will be used in the next section to make

connections with the work of [52, 53].
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That the map M is independent of the representative of the class in H1(TX) of δJ

can be shown using the gauge field, spin connection and heterotic Bianchi identities and is

left as an exercise for the reader. Gauge invariance of M as a map in cohomology is just a

straightforward to demonstrate, making use of the ∂∂-lemma.

3.1.3 Including non-vanishing H0(TX) and coordinate transformations

Consider the infinitesimal coordinate transformation

za = z′a + va
(

z′, z′
)

. (3.20)

Under such a transformation the (0, 2) part of the field strength has the following first

order variation in va

δvFa′b
′ =

∂F
a′b

′

∂zc
vc +

∂F
a′b

′

∂zc
vc +

∂vc

∂za
′
F
cb

′ +
∂vc

∂zb
′
Fa′c = 0, (3.21)

=
∂vc

∂za
′
F
cb

′ +
∂vc

∂zb
′
Fa′c , (3.22)

= 2∂[a′
(

vaF
|a|b

′

]

)

− 2va∂[a′F|a|b
′

]
, (3.23)

= 2∂[a′
(

vaF
|a|b

′

]

)

− 3va∂[a′Fab
′

]
. (3.24)

Now we use the Bianchi identity on the Yang-Mills field strength, DF = 0, to simplify the

second term:

δvFa′b
′ = 2∂[a′

(

vaF x

|a|b
′

]

)

− 3va
(

−fx
yzA

y

[a′
F z

ab
′

]

)

, (3.25)

= 2∂[a′
(

vaF x

|a|b
′

]

)

+ 2va
(

fx
yzA

y

[a′
F z

|a|b
′

]

)

, (3.26)

= 2D[a′

(

vaF
|a|b

′

]

)

. (3.27)

If v ∈ H0(TX) then, using the gauge field Bianchi identity, equation (3.27) is equal

to zero. In such a situation, vaF
ab

′ defines a perturbation to the gauge field which is an

element of H1(End0(V )) and which can be obtained by a simple coordinate transformation

of the field strength. Such an element should not be considered as a separate bundle

modulus degree of freedom. This explains the presence of the coker in equation (3.5) in

situations where H0(TX) 6= 0.

If vaF
ab

′ is exact, then this degree of freedom va clearly does not remove a bundle

modulus degree of freedom (it would map to a zero element in the relevant cohomology).

The set of such vectors, which also can not be used to remove a spin connection degree

of freedom, is counted by H0(Q) as described in equation (3.6). Such unaccounted for

va can be used, via a coordinate transformation of the form (3.20), to remove a supposed

Hermitian modulus. This explains the coker in the second line of equation (3.4).

Thus all of the appearances of H0(TX) in H1(H) simply account for the removal of

some moduli degrees of freedom as simple coordinate transformations. We have therefore

proved that the cohomology H1(H) does indeed count the “F-flat” perturbations in the

Hermitian two form, complex structure, gauge connection, spin connection and NS two

form of the Strominger system.
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3.1.4 Well definedness of the bundle H

If the formalism we have presented is to make sense, we must demonstrate that the bundle

H can be well defined in terms of the supergravity data. The content of this subsection

has already been discussed in the work of Baraglia and Hekmati [52].

The extension (3.2) is controlled by the extension group Ext1(Q, TX∨) = H1(Q∨ ⊗

TX∨). Taking the dual of the sequence (3.1), and tensoring it by TX∨ we have the

following:

0 → TX∨ ⊗ TX∨ → Q∨ ⊗ TX∨ → (End0(V )⊕ End0(TX))⊗ TX∨ → 0 . (3.28)

Examining the associated long exact sequence in cohomology we discover that H1(Q∨ ⊗

TX∨) receives contributions from two terms.

H1
(

Q∨ ⊗ TX∨
)

(3.29)

=











ker((H1(End0(V )⊗ TX∨)⊕H1(End0(TX)⊗ TX∨)) → H2(TX∨ ⊗ TX∨))

⊕

coker((H0(End0(V )⊗ TX∨)⊕H0(End0(TX)⊗ TX∨)) → H1(TX∨ ⊗ TX∨)) .

As with the maps in cohomology discussed in the proceeding subsections, the exten-

sion defined by the Strominger system is determined by the map that appears in equa-

tion (2.54). More precisely, the part of the extension in the kernel of the first line of (3.29)

is determined by

−
4

30
α′[F ] ∈ H1(End0(V )⊗ TX∨), 4α′[R̂] ∈ H1

(

End0(TX)⊗ TX∨
)

. (3.30)

To disambiguate, note that the map itself is also a combination of [F ] and [R̂], albeit

without additional factors. We then find that the image of the first map in (3.29) is

− 4
30α

′trF ∧ F + 4α′trR ∧ R which is indeed zero in H1(End0(V ) ⊗ TX∨) by the Bianchi

identity (2.1).

The contribution to the extension class defined by the Strominger system which lies

in the cokernel in the second line on (3.29) is somewhat more complicated to extract

from (2.54), (2.55) and (2.56). One might think that the natural mapping appearing in

this equation, with index structure compatible with being an element of H1(TX∨⊗TX∨),

is simply ∂J . This, however is not a ∂ closed form and as such is not in the cokernel piece

of (3.29). As with the map in cohomology defined in (3.13), the key observation is that

the first term on the left hand side of (2.54) is not the only term to depend upon δJ . Due

to the relations (2.55) and (2.55) the other two terms do as well.

In section 3.1.1 we defined the map M implicitly using the expression in (3.14). This

M is, up to raising and lowering indices, an element of H1(TX∨ ⊗ TX∨) and is, in fact,

the object which defines the portion of the extension class lying in the cokernel in the

second line of (3.29). To see why the cokernel structure comes about from a field theory

perspective, we need to consider the ambiguity in the definition of δAδJ discussed in the

text underneath (3.9) and the relationship between δAδJ and M given in (3.14). The

freedom of the definition of δAδJ includes the ability to add a closed piece of the form
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δJa
b
vxa , where vxa is a closed endomorphism valued (1, 0) form. By (3.13) this changes

δJM by a piece − 4
30α

′δxyδJ
a
[av

x
|a|F

y

b]c
. Such a change would lie precisely in the image

of the map in the second line of (3.29). Given this, and the proceeding discussion in this

subsection, the extension class given by the Strominger system does indeed form an element

of H1(Q∨ ⊗ TX∨).

It is important to note that the appearance of End0(TX) in the definition of Q is

vital for the extension H to be well defined. This is the equivalent in the sequence based

discussion of treating the spin connection, Hermitian two form and complex structure

deformations separately in the field theory analysis.

3.2 Observations on the structure presented in this section

In this subsection we will discuss several immediate consequences of the structure described

above. As we will show in section 5, the results we have presented above reduce to those

of [5], which were derived formally from two-dimensional non-linear sigma models, in the

limit where α′ → 0. In such a limit, as we have seen, the maps involved in defining H

become significantly more straightforward and, thus, it is interesting to look at the new

features arise when we go beyond such a simplification.

One such new feature is that, unlike in the Atiyah class discussion of [2–4, 49], the

bundle moduli of Strominger systems are constrained by the map structure in (3.17).

This is, in fact crucial to note in determining the correct sequence structure to reproduce

the fluctuation analysis culminating in equation (2.54). Many promising candidates, for

example,

0 → TX∨ ⊕ End0(V ) → H̃ → TX → 0 , (3.31)

are not compatible with the supergravity analysis due to a failure to reproduce this

restriction.

The constraint which we obtain in (3.17) on the bundle moduli is that they must be

in the kernel of a map defined by − 4
30α

′[F ]. Presumably, this constraint is reproduced in

the four dimensional effective theory by the requirements ∂W = 0 where the relevant piece

of the heterotic Gukov-Vafa-Witten superpotential is
∫

Ω ∧ ωYM
3 . This complements the

appearance of the Kuranishi obstruction to complex structure moduli in the theory, which is

well known to appear via the equation W = 0 for the same superpotential [58] [section 2.3].

If one regards the low energy fields as elements ofH1(TX)⊕H1(TX∨)⊕H1(End0(V ))⊕

H1(End0(V )), the upper bound on the number of these degrees of freedom which can be

stabilized is determined by the dimension of the targets of the maps in equation (3.17). For

stabilization by a holomorphic bundle on a Calabi-Yau this has been emphasized in [2–4],

and leads to a maximum of h1(End0(V )) complex structure moduli being stabilized. An

examination of (3.17) reveals that we can do substantially better than this in the Strominger

system.

Tallying the dimensions of the various target spaces, we see that in principle all of the

complex structure and bundle moduli can be stabilized in the Strominger system. The

Hermitian moduli are, however, unrestricted by these “F-term” constraints.
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We note that we have only considered equations (2.17), (2.18) and (2.19) and not

the equations (2.20) in discussing the allowed fluctuations of the Strominger system on

a manifold obeying the ∂∂-lemma. Thus the actual massless degrees of freedom of the

four dimensional theory are a subset of those we are discussing here. Thus one can not

conclude from our results that there are h1(TX∨) massless Hermitian moduli in such a

compactification. Rather, one only knows that the massless Hermitian moduli are a subset

of those classified by this finite cohomology group.

It should be noted that the overall scale of the compactification does not correspond

to one of these moduli, except in the very simplest of cases. Rescaling the compactification

space corresponds to an operation of the form J → (1+ ǫ)J such that we have δJ = ǫJ for

some small ǫ. Such a change δJ is not an element of H1(TX∨) except in the special case

where J is ∂-closed. J is a real form and, as such, this also corresponds to J also being

∂ closed. Thus, by equation (2.21), the overall volume of the compactification is only a

modulus if H = 0.

Given the similarities in the structure we see here to Hermitian Yang-Mills and its

relation to the Atiyah groupoid, it is natural to conjecture that the equations we have

analyzed, (2.17)–(2.19), correspond to F-term restrictions in the four dimensional theory,

whereas the equations (2.20) correspond to D-terms. If this is indeed the case, then the con-

straints on the remaining degrees of freedom can be determined purely from their charges

under the four dimensional gauge group (in addition to the associated Kähler potential).

The proof that equations (2.20) do indeed correspond to D-term constraints in the four

dimensional effective theory will be attempted in future work [59].

As a final comment we will note that, although we have only described the analogue of

what are usually thought of as uncharged moduli here, our discussion equally well applies to

describing the massless matter content of a Strominger compactifications on a ∂∂-manifold.

Such fields can simply be included by taking V to be an E8 bundle with reduced structure

group. A subset of the moduli of this object are what are normally regarded as matter

fields (i.e. matter degrees of freedom simply correspond to rank changing deformations of

the what is usually regarded as the vector bundle of the system).

4 Links to algebroids and Hitchin’s generalized geometry

In this section we explore the link between the fluctuation analysis in (2.54)–(2.56), the

short exact sequences in section 3 and the structure of transitive Courant algebroids.

Transitive Courant algebroids. The short exact sequences of bundles in (3.1) and (3.2)

are closely related to a mathematical structure known as a “transitive Courant algebroid”.

Courant algebroids [60–63] are familiar in the context of generalized geometry (as intro-

duced by Hitchin [64], see also e.g. [65, 66]) and more recently have had relevance in

the theory of reduction [67] and in exceptional generalized geometry [68, 69]. Much as

the Atiyah algebroid of (3.1) encodes the simultaneous deformations of a bundle and its

base manifold, intuitively, a Courant algebroid can be thought of as a mechanism for en-

coding deformations of linked structures. We will see in more detail in this section and

section 5 the types of structures and coupled deformation problems that can be described

by Courant algebroids.
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A Courant algebroid is defined by the following: a vector bundle V → X over a smooth

manifold X, a bilinear operator [, ] : Γ(V )⊗ Γ(V ) → Γ(V ) on the space of sections of V , a

non-degenerate bilinear form, 〈, 〉 on V and a bundle map ρ : V → TX, called the “anchor

map.” The data (V, ρ, [, ], 〈, 〉) is called a “Courant algebroid” if the following conditions5

hold for all a, b, c ∈ Γ(V ) (see appendix A for further details):

[a, [b, c]] = [[a, b], c] + [b, [a, c]],

[a, b] + [b, a] = 2d〈a, b〉,

ρ(a)〈b, c〉 = 〈[a, b], c〉+ 〈b, [a, c]〉.

(See [70] for more on the physics of Courant brackets). In this work we will focus ex-

clusively on holomorphic Courant algebroids (for which the underlying vector bundles are

holomorphic and the anchor map, ρ : V → TX is a morphism from V to the holomorphic

tangent bundle) and the results of the following sections should be understood to hold in

that context.

A Courant algebroid is transitive if the anchor ρ is surjective, giving rise to an exact

sequence of vector bundles

0 → K → V
ρ

−→ TX → 0 , (4.1)

where K = ker(ρ). A very similar structure is already familiar to us through the Atiyah

sequence (3.1) discussed in section 3 and studied in our previous work [2–4]. Indeed, given

a principal bundle P, it is possible to define the short exact sequence

0 → gP → A → TX → 0 , (4.2)

where gP is the adjoint bundle associated to P (in the case of SU(n) bundles gP = End0(V )

where V is the rank n bundle in the fundamental).

The sequences defined in (3.1)–(3.2) are closely related to Courant algebroids and have

already been applied to heterotic theories in the context of generalized geometry. In this

context, [52, 53] defined a heterotic Courant algebroid to be a principal G-bundle P such

that K = U/TX∨ is isomorphic to the Atiyah algebroid of P (as a quadratic Lie algebroid)

for some principal bundle P. This definition naturally leads to the following sequences,

0 → K → U → TX → 0 , (4.3)

0 → TX∨ → K → gP → 0 . (4.4)

It can be noted immediately that this has the same form as the dual of the sequences

defined in (3.1)–(3.2). We will return to this comparison momentarily, but first we must

explore a bit more structure. A “splitting” of U is a section s : TX → U of the anchor ρ

such that the image s(TX) ⊂ U is isotropic6 with respect to the pairing 〈, 〉 on U .

5Here the differential in d〈a, b〉 is built from κ−1ρ∗d where κ : V → V ∨ is induced by the inner product,

ρ∗ is the dual to the anchor map and d is the de Rham differential.
6Recall that a quadratic form is said to be isotropic if there is a non-zero vector on which the form

evaluates to zero. A subspace is isotropic if it contains some isotropic vector.
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Given a principal bundle P it is not always possible to define (4.3), in general there is

an obstruction for a quadratic Lie algebroid A to arise from a transitive Courant algebroid

U as a quotient U∨/TX∨. In fact, as has been shown in [60], A comes from a transitive

Courant algebroid U if and only if the first Pontryagin class vanishes, p1(U) = 0 (see [71] for

a review). It is important to note here that the first Pontryagin class is not in general equal

to the second Chern class, but rather can be defined for any choice of pairing 〈, 〉 (which

crucially, may include non-trivial choices of sign/constant coefficients, see appendix A).

To understand this intuitively, consider that the non-trivial extension sequences of the

form (4.3) are parameterized (up to isomorphism) by extension classes of the form

Ext1(TX,K) = H1
(

X,TX∨ ⊗K
)

(4.5)

(since TX and K are smooth vector bundles). As in section 3.1.4, we can consider whether

this extension class is non-trivial and hence whether or not it is possible to define a non-

split sequence (4.3). To evaluate this cohomology group we must consider the defining

sequence of K, twisted by TX∨:

0 → TX∨ ⊗ TX∨ → TX∨ ⊗K → TX∨ ⊗ gP → 0 . (4.6)

Taking the long exact sequence in cohomology leads to the following form for

H1(X,TX∨ ⊗K)

H1
(

X,TX∨ ⊗K
)

= coker
(

H0
(

X,TX∨ ⊗ gP
)

→ H1
(

X,TX∨ ⊗ TX∨
))

(4.7)

⊕ ker
(

H1
(

X,TX∨ ⊗ gP
)

→ H2
(

X,TX∨ ⊗ TX∨
))

. (4.8)

Focusing first on the kernel contribution above, it is clear that [F 1,1] ⊂ H1(TX∨ ⊗ gP)

that is, the space H1(TX∨ ⊗ gP) is the space containing possible field strengths of the

holomorphic vector bundle V . The co-boundary map and extension class defining (4.6)–

(4.8) is simply the background field strength [F 1,1
0 ]. Hence, the condition that an element

of H1(X,TX∨⊗gP) is in the kernel defined in (4.8) is simply that (up to constant factors)

Tr(F ∧ F ) ∼ ∂̄H (4.9)

for some H ∈ H1(TX∨ ⊗ TX∨). That is, that its first Pontryagin class vanishes.

The form of (4.9) is suggestively close to the heterotic anomaly cancellation condi-

tion (2.1). In fact, it was this similarity that first led to the possible application of transitive

Courant algebroids to heterotic theories [52, 53].

To make this explicit and to relate it to the study of fluctuations and moduli undertaken

in this work, we will briefly review the arguments of [52, 53] here. Recalling that the

anomaly cancellation condition is not (4.9) but rather ∂̄∂J ∼ tr(R ∧ R) − tr(F ∧ F ), it

is clear that the underlying E8 × E8 bundle in a heterotic theory cannot play the role of

the principal bundle P in (4.3)–(4.4) since tr(F ∧ F ) is necessarily non-vanishing for this

bundle. However, as shown in [52, 53], the structure of Courant algebroids can be applied

by considering not the principal heterotic gauge bundle, but rather the direct sum of the

gauge bundle and the principal frame bundle of the manifold X:

Vtotal = Vgauge ⊕ Vframe (4.10)
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with structure group G × SO(6). For the case of G = SU(n) we can define the Atiyah

algebroid

0 → End0(V )⊕ End0(TX) → A → TX → 0 . (4.11)

Now to define the transitive Courant algebroid

0 → A∨ → U → TX → 0 , (4.12)

the obstruction must vanish: p1(U) = 0. But here following the same arguments that lead

to (4.9) lead to the condition

(a)tr(F ∧ F ) + (b)tr(R ∧R) ∼ ∂̄H (4.13)

for some constants a, b and closed three-form H ∈ H1(TX∨ ⊗ TX∨). Thus, it is clear that

in heterotic theories with a bundle P satisfying the anomaly cancellation condition (2.1) it

is always possible to define a transitive Courant algebroid of the form U in (4.12) satisfying

p1(U) = 〈Ftotal, Ftotal〉 for Ftotal the field strength associated to (4.10) and some choice of

the pairing 〈, 〉 [52]. It is important to recall here that the Pontryagin class in this context

is defined for each choice of pairing 〈, 〉.7 See [52], Proposition 3.2 for the details on the

definition of the bracket, and so forth in the case of a heterotic transitive Courant algebroid.

In summary then, we see that the very short exact sequences defined in section 3:

0 → TX∨ → H → Q → 0 , (4.14)

0 → End0(V )⊕ End0(TX) → Q → TX → 0 , (4.15)

are actually the dual of a heterotic Courant algebroid — a transitive Courant algebroid

built out of the principal bundle Vtotal = Vgauge⊕Vframe, defined if and only if the anomaly

cancelation condition is satisfied. It is a remarkable correspondence that the short exact

sequences which arose purely from the structure of the infinitesimal fluctuation of the Stro-

minger system also arise naturally in the rich mathematical subject of Courant algebroids.

As we will see in the following sections, it may be that this correspondence hints at deeper

links between non-Kähler heterotic geometries and algebroids arising in generalized geome-

try. To begin, we next consider an even simpler origin for the transitive Courant algebroids

arising in heterotic theories.

4.1 Algebroids by reduction

4.1.1 Atiyah algebroids by reduction

We begin by recalling a familiar and elegant story — the derivation of the Atiyah algebroid

from that of the familiar deformation space of a compact manifold. Recall that in the case of

the Atiyah algebroid, the origin of the short exact sequence (3.1) could be straightforwardly

understood in terms of infinitesimal complex deformations of the total space of a vector

bundle. Following [72] recall that the simultaneous deformation space, Def(X,V ), of a

7In the case that G = GLn(C) and the pairing is given by the trace of product matrices, the Pontryagin

class is 2ch2.
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vector bundle V → X and its base manifold can be reduced to the familiar case of complex

deformations of a compact manifold by treating the well-understood deformations of the

line bundle ∧max(V ) and the projective bundle PV = P(V )
r

−→ X separately. In this case

there is an exact sequence of sheaves

0 → ΘPV |X → TPV → r∗(TX) → 0 (4.16)

on the projectivized total space PV , where ΘPV |X denotes the vertical vector fields. The

reduction of this sequence to X leads to the familiar Atiyah sequence (3.1) and moreover,

the Leray spectral sequence for r gives the relationship

· · ·→H1(X,End0(V )) → H1(PV , TPV ) → H1(X,TX) → H2(X,End0(V ))→· · · . (4.17)

This is the statement that the usual deformations of PV as a compact, complex manifold re-

duce to the description of the Atiyah deformationsH1(X,Q) in (3.6) of the pair (X,V ) built

from the deformations of V (with X fixed) and the deformations of X (regardless of V ).

As we will see below, this “reduction” structure is remarkably similar to that which

occurs for transitive Courant algebroids in heterotic theories. As shown in [52, 53], heterotic

Courant algebroids can be obtained by reduction of exact Courant algebroids.

4.1.2 Exact Courant algebroids on the total space of a bundle

A Courant algebroid, E is called exact if E is transitive and the kernel of the anchor map

coincides with the image of the map ρ∗ : TX∨ → E. Since E is transitive the map ρ∗ is

injective and hence TX∨ is a sub-bundle of E. This leads to the short exact sequence

0 → TX∨ ρ∗

−→ E
ρ

−→ TX → 0 . (4.18)

In the case at hand, it has been shown that heterotic Courant algebroids arise via reduction

of an exact Courant algebroid on the total space of the principal bundle. In general, for

any G-principal bundle σ : P → X an exact Courant algebroid can be constructed that is a

non-trivial extension of TP∨ ⊕ TP characterized by a G-invariant 3-form H ∈ Ω3(P ) [60].

According to [52, 53] (see Proposition 3.5 in [52] and section 2 of [53]) every heterotic

Courant algebroid of the form (4.3)–(4.4) onX is obtained by reduction of an exact Courant

algebroid, E of the form (4.18) on the principal bundle Ptotal = Pgauge ⊕ Pframe with

G-invariant three-form H ∈ Ω3(Ptotal). Given a class h = [H] ∈ H3(Ptotal) it is possible

to reduce the Courant algebroid and reproduce the familiar geometric ingredients (gauge

connection, three-form flux, and so forth) on X. The reduction follows the procedure of [67]

is achieved by an “extended action” ξ : g → Γ(TPtotal
∨) of the form.

dG(H + ξ) = 〈, 〉 , (4.19)

where dG is the differential of the Cartan complex (see [52] for details). In [52] it is shown

that this reduction can uniquely be achieved by

ξ = −〈, 〉Atot , (4.20)
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where Atot is a connection on Ptotal such that the three form H on Ptotal is defined by

H = σ∗(H0)− CS3(Atot) , (4.21)

CS3(Atot) = 〈Atot, Ftot〉 −
1

3!
〈Atot, [Atot, Atot]〉 , (4.22)

with H0 a 3-form on X satisfying dH0 = 〈Ftot, Ftot〉 ∼ tr(R ∧ R) − tr(F ∧ F ), i.e. the

anomaly cancellation condition (2.1). Of course to fully define the Courant algebroids

we must also define the relevant brackets. These can be found in appendix A. The form

of (4.21)–(4.22) demonstrates that extended actions reducing exact Courant algebroids

to heterotic transitive Courant algebroids exist if and only if the class h ∈ H3(Ptotal) is

such that its restriction to the fibers of Ptotal coincides with the relevant Cartan 3-forms

ω3 ∈ H3(Gtotal,R) determined by the pairing 〈, 〉.

Furthermore, upon restricting the threeform in (4.21) to the base manifold, it is clear

that it plays the role of the defining extension class (and associated co-boundary map in

cohomology) of (4.3), (4.4). That is, it is of the form H0 − ωtotal
3 satisfying the anomaly

cancellation condition. Moreover, by inspection we see that this is exactly of the form of

the map M in (3.19):

M = ∂J + i
1

30
α′ωYM

3 − iα′ωL
3 +M0 , (4.23)

derived from the fluctuation analysis of sections 2 and 3. As hoped, the short exact

sequences (3.1), (3.2) defining a transitive Courant algebroid derived via the fluctuation

analysis and by the study of generalized geometry agree!

With the important observation in hand that the transitive Courant algebroids arising

in heterotic theories naturally descend from simpler exact Courant algebroids on Ptotal

we can now compare this structure to the case of Atiyah algebroids in section 4.1.1. In

the Atiyah algebroid case we were able to relate a complicated simultaneous deformation

problem (that of (X,V )) to the simpler problem of complex deformations of a compact

manifold: Ptotal. In the present case, it is possible to ask the same question, namely do the

infinitesimal holomorphic deformations measured by H1(H) in (3.4) described in section 3

descend from some simpler deformation problem on Ptotal? In the next section we will see

that the answer to this question leads us away from ordinary complex deformation theory

into the realm of Hitchin’s generalized geometry [64, 73]. While Hitchin’s generalized

geometry has been successfully utilized in compactifications of Type II string theories and

M-theory (see [7, 8] for example), its applicability to heterotic string theory has remained

an open question. We shall see that the structures/deformations explored in this work hint

at exactly such a connection.

4.2 Links to Hitchin’s generalized geometry

Courant algebroids play a fundamental role in the subject of Hitchin’s generalized complex

structures [64, 74]. In one of several equivalent definitions, we can define a generalized

complex structure on a manifold X as an almost complex structure J on the exact (split)

Courant algebroid E = TX⊕TX∨ which is orthogonal with respect to the pairing 〈, 〉 (this

is a reduction of the structure of the O(2n, 2n)-bundle TX ⊕ TX∨ to the group U(n, n)).
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Much like in the case of ordinary complex structures on a space X — with infinitesimal

deformation space defined as the kernel of a map Φ : H1(X,TX) → H2(X,TX) — it is

possible to define the infinitesimal deformations of a generalized complex structure. From

Gualtieri’s thesis ([74], Theorem 5.4) it is known that the infinitesimal deformation space

of a generalized complex structure is contained in an open neighborhood8 in H2
L(X) with

obstructions in H3
L(X).

It is beyond the scope of the present paper to consider the reduction of H2
L(X) under

a Leray-type spectral sequence, but it is tempting to speculate that (as in the Atiyah case,

section 4.1.1, (4.17)) this infinitesimal deformation space is related to H2(X,U) and we

intend to explore this in future work. Moreover, it should be recalled that under Serre

duality H2(X,U) ≃ H1(X,H). That is, a fluctuation of the generalized complex structure

on the total space of Ptotal could lead to the first order deformation space, H1(X,H), given

in (3.4) and section 3, describing the infinitesimal deformations of the Strominger system

as in section 2.

Carrying this speculation a step further, it may be possible to link the full moduli

of the non-Kähler Strominger system to generalized geometry. One suggestive hint in

this direction was provided in recent work [53]. Here it was shown in the context of

10-dimensional, flat-space heterotic supergravity, that the exact Courant algebroid (4.18)

defined on Ptotal = Pgauge⊕Pframe can also be endowed with generalized Kähler structures

and a generalized metric. According to [53] an admissible generalized metric on E satisfies

GRic = 0 (4.24)

(the vanishing of the generalized Ricci-tensor) if the underlying heterotic fields on the base

manifold R
1,9 satisfy the equations of motion of heterotic supergravity in 10-dimensions.

With better understanding of spinors in transitive Courant algebroids it might be possible

to combine these 10-dimensional results with those of [52] for compactifications in order

to fully explore Hitchin’s generalized geometry and its deformations in the context of the

Strominger system. We hope this intriguing topic will be developed in the future.

For now, having reviewed the subject of Courant algebroids as they arise in the context

of this work and the Strominger system, we move away from the supergravity limit to

discuss these same structures as they appear in heterotic sigma models.

5 Relationship to (0, 2) NLSMs and the α′ = 0 limit

The problem of understanding moduli in perturbative heterotic compactifications on pos-

sibly non-Kähler manifolds was studied in [5] by enumerating BRST-closed operators in

heterotic nonlinear sigma models.

For Calabi-Yau (0,2) compactifications, since one can go to a weak-coupling limit

of the nonlinear sigma model, this method is on solid grounds, and reproduces existing

results on the role of Atiyah classes [2–4]. For non-Kähler compactifications, this method

8Here L is the +i-eigenbundle of the generalized complex structure J ∈ O(TX ⊕ TX∨) and there is a

differential graded algebra (∧•L∨, dL). See [75] for details.
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is necessarily more formal, as one cannot smoothly deform to a weak coupling large-radius

limit. Nevertheless, the analysis applies to a reasonable approximation in cases where the

compactification curvature is large compared to the string scale. As we shall outline here,

the sigma model computation dovetails with the structure we have seen by perturbing

supergravity, in the limit where one take α′ = 0.

Let us quickly review the worldsheet results. Briefly, the paper [5] wrote down the

most general possible supersymmetric marginal operator deforming the classical action. In

(0,2) superspace following [5], this had the form DO for O a superfield annihilated by D,

with classical dimension 1 and U(1)R charge +1. The most general operator satisfying the

second two conditions is of the form

O =

[

ΓαΓ
βΛα

βa

(

Φ,Φ
)

+ ∂ΦaYaa
(

Φ,Φ
)

+ ∂Φ
b
gabZ

a
a

(

Φ,Φ
)

]

DΦ
a
, (5.1)

where Γ’s are Fermi superfields coupling to the gauge bundle, Φ’s are chiral superfields de-

scribing the right-moving degrees of freedom, and Za
a , Yaa, and Λα

βa are bundle-valued dif-

ferential forms defining the deformations. Demanding thatDO = 0 gives cocycle conditions

Za
b,c

− Za
c,b

= 0, (5.2)

Yab,c − Yac,b = Zb
cHbab − Zb

b
Hbac, (5.3)

Λα
βa,b

− Λα
βb,a

= Fα
βba

Za
a − Fα

βaaZ
a
b
. (5.4)

In passing, we can identify the cocycle conditions above with the α′ → 0 limit of the

moduli conditions given earlier in equations (2.54) and (2.55). Specifically, in this limit,

the cocycle condition (5.3) corresponds precisely to (2.54), if we identify

Za
b
= δJa

b
, H = ∂J , Yab = iδJba − 2δBba − Λα′

ba
. (5.5)

Holomorphicity of δJa
b

corresponds to the cocycle condition (5.2), and finally the last

cocycle condition (5.4) above corresponds to (2.55), and gives a local description of the

Atiyah sequence [49].

Unlike the computations in this paper, the worldsheet analysis of [5] does not overcount

moduli, as it does not distinguish spin connection deformations from metric deformations,

but in the limit α′ → 0 where such decouple, we see that the results of this paper effectively

match those of [5].

As a more technical aside, the reader should also note that worldsheet analyses such

as the above identify BRST-closed states with massless low-energy states, whereas the

supergravity analysis described earlier in this paper will, in general, describe additional

states albeit with couplings that will generate masses. In effect, the results of a worldsheet

analysis will only match the enumeration of massless states in a supergravity analysis after

integrating out massive degrees of freedom.

Working on the worldsheet, it is also possible to derive coboundaries. If two marginal

operators differ by a superspace derivative, they define the same deformation. Similarly,

– 27 –



J
H
E
P
0
7
(
2
0
1
4
)
0
3
7

contributions such that DO is a total derivative leave the theory unchanged. Such identi-

fications result in coboundaries of the form

Za
b
∼= Za

b
+
(

ζa + gacξc
)

,b
+ gac

(

ξb,c − ξc,b

)

, (5.6)

Yab
∼= Yab + µa,b + ξb,a +Habc

(

ζc + gcdξd

)

, (5.7)

Λα
βa

∼= Λα
βa + λα

β,a − Fα
βab

(

ζb + gbcξc

)

. (5.8)

On the (2,2) locus, it can be shown [5] that the cocycle conditions can be simplified, and

then Z, Y , and Λ can be interpreted as complex, Kähler, and bundle moduli, respectively.

For Calabi-Yau (0,2) theories, where at leading order H = 0, the data above defines

complex and Kähler moduli, plus bundle moduli that are intertwined with Kähler moduli

as described by the Atiyah sequence [2–4].

The results above also have something to say about non-Kähler (0,2) theories, with the

important caveat that as this is a worldsheet NLSM computation, it is implicitly only reli-

able near large-radius (small α′) limits. Given that limitation, the cocycle condition (5.3)

indicates an Atiyah-like structure mixing the complex and Kähler moduli. If we, formally,

take α′ = 0, so that H is a closed form, then the (2,1) part of H defines an element of

H1
(

∧2TX∨
)

⊆ H1
(

TX∨ ⊗ TX∨
)

(5.9)

and hence an extension

0 −→ TX∨ −→ E −→ TX −→ 0 , (5.10)

where the complex and Kähler moduli are replaced by H1(E). Thus, in the context of

NLSMs and the α′ = 0 limit, we are once again naturally lead to Courant algebroids. At

this leading order, we find an exact Courant algebroid on X itself (rather than Ptotal) as

defined in section 4.1.2.

Given such an exact Courant algebroid in the smooth category we can look at the a

curvature 3-form H ∈ Ω3
cl(X) in more detail, following [67]. In the smooth category, the

exact sequence above splits, so let ∇ : TX → E be a splitting whose image in E is isotropic

with respect to 〈, 〉. Then, for v, w tangent vectors to X, H is defined by

iwivH = 2s[∇(v),∇(w)] ,

where s : E → TX∨ is the induced left splitting. It can be shown that different choices

of splittings change H by dB for some 2-form B. This important observation highlights

the type of deformation problem that this exact Courant algebroid is describing: when H

represents an element of integral cohomology, the corresponding exact Courant algebroid

can be viewed as an analogue of an Atiyah sequence, but for connections on U(1) gerbes.

Furthermore, given an exact Courant algebroid as above, we can put a Courant alge-

broid structure on TX ⊕ TX∨. Given v + ξ, w + η ∈ Γ(TX ⊕ TX∨), we define

〈v + ξ, w + η〉 =
1

2
(η(v) + ξ(w)) ,

[v + ξ, w + η]H = [v, w] + Lvη − iwdξ + iwivH,
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where the [, ]H above is the H-twisted Courant bracket on TX ⊕TX∨. So far we have dis-

cussed Courant algebroids in the smooth category. Holomorphic exact Courant algebroids

have been discussed in [76]. These have a characteristic class in H1(Ω2,cl(X)), which can

be understood as classifying extensions of TX by TX∨, see for example [76] (e.g. examples

1.1, 1.4), or [73] (section 2.3) for a construction of Q from a B field associated to the

pertinent gerbe.

With these observations in hand, we can return to the definition of (5.10) and under-

stand the moduli of (5.2)–(5.4) in terms of this exact Courant algebroid. In the special case

that H = 0, (e.g. X is a Calabi-Yau manifold to leading order) then E = TX∨ ⊕ TX, and

H1(E) = H1
(

TX∨
)

⊕H1(TX),

so that we recover the usual complex and Kähler moduli. Returning to equation (5.10), it

is natural to consider H1(E) (albeit this is only meaningful in a formal α′ → 0 limit). To

do this, we can use the associated long exact sequence,

H1
(

TX∨
)

−→ H1(E) −→ H1(TX) −→ H2
(

TX∨
)

,

where the coboundary map will be given by contraction with H. Taking the H0(TX) = 0

case for simplicity it is clear that

H1(E) = H1
(

TX∨
)

⊕ ker
(

H1(TX) −→ H2
(

TX∨
))

. (5.11)

This is exactly the cocycle condition, (5.2), derived in [5].

It is clear that this will lead to only a subset of the Kähler/complex structure. As a

trivial consistency check of this result in the H 6= 0 case, it can be noted that one of the

few things generally acknowledged about moduli of non-Kähler heterotic compactifications

is that the overall Kähler ‘breathing’ mode, rescaling the entire metric by a factor, is

obstructed. To that end, note that in cocycle condition (5.3), if we take Z = 0 and

Yab ∝ gab (so as to describe the breathing mode), then since the space is non-Kähler,

∂Y 6= 0, so the cocycle condition is not obeyed, and the breathing mode is obstructed.

Putting together the results of the NLSM analysis and the sequences and cohomology

analyzed thus far, the short exact sequence defining an extension E whose degree one coho-

mology describes the pertinent subset of complex and Kähler moduli, is seen to precisely

coincide with a holomorphic exact Courant algebroid. Recall once again that Courant al-

gebroids describe deformations of coupled structures. Here the exact Courant algebroids

above encode infinitesimal symmetries of the C
× gerbe characterized by the characteristic

class in H1(∧2TX∨) and ‘compatible’ complex structure deformations of X. See [77] for

related information on symmetries of exact Courant algebroids.

To discuss how one would actually compute these deformation spaces, even in this

α′ = 0 limit, we must consider more explicitly how to define the co-boundary map H,

H1(TX)
H
−→ H2

(

TX∨
)

. (5.12)

There is a close analogue to the structure above which arises in Noether-Lefschetz

theory [78]. Let S be a K3, and C ⊂ S a curve. [C] ∈ H1(TS∨), and [Z] ∈ H1(TS).
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The pairing

ϕ : H1(TS)⊗H1
(

TS∨
)

−→ H2(OS)

determines whether C deforms holomorphically under the complex structure modulus Z

— it does, if and only if ϕ([Z]⊗ [C]) = 0. Since H2(OS) is one-dimensional, and since this

pairing is nondegenerate, this imposes one constraint equation, eliminates one degree of

freedom. For example, the space of (generically nonalgebraic) K3’s is 20-dimensional, but

if we demand that a curve be holomorphic, then we get a 19-dimensional moduli space,

and 20− 1 = 19.

In the present circumstances, we have a higher-form analogue of Noether-Lefschetz

theory. [H] ∈ H1(∧2TX∨) and [Z] ∈ H1(TX), so the pairing H · Z defines a map

H1(TX)⊗H1
(

∧2TX∨
)

−→ H2
(

TX∨
)

.

From linear algebra, this can impose up to h2(TX∨) constraints, depending upon the

degeneracy of the pairing. On a threefold with KX trivial, by Serre duality,9 h2(TX∨) =

h1(TX), hence there are potentially as many constraints as elements of H1(TX).

As a final note we remind the reader that at this order in α′, the final two cocycle

conditions (5.3) and (5.4) are simply the de-coupled Atiyah sequences describing the holo-

morphic deformations of V and TX. Thus, in complete agreement with the α′ = 0 limit

of the results of section 3.1.2, we have seen that the leading order moduli correspond to

those arising from a Courant algebroid.

6 Conclusions and future work

In this paper we have studied metric, spin connection, and bundle moduli of Kähler and

non-Kähler heterotic string compactifications through first order in α′ via low-energy su-

pergravity deformations. We have recovered the heterotic non-Kähler moduli obtained

in [5] at α′ = 0 as a special limit.

For α′ 6= 0 our methods produce a potentially redundant description of the physical

moduli, in which the D-flatness conditions (2.20) have not yet been imposed. In addition,

the metric and spin connection deformations are distinguished, leading to a potential over-

counting in these degrees of freedom. The result has a tantalizingly simple understanding

as the cohomology group H1(H), where H is a bundle extension obtained by e.g. [52] as

part of an otherwise-unrelated realization of the heterotic anomaly cancellation condition

in the language of Courant algebroids.

It is important to note that the results of this paper hold only for heterotic compactifi-

cations on non-Kähler manifolds satisfying the ∂∂̄-lemma. However, there are many known

examples of Strominger system compactifications on such spaces, including the well-known

“non-standard embeddings” (deformations away from Calabi-Yau threefolds), as well as

“fully non-Kähler” possibilities (for example [10] and some of the geometries in [19, 21]).

In a future publication, we hope to apply the formalism we have developed here to such

examples.

9See e.g. [79, 80] for a discussion of Serre duality and Riemann-Roch on non-Kähler manifolds.

– 30 –



J
H
E
P
0
7
(
2
0
1
4
)
0
3
7

Our results lead to a number of natural and intriguing questions that it would be

illuminating to explore in the future. These include the following questions and future

directions:

• apply the formalism developed here to explicitly compute H1(H) on examples of

non-Kähler compactifications satisfying the ∂∂̄-lemma.

• Extend the analysis of this work to include constraints from the “D-term” condi-

tions (2.20) and explicitly determine the redundancy in the parameterization of the

“F-flat” deformation space described by H1(H). With the results of the current work

and these next steps in hand, it would be possible to explicitly determine the full

infinitesimal moduli space of the heterotic Strominger system.

• Determine the relationship between H1(H) and the deformations of a generalized

complex structure on P(Vtotal) as conjectured in section 4.2.

• It would naturally be of great interest to be able to generalize these results to non-

Kähler compactifications which do not satisfy the ∂∂̄-lemma. However, as pointed

out in section 1, there are a number of manifest difficulties which arise immediately,

including the fact that relevant operators are no longer elliptic and infinitesimal

deformations of the conformally balanced metric need no longer be balanced. Despite

this, some progress has been made in determining the moduli of such non-Kähler

compactifications in the context of Type II theories [43] and we hope that in future

such results may be extended to the heterotic context.

While the primary motivation of this work was to develop new tools and the formalism

to understand heterotic non-Kähler compactifications, the significance of these results for

more familiar compactifications should not be overlooked. We conclude by briefly putting

our results in context for non-Kähler deformations of smooth heterotic Calabi-Yau com-

pactifications and considering the implications for heterotic non-standard embeddings and

string phenomenology. Such deformations of Calabi-Yau backgrounds are an important

and simple class of non-Kähler compactifications which satisfy the ∂∂̄ lemma.

The first compactifications of the heterotic string were the so-called “standard embed-

dings” [83] in which the gauge bundle V is taken to be the holomorphic tangent bundle to

a Calabi-Yau threefold. Despite the simplicity of such Calabi-Yau geometries, the search

for heterotic compactifications that could be relevant for string phenomenology — i.e.

produce Standard Model type gauge theories and particle spectra — naturally led to the

consideration of other, non-standard embeddings [50]. In these, the vector bundle V was

chosen to have a higher rank structure group (SU(4) or SU(5) for example), leading to more

physically relevant 4-dimensional SO(10) or SU(5) gauge theories that could be broken to

the Standard Model. However, this phenomenological progress comes with a well-known

increase in mathematical complexity. A non-standard embedding deforms the background

geometry away from Ricci-flat Kähler to higher order in α′ [50, 84]. Such solutions to the

heterotic equations of motion were shown explicitly to exist in [85].
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By working to first order in α′, the non-Kähler nature of the background geometry

can in many ways be effectively ignored. However, to fully address the problem of moduli

stabilization, it is important to understand the coupled fluctuation problem described in

this work.

As first explored in [2–4], the understanding of the actual deformation moduli of a

general Calabi-Yau compactification with V 6= TX is an important tool in the problem of

moduli stabilization. Indeed, it was demonstrated that by considering the simultaneous

Atiyah deformation space Def(X,V ), that the number of physical moduli of the effective

theory could be far fewer than the naive count h1(TX) + h1(TX∨) + h1(End0(V )). In

certain regions of moduli space this reduction of the naive moduli fields was shown to be

describable as F-term lifting through a Gukov-Vafa-Witten super potential

W ∼

∫

X

H ∧ Ω3,0 . (6.1)

Furthermore, it was shown [86] that choosing vector bundles which were only holomorphic

for higher co-dimensional loci of their base manifold, X, and slope-stable only for sub-

cones of Kähler moduli space, could in principle fix all but one of the geometric moduli

of a heterotic Calabi-Yau compactification. However, it was also clear that such perturba-

tive moduli stabilization scenarios were still incomplete, since for example, the structure

of the Atiyah deformation Def(X,V ) space did not constrain the vector bundle moduli

H1(X,End0(V )).

In this work, we have extended the analysis of the coupled holomorphic deformation

problem Def(X,V ) to include the heterotic three-form. That is, we are considering an

analogous holomorphic deformation of the triple Def(X,V,H). From the results of section 3

it is clear that this simultaneous deformation problem can in principle remove even more

moduli from a heterotic compactification at higher orders in α′. For example, by comparing

the dimension sources/targets in (3.17), it is clear that in principle more of the naive

deformations lying in H1(TX) and H1(End0(V )) could be obstructed.

Finally, in the context of F-term conditions in Calabi-Yau compactifications, it would

be good to understand the relationship of these effects to known higher order (Kuranishi)

obstructions arising in the deformation theory and their appearance in the super poten-

tial (6.1) (see [3] for a discussion). We hope to explore the physical consequences of this

deformation theory and the role of H1(H) in future work.
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A Some details on Courant algebroids

In this appendix we include a few standard definitions for completeness. The definitions

below are taken from the nice review [81] and we follow the conventions/notation laid

out there.
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A.1 Groupoids, algebroids, and so forth

Definition A.1 A Groupoid, G, is a (small) category in which every arrow is invertible.

A groupoid has a base manifold, X and G is said to be a “groupoid over X.”

An elementary but illustrative example of a groupoid is given by the set of all linear

isomorphisms from one fiber to another of a vector bundle V → X. In addition, any

principal G-bundle P → X has a so-called “gauge groupoid”, whose objects are points of

X, and whose morphisms are elements of the quotient of P × P by the diagonal action of

G, with source and target morphisms given by the two projections of X. An infinitesimal

version of a smooth groupoid is a Lie algebroid:

Definition A.2 Let X be a smooth manifold. A Lie algebroid is a vector bundle V over

X where q : V → X, together with a bundle map, ρ : X → TX called the anchor and a

bracket

[, ] : Γ(V )× Γ(V ) → Γ(V ) (A.1)

which is skew-symmetric, bilinear and satisfies the Jacobi identity (and so makes Γ(V ) into

a Lie algebra) subject to the axioms

[U, fW ] = f [U,W ] + (ρ(U)f)W, (A.2)

ρ([U,W ]) = [ρ(U), ρ(W )] , (A.3)

where U,W ∈ Γ(V ) and f ∈ C∞(X)

There are other equivalent definitions of Lie algebroids including a differential operator on

sections of ∧V ∗ and in terms of Poisson structures (see [81, 82]). The Atiyah algebroid,

defined in section 4 associated to a principal G-bundle P (where G is a Lie group) is the

Lie algebroid of the gauge groupoid of P.

Finally, as defined in section 4, a Courant algebroid is a Lie algebroid with the addi-

tional structure of a fiber-wise inner product:

Definition A.3 A Courant algebroid consists of the following: a vector bundle V → X

over a smooth manifold, X, a bilinear operator [, ] : Γ(V )⊗ Γ(V ) → Γ(V ) on the space of

sections of V , a non-degenerate bilinear form, 〈, 〉 on V and an anchor map ρ : V → TX.

The data (V, ρ, [, ], 〈, 〉) is called a “Courant algebroid” if the conditions below hold for all

a, b, c ∈ Γ(V ). A Courant algebroid is called “regular” if the anchor map is of constant

rank. The bracket [, ] can be either symmetric or skew-symmetric.10

[a, [b, c]] = [[a, b], c] + [b, [a, c]],

[a, b] + [b, a] = 2d〈a, b〉,

ρ(a)〈b, c〉 = 〈[a, b], c〉+ 〈b, [a, c]〉.

10Referred to in the literature as the “Dorfman” or “Courant” bracket respectively, though both can arise

as Courant brackets above.
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As a consequence of the definitions above, Courant algebroids satisfy not only Jacobi-

type identities and but also Liebniz rules:

[a, fb] = f [a, b] + ρ(a)(f)b, (A.4)

ρ[a, b] = [ρ(a), ρ(b)]. (A.5)

Definition A.4 V is called “transitive” if the anchor ρ is surjective and “exact” if V is

transitive and ker(ρ) = im(ρ∗), ρ∗ : TX∨ → V , leading to the short exact sequence:

0 → TX∨ → V → TX → 0. (A.6)

A.2 A heterotic Courant algebroid

In their study of heterotic T-duality, Baraglia and Hekmati define a “heterotic Courant

algebroid” as [52]:

Definition A.5 A transitive Courant algebroid H is defined as a “heterotic Courant al-

gebroid” if there exists a principal bundle P such that A = H∨/TX∨ is isomorphic to the

Atiyah algebroid of P as a quadratic Lie algebroid (i.e. a Lie algebroid with an invariant

scalar product):

0 → K → H → TX → 0, (A.7)

0 → TX∨ → K → gP → 0. (A.8)

In the above the pairing 〈, 〉 has been used to identify H with its dual. In a heterotic

theory, the above transitive Courant algebroid exists if P = Ptotal as in (4.10) satisfying

the condition p1(Ptotal) = 0 (i.e. (4.9) and (4.21) for (H0, F,R) satisfying the anomaly

cancellation condition) where the first Pontryagin class is defined with respect to a choice

of 〈, 〉. For a fixed decomposition

H = TX ⊕ gP ⊕ TX∨ , (A.9)

the anchor, pairing and bracket are given by

ρ(Y, s, ξ) = Y, (A.10)

〈(Z, s, ξ), (Y, t, η)〉 =
1

2
(iZη + iY ξ) + 〈s, t〉, (A.11)

[Z + s+ ξ, Y + t+ η]H = [Z, Y ] +∇Zt−∇Y s− [s, t]− F (Z, Y ) + LZη − iY dξ + iY iZH0

+ 2〈t, iZF 〉 − 2〈s, iY F 〉+ 2〈∇s, t〉, (A.12)

where Z, Y ∈ Γ(TX), s, t ∈ Γ(gP), ξ, η ∈ Γ(TX∨) and F is the field strength of Ptotal above.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

– 34 –

http://creativecommons.org/licenses/by/4.0/


J
H
E
P
0
7
(
2
0
1
4
)
0
3
7

References

[1] A. Strominger, Superstrings with Torsion, Nucl. Phys. B 274 (1986) 253 [INSPIRE].

[2] L.B. Anderson, J. Gray, A. Lukas and B. Ovrut, Stabilizing the Complex Structure in

Heterotic Calabi-Yau Vacua, JHEP 02 (2011) 088 [arXiv:1010.0255] [INSPIRE].

[3] L.B. Anderson, J. Gray, A. Lukas and B. Ovrut, The Atiyah Class and Complex Structure

Stabilization in Heterotic Calabi-Yau Compactifications, JHEP 10 (2011) 032

[arXiv:1107.5076] [INSPIRE].

[4] L.B. Anderson, J. Gray, A. Lukas and B. Ovrut, Vacuum Varieties, Holomorphic Bundles

and Complex Structure Stabilization in Heterotic Theories, JHEP 07 (2013) 017

[arXiv:1304.2704] [INSPIRE].

[5] I.V. Melnikov and E. Sharpe, On marginal deformations of (0,2) non-linear σ-models,

Phys. Lett. B 705 (2011) 529 [arXiv:1110.1886] [INSPIRE].

[6] M. Fernandez, S. Ivanov, L. Ugarte and R. Villacampa, Non-Kähler Heterotic String

Compactifications with non-zero fluxes and constant dilaton,

Commun. Math. Phys. 288 (2009) 677 [arXiv:0804.1648] [INSPIRE].

[7] M. Graña, R. Minasian, M. Petrini and A. Tomasiello, Supersymmetric backgrounds from

generalized Calabi-Yau manifolds, JHEP 08 (2004) 046 [hep-th/0406137] [INSPIRE].

[8] M. Graña, R. Minasian, M. Petrini and A. Tomasiello, Generalized structures of N = 1

vacua, JHEP 11 (2005) 020 [hep-th/0505212] [INSPIRE].

[9] C.-C. Wu, On the geometry of superstrings with torsion, Ph.D. Thesis, Department of

Mathematics, Harvard University, Cambridge MA02138, April (2006).

[10] J. Fu, J. Li and S.-T. Yau, Balanced metrics on non-Kähler Calabi-Yau threefolds, J. Diff.

Geom. 90 (2012) 81 [arXiv:0809.4748] [INSPIRE].

[11] A. Adams, M. Ernebjerg and J.M. Lapan, Linear models for flux vacua,

Adv. Theor. Math. Phys. 12 (2008) 817 [hep-th/0611084] [INSPIRE].

[12] A. Adams and J.M. Lapan, Computing the Spectrum of a Heterotic Flux Vacuum,

JHEP 03 (2011) 045 [arXiv:0908.4294] [INSPIRE].

[13] A. Adams and D. Guarrera, Heterotic Flux Vacua from Hybrid Linear Models,

arXiv:0902.4440 [INSPIRE].

[14] A. Adams, Orbifold Phases of Heterotic Flux Vacua, arXiv:0908.2994 [INSPIRE].

[15] M. Blaszczyk, S. Groot Nibbelink and F. Ruehle, Green-Schwarz Mechanism in Heterotic

(2,0) Gauged Linear σ-models: Torsion and NS5 Branes, JHEP 08 (2011) 083

[arXiv:1107.0320] [INSPIRE].

[16] C. Quigley and S. Sethi, Linear σ-models with Torsion, JHEP 11 (2011) 034

[arXiv:1107.0714] [INSPIRE].

[17] C. Quigley, S. Sethi and M. Stern, Novel Branches of (0,2) Theories, JHEP 09 (2012) 064

[arXiv:1206.3228] [INSPIRE].

[18] I.V. Melnikov, C. Quigley, S. Sethi and M. Stern, Target Spaces from Chiral Gauge Theories,

JHEP 02 (2013) 111 [arXiv:1212.1212] [INSPIRE].

[19] J.-X. Fu and S.-T. Yau, The theory of superstring with flux on non-Kähler manifolds and the

complex Monge-Ampere equation, J. Diff. Geom. 78 (2009) 369 [hep-th/0604063] [INSPIRE].

– 35 –

http://dx.doi.org/10.1016/0550-3213(86)90286-5
http://inspirehep.net/search?p=find+J+Nucl.Phys.,B274,253
http://dx.doi.org/10.1007/JHEP02(2011)088
http://arxiv.org/abs/1010.0255
http://inspirehep.net/search?p=find+EPRINT+arXiv:1010.0255
http://dx.doi.org/10.1007/JHEP10(2011)032
http://arxiv.org/abs/1107.5076
http://inspirehep.net/search?p=find+EPRINT+arXiv:1107.5076
http://dx.doi.org/10.1007/JHEP07(2013)017
http://arxiv.org/abs/1304.2704
http://inspirehep.net/search?p=find+EPRINT+arXiv:1304.2704
http://dx.doi.org/10.1016/j.physletb.2011.10.055
http://arxiv.org/abs/1110.1886
http://inspirehep.net/search?p=find+EPRINT+arXiv:1110.1886
http://dx.doi.org/10.1007/s00220-008-0714-z
http://arxiv.org/abs/0804.1648
http://inspirehep.net/search?p=find+EPRINT+arXiv:0804.1648
http://dx.doi.org/10.1088/1126-6708/2004/08/046
http://arxiv.org/abs/hep-th/0406137
http://inspirehep.net/search?p=find+EPRINT+hep-th/0406137
http://dx.doi.org/10.1088/1126-6708/2005/11/020
http://arxiv.org/abs/hep-th/0505212
http://inspirehep.net/search?p=find+EPRINT+hep-th/0505212
http://arxiv.org/abs/0809.4748
http://inspirehep.net/search?p=find+EPRINT+arXiv:0809.4748
http://dx.doi.org/10.4310/ATMP.2008.v12.n4.a4
http://arxiv.org/abs/hep-th/0611084
http://inspirehep.net/search?p=find+EPRINT+hep-th/0611084
http://dx.doi.org/10.1007/JHEP03(2011)045
http://arxiv.org/abs/0908.4294
http://inspirehep.net/search?p=find+EPRINT+arXiv:0908.4294
http://arxiv.org/abs/0902.4440
http://inspirehep.net/search?p=find+EPRINT+arXiv:0902.4440
http://arxiv.org/abs/0908.2994
http://inspirehep.net/search?p=find+EPRINT+arXiv:0908.2994
http://dx.doi.org/10.1007/JHEP08(2011)083
http://arxiv.org/abs/1107.0320
http://inspirehep.net/search?p=find+EPRINT+arXiv:1107.0320
http://dx.doi.org/10.1007/JHEP11(2011)034
http://arxiv.org/abs/1107.0714
http://inspirehep.net/search?p=find+EPRINT+arXiv:1107.0714
http://dx.doi.org/10.1007/JHEP09(2012)064
http://arxiv.org/abs/1206.3228
http://inspirehep.net/search?p=find+EPRINT+arXiv:1206.3228
http://dx.doi.org/10.1007/JHEP02(2013)111
http://arxiv.org/abs/1212.1212
http://inspirehep.net/search?p=find+EPRINT+arXiv:1212.1212
http://arxiv.org/abs/hep-th/0604063
http://inspirehep.net/search?p=find+EPRINT+hep-th/0604063


J
H
E
P
0
7
(
2
0
1
4
)
0
3
7

[20] K. Dasgupta, G. Rajesh and S. Sethi, M theory, orientifolds and G-flux,

JHEP 08 (1999) 023 [hep-th/9908088] [INSPIRE].

[21] E. Goldstein and S. Prokushkin, Geometric model for complex nonKähler manifolds with

SU(3) structure, Commun. Math. Phys. 251 (2004) 65 [hep-th/0212307] [INSPIRE].

[22] K. Becker, M. Becker, J.-X. Fu, L.-S. Tseng and S.-T. Yau, Anomaly cancellation and smooth

non-Kähler solutions in heterotic string theory, Nucl. Phys. B 751 (2006) 108

[hep-th/0604137] [INSPIRE].

[23] T. Maxfield, J. McOrist, D. Robbins and S. Sethi, New Examples of Flux Vacua,

JHEP 12 (2013) 032 [arXiv:1309.2577] [INSPIRE].

[24] D. Andriot, Heterotic string from a higher dimensional perspective,

Nucl. Phys. B 855 (2012) 222 [arXiv:1102.1434] [INSPIRE].

[25] O. Hohm and S.K. Kwak, Double Field Theory Formulation of Heterotic Strings,

JHEP 06 (2011) 096 [arXiv:1103.2136] [INSPIRE].

[26] J.J. Heckman, H. Lin and S.-T. Yau, Building Blocks for Generalized Heterotic/F-theory

Duality, arXiv:1311.6477 [INSPIRE].

[27] K. Becker and S. Sethi, Torsional Heterotic Geometries, Nucl. Phys. B 820 (2009) 1

[arXiv:0903.3769] [INSPIRE].

[28] K. Becker, M. Becker, K. Dasgupta and R. Tatar, Geometric transitions, non-Kähler

geometries and string vacua, Int. J. Mod. Phys. A 20 (2005) 3442 [hep-th/0411039]

[INSPIRE].

[29] K. Becker, M. Becker, K. Dasgupta and P.S. Green, Compactifications of heterotic theory on

nonKähler complex manifolds. 1., JHEP 04 (2003) 007 [hep-th/0301161] [INSPIRE].
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