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(ABSTRACT) 

The first part of this study was the development of a 

simplified procedure for analyzing laterally loaded piles 

and drilled shafts. A computer program that can be used to 

estimate deflections and maximum bending moments in single 

fixed-head piles (or drilled shafts) and in groups of fixed- 

head piles (or drilled shafts) was developed. Using this 

program, charts were developed for estimating deflections 

and maximum bending moments directly in some of the more 

common types of single piles and drilled shafts. 

The computer program was also used to perform 

parametric studies of groups of piles and drilled shafts, 

from which simple formulae for amplifying single pile (or 

drilled shaft) deflections and moments to those of the group 

were derived. These simple formulae enable the analysis and 

design of groups of deep foundations to be done more 

efficiently. The simplified procedure was used to analyze 

four well documented and well instrumented case histories of 

laterally loaded pile groups. Comparison of the predicted



and measured results indicate that the simplified procedure 

provides a method of analyzing laterally loaded groups of 

deep foundations that yield quite accurate predictions of 

group deflections and moments in some cases, and values that 

are conservative in other cases. 

The second part of the research was to establish load 

factor design procedures for incorporating margins of safety 

for axially loaded deep foundations. Values of performance 

factors were developed for load factor design of axially 

loaded driven piles and drilled shafts. This was achieved 

by analyzing statistical information for loads-~ and 

resistances, and determining the levels of reliability 

inherent in current designs, through the use of probability 

theory. Using these results, a target reliability level in 

the form of a reliability index was selected. Values of 

performance factors were then obtained for use with the 

current AASHTO (1989) code for bridges and the ASCE Standard 

7-88 (1990) for buildings and other structures. The issues 

involved in a probabilistic analysis of groups of deep 

foundations were also discussed.
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CHAPTER ONE 

INTRODUCTION 

The simplest type of foundations for buildings, bridges 

and other structures are spread footings. However, spread 

footings are not always suitable. For instance, when a 

structure is underlain by soft clay or loose sand, deep 

foundations may be needed to develop sufficient load- 

carrying capacity or to reduce settlements. Fleming et al. 

(1985) provided a detailed historical account of the 

evolution of deep foundations; some of the highlights are 

presented below. 

| Evidence exists in Europe that pile foundations were 

used as early as 4000 years ago to support ancient lakefront 

dwellings. The first recorded use of piles, dates back to 

the fourth century B.C. where an African tribe, the 

Peonions, lived on pile supported homes. One of the laws of 

the tribe was that prior to marriage, a man had to drive 

three piles into the ground. Being a polygamous tribe, a 

considerable number of piles must have been driven by their 

male citizens. In those days, piles were made from wood. 

Timber piles continued to be used by the Greeks, Romans, 

Egyptians and other civilizations, but they decay easily 

when subjected to alternate spells of wetting and drying, or 

when attacked by marine borers. Failure of piles by



degradation in these ways is known to have claimed many 

lives. 

It was not until the mid 1830s that metal piles first 

appeared, in the form of cast iron pipes, and they were 

usually used for more important structures. In 1838, screw 

piles were employed for the first time in the construction 

of a lighthouse on the Thames river in England. The 

inventor of screw piles was Alexander Mitchell. At the end 

of the nineteenth century, highway bridges in the state of 

Nevada were the first structures to be founded on steel-I 

beam piles. Around 1908, steel-I beam piles were superceded 

by steel-H piles, marketed by Bethelem Steel Co. 

Joseph Aspdin patented Portland cement in 1824, but it 

was only in 1897 that A.A. Raymond developed the Raymond 

cast-in-place concrete pile system. Close-ended steel pipe 

piles that were filled with concrete after driving were 

developed in 1903 by R.J. Beale. In 1908, a Belgian by the 

name of E. Frankignoul invented the Franki driven-tube pile, 

and, with the addition of an expanded base, it later became 

the renowned Franki pile. Precast concrete piles also 

became available around the same time. 

The earliest form of drilled shafts was called a "well 

foundation", where a hand-dug excavation or boring is filled 

with stone. This concept was used in the construction of 

the Taj Mahal in India from 1632 to 1650. The advent of



Portland cement in 1824, and the development of the 

percussion boring equipment used for sinking wells in the 

early 1900s led to the development of drilled shafts. 

Over the years, research and development have produced 

a wealth of information on the design and construction of 

deep foundations. Deep foundations should be designed to 

resist both axial and lateral loads. Many reliable methods 

exist for the design of axially loaded deep foundations. 

However, the procedure for designing deep foundations under 

lateral loading are often very involved, and procedures for 

estimating lateral deflections and bending moments in groups 

of piles and drilled shafts are still evolving. 

1.1 Objective and Scope 

There are two main objectives in this study. The first 

is the development of a simplified method for estimating 

lateral deflections and maximum bending moments in single 

piles and drilled shafts and in groups of piles and drilled 

shafts. To facilitate this process, a computer program that 

can be used to estimate deflections and moments’ in 

individual piles and drilled shafts as well as groups of 

piles and drilled shafts is developed. Using this progran, 

charts for estimating deflections and maximum bending 

moments in some of the more common types of single piles and



Grilled shafts are developed. The computer program is also 

used to perform parametric studies of groups of piles and 

Grilled shafts from which, simple formulae for amplifying 

Single pile (or drilled shaft) deflections and moments to 

those for the group are derived. 

The second objective of this study is to develop 

performance factors for design of axially loaded piles and 

drilled shafts using a reliability-based approach. This 

study begins with an analysis of load and resistance 

statistics. The mathematical formulation for computing 

reliability indices is also presented. This is followed by 

computing reliability indices for several state-of-the-art 

methods for predicting pile and drilled shaft capacities. 

The sensitivity of the reliability indices to dead to live 

load ratios and geometry of the deep foundations is also 

studied. Finally, target reliability indices are selected 

and used to determine the performance factors. 

1.3 Organization 

A review of literature on methods of designing piles 

and drilled shafts under axial and lateral loads is given in 

Chapter 2. Also included in Chapter 2 is a review of 

methods of incorporating margins of safety in the design of 

deep foundations.



The development of a simplified procedure for analyzing 

laterally loaded piles and drilled shafts is described in 

Chapter 3, accompanied by analyses of four well documented 

case histories using the newly developed simplified 

procedure. Comparisons are made between the predicted and 

actual behavior. 

In Chapter 4, the reliabilities of existing methods of 

designing axially loaded piles and drilled shafts are 

assessed through an analysis of the statistics of loads, 

load tests on piles and drilled shafts, and soil parameters. 

Using probability theory, the level of reliability inherent 

in current design methods is determined, and recommendations 

for incorporating margins of safety in the design of axially 

loaded deep foundations are given in terms of performance 

factors, that account for the uncertainty in the resistance 

(eg. bearing capacity of foundations). 

Chapter 5 presents a summary of the studies and 

recommendations for future research.



CHAPTER TWO 

REVIEW OF LITERATURE ON DESIGN OF DEEP FOUNDATIONS 

Deep foundations are columnar elements embedded in the 

soil beneath a structure for the purpose of transferring 

loads from the superstructure into the underlying soil or 

rock. Deep foundations must be designed to support the 

imposed axial and horizontal loads safely and with tolerably 

small movements. They can be divided into two classes: (i) 

piles which are installed by driving and (ii) drilled shafts 

which are installed by placing concrete in drilled holes. 

The governing criterion in the design of vertically 

loaded piles or piers is usually the magnitude of settlement 

under load or safety against failure of the foundation 

soils. The structural capacity of the piles or piers may 

govern in cases where the foundation elements bear on sound 

rock. 

The governing criterion in the design of laterally 

loaded piles and drilled shafts is usually either the 

maximum tolerable deflection or the structural capacity of 

the deep foundation itself. Mobilizing the ultimate lateral 

capacity of the soil requires such large displacements that 

this is not a realistic possibility, and ultimate soil 

failure does not control the design.



The current-state-of-the-art with respect to design of 

deep foundations as reflected in the literature is described 

in the following sections. 

2.1 Axial Loading 

Drilled shafts may be used individually or in groups. 

However, piles are usually driven in groups, and the most 

important consideration is the capacity of the pile group. 

At small spacings, especially in cohesive soils, groups of 

piles or drilled shafts may fail as a unit consisting of the 

piles and the soil between the piles. At large spacings, 

the group capacity is equal to the sum of the individual 

pile or drilled shaft capacities. 

The bearing capacity of single piles is therefore 

important because it may relate directly to the group 

capacity, and it will be discussed in detail, followed by 

the bearing capacity of pile groups. Similar discussions 

are presented on the bearing capacity of single drilled 

shafts and groups of shafts.



2.1.1 Bearing Capacity of Single Piles 

The ultimate bearing capacity of deep foundations is 

the sum of the shaft and point resistances, minus the weight 

of the pile or drilled shaft: 

where Quit = 

Qs 

Quit = 2s + Ap - W (2-1) 

total ultimate bearing capacity of a pile or 

a drilled shaft 

ultimate load carried in side resistance by 

piles or drilled shafts 

Asqds 

ultimate load carried in end bearing by piles 

or drilled shafts 

Apdp 
surface area of the shaft of a pile or a 

Grilled shaft 

area of the tip of a pile or a drilled shaft 

ultimate unit side resistance of a pile or 

a drilled shaft 

ultimate unit tip resistance of a pile or 

a drilled shaft 

weight of the pile or the drilled shaft



In practice, the weight of the pile or drilled shaft is 

small compared to the other’ terms, and is usually 

disregarded. 

One rational method of estimating the bearing capacity 

of piles in compression is called the "static" approach. 

Static formulae are based on either classical soil mechanics 

theories or empirical correlations. These include the a, £6 

and ’ methods and methods based on in situ tests such as the 

cone penetration test (CPT) or the standard penetration test 

(SPT). The a, f and A methods are more suited for piles in 

cohesive soils, while the SPT and CPT correlations are 

better suited for piles in cohesionless soils. 

2.1.1.1 a-method 

The a method relates the adhesion between the pile and 

the clay to the undrained shear strength of the clay. The 

ultimate unit skin friction, qs, can be expressed by: 

ds = aSy (2-2) 

where S, = mean undrained shear strength 

a = adhesion factor applied to Sy 

Tomlinson (1987) found that the value of the adhesion 

factor, a, varies with the value of the undrained shear 

strength, S,, as shown in Fig. 2.1. Although not shown in
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the figure, there is considerable scatter around the curves 

because factors such as pile length, overconsolidation ratio 

and coefficient of lateral earth pressure are not 

represented, although these factors affect the pile 

capacity. Uncertainty in the undrained shear strength also 

contributes to the scatter. However, the a-method is used 

frequently in practice because it is simple, and because no 

method is available that fully reflects the effects of pile 

installation and all of the factors involved in the 

reconsolidation processes. 

The value of the adhesion factor (a) also depends on 

the type of soil above the cohesive bearing stratum (Fig. 

2.1). Soil from the upper layers may be carried down with 

the pile into the clay bearing stratum. Bringing down soft 

clay will tend to reduce adhesion while dragdown of 

cohesionless soil will increase adhesion in the lower 

cohesive stratum. 

The f-method is an effective stress method for 

predicting skin friction of piles. The ultimate unit skin 

friction, qs, is related to the effective stresses in the 

ground as follows: 

as = op,’ tans
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K tané Ov ‘ 

= B oy’ (2-3) 

where op’ and oy’ are the horizontal and vertical effective 

stresses respectively, 6 is the angle of shearing resistance 

between the soil and the pile, K is the coefficient of 

lateral earth pressure and £, equals K tans. 

The value of the parameter K is very important. 

Kulhawy et al. (1983) noted that "the coefficient, K, is a 

function of the original in situ horizontal stresses and the 

stress changes caused in response to construction, loading 

and time." When a pile is first driven into the ground, the 

displaced soil exerts horizontal stresses on the pile. 

Excess pore pressures are generated and thus o,’ is low, 

giving a high initial K value. As pore pressure dissipates, 

K changes with time. Depending on the overconsolidation 

ratio (OCR), the value of K may be higher or lower than the 

at-rest coefficient of lateral earth pressure, Ko. Esrig 

and Kirby (1979) developed the relationship between # and 

OCR that is shown in Fig. 2.2. 

The #-method has been found to work best for piles in 

normally consolidated and lightly overconsolidated clays. 

The method tends to overpredict skin friction of piles in 

heavily overconsolidated soils. Esrig and Kirby suggested 

that for heavily overconsolidated clays, the value of 8 

should not exceed 2.
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2.1.1.3 A-method 

Vijayvergiya and Focht (1972) recognized that the 

passive lateral earth pressure (op’= oy’+ 2Sy) and the 

ultimate unit skin friction of a pile are related. They 

proposed the following relationship: 

ds = Aloy’ + 2Sy) (2-4) 

where \ is an empirical coefficient shown in Fig. 2.3. The 

value of .X decreases with pile length and was’ found 

empirically by examining the results of load tests on steel 

pipe piles. 

2.1.1.4 SPT Method 

In situ tests are widely used in cohesionless soils 

because obtaining good quality samples of cohesionless soils 

is very difficult. In situ test parameters may be used to 

estimate the tip resistance and skin friction of piles. Two 

frequently used in situ test methods for predicting pile 

capacity are the standard penetration test (SPT) method and 

the cone penetration test (CPT) method. 

Meyerhof (1976) correlated the tip capacity and shaft 

resistance of piles with the SPT blow-count. This method 

applies only to sands and non-plastic silts.
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(a) Pile Tip Capacity - The ultimate unit tip resistance for 

piles, dp (in tons per square foot) driven to a depth Dp 

into a cohesionless soil stratum can be approximated by: 

dp = —————-_ £ 41 (2-5) 
D 

where Neorr = average corrected SPT-N value near the pile 

tip 

= [0.77 logy9 (20/oy’)] N (2-6) 

N = measured SPT-N value 

oy’= effective vertical stress at the pile tip (in 

tons/ft*) 

o It pile width or diameter 

q] = limiting point resistance (tons per square 

foot) 

= 4Ncorr for sands (2-7) 

= 3Ncorr for non-plastic silt (2-8) 

The rationale behind Equation 2-5 is that the ultimate 

unit tip capacity in a cohesionless stratum increases 

linearly with the embedment ratio (Dp/D) up to a critical 

embedment ratio of 10 for sands, or 7.5 for silts. At 

higher embedment ratios, the tip capacity remains constant 

at its limiting value, ql: 

In bearing strata with highly varying blow-counts, 

Meyerhof (1976) proposed that the average blow-count be
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obtained within the range of depth from 4 pile diameters 

above to 1 pile diameter below the tip. 

Piles bearing on a firm stratum overlying a weaker 

layer may punch into the lower stratum as shown in Fig. 2.4. 

Meyerhof (1976) suggested that if the distance between the 

pile tip and the weak deposit (H) is less than 10 pile 

diameters, the ultimate point resistance will be: 

(qi - Qo)H 
dp = do + ————— _ <4] (2-9) 

10D 

where q} is the limiting unit tip resistance in the upper 

stratum and do is the limiting unit tip resistance in the 

lower stratum. 

(b) Skin Friction - The skin friction of piles in 

cohesionless soils may be estimated using the following 

equation (Meyerhof, 1976): 

ds = for driven dispacement piles (2-10) 

S| ol
Z
l
 

Gs = _N. for non-displacement piles (2-11) 
100 (eg. steel-H piles) 

where qg = unit skin friction for driven piles measured in 

tsf 

Zl
 

ll average (uncorrected) SPT-blow count along the 

pile shaft.
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2.1.1.5 CPT method 

The cone penetration test yields two useful parameters 

that can be applied to pile capacity prediction: (i) the 

cone penetration resistance, q,, which is related to the tip 

capacity of piles and (ii) sleeve friction, fs, which can be 

used to estimate the skin friction capacity. Nottingham and 

Schmertmann (1975) developed the following procedure for 

estimating pile capacity: 

(a) Pile Tip Capacity - Nottingham and Schmertmann (1975) 

found that a procedure that had been developed earlier by 

Begemann provided a good estimation of end bearing capacity 

in piles for all soil types. Begemann’s procedure for 

estimating the tip resistance, qp is outlined in Fig. 2.5. 

The minimum average cone resistance between 0.7 and 4 pile 

diameters below the elevation of the pile tip is obtained by 

a trial and error process, with the use of the minimum-path 

rule (see Fig. 2.5). The "minimum-path rule" developed by 

Begemann is also used to find the value of cone resistance 

for the soil for a distance of eight pile diameters above 

the tip. The two results are then averaged to give the pile 

tip resistance. 

(b) Skin Friction - Nottingham and Schmertmann (1975) 

presented the following equation for computing the ultimate 

skin friction of piles:
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envelope of minimum 

qa values   
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+ qe 

dc] @ Average of all values of qg along path a-b-c over a distance of yD below the pile tip. Sum dc 

values measured at each elevation in the downward path a-b. Sum qc values at every elevation 

where a cone resistance reading is sade, along the upward path b-c, but at each elevation take 

the minimum of (i) the qo value at that elevation or (11) the lowest qe value between that 

elevation and the elevation of point b. This method of determining qo is called the “minimum 

path” rule. Compute qo) for y~values from 0.7 to 4.0 and use the minimum qe) value obtained. 

de2 @ Average qo over a distance of 8D above the pile tip (path c-e). Use the minimum path rule as 

for path b-c in the qej computations. Ignore any very extreme peaks or depressions (such as 

"x" in the diagram above) if the soil is a sand, but include these in minimum path if the soil 

is a clay. 

Figure 2.5 Pile End-Bearing Computation Procedure After 

Begemann (After Nottingham and Schmertmann, 

1975)
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8D Z 
Qys = Ks ,c [ 2 (Lf/8D)fsag +t & gag ] (2-12) 

Lf=0 L¢=8D 

where Qg = ultimate skin friction capacity of the pile 

Ks,c = correction factors: K, for clays and Kg for sands 

(see Fig. 2.6) 

Le = depth to point considered 

D = pile width or diameter 

fs = unit local sleeve friction resistance from CPT at 

the point considered 

as = pile perimeter 

Z = total embedded pile length. 

The advantages of using this method is that it (i) 

corrects for the type of cone penetrometer used (electrical 

versus mechanical), (ii) accounts for the material of the 

pile, (iii) considers the soil type, and (iv) corrects for 

depth of pile embedment. 

2.1.2 Bearing Capacity of Groups of Piles 

The ultimate bearing capacity of a pile group in sand 

is estimated by summing the capacities of all the piles in 

the group (Poulos and Davis, 1980). The group efficiency, 

defined as the ratio of the ultimate load capacity of the 

pile group to the sum of the ultimate capacities of the 

individual piles, is conservatively taken as unity.
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Nottingham’s (1975) factors K, and K. 
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Evaluation of group capacity of piles in cohesionless soil 

is the same for the case when the pile cap is, and is not in 

contact with the ground. 

For pile groups in cohesive soil, the presence and 

contact of the pile cap with the ground surface must be 

considered. Pile groups in clay with the cap in firm 

contact with the ground may fail as a unit consisting of the 

piles and the block of soil contained within the piles, and 

the ultimate bearing capacity in this case may be taken as 

the minimum of the following two values: 

(i) the sum of the individual pile capacities, or 

(ii) the bearing capacity for block failure of the group. 

For a pile group of width X, length Y and depth Z (Fig. 

2.7), the bearing capacity for block failure is given by: 

Qg = (2X + 2¥)ZSy + XYNcSy (2-13) 

where Sy = average undrained shear strength along the depth 

of penetration of the piles 

Sy = undrained shear strength at the base of the group 

No = 5(1 + 0.2X/Y) (1 + 0.2Z2/X) for Z/X < 2.5 (2-14) 

No = 7.5(1 + 0.2X/Y) for Z/X > 2.5 (2-15) 

If the pile cap is not in firm contact with the ground 

and the clay is normally or slightly overconsolidated or is 

sensitive, the individual pile capacity must be multiplied 

by an efficiency factor, n, where n = 0.7 for a pile spacing
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of 3D and 7 = 1.0 for a pile spacing of 6D. The value of n 

may be linearly interpolated for intermediate spacings. The 

group capacity is then calculated as the minimum of: 

(i) the sum of the individual pile capacities multiplied by 

n, OF 

(ii) the bearing capacity for block failure as described 

above. 

If the clay is overconsolidated and insensitive, then the 

group should be treated as if the cap were in contact with 

the ground. 

The vertical bearing capacity of a pile group 

containing batter piles may be estimated by treating the 

batter piles as vertical piles. 

2.1.3 Bearing Capacity of Single Drilled Shafts 

2.1.3.1 Drilled Shafts in Cohesive Soils 

The ultimate capacities of drilled shafts in cohesive 

soils are usually governed by the conditions at the end of 

construction. Therefore, drilled shafts in clays are 

usually designed using total stress methods (eg. Reese and 

O’Neill, 1988). However, in some circumstances, the 

strength of the soil can change with time. These include 

shafts in expansive soils and shafts installed in cohesive 

soils that consolidate and move downward relative to the
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shafts. In these cases, effective stress analyses (not 

discussed here) may be used. 

(i) Shaft Resistance (a-method) 

The a-method relates the adhesion between the drilled 

shaft and the clay to the undrained shear strength of the 

Clay. The ultimate unit skin friction, qs, can be expressed 

by: 

Gs = asy (2-16) 

where S, = undrained shear shear strength and a = adhesion 

factor applied to S,. Reese and O’Neill (1988) developed a 

procedure for prescribing a values along the length of 

drilled shafts in overconsolidated clays. Table 2.1 shows 

the values of a recommended by Reese and O’Neill. Fig. 2.8 

shows the portions of the length of drilled shafts that are 

considered not to contribute to shaft adhesion. 

The value of a is zero for the top 5 ft, consistent 

with findings from load tests. Load test data on 

instrumented drilled shafts have shown load transfer to be 

zero at the ground surface, increasing with depth. Because 

the rate of increase has not been determined with much 

certainty, Reese and O’Neill chose to use a = O in the top 5 

ft.



  

2/7 

Table 2.1 Recommended Values of a for Drilled Shafts in Clay 
(After Reese and O’Neill, 1988) 

  

  

  

Location Along Undrained Shear Value of a 
Drilled Shaft Strength 

. From ground surface to - 0 
depth along drilled shaft 
of 5 ft 

Bottom 1 diameter of the - 0 
drilled shaft or 1 stem 
diameter above the top of 
the bell (if skin friction 
is being used) 
  

All other points along the 

    
Sides of the drilled shaft < 2 tsf 0.55 

2-3 tsf 0.49 

3 - 4 tsf 0.42 

4-5 tsf 0.38 

5 - 6 tsf 0.35 

6 - 7 tsf 0.33 

7 - 8 tsf 0.32 

8 - 9 tsf 0.31 

> 9 tsf Treat as Rock     

* The depth of 5 ft may need adjustment if the drilled shaft is 
installed in expansive clays, or if there is substantial 
groundline deflection from lateral loading.



  

Top Five Feet 

Noncontributing 

a_i 

  

Bottom One Diameter 

of Stem 
Noncontributing 

y 

Bottom One Diameter Periphery of Bell 
Noncontributing Noncontnbuting 

} 

          
Straight Shaft Belled Shaft 

Figure 2.8 Portions of Drilled Shafts not Considered in 
Computing Side Resistance (From Reese and 
O'Neill, 1988)
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The footnote in Table 2.1 accounts for the following: 

(a) during dry weather, expansive soils shrink and move away 

from the shaft. A value of a = O may be selected for a 

depth greater than 5 ft as indicated by the depth of 

seasonal moisture change in areas with expansive soil, and 

(b) during lateral loading, the clay at the groundline may 

be pushed away due to lateral deflection of the shaft, 

especially if the loads are cyclic in nature, causing the 

shaft to be deflected back and forth. 

The value of a is also zero for a distance of 1 

diameter above the base of the shaft, because downward 

movement of the base can cause a tensile crack to develop in 

the soil near the base. 

Based on load tests on drilled shafts in clay, Reese 

and O’Neill suggested the use of a values in Table 2.1 for 

the remaining portions of the drilled shaft. The value of a 

may be less than those in Table 2.1 in sensitive clays. In 

such soils, load tests should be conducted to establish 

appropriate values of a. 

The data used in deriving this design method does not 

include clays with (a) S, greater than 6 tsf, (b) OCR 

greater than 10, or (c) sensitivity greater than 4.
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(ii) End Bearing 

Reese and O/’Neill (1988) applied Skempton’s (1951) 

expression for end bearing of piles in clay, to drilled 

shafts as follows: 

dp = NcSy = 40 tsf (2-17) 

where Noe = 6(1 + 0.22/Dp) < 9 

Sy = average undrained shear strength of clay over a 

depth of one to two diameters below the base 

Z = distance that the shaft extends into the ground 

Dp = diameter of the base of the shaft 

The limiting value of Gp (40 tsf) is based on the 

largest value measured in clays and is not a theoretical 

limit. Higher values of qp may be used if indicated by load 

test results. 

No should be reduced by 1/3 (i.e., use 2N,/3 in 

computations) in soft clays to account for large 

displacements prior to bearing capacity failure. 

If Dp exceeds 75 in., the ultimate unit end bearing 

capacity of drilled shafts in stiff to hard clay should be 

reduced to Gpr as follows (Reese and O’Neill, 1988): 

Gpr = Frdp (2-18)
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2.5 
where Fy = < 1.0 

aDp (in.) + 2.5b 

a = 0.0071 + 0.0021 2/Dp < 0.015 

b = 0.45/Sy(ksf) where 0.5 < b< 1.5 

Equation 2-18 is based on load tests of large diameter 

underreamed drilled shafts in clay, and dpr corresponds to a 

base settlement of 2.5 in. 

2.1.3.2 Drilled Shafts in Cohesionless Soils 

While many field load tests have been performed on 

- drilled shafts in clays, very few have been performed on 

drilled shafts in sands. 

The shear strength of cohesionless soils can be 

characterized by an angle of internal friction (¢’) or 

empirically related to values of SPT blow count (N). 

Methods of estimating shaft resistance and end bearing using 

either ¢’ or N values are presented below. 

(i) Shaft Resistance 

Table 2.2 summarizes 5 methods of predicting shaft 

resistance of bored piles in sand. Quiros and Reese (1977) 

and Reese and O/’Neill (1988) indicate that the unit side 

resistance should be limited to 2 tsf, corresponding to the
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Table 2.2 Summary of Procedures for Estimating Side 
Resistance (qs) of Drilled Shafts in Sand. 

  

REFERENCE DESCRIPTION 
  

| 
| 
| Touma and Reese 

(1974) 

Gs = Koy’tang’ < 2.5 tsf 

  

  

  

  

| where K = 0.7 for Dh < 25 ft 

! K = 0.6 for 25 ft < Dp < 40 ft 

K = 0.5 for Dh > 40 ft 

N 
Meyerhof Ge (tsf) = — 
(1976) 100 

Quiros and Reese Qs (tsf) = 0.026N < 2 tsf 
(1977) 

N 
Reese and Wright Qs (tsf) = — for N < 53 
(1977) 34 

N - 53 
Qs (tsf) = + 1.6 for 53 < N < 100 

450 

Reese and O’Neill| qg (tsf) = foy’ < 2 tsf for 0.25 < 8< 1.2 
(1988)     where 8 = 1.5 - 0.135/2 
  

where N uncorrected SPT blow count 

oy’ = vertical effective stress 

¢’ = friction angle of sand 

K = load transfer factor 

Dp = embedment of drilled shaft in sand bearing layer 

TD Hi 

N it 

load transfer coefficient 

depth below ground in feet 
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maximum value ever measured, and Touma and Reese (1974) 

suggest an upper limit of 2.5 tsf. These values however, 

are not theoretical limits. Higher values can be used if 

they are verified by load tests. 

It may be noted that the side resistance of drilled 

shafts in sand can be estimated using (a) the friction angle 

{Touma and Reese (1974)] or (b) the SPT blow count [Meyerhof 

(1976), Quiros and Reese (1977) & Reese and Wright (1977)]. 

Reese and O’Neill (1988) proposed a method for uncemented 

sands that uses a different approach in that the shaft 

resistance is independent of the soil friction angle and the 

SPT blow count. They suggested that the friction angle 

approaches a common value for uncemented sands due to high 

shearing strains in the sand and stress relief that occurs 

during drilling. 

(ii) End Bearing 

Load tests show that large settlements are required to 

mobilize the maximum end bearing resistance of drilled 

shafts in sands. Since large settlements are not tolerable 

in most structures, the procedures presented in Table 2.3 

for calculating the ultimate unit end bearing capacity (dp) 

are based on a downward movement equal to either 1 inch 

(Touma and Reese (1974) and Quiros and Reese (1977)] or 5%
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Table 2.3 Summary of Procedures for Estimating Base Resistance 

  

  

  

  
  

(dp) of Drilled Shafts in Sand. 

REFERENCE DESCRIPTION 

Touma and Reese Loose Ip (tsf) = 0 (k = 1 for 
(1974) Dp < 1.67 ft 

: 16 |& k = 0.6Dy 
Medium Dense dp (tsf) = — 4 for Dp 2 

k 1.67 ft. 

I 40 
| Very Dense Gp (tsf) = — |Applicable 

k only if 
| Dp > 10D 

| 2NeorrDb 4 
| Meyerhof Ap (tsf) = —— < —- Noorr for sand 

(1976) 15Dp 
< Ncorr for nonplastic 

silts 
  

Quiros and Reese 
(1977) 

Same as Touma and Reese (1974) 

  

      
2 

Reese and Wright Gp (tsf) =-N for N < 60 
(1977) 3 

dp (tsf) = 40 for N > 60 

Reese and O’Neill Gp (tsf) = 0.6N for N < 75 
(1988) 

dp (tsf) = 45 for N > 75 
  

where Neorr = SPT blow count corrected for overburden pressure 

= [0.7710919(20/cy’) JN 

N = uncorrected SPT blow count 

Dp = base diameter of drilled shaft in ft 

Dp = embedment of drilled shaft in sand bearing layer 
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of the base diameter [Reese and Wright (1977) and Reese and 

O’Neill (1988)]. 

Reese and O/’Neill (1988) recommend that for base 

diameters greater than 50 in., dp should be reduced to Gdpr 

as follows: 

Apr = — Qp (2-19) 

where dpr reduced base resistance for Dp > 50 in. 

diameter of the base of the shaft (in.) Dp 
dp = ultimate unit end bearing resistance calculated 

using one of the methods in Table 2.3. 

Meyerhof’s expression for base resistance stems from 

the idea that the point resistance increases linearly with 

embedment up to a limiting depth of 10 shaft diameters; 

thereafter, the point resistance remains constant with 

depth. 

2.1.3.3 Drilled Shafts In Rock 

Drilled shafts socketed in rock derive their axial 

capacities from end bearing and/or side resistance. The 

depth of the socket is typically one to three times the 

diameter (Canadian Geotechnical Society, 1985). The design 

procedure presented in this section assumes that: (a) the
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rock strength measured during site investigation will not 

deteriorate during construction when water or drilling 

fluids are used, (b) the drilling fluid used will not form a 

lubricated film on the sides of the excavation, and (c) the 

bottom of the excavation is properly cleaned out. This is 

especially important if the capacity of the drilled shaft is 

based on end bearing. 

The design procedure proposed by Reese and O’Neill 

(1988) for bearing capacity of drilled shafts socketed in 

rock assumes that the load is carried entirely by the shaft 

if the computed settlement is less than 0.4 in. Conversely, 

loads that cause settlements greater than 0.4 in. are 

assumed to be carried entirely by the base of the drilled 

shaft. This method is conservative since loads are assumed 

to be carried entirely in side resistance or entirely in end 

bearing, and no allowance is made for the loads to be 

carried by a combination of side resistance and end bearing. 

The steps in the design procedure are as follows: 

1. Estimate the settlement of the portion of the drilled 

shaft that is socketed in rock. This consists of two 

components: 

(a) the elastic shortening of the socketed portion of the 

drilled shaft, pe, which can be computed as follows:
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(2P{)Hg 

AsocEc 

where He depth of the socket 

=P; = working load at the top of the socket 

Asoc = cross-sectional area of the socket 

ty
 

Q 

it Young’s modulus of concrete in the socket, 

considering the stiffness of any steel 

reinforcement, and 

(b) settlement of the base of the drilled shaft, ppase, 

which can be computed as follows: 

(=P; )I, 

Phase = ——— (2-21) 
DsEry 

where I, influence coefficient obtained from Fig. 2.9 

Ds = diameter of the base of the drilled shaft 

socket 

Er = modulus of the in situ rock, taking the joints 

and their spacing into account. 

The Young’s modulus of the in situ rock, E;, can be 

estimated as follows: 

Ey = KpEj (2-22) 

where Ej intact rock modulus found either by testing or 

by means of Fig. 2.10 

Kp = modulus modification ratio, related to the
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Figure 2.9 Elastic Settlement Influence Factor as a 
Function of Embedment Ratio and Modulus Ratio 
(After Donald, Sloan and Chiu, 1980, as 
presented by Reese and O'Neill, 1988)
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rock quality designation (RQD), as shown in 

Fig. 2.11 

Calculate pe + ppase- If the sum is less than 0.4 in., 

compute the ultimate capacity based on shaft resistance 

alone (Paragraph 3). If the sum is greater than 0.4 in., 

compute the ultimate capacity based on base resistance 

alone (Paragraph 4). 

Estimate the side resistance of drilled shafts socketed 

in rock as follows: if the uniaxial compressive strength 

of the rock is less than or equal to 280 psi, then the 

ultimate unit side resistance (qs) is given by (Carter 

and Kulhawy, 1987): 

ds = 0.15qy (2-23) 

where q, is the uniaxial compressive strength of the 

rock. If the uniaxial compressive strength of the rock 

or concrete (in the drilled shaft), whichever is less, is 

greater than 280 psi, then qg is given by (Horvath and 

Kenney, 1979): 

as = 2.5/dy (2-24) 

where qs and qy are in psi.
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4. Estimate the base resistance of the drilled shaft socket 

from the uniaxial compression strength as follows 

(Canadian Geotechnical Society, 1985): 

where qy average uniaxial compression strength of the 

rock core 

Ksp = dimensionless bearing capacity coefficient 

3 + Sqg/Ds 
Ksp = 7G (See Fig. 2.12) (2-26) 

10[1 + 300tq/sq] 
  

ad = dimensionless depth factor 

d= 1+ 0.4Hsg/Dg < 3.4 

Sq = spacing of discontinuities 

tq = width or thickness of discontinuities 

Ds = diameter of drilled shaft socket 

Hs = depth of embedment of drilled shaft socket 

= 0 for drilled shafts resting on top of 

bedrock. 

This method is not applicable to soft stratified 

rocks, such as shale or limestone. When this method is 

applicable, the rocks are usually so sound that the 

structural capacity will govern the design (Fellenius 

et al., 1989). This method is applicable only if (a) 

Sq > 1 ft, (b) tq < 0.25 in. for unfilled 

discontinuities or tg < 1 in. for discontinuities
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filled with soil or rock debris, and (c) Dg > 1 ft. 

For drilled shafts socketed in soft rock, treat the 

rock as soil and design the drilled shaft using the 

methods described in Section 2.1.3.1 if the material is 

cohesive or Section 2.1.3.2 if the material is 

cohesionless. This procedure can also be used to 

estimate the tip resistance of driven piles bearing on 

rock; in this case, Hg = 0. 

2.1.4 Bearing Capacity of Groups of Drilled Shafts 

For groups of drilled shafts in cohesive soil, the mode 

of behavior depends on whether or not the cap is in contact 

with the ground. If the cap is in contact with the ground, 

groups of shafts may fail as a unit consisting of the shafts 

together with the block of soil contained within the shafts. 

The ultimate bearing capacity in this case should be taken 

as the minimum of the following two values: 

(i) the sum of the individual capacities of the drilled 

shafts, or 

(11) the bearing capacity for block failure of the group. 

For a group of drilled shafts of width X, length Y and 

depth Z, the bearing capacity for block failure in cohesive 

soils is given by Equation 2-13.
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If the cap is not in firm contact with the ground and 

the clay is normally consolidated or slightly 

overconsolidated or is sensitive, the individual capacity of 

the drilled shaft must be multiplied by an efficiency 

factor, n, where n = 0.7 for a center-to-center spacing of 

3D and 7» = 1.0 for a spacing of 6D (Reese and O/’Neill, 

1988). The value of n may be linearly interpolated for 

intermediate spacings. The group capacity is’ then 

calculated as the minimum of: 

(i) the sum of the individual capacities of the drilled 

shaft multiplied by »n or 

(ii) the bearing capacity for block failure as described 

above. 

If the cap is not in firm contact with the ground, and 

the clay is heavily overconsolidated and insensitive, then 

the group capacity should be estimated in a similar manner 

as the case where the cap is in contact with the ground. 

Installation of drilled shafts in cohesionless soils 

results in stress relief. Therefore, the density of the 

sand may decrease during construction of drilled shafts. 

The ultimate bearing capacity of a group of drilled shafts 

in sand is estimated by multiplying the sum of the 

capacities of all the shafts in the group by a _ group 

efficiency factor. The group efficiency factor, defined as 

the ratio of the ultimate load capacity of the group to the
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sum of the ultimate capacities of the individual shafts, is 

0.7 for a center-to-center spacing of three diameters and 

1.0 for a spacing of six diameters (Reese and O/’Neill, 

1988). The value of the efficiency factor can be 

interpolated for intermediate spacings. Evaluation of group 

capacity of drilled shafts in cohesionless soil is the same 

whether the cap is or is not in firm contact with the 

ground. 

Block failure can also occur when the base of a group 

of shafts overlies a layer of soil very much weaker than the 

layer in which they terminate. The bearing capacity of the 

base of the equivalent pier, dp can be computed as follows: 

(qi - do)H 
dp = do + ———— = Ql (2-27) 

10X 

where qo = bearing capacity of base if it were at the top of 

the lower (weak) soil 

q] = bearing capacity of base in the upper soil in the 

absence of the softer lower soil 

H = vertical distance from the base of the shafts in 

the group to the top of the weak layer 

X = width (least horizontal dimension) of group.
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2.2 Lateral Loading 

Lateral loads on deep foundations arise due to wind, 

earthquake, water pressures, earth pressures, and live 

loads. Deep foundations must be designed to withstand such 

forces without failing and without deflecting excessively. 

Mobilizing the ultimate lateral capacity of the soil 

requires such large displacements that this is not a 

realistic possibility, and ultimate soil failure does not 

usually control the design. Of interest to a designer of a 

laterally loaded deep foundation is the deflection of the 

pile or pier and the maximum bending moment in it. 

Estimating these quantities requires analysis of the 

interaction between the foundation and the surrounding soil. 

2.2.1 Single Piles and Drilled Shafts 

The behavior of single piles or drilled shafts under 

lateral loads can be analyzed using (a) elastic analysis, 

(b) subgrade reaction analysis, and (c) p-y analysis. 

Elastic analyses and subgrade reaction analyses approximate 

the soil behavior as linear. Since soil behavior is seldom 

linear especially at high stress levels, non-linear p-y 

analysis will form the basis of the theory for laterally 

loaded deep foundations considered here.
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2.2.1.1 p-y Analysis 

The p-y method, devised by McClelland and Focht (1958), 

appears to be the most rational procedure for the design of 

deep foundations under lateral loading. It was initially 

developed from full scale load tests data for design of 

offshore platforms. 

The procedure involves solving the beam equation for a 

laterally loaded pile as follows: 

aty 
EpIp—— + Esy = 0 (2-28) 

p P24 

where Eplp = flexural stiffness of the pile (FL?), Ep and Ip 

are the Young’s modulus (FL72) and moment of inertia (L4) of 

the pile, y = deflection of the pile (L), z = depth (L), Es 

= -p/y = subgrade (soil) modulus (FL72), and p = soil 

reaction (FL7H). 

The magnitude of the soil modulus Eg varies with the 

soil displacement (y) due to the nonlinearity of the stress- 

strain behavior of soils. Because of the inhomogeneity of 

the soil and because the soil reaction varies with depth in 

a laterally loaded deep foundation, the soil modulus is best 

described by a family of p-y curves as shown in Fig. 2.13. 

Recommendations for computing p-y curves for various soil 

types and groundwater conditions are given by Reese (1984).
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Figure 2.13 p-y Curves for Analysis of Piles and Drilled 
Shafts Under Lateral Loading (After Reese, 
1977)
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The solution to the problem of a laterally loaded pile 

or drilled shaft requires the use of computer programs and 

involves considerable engineering time. However, non-linear 

analysis can be greatly simplified if generalized, 

dimensionless forms of p-y curves capable of representing a 

wide variety of soil types, soil strengths, pile sizes, pile 

stiffnesses and different loading conditions can be derived. 

This is possible since only the soil close to the ground 

surface is important with regard to lateral loads. A non- 

dimensional technique has been developed by Evans and Duncan 

(1982). 

2.2.1.2 Evans and Duncan Procedure 

Through the use of dimensional analyses, Evans and 

Duncan (1982) developed a simple procedure for analyzing the 

nonlinear behavior of laterally loaded piles, capable of 

predicting lateral deflections and bending moments as would 

a p-y analysis. | It is based on a large number of p-y 

analyses of both free-head and fixed-head piles in cohesive 

and cohesionless soils. Their study resulted in the 

following useful dimensionless relationships: (1) lateral 

load versus lateral deflection, (2) moment versus lateral 

deflection, and (3) lateral load versus moment. Using these 

charts, it is possible to predict deflections and moments in
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laterally loaded piles without the need for a computer. 

Details of the procedure will be presented in Chapter 3. 

2.2.2 Groups of Piles or Drilled Shafts 

Drilled shafts may be used either individually or in 

groups. Piles however, are usually driven in groups. 

Procedures for analyzing group behavior of piles (or drilled 

shafts) should ideally be capable of estimating (i) group 

deflections, (ii) load distribution among piles or drilled 

shafts in the group, and (iii) the maximum bending moment 

induced in the group. This section will review some of the 

techniques available for such analysis. 

Pile group problems can be divided into two categories: 

(1) groups of widely spaced piles and (ii) groups of closely 

spaced piles. The first category consists of piles that are 

spaced far enough apart that the deflection of one pile in 

the group will not affect the other piles, and that the 

piles interact only through the pile cap. It suffices to 

analyze this category of pile groups by distributing the 

lateral loads equally among all the piles in the group, and 

considering the behavior of any one pile. Conversely, in 

groups of closely spaced piles, the response of one pile in 

a group will influence the nearby piles through the soil 

between then. This behavior is termed pile-soil-pile
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interaction. This category of pile groups will be studied 

more closely in Chapter 3. 

2.2.2.1 Factors That Affect Group Behavior 

Factors that affect single pile behavior such as pile 

size, pile stiffness and soil strength also affect the 

behavior of pile groups. Pile length is not a consideration 

here as the discussion is limited only to long piles, i.e. 

piles which would show little or no reduction in lateral 

displacement under the same lateral load if the pile 

embedment was increased. However, several important 

differences exist between single pile behavior and the 

behavior of pile groups. They include: (i) pile-soil-pile 

interaction, (ii) presence of a pile cap, (iii) effect of 

installation on adjacent piles, and (iv) rotational 

restraint afforded by the pile cap (Brown and Reese, 1985). 

(1) Pile-soil-pile Interaction 

The deflection of any pile in a group causes deflection 

of the surrounding soil and piles, thus leading to larger 

deflection for the pile group than for single piles 

subjected to the same load per pile. Pile-soil-pile 

interaction is one of the most significant differences in 

the behavior of pile groups as compared to single piles.
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Therefore, reliable methods of predicting pile group 

behavior should account for this effect. 

(ii) Effect of Pile Cap 

The presence of a cap connection to a group of piles 

can increase the restraint of the piles to lateral 

displacement provided the soil surrounding the cap remains 

in contact with the cap throughout the life of the 

structure. However, the effects of settlement of the soil 

around the piles, or scour, can cause a loss of cap-soil 

contact. For this reason, and the fact that it is difficult 

to model the behavior .of a cap under lateral load, the 

resistance contribution of the cap to lateral loads is 

usually neglected in practice. 

(iii) Effect of Installation on Adjacent Piles 

Deep foundations can be installed by means of the 

following procedures: (a) driving (eg. driven piles), (b) 

boring and casting in situ (eg. drilled shafts), (c) driving 

a casing and casting in situ (egs. cast-in-shell piles or 

filled pipe piles), and (dad) screwing (eg. screw piles). 

Pile installation effects are difficult to quantify and 

model accurately, and are usually neglected. Installation 

of deep foundations can lead to: (a) a change in consistency
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of the soil and (b) a change in the state of stress in the 

ground. 

Installation by driving displacement piles in loose 

sands causes soil densification and possibly particle 

crushing. When piles are driven in groups in loose 

cohesionless soils, the soil around the piles becomes highly 

compacted, and this can lead to an increase in the lateral 

resistance of the piles. Driving piles in cohesive soils 

causes remolding of the soil and consequently, a loss in 

shear strength. As consolidation progresses, pore pressures 

dissipate and the shear strength increases. The original in 

situ shear stength may or may not be surpassed depending on 

the stress history and sensitivity of the soil. Pore 

pressures dissipate more slowly in pile groups than around 

single piles (O’Neill, 1983). 

Installation by driving causes a displacement of a 

volume of soil equal to the volume of the pile. 

Displacement of the soil causes a change in the magnitude 

and direction of the principal stresses. If the piles are 

spaced close together, there would be an overlap of the 

zones of stress increase in the soil between the piles. 

Where the pile is installed in a prebored hole such as 

in the construction of a bored pile, stress relief occurs in 

the soil. Moreover, migration of water from wet concrete 

into the soil can further soften the soil. As a result, the
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lateral resistance computed using the shear strength of the 

ground prior to installation may be less than the lateral 

resistance available to the bored pile. 

The soil strength that governs the behavior of pile 

groups under lateral load is that of the soil after 

installation. and reconsolidation. Present methods of 

lateral load analysis of deep foundations do not involve 

adjustments to account for installation effects because 

rational assessment of installation effects would require 

better understanding of soil behavior than is characteristic 

of the current state-of-the-art. The effects of 

installation can at best be treated only qualitatively. A 

better understanding of installation effects could help pave 

the way for the evolution of more reliable methods of 

predicting group behavior of deep foundations under lateral 

loads. 

(iv) Effect of Rotational Restraint at the Pile Cap 

Piles that are embedded in reinforced concrete pile 

caps are effectively restrained from rotation at the top, 

and they thus deflect laterally with negligible rotation at 

the top of the pile. It is convenient in analytical 

techniques to represent the pile-to-pile cap connection as 

fixed, pinned or free. Brown and Reese (1985) argued that 

these assumptions are not strictly correct. However, the
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degree of rotational restraint afforded by typical pile caps 

is sufficiently close to the fixed-head case so that that 

condition affords an accurate approximation, accurate enough 

for practical purposes. 

2.2.2.2 Methods of Predicting Lateral Behavior of Groups of 

Piles and Drilled Shafts 

The lateral behavior of pile groups can be predicted 

through the use of experimental techniques (such as model 

tests or full scale load tests) or analytical methods. 

Although model tests are inexpensive to run,. they are 

incapable of representing correctly the soil stresses in the 

prototype. Kulkarni et al. (1985) have overcome this 

particular difficulty by carrying out centrifugal modelling 

of pile groups under lateral load. Full scale load tests, 

on the other hand, are extremely expensive. 

In general, analytical models available for predicting 

lateral behavior of pile groups can be divided into five 

categories (O’Neill, 1983): 

1. finite element method 

2. continuum model 

3. modified continuum model 

4. modified unit load transfer and
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5. hybrid model. 

(i) Finite Element Method 

With the present pace of advancement in computer 

hardware technology, 3-D finite element analysis of pile 

groups may prove to be a promising tool in analyzing 

laterally loaded pile groups, especially in highly 

stratified soils. Moreover, the finite element method is 

capable of accounting for the presence and stiffnesses of 

the piles and the soil correctly. However, disadvantages of 

3-D finite element analysis include: (i) the problem is 

complex, (ii) high quality and extensive soil test data is 

required to fully describe the soil behavior, and (iii) it 

is not able to model installation effects. 

(ii) Continuum Model 

The continuum model includes the approach of Poulos 

(1971), which assumes the soil to be elastic. Poulos used 

Mindlin’s three dimensional elasticity equations to solve 

for stresses and displacements due to horizontal point loads 

applied in an elastic half space. The solution can be used 

to evaluate the influence of one pile on other piles in the 

group through the use of elastic influence factors.
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Poulos’ (1971) procedure can be used to estimate the 

elastic groundline deflection of a pile within a group as 

follows: 

— |Npile 
Pk = pF| 2 (PijapFkj) + Pk'] (2-29) 

jak 

where pp, = lateral deflection of pile k (L) 

pr = unit elastic displacement of a single pile under 

unit horizontal load (LF7+) 

= I,F/Es2 

Ipr = influence factor (Fig. 2.14) 

Es = Young’s modulus of soil (FL72) 

Z = length of the pile (L). 

Npile = number of piles in the group 

Pj = lateral load on pile j (F) 

@oFkji = elastic interaction factor for determining the 

influence of pile j on pile k, based on the 

spacing between piles j and k and the angle @ 

6 = angle between direction of loading and the line 

joining the centers of piles j and k, and 

Py = lateral load on pile k (F) 

The interaction factor, apreKj, can be obtained from 

Fig. 2.15 for fixed-head piles. a,rx} is a function of the 

spacing to diameter ratio (s/D), @ and Kp, where s = center-
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to-center pile spacing, D = pile width or diameter and Kp is 

the pile flexibility factor defined as follows: 

_ Fplp 
E524 
  Kr (2-30) 

where Ep = Young’s modulus of pile (FL™) and Ip = moment of 

inertia of pile (L4). 

If the piles are connected by a cap, then the piles 

will all deflect equally. Equation 2-29 yields a set of 

Npile equations but there are a total of (Npile + 1) 

unknowns; Npile unknown values of reaction in each pile, and 

one unknown value of group deflection, Yg = 61 = p2 = «+++ 

PNpile- The remaining equation needed in order to solve for 

the set of (Npnile + 1) unknowns is the requirement that the 

sum of the individual pile loads must equal the load on the 

group, Pg, i.e. 

Npile 
Ps Pj = Pg (2-31) 
j=1 

Shortcomings of Poulos’ elastic procedure include: (i) 

real soils do not behave elastically, and (ii) the method 

cannot account for more than one soil type.
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(iii) Modified Continuum Approach 

Belonging to this category of analysis is the Winkler 

model for pile groups, introduced by Nogami (1980, 1983). 

The soil is modelled by a network of springs, thereby 

allowing pile-soil-pile interaction [Nogami and Chen (1984) 

and Randolph and Wroth (1979)]. The Winkler model for a 

pile group however, allows soil response only in the 

horizontal direction, and ignores the interconnection among 

elements in the vertical direction throughout the soil mass 

(Poulos and Davis, 1980). However, this method is 

advantageous because of computational simplicity and the 

ease of accounting for several soil types. 

(iv) Modified Unit Load Transfer 

This method involves the development of p-y (unit load 

transfer) curves for a group of piles considered as a single 

pile. The modified single pile, whose diameter is equal to 

the width of the group, consists of the piles in the group 

and the soil in between the piles. Bogard and Matlock 

(1983) used this procedure on a circular group of piles 

assuming that the lateral resistance is equally distributed 

among all piles in the group. This method is more difficult 

to apply to non-circular groups of piles.
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(v) Hybrid Model 

Proposed by Focht and Koch (1973), the hybrid model 

combines the use of Poulos’ elastic interaction coefficients 

and non-linear p-y analysis to predict pile group behavior. 

They assumed that non-linear soil behavior occurs only close 

to the individual piles, and that pile-soil-pile interaction 

is linear and can be predicted through the use of Poulos’ 

elastic interaction coefficients. 

Focht and Koch (1973) modified Poulos’ (1971) procedure 

of Equation 2-29 as follows: 

— |Npile 
Pk = pF] 2 (P3japPKj) + RPx) (2-32) 

j=1 
j=k 

where R is the relative stiffness factor defined as follows: 

R = Ys/p (2-33) 

where Ys = non-linear p-y deflection of a single pile at the 

mudline ° 

p = elastic deflection of a single pile at the 

mudline 

= pFPs 

In computing Ys and p, the lateral load on the single pile 

is computed as the total lateral load on the group divided 

by the number of piles or drilled shafts (Ps = Pg/Npile)-
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The hybrid model has the advantage that different 

values of stiffness are used to represent the single pile 

behavior and the pile-soil-pile interaction (O’Neill, 1983). 

This enables adjustments to be made for the plastic 

deformation of the soil around individual piles through the 

use of the relative stiffness factor, R. This ability to 

account for different stiffnesses in individual pile 

behavior and in pile-soil-pile interaction is not possible 

with the elastic continuum model. 

O’Neill et al. (1977) and O’Neill and Tsai (1984) have 

developed a hybrid model in three dimensions, where every 

pile in a group is discretized into elements. Each element 

represents a Mindlin point load in computing the pile-soil- 

pile interaction. The p-y curves at every location in each 

pile are individually modified to account for the effects of 

all other piles. An iterative process is required. One 

difference between this model and Focht and Koch’s procedure 

is that the unit load transfer (p-y) curves are modified 

individually to account for the loads from adjacent piles. 

2.3 Methods of Incorporating Margins of Safety in Design 

2.3.1 Design Criteria 

Structures should desirably be designed to be safe, 

economical and aesthetically pleasing. Safety cannot be
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compromised. On the other hand, overconservatism can lead 

to wastefully expensive designs. A balance must be struck 

by the engineer to design structures that are safe and also 

economically efficient. 

From a safety standpoint, structures should be designed 

so that they are able to support loads without reaching a 

"limit state". A limit state is reached when the structure 

no longer fulfills one of its design requirements. There 

are two types of limit states: 

(i) An ultimate limit state corresponds to the maximum load 

carrying capacity of the structure, and reaching this limit 

state usually leads to complete collapse. An example is the 

bearing capacity failure of a foundation. 

(ii) A serviceability limit state corresponds to loss of 

serviceability, and occurs before collapse. A 

serviceability limit state involves unacceptable 

deformations or undesirable damage levels. This may be 

reached in foundations through excessive settlement or 

lateral displacement, or structural deterioration of the 

foundations. 

2.3.2 Working Stress Design 

Foundations are conventionally designed using working 

stress design (WSD) methods. The approach in WSD is
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different for the ultimate and the serviceability limit 

states. In an ultimate limit state design, safety is 

achieved by ensuring that the magnitude of the resistance 

divided by a factor of safety (FS > 1) is greater than or 

equal to the magnitude of the loads. The WSD checking 

format is as follows: 

Rn/FS = Sp + Sz, + SE (2-34) 

where Ry, is the nominal resistance, Sp and Sy, are nominal 

values of dead and live load effects, Sp is an environmental 

load such as wind, earthquake, etc. and FS is the factor of 

safety. The disadvantage of this method is its inability to 

account for the different degrees of uncertainties 

associated with the various types of loads. 

In serviceability limit state design, unfactored loads 

are usually used to calculate deformations, and these are 

compared to the maximum tolerable values. 

2.3.3 Load (and Resistance) Factor Design 

In load (and resistance) factor design (LFD), it is 

recognized that the loads and resistances are probabilistic 

in nature. Different types and magnitudes of loads have 

varying probabilities of occurence. In order to account for 

their differing probabilities of occurence, each load
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component is amplified by a load factor, the value of which 

depends on the level of uncertainty of the load component. 

The factored loads are compared to the design strengths 

or resistances to evaluate the adequacy of the design. The 

design resistances are obtained by multiplying nominal 

values of resistance by performance factors (or resistance 

factors), usually denoted as ¢. According to AASHTO (1989), 

@ should "provide for the probability that small adversion 

in material strength, workmanship and dimensions, while 

individually within acceptable tolerance and limits of good 

practice, may combine to result in understrength." 

The objective of design is to ensure that the design 

resistance is greater than or equal to the sum of the 

factored loads, i.e. 

Rn = Lyj4Si (2-35) 

where ¢ is the performance factor, S; is the load effect due 

to load component i and 7; is the load factor for load 

component i. 

The potential advantages of LFD over WSD include the 

following: 

1) It accounts for the variability in loads and resistances. 

2) Consistent margins of safety may be achieved in both 

structural and foundation designs.
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3) More economical use of materials may result because a 

more rational basis is used to set safety margins. 

Using reliability theory, values of performance factors 

can be derived for ultimate limit states, provided 

sufficient statistical data is available. For cases where 

sufficient data is not available, performance factors can be 

calculated by matching the margin of safety with that of 

working stress design, which has usually been established 

through experience. Since the factors of safety and the 

statistics for the resistance vary for different methods of 

analysis, the values of performance factors are method 

dependent. One shortcoming of the LFD method is that since 

the performance factors are method dependent, there may be a 

variety of performance factors for just one limit state 

consideration. 

In serviceability limit state design using LFD, loads 

and resistances are unfactored, and the design procedures 

resemble those used in conventional WSD. 

Load factor design of foundations is’ currently 

implemented in the Danish Code (1985) and the Ontario 

Highway Bridge Design Code (1983). The use of LFD for 

foundations in the current AASHTO code (1989) for bridges, 

and for the ASCE Standard (1990) for buildings and other 

structures will be examined in the following sections.
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2.3.3.1 Load Factors and Load Combinations 

Bridges 

Loads acting on bridge superstructures include one or 

more of the following: dead load, live and impact loads, 

thrust due to earth pressures, buoyancy, wind load, 

longitudinal and centrifugal forces caused by moving 

vehicles, earthquake loads, stream and ice flow forces, and 

forces induced by changes in the dimensions of the 

structure, such as shrinkage and temperature effects. 

One difference between the loads acting on the bridge 

superstructure and those that act on the foundation is that 

impact loads are usually assumed to be fully dissipated 

before reaching the foundation. However, bent piers and 

integral abutments are usually designed to carry impact 

loads, and these are the most common substructures in which 

drilled shafts are used. The load combinations and load 

factors for the design of the superstructure, as given in 

the 1989 AASHTO specifications, can be used for the design 

of foundations as follows: 

Total Load = y[fpD + fy L + BcCF + PRE + BBB + BsPFSF + BywW + 

AyLWL + SprFLF + fp(R + S + T) + BEQEQ + 

BICEICE] (2-36)
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where 7 = load factor (see Tables 2.4 and 2.5) 

= coefficient (see Tables 2.4 and 2.5) 

= dead load 

= live load 

= earth pressure 

= buoyancy 

= 
wow

 
SH 
r
o
 

®
 

l 

= wind load 

WL = wind load on live load - 100 pounds per linear ft. 

LF = longitudinal force from live load 

CF = centrifugal force 

R = rib shortening 

S = shrinkage 

T = temperature 

EQ = earthquake 

SF = stream flow pressure 

ICE = ice pressure 

The factored load combinations considered by AASHTO are 

shown in Table 2.5. Each line in the table, designated by 

loading group numbers I through IX, gives the values of the 

load factors, yy, and the coefficients, 8, that govern the 

contributions to the total load. For example in group (load 

combination) I, total load = 1.3(D + 1.67L, + CF + SpE + B+ 

SF) .
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Table 2.4 Table of Coefficients of 7 and g for Working 

Stress Design of Bridges (After AASHTO, 1989) 

  

    
  

  

  

  

  

  

  

  

  

  

  

  

    

Col.No.| 1 2| 3 | 3A a (sel 7 | g|9|1q 11 12} 13 14 

B-FACTORS 

GROUP | 7| D|(L+I) p(L+Z) p| CF/E |B | SH W | WL|LE| R+S+T| EQ) ICE, % 

I 1} 1] 1 o jilépla}ijojojo}] o |o]} 0 hoo 

IA 1/ 1) 2 o0 lololololojolo| o |o]| 0 {150 

IB 1; 1] 0 1 |[1lgpla}1riojo jlo} o |o]} o| «« 

II 1/ 11 0 o {jojizfiji}l1iolo} o |o! ofseas 

III 1/1) 1 o j|ailgspli|1.3}2 ja | o Jo] ofaas 

IV 1{ 1] 1 o {|ilsplr{1}o jojo) 12 j{o{ ofes 

Vv 1} 1] 0 o lolalali/1ilolo|] 2 {o| oliao 

vI 1/1} 2 o |algela{ip.3}1 |a] 1 |o!} 0 lr40 

VII 1} 1| 0 o folaja}1}ofolo|} o jJ2] ofis33 

VIII 1/1] 1 o fiajajlalajolojo}| o |ojf i|140 

IX 1} 1] o o lolajlalzai1atoflo|] o {oo} 11|150                               
  

(L+I), - Live load plus impact for AASHTO Highway H or HS loading 
(L+I)p - Live load plus impact consistent with the overload 

criteria of the operation agency. 

**x Percentage = Maximum Unit Stress (Operating Ratin X 100 
Allowable Basic Unit Stress 

% in Column 14 is the maximum permissible percentage of 
basic unit stress for load group indicated 

No increase in allowable unit stresses shall be permitted 
for members or connections carrying wind loads only. 

fp = 1.0 for vertical and lateral loads on all structures 
except reinforced concrete boxes. 

fe = 1.0 and 0.5 for lateral loads on rigid frames (check 
both loadings to see which one governs) 
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Table 2.5 Table of Coefficients of 7 and 8 for Load Factor 

Design of Bridges (After AASHTO, 1989) 

  

            
  

  

  

  

  

  

  

  

  

  

  

  

  

Col.No.}| 1 [2 3 3A 4| 5/6 7 8 | 9.) 10 11 | 12 13 

§~FACTORS 

GROUP 7 D |(L+I) n{L+I)g CF] E |B | SH W | WL|LF|R+S+T| EQ/ICE 

I 1.3 /Bp| 1.67 | 0 1 | &E/2 |1 10 [0 Jo 0 |o | o 

IA 1.3 |p| 2.2 0 0 |ojfo0{/0]/0!]!0 jo 0 |o] 0 

IB 1.3 |p| 0 1 1 | Bej]1 }11]0 [0 jo o |o | o 

II 1.3 |Bp| oO 0 O | Beil |21}21 |o0 [0 o jo lo 

III 1.3 Bp| 1 0 1 | fe{l {1 0.3)1 fi o |o/}] 0o 

IV 1.3 8p| 1 0 1 | E/1 |1]0 Jo Jo 1 !o | 0 

V 1.258p| 0 0 O | sell {1} 1 Jo C 1 |o |] oO 

vI 1.258p| 1 0 1 | &e/1l }1).3)1 {2 1 {oO} 0 

VII 1.3 Bp| 0 0 0 | &Bi1l {1 | 0 JO jo Oo ;/1] 0 

VIII 1.3 Bp} 1 0 1 | #el2 |1]0 Io Jo o |oj] 1 

IX 1.2 Bp| oO 0 O | spill {1121 Jo Jo 0 }o} 1                                 
  

(L+I), - Live load plus impact for AASHTO Highway H or HS loading 
(L+I)p - Live load plus impact consistent with the overload 

criteria of the operation agency. 

be = 1.3 for lateral earth pressure for retaining walls and 
rigid frames. 

Se = 0.5 for lateral earth pressure when checking positive 
moments in rigid frames. 

fe = 1.0 for vertical earth pressure 
fp = 1.0 for flexural and tension members 

For Column Design 

Pp = 0.75 when checking member for minimum axial load and 
maximum moment or maximum eccentricity 

Bp = 1.0 when checking member for maximum axial load and 
Minimum moment 
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Loading groups I, II and III usually apply to the 

design of the superstructures and substructures, groups IV, 

V and VI apply usually to the design of arches and frames, 

while groups VII, VIII and IX apply usually to the design of 

substructures (Heins and Firmage, 1979). The fourteenth 

column of Table 2.4 lists the percentage increase in 

allowable stresses permitted in the load combinations, and 

is mainly used in working stress design. The increase in 

allowable stresses accounts for the fact that’ the 

probability of the load components reaching their maximum 

values simultaneously varies from one load combination to 

another. 

ASCE Standard for Buildings and Other Structures 

Loads acting on buildings include one or more of the 

following: dead load, live load, roof live load, snow load, 

rain load, wind load, earthquake load, thrust due to water 

and earth pressures, loads due to fluids, loads due to 

ponding, and loads due to changes in the dimensions of the 

structure such as_ shrinkage, temperature effects and 

settlement. 

The load combinations used in designing buildings and 

other structures are shown in Table 2.6 for WSD and Table 

2.7 for LFD [ASCE Standard 7-88, (1990) formerly ANSI 

A58.1]. One apparent difference between the two codes is
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that the load factors for the building code are less than 

those for the bridge code. 

2.3.3.2 Code Calibration 

Code calibration is the process of assigning values of 

code parameters such as performance factors or load factors. 

For a given set of load factors such as those in the AASHTO 

code or in the ASCE Standard 7-88, the codes can be 

calibrated by fitting with working stress design or by a 

more formal process using reliability analysis. 

2.3.3.2.1 Calibration by Fitting with Working Stress Design 

For cases where there is insufficient statistical data, 

performance factors can be determined using judgment and by 

fitting with working stress design specifications. 

In LFD format, nominal loads are related to the nominal 

resistance by the following equation: 

n 
éRn = = 

i 
YiSi (2-37) 

1 

where Ry, = nominal resistance (eg. pile capacity), Sj = load 

effect due to load component i (eg. dead and live loads), yj
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= load factor for load component i, @? = performance factor 

and, n = number of load components. 

In the WSD format, nominal loads are related to the 

nominal resistance by the following equation: 

Rn 
—e2 
FS i 

M
3
5
 

Si 
1 

where FS is the factor of safety. 

Equation 2-38 gives: 

If the loads consist of dead load, 

then Equation 2-39 becomes: 

YDSp + YLSL 
¢ = ——____ 

FS(Sp + Sz) 

(2-38) 

Dividing Equation 2-37 by 

(2-39) 

Sp, and live load, Sz, 

(2-40) 

Dividing both numerator and denominator by Sy; Equation 2-40 

may be written as: 

ypDSp/Sz, + IL 
  $2 
FS(Sp/Syz, + 1) 

(2-41)
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Values of performance factor obtained from Equation 2-41 for 

a range of safety factors and dead to live load ratios are 

shown in Table 2.8. The ratio of dead to live load depends 

on the construction material (steel, concrete or timber) and 

the type of structure. The dead load will be less in a 

steel structure than in a concrete structure. The dead to 

live load ratio is also different in bridges as opposed to 

buildings. 

Below is an example (for the foundations of a steel 

bridge) of a calibration by fitting with working stress 

design, based on information obtained from the literature. 

In a bridge, the ratio of dead load to live load increases 

with increasing span length. Hansell and Viest (1971) 

recommended the following relationship for steel bridges: 

SD 
——— = 0.0132W (2-42) 

Sz, + Sr 

where Sy; = impact load and W = span length in ft. Impact 

loads are seldom considered in foundation design except in 

bent piers and integral abutments. The impact load, Sy, in 

Equation 2-42 can be eliminated by substituting the 

following equation from AASHTO: 

50Sy, 
St = ——— < 0.3 (2-43) 

W + 125
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Table 2.8 Values of performance factors corresponding to 
different values of safety factor and dead to 
live load ratios 

  

  

  

  

  

  

  

  

1) AASHTO (yp = 1.3 and yz, = 2.17) 

Safety Facton Performance Factors 

Sp/S, = 1.0/Sp/Sy, = 2.0/Sp/Sz, = 3.0 Sp/Sy = 4.0 

1.5 1.16 1.06 1.01 0.98 

2.0 0.87 0.80 0.76 0.74 

2.5 0.69 0.64 0.61 0.59 

3.0 0.58 0.53 0.51 0.49 

3.5 0.50 0.45 0.43 0.42 

4.0 0.43 0.40 0.38 0.37           
  

2) Building Code (7p 1.2 and yz, = 1.6) 

  

Safety Factor Performance Factors 

  

  

  

  

  

  

      

Sp/Sz, = 1.0|Sp/Sy, = 2.0]Sp/Sz, = 3.9% Sp/Sy, = 4.0 

1.5 0.93 0.89 0.87 0.85 

2.0 0.70 0.67 0.65 0.64 

2.5 0.56 0.53 0.52 0.51 

3.0 0.47 0.44 0.43 0.43 

3.5 0.40 0.38 0.37 0.37 

4.0 0.35 0.33 0.33 0.32       
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The resulting equation was derived by Snyder and Moses 

(1978): 

Sp 50 
— =] 1 + ———|] 0.0132W (2-44) 
Sz W + 125 

Yokel (1989) recommended that the design factors should 

be calibrated for span lengths of about 200 ft. For a 

bridge span of 200 ft, the approximate dead to live load 

ratio is 3.05. Substituting yp = 1.3 and yy, = 2.17 into 

Equation 2-41, the performance factor, ¢ is related to the 

factor of safety as follows: 

1.52 
(2-45)   @? 2 

FS 

Calibrating by fitting with working stress design is 

useful for transferring experience from working stress 

design to load factor design. 

2.3.3.2.2 Calibration Using Reliability Methods 

2.3.3.2.2.1 Steps in the Calibration Process 

The procedure for estimating performance factors 

corresponding to a given set of load factors consists of the 

following steps:
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1) Estimate the level of reliability inherent in current 

design methods. 

2) Observe the variation of the reliability levels with 

different span lengths, dead load to live load ratios, 

geometry of the foundation, methods of predicting capacities 

and load combinations. 

3) Select a target reliability index based on the margin of 

safety implied in current designs. 

4) Calculate performance factors consistent with the 

selected target reliability index. It is also important to 

couple experience and judgment with the calibration results 

in the decision process. 

2.3.3.2.2.2 Probability Theory and Computation of 

Reliability Indices 

Probability theory has been widely used to model 

uncertainties in engineering design, where design parameters 

such as loads and resistances are treated as random 

variables. Fig. 2.16 shows the frequency distributions of 

the load effect (S) and the resistance (R) for a 

hypothetical circumstance. A value of R that is greater 

than S implies that the structure is safe. However, since R 

and S are random variables, there is a possibility that the
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Figure 2.16 Frequency Distributions of Load Effect S and 
Resistance R
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load effect S may be greater than R (shaded area in Fig. 

2.16). 

The safety of a structure can be measured in terms of 

the probability of failure, which is defined as the 

probability that the structure ceases to perform its 

intended function. Meyerhof (1970) indicated that the 

lifetime probability of failure of foundations should he 

between 107° and 1074. 

Reliability of foundations can be expressed using a 

performance function or a limit state function. If the 

loads and resistance are normally distributed, the 

performance function can be written as: 

g(R,S) =R-S (2-46) 

where g() is the margin of safety, R is the resistance and S 

is the load. 

If R and S are lognormally distributed, the performance 

function can be written as: 

g(R,S) = ln(R/S) (2-47) 

In this case, failure occurs when R/S < 1 or g() < 0. 

The probability of failure, p¢ for both cases of R and 

S being normal, and R and S being lognormal, can be written 

as follows: 

Pf = P[g() < 9] (2-48)
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or 

Pe = 1 - Fy(9g/og) (2-49) 

where F,,() is the standard normal distribution function, 

g, and °g are the mean and standard deviation of the 

performance function defined as follows: 

  

_ R 1 + Vs? 

S 1+ VR 

and 

og = /In[(1 + Vp?) (1 + Vg?) ] (2-51) 

where R and S§- are the mean values of R- and §S 

respectively, and Vp and Vg are the coefficients of 

variation (standard deviation divided by the mean) of R and 

S respectively. 

It can be shown that the probability density function 

of g() is lognormal if R and S are lognormal. The 

probability of failure for lognormal R and S is given by: 

  

Int (R/5)/(1 + Vs?)/(2 + VR?) 
_ — (2-52) 

/in{(1 + Vp?) (1 + Vg?) ] 
  Pe =1- Fy 

The parenthetic term in Fy is the reliability index, 8, i.e. 

  

In[ (R/S) /(1 + Vg2)/(1 + VR2)] 
_ (2-53) 

Jint(1 + Vp?) (1 + V5") ] 
B= 
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The reliability index is the number of standard deviations 

that separates the mean value of the safety margin from the 

failure limit (Fig. 2.17). 

If the bias is defined as the mean value divided by the 

nominal value, and if the loads consist of only dead and 

live loads, Equation 2-53 simplifies to: 

  

    

  

ARFS(Sp/Szy + 1) 1 + Vp* + Vz? 
ln 

ApSp/Sz + Az 1 + VR? 
B = ——__—— (2-54) 

Jint(1 + VR‘) (1 + Vp2 + Vp") ] 

where FS is the factor of safety, Ap, Ap and Az, are the bias 

for resistance, dead load and live load respectively, Vr, Vp 

and Vy, represent the coefficients of variation for the 

resistance, dead load and live load respectively, and Sp and 

Sy, denote the nominal values of dead load and live load. 

The reliability index is related to the probability of 

failure as shown in Table 2.9 for the case of lognormal 

loads and resistances. 

The method described above is called a First Order 

Second Moment Method - first order because only the first 

order terms of a Taylor series expansion for g() are 

involved, and second moment since only the first and second 

moments (mean values and variances) of the random variables 

are used in the formulation. One drawback of this method is 

that the performance function, g(), is linearized at the
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f(g) Bog 
  

Failure Region 
Area 39 f           

0 $= £n(R/ g=in(R/: ) 

Figure 2.17 Definition of Safety Index @ for Lognormal R 
and §
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Table 2.9 Relationship between probability of failure and 
reliability index, 6 assuming lognormal loads and 

  

  

resistances 

B Pf B Pf 

2.5 9.86 X 1072 1.96 1071 

3.0 1.15 x 107° 2.50 1072 

3.5 1.34 x 1074 3.03 1073 

4.0 1.56 X 107° 3.57 1074 

4.5 1.82 x 1076 4.10 107° 

5.0 2.12 x 1077 4.64 1076 

5.5 2.46 x 1078 5.17 1077           
  

* The numbers in the table are calculated using the simple 
approximate relationship between 8 and p¢ given by 
Rosenbleuth and Esteva (1972) as follows: 

Pr = 460exp(-4. 38)
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mean values of the random variables. If g() is nonlinear, 

neglecting the higher order terms can result in significant 

errors. 

Dead loads in bridges and buildings are usually time 

invariant and normally distributed while live loads and 

resistances can be treated as lognormal variables. To 

circumvent the problems that arise with the first order 

second moment method when the distributions are mixed, the 

reliability index can be evaluated by transforming the 

nonnormal variables to equivalent normal variables. With 

these equivalent normal variables, the reliability index is 

calculated using the same procedure as for normal variables 

i.e. the performance function becomes: 

g() = RN - pN -—N (2-55) 

and the reliability index, 6, is calculated using the 

following equation: 

RN - pN -rN 
  (2-56)   

J(op®)2 + (op%)2 + (opXy2 

where the superscript N denotes the equivalent normal 

distribution for the mean values and standard deviations. 

According to Ang and Tang (1984), the equivalent normal 

distribution of a nonnormal variable must be obtained such 

that "the cumulative probability as well as the probability
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density ordinate of the equivalent normal distribution are 

equal to those of the corresponding nonnormal distribution 

at the appropriate point on the failure surface." A 

lognormally distributed random variable (eg. R) will have an 

equivalent normal mean and standard deviation as follows 

(Ang and Tang, 1984): 

RN = r*(1 - In r* + In R - 0.5 In(1 + Vp?) ] (2-57) 

and 

opN = r*/1In(1 + Vp?) (2-58) 

where R and VR are the mean value and c.0.v. of 

R respectively, and r* is the value of R at the failure 

point. Similar expressions can be derived for the live load 

assuming that it too is lognormally distributed: 

LN = 1*71 - in 1* + Ink - 0.5 1n(1 + Vz’) ] (2-59) 

and 

opN = 1*/in(1 + Vz?) (2-60) 

Although the performance function (Equation 2-55) is linear, 

the mean values and standard deviations required change with 

the failure point values. Hence, an iterative process is 

required to solve for 8. 

The iteration procedure is as follows: 

1. Define the performance function; g(X1, X2, X3,--+-++,Xn) 

= 0 where the X;j’s are the design random variables.
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Guess a value for the reliability index. 

For the first iteration, equate the initial checking 

* X3",.000+,Xn) to the point at the mean point (X,*, X2 

values (Xi, X2, X3,--+-++,/Xn)- 

For all nonnormal variables, calculate the mean and 

standard deviation (x, and o4N) of the equivalent 

normal distribution. 

Evaluate dg/dX; for all values of Xj that are nonnormal 

at the checking point, Xi*. 

Calculate the direction cosines for all values of Xj 

that are nonnormal as follows: 

* dg/ 9X} 
aj = rere (2-61) 

/(2(8g/8X4) 7] 

Calculate the new checking point for all values of Xj 

that are nonnormal from: 

* 

xy" = XN ~ ai % p04" (2-62) 

and repeat steps 4 to 7 until the value of # remains 

constant. 

The reliability index can be calculated with the aid of’ 

a computer program that incorporates the above methodology. 

To summarize, two methods of calculating reliability 

indices have been described. Both the FOSM and the 

iterative (or advanced) procedures can be used to calculate
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6B generically, using only the values of the bias and the 

coefficients of variation of the resistance and the loads. 

2.3.3.2.2.3 Computation of Performance Factors 

Once the reliability levels inherent in current design 

methods have been calculated, a target reliability index 

that reflects an acceptable margin of safety is selected. 

Performance factors can now be calculated using the selected 

target reliability index. 

The expression for the performance factor can be 

derived by substituting R, = R/\gp into Equation 2-46, and 

expressing R in terms of f, Vp, Vg and S through the use of 

Equation 2-53. The resulting expression for the performance 

factor, ¢, is as follows: 

AR (Zi Si) $= (2-63) 
1 + Vp- _ R 3 3 

1 + Vs 

    

  

where fp is the target reliability index. When only dead 

and live loads are considered, Equation 2-63 simplifies to: 

AR(ypSp/Sz + YZ) 
¢ = —= 

/ 1 + VR- 5 5 5 

(ApSp/Syz + AL) exp[Ap/1n(1+VR ) (14+Vp*+Vz*) J 

/t + Vp" + VL? 

  
  

  

(2-64)
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2.3.4 Other Methods of Incorporating Margins of Safety in 

Designs 

Apart from working stress design and load factor 

design, there are at least two other methods of ensuring 

acceptable levels of risk in design. They include the 

following: 

(1) Bolton’s worst attainable value approach, and 

(2) the ’ approach 

1. Bolton’s Worst Attainable Value Approach 

No safety factors are used in Bolton’s (1981) worst 

attainable value approach. Instead, the approach assumes 

the worst set of values for the design parameters. An 

advantage of this method is that it forces the designer to 

think about the worst possible scenario. Disadvantages of 

this method include the following: 

(a) The determination of the margin of safety is left 

entirely to the judgment ("pessimism" or "“optimism") of 

the engineer. 

(b) There may be one parameter which is very sensitive to 

the resistance while the other parameters are trivial in 

their contribution. 

(c) The soil exploration must be deemed to be as "inferior"
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in quality as is attainable. 

(d) The occurence of the worst condition scenario may be 

highly unlikely. 

2. The \ Approach 

Proposed by Simpson et al. (1981), this method of 

assigning a margin of safety also does not use a factor of 

safety per se. This approach is similar to load and 

resistance factor design in that the load is increased, and 

the parameters that contribute to resistance are decreased 

by a certain amount. The methodology is as follows: 

(a) Identify all limit states applicable to the structure. 

(b) Select the method(s) of analysis and determine all 

relevant variables (V). V should include all different 

load components, resistance parameters such as cohesion, 

angle of internal friction, etc. 

(c) Estimate the expected values of the variables (Veg). 

(d) Establish the worst credible values (Vyc) of each 

variable. 

(e) For each limit state, select from Table 2.10 the 

severity of consequence, and obtain the appropriate 

values of Aj and 32. 

(f) Calculate the limit state value of each variable (v*) as 

follows:
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Table 2.10 Values of \j and Ag for different failure 
consequences (After Simpson et al., 1981) 

  

  

    

CLASS SEVERITY OF CONSEQUENCE Al A2 

1 Disappointing -0.5 -0.8 

2 Significant repairs 0.0 ~0.6 

3 Major damage or possible casualty 0.5 -0.4 

4 Catastrophic 1.0 -0.2     
  

 



where V. wc 

AV 

AV 
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* = Vwo + AAV (2-65) 

worst credible value 

uncertainty of V (positive for adverse effects 

such as loads and negative for beneficial 

effects such as cohesion in a bearing capacity 

problem) 

Vweo 7 Ve (2-66) 

expected value of V 

values of \j or Az obtained from Table 2.10 

corresponding to the severity of the consequence 

of reaching the limit state 

(g) Apply Az to one variable and Ag to the other variables, 

and check the design without using any factor of safety. 

(h) Repeat step (g) with A, applied to a different variable 

and Ap to all other variables, and check the design. 

Repeat this process until \1; is applied to all 

variables. 

(i) Select the case that yields the most conservative design 

from steps (g) and (h). 

One advantage of this method is that it systematically 

considers the effects of each variable in the limit state. 

The use of the values of A to calculate the limit state 

values (v*) however, masks the role of the expected values, 

which usually govern the design in most cases.



~ CHAPTER THREE 

SIMPLIFIED PROCEDURE FOR DESIGN OF PILES AND DRILLED SHAFTS 

TO RESIST LATERAL LOADS 

3.1 Introduction 

Lateral loads on deep foundations arise due to wind, 

earthquake, water pressures, earth pressures, and live 

loads. Deep foundations must be designed to withstand such 

forces without failing (i.e. without reaching the ultimate 

limit state), and without deflecting excessively (i.e. 

without reaching the serviceability limit state). 

The governing criterion in the design of laterally 

loaded piles and drilled shafts is almost always the maximum 

tolerable deflection or the structural capacity of the pile 

or drilled shaft. Ultimate soil failure usually does not 

control the design, since mobilizing the ultimate lateral 

capacity of the soil requires such large displacements that 

this is not a realistic possibility in most cases. 

Batter piles are frequently used to resist lateral 

loads. However, constructing batter drilled shafts is 

difficult. Construction problems include maintaining hole 

stability during excavation, installing casing and rebar 

cages in inclined holes, concrete placement in inclined 

holes, and availability of suitable construction equipment. 

Because of these difficulties, batter drilled shafts are 

96
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used infrequently. The discussion of lateral loading of 

deep foundations will be limited to only vertical piles and 

drilled shafts. 

In designing vertical piles and drilled shafts to 

resist lateral loads, both lateral deflection and structural 

capacity should be considered. Procedures for estimating 

(1) lateral deflections of single piles and drilled shafts, 

(2) lateral deflections of groups of piles and drilled 

shafts, (3) maximum bending moments in single piles and 

drilled shafts, and (4) maximum bending moments in groups of 

piles and drilled shafts are addressed in the following 

sections. 

3.2 Single Piles and Drilled Shafts 

The procedure for estimating lateral deflections and 

bending moments in single piles and drilled shafts described 

here is the one developed by Evans and Duncan (1982). The 

Evans and Duncan procedure was derived from a large number 

of p-y analyses, and the method models non-linear behavior 

of the soil. Unlike p-y analyses, the Evans and Duncan 

procedure has the advantage of computational simplicity in 

that it does not require the use of a computer.
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3.2.1 Evans and Duncan Procedure 

Evans and Duncan (1982) related lateral deflections of 

deep foundations to the lateral loads using what they called 

a characteristic load (P.). The characteristic load (Pe) 

embodies the important properties of the pile or drilled 

shaft (diameter, stiffness) and the soil (strength, 

stiffness) that determine the way that the pile or drilled 

shaft and soil respond to lateral loads. The larger the 

value of P., the greater is the capacity of the pile or 

Grilled shaft to carry lateral loads, and the smaller is its 

deflection under a given lateral load. -Procedures for 

calculating values of Po are described in a_ subsequent 

section. 

3.2.1.1 Lateral Deflection of Fixed-Head Piles or Drilled 

Shafts 

The condition of restraint against rotation at the top 

of a pile or drilled shaft has a strong effect on the 

magnitude of its lateral deflection under load. Piles and 

drilled shafts that are embedded in reinforced concrete caps 

are effectively restrained from rotation at the top, and 

they deflect laterally with negligible rotation at the top. 

On the other hand, drilled shafts (and less frequently
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piles) may be used individually by connecting directly to 

the structure without a cap, in which case they may be 

essentially free to rotate at the groundline. The lateral 

deflection of a fixed-head shaft is approximately one-fourth 

that of a free-head shaft subjected to the same load. 

The procedures and charts discussed in this section are 

for fixed-head piles and drilled shafts. Charts in 

dimensionless form were developed by Evans and Duncan (1982) 

for sand and clay (Figs. 3.1 and 3.2). These charts show 

the variation of Ps/P. with Ys/D. Ps is the lateral load, 

Po is the characteristic load, Ys is the groundline lateral 

displacement, and D is the width or diameter of the single 

pile or drilled shaft. These charts model the same non- 

linear behavior of soil as the p-y method of analysis. The 

procedure for determining the lateral deflection of a pile 

or drilled shaft, using Figs. 3.1 and 3.2, is as follows: 

1) For a pile, determine the width or diameter, D, the 

Young’s modulus, Ep, and the moment of inertia Ip- Section 

and material properties of driven piles can usually be 

obtained from the manufacturer’s literature. 

In the case of a drilled shaft, select the diameter D, 

the concrete modulus E,, and the steel reinforcement. The 

quantities needed for analysis of drilled piers are the 

flexural stiffness, Eplp and Ry, the ratio of the moment of
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Figure 3.1 Lateral Load Versus Deflection for Fixed-Head 
Piles and Drilled Shafts in Sand (After Evans 
and Duncan, 1982)
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Figure 3.2 Lateral Load Versus Deflection for Fixed-Head 

Piles and Drilled Shafts in Clay (After Evans 

and Duncan, 1982)
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inertia of the shaft to the moment of inertia of a solid, 

unreinforced, circular section. The moment of inertia of 

the shaft can be calculated considering the separate 

contribution of the concrete and the steel. The Young’s 

modulus of the shaft (Ep) is conveniently taken as being 

equal to the Young’s modulus of concrete (E,), which can be 

related to the concrete compressive strength and density, as 

shown in Fig. 3.3. The modulus of steel can be taken as 29 

x 10° psi. 

2) Estimate the average undrained shear strength (S,) for 

Clays, or the average angle of internal friction (¢’) for 

sands. 

The behavior of the soil close to the ground surface is 

the most important with regard to lateral loads. The 

properties (S, for clays, ¢’ and unit weight, 7’, for sands) 

should be averaged over a depth extending about eight pile 

or shaft diameters below the top of the pile or drilled 

shaft. Buoyant unit weights for sands are used below the 

water table. 

3) Determine the characteristic load (P,.), which is defined 

by the following equations: 

For clay Po = 7.34 D* (EpRr) (Sy/EpRr) 9° 98 (3-1) 

For sand Pg = 1.57 D*® (EpRz) (17/Dé’Kp/EpRz) °°?” (3-2)
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Figure 3.3 Modulus of Elasticity of Concrete (After PCI, 
1985)



where Rr = 

RI = 

Isolia = 

Isolid = 

Thus EpRT= 

7’ = 

Kp = 

Kp = 

¢’ = 

Consistent 
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moment of inertia ratio 

Ip/Isolia (See Table 3.1 for values of Ry for 

drilled shafts of various diameters and 

percentages of steel area) 

moment of inertia of a solid circular cross- 

section 

nD*/64 

(EpIp) / (xD4/64) 
effective unit weight of soil 

Rankine passive earth pressure coefficient 

tan*(45° + ¢//2) 

angle of internal friction for sand (in degrees) 

units must be used for all the terms in Equations 

3-1 and 3-2. 

4) Calculate the value of the load ratio, P./P.. 

5) Use Fig. 3.1 for piles or shafts in sand, or Fig. 3.2 

for piles or shafts in clay to determine the value of Y,/D. 

6) Calculate Yg = D (Y<;/D).
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Table 3.1: Rr values for Grilled shafts with Eo = 3500 ksi, 
Es = 29 000 ksi and c = 3 in. 

  

  

  

            

DIAMETER OF DRILLED SHAFT 

As/Ag 18 in. 24 in. 30 in. 36 in. 

0.01 1.06 1.07 1.09 1.09 

0.02 1.11 1.14 1.16 1.18 

0.04 1.21 1.27 1.31 1.34 

0.08 1.38 1.50 1.58 1.63 

where A, = area of steel 

Ag = gross cross-sectional area of drilled shaft 

Cc = cover 
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3.2.1.2 Lateral Deflection of Free-Head Piles or Drilled 

Shafts 

A lateral load (Pg) acting at a distance (e) above the 

ground, can be resolved into two components as shown in Fig. 

3.4: a lateral load with the same magnitude (P,;) acting at 

the groundline, plus a bending moment (Me) equal to the 

lateral load multiplied by the eccentricity (i.e. Me = Pse). 

Evans and Duncan showed that the lateral displacement of a 

free-head pile or drilled shaft can be estimated using 

nonlinear superposition of the deflection caused by the 

lateral load (Ygp) and the deflection caused by the bending 

moment (Ysm)- 

The component of the lateral displacement (Ysp) due to 

the groundline lateral load can be estimated using Figs. 3.5 

and 3.6. The procedure is the same as described in 

connection with fixed-head piles and drilled shafts in 

Section 3.2.1.1. 

The component of the lateral displacement (Ys) due to 

the bending moment can be estimated as follows: 

1) Calculate the bending moment Me = Pse 

2) Determine the characteristic moment (M.), which is 

defined by the following equations:
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Figure 3.4 Resolution of Eccentric Load into a Lateral Load 
Acting on the Groundline and a Moment
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Figure 3.5 Lateral Load Versus Deflection for Free-Head 
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Piles and Drilled Shafts in Sand (After Evans 
and Duncan, 1982)
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Figure 3.6 Lateral Load Versus Deflection for Free-Head 
Piles and Drilled Shafts in Clay (After Evans 
and Duncan, 1982)
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For clay Mg = 3.86 D® (EpRr) (Sy/EpRy) °**° (3-3) 

For sand Mc = 1.33 D? (EpRz) (1/Dé’Kp/EpRr) °°4 (3-4) 

where Ry, Kp, 7’, and $¢’ are as defined previously. 

Consistent units must be used in all the terms in Equations 

3-3 and 3-4. 

3) Calculate the ratio Me/Me. 

4) Use Fig. 3.7 for piles or shafts in sand and Fig. 3.8 for 

piles or shafts in clay to determine the value of Yow/D. 

Knowing Ysp and Ysoy, the total lateral deflection of a 

free-head pile or drilled shaft can then be estimated using 

nonlinear superposition as follows (Evans and Duncan, 1982): 

1) Using Ysm and Fig. 3.5 for piles or shafts in sand, or 

Fig. 3.6 for piles or shafts in clay, calculate Py as shown 

in Fig. 3.9b. 

Py is the equivalent lateral load that would cause the 

deflection Yo x.
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2) Using Ysp and Fig. 3.7 for piles or shafts in sand and 

Fig. 3.8 for piles or shafts in clay, calculate Mp as shown 

in Fig. 3.9e. 

Mp is the equivalent moment that would cause the 

deflection Yosp. 

3) Determine the deflection Yspy caused by the lateral load 

(Ps + Py) as shown in Fig. 3.9c. Ygpym is the deflection 

caused by the sum of the real load plus the equivalent load. 

4) Determine the deflection Ysgymp caused by the moment (Ms + 

Mp) as shown in Fig. 3.9f. YsmMp is the deflection caused by 

the sum of the real moment plus the equivalent moment. 

5) Estimate the total deflection (Ys) using the equation Y,z 

= 0.5(¥spm + Ysmp) 

3.2.1.3 Bending Moments in Fixed-Head Piles or Drilled 

Shafts 

Evans and Duncan (1982) developed a simple procedure 

for estimating the maximum bending moment induced in single 

piles and drilled shafts (Ms) due to a lateral load at the 

top of the pile or drilled shaft. They developed the design 

charts shown in Figs. 3.10 and 3.11 for fixed-head piles and
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drilled shafts in sand and clay. These charts show the 

variation of Ms/Me with P<s/Po, where Ms = maximum moment in 

a single pile or drilled shaft and Me = characteristic 

moment. 

Using these charts, the bending moment in a laterally 

loaded pile or drilled shaft can be estimated as follows: 

1) Refer to step (1) in Section 3.2.1.1. 

2) Refer to step (2) in Section 3.2.1.1. 

3) Determine the characteristic load (P,.) using Equation 3- 

1 for clay or 3-2 for sand. 

4) Calculate the lateral load, Ps, and the value of the load 

ratio, P<s/Po. 

5) Use Fig. 3.10 for fixed-head piles or drilled shafts in 

sand and Fig. 3.11 for fixed-head piles or drilled shafts in 

clay to determine the value of Ms/Mc. 

6) Determine the characteristic moment (M.) which is 

defined by Equations 3-3 and 3-4. 

7) Calculate Mg = Mc(Ms/Mc).
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3.2.1.4 Bending Moments in Free~Head Piles or Drilled 

Shafts 

The maximum bending moment in a free-head pile (or 

drilled shaft) occurs in the portion of the pile that 

extends below ground or the portion above ground. The 

magnitude of the maximum moment is needed for design, and, 

in some cases, it may be necessary also to know the depth 

below ground at which the maximum moment occurs. These 

quantities cannot be determined directly using the procedure 

developed by Evans and Duncan, but they can be calculated 

using the theory described by Matlock and Reese (1961), 

together with the value of groundline deflection calculated 

using the Evans and Duncan (1982) procedure. The technique 

for estimating groundline deflections of free-head piles and 

Grilled shafts was explained in Section 3.2.1.2. When the 

groundline deflection (Ys) has been determined, the 

magnitude of the maximum moment and its depth below ground 

can be estimated as follows: 

1) Calculate the characteristic length (T) of the drilled 

shaft by solving the following equation for T (Matlock and 

Reese, 1961): 

2.435Ps , 1.623Me 
Ys = ————_ T° + ——_ T (3-5) 

Eplp EpIp
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where Ys, Ep, Ip and Pg are as defined previously and T is 

the characteristic length. The value of T can be determined 

using repeated trials. 

3) Calculate the maximum bending moment using the following 

expression: 

Mmax = KmMe (3-6) 

where Me is the bending moment at the groundline (Me = Pse), 

Ps is the lateral load, e is the eccentricity of the lateral 

load above the groundline, and ky is a moment multiplier 

which is a function of T/e. The value of Ky can be 

calculated as follows: 

km = 1 + 0.756(T/e) (3-7) 

where T is the characteristic length calculated from 

Equation 3-5. The location of the maximum bending moment 

can be estimated using Table 3.2. 

3.2.1.5 Deflections and Bending Moments in Piles or Drilled 

Shafts With Caps Above Ground 

When piles or piers are attached to a cap above ground, 

with an air gap between the bottom of the cap and the 

ground, the maximum bending moment can occur below ground
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Table 3.2 Approximate location of the maximum bending 
moment in free-head piles or drilled shafts 

  

  

T/e z/T 

0.0 0.0 

0.1 0.4 

0.2 0.5 

0.3 0.6 

0.4 0.7 

0.5 0.8 

0.8 0.9 

1.6 1.0 

3.0 1.2 
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(as discussed in the previous section) or at the top of the 

pile (the bottom of the cap). For piles connected to a cap 

above ground, expressions for the deflection of the cap and 

the magnitudes of the maximum bending moment in the pile can 

be derived using beam theory and the Evans and Duncan 

nonlinear superposition procedure. The magnitude of the 

maximum bending moment at the top of the pile (the bottom of 

the cap) can be estimated using the following equation: 

2 
Me Zmax Zmax 

6 Lu 

= 
1 + 

Ly 

where Mmax = maximum bending moment for a free-head pile 

    

  

  

that occurs below ground, estimated using the 

nonlinear superposition procedure described in 

Section 3.2.1.4 

Zmax = depth below ground where Mmay occurs 

Ly = unsupported length of free-head pile or drilled 

shaft (Ly = eccentricty, e), and 

Me = moment at the groundline for a free-head pile 

(= Poe or Posh) 

Equation 3-8 was derived with the aid of Fig. 3.12 and 

the following assumptions:
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DIAGRAM DIAGRAM 
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Minax Mr       
Figure 3.12 Idealized Shear Force and Bending Moment 

Diagram In a Pile That Can Translate But Not 
Rotate At The Top
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1) The shear force diagram decreases linearly from P. at the 

ground surface to zero at the location of the maximum 

bending moment. 

2) The slope at the location of the maximum bending moment 

is zero. 

3) The cap provides complete rotational restraint at the top 

of the pile. For this condition, the area underneath the 

bending moment diagram on the side for positive moments is 

equal to the area underneath the bending moment diagram on 

the side for negative moments, i.e. in Fig. 3.12, Area 1 + 

Area 2 = Area 3. 

The magnitude of the maximum bending moment below 

ground for this boundary condition is equal to (Mmax - Mr). 

The deflection of the cap above ground may be divided 

into two components. The first is the deflection of the 

free-head pile at the groundline (Yground), which can be 

estimated using nonlinear superposition of the deflection 

caused by a groundline lateral load (Ps), and the deflection 

caused by the moment at the groundline which is equal to (Me 

- Mp). Note that since Me is always less than Mp, (Me - Mp) 

is always negative, and the deflection components caused by 

Ps and (Me - My) are in opposite directions. 

The second component of the deflection is’ the 

displacement of the cap relative to the pile at the 

groundline (Yp - Ygrouna) - This can be evaluated by
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integrating the expression for the bending moment above the 

groundline twice, and by dividing by the flexural stiffness 

(EpIp) of the pile or drilled shaft. The resulting 

expression for this deflection component is: 

Ly? 

6EpIp 
[Me - 3My] (3-9)   Y~ - Yground = 

where Ly, Me and Mp are as defined previously. To calculate 

the deflection of the cap Yr, Yground and (Yr - Yground) are 

added together. 

3.2.2 Simplified Procedure for Design of Single Fixed-Head 

Piles and Drilled Shafts to Resist Lateral Loads 

Driven Piles 

The Evans and Duncan procedure for estimating lateral 

deflections and bending moments in laterally loaded fixed- 

head piles has been used to develop lateral load-deflection 

curves and lateral load-moment curves for some commonly-used 

pile sections. Charts for prestressed concrete piles (10 

in., 12 in., 14 in., 16 in., and 18 in. Square) and steel-H 

piles (HP 10 X 42, HP 10 X 57, HP 12 X 53, HP 12 X 74, HP 14 

X 73, and HP 14 X 89) in sand and clay are shown in Figs. 

3.13 through 3.16. For these piles and soil conditions, 

deflections can be estimated directly using the charts. For



La
te

ra
l 

to
ad
 

(h
ip
s)
 

La
te

ra
l 

lo
ad
 
(h

ip
s)

 
La
te
ra
l 

ba
d 

(k
ip
s)
 

40 

35 

30 

20 

15 

8 
Bw 

& 
& 

-
 

wa
 

Load-detiection Curves ior Presiressed 

Concrete pies nsand (@ = X)) 

  

    
  

  

—_ 

bk 

oa 

LL. 

@ 10°: 10° 

© 12° 212° 
- © 14°45 16° 

4163516 
a © 18° 5 18° 

L L _i —_—~ 

0 0.2 0.4 0.6 0.8 1 

Oeliecuon (inches) 

(o= 3) 

a 

—_ 

a 

@ 10° x to” 
Oo 12° x 12° 
O 14° 314 
618216 
O 16° 18°   

     

  

  

a | 

0.4 0.6 

Deliection (inches) 

( © 40) 

0.8 1 

  

     @ 10° x 10° 

    

  

  

O 12-212" 

© 14°24 16° 

4 16° x 16° 
Oo 18°18" 

é tL i __~f, 

Q 0.2 0.4 0.6 0.8 1 

Oetiection (incnes) 

Figure 3.13 Load Versus Deflection and Load Versus Moment 

125 

40 

La
te
ca
l 

lo
ad

 
(h
ip
s)
 

40 
8 

La
te

ra
l 

lo
ad
 
(h

ip
s)

 
La
te
ra
l 

lo
ad
 
(h

ip
s)

 

Load-moment Aelationsmp tor Prestressed 

Concrete pies m sand (@¢ = XH) 

  

  

| Zo 

    

@ 10°x 10° 
© 12% x 12° 

- © 14° 2 14° 

& 16° x 16" 
5 Oo 18° x 18° 

i 1 l a | i I l _— 

8 0.4 0.8 1.2 1.6 2 2.4 2.8 3.2 

(Thousands) 
Momerd (kom) 

(@ = 35) 
  

@ 10°x 10° 
O 12" 412° 

  
       

    
  

  

      

for Prestressed Concrete Piles in Sand 

© 14° x 14 

& 16"x 16° 

O 18" x 18° 

__h it l l 1 l 

0 0.4 0.8 1.2 1.6 2.4 2.8 

(Thousands) 

Momert (kip-in) 

(o=2 4) 

_ 

wie a1ig 
0 12° x12" 

r © 147% 14° 

o 16° x 16° 

bee © 18° « 18° 

1 __k. L Jt _t 

0 0.4 0.8 1.2 1.6 2 2.4 

(Thousangs) 
Moment (kip-in)



La
te

ra
l 

lo
ad
 
(h

ip
s)

 
La
te
ra
l 

lo
ad
 
(h
ip
s)
 

La
te
ra
l 

lo
ad

 
(h
ip
s)
 

40 

Load-Detlection Curves lor Presuvessed Concrete Pies 

ni Clay (Suet ksf) 

  

    

  

  

  

gw 10°x 10° 
Oo 12212 
0181148 

“6 16 x1is 

O 18° x 18°   
02 04 0.6 0.8 1 

Oetiection (inches) 

(Sue2 ks!) 

  

   
  
   @ 10° x 10° 

O12 212" 

QO 14° x 14° 

6 16216 
© 16° 18°   

02 0.4 

Deflection (inches) 

08 

(Sue nef 
  

  
@ 10°x 10° 
© 12° x 12° 
© 14°23 16 

4 16°x 16 
O 18° x 18°   L i wl 1 l 

0.04 006 O12 0.16 02 

Deflection (inches) 

male al. 

0.24 0.32 

Figure 3.14 

La
te
ra
l 

lo
ad
 
(h
ip
s)
 

La
te
ra
l 

lo
ad

 
(h

ip
s)

 
La

te
ra

l 
lo
ad
 
(i
ps
) 

Load-Momert Relationship for Prestressed Concrete Pies 

  

    
  

2.8 

  

      

  

      

in Clay (Suet ks!) - 

40 

358 PF 

30 a 

a 

SF m 10°x 10° 
© 12° x 12° 

10 F © 14° x 14° 

OQ 162 16 

© 18° x 18° 
5 oJ 

0 I I Jt _t 1 |. 

Q 0.4 0.8 12 1.6 2 2.4 

(Thousands) 
Moment (kxyin) 

(Sue2 ks!) 

a 
al 

LE: 

33 fF 

3s a 

20 

SF @ 10°57 10° 
O 12? x 12" 

10 © 1@ x 14° 
o 15° x 16° 
O 18° x 18° 

sb 

0 i, Cg lg lS . gg _h t 

9 02 04 06 OB 1 12 #14 16 #18 2 

(Thousands) 
Momers (hiovin) 

(Sue4 kst) 

40 LL 

35 bw 

D0 

SB > 

2a 

be 
15 @ 10°10" 

O 12° 512° 
10 © 147 0 14" 

& 161 16° 
© 18° x 18° 

5 bo 

0 _f i L 1 of } _i af 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 

(Thousands) 
Moment (jup/in) 

Load Versus Deflection and Load Versus Moment 
for Prestressed Concrete Piles in Clay



La
te

ra
l 

lo
ad
 
(h
ip
s)
 

La
te

ra
l 

lo
ad

 
(k
ip
s)
 

La
te

ra
l 

to
ad
 
(h
ip
s)
 

40 

tac Celecuon Cuncs tor Sleci tt Pies 

msand(o =z D) 

127 

  

  
HP 10 

HP 10 

HP 42 
HP 32 

HP 44 

HP 14 g
o
D
v
o
o
8
 

ml L.. aah al 

x42 

x $7 
253 
274 

273 
269     

0.2 0.4 0.6 0.8 

Deflection (inches) 

(o=#3) 
  

HP 10 x 42 
HP 10 x57 

HP 12 253 
HP 12 274 

HP 14 x73 
MP 14 289 q

g
o
e
9
g
o
0
8
 

1 i a L   
    0.2 0.4 0.6 0.8 

Detlection (inches) 

(9 = 4) 
  

  
HP 10 x 42 
HP 10 157 
HP 12 153 
HP 12 274 

MP 146173 
MP 14 x89 q

o
o
o
o
s
 

af 1 ____f eel 

0.2 0.4 0.6 0.8 

Oetlection inches) 

  

La
te

ra
l 

lo
ad
 
(h

op
s)

 
La
te
ra
l 

lo
ad
 
(h
ip
s)
 

La
te

ra
l 

lo
ad

 
(k
ip
s)
 

40 

Load Moment Reanonsmp tor Steel H-Pues 

insand(@ = 3) 

  

  t L 

g
o
o
o
o
s
 HP 10 

HP 10 

HP 12 
RIP 12 

BIP 14 
HP 14 

x 42 

x §7 

353 
x74 

x73 
389     

1.6 2 

(Thousands) 

Moment (kip-in) 

(e = 35) 

3.2 

  

  
0.4 0.8 12 1.6 

(Thousands) 
Moment (kip-in) 

a
o
o
0
o
o
s
 HF 10 

HP 16 
HF 12 
HP 12 
HP 14 

HP 14 

{e= 4) 

n
k
 

x 42 

357 
x53 
x74 
573 

x69 

24 
  

2.8 

  

  
@ HP 10 
© HP 10 
© HP 12 
& HP 12 
O HP 14 

9 HP 14 

x42 

x57 

x53 
x74 

273 
x89     

1.2 

(Thousands) 
Moment (kip-in) 

1.6 o
h
 

Figure 3.15 Load Versus Deflection and Load Versus Moment 
for Steel-H Piles in Sand 

2.4



La
te

ra
l 

lo
ad
 

(k
ip

s)
 

La
te
ra
l 

lo
ad
 (

ki
ps

) 
La
te
ra
l 

lo
ad

 
(k
ip
s)
 

  

128 

    

            

    

            

Loaa-Detiection Curves tor Siee! H-pues Load-moment Relationship tor Stee! H-pies 

in day (Sus! ksf in clay (Suet ksf) 

40 40 , 
LZ 

LZ 

a 3 F LE 

ZY 

30 i a OO 2 30 i pj 

LL. = a 
: Yd 
ao) 
a 

= “OS © * 2 hom 

HP 10 x42 3 8 x s 
6b © HP 10 x57 5 3 F 5 P10 057 

© HP 12 253 LZ 
SOS Oo wHP12 x53 

O& HP 12 274 Q& HP12 x74 
10 - ff © HP 14 173 10 F 

HP 14 289 GO HMP14x73 
v x 9 HP i4 x89 

§ 5 bom 

0 L ne | 1 4 0 al, awl. L i a i 
0 0.2 0.4 0.6 0.8 1 0 0.4 0.8 12 1.6 2 2.4 2.8 

Detlection (inches) (Thousands) 
Moment (kip-in) 

(Sus2 ksf} (Sus2 ksf) 

40 40 

35 nw 3s 4 

2 

3 
bo 2 20 

3 
1s b @ HP 10 x 42 3 1s k w HP10 x42 

oO HP 10 «57 O WP10 x 57 
© 4P12 383 © HP12 x53 

10 & 6 HP 12 x74 10 + G HP 12 x74 
O HP 14173 CO HP 14 273 
o HP 14 x69 9 HP 14 x89 

5 § - 

0 _h. _i. 0 _ r L Le t i__t. i 

0 0.2 0.4 0.6 Q 02 Q4 0.6 0.8 3 12 1.4 1.6 1.8 2 

~ @fiection (inches) (Thousands) 
Momert (kip-in) 

(Sum4 ks?) 

    

La
te

ra
l 

to
ad

 
(h

ip
s)

 

            

  

iw _j _ fi i a | _} _f 

0 0.04 0.08 0.12 0.16 0.2 0.24 

Detlecnon (inches) (Thousands) 
Mormert (hup-1} 

Figure 3.16 Load Versus Deflection and Load Versus Moment 

for Steel-H Piles in Clay



129 

example, a lateral load of 10 kips acting on a 12 in. X 12 

in. prestressed concrete pile driven in clay with S, = 1 ksf 

will result in a lateral deflection of about 0.1 in. (Fig. 

3.14) and a bending moment of 400 kip-in. 

For sands, charts were developed for friction angles of 

30°, 35° and 40°. The water table was assumed to be at or 

above the ground surface. For intermediate values of 

friction angle between those shown in the- charts, 

deflections may be estimated by interpolation. 

For clays, the load-deflection curves were developed 

for undrained shear strengths of 1, 2 and 4 _ ksf. 

Deflections for intermediate values of undrained shear 

strengths can be estimated by interpolation. 

Drilled Shafts 

The Evans and Duncan procedure for estimating lateral 

deflections and bending moments in laterally loaded fixed- 

head drilled shafts has been used to develop lateral load- 

deflection curves and lateral load-moment curves for some 

commonly-used drilled shaft sections. Charts for drilled 

shafts of 18 in., 24 in., 30 in. and 36 in. diameters, with 

percentages of reinforcement equal to 1%, 2%, 4% and 8%, 

constructed in sand and clay, are shown in Figs. 3.17 

through 3.24. For these drilled shafts and soil conditions, 

deflections can be estimated directly using the charts. For
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for Drilled Shafts (Ay/Ag = 1%) in Sand
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for Drilled Shafts (Ay/Ag = 2%) in Sand
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Figure 3.20 Load Versus Deflection and Load Versus Moment 
for Drilled Shafts (Ay/Ag = 8%) in Sand 
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Figure 3.21 Load Versus Deflection and Load Versus Moment 
for Drilled Shafts (Ay/Ag = 1%) in Clay
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Figure 3.22 Load Versus Deflection and Load Versus Moment 
for Drilled Shafts (Ay/Ag = 2%) in Clay
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example, a lateral load of 25 kips acting on an 18 in. 

Grilled shaft with 4% steel reinforcement, constructed in 

Clay with an undrained shear strength of 2 ksf, will result 

in a lateral deflection of about 0.1 in. and a moment of 

1300 kip-in (Fig. 3.23). 

For sands, charts were developed for friction angles of 

30°, 35° and 40°. The water table was assumed to be at or 

above the ground surface. For intermediate values of 

friction angle between those shown in the- charts, 

deflections may be estimated by interpolation. 

For clays, load-deflection curves were developed for 

undrained shear strengths of.1, 2 and 4 ksf. Deflections 

for intermediate values of undrained shear strengths can be 

estimated by interpolation. 

3.3 Groups of Piles and Drilled Shafts 

A simplified procedure for analyzing laterally loaded 

groups of piles and drilled shafts has been developed based 

on Focht and Koch’s (1973) procedure for group behavior, and 

Evans and Duncan (1982) procedure for the behavior of single 

piles and drilled shafts. The Evans and Duncan procedure is 

used to obtain single pile deflections and maximum bending 

moments instead of the p-y analysis because, unlike p-y 

analysis, the Evans and Duncan procedure is non-iterative,
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and lends itself well to a parametric study of a large 

number of pile sizes, pile stiffnesses, soil strengths and 

soil stiffnesses. No distinction need be made between 

groups of piles and groups of drilled shafts. 

3.3.1  Focht and Koch’s Procedure 

As mentioned in Section 2.2.2.2, Focht and Koch’s 

procedure assumes that group deflection consists of two 

components: a component due to non-linear soil behavior 

occurring close to the individual piles, and another due to 

pile-soil-pile interaction. The deflection component due to 

non-linear soil behavior can be predicted through the use of 

the Evans and Duncan procedure, while the deflection 

component due to pile-soil-pile interaction is estimated 

using Poulos’ (1971) elastic interaction coefficients. 

Focht and Koch (1973) modified Poulos’s (1971) elastic 

procedure for estimating pile group deflection (Equation 2- 

29). The procedure for predicting the lateral deflection of 

a pile within a group is as follows: 

Npile 
Pk = pF| = (P3apFKj) + RPx) (3-10) 

jak 

where pp = lateral deflection of pile k (L) 

pF = unit elastic displacement of a single pile under
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unit horizontal load (LF71) 

I )F/Es2 (3-11) 

influence factor (Fig. 2.14). IoF is a function 

of Kp defined in Equation 3-13 below. 

Young’s modulus of soil (FL™?) 

length of the pile (L). 

= number of piles in the group 

lateral load on pile j (F) 

= elastic interaction factor for determining the 

influence of pile j on pile k, based on the 

spacing between piles j and k and the angle @ 

angle between direction of loading and the line 

joining the centers of piles j and k 

lateral load on pile k (F) 

relative stiffness factor 

Ys/p (3-12) 

non-linear p-y deflection of a single pile at the 

mudline (calculated using the Evans and Duncan 

procedure) 

elastic deflection of a single pile at the 

mudline 

PFPs 

average lateral load per pile = Pg/Npile 

lateral load acting on the group
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In computing Ys and p, the lateral load on the single pile 

is computed as the total lateral load on the group divided 

by the number of piles or drilled shafts (Ps = Pg/Npile)- 

The interaction factor, aprRj, can be obtained from 

Fig. 2.15 for fixed-head piles. ap,rxj is a function of the 

spacing to diameter ratio (s/D), @ and Kp, where s = center- 

to-center pile spacing, D = pile width or diameter and Kp is 

the pile flexibility factor defined as follows: 

EyI 
p-p 

Kp = zi 
EoZ 

  (3-13) 

where Ep = Young’s modulus of pile (FL72) and In = moment of 

inertia of pile (L4). 

If the piles are connected by a cap, then the piles 

will all deflect equally. Equation 3-10 yields a set of 

Npile equations but there are a total of (Npile + 1) 

unknowns; Nnile unknown values of reaction in each pile, and 

one unknown value of group deflection, Yg = pl = p2 = cease = 

PNpile- The remaining equation needed in order to solve for 

the set of (Npnile + 1) unknowns is the requirement that the 

sum of the individual pile loads must equal the load on the 

group, Pg, i.e. 

Npile 
PS Pj = Pg (3-14) 
j=1
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Although Figs. 2.14 (for determining IpF) and 2.15 (for 

determining a,rxj) was developed for a Poisson’s ratio of 

0.5, they can be used for both cohesive and cohesionless 

sOlls because the sensitivity of the value of Poisson’s 

ratio to the solution for py is small. The solution for p, 

is, however, sensitive to the value of R, which is related 

to the elastic deflection of the single pile, p, through 

Equation 3-12. The value of p is very sensitive to the 

value of soil modulus, Eg (Reese et al., 1984). Therefore, 

a reliable estimate of the soil modulus is necessary; the 

procedure used to evaluate E, is given below. 

Estimation of Soil Modulus 

The estimation of pp and I,p, which is a function of 

Kp, requires an estimation of the value of the elastic soil 

modulus, Es. The modulus of real soils changes with stress 

level due to the non-linear behavior of the soil. However, 

the soil behavior can be approximated as linearly elastic at 

low stress (strain) levels. The value of E,s can be 

estimated as follows: 

1) For the group, select a pile or drilled shaft section of 

diameter, D, length, 2Z, Young’s modulus, Ep: moment of



143 

inertia, Ip, and number of piles or drilled shafts, Npile, 

and determine the design lateral load on the group, Pg. 

2) Calculate a reduced lateral load 0.1Ps = 0.1Pg/Npile and 

use non-linear elastic analysis to estimate the lateral 

deflection, Yg corresponding to a lateral load 0.1P.,. 

3) Calculate pp = Ys/0.1P.. 

4) Guess a value of Eg. 

5) Calculate Kp using Equation 3-13. 

6) Determine the value of I,p from Fig. 2.14. 

7) Calculate a new value of soil modulus, Es" = LoF/PF2, 

where pp is obtained from step 3. 

8) Compare Eg with Es’: If they are not similar, calculate 

the soil modulus as the average of Eg and Es’, and repeat 

steps (5) through (7) until they match. 

These procedures have been coded in a computer program 

to facilitate parametric studies of a large number of groups
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of deep foundations (See Appendix A for documentation of the 

computer program). 

3.3.2 Parametric Studies for Deflection of Groups of Piles 

and Drilled Shafts 

A group of piles will deflect more than a single pile 

subjected to the same lateral load per pile. This is due to 

interaction effects whereby deflection of each pile in a 

group causes deflection of the surrounding soil and thereby 

increases the deflections of neighboring piles. However, 

where a single row.of piles are constructed side by side and 

loading is normal to a line containing the pile heads, group 

action need not be considered unless the piles are closer 

than three pile diameters center-to-center. Group action 

must be considered when the lateral loads act in line with 

the single row of piles. It will be useful therefore, to 

establish a group deflection amplification factor (Cy), that 

when multiplied with the deflection of a single pile (Ys), 

yields the group deflection (Yg) i.e. 

Yg = Cy Yg (3-15) 

where Cy is a group deflection amplification factor (greater 

than 1) that accounts for pile-soil-pile interaction effects 

in groups of piles and drilled shafts.
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A computer program was developed to calculate single 

pile deflection using the Evans and Duncan procedure, and 

group deflection using the procedure of Focht and Koch. 

Parametric studies were performed only for the case where 

the piles and drilled shafts are connected by a cap that 

provides rotational restraint at the top. Groups of free- 

head piles or drilled shafts are less common, and the free- 

head condition was not analyzed. The following parameters 

were varied: 

1) diameter of pile or drilled shaft (D = 10 in. to 30 in.) 

2) stiffness of pile or drilled shaft (En = 1500 ksi [for 

timber] to 29 000 ksi [for steel)) 

3) type of soil (cohesive or cohesionless) 

4) shear strength of soil (¢’ = 30° to 40° for sands and Sy 

= 1ksf to 4 ksf for clays) 

5) number of piles or drilled shafts (Npiie = 2 to 25) 

6) spacing of piles or drilled shafts (s/D = 2 to 5) 

7) magnitude of lateral load (Ps = 5 kips/pile to 20 

kips/pile), and 

8) density of soil in the case of cohesionless material 

(buoyant unit weights only). 

The parametric studies yielded a large number of data 

from which a simple expression for Cy was developed. The 

expression is as follows:



where Npile 

s 

D 

Ps 

Qo 
A 

wD
 

wo 
YF 

PY 
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Cy = He (3-16) 

number of piles in group 

average spacing of piles 

diameter of pile 

average lateral load per pile 

Pg/Npile 

lateral load on the group of piles 

Kp7D? for sand (3-17) 

SD for clay (3-18) 

total unit weight of sand 

passive earth pressure coefficient 

tan*(45° + ¢’/2) 

average angle of internal friction of sand 

within the upper 8 pile diameters 

average undrained shear strength of clay 

within the upper 8 pile diameters 

16 for clay 

9 for sand 

5.5 for clay 

3 for sand 

3 for clay 

16 for sand 

This equation was developed for uniformly spaced piles 

and drilled shafts, but can be used for groups with non-
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uniform spacing if the average pile or shaft spacing is used 

in the calculations. A comparison of values of Yg/Y¥s 

calculated using the computer program with values of Yg/Ys 

computed using Equation 3-16 is shown in Fig. 3.25 for 

groups of 14 in. prestressed concrete piles, and Fig. 3.26 

for groups of 30 in. drilled shafts in sands. Figs. 3.27 

and 3.28 show similar results for groups of piles and shafts 

in clays. The vertical axes represent values from the the 

computer solutions while the horizontal axes represent the 

values predicted by Equation 3-16. The following 

observations can be made from these four figures: 

1) The scatter for group deflections is greater for groups 

of piles and shafts in cohesive material than in 

cohesionless material. The coefficient of variation for the 

group deflection in cohesionless material is 5.5% compared 

to 8% in cohesive soils. 

2) The simplified method of predicting group deflections 

tend to err on the safe side, i.e. the method overpredicts 

more often than it underpredicts. In cohesionless material, 

Equation 3-16 overpredicts the group deflection by at most, 

30% and underpredicts by 5%. In cohesive soils, the 

overprediction can be as high = as 35%, and the 

underprediction as low as 20%. 

If the lateral displacement of a group of piles (Yg) is 

greater than the tolerable value, the diameter of the piles,
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the number of piles, or the pile spacing should be increased 

until Yg is less than the tolerable value. Equation 3-16 

provides a convenient and simple means for performing this 

otherwise tedious task. 

3.3.3 Bending Moments in Groups of Piles and Drilled Shafts 

As discussed previously, the deflection of any pile in 

a group causes deflection of the surrounding soil and piles, 

thus leading to larger deflection for the group than for 

single piles subjected to the same load per pile. The 

bending moment ina pile within a group is also larger than 

that in a single pile subjected to the same loading. fThis 

is because the interaction effects, by causing more 

deflection, also increase the bending moment in the piles. 

Brown et al. (1987 and 1988) found that the maximum 

bending moment in a group of free-head piles occur in the 

leading row (or front row) of piles. However, current 

theories on lateral loading of groups of piles (including 

the Focht and Koch procedure) are not able to predict this 

behavior. Methods based on the theory of elasticity always 

predict that the largest loads are carried by the corner 

piles. 

A semi-empirical procedure that provides a reasonable 

approximation of the maximum bending moment in the leading



153 

row of a group of piles has been developed by modifying the 

theory described by Focht and Koch (1973). The increase in 

moment due to group interaction was studied for a large 

number of cases by first estimating the group deflection 

using the theory of Focht and Koch (1973), and then 

"softening" the soil (reducing S, for clays or ¢’ for sands) 

until the single pile deflection (calculated using the Evans 

and Duncan approach) matched the lateral deflection of the 

group (Duncan, 1988). The real problem, however, is more 

complex, requiring knowledge of the distribution of loads to 

the piles in relation to their location, spacing, soil and 

pile stiffnesses, and the nature of the loading (cyclic 

versus static). While the theories on which the method is 

based do not reflect the unique conditions in the front row 

of piles, it is believed that the method is an improvement 

over the current absence of guidance available for 

engineers. 

This routine is also incorporated in the computer 

program mentioned in Section 3.3.1 and Appendix A for groups 

of fixed-head piles and drilled shafts. Parametric studies 

were performed using this program, and the results are 

presented in the following section.
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3.3.4 Parametric Studies for Maximum Bending Moments in 

Groups of Piles and Drilled Shafts 

Through a similar parametric study as with group 

deflections, a moment amplification factor (Cy) that relates 

the maximum bending moment of the most severely loaded pile 

in the group to the maximum bending moment in a single pile 

can be written as follows: 

where Mg = maximum bending moment of the most severely 

loaded pile within a group, Cy = moment amplification factor 

that accounts for pile-soil-pile interaction effects in a 

group of piles, and Ms = maximum bending moment in a single 

fixed-head pile subjected to a lateral load, Ps = Pg/Npile- 

Ms can be calculated using the procedure of Evans and Duncan 

(Section 3.2.1.3) or the charts in Section 3.2.2. The 

parametric studies yielded the following expression for Cy: 

Cy = Cy” (3-20) 

group deflection amplification factor where Cy 

(Equation 3-16) 

Ps 
n = + 0.25 for clay | (3-21) 

150Py 
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Ps 
n= + 0.3 for sand (3-22) 

300Py 

  

Py is as defined previously in Equations 3-17 and 3-18. 

The maximum bending moment in a group of piles or 

drilled shafts can be estimated very quickly using this 

method. The use of Equations 3-19 and 3-20 enables the 

engineer to avoid the tedious process of softening the soil 

to match single pile deflections calculated using non-linear 

(Evans and Duncan) analysis, with the group deflection. A 

comparison of values of Mg/Ms calculated using the computer 

program with values of Mg/Mg computed using Equation 3-20 

are shown in Fig. 3.29 for groups of 14 in. prestressed 

concrete piles and Fig. 3.30 for groups of 30 in. drilled 

shafts in sands. Figs. 3.31 and 3.32 are similar graphs for 

groups of piles and drilled shafts in clays. The following 

observations can be made from these four figures: 

1). Regardless of whether the soil is cohesive or 

cohesionless, the scatter in the values of maximum bending 

moments is approximately the same (coefficient of variation 

is approximately 20% to 25%). 

2) The simplified method tends to overpredict maximum 

bending moments in groups of piles and drilled shafts more 

than it underpredicts. In cohesionless material, Equation 

3-20 overpredicts the maximum bending moment by at most, 11% 

and underpredicts by 3%, while in cohesive soils, the
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overprediction can be as high as 9% and the underprediction 

as low as 6%. 

3.4 Field Experiments 

Carefully performed and well~-instrumented full scale 

experiments provide the best means of verifying newly 

developed analytical procedures. Lateral load tests on pile 

groups have been performed and reported by Feagin (1937 & 

1953), Evans (1953), O’Halloran (1953), Gleser (1953), 

Beatty (1970), Kim and Brungraber (1976), Jamiolkowski 

(1976), Manoliu et al. (1977), Matlock et al. (1980), 

Holloway et al. (1981), Schmidt (1981), and Brown et al. 

(1987 & 1988). Among these tests, only a few were 

accompanied by high quality soil investigation programs, and 

were well instrumented to measure group deflections, lateral 

load distribution among piles within the group, and bending 

moments in the individual piles. 

The following full scale lateral load tests were used 

to compare the results from the simplified method and the 

experimental results: 

1) Kim and Brungraber (1976) 

2) Holloway et al. (1981) 

3) Brown et al. (1987) and 

4) Brown et al. (1988).
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Only Kim and Brungraber’s (1976) experiment was carried out 

on fixed-head pile groups. The load test performed by 

Holloway et al. (1981) was on a group of timber piles that 

were connected by a cap suspended 3 ft above the ground. 

Both experiments conducted by Brown et al. (1987 & 1988) 

were performed using a moment-free loading frame, through 

which the lateral load on the pile group was applied 1 ft 

above the groundline. 

1. Kim _ and Brungraber (1976) 

Kim and Brungraber (1976) performed three series of 

lateral load tests on pile groups at the Bucknell University 

campus farm. Their intent was to simulate loads occurring 

on bridge abutment foundations. Series B was conducted 9 

months after series A, and series C, 4 months after series 

B. Results from the tests of series B and C were well 

documented and the differences between the two were not 

significant. Kim and Brungraber reported that lateral 

deflections from series A differed from those for series B 

by as much as 100%. The discussion will include test 

results from only series B and C. 

Two of the pile groups, groups I and II, contained 

vertical piles spaced 4 ft and 3 ft apart center-to-center, 

respectively (Fig. 3.33). The third group (group IIT)
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contained piles driven at a batter. The piles were all 

embedded 12 in. into 4 ft thick reinforced concrete caps. 

The caps were all in contact with the ground. 

The pile section consisted of a 10BP42 steel-H pile (D 

= 9.7 in., Ep = 29 000 ksi, Ip = 224.2 in‘). Six piles were 

driven in each group in a 3 X 2 arrangement. The piles were 

driven to refusal on top of a limestone layer at a depth of 

approximately 40 ft. 

The portion of the ground that is of importance to 

lateral load is the top 8 pile widths (6.5 ft). The soil 

profile, SPT blow counts and results of unconfined 

compression tests are shown in Fig. 3.34. The SPT blow 

counts in the top 6.5 ft are all greater than or equal to 

30, indicating that the silty clay layer is hard (S, > 8 ksf 

[Terzaghi and Peck, 1967]). However, unconfined compression 

strengths average only 2000 psf implying that S, = 1000 psf. 

Because unconfined compression tests usually provide shear 

strengths that are too low, and because the SPT blow counts 

are so high, it was decided to use a value of S, of 2000 psf 

in the analysis. 

The deflection and maximum bending moments in a single 

fixed-head 10BP42 pile were estimated using the Evans and 

Duncan procedure. These values of deflection and moment 

were then amplified to those for the group using Equations 

3-16 and 3-20 respectively. A vertical single pile was
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tested by Kim and Brungraber but the moment at the pile head 

was zero, indicating a free-head condition. The different 

end conditions of the single pile and pile groups do not 

allow a direct comprison of the results. 

The experimental results and results from the analysis 

using the simplified procedure are shown in Tables 3.3 and 

3.4. The following observations can be made: 

1) The predicted and measured values of deflections and 

moments for the group with the smaller spacing (group ITI) 

agree reasonably well. 

2) The predicted and measured values of deflection and 

moment for the pile group with the larger spacing (group I) 

agree reasonably well when the lateral load was 16.67 

'kips/pile. However, the predicted values exceed the 

measured values by 100% for the load of 33.33 kips/pile. 

2. Holloway (1981) 

Holloway, Moriwaki, Finno and Green (1981) reported a 

lateral load test on a group of eight timber piles in sand 

at the site of Lock and Dam 26 on the Mississippi River near 

Alton, Illinois. The test set up is shown in Fig. 3.35. 

The pile group was constructed in a trench where 24 ft of 

overburden consisting of cohesive flood plain deposits were 

excavated. This exposed a 20 ft layer of recent alluvium



Table 3.3 

166 

Comparison of predicted versus measured values of 
lateral deflection of pile groups in the Bucknell 

  

  

                

  

  

  

University test (Kim and Brungraber, 1976). 

GROUP I (s/D = 5.0) 

Lateral Ys Ys Y Y 
Load/Pile Calculated Measured Calcufated Measured 

(kips) (in.) (in.) (in.) (in.) 
Series B Series C 

16.67 0.11 - 0.15 0.12 0.09 

33.33 0.40 - 0.45 0.21 0.15 

GROUP II (s/D = 3.7) 

Lateral Ys Ys Y Yg 
Load/Pile Calculated Measured Calculated Measured 
(kips) (in) (in.) (in.) (in.) 

Series B Series C 

16.67 0.11 - 0.16 0.23 0.28 

33.33 0.40 - 0.47 0.37 0.36               

  

 



  

Table 3.4 

167 

Comparison of predicted versus measured values of 
bending moments of piles in pile groups in the 
Bucknell University test (Kim and Brungraber, 
1976). 

  

  

              
  

  

  

  

GROUP I (s/D = 5.0) 

Lateral Ms Ms ng Mg 
Load/Pile Calculateq Measured Calculated Measured 
(kips) (kip-in) | (kip-in)}| (kip-in) (kip-in) 

Series B Series C 

16.67 560 - 620 479 457 

33.33 1350 - 1420 742 707 

GROUP II (s/D = 3.7) 

Lateral Ms Ms M Mg 
Load/Pila@ Calculated Measured Calculated Measured 
(kips) (kip-in) | (kip-in)}] (kip-in) (kip-in) 

Series B Series C 

16.67 560 - 631 936 497 

33.33 1350 - 1445 1470 672           
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(sand) that was the layer of greatest importance with regard 

to lateral loading. The piles penetrated through the recent 

alluvium and 15 ft into a layer of dense to very dense 

outwash, making a total embedment depth of 35 ft. 

The piles were 14 inch butt diameter timber piles (Ep = 

1500 ksi, Ip = 1886 in‘) instrumented with strain gages and 

telltales as shown in Fig. 3.36. The piles were jetted into 

place for the first 30 ft of penetration, and the final 5 ft 

of penetration was accomplished by driving. The piles were 

all installed vertically in a 2 X 4 arrangement at a spacing 

of 3 ft center-to-center, and embedded 2 ft into the cap. 

Removal of 24 ft of the flood plain deposit resulted in 

an overconsolidated condition in the underlying sand. The 

variation of the overconsolidation ratio with depth is shown 

in Fig. 3.37. Using the cone penetration test results of 

Fig. 3.38 (conducted before pile installation but after 

excavation by Woodward-Clyde Consultants, 1979) and Lunne 

and Christoffersen’s (1985) procedure of interpreting 

friction angles for overconsolidated sands, the angle of 

internal friction of the top 9 ft (eight pile diameters) of 

the recent alluvium was estimated to be 43°. 

Deflections and maximum bending moments in single 

fixed-head and free-head piles were analyzed using p-y 

analysis (with the aid of the computer program COM622), and 

also using the Evans and Duncan (1982) procedure. The
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results are shown in Table 3.5 for deflections and Table 3.6 

for maximum bending moments. There is very good agreement 

between the two methods of analysis, with the majority of 

the values calculated using the two procedures being within 

10% of each other. 

When the cap is 3 ft above ground, the behavior is 

different from that of a fixed-head pile or a free-head 

pile. This condition can be analyzed using the approximate 

procedure described in Section 3.2.1.5. To provide results 

for comparison, the computer program COM622 was used to 

analyze a laterally loaded single timber pile fixed 3 ft 

above ground, the results of which are shown in Fig. 3.39 

for deflection and Table 3.7 for maximum bending moment. 

Comparisons between this case with the fixed-head and free- 

head cases are also shown in Fig. 3.39 for deflections, and 

Table 3.7 for maximum bending moments. From Fig. 3.39, it 

can be seen that values of deflection calculated using the 

approximate procedure outlined in Section 3.2.1.5 and COM622 

agree very well. It can also be seen that the deflection of 

the pile fixed 3 ft above ground is intermediate between 

those of a fixed-head pile and a free-head pile. From Table 

3.7, the values of maximum bending moments occurring in the 

pile fixed above ground calculated using the approximate 

procedure are within about 10% of those calculated using 

COM622. It can also be seen that the moments in the pile
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Table 3.5 Comparison of single pile deflections predicted 
using p-y analysis with those using the Evans and 
Duncan procedure for the load test conditions in 
Lock and Dam 26, Alton, Illinois 

  

Lateral Load Yg obtained from Ys obtained from 

  

  

    

per pile p-y analysis Evans and Duncan 
Pg procedure 

(kips (in.) (in.) 
Fixed-Head | Free-Head Fixed-Head | Free-Head 

12 0.17 0.64 0.19 0.68 

24 0.48 2.37 0.53 2.04 

30 0.70 3.86 0.76 2.98            
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Table 3.6 Comparison of maximum moments in single piles 
predicted using p-y analysis with those using the 
Evans and Duncan procedure for the load test 
conditions in Lock and Dam 26, Alton, Illinois 

  

Lateral Load Ms obtained from Ms obtained from 

  

  

          

per pile p-y analysis Evans and Duncan 
Ps procedure 

(kips) (kip-in) (kip-in) 
Fixed-Head | Free-Head Fixed-Head | Free-Head 

12 399 425 427 463 

24 917 1120 1010 1140 

30 1215 1550 1350 1550   
  

 



176 

  

    
   

      

30 > 

28 - 
26 4 

24 - 
22 — 

~~ “7 
& 18 - 
9 16 ~ 

§ a (UM 

S$ 12 - 
5 

10 | FIXED-HEAD (COM622) 

8 + FREE-HEAD (COM622) 
8 

© CAP 3 ft ABOVE GROUND (COM622) 
4 

& CAP 3 ft ABOVE GROUND (APPROXIMATE PROCEDURE) 
2 

0 —r T T T T T 

0 1 2 3 4 

. Lateral Deflection (in.) 

Figure 3.39 Lateral Load-Deflection Response of a Single 
Timber Pile at the Site of Lock and Dam 26



  

177 

Table 3.7 Comparison of values of maximum bending moment 
calculated from p-y analyses of (1) a free~head 
pile, (2) a fixed-head pile and (3) a pile fixed to 
a cap 3 ft above ground 

  

COM622 Approximate 
Analyses Procedure 

  

Lateral | Moment in aj Moment in aj Moment in a Moment in a 
load per free~head fixed-head | pile fixed pile fixed 

  

  

pile pile pile to a cap 3 ft] to a cap 3 ft 
Ps above ground | above ground 

(kips) (kip-in) (kip-in) (kip-in) (kip-in) 

12 425 399 636 589 

24 1120 917 1420 1340 
  

30 1550 1220 1860 1750         
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fixed above ground are higher than those for the fixed-head 

pile or free-head pile loaded at the groundline. The 

maximum moment was found to occur at the top of the pile (3 

ft above ground). 

The simplified procedure for amplifying single pile 

deflections and moments to estimate deflections and moments 

for the group was applied to the results of both the COM622 

analysis and the approximate procedure. A comparison of the 

calculated and measured values of group deflection is shown 

in Fig. 3.40. The simplified procedure overpredicts the 

group deflections by about 100% at loads of 12 and 24 kips 

per pile. At P, = 30 kips/pile, the agreement is very good. 

The measured deflections increased very rapidly at loads in 

excess of 24 kips, indicating that the behavior of these 

piles at very high loads may be governed by the structural 

strength of the piles. This comparison indicates that the 

simplified method provides estimates of group deflection 

that tend to be conservative. 

The simplified procedure was also used to amplify 

values of single pile moments calculated using’ the 

approximate procedure and COM622 to estimate the group 

moments. A comparison of these values with the maximum 

moments measured in the leading row of piles is shown in 

Table 3.8. The estimated values of maximum moment exceed 

the measured values by about 30%. These results seem
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Table 3.8 Comparison of measured and predicted values of 
maximum bending moment in the pile group at Lock 
and Dam 26, Alton, Illinois 

Lateral Calculated Measured 
load 
per 
pile Mc Ms Mg/Ms M M Mg 

Ps from from from (He (te 
COM622! approx.| simplified from from 

proc. proc. COM622) | approx. 
proc.) 

kips kip-in) kip-in | kip-in kip-in kip-in kip-in 

12 636 589 1.47 935 866 700 

30 1860 1750 1.49 2770 2600 2200               
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reasonable considering the fact that the amplification 

factors were developed for fixed-head pile groups. 

Simplified methods of predicting pile group behavior should 

ideally yield results that are, if not accurate, then 

conservative. In this load test, this is the case. 

3. Brown et al. (1987) 

Brown, Reese and O’Neill (1987) conducted lateral load 

tests on a group of nine steel-pipe piles at the University 

of Houston campus. The site layout, the schematic drawing 

of the instrumented pipe, and the variation of shear 

strength with depth are shown in Fig. 3.41. Lateral load 

tests on a single instrumented pipe pile was also conducted 

so that a comparison between group response and single pile 

response could be made. 

The piles were steel pipes with 10.75 in. outer 

diameter and an inner diameter of 10 in. Inserted in these 

pipes were smaller steel pipes (outer diameter = 6.625 in., 

inner diameter = 6 in.) that housed strain gages. The void 

space between the pipes was grouted with concrete. The 

flexural stiffness (EpIp) of the pile was calculated using a 

transformed section that accounts for the presence of the 

inner pipe and concrete grout. If the Young’s modulus of 

the pile was taken to be that of steel (En = 29 000 ksi),
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then the value of moment of inertia of the pile that has the 

same flexural stiffness as the composite pipe was calculated 

to be 243 in*. The nine piles were driven close-ended in a 

3 X 3 arrangement, with a spacing of 3 diameters center-to- 

center. The piles penetrated to a depth of 43 ft. 

The portion of the ground that is of greatest 

importance to lateral load behavior is the top 8 pile 

diameters (7 ft). It consists of stiff, preconsolidated 

Beaumont clay with very closely spaced joints or fissures 

(spacing on the order of 0.25 in.). From Fig. 3.41, it may 

be seen that the average undrained shear strength for the 

top 7 ft is approximately 10 psi. 

The loads were applied 1 ft above ground, through a 

loading frame that provided moment-free connections to the 

piles. The deflections and bending moments that were 

measured during the tests for the single pile and pile group 

are shown in Figs. 3.42 and 3.43. 

In order to study the load tests of Brown et al. 

(1987), values of deflections and maximum bending moments in 

a single free-head pile were estimated using the nonlinear 

superposition procedure of Evans and Duncan (1982) to 

account for the 1 ft eccentricity of the load. These values 

of deflections and bending moments were then amplified to 

estimate values of deflection and moment for the group using 

Equations 3-16 and 3-20. Although Equations 3-16 and 3-20
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strictly apply only to groups of fixed-head piles, they can 

be applied with some approximation to free-head piles. A 

comparison of the calculated and measured values of 

deflection are shown in Table 3.9, and the moments are shown 

in Table 3.10. 

The calculated values of single pile deflections and 

maximum bending moments are in excellent agreement with the 

measured values. At loads of 5 and 10 kips per pile, the 

calculated values of group deflections and maximum moments 

in the most heavily loaded pile in the group are also in 

excellent agreement with the measured values. However, ata 

load of 15 kips per pile, the group deflection was 

underestimated by 36%, while the group moment’ was 

underestimated by 15%. Overall, the accuracy of the 

calculations is reasonable considering the fact that the 

free-head group was analyzed using the simplified method 

developed for fixed-head pile groups. 

4. Brown et al. 1988 

After performing the lateral load tests on the nine 

pile group in Beaumont clay at the University of Houston 

test site, Brown, Morrison and Reese (1987) conducted a 

Similar research program at the same site using the same 

nine pile group. The natural Beaumont clay was excavated
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Table 3.9 Comparison of predicted versus measured values of 
lateral deflection of pile groups in Beaumont clay 
at the University of Houston test site (Brown et 
al., 1987) 

Lateral Ys Ys Yg Yg 
Load/Pile Calculated | Measured Calculated Measured 
(kips) (in.) (in.) (in.) (in.) 

5 0.11 0.11 0.20 0.19 

10 0.34 0.32 0.52 0.53 

15 0.68 0.63 0.91 1.43 

20 1.14 1.13 1.36 -         
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Table 3.10 Comparison of predicted versus measured values of 
bending moments in piles in pile groups in 
Beaumont clay at the University of Houston test 
site (Brown et al., 1987) 

  

  

  

  

  

Lateral Ms Ms Mg 
Load/Pile Calculated | Measured Calculated Measured 
(kips) (kip-in) (kip-in) (kip-in) (kip-in) 

5 201 200 243 200 

10 449 430 525 510 

15 728 750 823 970 

20 1030 1100 1124 -             
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and sand backfill was compacted around the piles (Fig. 

3.44). The sand layer extends to a depth of approximately 

10 pile diameters. Therefore, the response of the pile 

group to lateral loading in these tests would be expected to 

be governed by the strength and stiffness of the sand. 

The sand was kept saturated during the test through the 

use of a perforated pipe system at the bottom of the 

excavation. The pipe system and penetration test results 

(SPT and CPT) on the sand are shown in Fig. 3.44. By 

applying Robertson and Campanella’s (1983) procedure for 

estimating friction angle of sands from CPT data, the 

compacted sand was estimated to have a friction angle of 

42°. The buoyant unit weight was calculated to be 61.6 pcf. 

Similar to the analysis on the pile group in Beaumont 

clay, the deflection and maximum bending moments in a single 

free-head pile were estimated using nonlinear superposition 

to account for the eccentricity of the load, and amplified 

to estimate the deflections and moments for the group. The 

deflections and bending moments that were measured during 

the tests for the single pile and pile group are shown in 

Figs. 3.45 and 3.46. °A comparison of the calculated and 

measured results are shown in Table 3.11 for deflections and 

Table 3.12 for bending moments. Based on these comparisons, 

the following observations can be made:



190 

  

  

  

  

  

  
  

        

  

                

  

~——a N 

Pile 
Original Ground Surface vow PVC Single E1.2.0 I~ ASU Riser Pile Elevation (site datum) 

Top of Sond ELO.O HY TA] . " p 
bad 

“On 

-2 it 

Bottom of Pipes 
an EL-9.0 -6 ft 

Botiom ol . — “8 tt 
Excavation £1.-9.5 i! in —_~ 40 

\\pertorated PVC Pipe 
6 
oi SECTION A-A 

Excavation and Pipe System for Saturating Sand 

SPT Count, BLows FY 

  

  

                

122030 90 50 90 70 90 90 100 TP RESSTANCE q, Kgiem?) 
ANGLE OF NTERMAL FRICTION, 6 OLONEES 

or op 8 43 oor oan 20 0 

Oe i 
2 coop Sao ot? : Er LoF Ila 8 

z+ MEDLAS FRE ee ast 
y Y ,jre swe mus sri? y eof = f 

ar a 

: LL STFF TO VERY STET ; ata 3 dy £ 
ED AO LEMT Gar » SL 

Pp CLAY BECOMES TAN p P 4.0 
EF sot MO SAGY SELOF 

: ‘ aaah WO OMELL, B 20-8 sor + 
re say g g 

ETE a ee | 3 
sor rh rob “ al BT i 
3 a0 

(a) (b) 

Ske Conditions and Reeults from Penetration Tests 

Figure 3.44 Site Layout and Soil Strength Profile for the 
University of Houston Test Site of a Laterally 
Loaded Pile Group in Compacted Sand (After 
Brown et al., 1988)



191 

  

  
  

30r 

wa 
a. Ss 

© 20} 
Qu. 

i 

© 
a 

3 
S 1OF 2 - 4A £ 0—-—0 Single Pile 

Y 6 O——O Leading Row, Group 
Z / &--—O Middle Row, Group 

O---O Back Row, Group 

0 ft ft { i 

0.5 1.0 1.5 2.0 

Deflection at Load Point, inches 

Figure 3.45 Lateral Load Deflection Response of Piles in 
Compacted Sand - University of Houston (After 
Brown et al., 1988)



192 

  

  
  

30F 

© 

a. = Cycle | 

@ 
a 20Fr a 

e So 
3 a 
o 

Ss (OF Ax Q Single Pile 

. © Leading Row, Group 
> @ Middle Row, Group 
< O Back Row, Group 

_f t fo 

0 500 1000 1500 
Maximum Bending Moment, Inch-kips 

Figure 3.46 Bending Moments in Piles in Compacted Sand 

- University of Houston (After Brown et al., 

1988)



193 

Table 3.11 Comparison of predicted versus measured values of 
lateral deflection of pile groups in compacted 
sand at the University of Houston test site (Brown 
et al., 1988) 

  

  

  

  

  

Lateral Ys Ys Yg Yg 
Load/Pile Calculated | Measured Calculated Measured 
(kips) (in.) (in.) (in.) (in.) 

5 0.16 0.15 0.50 0.23 

10 0.40 0.33 1.16 0.54 

15 0.73 0.58 1.95 1.00 

20 1.15 0.87 2.88 1.60           
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Table 3.12 Comparison of predicted versus measured values of 
bending moments in piles in pile groups in 
compacted sand at the University of Houston test 
site (Brown et al., 1988) 

  

  

  

  

  

Lateral Ms Ms Mg 
Load/Pile Calculated | Measured Calculated Measured 
(kips) (kip-in) (kip-in) (kip-in) (kip-in) 

5 221 200 325 200 

10 471 410 697 410 

15 742 740 1110 740 

20 1030 910 1560 910               
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1) The calculated values of group deflection are compared to 

the deflection of piles in the middle row since they best 

represent the deflection of the group for a given value of 

an average load per pile. As can be seen in Table 3.11, the 

calculated values of group deflection are about twice as 

large as the measured values. 

2) Since little difference is noted in the measured values 

of maximum moment in the single pile and in the group, and 

since the moment amplication factor Cy is always greater 

than 1, the simplified method overestimates the maximum 

moment in this pile group; the difference is about 60%. 

3) In this load test, the simplified method tends to be 

conservative when values of deflections and maximum moments 

from a single free-head pile are used to estimate group 

deflections and moments. One possible explanation may be as 

follows: the loads were applied in several increments, and 

at each load increment, the loads were cycled. This could 

possibly have led to densification of the sand, resulting in 

lower values of group deflections and moments when the loads 

were increased.



CHAPTER FOUR 

DEVELOPMENT OF PERFORMANCE FACTORS FOR LOAD FACTOR DESIGN OF 

DEEP FOUNDATIONS 

In the United States, load factor design (LFD) concepts 

are used in the ACI design code (1989), in the AASHTO 

specifications for both concrete and steel bridge 

superstructures (AASHTO, 1989), and in the AISC (1986) 

specifications for the design of steel buildings. However, 

there are no provisions for foundation design using LFD 

procedures. Foundations are usually designed using working 

stress design. Hence engineers who use LFD for structural 

design must develop two sets of loads - one set of loads for 

the design of the superstructure, and another set of loads 

for the design of foundations. Development of load factor 

design for foundations will make this duplication of effort 

unnecessary. Other advantages of developing LFD for 

foundations include: (1) consistent safety margins are 

attained in both structure and foundation, and (2), LFD 

results in more economical use of materials. 

In load factor design, safety against failure for a 

given limit state requires that the factored ultimate 

resistance exceeds the factored loads. There are at least 

two ways in which the factored resistance can be specified: 

196
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1) In the first format, an overall performance factor is 

applied to the reistance side of the equation for each 

applicable limit state. With this approach, the factored 

resistance for a given limit state is given by ¢Rn, where 

¢ = performance factor, with a value less than unity and 

Rn = nominal resistance. This is the format followed by 

ACI for concrete design, and AISC for LRFD of steel 

structures. The advantages of this approach are its 

simplicity and its familiarity to many designers. 

2) The second approach employs partial resistance 

factors which are applied directly to the individual 

variables in the resistance equation. In this approach, 

partial factors are applied to the individual soil 

strength properties such as cohesion and angle of 

internal friction. These partial resistance factors are 

typically specified only once in the design code, and the 

same factors are used for all ultimate limit states. 

The second approach is more sophisticated, since the 

partial factors are related directly to the parameters that 

are the sources of variability in strength. This format was 

adopted by the Danish Foundation Code (1985) and the Ontario 

Highway Bridge Design Code (1983). However, in the Ontario 

Highway Bridge Design Code, different partial factors were 

used for the same soil parameters for different limit
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states. A disadvantage of the partial factor approach is 

that it is not consistent with resistance factors on 

structural elements which consider overall measures of 

performance, such as bending strength. The second approach 

was considered by ACI but was not acceptable to many 

engineers, and was rejected by the ACI membership. The 

"overall performance factor" format is the preferred 

approach to LFD of deep foundations, and will be the format 

adopted. 

In the sections that follow, the determination of 

performance factors for axial capacities of driven piles and 

drilled shafts for the AASHTO code (for bridges) and the 

ASCE Standard 7-88 (for buildings and other structures) is 

described. A procedure for extending the results of this 

calibration exercise to any other design code will also be 

presented. 

4.1 Single Piles 

4.1.1 Introduction 

In this section, results of the code calibration are 

presented for several methods of predicting pile capacity 

described in Chapter 2. The methods considered include both 

rational methods and empirical methods based on in situ 

tests. Resistance statistics for driven piles and the
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results oof the reliability analyses are presented. 

Performance factors obtained by reliability based 

calibration are summarized and the rationale for the 

selection of the performance factors is discussed. 

4.1.2 Resistance Statistics 

The calculated ultimate bearing capacity, Qyit, of a 

deep foundation in reality can differ from the measured or 

actual bearing capacity, Qn. To account for the discrepancy 

between Qyit and Qn, correction factors that represent the 

different sources of uncertainties are introduced as 

follows: 

Qn = Ni Quit (4-1) 
1 l

a
s
 

i 

where Nj is the correction factor for the error source i and 

n is the number of sources of error. 

The uncertainty associated with a correction factor 

Nj, may be represented by the mean value, Nj and the c.o.v., 

Vi- The mean value of Ny is a measure of the bias caused by 

the error source i, on the ultimate bearing capacity. The 

c.oO.v., Vy, is a measure of the scatter of the correction 

factor, which in turn affects the variability of the 

ultimate bearing capacity. Assuming that the correction
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tors are statistically independent, first order analysis 

the uncertainties affecting the ultimate bearing capacity 

ld the mean and c.o0.v. of Qy as follows: 

Qn = T Ny Quit (4-2) 
1 a

s
 

1 

Vo, = /2 v;2 (4-3) 

The following sources of error are considered in the 

lability analysis: 

(1) model error where there may be an overall bias in the 

prediction method. 

(2) time and reconsolidation in the case of clays. 

Because of the time dependent properties of clay, the 

capacity will change with time. Pile load tests are 

generally performed shortly after installation, but the 

maximum load on the structure may occur years after 

installation. Therefore, in clays which consolidate and 

gain strength after pile installation, load tests may 

underestimate the pile capacity. 

(3) inherent spatial variability. Soil properties are 

known to be correlated between any two points. The 

uncertainty associated with a soil property at a point is
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larger than if it were measured over a certain distance 

or volume because of the averaging effect. 

(4) systematic error in the soil strength which accounts 

for the bias and repeatability of the tests used for 

measuring soil parameters. This may be due to equipment, 

procedural and rate of testing effects. 

Other possible sources of error include the following 

(Tang, 1989): 

(1) Statistical uncertainty due to insufficient soil samples 

at the site - The uncertainty in the predicted value of a 

soil parameter is inversely proportional to the square root 

of the number of samples tested, i.e. the c.o.v. due to 

statistical uncertainty is equal to Vc//Nsamples, where Vo 

is the c.o.v. of the measured strength and Nsamples is the 

number of samples’ tested. The reliability analysis 

performed for deep foundations is not site specific, and 

this quantity is assumed to be negligible. The bias factor 

due to statistical uncertainty is assumed to be unity. 

(2) Error in determining the value of the ultimate load - 

Equipment used in load testing piles could take some of the 

load applied to the piles via friction in the jack (Tang, 

1989). Also, even if a certain failure criteria (eg. 

Davisson’s, 1973) was used to define the ultimate load in 

piles, different engineers using the same method could give
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different estimates of pile capacity. Such sources of error 

are not easily quantified. 

The resistance statistics for three rational (a, $, and 

» methods) and two in situ methods (SPT and CPT methods) are 

presented below. 

a) Rational Methods For Driven Piles 

Sidi (1986) analyzed numerous pile load tests in 

cohesive soils and compared them to the predicted capacities 

using rational methods. Three of the rational methods he 

considered include the a, fs and iA methods. The a method 

(Tomlinson, 1987), which is a total stress method, and the \ 

method (Vijayvergiya and Focht, 1973), which is a mixed 

method, both require the knowledge of the undrained shear 

strength of the clay. The s method (Esrig and Kirby, 1979), 

which is an effective stress method, requires an estimation 

of the stress history of the clay. 

Sidi separated the resistance statistics for the a and 

» methods into two distinct groups: the first group called 

Type I clay is for clays with undrained shear strengths, Sy, 

less than 1000 psf, while the second group (Type II) is for 

clays with S, greater than 1000 psf. 

Sidi (1986) accounted for the effect of inherent 

spatial variability of soil parameters through the use of
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random field theory. Using a variance function (Vanmarcke, 

1983), the c.o.v. of a soil property at a point can be 

reduced to the c.o.v. of the soil property over a spatial 

length. With an appropriate variance function, he found 

that the coefficient of variation for inherent spatial 

variability for the a and A methods is equal to 1//Z, where 

Z is the pile length in ft. The bias factor for inherent 

spatial variability can be taken as unity. The uncertainty 

in the unit weight (used for calculating the effective 

overburden pressure in the ’A method) is disregarded because 

it is small compared to the uncertainty in the shear 

strength. The bias factor for inherent spatial variability 

of OCR used in the g method is assumed to be unity while the 

c.o.v is small and therefore, assigned a value of 0.05. 

Statistics (bias factors and c.o.v.’s) for the various 

sources of error considered by Sidi are summarized in Table 

4.1. 

b) In Situ Methods For Driven Piles 

In situ tests are useful for estimating shear strengths 

especially of sandy soils. The uncertainties associated 

with the SPT and CPT tests are discussed below.
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Table 4.1 Sumary of statistics for axial capacity of 

  

  

  

  

  

  

friction piles (After Sidi, 1986) 

Correction Type I Clay Type II Clay Effective 
Stress 

Analysis 
Mean COV Bias COV Bias COV. 

Model Error 

a method 1.104 0.208 2.34 0.568 - - 

A’ method 1.02 0.414 0.84 0.174 - - 

B method - - - ~ 1.032 0.213 

Time and 1.113 0.04 1.0 0.0 - - 
Reconsolidation 

Inherent 1 1 
Spatial 1.0 — 1.0 — 1.0 0.051 
Variability JZ JZ 

Systematic 
Error 

UU Triaxial 

Su 
— 0.945 0.179 1.02 0.098 - - 

oy’ 

Su 
— 0.945 0.179 1.03 0.136 ~ - 

Oy’ 

Su 
— 0.945 0.179 1.03 0.153 - - 

Oy’ 

Consolidation 
Test 

OCR 1.0 0.15?       
  

1 Estimated value 
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The standard penetration test is the most common in 

situ test for soils. However, many variations of the test 

equipment give rise to different energy levels imparted into 

the soil. Such factors include the type of hammer (which 

affects the amount of energy delivered to the system), 

length of drill rods, diameter of borehole, nature of 

drilling fluid, type of drill bit, type of sampling spoon, 

rate of blow count and type of drill rods (Seed and DeAlba, 

1986). Most of these effects may be minimized by 

standardizing the test. Nevertheless, variability in the 

equipment and procedure cannot be eliminated. Orchant et 

al. (1988) found that systematic error due to equipment, 

procedure and random effects cause a certain degree of 

variation. They proposed the c.o.v. values shown in Table 

4.2 for these effects. It is assumed that the bias factors 

approach unity due to an averaging effect. 

Other sources of error considered are also shown in 

Table 4.2. Meyerhof (1976) suggests that correcting the 

SPT-N value against a standard overburden pressure of 1 tsf 

when estimating the end bearing would lead to improved 

results of pile capacity prediction in sands. Studies have 

shown that 5 models for overburden correction of SPT-N 

values [Bazaraa (1967), Peck et al. (1974), Seed (1979), 

Skempton (1986) and Liao and Whitman (1986)] give very
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Table 4.2 Summary of statistics for axial capacity of piles 
using in situ test results 

  

  

  

  

    

    

Correction SPT Mechanical Cone Electric Cone 
Mean COV Mean COV Mean COV 

Model Error 1.3 0.5 1.03 0.357 1.03 0.357 

Equipment, 
Procedure 1.0 0.15-0.45 1.0 0.15-0.25 1.0 0.05-0.15 

and Random 

Inherent 1.42 0.903 0.903 

Spatial 1.0 — 1.0 1.0 — 
Variability /Z JZ JZ 

Overburden 1.0 0.07 - - - ~- 

Correction          
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similar results. Meyerhof’s SPT method for predicting pile 

capacity in sands was estimated to have a bias of 1.3 and a 

c.o.v. Of 0.5. 

Vanmarcke showed that the c.o.v. of a soil property is 

reduced when the property is averaged over a length or 

volume. The amount of reduction depends on the variance 

function, [(Az), which is defined as the ratio of the c.o.v. 

of a random variable averaged over a length Az [(Vj)az], to 

the point c.o.v. of that random variable [Vj]: 

(Vilaz 
r(az) = ———— (4-4) 

Vi 

Vanmarcke (1977) defined the scale of fluctuation, $#., as 

"the distance within which the soil property shows 

relatively strong correlation or persistence from point to 

point." He further showed that the variance function is 

related to the scale.of fluctuation as follows: 

96) 1/2 
r(az) = |— (4-5) 

Az 

Equating the expressions for [(Az) given by Equations 4-4 

and 4-5, the c.o.v. of a soil property over a depth Az can 

be written as: 

§<)2/2 

(Vidaz = |— Vi (4-6) 
Az
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where §, is the scale of fluctuation of the soil property 

and Vj is the c.o.v. of the soil property at a point. 

Table 4.3 shows the scale of fluctuation and the point 

c.o.v. for the SPT blow count. 

Orchant et al. (1988) surveyed CPT data for both 

mechanical and electric cones. The equipment, procedural 

and random effects give rise to uncertainty in the cone 

resistance indicated by the values of c.o.v. in Table 4.2. 

It is however, not customary to correct CPT data for 

overburden pressure. Using the load test data of Robertson 

and Campanella (1988) and Horvitz et al. (1981), the model 

error and c.o.v. for Schmertmann’s CPT method for predicting 

pile capacities are shown in Table 4.2. The bias factor and 

c.o.v. for inherent spatial variability in the sleeve 

friction resistance and cone resistance from the CPT are 

also shown in Table 4.2. They were calculated using the 

values of scale of fluctuation and point c.o.v. given in 

Table 4.3. 

4.1.3 Load Statistics 

Load statistics for buildings and bridges are 

summarized in Table 4.4.



  

Table 4.3 

209 

variation for in situ soil parameters 
Scale of fluctuation and point coefficients of 

  

SCALE OF FLUCTUATION C.0-V-enoint 

  

  

SPT 8 ft 0.42 

(After Vanmarcke, 1977)| (After Briaud & Tucker, 1984) 

CPT 2m (6.56 ft) 0.35-0.71 
(After Baecher et al., (After O’Neill, 1986) 
1983) 

0.33 

(After Grigoriu et al., 1987)     Value used = 0.37   _| 
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Table 4.4 Statistics for dead and live loads 

Bridges 

Span = 60 ft Span = 250 ft 
(Sp/S; = 1.0) (Sp/S; = 3-7) 
sepes Cov gepeen = 32) 

Dead Load 1.05 0.09 1.05 0.09 

Live Load 1.22 0.11 1.05 0.11 

Buildings 

Influence Area, Ay (ft?) 

1000 2000 5000 10000 
Bias | COV Bias | COV Bias | COV Bias COV 

Dead Load / 1.05 |/0.10/1.05!0.10/1.05 | 0.10 /|1.05 0.10 

Live Load | 1.08 | 0.25 /!1.09/] 0.25 /|1.11{[0.25/1.13 0.25                     
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Bridges 

Grouni and Nowak (1984) attributed the dead load acting 

on bridges to the weight of factory-made members and the 

structural components produced in the field, which include 

the weight of concrete and the weight of the wearing 

surface. Dead load acting on bridges can be assumed to be 

normally distributed. Grouni and Nowak found that the bias 

factor for dead load is approximately 1.05 for Canadian 

bridges. Because the dead load can usually be calculated 

quite accurately, the same value of bias factor will be 

applicable to bridges in the U.S. Moses and Ghosn (1985) 

found that the c.o.v. for dead load on bridges is 

approximately 9%. 

The bias factor for the maximum live load (truck 

loading) acting on bridges vary with span length. The 

values of the bias factor for live load on bridges with span 

lengths ranging from 60 ft (Sp/S;, = 1.0) to 250 ft (Sp/Sy = 

3.7) are shown in Table 4.4. According to Grouni and Nowak 

(1984), the c.o.v. for live load is approximately 11%. 

Buildings 

Dead load in buildings may be attributed to the weight 

of the structural elements, permanent equipment, partitions 

and installations, roofing, floor coverings, etc. 

(Ellingwood et al., 1982). As with bridges, the probability
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distribution for dead load can be assumed to be normal. 

Ellingwood et al. (1982) proposed that values of the bias 

factor and c.o.v. for dead load can be taken as 1.05 and 0.1 

respectively. 

Models for predicting the nominal value of the lifetime 

maximum total live load for buildings have been published by 

several authors (see reference by Ellingwood et al., 1982). 

For office buildings, the nominal value of maximum total 

live load (S;,) is given by the ASCE Standard 7-88 (1990) as 

follows: 

St, (lb/ft?) = 50(0.25 + 15//Aq) (4-7) 

where Ay is the influence area. The mean value of 

maximum live load (Sz) can be calculated using the following 

model for live load (Ellingwood et al., 1982): 

Sr, (1b/ft?)= 14.9 + 763//Ayz (4-8) 

The bias factor for live load (iz) is obtained by dividing 

Equation 4-8 by Equation 4-7 as follows: 

14.9 + 763//Arz 
Ar, = Sz/Sz, = (4-9) 

50(0.25 + 15//Arz) 
  

It can be seen from Equation 4-9 that the bias factor for 

live load varies with the influence area. According to 

Ellingwood et al. (1982), the variation of c.o.v. with the
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influence area is small, and they suggested that ac.o.v. of 

0.25 for maximum live load is sufficiently accurate. 

Comparison of the load statistics and resistance 

statistics show that the values of c.o.v. for resistance are 

much larger than those for loads. Also, the magnitude of 

the resistance should be larger than the magnitude of the 

loads by a factor equal to the factor of safety. Therefore, 

the uncertainty in the resistance will constitute a larger 

percentage of the total uncertainty, implying that the 

calibration results will not be highly sensitive to the load 

statistics. 

4.1.4 Results of Calibration 

4.1.4.1 Reliability Indices 

Reliability indices for the five methods selected for 

calibration are shown in Figs. 4.1 and 4.2. Those in Fig. 

4.1 were calculated using the lognormal method, and those in 

Fig. 4.2 were calculated using the advanced procedure. 

Values of reliability indices were calculated for two dead 

to live load ratios (Sp/S; = 1 and 3.7). It was found that 

the reliability indices for bridges and buildings are 

Similar, because the uncertainty in the resistance 

constitutes a larger percentage of the total uncertainty,
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Lognormally Distributed Load and Resistance
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and the values of reliability indices are thus relatively 

insensitive to the load statistics. 

Based on the results of the reliability analysis, the 

following observations can be made: 

1) The values of reliability index increase with 

increasing span length for bridges. This is due to the 

fact that the ratio of dead to live load increases with 

span length. Since the uncertainty in the dead load is 

lower than the uncertainty in the live load, this has the 

effect of reducing the total uncertainty in the load, 

thus resulting in higher values of reliability index. 

2) The reliability indices for driven piles vary between 

1.6 and 3.1 using the lognormal method while the advanced 

method yielded values between 1.6 and 3.3. 

The a, £ and A methods for predicting pile capacities 

in clay and the CPT method for predicting pile capacities in 

sand all employ a factor of safety of 2.5. The factor of 

safety associated with the SPT method is typically 4. 

4.1.4.2 Target Reliability Indices 

Meyerhof (1970) suggested that the probability of 

failure of foundations should be between 1072 and 1074, 

which corresponds to values of reliability indices between 3 

and 3.6 (Table 2.9).



217 

Reliability indices for offshore piles reported by Wu 

et al. (1989) are between 2 and 3. They calculated that the 

reliability index for pile systems is approximately 4.0, 

corresponding to a lifetime probability of failure of 

0.00005. Tang et al. (1990) reported that offshore piles 

have reliability indices ranging from 1.4 to 3.0. 

Reliability indices for driven piles are summarized in 

Table 4.5. Values of reliability indices between 1.6 and 

3.1 were obtained for the lognormal procedure, and the 

values are relatively insensitive to the ratio of dead to 

live load. Thus a target reliability index between 2.5 to 

3.0 may be appropriate. However, piles are usually used in 

groups. Failure of one pile does not necessarily imply that 

the pile group will fail. Because of this redundancy in 

pile groups, it is felt that the target reliability index 

for driven piles can be reduced from 2.5 to 3.0 to a value 

between 2.0 and 2.5. 

4.1.4.3 Performance Factors 

Performance factors obtained by fitting with the 

existing working stress design specifications are shown in 

Table 2.8 for dead to live load ratios ranging from 1 to 4. 

As mentioned earlier, the safety factor for the three 

rational methods and the CPT method is usually taken as 2.5,
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Table 4.5 Summary of reliability indices for driven piles 

  

Ratio of Dead Lognormal Advanced 
to Live Load 
  

1.0 1.6-2.8 1.6-3.0 

3.7 1.7-3.1 1.8-3.3          
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while the safety factor for the SPT method is usually about 

4. Calibration by fitting with working stress design at low 

dead to live load ratios yields performance factors that are 

unconservative. Since live load factors are usually greater 

than dead load factors, low values of dead to live load 

ratios result in lower total factored loads for the same 

working load. 

Bridges 

Performance factors obtained from the reliability based 

calibration procedure are shown in the top half of Table 

4.6. The values shown are based on target reliability 

indices of 2.0 and 2.5 and a dead to live load ratio of 3.7, 

which corresponds to a bridge span length of 250 ft. The 

values of performance factor varies from 0.38 to 0.96 

depending on the method used for predicting pile capacity, 

the type of soil, the length of the pile and the target 

reliability index. Results of the calibration indicate that 

performance factors are not sensitive to pile length. Also, 

the performance factors are relatively insensitive to the 

ratio of dead load to live load. This is due to the fact 

that uncertainties in soil parameters and uncertainties in 

the prediction equation are considerably higher than the 

uncertanties associated with the loads.
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Table 4.6 Performance factors for driven piles 

  

  

  

                
  

  

  

  

  

Bridges 

Pile a-method p-method \-method CPT 
Length Type I Type II Type I Type II 

pr = 2.0 

30 ft 0.78 0.92 0.79 0.53 0.65 0.59 

100 ft 0.84 0.96 0.79 0.55 0.71 0.62 

pp = 2.5 

30 ft 0.65 0.69 0.68 0.41 0.56 0.48 

100 ft 0.71 0.73 0.68 0.44 0.62 0.51 

Selected 0.70 0.50 0.55 0.5 

Buildings 

Pile a-method p-method A4~method CPT 
Length | Type I Type II Type I Type II 

pp = 2.0 

30 ft 0.74 0.92 0.73 0.52 0.60 0.57 

100 ft 0.79 0.95 0.73 0.54 0.65 0.60 

Ap = 2.5 

30 ft 0.60 0.67 0.61 0.39 0.50 0.45 

100 ft 0.65 0.70 0.61 0.42 0.55 0.48 

Selected 0.65 0.45 0.50 0.50               
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Recommended values of performance factors for each of 

the method are also summarized in the last row of Table 4.6. 

Studies have shown that among the 3 rational methods for 

predicting pile capacities in clays, the following is judged 

to be the order of reliability of the methods in descending 

order: (1) a method, (2) .r method (3) £6 method. The 

recommended values in Table 4.6 reflect this’ trend. 

Calibration results indicate that the performance factor for 

the g method is high (0.68 to 0.79). However, the gs method 

when applied by different engineers, can give widely 

divergent estimates of pile capacity and therefore a lower 

value of ¢ (0.5) is assigned to the method. The recommended 

performance factor for the CPT method is 0.55 while for the 

SPT method, a value of 0.45 is recommended. The CPT method 

is more reliable than the SPT method because of the 

continuous nature of measurements afforded in a CPT test, 

even though the factor of safety associated with the SPT is 

higher. Thus a higher value of performance factor is 

recommended for the CPT method than the SPT method. 

Buildings 

Performance factors obtained from the reliability based 

calibration procedure are shown in the bottom half of Table 

4.6. The values shown in the table are based on target 

reliability indices of between 2.0 and 2.5 and a dead to
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live load ratio of 2.0. The value of dead to live load 

ratio of 2.0 was chosen to reflect more closely the ratios 

of dead to live load in buildings It can be seen that 

values of performance factors are lower than those for 

bridges, ranging from 0.37 to 0.95. These values are lower 

primarily because the load factors for buildings are less 

than those for bridges, and thus lower ¢ factors are needed 

to achieve the same level of reliability. 

Performance factors derived from the reliability based 

calibration for buildings are plotted against the 

performance factors for bridges in Fig. 4.3. The figure 

shows that an approximately linear relationship exists 

between performance factors for buildings and those for 

bridges. This approximate relationship can be established 

as follows: the load factor design criteria for two 

different codes, Code A and Code B, are given by the 

following equations: 

YDASDA/SLA + YLA 

FS(Spa/Sra + 1) 
(4-10) IV

 

  For Code A: aRn 

YDBSDB/SLB + YLB 

FS(Spp/Srp + 21) 

  For Code B: BRn (4-11) IV
 

Dividing Equation 4-10 by 4-11 gives the ratio $¢,/¢p as 

follows:
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¢A ‘YDASpDA/SLA + YLA SpB/SLB + 1 (4-12) 

¢B ‘YDB°DB/SLB + YLB Spa/Sra + 1 

  

If Code A refers to AASHTO and Code B refers to the building 

code (ASCE Standard 7-88, 1990), then Equation 4-12 becomes: 

on 1.3Spa/Szpa + 2-17 Spp/SzrBp + 1 
— = (4-13) 
$B 1.2Spp/Szrp + 1-6 Spa/Sra + 1 

  

If Spa/Sra = 3.7 and Spp/Szpp = 2-0, Equation 4-13 yields ¢p 

= 0.9¢,. Using linear regression, the equation of the 

straight line in Fig. 4.3 is $¢puilding Code = 9-95¢aAsSHTO- 

The above exercise demonstrates that once the 

calibration procedure has been carried out for one code, it 

is easy to use the results and extend it to any other code 

provided that the statistics for the loads are not 

significantly different. 

4.1.4.4 Other Performance Factors 

Performance factors for driven piles including those 

that have not been calibrated using reliability theory are 

summarized in this section for the AASHTO code. The 

corresponding performance factors for the building code are 

between 0.9 and 0.95 times the values of performance factors 

for bridges.
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Table 4.7 summarizes the performance factors for driven 

piles including those for ultimate limit states that were 

not calibrated using reliability theory. The bases for the 

selection of the performance factors that were derived from 

the reliability-based calibration procedure are presented 

below. 

End Bearing of Piles in Clay. The factor of safety for the 

end bearing capacity of piles in clay typically varies 

between 2 and 3. Skempton’s (1951) equation for end bearing 

has been tried and tested and found to work well in 

practice. Moreover, the end bearing of piles in saturated 

clay is usually only a small percentage of the total pile 

capacity. Thus it would be appropriate to use the smaller 

factor of safety of 2 when determining the performance 

factor by fitting with working stress design. The 

corresponding value of ¢ using Equation 2-41, Sp/Sy, = 3.7, 

Yp = 1.3, and yy, = 2.17, is approximately 0.7. 

End Bearing of Piles in Sand. This method refers to the 

effective stress method of estimating end bearing capacity 

of piles in sand (Kulhawy et al., 1983) that requires an 

estimation of the friction angle (usually from in situ 

tests). The performance factors for the CPT and SPT methods 

are 0.55 and 0.45 respectively. Additional uncertainties
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Table 4.7 Summary of Performance Factors for Driven Piles 
Under Axial Load 

  

' 

  

  

  

    
  

  
  

  

  

METHOD/SOIL/CONDITION [PERFORMANCE FACTOR 

ULTIMATE SKIN a-method | dqs = 0.70 
' { 
) : 

BEARING FRICTION B-method ?qs = 0.50 

CAPACITY A~method | ?qs = 0.55 

i 7] 
OF | Clay | ¢gp = 0.70 

(Skempton, 1951) 
SINGLE , END Sand | 

| (Kulhawy, 1983) | 
PILES | BEARING @ from CPT | ¢gp = 0.45 

| @ from SPT | ¢qp = 0.35 

\ 

| Rock ' dqgp = 0-50 
| (Canadian Geotech. | 
' Society, 1985) oy 
SKIN FRICTION |SPT-method a bq = 0.45 | 

AND CPT-method oq = 0.55 

END BEARING Load Test | ¢q = 0.80 

Pile Driving : oq = 0.70 
Analyzer | 

BLOCK | | 
| Clay : dg = 0.65 

FAILURE | | | 

UPLIFT a-method : dy = 0.60 

CAPACITY, B-method | dy = 0.40 
{ 

OF \-method ! gy = 0.45 | 

SINGLE SPT-method dy = 0.35 

PILES CPT-method dy = 0.45 

Load Test dy = 0.80 

UPLIFT | 

CAPACITY Cla od = 0.55 Y | ug |          
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are involved when estimating the friction angle from cone 

resistance and SPT blow counts. Therefore, the performance 

factors must be reduced as follows: if the friction angle is 

estimated from CPT data, then ¢ = 0.45, and if the friction 

angle is estimated from SPT data, then ¢ = 0.35, i.e. the 

performance factor is equal to that for the in situ method 

of predicting pile capacity, less 0.1. 

End Bearing of Piles in Rock. (See Equations 2-25 and 2- 

26). The Canadian Geotechnical Society (1985) recommends a 

factor of safety of 3 for their method. The corresponding 

performance factor calculated using Equation 2-41, Sp/Sy, = 

3.7, yp = 1.3, and yz, = 2.17, is approximately 0.5. 

Capacity of Piles from Load Test. Pile load tests provide 

one of the most reliable estimates of pile capacity. A high 

value of performance factor is thus warranted. The value 

selected is 0.8 which corresponds to a factor of safety of 

approximately 1.9. 

Pile Driving Analyzer. Careful monitoring of pile 

installation with the pile driving analyzer allows the use 

of a higher value of performance factor than those for the 

static methods, but a lower value than that for the load 

test. Thus, a performance factor of 0.7 is recommended if
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the pile driving analyzer is used by competent personnel to 

monitor the pile driving. 

Block Failure of Pile Groups in Clay. If the pile spacing 

is small enough, pile groups can fail as a unit consisting 

of the piles and the block of soil contained within the 

piles. Piles are usually spaced at 2.5 to 4 pile diameters 

apart (center-to-center). Block failure is seldom critical 

at large spacings, and a performance factor of 0.65 

corresponding to a factor of safety of 2.3 appears to be 

appropriate. 

Uplift Capacity of Piles and Pile Groups. Performance 

factors for uplift capacity of piles and pile groups should 

be lower than those for axial compression because (a) the 

diameter and thus, the area of the pile shaft decreases in 

tension due to the Poisson effect, thereby making uplift 

capacity smaller than compressive load capacity, and (b) 

piles in tension unload the soil, which reduces’ the 

overburden effective stress and hence the uplift skin 

friction resistance of the pile. Therefore, performance 

factors for uplift capacity are lower than those for axial 

compression by 0.1.
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4.2 Single Drilled Shafts 

4.2.1 Introduction 

In this section, the results of the code calibration 

for drilled shafts is discussed. The load statistics are 

described in Section 4.1.3. Statistics for the capacity of 

drilled shafts are presented, and the results of the 

reliability analysis are summarized. Finally, the selection 

of target reliability indices and performance factors is 

discussed for both bridges and buildings. 

4.2.2 Resistance Statistics 

Methods for designing drilled shaft foundations that 

were considered include Reese and O’Neill’s (1988) total 

stress method for drilled shafts in clays, and two methods 

of predicting side resistance of drilled shafts socketed in 

rock (Section 2.1.3). 

Resistance statistics for these methods are summarized 

in Table 4.8. Statistics for the model error shown in Table 

4.8 have been compiled from data of load tests on drilled 

shafts in clays (Reese and O’Neill, 1988), while those for 

drilled shafts socketed in rock are based on load test data 

reported by Horvath and Kenney (1979). The values of bias
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Table 4.8 Summary of statistics for axial capacity of 
drilled shafts 

  

  

  

  

  

Correction | Reese & O’Neill| Horvath & Kenney Carter & Kulhawy 
Mean COV Mean COV Mean COV 

Model Error 1.04 0.147 1.65 0.369 1.62 0.459 

Systematic * 
Error 1.02 0.098 1.00 0.200 1.00 0.200 

Inherent 1 0.490 0.984%” 
Spatial 1.00 — 1.00 1.00 —__— 
Variabilit {2 Iz JZ           
  

* Estimated value 

** Based on a point c.o.v. of the uniaxial compressive strength 
of 0.44 (After Savely, 1987) and a scale of fluctuation of 
5 ft.
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factor and c.o.v. for inherent spatial variability and 

systematic error are also listed in Table 4.8. 

As discussed previously in Section 2.1.3.2, five 

methods [Touma and Reese (1974), Meyerhof (1976), Quiros and 

Reese (1977), Reese and Wright (1977), and Reese and O’Neill 

(1988)] have been used for estimating the side resistance 

and end bearing capacities of drilled shafts in sands and 

gravels. Comparison of these methods shows that they may 

result in widely divergent estimates of capacity for the 

same conditions. Unfortunately, the information available 

from field load tests at present is insufficient to enable 

determination of resistance statistics for drilled shafts in 

sands and gravels. Thus, these methods have not been 

calibrated using reliability theory. 

4.2.3 Results of Calibration 

4.2.3.1 Reliability Indices 

Values of reliability indices versus length of drilled 

shaft for the three methods (Reese and O’Neill’s method, 

Horvath and Kenney’s method, and Carter and Kulhawy’s 

method) are shown in Fig. 4.4 (lognormal method) and Fig. 

4.5 (advanced method). The graph at the top is for a dead 

to live load ratio of 1, while the dead to live load ratio 

is 3.7 for the bottom graph. Once again, reliability
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indices for drilled shafts in bridges are similar to those 

for buildings because the uncertainty in the resistances 

constitutes a larger percentage of the total uncertainty, 

i.e. the reliability indices are fairly insensitive to the 

load statistics. 

Based on the results of the reliability analysis, the 

following observations are made: 

1) Reliability indices for Reese and O’Neill’s total 

stress method vary between 2.9 and 3.7 for the lognormal 

method, and between 3.1 and 4.3 for the advanced method. 

2) Reliability indices for Horvath and Kenney’s method 

are higher than those for Carter and Kulhawy’s method. 

This is due to the higher c.o.v. for inherent spatial 

variability in Carter and Kulhawy’s method. In Horvath 

and Kenney’s method, the shaft resistance varies with the 

square root of the uniaxial compressive strength of the 

rock (Equation 2-24), while in Carter and Kulhawy’s 

method, the shaft resistance varies linearly with the 

uniaxial compressive strength of the rock (Equation 2- 

23). Evaluating the c.o.v. of the side resistance using 

first-order-second- moment theory indicates that the 

c.o.v of the square root of a random variable is half the 

c.o.v. of that random variable.
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4.2.3.2 Target Reliability Indices 

Reliability indices for drilled shafts are summarized 

in Table 4.9. For the lognormal format, the values of 

reliability index range from 2.0 to 3.7. For the advanced 

method, the reliability indices vary from 2.0 to 4.3. Thus, 

a target reliability index between 2.5 and 3.0 may be 

appropriate for the design of drilled shafts. It should be 

noted that a slightly higher value was selected for the 

target reliability index for individual drilled shafts as 

compared to driven piles since drilled shafts are frequently 

used individually, as well as in groups. 

4.2.3.3 Performance Factors 

Performance factors for the three methods obtained from 

the reliability based calibration using a target reliability 

index of 2.5 are shown in Table 4.10. 

Bridges 

The performance factors recommended for design are 

based on a dead to live load ratio of 3.7, and are given as 

follows:
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Table 4.9 Summary of reliability indices for drilled shafts 

  

Ratio of Dead Lognormal Advanced 
to Live Load 
  

1.0 2.0-3.4 2.0-3.9 

3.7 2.1-3.7 2.274.3          
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Table 4.10 Performance factors for drilled shafts obtained 
from reliabilty-based calibration with a target 
reliability index of 2.5 

  

  

  

            
  

  

  

  

  

Bridges 

Pile Reese & O’Neill| Horvath & Kenney Carter & Kulhawy 
Length 

py = 2.5 

10 ft - | 0.70 0.49 

30 ft 0.72 0.73 0.56 

100 ft 0.80 - - 

pr = 3.0 

10 ft - 0.56 0.37 

30 ft 0.62 0.59 0.43 

100 ft 0.71 - - 

Selected 0.65 0.65 0.55 

Buildings 

Pile Reese & O’Neillj Horvath & Kenney Carter & Kulhawy 
Length 

py — 2.5 

10 ft - 0.66 0.47 

30 ft 0.64 0.69 0.54 

100 ft 0.70 - - 

by = 3.0 

10 ft - 0.51 0.35 

30 ft 0.53 0.54 0.41 

100 ft 0.59 - - 

Selected 0.60 0.60 0.50           
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1) For estimating drilled shaft capacities in clays using 

Reese and O’Neill’s method, the performance factor is 

recommended to be 0.65. 

2) Horvath and Kenney’s method should have a higher 

performance factor (0.65) than Carter and Kulhawy’s 

method (0.55) for reasons explained in Section 4.2.3.1. 

Buildings 

The performance factors recommended for design are 

based on a dead to live load ratio of 2. It has been shown 

in Section 4.1.4.3 that the performance factors for 

buildings are approximately 0.9 times the values’ for 

bridges. The values of performance factor in the bottom 

half of Table 4.10 reflect this fact. A comparison of the 

performance factors for buildings with those for bridges is 

shown in Fig. 4.6. Using linear regression, the equation of 

the line was found to be $¢puilding Code = 9-91l¢aasnuro- 

Due to the lack of field data, it is not possible at 

present to determine which of the methods of predicting 

drilled shaft capacities in sands and gravels is most 

reliable and most generally applicable. It is therefore, 

not also possible to determine with precision, what values 

of performance factors should be used for drilled shafts in 

sands and gravels. Accordingly, the best procedure appears
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to be to estimate the capacity using judgment, and any 

available experience with similar conditions. The large 

variability of the capacities of drilled shafts in sand 

logically suggests that values of performance factors for 

shafts in sands should be smaller than for shafts in clay. 

4.2.3.4 Other Performance Factors 

Performance factors for drilled shafts are summarized 

in Table 4.11 for the AASHTO code only. As discussed 

previously, corresponding values of performance factors for 

the building code are approximately 0.9 times the values in 

Table 4.11. 

Table 4.11 also shows values of performance factors for 

ultimate limit states other than those for which performance 

factors were obtained by the reliability based calibration 

procedure. The bases for the selection of these performance 

factors are given below. 

Side Resistance of Drilled Shafts in Clay. This method 

refers to the effective stress or ps method for drilled 

shafts in clay proposed by Stas and Kulhawy (1984). There 

is considerable uncertainty in the estimation of the 

coefficeint of lateral earth pressure and therefore, a



Table 4.11 Summary of performance factors for drilled shafts 
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under axial loads 

  

  

  

  
  

  

  

  

  

        

METHOD/SOIL/CONDITION IPERFORMANCE FACTOR 

[ 

ULTIMATE |SIDE a-method (Reese & 0.65 

O’Neill) 
BEARING RESISTANCE 

f-method (Stas & 0.50 
CAPACITY |IN CLAY Kulhawy) 

OF BASE Total Stress 0.55 
(Reese & O’Neill) 

SINGLE RESISTANCE 

Effective Stress | 0.45 
DRILLED /IN CLAY (Stas & Kulhawy) 

SHAFTS SIDE 1) Touma & Reese See 

2) Meyerhof Discussion 
RESISTANCE 3) Quiros & Reese in 

4) Reese & Wright Section 
IN SAND 5) Reese & O’Neill 4.2.3.3 

BASE 1) Touma & Reese See 

2) Meyerhof Discussion 
RESISTANCE 3) Quiros & Reese in 

4) Reese & Wright Section 
IN SAND 5) Reese & O’Neill 4.2.3.3 

SIDE Carter & Kulhawy 0.55 

RESISTANCE Horvath and Kenney 0.65 

IN ROCK 

BASE Canadian 0.50 
Geotechnical Society 

RESISTANCE 

Pressuremeter Method 0.50 
IN ROCK (Canadian Geotech. 

Society, 1985) 

SIDE 

RESISTANCE & Load Test 0.80 

END BEARING 

BLOCK 

Clay 0.65 
FAILURE 
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METHOD/SOIL/CONDITION ‘PERFORMANCE FACTOR 
  

  
a-method (Reese & O'Neill) 

    
  

  

  

UPLIFT 0.55 

CLAY 

CAPACITY A-method (Stas & Kulhawy) | 0.40 
| 

| 
OF Belled Shafts | 0.50 

SINGLE : 
! 1) Touma & Reese See 
DRILLED 2) Meyerhof Discussion | 

SAND 3) Quiros & Reese in 
SHAFTS 4) Reese & Wright Section 

5) Reese & O’Neill 4.2.3.3 

Carter & Kulhawy 0.45 
ROCK 

Horvath & Kenney 0.55 

Load Test 0.80 

GROUP Sand 0.55 

UPLIFT 

CAPACITY Clay 0.55         
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performance factor of 0.5 (similar to the gs method for 

piles) is appropriate. 

Base Resistance of Drilled Shafts in Clay. This method 

refers to the effective stress method for estimating base 

resistance of drilled shafts in clay by Stas and Kulhawy 

(1984). The settlement required to mobilize base resistance 

is larger than that required to mobilize side resistance. 

Moreover, the movement required to mobilize the base 

resistance is proportional to the diameter of the base, and 

the diameter of the base of a drilled shaft can be 

relatively large. Thus, a lower value of performance factor 

(0.45) for base resistance of drilled shafts in clay using 

the effective stress method is recommended. 

Base Resistance of Drilled Shafts in Rock. Refer to 

Equations 2-25 and 2-26 (Canadian Foundation Engineering 

Manual, 1985). The value of performance factor recommended 

is 0.5, which is the same value that is recommended for 

driven piles corresponding to a safety factor of 3. The 

Canadian Foundation Engineering Manual also recommends a 

safety factor of 3 for the pressuremeter method of 

estimating base resistance of drilled shafts in rock. 

Therefore, the performance factor for the pressuremeter 

method is also recommended to be 0.50.
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Uplift Resistance of Belled Shafts in Clay. This refers to 

the method of predicting the uplift capacity of drilled 

shafts with an enlarged base assuming that the bell behaves 

as an anchor (Yazdanbod et al., 1987). A safety factor of 3 

is warranted for this method, and the corresponding value of 

performance factor is recommended to be 0.5. 

Performance factors for the bearing capacity of drilled 

shafts obtained from load tests, block failure of groups of 

drilled shafts in clays and uplift capacity of groups of 

drilled shafts are the same as those for driven piles. The 

performance factors for the static methods of estimating 

uplift capacity of single drilled shafts from. soil 

parameters are the same as those for axial compression in 

Table 4.11, less 0.1. The rationale for this is the same as 

for piles, i.e. because: 

(a) the diameter, and thus the area of the shaft 

decreases in tension due to the Poisson effect, thereby 

making uplift capacity smaller than compressive load 

capacity, and 

(b) shafts in tension unload the soil, which reduces the 

overburden effective stress and hence the uplift skin 

friction resistance of the drilled shaft. 

It has been shown that reliability analysis can be used 

for calibrating methods of predicting capacities of deep
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foundations with existing codes. However, the calibration 

results should also be coupled with engineering judgment and 

experience so as not to compromise on actual trends in 

practice. 

4.3 Groups of Piles or Drilled Shafts 

The choice of a global factor of safety in WSD involves 

a fairly large degree of empiricism. Often values of safety 

factor are selected based on experience. Calibration of 

codes in LFD format relies on this choice of safety factor, 

and on the load and resistance statistics, which may 

sometimes be difficult to evaluate because of a lack of 

data. 

The procedure for evaluating the probability of failure 

of a group of piles or drilled shafts is even more involved 

in that many other factors have to be considered. Some of 

these factors can be illustrated by means of the following_ 

example (Rojiani, 1989). 

A group of four piles (Fig. 4.7) is acted on by a 

normally distributed load with a mean value of 320 kips and 

a standard deviation of 20 kips. The mean bearing capacity 

of each pile is 140 kips with a standard deviation of 20 

kips.
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Load = 320 kips 

Std. Dev. = 20 kips 
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Figure 4.7 Example Problem for Probability of Failure of 
Pile Groups
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The probability of failure of one pile can be 

calculated as follows: 

Mean load on each pile = 320/4 = 80 kips 

Standard deviation of the load on each pile = 20/4 = 5 kips 

Using Equation 2-49, the probability of failure of one pile 

is 

140 - 80 
Pe = 1 - §|—— 

/202 + 52 

= 1 - $[2.91] 

= 1 - 0.998193 

0.001807 

A group of piles can be modeled either as a series 

system or as a parallel system. A series system is only as 

strong as its weakest link, i.e. failure of any one pile 

constitutes failure of the group. Failure of a parallel 

system, however, requires failure of all the piles. Another 

assumption that must be made pertains to the correlation 

between individual piles. If Fj denotes failure of pile i, 

and Sj denotes survival of pile j, then the probability of 

failure of a group of piles with uncorrelated capacities 

that behaves as a series system can be calculated as 

follows:
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= P(F1S2S3Sq4] + P[S1F2S3S4] + P[S1S2F3S4] + P[S15253F4] ye)
 

Hh
 | 

4 (0.001807) (0.998193) > 

0.00719 

If the capacities are perfectly correlated and the four pile 

group is modeled as a series system, then if one pile fails, 

the whole group will fail. The probabilty of failure of 

such a pile group is evaluated as follows: 

Pr PCL FLF2F3F4] 

P[F)/F2F3F4)P([Fo/F3F4)]P([F3/F4]P(F4] 

(1) (1) (1) (0.001807) 

= 0.001807 

In order to evaluate the probability of failure of a 

parallel system of piles, expressions for the mean and 

variance of the resistance must first be evaluated. The 

expressions are as follows: 

Total capacity of 4 piles R = Rj + Rp + R3 + Rg 

Mean value of R, 

R = Rj + Ro + R3 + Rg 

4 (140) 

= 560 kips 

Variance of R 

2 - 2 2 op? = op1* + opo® + op3* + opg® + 2COV[R ]R2] + 2COV[R}R3] + 

2COV[R1R4] + 2COV[R2R3] + 2COV[R2R4] + 2COV[R3R,4]
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2 
= oR: + oR? + oR3° + oR4* + 2pR1R29RI°R2 + 

2PR1R3°R19R3 + 2PR1R4°RIIR4A + 2PR2R37R29R3 + 

2PR2R49R2°R4 + 2PR3R49R39R4 

where COV[X,Y] is the covariance of X and Y, defined as the 

expected value of the products of (X - X) and (Y - Y), and 

pxy is the coefficient of correlation between xX and Y, 

defined as: 

COV[X, Y] 
xy = —— (4-14) 

oxoy 

where oy and oy are the standard deviations of X and Y 

respectively. If the pile capacities are uncorrelated, 

PRiR}j = O- 

R = 560 kips 

2 2 2 2 2 
oR” = ORI + ORQ” + ORB” + ORG 

= 4(20)2 

= 1600 

oR = 40 kips 

The probability of failure of the same group of four piles 

assuming that the capacities are statistically independent, 

and that the pile group behaves as a parallel system can be 

evaluated as follows:
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( R-5 
Jor? + os? 

fe 

| 560 - 320 

1-¢ 2 2 /402 + 20 

1 - $[5.37] 

Pe =~1- 4g 

  

  
Pe = 0.0000000415 

If the pile capacities are perfectly correlated, PRiRj = 1- 

op? = 4(20)2 + 2(1) (20) (20)6 

= 6400 

oR = 80 kips 

The probabilty of failure, assuming a parallel system of 

piles and perfect correlation in the pile capacities, can be 

calculated as follows: 

560 - 320 

rE ST Tgo2 + 208 

= 1 - $[2.91] 

Pe = 0.001807 

The results of these calculations are summarized below: 

  

CORRELATED INDEPENDENT 
  

SERIES 0.00181 0.00719 
  

  PARALLEL 0.00181 0.0000000415       
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It is clear from the results of these calculations that 

one of the important issues that must be considered when 

evaluating the probability of failure of a group of piles is 

the degree to which the capacities are correlated. Perfect 

correlation between piles in both series and parallel 

systems implies that if one pile fails, then all the other 

piles will fail too. The group failure probability in the 

case of perfect correlation between piles thus reduces to 

the probability of failure of a single pile. In reality, 

the occurrence of perfect correlation is highly unlikely. 

The opposite of perfect correlation is complete 

statistical independence. In this case, the assumption of 

whether the pile group behaves as a parallel (ductile) or a 

series (brittle) system is important. Failure of one pile 

in a ductile system will mean that the additional load is 

redistributed to the other piles, and if a second pile 

fails, the load will be further redistributed to the 

remaining piles, and so on. Failure of the group will only 

occur if the last surviving pile fails. The other extreme 

is the brittle system where some feature in the pile group 

exists that has the effect that as soon as the first pile 

fails, all of the other piles will fail immediately. 

In the example above, the assumption of statistical 

independence in the piles yields a probability of failure of 

a brittle system that is 5 orders of magnitude higher than a
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ductile system. The question of whether piles are perfectly 

correlated versus statistically independent, or whether the 

group is ductile as opposed to brittle, is thus extremely 

important with regard to evaluating the group failure 

probability. Such large differences in the probability of 

failure are clearly significant. 

The problem of pile group failure is further 

complicated by the nature of failure itself. Failure of 

groups of piles can take one of several forms: 

(1) Plunging failure may be preceded by settlement, which 

can constitute an unacceptable mode of behavior. 

Therefore safety and failure is not a "black or white" 

issue. What constitutes failure depends also on the 

amount of settlement that can be tolerated by the 

structure. 

(2) Piles bearing on sound rock can fail structurally, 

which brings into consideration other reliability issues 

and other statistical data. 

(3) Groups of piles that are closely spaced can fail as a 

block containing the piles and the soil between the 

piles. This mode of failure is not governed by the 

statistics relating to the individual pile capacities. 

(4) Pile groups that are founded in a strong stratum 

overlying a weaker layer can fail by punching into the 

weaker layer.
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Therefore, the example problem above is a simplified 

view of actual behavior. 

Factors that would make a pile group tend to a series 

system as opposed to a parallel system, and factors that 

would make the piles tend to be correlated as opposed to be 

statistically independent are examined. Some of these 

factors include the following: 

1) properties of the structural elements (eg. rigidity of 

the pile cap) 

2) properties of the soil which can influence the rate of 

pore pressure dissipation 

3) magnitude and eccentricity of the load 

4) geometric positions of the piles in the group 

5) installation effects such as driving order and vertical 

alignment of the piles, and 

6) interaction of cap and soil. 

SERIES VERSUS PARALLEL 

An example of a series system of piles would be one in 

which failure of one pile causes failure of the surrounding 

soil, then failure of neighboring piles, and ultimately the 

failure propagates until the whole group fails (i.e. 

progressive type of failure). A pile group that was load 

tested by O’Neill et al. (1982) behaved in this way. The
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soil was an overconsolidated slickensided clay. It would 

therefore be reasonable to assume that pile groups in 

overconsolidated clays with inherent planes of weaknesses 

such as slickensides, or heavily jointed clays that undergo 

strain softening, or highly sensitive or structured clays 

are more likely to behave as series systems. 

CORRELATED VERSUS UNCORRELATED 

Factors that influence the correlation between piles 

include: 

1) Variability of Soil Properties - The variability of 

soil is influenced by its mode of formation. cCalm-water 

sedimentary deposits for instance, will very likely 

exhibit fairly uniform properties. On the other hand, 

residual soils will more likely have random and erratic 

properties, typified by pockets of weak and _ strong 

materials. It seems reasonable to expect a higher 

correlation between the capacities of piles if the group 

is in a uniform soil than if it is in a nonuniform soil 

deposit. 

2) Rate of Pore Pressure Dissipation - The rate of pore 

pressure dissipation is a function of the soil properties 

such as permeability and compressibility, and the 

geometry and boundary conditions of the flow regime.
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O’Neill (1983) argued that pore pressures dissipate at a 

much slower rate around pile groups than around single 

piles. The more piles there are in the group, the slower 

the rate of dissipation. Flaate (1972) found that pore 

pressures dissipate at a much slower rate around interior 

piles than around exterior piles. Since pile capacities 

are related to the effective stresses, the capacities of 

the corner piles would be expected to be highest soon 

after driving, followed by the edge and interior piles. 

A pile group constructed in cohesive soils would 

therefore exhibit low correlation between the capacities | 

of its piles if it were loaded prior to complete 

dissipation of pore pressures. 

3) Eccentricity of the Loads - Most piles in an axially 

loaded pile group carry compressive loads. However, some 

piles, especially those furthest away from the point of 

application of the load, may carry uplift forces if the 

eccentricity is large. While piles in compression derive 

their resistances from downward skin friction and end 

bearing, piles in tension derive their resistances from 

upward skin friction, soil suction and the weight of the 

pile. It is therefore reasonable to assume that there 

might be little correlation between piles in tension and 

piles in compression, because the sources of contribution 

to the resistances are different.
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4) Pile Alignment - Piles in a group that are all 

vertical will be expected to have a higher correlation 

than those in which the piles are driven out of plumb. 

Thus it is also reasonable to assume that there will be a 

higher correlation in a group of vertical piles than a 

group of batter piles. 

5) Driving Order - Model and full scale tests on pile 

groups in cohesive soils [Whitaker (1957) and O’Neill et 

al. (1982)] indicate that the order of driving affects 

the distribution of loads to the piles. This effect in 

pile groups in cohesive soils can be seen in Fig. 4.8, 

where driving orders A and B are those for the model 

tests conducted by Whitaker (1957), while driving order C 

is that of a full scale load test conducted by O’Neill et 

al., (1982). 

The effects of driving order of piles in cohesive soils 

are also related to the magnitude of the loads, as 

indicated in Table 4.12. At low loads, a correlation 

exists between the loads in the piles since the gradients 

of the curves in Fig. 4.8 are all fairly constant. At 

higher loads, the curves cross over each other in groups 

A and C, thereby obscuring the correlation between piles. 

However, pile group B exhibited a constant correlation in 

loads carried by piles, even when the load was 

approaching the failure load.
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Figure 4.8 Clay: Driving Order and Load Level Effects on 
Load Distribution in Piles in Pile Groups 
(From O’Neill, 1983)
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Table 4.12 Degree of correlation between piles as related 
to pile driving order and magnitude of loads 

DRIVING ORDER 

"Outside-In" "Inside-Out" 
Group A Group B 

MAGNITUDE Small High High 
OF 
LOADS Large Low High*         
  

* Except for pile groups in overconsolidated slickensided 
soils (such as Group C) that have a tendency to behave as 
a series systen. 
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Pile group C was driven in an_ overconsolidated 

slickensided clay. Although driving order C was similar 

to driving order B, the excess pore pressures dissipated 

so quickly during and immediately after installation that 

the load distribution in group C resembled that of group 

A, i.e. the center piles carried the most load when 

failure was imminent. O’Neill and Hawkins (1983) 

explained that this effect was brought about by 

progressive failure in group C, where the corner piles 

failed first. The failure then propagated to the other 

piles. As discussed earlier, a progressive type of 

failure implies that the pile group behaves as a series 

system. 

Load tests on pile groups in sands indicate that the 

load on the center piles are always the highest, 

irrespective of whether the piles are driven "outside-in" 

[See Fig. 4.9, Kishida (1967)], “inside-out" [See Fig. 

4.9, Beredugo (1966)] or whether the piles are installed 

simultaneously [Vesic (1969)]. 

6) Interaction of Cap and Soil - Contact of the cap with 

the soil can increase the load carrying capacity of the 

group. The implication of cap-soil contribution to group 

capacity is that any correlation that exists between 

resistances of individual piles is inaccurate if the 

contribution of the cap is not considered. In fact, the
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contribution of the cap-soil interaction is usually 

ignored in conventional practice. 

There currently exist no rational guidelines for 

determining whether a pile group tends to behave as a series 

system or a parallel system of piles, and for determining 

the degree of correlation between piles in pile groups. 

Even though these concepts cannot be quantified accurately, 

an attempt has been made above to present them in a 

qualitative manner.



CHAPTER FIVE 

SUMMARY AND CONCLUSIONS 

The studies described herein have been concerned with 

the development of simplified procedures for analyzing 

laterally loaded deep foundations, and the development of 

performance factors that can be used in load factor design 

of axially loaded deep foundations. 

The simplified procedure for analyzing laterally loaded 

deep foundations began with development of a computer 

program, PGROUPD. This program uses the Evans and Duncan 

(1982) procedure, which simulates p-y analyses, to estimate 

deflections and maximum bending moments in single fixed-head 

piles and drilled shafts. Group deflections are estimated 

through the Focht and Koch (1973) procedure in the program, 

while bending moments in the group are obtained by softening 

the soil until the single pile deflection matches the group 

deflection (Duncan, 1988). The bending moment in the group 

is then approximated as the value of the single pile moment 

in the softened soil. 

The computer program PGROUPD was used to develop charts 

for estimating deflections and maximum bending moments in 

some of the more common types of single fixed-head piles and 

drilled shafts. It was also used to perform parametric 

studies of a large number of groups of piles and drilled 

262
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shafts. Based on the results of these analyses, simple 

formulae for estimating group deflections and moments were 

derived. These simple formulae will enable engineers to 

analyze and design groups of deep foundatiions more quickly. 

The simplified procedure was then used to analyze four 

well-documented and well-instrumented pile group load tests. 

Two of the groups were in cohesive soils, and two were in 

cohesionless soils. 

The results of the lateral load tests on fixed-head 

pile groups conducted by Kim et al. (1976) were compared to 

those calculated using the simplified procedure. Studies 

were made on two groups with pile spacings of 3.7 and 5 

diameters. Comparison of the results showed that measured 

values of deflections and moments in the group with the 

smaller pile spacing agreed well with the calculated values. 

The results of the calculations were also reasonable for the 

group with the larger pile spacing at low magnitude of 

loads. However, the moments and deflections were 

overestimated by 100% at high loads. 

Studies were also made on a load test conducted by 

Holloway et al. (1981) on a group of timber piles connected 

by a cap 3 ft above ground. In terms of calculated single 

pile deflections, the behavior of a pile fixed 3 ft above 

ground was found to be intermediate between a fixed-head 

pile and a free-head pile. The single pile deflections and
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moments for this boundary condition were estimated using p-y 

analyses as well as an approximate procedure that was 

developed from beam theory and the Evans and Duncan 

nonlinear superposition procedure. They were then amplified 

to those for the group using the simplified procedure. 

Comparison of the measured and calculated values of group 

deflection showed that the simplified procedure 

overestimated the group deflections by 95% at low loads, but 

the calculated and measured group deflections agreed very 

well at high values of load. The bending moments were 

overestimated by as much as 35%. These results are 

satisfactory considering that the simplified procedure was 

developed for fixed-head pile groups, and that the load 

deflection response indicated that the piles may be yielding 

structurally. 

A third load test on a group of nine steel pipe piles 

in Beaumont clay was conducted by Brown et al. (1987). 

Single free-head pile deflections and moments were estimated 

using the Evans and Duncan procedure, and amplified to 

values for the group using the simplified procedure 

discussed above. Comparison of the measured and calculated 

values showed that the group deflections and moments were in 

good agreement. 

A fourth load test on the same nine-pile group was 

conducted by Brown et al. (1988) after excavating the
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Beaumont clay and compacting sand around the piles. 

Analysis of the group behavior using the simplified 

procedure yielded values of group deflections and maximum 

bending moments that were conservative. This may be due to 

the fact that the cyclic nature of the loads could have led 

to densification of the sand and thus reduced values of 

group deflections and moments. 

It can be concluded based on the results of the 

analysis of the four case histories that the newly developed 

Simplified procedure provides a method of analyzing pile 

groups that gives either fairly accurate values of group 

deflections and moments, or values that are conservative. 

Studies were also made to develop performance factors 

for load factor design of axially loaded driven piles and 

drilled shafts. An overall performance factor that is 

applied to the resistance side of the LFD equation can be 

obtained through reliability analysis. Statistics for 

methods of calculating pile and drilled shaft capacities and 

statistics for the loads were obtained. Reliability indices 

were calculated for these methods to determine the levels of 

reliability inherent in current designs. Target reliability 

indices were then selected and used to obtain performance 

factors for several methods of estimating pile and drilled 

shaft capacities.
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The probability of failure of groups of piles and 

drilled shafts was also examined. Through an example of a 

four pile group (Rojiani, 1989), it was found that the 

probability of failure can differ greatly depending on 

whether the capacities are correlated or uncorrelated, and 

whether the group behaves as a series or a parallel system. 

5.1 Recommendations for Future Research 

5.1.1 Deep Foundations Under Lateral Load 

The case histories analyzed have shown that’ the 

simplified procedure for fixed-head piles and drilled shafts 

can be used effectively to analyze and design laterally 

loaded groups of deep foundations. However, out of the four 

case histories, only one was a fixed-head group of piles. 

Additional load tests on groups of fixed-head piles would 

provide valuable additional information. 

The simplified procedure does not indicate the 

distribution of load among the piles ina group. Evans and 

Duncan (1982) and Brown et al. (1987 and 1988) have shown 

that in a laterally loaded group, the piles in the leading 

row carry more load than the rear piles whereas methods 

based on the theory of elasticicty indicate symmetrical 

distribution of loads (eg. Focht and Koch, 1973). Further 

research into the mechanism of load transfer through the



267 

soil and cap in pile groups is required so that a more 

reliable method for estimating load distribution among piles 

can be developed. 

Although no distinction is correctly made between 

groups of piles and drilled shafts in analyses of lateral 

load effects, the two different methods of installation for 

piles and drilled shafts can result in significantly 

different post-construction in situ stresses and soil 

properties. Improved models of soil behavior that account 

for installation effects are required in order to develop 

more reliable methods for estimating the behavior of deep 

foundations under lateral loads. 

5.1.2 Deep Foundations Under Axial Load 

A shortage of load test data has prevented a 

comprehensive review of the reliability of methods for 

estimating drilled shaft capacities in cohesionless soils. 

Additional well-instrumented and well-documented load tests 

will be valuable to the profession as they will allow a 

better assessment of the current state-of-the-art. 

Groups of piles or drilled shafts with uncorrelated 

capacities can have widely divergent values of probability 

of failure depending on whether the group is assumed to be a 

series or a parallel system. Studies on quantifying the
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degree to which pile or drilled shaft capacities in a group 

are correlated versus uncorrelated, and on quantifying the 

tendency of a group to behave as a series or a parallel 

system are needed before fully rational assessments of the 

probability of failure can be made.
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PGROUPD: A computer program for estimating lateral 
deflections and maximum bending moments in 
laterally loaded groups of fixed-head piles 
and drilled shafts 

Al Introduction 

PGROUPD is a computer program written in Microsoft 

Quick Basic that can be used to calculate the following: (1) 

lateral deflections of single fixed-head piles or drilled 

shafts, (2) maximum bending moments in single fixed-head 

piles or drilled shafts, (3) lateral deflections of groups 

of fixed-head piles or drilled shafts, and (4) maximum 

bending moments in groups of fixed-head piles or drilled 

shafts. The program utilizes the Evans and Duncan (1982) 

procedure for analyzing laterally loaded single piles and 

drilled shafts, and the Focht and Koch (1973) procedure for 

calculating deflections of laterally loaded groups of piles 

and drilled shafts. The maximum bending moments in groups 

of piles and drilled shafts are estimated by softening the 

soil (reducing ¢’ in sands or Sy in clays) until the single 

pile deflection matches the deflection of the group (Duncan, 

1988).
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A2 System Requirement 

This program runs on any IBM or IBM compatible computer 

using DOS. 

A3 Program Execution 

The program is interactive and user friendly. The 

following procedure is used to run the program: 

1) Insert the PGROUPD program disk in drive A. 

2) Type "PGROUPD" followed by "Carriage Return" to run the 

progran. 

3) Follow the instructions on the screen. The user can 

select one of several options: (a) create a data file, 

(b) review a data file, (c) run the program, or (d) 

return to DOS. 

4) Upon completion of the execution, select 4 to return to 

DOS. 

A4 Program Operation 

The program consists of four modules - a main program 

and three subroutines: CREATE, REVIEW and PGROUPD. CREATE 

is the subroutine for creating new data files. REVIEW is 

the subroutine for reviewing and editing existing data
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files. PGROUPD is the subroutine that performs the analysis 

of laterally loaded piles. The flow diagram for PGROUPD is 

shown in Fig. Al. 

A4.1 Description of Input Data 

The program reads the following parameters from the 

data file: 

1) Title of the job 

2) Soil type (sand or clay) 

3) Lateral load per pile (Ps) - For a group of piles, divide 

the total lateral load acting on the group by the number of 

piles. 

4) Pile width or diameter (D) 

5) Length of pile (Z) 

6) Young’s modulus of pile (Ep) 

7) Moment of inertia of pile (Ip) 

8) Number of piles (Npile) 

9) Coordinates of piles - The user has the option of 

specifying either the coordinates of every pile, or the 

number of rows of piles, number of piles per row, and the 

center-to-center pile spacing if the piles are uniformly 

spaced. In the latter option, the program will 

automatically generate the pile coordinates internally based 

on the information given.
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Figure Al Flow Diagram for Program "PGROUPD"
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The orientation of the lateral load is always along the 

x-direction, which is along the direction of the rows of the 

piles. If the option of specifying pile coordinates is 

selected, then they should be specified such that the 

direction of loading is oriented in the x-direction. If the 

option of specifying the number of rows of piles, number of 

piles per row and the pile spacing is chosen, they should be 

specified such that the direction of loading is oriented 

along the rows. 

Consistent units should be used for all the input data. 

A4.2 Estimation of Deflections and Maximum Bending Moments 

in Single Fixed-Head Piles 

The Evans and Duncan’ procedure for calculating 

deflections of and maximum bending moments in single fixed- 

head piles has been described in Section 3.2.1. Single pile 

deflections are estimated using Fig. 3.1 for sand and Fig. 

3.2 for clay. Equations for these curves have been 

determined by regression analysis and incorporated in the 

program. These equations are as follows: 

    

Y¥g Ps Ps]? 
For sand —~ = 1.33 |—| + 149 |— (Al) 

D Po Po 

Yg Ps Ps] * 
For clay — = 0.107 ;|—J| + 20.3 |— (A2) 

D Po Po 
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Maximum bending moments are estimated using Fig. 3.10 for 

sand and Fig. 3.11 for clay. Equations for these curves 

have also been determined by regression analysis’ and 

incorporated in the program. The equations are as follows: 

Ms Ps Ps]° 
For sand — = 0.482 {|—/; + 17.4 |— (A3) 

Mc Po Po 

Ms P Ps]? 
For clay — = 0.235 |—| + 2.93 |— (A4) 

Mc Po Po 

      

A4.3 Estimation of the Characteristic Length of the Soil- 

Pile System (T) 

The Evans and Duncan procedure and the Focht and Koch 

procedure apply only to long piles (i.e. pile length greater 

than 5T, where T is the characteristic length of the soil- 

pile system). The characteristic length of the soil-pile 

system (T) can be calculated using the single pile delection 

(Ys) and the following equation (Matlock and Reese, 1961): 

YsEpIp| 1/3 
T= |——— (AS) 

0.93P, 

The criterion that the piles must be long is checked before 

proceeding with the analysis. If the piles are not long, 

the program will stop running, and warn the user of the
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problem. Alternate design procedures are needed for short 

piles. 

A4.4 Iteration for Soil Modulus 

It was discussed in Section 3.3.1 that the group 

deflection estimated using the Focht and Koch procedure is 

sensitive to the relative stiffness factor (R), which in 

turn is sensitive to the soil modulus (Eg). Therefore, one 

of the most critical part of the analysis is the selection 

of the value of soil modulus. One advantage of using this 

program is that an iterative routine described in Section 

3.3.1, is incorporated in the program to estimate the soil 

modulus. The procedure requires the value of the influence 

factor, I,r, from Fig. 2.14. Equations for the curves of 

I,r versus the pile flexibility factor (Kp = EplIp/Es2*), 

have been obtained through regression analysis. The general 

form of the equation is as follows: 

IpF = Ag + A z10g10KR + Az (10g19KR) * + A3(10g19Kp) ? + 

Ag (10g10Kr) * (A6) 

where Ag, Aj, Az, A3z and Aq are constants. Their values for 

pile length to diameter ratios (Z/D) of 10, 25, 50 and 100 

are given in the table below. For intermediate values of
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pile length to diameter ratios, I,r is obtained by 

interpolation in the program. 

  

  

  

  

          

Z/D Ao Ay A> A3 Ay 

10 1.11 -~0.166 0.159 -0.0529 -0.0677 

25 1.30 -0.281 0.193 -0.0280 0.0 

50 1.41 -0.363 0.326 0.0463 0.0105 

100 1.51 -0.362 0.335 0.0296 0.00975       
  

A4.5 Assembly of the Matrix of Coefficients, a,p and R 

Equations 3-10 and 3-14 provide a set of (Npile + 1) 

Simultaneous equations which can be solved using matrix 

techniques. The unknowns are the group deflections (Yg) and 

the lateral forces in the piles (Pj). The coefficients in 

the matrix consist of the interaction factors, a,p and the 

relative stiffness factor, R. R is calculated using 

Equation 3-12, whereas QoF is obtained from Fig. 2.15. 

Equations for app versus Kp have been obtained by 

regression, and they have the following general form: 

D Dp]? pb] 3 pb) 4 
QoF = Bo + By—+ Bo’ + B3 + Bg (A7) 

Ss Ss s Ss 

Values of Bo, By, Bz, Bz and Bg for values of Z/D of 10, 25 

and 100, 6 of 0° and 90°, and Kp of 107° ana 0.1, are given 

in Table Al, where @ is the angle between the direction of
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Table Al: Regression coefficients Bg, By, Bz, B3z and By 

Bo By Bo B3 Bg 

6 = 0°, Kp = 0.1 0.0174 3.02 -7.45 10.8 -6.98 
z/D = 10 

6 = 0°, Kp = 107° | 0.00149] 0.938 0.282 | -0.570| 0.0 
Z/D = 10 

6 = 0°, Kp = 0.1 0.0824 4.08 |-16.2 33.6 |-22.7 
Z/D = 25 

@ = 0°, Kp = 107° |-0.00691| 1.77 ~1.11 0.0 0.0 
Z/D = 25 

6 = 0°, Kp = 0.1 0.244 2.31 -7.68 15.4 |-12.1 
z/D = 100 

9 = 0°, Kp = 107° | 0.0394 3.16 -6.56 5.62 0.0 
Z/D = 100 

6 = 90°, Kp = 0.1 |] 0.00996] 1.55 -1.43 0.0 0.0 
Z/D = 10 

@ = 90°, Kp = 107°/ 0.0383 | -0.500 7.31 |-19.6 17.2 
Z/D = 10 

6 = 90°, Kp = 0.1 | 0.0472 2.32 ~4.99 4.15 0.0 
Z/D = 25 

@ = 90°, Kp = 1077/ 0.0249 0.0698; 5.98 |-17.4 15.7 
Z/D = 25 

= 90°, Kp = 0.1 | 0.164 2.05 -6.60 13.4 |-11.3 
z/D = 100 

6 = 90°, Kp = 1077| -0.0203 2.93 |-11.1 25.3 |-21.8             
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loading and the line joining the centers of the interacting 

piles, j} and k. For intermediate values of Z/D, @ and Kp, 

ayr is obtained by interpolation. 

A Gauss elimination routine is used to solve for the 

values of Yg and Pj (j = 1 to Npile)- 

A4.6 Iteration for the Maximum Bending Moment in the Pile 

Group 

Duncan (1988) proposed that the maximum bending moment 

in the most severely loaded pile in a pile group can be 

estimated by first obtaining the lateral group deflection 

through the Focht and Koch procedure, and then softening the 

soil by reducing S, for clays or ¢’ for sands, until the 

group lateral deflection matches the single pile deflection. 

The corresponding value of maximum moment in that single 

pile gives a reasonable approximation of the maximum bending 

moment in the most severely loaded pile in the pile group. 

Using softened shear strengths, single pile deflections 

can be calculated using the Evans and Duncan procedure, 

described in Section A4.2. The single pile deflections are 

estimated with the aid of Equation Al for sand or Equation 

A2 for clay. A trial and error routine is used in the 

program to obtain the value of the shear strength, that 

results in a match between the deflection of the single pile
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in a softened soil and the group deflection. Using the 

value of the "softened" shear strength, the maximum bending 

moment in a single pile is then estimated with the aid of 

Equation A3 for sand or Equation A4 for clay. This value of 

moment is a reasonable approximation of the maximum bending 

moment in the group.
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