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(ABSTRACT)

The first part of this study was the development of a
simplified procedure for analyzing laterally loaded piles
and drilled shafts. A computer program that can be used to
estimate deflections and maximum bending moments in single
fixed-head piles (or drilled shafts) and in groups of fixed-
head piles (or drilled shafts) was developed. Using this
program, charts were developed for estimating deflections
and maximum bending moments directly in some of the more
common types of single piles and drilled shafts.

The computer program was also used to perform
parametric studies of groups of piles and drilled shafts,
from which simple formulae for amplifying single pile (or
drilled shaft) deflections and moments to those of the group
were derived. These simple formulae enable the analysis and
design of groups of deep foundations to be done more
efficiently. The simplified procedure was used to analyze
four well documented and well instrumented case histories of

laterally loaded pile groups. Comparison of the predicted



and measured results indicate that the simplified procedure
provides a method of analyzing laterally 1loaded groups of
deep foundations that yield quite accurate predictions of
group deflections and moments in some cases, and values that
are conservative in other cases.

The second part of the fesearch was to establish load
factor design procedures for incorporating margins of safety
for axially loaded deep foundations. Values of performance
factors were developed for 1load factor design of axially
loaded driven piles and drilled shafts. This was achieved
by analyzing statistical information for 1loads and
resistances, and determining the 1levels of reliability
inherent in current designs, through the use of probability
theory. Using these results, a target reliability level in
the form of a reliability index was selected. Values of
performance factors were then obtained for use with the
current AASHTO (1989) code for bridges and the ASCE Standard
7-88 (1990) for buildings and other structures. The issues
involved in a probabilistic analysis of groups of deep

foundations were also discussed.
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CHAPTER ONE

INTRODUCTION

The simplest type of foundations for buildings, bridges
and other structures are spread footings. However, spread
footings are not always suitable. For instance, when a
structure is underlai:x‘by soft clay or 1loose sand, deep
foundations may be needed to develop sufficient load-
carrying capacity or to reduce settlements. Fleming et al.
(1985) provided a detailed historical account of the
evolution of deep foundations; some of the highlights are
presented below.

Evidence exists in Europe that pile foundations were
used as early as 4000 years ago to support ancient lakefront
dwellings. The first recorded use of piles, dates back to
the fourth century B.C. where an African tribe, the
Peonions, lived on pile supported homes. One of the laws of
the tribe was that prior to marriage, a man had to drive
three piles into the ground. Being a polygamous tribe, a
considerable number of piles must have been driven by their
male citizens. In those days, piles were made from wood.
Timber piles continued to be used by the Greeks, Romans,
Egyptians and other civilizations, but they decay easily
when subjected to alternate spells of wetting and drying, or

when attacked by marine borers. Failure of piles by



degradation in these ways is known to have claimed many
lives.

It was not until the mid 1830s that metal piles first
appeared, in the form of cast iron pipes, and they were
usually used for more important structures. 1In 1838, screw
piles were employed for the first time in the construction
of a 1lighthouse on the Thames river in England. The
inventor of screw piles was Alexander Mitchell. At the end
of the nineteenth century, highway bridges in the state of
Nevada were the first structures to be founded on steel-I
beam piles. Around 1908, steel-I beam piles were superceded
by steel-H piles, marketed by Bethelem Steel Co.

Joseph Aspdin patented Portland cement in 1824, but it
was only in 1897 that A.A. Raymond developed the Raymond
cast-in-place concrete pile system. Close~ended steel pipe
piles that were filled with concrete after driving were
developed in 1903 by R.J. Beale. In 1908, a Belgian by the
name of E. Frankignoul invented the Franki driven-tube pile,
and, with the addition of an expanded base, it later became
the renowned Franki pile. Precast concrete piles also
became available around the same time.

The earliest form of drilled shafts was called a "well
foundation", where a hand-dug excavation or boring is filled
with stone. This concept was used in the construction of

the Taj Mahal in India from 1632 to 1650. The advent of



Portland cement in 1824, and the development of the
percussion boring equipment used for sinking wells in the
early 1900s led to the development of drilled shafts.

Over the years, research and development have produced
a wealth of information on the design and construction of
deep foundations. Deep foundations should be designed to
resist both axial and lateral loads. Many reliable methods
exist for the design of axially loaded deep foundations.
However, the procedure for designing deep foundations under
lateral loading are often very involved, and procedures for
estimating lateral deflections and bending moments in groups

of piles and drilled shafts are still evolving.

1.1 Objective and Scope

There are two main objectives in this study. The first
is the development of a simplified method for estimating
lateral deflections and maximum bending moments in single
piles and drilled shafts and in groups of piles and drilled
shafts. To facilitate this process, a computer program that
can be wused to estimate deflections and moments in
individual piles and drilled shafts as well as groups of
piles and drilled shafts is developed. Using this program,
charts for estimating deflections and maximum bending

moments in some of the more common types of single piles and



drilled shafts are developed. The computer program is also
used to perform parametric studies of groups of piles and
drilled shafts from which, simple formulae for amplifying
single pile (or drilled shaft) deflections and moments to
those for the group are derived.

The second objective of this study 1is to develop
performance factors for design of axially loaded piles and
drilled shafts using a reliability-based approach. This
study begins with an analysis of 1load and resistance
statistics. The mathematical formulation for computing
reliability indices is also presented. This is fcllowed by
computing reliability indices for several state-of-the-art
methods for predicting pile and drilled shaft capacities.
The sensitivity of the reliability indices to dead to 1live
load ratios and geometry of the deep foundations 1is also
studied. Finally, target reliability indices are selected

and used to determine the performance factors.
1.3 Organization

A review of literature on methods of designing piles
and drilled shafts under axial and lateral loads is given in
Chapter 2. Also included 1in Chapter 2 is a review of
methods of incorporating margins of safety in the design of

deep foundations.



The development of a simplified procedure for analyzing
laterally loaded piles and drilled shafts is described in
Chapter 3, accompanied by analyses of four well documented
case histories using the newly developed simplified
procedure. Comparisons are made between the predicted and
actual behavior.

In Chapter 4, the reliabilities of existing methods of
designing axially loaded piles and drilled shafts are
assessed through an analysis of the statistics of loads,
load tests on piles and drilled shafts, and soil parameters.
Using probability theory, the level of reliability inherent
in current design methods is determined, and recommendations
for incorporating margins of safety in the design of axially
loaded deep foundations are given in terms of performance
factors, that account for the uncertainty in the resistance
(eg. bearing capacity of foundations).

Chapter 5 presents a summary of the studies and

recommendations for future research.



CHAPTER TWO

REVIEW OF LITERATURE ON DESIGN OF DEEP FOUNDATIONS

Deep foundations are columnar elements embedded in the
soil beneath a structure for the purpose of transferring
loads from the superstructure into the underlying soil or
rock. Deep foundations must be designed to support the
imposed axial and horizontal loads safely and with tolerably
small movements. They can be divided into two classes: (i)
piles which are installed by driving and (ii) drilled shafts
which are installed by placing concrete in drilled holes.

The governing criterion in the design of vertically
loaded piles or piers is usually the magnitude of settlement
under load or safety against failure of the foundation
soils. The structural capacity of the piles or piers may
govern in cases where the foundation elements bear on sound
rock.

The governing criterion in the design of laterally
loaded piles and drilled shafts 1is wusually either the
maximum tolerable deflection or the structural capacity of
the deep foundation itself. Mobilizing the ultimate lateral
capacity of the soil requires such large displacemenﬁs that
this is not a realistic possibility, and ultimate soil

failure does not control the design.



The current-state-of-the-art with respect to design of
deep foundations as reflected in the literature is described

in the following sections.
2.1 Axial Loading

Drilled shafts may be used individually or in groups.
However, piles are usually driven in groups, and the most
important consideration is the capacity of the pile group.
At small spacings, especially in cohesive soils, groups of
piles or drilled shafts may fail as a unit consisting of the
piles and the soil between the piles. At large spacings,
the group capacity is equal to the sum of the imdividual
pile or drilled shaft capacities.

The bearing capacity of single piles 1is therefore
important because it may relate directly to the group
capacity, and it will be discussed in detail, followed by
the bearing capacity of pile groups. Similar discussions
are presented on the bearing capacity of single drilled

shafts and groups of shafts.



2.1.1 Bearing Capacity of Single Piles

The ultimate bearing capacity of deep foundations is

the sum of the shaft and point resistances, minus the weight

of the pile or drilled shaft:

Quit = Qs + Qp = W (2-1)

where Quit =

Qs

total ultimate bearing capacity of a pile or
a drilled shaft

ultimate load carried in side resistance by
piles or drilled shafts

Asdg

ultimate load carried in end bearing by piles
or drilled shafts

Apdp

surface area of the shaft of a pile or a
drilled shaft

area of the tip of a pile or a drilled shaft
ultimate unit side resistance of a pile or

a drilled shaft

ultimate unit tip resistance of a pile or

a drilled shaft

weight of the pile or the drilled shaft



In practice, the weight of the pile or drilled shaft is
small compared to the other terms, and 1is usually

disregarded.

One rational method of estimating the bearing capacity
of piles in compression is called the "static" approach.
Static formulae are based on either classical soil mechanics
theories or empirical correlations. These include the «, 8
and ) methods and methods based on in situ tests such as the
cone penetration test (CPT) or the standard penetration test
(SPT). The a, B and A methods are more suited for piles in
cohesive soils, while the SPT and CPT correlations are

better suited for piles in cohesionless soils.

2.1.1.1 a-method

The o method relates the adhesion between the pile and
the clay to the undrained shear strength of the clay. The

ultimate unit skin friction, gg, can be expressed by:
qs = QSU (2-2)

where S;; = mean undrained shear strength

a = adhesion factor applied to Sy
Tomlinson (1987) found that the value of the adhesion
factor, a, varies with the value of the undrained shear

strength, S,, as shown in Fig. 2.1. Although not shown in
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Driven Into Clay Soils (After Tomlinson, 1987)



11

the figure, there is considerable scatter around the curves
because factors such as pile length, overconsolidation ratio
and coefficient of lateral earth pressure are not
represented, although these factors affect the pile
capacity. Uncertainty in the undrained shear strength also
contributes to the scatter. However, the a-method is used
frequently in practice because it is simple, and because no
method is available that fully reflects the effects of pile
installation and all of the factors involved in the
reconsolidation processes.

The value of the adhesion factor (a) also depends on
the type of soil above the cohesive bearing stratum (Fig.
2.1). Soil from the upper layers may be carried down with
the pile into the clay bearing stratum. Bringing down soft
clay will tend to reduce adhesion while dragdown of
cohesionless soil will increase adhesion in the lower

cohesive stratum.

2.1.1.2 pB-method

The p-method 1is an effective stress method for
predicting skin friction of piles. The ultimate unit skin
friction, qg, is related to the effective stresses in the

ground as follows:

ds = op’tans
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K tané av ’

= B oy’ (2-3)

where op’ and oy’ are the horizontal and vertical effective
stresses respectively, § is the angle of shearing resistance
between the so0il and the pile, K is the coefficient of
lateral earth pressure and g, equals K tans.

The value of the parameter K 1is very important.
Kulhawy et al. (1983) noted that "the coefficient, K, is a
function of the original in situ horizontal stresses and the
stress changes caused in response to construction, loading
and time." When a pile is first driven into the ground, the
displaced soil exerts horizontal stresses on the pile.
Excess pore pressures are dgenerated and thus oy’ 1is 1low,
giving a high initial K value. As pore pressure dissipates,
K changes with time. Depending on the overconsolidation
ratio (OCR), the value of K may be higher or lower than the
at-rest coefficient of 1lateral earth pressure, Kg. Esrig
and Kirby (1979) developed the relationship between g and
OCR that is shown in Fig. 2.2.

The pg-method has been found to work best for piles in
normally consolidated and 1lightly overconsolidated clays.
The method tends to overpredict skin friction of piles in
heavily overconsolidated soils. Esrig and Kirby suggested
that for heavily overconsolidated clays, the value of 8

should not exceed 2.
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2.1.1.3 J-method

Vijayvergiya and Focht (1972) recognized that the
passive lateral earth pressure (op’= oy’+ 2Sy) and the
ultimate unit skin friction of a pile are related. They

proposed the following relationship:

where A is an empirical coefficient shown in Fig. 2.3. The
value of A decreases with pile 1length and was found
empirically by examining the results of load tests on steel

pipe piles.

2.1.1.4 SPT Method

In situ tests are widely used in cohesionless soils
because obtaining good quality samples of cohesionless soils
is very difficult.. In situ test parameters may be used to
estimate the tip resistance and skin friction of piles. Two
frequently used in situ test methods for predicting pile
capacity are the standard penetration test (SPT) method and
the cone penetration test (CPT) method.

Meyerhof (1976) correlated the tip capacity and shaft

resistance of piles with the SPT blow-count. This method

applies only to sands and non-plastic silts.
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(a) Pile Tip Capacity - The ultimate unit tip resistance for
piles, dp (in tons per square foot) driven to a depth Dp
into a cohesionless soil stratum can be approximated by:

dp = = 4q) (2-5)
P D

where Nooprr = average corrected SPT-N value near the pile
tip
= [0.77 logyg (20/0y’)] N (2-6)
N = measured SPT-N value
oy’'= effective vertical stress at the pile tip (in
tons/ftz)
D = pile width or diameter

d] = limiting point resistance (tons per square

foot)
b 4Ncorr for sands (2-7)
= 3Ncorr for non-plastic silt (2-8)

The rationale behind Equation 2-5 is that the ultimate
unit tip capacity 1in a cohesionless stratum increases
linearly with the embedment ratio (Dp/D) up to a critical
embedment ratio of 10 for sands, or 7.5 for silts. At
higher embedment ratios, the tip capacity remains constant
at its limiting value; a1 -

In bearing strata with highly varying blow=-counts,

Meyerhof (1976) proposed that the average blow-count be
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obtained within the range of depth from 4 pile diameters
above to 1 pile diameter below the tip.

Piles bearing on a firm stratum overlying a weaker
layer may punch into the lower stratum as shown in Fig. 2.4.
Meyerhof (1976) suggested that if the distance between the
pile tip and the weak deposit (H) is 1less than 10 pile
diameters, the ultimate point resistance will be:

(dq1 - do)H

dp = Qo + < q (2-9)
10D

where gqj is the 1limiting unit tip resistance in the upper
stratum and gqp is the limiting unit tip resistance in the
lower stratum.

(b) Skin Friction - The skin friction of piles in
cohesionless soils may be estimated using the following

equation (Meyerhof, 1976):

ds for driven dispacement piles (2-10)

&l
ol=l

for non-displacement piles (2-11)

ds = _ﬁ_ C
100 (eg. steel-H piles)

where gg = unit skin friction for driven piles measured in

tsf

|
|

average (uncorrected) SPT-blow count along the

pile shaft.
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2.1.1.5 CPT method

The cone penetration test yields two useful parameters
that can be applied to pile capacity prediction: (i) the
cone penetration resistance, gqo, which is related to the tip
capacity of piles and (ii) sleeve friction, fg, which can be
used to estimate the skin friction capacity. Nottingham and
Schmertmann (1975) developed the following procedure for
estimating pile capacity:

(a) Pile Tip Capacity - Nottingham and Schmertmann (1975)
found that a procedure that had been developed earlier by
Begemann provided a good estimation of end bearing capacity
in piles for all soil types. Begemann’s procedure for
estimating the tip resistance, dp is outlined in Fig. 2.5.
The minimum average cone resistance between 0.7 and 4 pile
diameters below the elevation of the pile tip is obtained by
a trial and error process, with the use of the minimum-path
rule (see Fig. 2.5). The "minimum-path rule" developed by
Begemann is also used to find the value of cone resistance
for the soil for a distance of eight pile diameters above
the tip. The two results are then averaged to give the pile
tip resistance.

(b) Skin Friction - Nottingham and Schmertmann (1975)
presented the following equation for computing the ultimate

skin friction of piles:
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2700272722272

envelope of minimum
q. values

Depth

q,=

Qs + 92
2

dcl ™ Average of all values of qg aslong path a-b~¢c over a distance of yD below the pile tip. Sum q¢
values measured at each elevation in the downward path a-b. Sum qc values at every elevation
where a cone resistance reading is made, along the upward path b-c, but at each slevation take
the minimum of (i) the qc value at that elevation or (ii) the lowest qc value between that
elevation and the elevation of point b. This method of determining qc is called the "minimum
path” rule. Compute qc)} for y-values from 0.7 to 4.0 and use the minimum qc3 value obtained.

Qc2 ™ Average qc over a distance of 8D above the pile tip (path c-e). Use the minimum path rule as
for path b-c in the qc] computations. Ignore any very extreme peaks or depressions (such as
"x" in the diagram above) if the soil is a sand, but include these in minimum path if the soil

is a clay.

Figure 2.5 Pile End-Bearing Computation Procedure After
Begemann (After Nottingham and Schmertmann,

1975)
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8D Z
Qs = Kg,c [ £ (Lg/8D)fgag + © fgag ] (2-12)
Le=0 Lg=8D

where Qg = ultimate skin friction capacity of the pile
Kg,c = correction factors: Kc for clays and Kg for sands
(see Fig. 2.6)
Lf = depth to point considered
D = pile width or diameter
fg = unit local sleeve friction resistance from CPT at

the point considered

ag pile perimeter
Z = total embedded pile length.
The advantages of using this method is that it (i)
corrects for the type of cone penetrometer used (electrical
versus mechanical), (ii) accounts for the material of the

pile, (iii) considers the soil type, and (iv) corrects for

depth of pile embedment.
2.1.2 Bearing Capacity of Groups of Piles

The ultimate bearing capacity of a pile groupvin sand
is estimated by summing the capacities of all the piles in
the group (Poulos and Davis, 1980). The group efficiency,
defined as the ratio of the ultimate load capacity of the
pile group to the sum of the ultimate capacities of the

individual piles, 1is —conservatively taken as unity.
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Evaluation of group capacity of piles in cohesionless soil
is the same for the case when the pile cap is, and is not in
contact with the ground.

For pile groups in cohesive soil, the presence aﬁd
contact of the pile cap with the ground surface must be
considered. Pile groups in clay with the cap in firm
contact with the ground may fail as a unit consisting of the
piles and the block of soil contained within the piles, and
the ultimate bearing capacity in this case may be taken as
the minimum of the following two values:

(i) the sum of the individual pile capacities, or
(ii) the bearing capacity for block failure of the group.
For a pile group of width X, length Y and depth Z (Fig.

2.7), the bearing capacity for block failure is given by:
Qg = (2X + 2Y)2S,; + XYNGSy (2-13)

where §u = average undrained shear strength along the depth
of penetration of the piles

Su = undrained shear strength at the base of the group

Nc = 5(1 + 0.2X/Y) (1 + 0.2Z/X) for 2/X < 2.5 (2-14)

Nc = 7.5(1 + 0.2X/Y) for Z/X > 2.5  (2-15)

If the pile cap is not in firm contact with the ground
and the clay is normally or slightly overconsolidated or is
sensitive, the individual pile capacity must be multiplied

by an efficiency factor, n, where n = 0.7 for a pile spacing



24

,,o” ~O~<
/'d o n"~o
Ve o o
o~ o o © ~
o~ o o O
F“ﬁc - (o) O ’,/Dr
SO 3

Figure 2.7 Pile Group Acting as Block Foundaticn




25

of 3D and n = 1.0 for a pile spacing of 6D. The value of g
may be linearly interpolated for intermediate spacings. The
group capacity is then calculated as the minimum of:
(i) the sum of the individual pile capacities multiplied by
n, or
(ii) the bearing capacity for block failure as described
above.
If the clay is overconsolidated and insensitive, then the
group should be treated as if the cap were in contact with
the ground.
The vertical bearing capacity of a ©pile group
containing batter piles may be estimated by treating the

batter piles as vertical piles.

2.1.3 Bearing Capacity of Single Drilled Shafts

2.1.3.1 Drilled Shafts in Cohesive Soils

The ultimate capacities of drilled shafts in cohesive
soils are usually governed by the conditions at the end of
construction. Therefore, drilled shafts 1in <clays are
usually designed using total stress methods (eg. Reese and
O’Neill, 1988). However, 1in some circumstances, the
strength of the soil can change with time. These include
shafts in expansive soils and shafts installed in cohesive

soils that consolidate and move downward relative to the
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shafts. In these cases, effective stress analyses (not

discussed here) may be used.

(i) Shaft Resistance (a-method)

The a-method relates the adhesion between the drilled
shaft and the clay to the undrained shear strength of the
clay. The ultimate unit skin friction, gg, can be expressed

by:
ds = aSy (2-16)

where S;; = undrained shear shear strength and o« = adhesion
factor applied to S;;. Reese and 0’Neill (1988) developed a
procedure for prescribing « values along the 1length of
drilled shafts in overconsolidated clays. Table 2.1 shows
the values of a recommended by Reese and O’Neill. Fig. 2.8
shows the portions of the length of drilled shafts that are
considered not to contribute to shaft adhesion.

The value of « is zero for the top 5 ft, consistent
with findings from load tests. Load test data on
instrumented drilled shafts have shown load transfer to be
zero at the ground surface, increasing with depth. Because
the rate of increase has not been determined with much
certainty, Reese and O’Neill chose to use a = 0 in the top 5

ft.
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Table 2.1 Recommended Values of o for Drilled Shafts in Clay
(After Reese and 0O'Neill,

1938)

(Location Along

Undrained Shear

Value of a

Drilled Shaft Strength
WFrom ground surface to - 0

depth a;ong drilled shaft

of 5 ft

Bottom 1 diameter of the - 0

drilled shaft or 1 stem

diameter above the top of

the bell (if skin friction

is being used)

All other points along the

sides of the drilled shaft < 2 tsf 0.55
2 - 3 tsf 0.49
3 - 4 tsf 0.42
4 - 5 tsf 0.38
5 - 6 tsf 0.35
6 - 7 tsf 0.33
7 - 8 tsf 0.32
8 - 9 tsf 0.31

> 9 tsf Treat as Rock

* The depth of 5 ft may need adjustment if the drilled shaft is
installed in expansive clays, or if there is substantial

groundline deflection from lateral loading.
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Top Five Feet
Noncontributing

_v

Bottom One Diameter
of Stem
Noncontributing

A

Bottom One Diameter Periphery of Bell
Noncontributing Noncontributing

!

Straight Shaft Belled Shaft

Figure 2.8 Portions of Drilled Shafts not Considered in
Computing Side Resistance (From Reese and
O'Neill, 1988)
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The footnote in Table 2.1 accounts for the following:
(a) during dry weather, expansive soils shrink and move away
from the shaft. A value of a = 0 may be selected for a
depth greater than 5 ft as indicated by the depth of
seasonal moisture change in areas with expansive soil, and
(b) during lateral loading, the clay at the groundline may
be pushed away due to lateral deflection of the shaft,
especially if the loads are cyclic in nature, causing the
shaft to be deflected back and forth.

The value of a 1is also =zero for a distance of 1
diameter above the base of the shaft, because downward
movement of the base can cause a tensile crack to develop in
the soil near the base.

Based on load tests on drilled shafts in clay, Reese
and 0’Neill suggested the use of o« values in Table 2.1 for
the remaining portions of the drilled shaft. The value of a
may be less than those in Table 2.1 in sensitive clays. 1In
such soils, 1load tests should be conducted to establish
appropriate values of a.

The data used in deriving this design method does not
include clays with (a) S, greater than 6 tsf, (b) OCR

greater than 10, or (c) sensitivity greater than 4.
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(ii) End Bearing

Reese and O0O’Neill (1988) applied Skempton’s (1951)
expression for end bearing of piles in clay, to drilled

shafts as follows:

dp = NgSy = 40 tst (2-17)

where Ng 6(1 + O.ZZ/Dp) <9
Sy = average undrained shear strength of clay over a
depth of one to two diameters below the base
Z = distance that the shaft extends into the ground

Dp = diameter of the base of the shaft

The 1limiting value of dp (40 tsf) is based on the
largest value measured in clays and is not a theoretical
limit. Higher values of qp may be used if indicated by load
test results.

Nco should be reduced by 1/3 (i.e., use 2Ng/3 in
computations) in soft <clays to account for 1large
displacements prior to bearing capacity failure.

If Dp exceeds 75 in., the ultimate unit end bearing
capacity of drilled shafts in stiff to hard clay should be

reduced to dpr as follows (Reese and O’Neill, 1988):

dpr = Frdp (2-18)
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2.5
where Fp = < 1.0
aDp (in.) + 2.5b
a = 0.0071 + 0.0021 Z/Dp ‘ < 0.015
b = 0.45/Sy(ksf) where 0.5 < b < 1.5

Equation 2-18 is based on 1load tests of large diameter
underreamed drilled shafts in clay, and dpr corresponds to a

base settlement of 2.5 in.
2.1.3.2 Drilled Shafts in Cohesionless Soils

While many field 1load tests have been performed on
- drilled shafts in clays, very few have been performed on
drilled shafts in sands.

The shear strength of cohesionless soils can be
characterized by an angle of internal friction (¢’) or
empirically related to values of SPT blow count (N).
Methods of estimating shaft resistance and end bearing using

either ¢’ or N values are presented below.

(i) shaft Resistance

Table 2.2 summarizes 5 methods of predicting shaft
resistance of bored piles in sand. Quiros and Reese (1977)
and Reese and O’Neill (1988) indicate that the unit side

resistance should be limited to 2 tsf, corresponding to the
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Table 2.2 Summary of Procedures for Estimating Side
Resistance (gg) of Drilled Shafts in Sand.

REFERENCE

DESCRIPTION

i

|

(Touma and Reese
L (1974)

qs = Kov’tan¢, < 2.5 tsf

‘ where K = 0.7 for Dp < 25 ft
| K = 0.6 for 25 ft < Dp < 40 ft
K = 0.5 for Dp > 40 ft
N
Meyerhof g (tsf) = —
(1976) 100
Quiros and Reese gg (tsf) = 0.026N < 2 tsf
(1977)
N
Reese and Wright gdg (tsf) = — for N < 53
(1977) 34
N - 53
gs (tsf) = + 1.6 for 53 < N < 100
450
Reese and O’Neill| gg (tsf) = foy’ < 2 tsf for 0.25 < < 1.2

(1988)

where g = 1.5 - 0.135/2

where N = uncorrected SPT blow count
oy’ = vertical effective stress
¢’ = friction angle of sand

K = load transfer factor

Dp = embedment of drilled shaft in sand bearing layer

8 = load transfer coefficient

2 = depth below ground in feet
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" maximum value ever measured, and Touma and Reese (1974)
suggest an upper limit of 2.5 tsf. These values however,
are not theoretical limits. Higher values can be used if
they are verified by load tests.

It may be noted that the side resistance of drilled
shafts in sand can be estimated using (a) the friction angle
[Touma and Reese (1974)] or (b) the SPT blow count [Meyerhof
(1976), Quiros and Reese (1977) & Reese and Wright (1977)].
Reese and O0O’Neill (1988) proposed a method for uncemented
sands that uses a different approach in that the shaft
resistance is independent of the soil friction angle and the
SPT blow count. They suggested that the friction angle
approaches a common value for uncemented sands due to high
shearing strains in the sand and stress relief that occurs

during drilling.

(ii) End Bearing

Load tests show that large settlements are required to
mobilize the maximum end bearing resistance of drilled
shafts in sands. Since large settlements are not tolerable
in most structures, the procedures presented in Table 2.3
for calculating the ultimate unit end bearing capacity (dp)
are based on a downward movement equal to either 1 inch

[Touma and Reese (1974) and Quiros and Reese (1977)] or 5%
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Table 2.3 Summary of Procedures for Estimating Base Resistance
(gp) of Drilled Shafts in Sand.

REFERENCE DESCRIPTION
Touma and Reese Loose dp (tsf) = 0 (k = 1 for
(1974) Dp < 1.67 ft
16 & k = O.6Dp
Medium Dense gp (tsf) = — { for Dp 2
k 1.67 ft.
40
Very Dense gp (tsf) = — Applicable
k only if
Dy > 10D
! 2NcorrDp 4
Meyerhof qp (tsf) = ——— < — Neorr for sand
(1976) 15Dp

< Ncorr for nonplastic
silts

Quiros and Reese Same as Touma and Reese (1974)
(1977)

2
Reese and Wright qp (tsf) = - N for N < 60
(1977) 3
dp (tsf) = 40 for N > 60
Reese and 0O’Neill gp (tsf) = 0.6N for N < 75
(1988)
dp (tsf) = 45 for N > 75

where Neorr = SPT blow count corrected for overburden pressure
= [0.7710g910(20/0y’) IN
N = uncorrected SPT blow count
Dp = base diameter of drilled shaft in ft

Dp = embedment of drilled shaft in sand bearing layer
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of the base diameter [Reese and Wright (1977) and Reese and
O’Neill (1988)].

Reese and O’Neill (1988) recommend that for Dbase
diameters greater than 50 in., gp should be reduced to qpr
as follows:

dpr = — 9p (2-19)

where gpr = reduced base resistance for Dp > 50 in.

Dp diameter of the base of the shaft (in.)

dp

ultimate unit end bearing resistance calculated

using one of the methods in Table 2.3.

Meyerhof’s expression for base resistance stems from
the idea that the point resistance increases linearly with
embedment up to a 1limiting depth of 10 shaft diameters:
thereafter, the point resistance remains constant with

depth.

2.1.3.3 Drilled shafts In Rock

Drilled shafts socketed in rock derive their axial
capacities from end bearing and/or side resistance. The
depth of the socket is typically one to three times the
diameter (Canadian Geotechnical Society, 1985). The design

procedure presented in this section assumes that: (a) the
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rock strength measured during site investigation will not
deteriorate during construction when water or drilling
fluids are used, (b) the drilling fluid used will not form a
lubricated film on the sides of the excavation, and (c) the
bottom of the excavation is properly cleaned out. This is
especially important if the capacity of the drilled shaft is
based on end bearing.

The design procedure proposed by Reese and O0’Neill
(1988) for bearing capacity of drilled shafts socketed in
rock assumes that the load is carried entirely by the shaft
if the computed settlement is less than 0.4 in. Conversely,
loads that cause settlements greater than 0.4 1in. are
assumed to be carried entirely by the base of the drilled
shaft. This method is conservative since loads are assumed
to be carried entirely in side resistance or entirely in end
bearing, and no allowance is made for the 1loads to be
carried by a combination of side resistance and end bearing.

The steps in the design procedure are as follows:

1. Estimate the settlement of the portion of the drilled
shaft that is socketed in rock. This consists of two
components:

(a) the elastic shortening of the socketed portion of the

drilled shaft, pe, which can be computed as follows:



37

(2Pj)Hg
pe = ——— (2-20)
AsocEc
where Hg = depth of the socket
ZPj = working load at the top of the socket

Agoc = cross-sectional area of the socket

t
Q
i

Young’s modulus of concrete in the socket,
considering the stiffness of any steelv
reinforcement, and

(b) settlement of the base of the drilled shaft, ppage:
which can be computed as follows:

(2P1) I,

Pbase = — (2-21)
DsEr

£
e 3
0
2]
o
|
©
il

influence coefficient obtained from Fig. 2.9
Dg = diameter of the base of the drilled shaft
socket
Er = modulus of the in situ rock, taking the joints
and their spacing into account.
The Young’s modulus of the in situ rock, E,, can be

estimated as follows:

Ey = KgEj (2-22)

where Ej intact rock modulus found either by testing or
by means of Fig. 2.10

Kg = modulus modification ratio, related to the
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rock quality designation (RQD), as shown in

Fig. 2.11

Calculate pg + ppage- If the sum is less than 0.4 in.,
compute the ultimate capacity based on shaft resistance
alone (Paragraph 3). If the sum is greater than 0.4 in.,
compute the ultimate capacity based on base resistance

alone (Paragraph 4).

Estimate the side resistance of drilled shafts socketed
in rock as follows: if the uniaxial compressive strength
of the rock is less than or equal to 280 psi, then the
ultimate unit side resistance (gg) is given by (Carter

and Kulhawy, 1987):
ds = 0.15qy (2-23)

where q,; is the uniaxial compressive strength of the
rock. If the uniaxial compressive strength of the rock
or concrete (in the drilled shaft), whichever is less, is
greater than 280 psi, then gg is given by (Horvath and

Kenney, 1979):
ds = 2.5/qy (2-24)

where gqg and qu are in psi.
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4. Estimate the base resistance of the drilled shaft socket
from the uniaxial compression strength as follows

(Canadian Geotechnical Society, 1985):

where q;; = average uniaxial compression strength of the
rock core

Ksp = dimensionless bearing capacity coefficient

3 + sg/Dg
Kgp = (See Fig. 2.12) (2-26)

10[1 + 300tg/sq]®->

d = dimensionless depth factor

d =1+ 0.4Hg/Dg =< 3.4

sq = spacing of discontinuities

tq = width or thickness of discontinuities

Dg = diameter of drilled shaft socket

Hg = depth of embedment of drilled shaft socket
= 0 for drilled shafts resting on top of

bedrock.

This method is not applicable to soft stratified
rocks, such as shale or limestone. When this method is
applicable, the rocks are usually so sound that the
structural capacity will govern the design (Fellenius
et al., 1989). This method is applicable only if (a)
sq > 1 ft, (b) tg < 0.25 1in. for unfilled

discontinuities or tg < 1 in. for discontinuities
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filled with soil or rock debris, and (c) Dg > 1 ft.
For drilled shafts socketed in soft rock, treat the
rock as soil and design the drilled shaft using the
methods described in Section 2.1.3.1 if the material is
cohesive or Section 2.1.3.2 1if the material is
cohesionless. This procedure can also be used to
estimate the tip resistance of driven piles bearing on

rock; in this case, Hg = 0.

2.1.4 Bearing Capacity of Groups of Drilled Shafts

For groups of drilled shafts in cohesive soil, the mode
of behavior depends on whether or not the cap is in contact
with the ground. If the cap is in contact with the ground,
groups of shafts may fail as a unit consisting of the shafts
together with the block of soil contained within the shafts.
The ultimate bearing capacity in this case should be taken
as the minimum of the following two values:

(i) the sum of the individual capacities of the drilled
shafts, or
(ii) the bearing capacity for block failure of the group.

For a group of drilled shafts of width X, length Y and

depth 2, the bearing capacity for block failure in cohesive

soils is given by Equation 2-13.
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If the cap is not in firm contact with the ground and
the clay is normally consolidated or slightly
overconsolidated or is sensitive, the individual capacity of
the drilled shaft must be multiplied by an efficiency
factor, 5, where n = 0.7 for a center-to-center spacing of
3D and n = 1.0 for a spacing of 6D (Reese and O’Neill,
1988). The value of n may be linearly interpolated for
intermediate spacings. The group capacity 1is then
calculated as the minimum of:

(i) the sum of the individual capacities of the drilled
shaft multiplied by 5 or

(ii) the bearing capacity for block failure as described
above.

If the cap is not in firm contact with the ground, and
the clay is heavily overconsolidated and insensitive, then
the group capacity should be estimated in a similar manner
as the case where the cap is in contact with the ground.

Installation of drilled shafts in cohesionless soils
results in stress relief. Therefore, the density of the
sand may decrease during construction of drilled shafts.
The ultimate bearing capacity of a group of drilled shafts
in sand 1is estimated by multiplying the sum of the
capacities of all the shafts in the group by a group
efficiency factor. The group efficiency factor, defined as

the ratio of the ultimate load capacity of the group to the
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sum of the ultimate capacities of the individual shafts, is
0.7 for a center-to-center spacing of three diameters and
1.0 for a spacing of six diameters (Reese and O0’Neill,
1988). The value of the efficiency factor can be
interpolated for intermediate spacings. Evaluation of group
capacity of drilled shafts in cohesionless soil is the same
whether the cap is or is not in firm contact with the
ground.

Block failure can also occur when the base of a group
of shafts overlies a layer of soil very much weaker than the
layer in which they terminate. The bearing capacity of the
base of the equivalent pier, dp can be computed as follows:

(d1 - d9o0)H

dp = do + = q (2=-27)
10X

where g5 = bearing capacity of base if it were at the top of
the lower (weak) soil
gy = bearing capacity of base in the upper soil in the
absence of the softer lower soil
H = vertical distance from the base of the shafts in
the group to the top of the weak layer

X = width (least horizontal dimension) of group.
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2.2 Lateral Loading

Lateral loads on deep foundations arise due to wind,
earthquake, water pressures, earth pressures, and 1live
loads. Deep foundations must be designed to withstand such
forces without failing and without deflecting excessively.

Mobilizing the ultimate lateral capacity of the soil
requires such large displacements that this 1is not a
realistic possibility, and ultimate so0il failure does not
usually control the design. Of interest to a designer of a
laterally loaded deep foundation is the deflection of the
pile or pier and the maximum bending moment in it.
Estimating these quantities requires analysis of the

interaction between the foundation and the surrounding soil.

2.2.1 Single Piles and Drilled Shafts

The behavior of single piles or drilled shafts under
lateral loads can be analyzed using (a) elastic analysis,
(b) subgrade reaction analysis, and (c) p-y analysis.
Elastic analyses and subgrade reaction analyses approximate
the soil behavior as linear. Since soil behavior is seldom
linear especially at high stress 1levels, non-linear p-y
analysis will form the basis of the theory for laterally

loaded deep foundations considered here.
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2.2.1.1 p-y Analysis

The p-y method, devised by McClelland and Focht (1958),
appears to be the most rational procedure for the design of
deep foundations under 1lateral 1loading. It was initially
developed from full scale load tests data for design of
offshore platforms.

The procedure involves solving the beam equation for a
laterally loaded pile as follows:

d4y
Eplp— + Egy = 0
p sz4

(2-28)
where EpIp = flexural stiffness of the pile (FLZ), Ep and Ip
are the Young’s modulus (FL’z) and moment of inertia (L4) of
the pile, y = deflection of the pile (L), z = depth (L), Eg
= -p/y = subgrade (soil) modulus (FL'Z), and p = soil
reaction (FL'l).

The magnitude of the soil modulus Eg varies with the
soil displacement (y) due to the nonlinearity of the stress-
strain behavior of soils. Because of the inhomogeneity of
the soil and because the soil reaction varies with depth in
a laterally loaded deep foundation, the soil modulus is best
described by a family of p-y curves as shown in Fig. 2.13.

Recommendations for computing p-y curves for various soil

types and groundwater conditions are given by Reese (1984).



49

=y

) |

Figure 2.13 p-y Curves for Analysis of Piles and Drilled
Shafts Under Lateral Loading (After Reese,
1977)
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The solution to the problem of a laterally loaded pile
or drilled shaft requires the use of computer programs and
involves considerable engineering time. However, non-linear
analysis can be greatly simplified if | generalized,
dimensionless forms of p-y curves capable of representing a
wide variety of soil types, soil strengths, pile sizes, pile
stiffnesses and different loading conditions can be derived.
This is possible since only the so0il close to the ground
surface is important with regard to lateral loads. A non-
dimensional technique has been developed by Evans and Duncan

(1982) .
2.2.1.2 Evans and Duncan Procedure

Through the use of dimensional analyses, Evans and
Duncan (1982) developed a simple procedure for analyzing the
nonlinear behavior of 1laterally 1loaded piles, capable of
predicting lateral deflections and bending moments as would
a p-y analysis. | It is based on a large number of p-y
analyses of both free-head and fixed-head piles in cohesive
and cohesionless soils. Their study resulted 1in the
following useful dimensionless relationships: (1) 1lateral
load versus lateral deflection, (2) moment versus lateral
deflection, and (3) lateral load versus moment. Using these

charts, it is possible to predict deflections and moments in
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laterally loaded piles without the need for a computer.

Details of the procedure will be presented in Chapter 3.

2.2.2 Groups of Piles or Drilled Shafts

Drilled shafts may be used either individually or in
groups. Piles however, are wusually driven in groups.
Procedures for analyzing group behavior of piles (or drilled
shafts) should ideally be capable of estimating (i) group
deflections, (ii) load distribution among piles or drilled
shafts in the group, and (iii) the maximum bending moment
induced in the group. This section will review some of the
techniques available for such analysis.

Pile group problems can be divided into two categories:
(i) groups of widely spaced piles and (ii) groups of closely
spaced piles. The first category consists of piles that are
spaced far enough apart that the deflection of one pile in
the group will not affect the other piles, and that the
piles interact only through the pile cap. It suffices to
analyze this category of pile groups by distributing the
lateral loads equally among all the piles in the group, and
considering the behavior of any one pile. Conversely, in
groups of closely spaced piles, the response of one pile in
a group will influence the nearby piles through the soil

between them. This behavior is termed pile-soil-pile
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interaction. This category of pile groups will be studied

more closely in Chapter 3.
2.2.2.1 Factors That Affect Group Behavior

Factors that affect single pile behavior such as pile
size, pile stiffness and soil strength also affect the
behavior of pile groups. Pile length is not a consideration
here as the discussion is limited only to long piles, 1i.e.
piles which would show little or no reduction in lateral
displacement under the same lateral 1load if the pile
embedment was increased. However, several important
differences exist between single pile behavior and the
behavior of pile groups. They include: (i) pile-soil-pile
interaction, (ii) presence of a pile cap, (iii) effect of
installation on adjacent piles, and (iv) rotational

restraint afforded by the pile cap (Brown and Reese, 1985).

(i) Pile-soil-pile Interaction

The deflection of any pile in a group causes deflection
of the surrounding soil and piles, thus leading to larger
deflection for the pile group than for single piles
subjected to the same 1load per pile. Pile-soil-pile
interaction is one of the most significant differences in

the behavior of pile groups as compared to single piles.
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Therefore, reliable methods of predicting pile group

behavior should account for this effect.

(ii) Effect of Pile Cap

The presence of a cap connection to a group of piles
can increase the restraint of the piles to lateral
displacement provided the soil surrounding the cap remains
in contact with the cap throughout the 1life of the
structure. However, the effects of settlement of the soil
around the piles, or scour, can cause a loss of cap-soil
contact. For this reason, énd the fact that it is difficult
to model the behavior of a cap under 1lateral 1load, the
resistance contribution of the cap to lateral 1loads is

usually neglected in practice.

(iii) Effect of Installation on Adijacent Piles

Deep foundatidns can be installed by means of the
following procedures: (a) driving (eg. driven piles), (b)
boring and casting in situ (eg. drilled shéfts), (¢) driving
a casing and casting in situ (egs. cast-in-shell piles or
filled pipe piles), and (d) screwing (eg. screw piles).

Pile installation effects are difficult to quantify and
model accurately, and are usually neglected. Installation

of deep foundations can lead to: (a) a change in consistency
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of the soil and (b) a change in the state of stress in the
ground.

Installation by driving displacement piles in 1loose
sands causes soil densification and possibly particle
crushing. When piles are driven in groups in 1loose
cohesionless soils, the soil around the piles becomes highly
compacted, and this can lead to an increase in the lateral
resistance of the piles. Driving piles in cohesive soils
causes remolding of the soil and consequently, a loss in
shear strength. As consolidation progresses, pore pressures
dissipate and the shear strength increases. The original in
situ shear stength may or may not be surpassed depending on
the stress history and sensitivity of the soil. Pore
pressures dissipate more slowly in pile groups than around
single piles (O’Neill, 1983).

Installation by driving causes a displacement of a
volume of soil equal to the volume of the pile.
Displacement of the soil causes a change in the magnitude
and direction of the principal stresses. If the piles are
spaced close together, there would be an overlap of the
zones of stress increase in the soil between the piles.

Where the pile is installed in a prebored hole such as
in the construction of a bored pile, stress relief occurs in
the soil. Moreover, migration of water from wet concrete

into the so0il can further soften the soil. As a result, the
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lateral resistance computed using the shear strength of tﬁe
ground prior to installation may be less than the lateral
resistance available to the bored pile.

The soil strength that governs the behavior of pile
groups under lateral 1load is that of the soil after
installation. and reconsolidation. Present methods of
lateral load analysis of deep foundations do not involve
adjustments to account for installation effects because
rational assessment of installation effects would require
better understanding of soil behavior than is characteristic
of the current state-of-the-art. The effects of
installation can at best be treated only qualitatively. A
better understanding of installation effects could help pave
the way for the evolution of more reliable methods of
predicting group behavior of deep foundations under 1lateral

loads.

(iv) Effect of Rotational Restraint at the Pile Cap

Piles that are embedded in reinforced concrete pile
caps are effectively restrained from rotation at the top,
and they thus deflect laterally with negligible rotation at
the top of the pile. It is convenient in analytical
techniques to represent the pile-to-pile cap connection as
fixed, pinned or free. Brown and Reese (1985) argued that

these assumptions are not strictly correct. However, the
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degree of rotational restraint afforded by typical pile caps
is sufficiently close to the fixed-head case so that that
condition affords an accurate approximation, accurate enough

for practical purposes.

2.2.2.2 Methods of Predicting Lateral Behavior of Groups of

Piles and Drilled Shafts

The lateral behavior of pile groups can be predicted
through the use of experimental techniques (such as model
tests or full scale load tests) or analytical methods.
Althodgh model tests are inexpensive to run, they are
incapable of representing correctly the soil stresses in the
prototype. Kulkarni et al. (1985) have overcome this
particular difficulty by carrying out centrifugal modelling
of pile groups under lateral load. Full scale load tests,
on the other hand, are extremely expensive.

In general, analytical models available for predicting
lateral behavior of pile groups can be divided into five

categories (0O’Neill, 1983):

1. finite element method
2. continuum model
3. modified continuum model

4. modified unit load transfer and
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5. hybrid model.

(i) Finite Element Method

With the present pace of advancement in computer
hardware technology, 3-D finite element analysis of pile
groups may prove to be a promising tool in analyzing
laterally loaded pile groups, especially in highly
stratified soils. Moreover, the finite element method is
capable of accounting for the presence and stiffnesses of
the piles and the soil correctly. However, disadvantages of
3-D finite element analysis include: (i) the problem is
complex, (ii) high quality and extensive soil test data is
required to fully describe the soil behavior, and (iii) it

is not able to model installation effects.

(i1ii) Continuum Model

The continuum model includes the approach of Poulos
(1971), which assumes the soil to be elastic. Poulos used
Mindlin’s three dimensional elasticity equations to solve
for stresses and displacements due to horizontal point loads
applied in an elastic half space. The solution can be used
to evaluate the influence of one pile on other piles in the

group through the use of elastic influence factors.
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Poulos’ (1971) procedure can be used to estimate the
elastic groundline deflection of a pile within a group as
follows:

— |Npile
Pk = PF Z_ (Pya,Fkxj) + Px' | (2-29)
P
where py = lateral deflection of pile k (L)

pr = unit elastic displacement of a single pile under

unit horizontal load (LF'l)

= I,r/Es2
I,r = influence factor (Fig. 2.14)
Eg = Young’s modulus of soil (FL™2)

Z = length of the pile (L).

Npile = number of piles in the group
Py = lateral load on pile j (F)
a,Fkj = elastic interaction factor for determining the
influence of pile j on pile k, based on the
spacing between piles j and k and the angle ¢
¢ = angle between direction of loading and the line
joining the centers of piles j and k, and
Px = lateral load on pile k (F)
The interaction factor, a,fxj, can be obtained from

Fig. 2.15 for fixed-head piles. a,fFkj is a function of the

spacing to diameter ratio (s/D), 4 and Kr, where s = center-
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to-center pile spacing, D = pile width or diameter and KR is

the pile flexibility factor defined as follows:

_ Eplp

(2-30)
Egz4

KR

where Ep = Young’s modulus of pile (FL"Z) and Ip = moment of
inertia of pile (L4).

If the piles are connected by a cap, then the piles
will all deflect equally. Equation 2-29 yields a set of
Npile equations but there are a total of (Npjlje + 1)
unknowns; Npjle unknown values of reaction in each pile, and
one unknown value of group deflection, Yg = p1 = P2 = +....=
PNpile- The remaining equation needed in order to solve for
the set of (Npjje + 1) unknowns is the requirement that the
sum of the individual pile loads must equal the load on the
group, Pqg, i.e.

Npjle
pZ

P (2-31)

= P
3=1 7

Shortcomings of Poulos’ elastic procedure include: (i)
real soils do not behave elastically, and (ii) the method

cannot account for more than one soil type.
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(iii) Modified Continuum Approach

Belonging to this category of analysis is the Winkler
model for pile groups, introduced by Nogami (1980, 1983).
The soil is modelled by a network of springs, thereby
allowing pile-soil-pile interaction [Nogami and Chen (1984)
and Randolph and Wroth (1979)]. The Winkler model for a
pile group however, allows soil response only 1in the
horizontal direction, and ignores the interconnection among
elements in the vertical direction throughout the soil mass
(Poulos and Davis, 1980). However, this method is
advantageous because of computational simplicity and the

ease of accounting for several soil types.

(iv) Modified Unit Ioad Transfer

This method involves the development of p-y (unit load
transfer) curves for a group of piles considered as a single
pile. The modified single pile, whose diameter is equal to
the width of the group, consists of the piles in the group
and the soil in between the piles. Bogard and Matlock
(1983) used this procedure on a circular group of piles
assuming that the lateral resistance is equally distributed
among all piles in the group. This method is more difficult

to apply to non-circular groups of piles.
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(v) Hybrid Model

Proposed by Focht and Koch (1973), the hybrid model
combines the use of Poulos’ elastic interaction coefficients
and non-linear p~-y analysis to predict pile group behavior.
They assumed that non-linear soil behavior occurs only close
to the individual piles, and that pile-soil-pile interaction
is linear and can be predicted through the use of Poulos’
elastic interaction coefficients.

Focht and Koch (1973) modified Poulos’ (1971) procedure
of Equation 2-29 as follows:

— |Npile
Pk = PF pX (Pjappkj) + RPx) (2-32)

j=1
j=k

where R is the relative stiffness factor defined as follows:
R = Yg/p (2-33)

where Y5 = non-linear p-y deflection of a single pile at the
mudline .
p = elastic deflection of a single pile at the

mudline

= pFPs
In computing Yg and p, the lateral load on the single pile
is computed as the total lateral load on the group divided

by the number of piles or drilled shafts (Pg = Pg/Npile)-
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The hybrid model has the advantage that different
values of stiffness are used to represent the single pile
behavior and the pile-soil-pile interaction (O’Neill, 1983).
This enables adjustments to be made for the plastic
deformation of the soil around individual piles through the
use of the relative stiffness factor, R. This ability to
account for different stiffnesses in individual ©pile
behavior and in pile-soil-pile interaction is not possible
with the elastic continuum model.

O’Neill et al. (1977) and O’Neill and Tsai (1984) have
developed a hybrid model in three dimensions, where every
pile in a group is discretized into elements. Each element
represents a Mindlin point load in computing the pile-soil-
pile interaction. The p-y curves at every location in each
pile are individually modified to account for the effects of
all other piles. An iterative process is required. One
difference between this model and Focht and Koch’s procedure
is that the unit load transfer (p-y) curves are modified

individually to account for the loads from adjacent piles.

2.3 Methods of Incorporating Margins of Safety in Design

2.3.1 Design Criteria

Structures should desirably be designed to be safe,

economical and aesthetically pleasing. Safety cannot be
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compromised. On the other hand, overconservatism can 1lead
to wastefully expensive designs. A balance must be struck
by the engineer to design structures that are safe and also
economically efficient.

From a safety standpoint, structures should be designed
so that they are able to support loads without reaching a
"limit state”™. A limit state is reached when the structure
no longer fulfills one of its design requirements. There
are two types of limit states:
(i) An ultimate limit state corresponds to the maximum load
carrying capacity of the structure, and reaching this limit
state usually leads to complete collapse. An example is the

bearing capacity failure of a foundation.

(ii) A serviceability limit state corresponds to loss of

serviceability, and occurs before collapse. A
serviceability limit state involves unacceptable
deformations or undesirable damage levels. This may be

reached in foundations through excessive settlement or
lateral displacement, or structural deterioration of the

foundations.

2.3.2 Working Stress Design

Foundations are conventionally designed using working

stress design (WSD) methods. The approach 1in WSD is
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different for the ultimate and the serviceabiliﬁy limit
states. In an ultimate 1limit state design, safety is
achieved by ensuring that the magnitude of the resistance
divided by a factor of safety (FS > 1) 1is greater than or
equal to the magnitude of the 1loads. The WSD checking

format is as follows:
Rp/FS = Sp + Sy, + Sg (2-34)

where R, is the nominal resistance, Sp and Sy are nominal
values of dead and live load effects, Sy is an environmental
load such as wind, earthquake, etc. and FS is the factor of
safety. The disadvantage of this method is its inability to
account for the different degrees of |uncertainties
associated with the various types of loads.

In serviceability limit state design, unfactored loads
are usually used to calculate deformations, and these are

compared to the maximum tolerable values.
2.3.3 Load (and Resistance) Factor Design

In load (and resistance) factor design (LFD), it |is
recognized that the loads and resistances are probabilistic
in nature. Different types and magnitudes of 1loads have
varying probabilities of occurence. 1In order to account for

their differing probabilities of occurence, each 1load
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component is amplified by a load factor, the value of which
depends on the level of uncertainty of the load component.

The factored loads are compared to the design strengths
or resistances to evaluate the adequacy of the design. The
design resistances are obtained by multiplying nominal
values of resistance by performance factors (or resistance
factors), usually denoted as ¢. According to AASHTO (1989),
¢ should "provide for the probability that small adversion
in material strength, workmanship and dimensions, while
individually within acceptable tolerance and limits of good
practice, may combine to result in understrength."

The objective of design is to ensure that the design
resistance is greater than or equal to the sum of the

factored loads, i.e.
¢Rn = ZvjSj (2-35)

where ¢ is the performance factor, Sij is the load effect due
to load component i and yj; is the 1load factor for load
component 1i.

The potential advantages of LFD over WSD include the
following:
1) It accounts for the variability in loads and resistances.
2) Consistent margins of safety may be achieved in both

structural and foundation designs.
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3) More economical use of materials may result because a
more rational basis is used to set safety margins.

Using reliability theory, values of performance factors
can be derived for ultimate 1limit states, provided
sufficient statistical data is available. For cases where
sufficient data is not available, performance factors can be
calculated by matching the margin of safety with that of
working stress design, which has usually been established
through experience. Since the factors of safety and the
statistics for the resistance vary for different methods of
analysis, the values of performance factors are method
dependent. One shortcoming of the LFD method is that since
the performance factors are method dependent, there may be a
variety of performance factors for just one 1limit state
consideration.

In serviceability limit state design using LFD, loads
and resistances are unfactored, and the design procedures
resemble those used in conventional WSD.

Load factor design of foundations is currently
implemented in the Danish Code (1985) and the Ontario
Highway Bridge Design Code (1983). The use of LFD for
foundations in the current AASHTO code (1989) for bridges,
and for the ASCE Standard (1990) for buildings and other

structures will be examined in the following sections.
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2.3.3.1 Load Factors and Load Combinations

Bridges

Loads acting on bridge superstructures include one or
more of the following: dead 1load, live and impact loads,
thrust due to earth pressures, buoyancy, wind lqad,
longitudinal and centrifugal forces caused by moving
vehicles, earthquake loads, stream and ice flow forces, and
forces 1induced by changes in the dimensions of the
structure, such as shrinkage and temperature effects.

One difference between the loads acting on the bridge
superstructure and those that act on the foundation is that
impact loads are usually assumed to be fully dissipated
before reaching the foundation. However, bent piers and
integral abutments are usually designed to carry impact
loads, and these are the most common substructures in which
drilled shafts are used. The load combinations and load
factors for the design of the superstructure, as given in
the 1989 AASHTO specifications, can be used for the design

of foundations as follows:

Total Load = v([BpD + BLL + BCcCF + BEE + BB + BgpSF + gupW +
BWwLWL + BLfFLF + BR(R + S + T) + BgqgEQ +

BIcEICE] (2-36)
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where v = load factor (see Tables 2.4 and 2.5)
= coefficient (see Tables 2.4 and 2.5)
= dead load

= live load

= earth pressure

= buoyancy

E W &8 p o W@
I

= wind load
WL = wind load on live load - 100 pounds per linear ft.
LF = longitudinal force from live load

CF = centrifugal force

R = rib shortening

S = shrinkage

T = temperature
EQ = earthquake

SF = stream flow pressure

ICE = ice pressure

The factored load combinations considered by AASHTO are
shown in Table 2.5. Each line in the table, designated by
loading group numbers I through IX, gives the values of the
load factors, v, and the coefficients, g, that govern the
contributions to the total load. For example in group (load
combination) I, total load = 1.3(D + 1.67Lp + CF + BgE + B +

SF) .
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Table 2.4 Table of Coefficients of vy and g for Working
Stress Design of Bridges (After AASHTO, 1989)

Col.No.| 1| 2| 3 3A s|s|e|l 7|89 l2d 12 12%13 14
p-FACTORS

GROUP | 7| D|(L+I)p(L+I)p| CF|E |B | SF W | WL|LF| R+S+T| EQ| ICE %
I 1l 1| 1 0 1|pgl1|1]0 |0 |0 o |o]| ohoo
IA 1| 1| 2 0 o|lo|o|{o|o|o]o o |o]| o150
1B 1l 1| o 1 1 |8g(1|1]|0 |0 o 0 |0 | 0 *=
II 1l 1] o 0 ol1(1|1|1]|0]o0 o |o]| o125
III 1| 1| 1 0 1|8g|1|1p.3]1 |1 o |o| olf2s
Iv 1l 1] 1 0 1 |ggl1|1]|0 |0 |0 1 |0 | o125
v 11| o 0 ol1l1fl1f{1lo]o0 1 (o] ol140
VI 1| 1] 1 0 1 |Bgl1|1Dp.3]1 |2 1 |0 | o140
VII 1| 1| o 0 ol1|1]|1]0 |0 |0 o [1| o133
VIII 1| 1| 1 0 1|1 (1|1({0 (0|0 o |o| 1140
IX 1| 1| o 0 o1 |2]1]{2lo o o (o] 1]150

(L+I)p - Live load plus impact for AASHTO Highway H or HS loading
(L+I)p - Live load plus impact consistent with the overlocad
criteria of the operation agency.

** Percentage = Maximum Unit Stress (Operating Rating) X 100
Allowable Basic Unit Stress

% in Column 14 is the maximum permissible percentage of
basic unit stress for load group indicated

No increase in allowable unit stresses shall be permitted
for members or connections carrying wind loads only.

fg = 1.0 for vertical and lateral loads on all structures
except reinforced concrete boxes.

Bg = 1.0 and 0.5 for lateral loads on rigid frames (check
both loadings to see which one governs)
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i Factor
e 2 Bt idses Taeer MaHIo, 3o
Col.No. 1 |2 3 3A 4 5 6‘ 7IAEJ.9;J10 11 12| 13
B-FACTORS
GROUP 7 P ((L+I)p(L+I)p CF| E |B | Sf W | WL|LF |R+S+T| EQ| ICE
I 1.3 |fp| 1.67 0 1l Bgl2 |1 |0 |O |O 0 0 0
IA 1.3 8p| 2.2 0 0 0O |0oj0ojO0O !0 |O 0 0 0
IB 1.3 p| © 1 1 |Bgl1|1]|0 |0 |O o |0 | o
II 1.3 pp| © 0 0 |Bglr 1|1 |0 |oO o |o | o
III 1.3 |fp 1l 0 1 fell |1 P.3(1 |1 0 0 0
Iv 1.3 fp 1 0 1 |Bglr |1 |0 |0 |O 1 '0 0
v 1.258p 0 0 0 Bgl|l (2|1 |0 |O 1 0 0
VI 1.258p 1 0 1 | fefl |2 pP.3|1 |1 1 0 0
VII 1.3 |fp 0] 0 0 Bgll |1 (0 |O |0 0 1 0
VIII 1.3 pp| 1 0 1 |ggll |1]|0 |0 |o o |o| 1
IX 1.2 fp 0 0 0 fgll |1 ]2 |0 |0 0 0 1

(L+I)p = Live load plus impact for AASHTO Highway H or HS loading
(IL+I)p - Live load plus impact consistent with the overload
criteria of the operation agency.

BE = 1.3 for lateral earth pressure for retaining walls and
rigid frames.
BE = 0.5 for lateral earth pressure when checking positive
moments in rigid frames.

BE = 1.0 for vertical earth pressure

Bp = 1.0 for flexural and tension members

For Column Design

Bp = 0.75 when checking member for minimum axial load and
maximum moment or maximum eccentricity
Bp = 1.0 when checking member for maximum axial load and
minimum moment
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Loading groups I, II and III usually apply to the
design of the superstructures and substructures, groups IV,
V and VI apply usually to the design of arches and frames,
while groups VII, VIII and IX apply usually to the design of
substructures (Heins and Firmage, 1979). The fourteenth
column of Table 2.4 1lists the percentage increase in
allowable stresses permitted in the load combinations, and
is mainly used in working stress design. The increase in
allowable stresses accounts for the fact that the
probability of the load components reaching their maximum
values simultaneously varies from one load combination to

another.

ASCE Standard for Buildings and Other Structures

Loads acting on buildings include one or more of the
following: dead load, live load, roof live load, snow load,
rain load, wind load, earthquake load, thrust due to water
and earth pressures, loads due to fluids, 1loads due to
ponding, and loads due to changes in the dimensions of the
structure such as shrinkage, temperature effects and
settlement.

The load combinations used in designing buildings and
other structures are shown in Table 2.6 for WSD and Table
2.7 for LFD [ASCE Standard 7-88, (1990) formerly ANSI

AS58.1]. One apparent difference between the two codes is
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that the load factors for the building code are less than

those for the bridge code.
2.3.3.2 Code Calibration

Code calibration is the process of assigning values of
code parameters such as performance factors or load factors.
For a given set of load factors such as those in the AASHTO
code or in the ASCE Standard 7-88, the codes can be
calibrated by fitting with working stress design or by a

more formal process using reliability analysis.
2.3.3.2.1 calibration by Fitting with Working Stress Design

For cases where there is insufficient statistical data,
performance factors can be determined using judgment and by
fitting with working stress design specifications.

In LFD format, nominal loads are related to the nominal

resistance by the following equation:

$Rp =

n
1=

7iSi (2-37)
1

where Rp = nominal resistance (eg. pile capacity), Sj = load

effect due to load component i (eg. dead and live loads), 7vi
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= load factor for load component i, ¢ = performance factor
and, n = number of load components.
In the WSD format, nominal loads are related to the

nominal resistance by the following equation:

Rnp n
— 22 S (2-38)
Fs i=1

where FS is the factor of safety. Dividing Equation 2-37 by

Equation 2-38 gives:

If the loads consist of dead load, Sp, and live load, Si,,

then Equation 2-39 becomes:

DSp + YLSL
¢ = (2-40)

FS(Sp + S

Dividing both numerator and denominator by S;, Equation 2-40
may be written as:

1DSD/SL, + 7L
¢ = (2-41)

FS(Sp/Sp, + 1)
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Values of performance factor obtained from Equation 2-41 for
a range of safety factors and dead to live load ratios are
shown in Table 2.8. The ratio of dead to live load depends
on the construction material (steel, concrete or timber) and
the type of structure. The dead load will be less in a
steel structure than in a concrete structure. The dead to
live load ratio is also different in bridges as opposed to
buildings.

Below is an example (for the foundations of a steel
b:idge) of a calibration by fitting with working stress
design, based on information obtained from the literature.
In a bridge, the ratio of dead load to live load increases
with increasing span 1length. Hansell and Viest (1971f
recommended the following relationship for steel bridges:

Sp

—— = 0.0132W (2-42)

Sy + St
where Sy = impact load and W = span length in ft. Impact
loads are seldom considered in foundation design except in
bent piers and integral abutments. The impact load, Sy, in
Equation 2-42 can be eliminated by substituting the
following equation from AASHTO:

50S7,

S] = ———— < 0.3 (2-43)
W + 125
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Table 2.8 Values of performance factors corresponding to
different values of safety factor and dead to
live load ratios

1) AASHTO (yp = 1.3 and v, = 2.17)

Safety Facton Performance Factors
Sp/Sy, = 1.0|Sp/Sy, = 2.0|Sp/Sy, = 3.0 Sp/S, = 4.0
1.5 1.16 1.06 1.01 0.98
2.0 0.87 0.80 0.76 0.74
2.5 0.69 0.64 0.61 0.59
3.0 0.58 0.53 0.51 0.49
3.5 0.50 0.45 0.43 0.42
4.0 0.43 0.40 0.38 0.37

2) Building Code (yp = 1.2 and yp, = 1.6)

Safety Facton Performance Factors
Sp/Sy, = 1.0(Sp/Sy, = 2.0(Sp/S, = 3.0 Sp/Sy, = 4.0
1.5 0.93 0.89 0.87 0.85
2.0 0.70 0.67 0.65 0.64
2.5 0.56 0.53 0.52 0.51
3.0 0.47 0.44 0.43 0.43
3.5 0.40 0.38 0.37 0.37
4.0 0.35 0.33 0.33 0.32
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The resulting equation was derived by Snyder and Moses
(1978) :

Sp 50

— =] 1+ ——— | 0.0132w (2-44)

Sy, W + 125

Yokel (1989) recommended that the design factors should

be calibrated for span lengths of about 200 ft. For a
bridge span of 200 ft, the approximate dead to live 1load
ratio is 3.05. Substituting yp = 1.3 and v, = 2.17 into
Equation 2-41, the performance factor, ¢ is related to the
factor of safety as follows:

1.52

> (2-45)

FS

Calibrating by fitting with working stress design is
useful for transferring experience from working stress

design to load factor design.

2.3.3.2.2 cCalibration Using Reliability Methods

2.3.3.2.2.1 Steps in the Calibration Process

The procedure for estimating performance factors
corresponding to a given set of load factors consists of the

following steps:
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1) Estimate the level of reliability inherent in current
design methods.

2) Observe the variation of the reliability 1levels with
different span 1lengths, dead 1load to 1live 1load ratios,
geometry of the foundation, methods of predicting capacities
and load combinations.

3) Select a target reliability index based on the margin of
safety implied in current designs.

4) Calculate performance factors consistent with the
selected target reliability index. It is also important to
couple experience and judgment with the calibration results

in the decision process.

2.3.3.2.2.2 Probability Theory and Computation of

Reliability Indices

Probability theory has been widely used to model
uncertainties in engineering design, where design parameters
such as loads and resistances are treated as random
variables. Fig. 2.16 shows the frequency distributions of
the 1locad effect (S) and the resistance (R) for a
hypothetical circumstance. A value of R that is greater
than S implies that the structure is safe. However, since R

and S are random variables, there is a possibility that the
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Figure 2.16 Frequency Distributions of Load Effect S and
Resistance R
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load effect S may be greater than R (shaded area in Fig.
2.16).

The safety of a structure can be measured in terms of
the probability of failure, which 1is defined as the
probability that the structure ceases to perform its
intended function. Meyerhof (1970) indicated that the
lifetime probability of failure of foundations should be
between 10”3 and 1074.

Reliability of foundations can be expressed using a
performance function or a limit state function. If the
loads and resistance are normally distributed, the

performance function can be written as:
g(R,S) =R - S (2-46)

where g() is the margin of safety, R is the resistance and S

is the load.

If R and S are lognormally distributed, the performance

function can be written as:
g(R,S) = 1n(R/S) (2-47)

In this case, failure occurs when R/S < 1 or g() < O.
The probability of failure, pg for both cases of R and
S being normal, and R and S being lognormal, can be written

as follows:

pPf = P[g() < 0] (2-48)
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or

Pf = 1 - Fy(g/og) (2-49)

where Fy() 1is the standard normal distribution function,
g, and og are the mean and standard deviation of the

performance function defined as follows:

_ R 1 + Vsz
S 1l + Vg
and
og = JIn[(1 + VR?) (1 + Vg?)) (2-51)

where R and S are the mean values of R and S
respectively, and VR and Vg are the coefficients of
variation (standard deviation divided by the mean) of R and
S respectively.

It can be shown that the probability density function
of g() 1is 1lognormal if R and S are lognormal. The

probability of failure for lognormal R and S is given by:

In{ (R/5)/(1 + Vs?)/(1 + Vg?)]

=

_ (2-52)
Jinf(1 + V%) (1 + Vg?)]

PfF =1~ Fy

The parenthetic term in Fy is the reliability index, B, i.e.

, In[ (R/8)/(1 + vg?)/(1 + V)] os5)
AAn[(1 + VR?) (1 + Vg2)]
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The reliability index is the number of standard deviations
that separates the mean value of the safety margin from the
failure 1limit (Fig. 2.17).

If the bias is defined as the mean value divided by the
nominal value, and if the 1loads consist of only dead and

live loads, Equation 2-53 simplifies to:

ARFS (Sp/Sg, + 1) 1+ Vp2 + vi2

1n
ApSp/S1, + AL 1 + VR2
(2-54)

a Jint(x + V&5 (1 + vp2 + Vi)
where FS is the factor of safety, Ag, Ap and Ap, are the bias
for resistance, dead load and live load respectively, Vg, Vp
and Vi, represent the coefficients of variation for the
resistance, dead load and live load respectively, and Sp and
S;, denote the nominal values of dead load and live load.
The reliability index is related to the probability of
failure as shown in Table 2.9 for the case of lognormal
loads and resistances.

The method described above is called a First Order
Second Moment Method - first order because only the first
order terms of a Taylor series expansion for g() are
involved, and second moment since only the first and second
moments (mean values and variances) of the random variables
are used in the formulation. One drawback of this method is

that the performance function, g(), is linearized at the
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f(q) B¢g

Failure Region
Areqg = Ps

0 3: InR/ g=In(R/" )

Figqure 2.17 Definition of Safety Index g for Lognormal R
and S
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Table 2.9 Relationship between probability of failure and
reliability index, g assuming lognormal loads and

resistances

B Pf B Pf

2.5 9.86 X 10”3 1.96 101
3.0 1.15 X 103 2.50 1072
3.5 1.34 X 1074 3.03 10”3
4.0 1.56 X 10~° 3.57 1074
4.5 1.82 X 10”6 4.10 1073
5.0 2.12 X 10”7 4.64 10”6
5.5 2.46 X 1078 5.17 107

* The numbers in the table are calculated using the simple
approximate relationship between g and pf given by
Rosenbleuth and Esteva (1972) as follows:

pr = 460exp(-4.38)
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mean values of the random variables. If g() is nonlinear,
neglecting the higher order terms can result in significant
errors.

Deéd loads in bridges and buildings are usually time
invariant and normally distributed while 1live 1loads and
resistances can be treated as lognormal variables. To
circumvent the problems that arise with the first order
second moment method when the distributions are mixed, the
reliability index can be evaluated by transforming the
nonnormal variables to equivalent normal variables. With
these equivalent normal variables, the reliability index is
calculated using the same procedure as for normal variables

i.e. the performance function becomes:
g() = RN - pN -V (2-55)

and the reliability index, g, 1is <calculated using the
following equation:
RN - pN TN

JtorM 2 + (opM)2 + (o)) 2

(2-56)

where the superscript N denotes the equivalent normal

distribution for the mean values and standard deviations.
According to Ang and Tang (1984), the equivalent normal

distribution of a nonnormal variable must be obtained such

that "the cumulative probability as well as the probability
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density ordinate of the equivalent normal distribution are
equal to those of the corresponding nonnormal distribution
at the appropriate point on the failure surface." A
lognormally distributed random variable (eg. R) will have an
equivalent normal mean and standard deviation as follows

(Ang and Tang, 1984):

RN = r*[1 - 1nr* + 1n R - 0.5 1In(1 + VR?)] (2-57)

and

ogY = r*/In(1 + Vg2) (2-58)

where R and VR are the mean value and c.o.v. of
R respectively, and r* is the value of R at the failure
point. Similar expressions can be derived for the live load

assuming that it too is lognormally distributed:

N = 1%[1 - 1n 1" + InT - 0.5 1n(1 + V{2)] (2-59)

and

orN = 1*/In(1 + vi2) (2-60)

Although the performance function (Equation 2-55) is linear,
the mean values and standard deviations required change with
the failure point values. Hence, an iterative process is
required to solve for §5.

The iteration procedure is as follows:
1. Define the performance function; g(X;, X2, X3,.....,Xpn)

= 0 where the Xj’s are the design random variables.
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Guess a value for the reliability index.
For the first iteration, equate the initial checking

*, X3*,.....,Xn*) to the point at the mean

point (X1*, X5
values (fl, iz, f3,.....,§n).

For all nonnormal variables, calculate the mean and
standard deviation (XiN and ¢iN) of the equivalent
normal distribution.

Evaluate 3g/4Xj for all values of Xj that are nonnormal
at the checking point, Xi*.

Calculate the direction cosines for all values of Xj

that are nonnormal as follows:

* ag/aXjy
TR (2-61)

J[Z(ag/axi)zl
Calculate the new checking point for all values of Xj

that are nonnormal from:

Xi* = XiN - ai*ﬂaiN (2-62)

and repeat steps 4 to 7 until the value of g remains
constant.

The reliability index can be calculated with the aid of’

a computer program that incorporates the above methodology.

To summarize, two methods of calculating reliability

indices have been described. Both the FOSM and the

iterative (or advanced) procedures can be used to calculate
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B generically, using only the values of the bias and the

coefficients of variation of the resistance and the loads.

2.3.3.2.2.3 Computation of Performance Factors

Once the reliability levels inherent in current design
methods have been calculated, a target reliability index
that reflects an acceptable margin of safety is selected.
Performance factors can now be calculated using the selected
target reliability index.

The expression for the performance factor can be
derived by substituting Rp, = R/Ag into Equation 2-46, and
expressing R in terms of g, VR, Vg and S through the use of
Equation 2-53. The resulting expression for the performance

factor, ¢, is as follows:

AR(ZviSji)
$ = (2-63)
_ /1 + VR2
5| ——— exp[ﬂT/in(l + VR2) (1 + Vg?)]
1l + Vs

where fp is the target reliability index. When only dead

and live loads are considered, Equation 2-63 simplifies to:

AR(YDSD/S1, + L)

¢= .
1+VR
(ApSp/St, + AL) / exp[ﬁT/in(1+vR2)(1+vD2+vL2)]

./l + VD2 + VL2

(2-64)



92

2.3.4 Other Methods of Incorporating Margins of Safety in

Designs

Apart from working stress design and 1load factor
design, there are at least two other methods of ensuring
acceptable 1levels of risk in design. They include the
following:

(1) Bolton’s worst attainable value approach, and

(2) the ) approach

1. Bolton’s Worst Attainable Value Approach

No safety factors are used in Bolton’s (1981) worst
attainable value approach. Instead, the approach assumes
the worst set of values for the design parameters. An
advantage of this method is that it forces the designer to
think about the worst possible scenario. Disadvantages of
this method include the following:

(a) The detefmination of the margin of safety is left
entirely to the judgment ("pessimism" or "optimism") of
the engineer.

(b) There may be one parameter which is very sensitive to
the resistance while the other parameters are trivial in
their contribution.

(c) The soil exploration must be deemed to be as "inferior"
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in quality as is attainable.
(d) The occurence of the worst condition scenario may be

highly unlikely.

2. The )\ Approach

Proposed by Simpson et al. (1981), this method of
assigning a margin of safety also does not use a factor of
safety per se. This approach 1is similar to 1load and
resistance factor design in that the load is increased, and
the parameters that contribute to resistance are decreased
by a certain amount. The methodology is as follows:

(a) Identify all limit states applicable to the structure.

(b) Select the method(s) of analysis and determine all
relevant variables (V). V should include all different
load components, resistance parameters such as cohesion,
angle of internal friction, etc.

(c) Estimate the expected values of the variables (Vg).

(d) Establish the worst credible values (Vyc) of each
variable.

(e) For each limit state, select from Table 2.10 the
severity of consequence, and obtain the appropriate
values of A1 and ij.

(f) Calculate the limit state value of each variable (V*) as

follows:
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Table 2.10 Values of A} and )3 for different failure
consequences (After Simpson et al., 1981)

CLASS SEVERITY OF CONSEQUENCE A1 A2
1 Disappointing -0.5 -0.8
2 Significant repairs 0.0 ~0.6
3 Major damage or possible casualty 0.5 -0.4
4 Catastrophic 1.0 -0.2
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V¥ = Ve + AV (2-65)

where Vyc = worst credible value
AV = uncertainty of V (positive for adverse effects
such as loads and negative for beneficial
effects such as cohesion in a bearing capacity
problemn)
AV = Vyc - Ve (2-66)
Ve = expected value of V
A = values of A} or iy obtained from Table 2.10
corresponding to the severity of the consequence
of reaching the limit state
(g) Apply i; to one variable and A2 to the other variables,
and check the design without using any factor of safety.
(h) Repeat step (g) with 1} applied to a different variable
and l; to all other variables, and check the design.
Repeat this process until A; is applied to all
variables.
(i) Select the case that yields the most conservative design
from steps (g) and (h).

One advantage of this method is that it systematically
considers the effects of each variable in the limit state.
The use of the values of A to calculate the 1limit state
values (V*) however, masks the role of the expected values,

which usually govern the design in most cases.



- CHAPTER THREE
SIMPLIFIED PROCEDURE FOR DESIGN OF PILES AND DRILLED SHAFTS

TO RESIST LATERAL LOADS

3.1 Introduction

Lateral loads on deep foundations arise due to wind,
earthquake, water pressures, earth pressures, and 1live
loads. Deep foundations must be designed to withstand such
forces without failing (i.e. without reaching the ultimate
limit state), and without deflecting excessively (1i.e.
without reaching the serviceability limit state).

The governing criterion in the design of laterally
loaded piles and drilled shafts is almost always the maximum
tolerable deflection or the structural capacity of the pile
or drilled shaft. ©Ultimate soil failure usually does not
control the design, since mobilizing the ultimate lateral
capacity of the soil requires such large displacements that
this is not a realistic possibility in most cases.

Batter piles are frequently used to resist lateral
loads. Howeﬁer, constructing batter drilled shafts is
difficult. Construction problems include maintaining hole
stability during excavation, installing casing and rebar
cages in inclined holes, concrete placement in inclined
holes, and availability of suitable construction equipment.

Because of these difficulties, batter drilled shafts are

96
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used infrequently. The discussion of 1lateral loading of
deep foundations will be limited to only vertical piles and
drilled shafts.

In designing vertical piles and drilled shafts to
resist lateral loads, both lateral deflection and structural
capacity should be considered. Procedures for estimating
(1) 1lateral deflections of single piles and drilled shafts,
(2) lateral deflections of 4groups of piles and drilled
shafts, (3) maximum bending moments in single piles and
drilled shafts, and (4) maximum bending moments in groups of
piles and drilled shafts are addressed in the following

sections.
3.2 Single Piles and Drilled Shafts

The procedure for estimating lateral deflections and
bending moments in single piles and drilled shafts described
here is the one developed by Evans and Duncan (1982). The
Evans and Duncan procedure was derived from a large number
of p-y analyses, and the method models non-linear behavior
of the soil. Unlike p-y analyses, the Evans and Duncan
procedure has the advantage of computational simplicity in

that it does not require the use of a computer.
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3.2.1 Evans and Duncan Procedure

Evans and Duncan (1982) related lateral deflections of
deep foundations to the lateral loads using what they called
a characteristic load (Pg). The characteristic load (Pg)
embodies the important properties of the pile or drilled
shaft (diameter, stiffness) and the soil (strength,
stiffness) that determine the way that the pile or drilled
shaft and soil respond to 1lateral 1loads. The larger the
value of P., the greater is the capacity of the pile or
drilled shaft to carry lateral loads, and the smaller is its
deflection under a given lateral 1load. . Procedures for
calculating values of P, are described in a subsequent

section.

3.2.1.1 Lateral Deflection of Fixed-Head Piles or Drilled

Shafts

The condition of restraint against rotation at the top
of a pile or drilled shaft has a strong effect on the
magnitude of its lateral deflection under 1load. Piles and
drilled shafts that are embedded in reinforced concrete caps
are effectively restrained from rotation at the top, and
they deflect laterally with negligible rotation at the top.

On the other hand, drilled shafts (and less frequently
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piles) may be used individually by connecting directly to
the structure without a cap, in which case they may be
essentially free to rotate at the groundline. The lateral
deflection of a fixed-head shaft is approximately one-fourth
that of a free-head shaft subjected to the same load.

The procedures and charts discussed in this section are
for fixed-head piles and drilled shafts. Charts in
dimensionless form were developed by Evans and Duncan (1982)
for sand and clay (Figs. 3.1 and 3.2). These charts show
the variation of Pg/Pc with Yg/D. Pg is the lateral load,
Pc is the characteristic load, Yg is the groundline lateral
displacement, and D is the width or diameter of the single
pile or drilled shaft. These charts model the same non-
linear behavior of soil as the p-y method of analysis. The
procedure for determining the lateral deflection of a pile

or drilled shaft, using Figs. 3.1 and 3.2, is as follows:

1) For a pile,’determine the width or diameter, D, the
Young’s modulus, Ep, and the moment of inertia Ip. Section
and material properties of driven piles can usually be
obtained from the manufacturer’s literature.

In the case of a drilled shaft, select the diameter D,
the concrete modulus Eo, and the steel reinforcement. The
quantities needed for analysis of drilled piers are the

flexural stiffness, EpIp and Ry, the ratio of the moment of
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inertia of the shaft to the moment of inertia of a solid,
unreinforced, circular section. The moment of inertia of
the shaft can be calculated considering the separate
contribution of the concrete and the steel. The Young’s
modulus of the shaft (Ep) is conveniently taken as being
equal to the Young’s modulus of concrete (Eg), which can be
related to the concrete compressive strength and density, as
shown in Fig. 3.3. The modulus of steel can be taken as 29

X 10° psi.

2) Estimate the average undrained shear strength (Sy) for
clays, or the average angle of internal friction (¢’) for
sands.

The behavior of the soil close to the ground surface is
the most important with regard to 1lateral 1loads. The
properties (S, for clays, ¢’ and unit weight, ¢/, for sands)
should be averaged over a depth extending about eight pile
or shaft diameters below the top of the pile or drilled
shaft. Buoyant unit weights for sands are used below the

water table.

3) Determine the characteristic load (Pg), which is defined

by the following equations:

For clay Pc = 7.34 D? (EpRy) (Su/EpRy)?* 683 (3-1)

For sand Pc = 1.57 D? (EpRy) (v/D$’Kp/EpRy) -7 (3-2)
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where Ry =
Ry =
Isolid =
Isolig =
Thus EpRy=
vy =

Kp =

Kp=

¢’ =
Consistent
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moment of inertia ratio
Ip/Isolid (See Table 3.1 for values of Ry for
drilled shafts of various diameters and

percentages of steel area)

= moment of inertia of a solid circular cross-

section

= ~D%/64

(EpIp)/ (xD%/64)

effective unit weight of soil

= Rankine passive earth pressure coefficient

tan2 (45° + 4//2)
angle of internal friction for sand (in degrees)

units must be used for all the terms in Equations

3-1 and 3-2.

4) Calculate the value of the load ratio, Pg/P..

5) Use Fig. 3.1 for piles or shafts in sand, or Fig. 3.2

for piles or shafts in clay to determine the value of Yg/D.

6) Calculate Yg = D (Yg/D).



Table 3.1:
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Ry values for drilled shafts with E, = 3500 ksi,

Eg = 29 000 ksi and ¢ = 3 in.

DIAMETER OF DRILLED SHAFT
As/%g 18 in. 24 in. 30 in. 36 in.
0.01 1.06 1.07 1.09 1.09
0.02 1.11 1.14 1.16 1.18
0.04 1.21 1.27 1.31 1.34
0.08 1.38 1.50 1.58 1.63
where Ag = area of steel
Ag = gross cross-sectional area of drilled shaft
c = cover
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3.2.1.2 Lateral Deflection of Free-Head Piles or Drilled

Shafts

A lateral load (Pg) acting at a distance (e) above the
ground, can be resolved into two components as shown in Fig.
3.4: a lateral load with the same magnitude (Pg) acting at
the groundline, plus a bending moment (Meg) equal to the
lateral load multiplied by the eccentricity (i.e. Mg = Pge).
Evans and Duncan showed that the lateral displacement of a
free-head pile or drilled shaft can be estimated using
nonlinear superposition of the deflection caused by the
lateral load (Ygp) and the deflection caused by the bending
moment (YgyM) .

The component of the lateral displacement (Ygp) due to
the groundline lateral load can be estimated using Figs. 3.5
and 3.6. The procedure is the same as described 1in
connection with fixed-head piles and drilled shafts 1in
Section 3.2.1.1.

The component of the lateral displacement (Ygy) due to

the bending moment can be estimated as follows:

1) Calculate the bending moment Mg = Pge

2) Determine the characteristic moment (Mc), which |is

defined by the following equations:
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Figure 3.4 Resolution of Eccentric Load into a Lateral Load
Acting on the Groundline and a Moment
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and Duncan, 1982)
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For clay M D3 (EpRy) (Su/EpRy) 2+ 4° " (3-3)

For sand Mc = 1.33 D3 (EpRy) (7/D¢’Kp/EpRy) 04 (3-4)

where Ry, Kp, +v’, and ¢’ are as defined previously.
Consistent units must be used in all the terms in Equations

3-3 and 3-4.
3) Calculate the ratio Mg/Mc.

4) Use Fig. 3.7 for piles or shafts in sand and Fig. 3.8 for

piles or shafts in clay to determine the value of Ygu/D.
5) Calculate Ygy = D(Ygm/D).

Knowing Ygp and YgM, the total lateral deflection of a
free-head pile or drilled shaft can then be estimated using

nonlinear superposition as follows (Evans and Duncan, 1982):

1) Using Ygy and Fig. 3.5 for piles or shafts in sand, or
Fig. 3.6 for piles or shafts in clay, calculate Py as shown
in Fig. 3.9b.

Py is the equivalent lateral load that would cause the

deflection Ygy.
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2) Using Ygp and Fig. 3.7 for piles or shafts in sand and
Fig. 3.8 for piles or shafts in clay, calculate Mp as shown
in Fig. 3.9e.

Mp 1is the equivalent moment that would cause the

deflection Ygp.

3) Determine the deflection YgpM caused by the lateral load
(Ps + Py) as shown in Fig. 3.9c. Ygpm is the deflection

caused by the sum of the real load plus the equivalent load.

4) Determine the deflection Ygyp caused by the moment (Mg +
Mp) as shown in Fig. 3.9f. YgMp is the deflection caused by

the sum of the real moment plus the equivalent moment.

5) Estimate the total deflection (Yg) using the equation Yg

= 0.5(YgpM *+ YgMp)

3.2.1.3 Bending Moments in Fixed-Head Piles or Drilled

Shafts

Evans and Duncan (1982) developed a simple procedure
for estimating the maximum bending moment induced in single
piles and drilled shafts (Mg) due to a lateral load at the
top of the pile or drilled shaft. They developed the design

charts shown in Figs. 3.10 and 3.11 for fixed-head piles and
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drilled shafts in sand and clay. These charts show the
variation of Mg/Mc with Pg/P., where Mg = maximum moment in
a single pile or drilled shaft and M = characteristic

moment.
Using these charts, the bending moment in a laterally

loaded pile or drilled shaft can be estimated as follows:

1) Refer to step (1) in Section 3.2.1.1.

2) Refer to step (2) in Section 3.2.1.1.

3) Determine the characteristic load (Pc) using Equation 3-

1 for clay or 3-2 for sand.

4) Calculate the lateral load, Pg and the value of the load

ratio, Pg/P..

5) Use Fig. 3.10 for fixed-head piles or drilled shafts in
sand and Fig. 3.11 for fixed-head piles or drilled shafts in

clay to determine the value of Mg/Mc.

6) Determine the " characteristic moment (Mc) which is

defined by Equations 3-3 and 3-4.
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3.2.1.4 Bending Moments in Free-Head Piles or Drilled

Shafts

The maximum bending moment in a free-head pile (or
drilled shaft) occurs in the portion of the pile that
extends below ground or the portion above ground. The
magnitude of the maximum moment is needed for design, and,
in some cases, it may be necessary also to know the depth
below ground at which the maximum moment occurs. These
quantities cannot be determined directly using the procedure
developed by Evans and Duncan, but they can be calculated
using the theory described by Matlock and Reese (1961),
together with the value of groundline deflection calculated
using the Evans and Duncan (1982) procedure. The technique
for estimating groundline deflections of free-head piles and
drilled shafts was explained in Section 3.2.1.2. When the
groundline deflection (Yg) has been determined, the
magnitude of the maximum moment and its depth below ground

can be estimated as follows:

1) Calculate the characteristic length (T) of the drilled
shaft by solving the following equation for T (Matlock and
Reese, 1961):

2.435Pg 1.623Mg
Yg = — 13 4+ 72 (3-5)

Eplp Eplp
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where Yg, Ep, Ip and Pg are as defined previously and T is
the characteristic length. The value of T can be determined

using repeated trials.

3) Calculate the maximum bending moment using the following

expression:
Mpax = kMMe (3-6)

where Mg is the bending moment at the groundline (Mg = Pge),
Pg is the lateral load, e is the eccentricity of the lateral
load above the groundline, and ky is a moment multiplier
which is a function of T/e. The value of Kky can be

caiculated as follows:
ky = 1 + 0.756(T/e) (3-7)

where T 1s the characteristic 1length calculated from
Equation 3-5. The location of the maximum bending moment

can be estimated using Table 3.2.

3.2.1.5 Deflections and Bending Moments in Piles or Drilled

Shafts With Caps Above Ground

When piles or piers are attached to a cap above ground,
with an air gap between the bottom of the cap and the

ground, the maximum bending moment can occur below ground
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Table 3.2 Approximate location of the maximum bending
moment in free-head piles or drilled shafts

T/e z/T
0.0 0.0
0.1 0.4
0.2 0.5
0.3 0.6
0.4 0.7
0.5 0.8
0.8 0.9
1.6 1.0
3.0 1.2
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(as discussed in the previous section) or at the top of the
pile (the bottom of the cap). For piles connected to a cap
above ground, expressions for the deflection of the cap and
the magnitudes of the maximum bending moment in the pile can
be derived using beam theory and the Evans and Duncan
nonlinear superposition procedure. The magnitude of the
maximum bending moment at the top of the pile (the bottom of

the cap) can be estimated using the following equation:

Zmax

2
Me [ Zmax
3 +

— + Mmax(
6 Iy
Mp = (3-8)

(Zmax)
1 +
Ly

where Mpayx = maximum bending moment for a free-head pile

that occurs below ground, estimated using the
nonlinear superposition procedure described in
Section 3.2.1.4
Zmax = depth below ground where Mpayx occurs

Ly = unsupported length of free-head pile or drilled
shaft (L, = eccentricty, e), and

Me = moment at the groundline for a free-head pile
(= Pge or Pgly)

Equation 3-8 was derived with the aid of Fig. 3.12 and

the following assumptions:
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1) The shear force diagram decreases linearly from Pg at the
ground surface to 2zero at the 1location of the maximum
bending moment.
2) The slope at the location of the maximum bending moment
is zero.
3) The cap provides complete rotational restraint at the top
of the pile. For this condition, the area underneath the
bending moment diagram on the side for positive moments is
equal to the area underneath the bending moment diagram on
the side for negative moments, i.e. in Fig. 3.12, Area 1 +
Area 2 = Area 3.

The magnitude of the maximum bending moment below
ground for this boundary condition is equal to (Mpax - Mp).

The deflection of the cap above ground may be divided
into two components. The first is the deflection of the
free-head pile at the groundline (Yground). Wwhich can be
estimated using nonlinear superposition of the deflection
caused by a groundline lateral load (Pg), and the deflection
caused by the moment at the groundline which is equal to (Mg
- M7). Note that since Mg is always less than Mp, (Mg - Mp)
is always negative, and the deflection components caused by
Pg and (Mg - Mp) are in opposite directions.

The second component of the deflection is the
displacement of the cap relative to the pile at the

groundline (Yt = Yground)- This can be evaluated by
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integrating the expression for the bending moment above the
groundline twice, and by dividing by the flexural stiffness
(EpIp) of the pile or drilled shaft. The resulting

expression for this deflection component is:

L2

6EpIp

[Me = 3M7] (3-9)

¥p - Yground =

where I,;, Mg and My are as defined previously. To calculate
the deflection of the cap Yr, Yground and (Yr - Yground) are

added together.

3.2.2 Simplified Procedure for Design of Single Fixed-Head

Piles and Drilled Shafts to Resist Lateral Loads

Driven Piles

The Evans and Duncan procedure for estimating lateral
deflections and bending moments in laterally loaded fixed-
head piles has been used to develop lateral load-deflection
curves and lateral load-moment curves for some commonly-used
pile sections. Charts for prestressed concrete piles (10
in., 12 in., 14 in., 16 in., and 18 in. square) and steel-H
piles (HP 10 X 42, HP 10 X 57, HP 12 X 53, HP 12 X 74, HP 14
X 73, and HP 14 X 89) in sand and clay are shown in Figs.
3.13 through 3.16. For these piles and soil conditions,

deflections can be estimated directly using the charts. For
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example, a lateral load of 10 kips acting on a 12 in. X 12
in. prestressed concrete pile driven in clay with S; = 1 ksf
will result in a lateral deflection of about 0.1 in. (Fig.
3.14) and a bending moment of 400 kip-in.

For sands, charts were developed for friction angles of
30°, 35° and 40°. The water table was assumed to be at or
above the ground surface. For intermediate values of
friction angle ©between those shown in the <charts,
deflections may be estimated by interpolation.

For clays, the load-deflection curves were developed
for wundrained shear strengths of 1, 2 and 4 ksf.
Deflections for intermediate wvalues of undrained shear

strengths can be estimated by interpolation.

Drilled Shafts

The Evans and Duncan procedure for estimating lateral
deflections and bending moments in laterally loaded fixed-
head drilled shafts has been used to develop lateral load-
deflection curveé and lateral 1load-moment curves for some
commonly-used drilled shaft sections. Charts ‘for drilled
shafts of 18 in., 24 in., 30 in. and 36 in. diameters, with
percentages of reinforcement equal to 1%, 2%, 4% and 8%,
constructed in sand and clay, are shown in Figs. 3.17
through 3.24. For these drilled shafts and soil conditions,

deflections can be estimated directly using the charts. For
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example, a lateral load of 25 kips acting on an 18 in.
drilled shaft with 4% steel reinforcement, constructed in
clay with an undrained shear strength of 2 ksf, will result
in a lateral deflection of about 0.1 in. and a moment of
1300 kip-in (Fig. 3.23).

For sands, charts were developed for friction angles of
30°, 35° and 40°. The water table was assumed to be at or
above the ground surface. For intermediate values of
friction angle between those shown in the charts,
deflections may be estimated by interpolation.

For clays, load-deflection curves were developed for
undrained shear strengths of 1, 2 and 4 ksf. Deflections
for intermediate values of undrained shear strengths can be

estimated by interpolation.
3.3 Groups of Piles and Drilled Shafts

A simplified procedure for analyzing laterally loaded
groups of piles and drilled shafts has been devéloped based
on Focht and Koch’s (1973) procedure for group behavior, and
Evans and Duncan (1982) procedure for the behavior of single
piles and drilled shafts. The Evans and Duncan procedure is
used to obtain single pile deflections and maximum bending
moments instead of the p-y analysis because, unlike p-y

analysis, the Evans and Duncan procedure is non-iterative,
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and lends itself well to a parametric study of a large
number of pile sizes, pile stiffnesses, soil strengths and
soil stiffnesses. No distinction need be made between

groups of piles and groups of drilled shafts.
3.3.1 Focht and Koch’s Procedure

As mentioned in Section 2.2.2.2, Focht and Koch’s
procedure assumes that group deflection consists of two
components: a component due to non-linear soil behavior
occurring close to the individual piles, and another due to
pile-soil-pile interaction. The deflection component due to
non-linear soil behavior can be predicted through the use of
the Evans and Duncan procedure, while the deflection
component due to pile-soil-pile interaction is estimated
using Poulos’ (1971) elastic interaction coefficients.

Focht and Koch (1973) modified Poulos’s (1971) elastic
procedure for estimating pile group deflection (Equation 2-
29). The procedure for predicting the lateral deflection of
a pile within a group is as follows:

- |Npile
Pk = PF .21 (Pja,Fkj) + RPy) (3-10)

J:
=k

where px lateral deflection of pile k (L)

pr = unit elastic displacement of a single pile under



Ipp

Npile

@pFkj
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unit horizontal load (LF'l)
I,F/EsZ (3-11)
influence factor (Fig. 2.14). I,r is a function

of KR defined in Equation 3-13 below.

Young’s modulus of soil (FL"Z)

length 6f the pile (L).

number of piles in the group

lateral load on pile j (F)

elastic interaction factor for determining the
influence of pile j on pile k, based on the
spacing between piles j and k and the angle 4§
angle between direction of loading and the line
joining the centers of piles j and k

lateral load on pile k (F)

relative stiffness factor

Ys/p (3-12)
non-linear p-y deflection of a single pile at the
mudline (calculated using the Evans and Duncan
procedure)

elastic deflection of a single pile at the
mudline

sFPs

average lateral load per pile = Pg/Npile

lateral load acting on the group
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In computing Yg and p, the lateral load on the single pile
is computed as the total lateral load on the group divided
by the number of piles or drilled shafts (Pg = Pg/Npile)-
The interaction factor, e,rkj, can be obtained from
Fig. 2.15 for fixed-head piles. a,rkj is a function of the
spacing to diameter ratio (s/D), ¢ and Kr, where s = center-
to-center pile spacing, D = pile width or diameter and KR is

the pile flexibility factor defined as follows:

Eplp

(3-13)
Egz?

KR =

where Ep = Young’s modulus of pile (FL"Z) and Ip = moment of
inertia of pile (L4).

If the piles are connected by a cap, then the piles
will all deflect equally. Equation 3-10 yields a set of
Npile equations but there are a total of (Npjle + 1)
unknowns; Npjle unknown values of reaction in each‘pile, and
one unknown value of group deflection, Yg = p1 = p2 = +0...=
PNpile- The remaining equation needed in order to solve for
the set of (Npjje + 1) unknowns is the requirement that the
sum of the individual pile loads must equal the load on the
group, Pg, i.e.

Npile

£ Pj = Pgq (3-14)
J=1
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Although Figs. 2.14 (for determining I,r) and 2.15 (for
determining a,rkj) was developed for a Poisson’s ratio of
0.5, they can be used for both cohesive and cohesionless
soils because the sensitivity of the value of Poisson’s
ratio to the solution for px is small. The solution for pg
is, however, sensitive to the value of R, which is related
to the elastic deflection of the single pile, p, through
Equation 3-12. The value of p is very sensitive to the
value of soil modulus, Eg (Reese et al., 1984). Therefore,
a reliable estimate of the soil modulus is necessary:; the

procedure used to evaluate Eg is given below.
Estimation of Soil Modulus

The estimation of pp and I,p, which is a function of
Kr, requires an estimation of the value of the elastic soil
modulus, Eg. The modulus of real soils changes with stress
level Que to the non-linear behavior of the soil. However,
the soil behavior can be apﬁroximated as linearly elastic at
low stress (strain) 1levels. The value of Eg can be

estimated as follows:

1) For the group, select a pile or drilled shaft section of

diameter, D, length, 2, Young’s modulus, Ep, moment of
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inertia, Ip, and number of piles or drilled shafts, Npiler
and determine the design lateral load on the group, Pg.
2) Calculate a reduced lateral load 0.1Pg = 0.1Pg/Npjle and
use non-linear elastic analysis to estimate the 1lateral
deflection, Yg corresponding to a lateral load 0.1Pg.
3) Calculate pp = Yg/0.1Pg.
4) Guess a value of Eg.
5) Calculate KR using Equation 3-13.

6) Determine the value of I,p from Fig. 2.14.

7) Calculate a new value of soil modulus, ES* = Ipp/;fz,

where pp is obtained from step 3.

8) Compare Eg with Es*. If they are not similar, calculate
the soil modulus as the average of Eg and Es*, and repeat

steps (5) through (7) until they match.

These procedures have been coded in a computer program

to facilitate parametric studies of a large number of groups
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of deep foundations (See Appendix A for documentation of the

computer program).

3.3.2 Parametric Studies for Deflection of Groups of Piles

and Drilled Shafts

A group of piles will deflect more than a single pile
subjected to the same lateral load per pile. This is due to
interaction effects whereby deflection of each pile in a
group causes deflection of the surrounding soil and thereby
increases the deflections of neighboring piles. However,
where a single row of piles are constructed side by side and
loading is normal to a line containing the pile heads, group
action need not be considéred unless the piles are closer
than three pile diameters center-to-center. Group action
must be considered when the lateral loads act in line with
the single row of piles. It will be useful therefore, to
establish a group deflection amplification factor (Cy), that
when multiplied with the deflection bf a single pile (Yg),

yields the group deflection (Yq) i.e.
Yg = Cy Yg (3-15)

where Cy is a group deflection amplification factor (greater
than 1) that accounts for pile-soil-pile interaction effects

in groups of piles and drilled shafts.
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A computer program was developed to calculate single
pile deflection using the Evans and Duncan procedure, and
group deflection using the procedure of Focht and Koch.
Parametric studies were performed only for the case where
the piles and drilled shafts are connected by a cap that
provides rotational restraint at the top. Groups of free-
head piles or drilled shafts are less common, and the free-
head condition was not analyzed. The following parameters
were varied:

1) diameter of pile or drilled shaft (D = 10 in. to 30 in.)

2) stiffness of pile or drilled shaft (Ep = 1500 ksi [for
timber] to 29 000 ksi [for steel])

3) type of soil (cohesive or cohesionless)

4) shear strength of soil (¢’ = 30° to 40° for sands and Sy
= 1 ksf to 4 ksf for clays)

5) number of piles or drilled shafts (Npjje = 2 to 25)

6) spacing of piles or drilled shafts (s/D = 2 to 5)

7) magnitude of lateral load (Pg = 5 kips/pile to 20
kips/pile), and

8) density of soil in the case of cohesionless material

(buoyant unit weights only).

The parametric studies yielded a large number of data
from which a simple expression for Cy was developed. The

expression is as follows:
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Cy = (3-16)
s Pg
B/—- + —
D CPy

where Npjje = number of piles in group

s average spacing of piles
D = diameter of pile

Pg = average lateral load per pile

= Pg/Npijle
Pg = lateral load on the group of piles
Py = Kp703 for sand (3-17)
Py = Su02 for clay (3-18)

v = total unit weight of sand
Kp = passive earth pressure coefficient
= tan2(45° + 4'/2)
¢’ = average angle of internal friction of sand
within the upper 8 pile diameters
Sy = average undrained shear strength of clay
within the upper 8 pile diameters

= 16 for clay

9 for sand
5.5 for clay

= 3 for sand

3 for clay

N N w w » >
I

= 16 for sand
This equation was developed for uniformly spaced piles

and drilled shafts, but can be used for groups with non-
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uniform spacing if the average pile or shaft spacing is used
in the calculations. A comparison of values of Yg/Yg
calculated using the computer program with values of Ygq/Ys
computed using Equation 3-16 1is shown 1in Fig. 3.25 for
groups of 14 in. prestressed concrete piles, and Fig. 3.26
for groups of 30 in. drilled shafts in sands. Figs. 3.27
and 3.28 show similar results for groups of piles and shafts
in clays. The vertical axes represent values from the the
computer solutions while the horizontal axes represent the
values predicted by Equation 3-16. The following
observations can be made from these four figureé:
1) The scatter for group deflections is greater for groups
of piles and shafts in <cohesive material than in
cohesionless material. The coefficient of variation for the
group deflection in cohesionless material is 5.5% compared
to 8% in cohesive soils.
2) The simplified method of predicting group deflections
tend to err on the safe side, i.e. the method overpredicts
more often than it underpredicts. 1In cohesionless material,
Equation 3-16 overpredicts the group deflection by at most,
30% and wunderpredicts by 5%. In cohesive soils, the
overprediction <can be as high as 35%, and the
underprediction as low as 20%.

If the lateral displacement of a group of piles (Yqg) is

greater than the tolerable value, the diameter of the piles,
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Yg/Ys Calculated Using Amplification Factor

Comparison of Values of Yq/Yg Calculated Using
the Deflection Amplification Factor With Those
Using PGROUPD for Groups of 14 in. Prestressed
Concrete Piles in Sand
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Yg/Ys Calculated Using PGROUPD

Yg/Ys Calculated Using Ampilification Factor

Figure 3.26 Comparison of Values of Yq/Yg Calculated Using
the Deflection Amplification Factor With Those
Using PGROUPD for Groups of 30 in. Drilled
Shafts in Sand
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the number of piles, or the pile spacing should be increased
until Y4 is less than the tolerable value. Equation 3-16
provides a convenient and simple means for performing this

otherwise tedious task.
3.3.3 Bending Moments in Groups of Piles and Drilled Shafts

As discussed previously, the deflection of any pile in
a group causes deflection of the surrounding soil and piles,
thus leading to larger deflection for the group than for
single piles subjected to the same load per pile. The
bending moment in a pile within a group is also larger than
that in a single pile subjected to the same loading. This
is because the interaction effects, by causing more
deflection, also increase the bending moment in the piles.

Brown et al. (1987 and 1988) found that the maximum
bending moment in a group of free-head piles occur in the
leading row (or front row) of piles. However, current
theories on lateral loading of groups of piles (including
the Focht and Koch procedure) are not able to predict this
behavior. Methods based on the theory of elasticity always
predict that the largest loads are carried by the corner
piles.

A semi-empirical procedure that provides a reasonable

approximation‘of the maximum bending moment in the leading
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row of a group of piles has been developed by modifying the
theory described by Focht and Koch (1973). The increase in
moment due to group interaction was studied for a 1large
number of cases by first estimating the group deflection
using the theory of Focht and Koch (1973), and then
"softening” the soil (reducing S;; for clays or ¢’ for sands)
until the single pile deflection (calculated using the Evans
and Duncan approach) matched the lateral deflection of the
group (Duncan, 1988). The real problem, however, is more
complex, requiring knowledge of the distribution of loads to
the piles in relation to their location, spacing, soil and
pile stiffnesses, and the nature of the loading (cyclic
versus static). While the theories on which the method is
based do not reflect the unique conditions in the front row
of piles, it is believed that the method is an improvement
over the current absence of guidance available for
engineers.

This routine 1is also incorporated in the computer
program mentioned in Section 3.3.1 and Appendix A for groups
of fixed-head piles and drilled shafts. Parametric studies
were performed using this program, and the results are

presented in the following section.
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3.3.4 Parametric Studies for Maximum Bending Moments in

Groups of Piles and Drilled Shafts

Through a similar parametric study as with group
deflections, a moment amplification factor (Cym) that relates
the maximum bending moment of the most severely loaded pile
in the group to the maximum bending moment in a single pile

can be written as follows:

Mg = CM Mg (3-19)

where Mg = maximum bending moment of the most severely
loaded pile within a group, Cy = moment amplification factor
that accounts for pile-soil-pile interaction effects in a
group of piles, and Mg = maximum bending moment in a single
fixed-head pile subjected to a lateral load, Pg = Pg/Npjle-
Mg can be calculated using the procedure of Evans and Duncan
(Section 3.2.1.3) or the charts in Section 3.2.2. The

parametric studies yielded the following expression for Cy:
Cy = Cy! (3-20)

group deflection amplification factor

where Cy
(Equation 3-16)
Pg

n = + 0.25 for clay | (3-21)
150PN
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Pg
n = + 0.3 for sand (3-22)
300PN

PN is as defined previously in Equations 3-17 and 3-18.

The maximum bending moment in a group of piles or
drilled shafts can be estimated very quickly using this
method. The use of Equations 3-19 and 3-20 enables the
engineer to avoid the tedious process of softening the soil
to match single pile deflections calculated using non-linear
(Evans and Duncan) analysis, with the group deflection. A
comparison of values of Mg/Ms calculated using the computer
program with values of Mg/Mg computed using Equation 3-20
are shown in Fig. 3.29 for groups of 14 in. prestressed
concrete piles and Fig. 3.30 for groups of 30 in. drilled
shafts in sands. Figs. 3.31 and 3.32 are similar graphs for
groups of piles and drilled shafts in clays. The following
observations can be made from these four figures:
1). Regardless of whether the so0il 1is <cohesive or
cohesionless, the scatter in the values of maximum bending
moments is approximately the same (coefficient of variation
is approximately 20% to 25%).
2) The simplified method tends to overpredict maximum
bending moments in groups of piles and drilled shafts more
than it underpredicts. In cohesionless material, Equation
3-20 overpredicts the maximum bending moment by at most, 11%

and underpredicts by 3%, while in cohesive soils, the
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overprediction can be as high as 9% and the underprediction

as low as 6%.

3.4 Field Experiments

Carefully performed and well-instrumented full scale
experiments provide the best means of verifying newly
developed analytical procedures. Lateral load tests on pile
groups have been performed and reported by Feagin (1937 &
1953), Evans (1953), O’Halloran (1953), Gleser (1953),
Beatty (1970), Kim and Brungraber (1976), Jamiolkowski
(1976), Manoliu et al. (1977), Matlock et al. (1980),
Holloway et al. (1981), Schmidt (1981), and Brown et al.
(1987 & 1988). Among these tests, only a few were
accompanied by high quality soil investigation programs, and
were well instrumented to measure group deflections, lateral
load distribution among piles within the group, and bending
moments in the individual piles.

The following full scale lateral load tests were used
to compare the results from the simplified method and the
experimental results:

1) Kim and Brungraber (1976)
2) Holloway et al. (1981)
3) Brown et al. (1987) and

4) Brown et al. (1988).
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Oonly Kim and Brungraber’s (1976) experiment was carried out
on fixed-head pile groups. The load test performed by
Holloway et al. (1981) was on a group of timber piles that
were connected by a cap suspended 3 ft above the ground.
Both experiments conducted by Brown et al. (1987 & 1988)
were performed using a moment-free loading frame, through
which the lateral load on the pile group was applied 1 ft

above the groundline.

1. Kim and Brungraber (1976)

Kim and Brungraber (1976) performed three series of
lateral load tests on pile groups at the Bucknell University
campus farm. Their intent was to simulate loads occurring
on bridge abutment foundations. Series B was conducted 9
months after series A, and series C, 4 months after series
B. Results from the tests of series B and C were well
documented and the differences between the two were not
significant. Kim and Brungraber reported that lateral
deflections from series A differed from those for series B
by as much as 100%. The discussion Qill include test
results from only series B and C.

Two of the pile groups, groups I and II, contained
vertical piles spaced 4 ft and 3 ft apart center-to-center,

respectively (Fig. 3.33). The third group (group III)
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contained piles driven at a batter. The piles were all
embedded 12 in. into 4 ft thick reinforced concrete caps.
The caps were all in contact with the ground.

The pile section consisted of a 10BP42 steel-H pile (D
= 9.7 in., Ep = 29 000 ksi, Ip = 224.2 in%). six piles were
driven in each group in a 3 X 2 arrangement. The piles were
driven to refusal on top of a limestone layer at a depth of
approximately 40 ft.

The portion of the ground that is of importance to
lateral load is the top 8 pile widths (6.5 ft). The soil
profile, SPT blow counts and results of unconfined
compression tests are shown in Fig. 3.34. The SPT blow
counts in the top 6.5 ft are all greater than or equal to
30, indicating that the silty clay layer is hard (Sy > 8 ksf
[Terzaghi and Peck, 1967]). However, unconfined compression
strengths average only 2000 psf implying that S,; = 1000 psf.
Because unconfined compression tests usually provide shear
strengths that are too low, and because the SPT blow counts
are so high, it was decided to use a value of S;; of 2000 psf
in the analysis.

The deflection and maximum bending moments in a single
fixed-head 10BP42 pile were estimated using the Evans and
Duncan procedure. These values of deflection and moment
were then amplified to those for the group using Equations

3-16 and 3-20 respectively. A vertical single pile was
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tested by Kim and Brungraber but the moment at the pile head
was zero, indicating a free-head condition. The different
end conditions of the single pile and pile groups do not
allow a direct comprison of the results.

The experimental results and results from the analysis
using the simplified procedure are shown in Tables 3.3 and
3.4. The following observations can be made:

1) The predicted and measured values of deflections and
moments for the group with the smaller spacing (group II)
agree reasonably well.

2) The predicted and measured values of deflection and
moment for the pile group with the larger spacing (group I)
agree reasonably well when the 1lateral 1load was 16.67
“kips/pile. However, the predicted values exceed the

measured values by 100% for the load of 33.33 kips/pile.

2. Holloway (1981)

Holloway, Moriwaki, Finno and Green (1981) reported a
lateral load test on a group of eight timber piles in sand
at the site of Lock and Dam 26 on the Mississippi River near
Alton, Illinois. The test set up is shown in Fig. 3.35.
The pile group was constructed in a trench where 24 ft of
overburden consisting of cohesive flood plain deposits were

excavated. This exposed a 20 ft layer of recent alluvium
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Table 3.3 Comparison of predicted versus measured values of
lateral deflection of pile groups in the Bucknell
University test (Kim and Brungraber, 1976).

GROUP I (s/D = 5.0)

Lateral Yg Yg Y Yg
Load/Pile Calculateq Measured Calcu?ated Measured
(kips) (in.) (in.) (in.) (in.)
Series B Series C
16.67 0.11 - 0.15 0.12 0.09
33.33 0.40 - 0.45 0.21 0.15
GROUP II (s/D = 3.7)
Lateral Yg Yg Y Yg
Load/Pile Calculate& Measured Calcu?ated Measured
(kips) (in) (in.) (in.) (in.)
Series B Series C
16.67 0.11 - 0.16 0.23 0.28
33.33 0.40 - 0.47 0.37 0.36
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Comparison of predicted versus measured values of
bending moments of piles in pile groups in the

Bucknell University test (Kim and Brungraber,
1976) .

GROUP I (s/D = 5.0)
Lateral Mg Mg M? Mg
Load/Pile Calculated Measured Calculated Measured
(kips) (kip-in) | (kip-in)| (kip-in) (kip—-in)
Series B Series C
16.67 560 - 620 479 457
33.33 1350 - 1420 742 707
GROUP II (s/D = 3.7)
Lateral Mg Mg M Mg
Load/Pile Calculated Measured Calcu?ated Measured
(kips) (kip-in) | (kip=-in)| (kip-in) (kip-in)
Series B Series C
16.67 560 - 631 936 497
33.33 1350 - 1445 1470 672
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(sand) that was the layer of greatest importance with regard
to lateral loading. The piles penetrated through the recent
alluvium and 15 ft into a 1layer of dense to very dense
outwash, making a total embedment depth of 35 ft.

The piles were 14 inch butt diameter timber piles (Ep =
1500 ksi, Ip = 1886 in4) instrumented with strain gages and
telltales as shown in Fig. 3.36. The piles were jetted into
place for the first 30 ft of penetration, and the final 5 ft
of penetration was accomplished by driving. The piles were
all installed vertically in a 2 X 4 arrangement at a spacing
of 3 ft center-to-center, and embedded 2 ft into the cap. -

Removal of 24 ft of the flood plain deposit resulted in
an overconsolidated condition in the undeflying sand. The
variation of the overconsolidation ratio with depth is shown
in Fig. 3.37. Using the cone penetration test results of
Fig. 3.38 (conducted before pile installation but after
excavation by Woodward-Clyde Consultants, 1979) and Lunne
and Christoffersen’s (1985) procedure of interpreting
friction angles for overconsolidated sands, the angle of
internal friction of the top 9 ft (eight pile diameters) of
the recent alluvium was estimated to be 43°.

Deflections and maximum bending moments in single
fixed-head and free-head piles were analyzed using p-y
analysis (with the aid of the computer program COMé622), and

also using the Evans and Duncan (1982) procedure. The
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results are shown in Table 3.5 for deflections and Table 3.6
for maximum bending moments. There is very good agreement
between the two methods of analysis, with the majority of
the values calculated using the two procedures being within
10% of each other.

When the cap is 3 ft above ground, the behavior is
different from that of a fixed-head pile or a free-head
pile. This condition can be analyzed using the approximate
procedure described in Section 3.2.1.5. To provide results
for comparison, the computer program COM622 was used to
analyze a laterally loaded single timber pile fixed 3 ft
above ground, the results of which are shown in Fig. 3.39
for deflection and Table 3.7 for maximum bending moment.
Comparisons between this case with the fixed-head and free-
head cases are also shown in Fig. 3.39 for deflections, and
Table 3.7 for maximum bending moments. From Fig. 3.39, it
can be seen that values of deflection calculated using the
approximate procedure outlined in Section 3.2.1.5 and COM622
agree very well. It can also be seen that the deflection of
the pile fixed 3 ft above ground is intermediate between
those of a fixed-head pile and a freé-head pile. From Table
3.7, the values of maximum bending moments occurring in the
pile fixed above ground calculated using the approximate
procedure are within about 10% of those calculated using

COM622. It can also be seen that the moments in the pile
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Table 3.5 Comparison of single pile deflections predicted
using p-y analysis with those using the Evans and
Duncan procedure for the load test conditions in

Lock and Dam 26, Alton,

Illinois

Lateral Load

Yg obtained from

Ys obtained from

per pile p-y analysis Evans and Duncan
Pg procedure
(kips (in.) (in.)
Fixed-Head | Free-Head Fixed-Head | Free-Head
12 0.17 0.64 0.19 0.68
24 0.48 2.37 0.53 2.04
30 0.70 3.86 0.76 2.98
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Table 3.6 Comparison of maximum moments in single piles
predicted using p-y analysis with those using the
Evans and Duncan procedure for the load test
conditions in Lock and Dam 26, Alton, Illinois

Lateral Load Mg obtained from Mg obtained from
per pile p-y analysis Evans and Duncan
Pg procedure

(kips) (kip~-in) (kip-in)
Fixed-Head | Free-Head Fixed-Head | Free-Head
12 399 425 427 463
24 917 1120 1010 1140
30 1215 1550 1350 1550
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Table 3.7 Comparison of values of maximum bending moment
calculated from p-y analyses of (1) a free-head
pile, (2) a fixed-head pile and (3) a pile fixed to
a cap 3 ft above ground

COM622 Approximate
Analyses Procedure
Lateral | Moment in a] Moment in al Moment in a Moment in a
load per] free-head fixed-head | pile fixed pile fixed
pile pile pile to a cap 3 ftf to a cap 3 ft
Pg above ground | above ground
(kips) (kip-in) (kip-in) (kip-in) (kip-in)
12 425 399 636 589
24 1120 917 1420 1340
30 1550 1220 1860 1750
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fixed above ground are higher than those for the fixed-head
pile or free-head pile 1loaded at the groundline. The
maximum moment was found to occur at the top of the pile (3
ft above ground).

The simplified procedure for amplifying single pile
deflections and moments to estimate deflections and moments
for the group was applied to the results of both the COM622
analysis and the approximate procedure. A comparison of the
calculated and measured values of group deflection is shown
in Fig. 3.40. The simplified procedure overpredicts the
group deflections by about 100% at loads of 12 and 24 Kkips
per pile. At Pg = 30 kips/pile, the agreement is very good.
The measured deflections‘increaséd very rapidly at loads in
excess of 24 kips, indicating that the behavior of these
piles at very high loads may be governed by the structural
strength of the piles. This comparison indicates that the
simplified method provides estimates of group deflection
that tend to be conservative.

The simplified procedure was also used to amplify
values of single pile moments calculated using the
approximate procedure and COM622 to estimate the group
moments. A comparison of these values with the maximum
moments measured in the leading row of piles is shown in
Table 3.8. The estimated values of maximum moment exceed

the measured values by about 30%. These results seenm
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Table 3.8 Comparison of measured and predicted values of
maximum bending moment in the pile group at Lock
and Dam 26, Alton, Illinois

Lateral Calculated Measured
load
per
pile Mg Mg Mg/Mg M M Mg
Pg from from from (gs (gs
COM622| approx.| simplified from from
proc. proc. COM622) | approx.
proc.)
kips kip-in kip-in | kip-in kip-in kKip-in kip-in
12 636 589 1.47 935 866 700
30 1860 1750 1.49 2770 2600 2200
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reasonable considering the fact that the amplification
factors were developed for fixed-head pile groups.
Simplified methods of predicting pile group behavior should
ideally yield results that are, if not accurate, then

conservative. In this load test, this is the case.

3. Brown et al. (1987)

Brown, Reese and O’Neill (1987) conducted lateral load
tests on a group of nine steel-pipe piles at the University
of Houston campus. - The site layout, the schematic drawing
of the instrumented pipe, and the variation of shear
strength with depth are shown in Fig. 3.41. Lateral load
tests on a single instrumented pipe pile was also conducted
so that a comparison between group response and single pile
response could be made.

The piles were steel pipes with 10.75 in. outer
diameter and an inner diameter of 10 in. 1Inserted in these
pipes were smaller steel pipes (outer diameter = 6.625 in.,
inner diameter = 6 in.) that housed strain gages. The void
space between the pipes was grouted with concrete. The
flexural stiffness (EpIp) of the pile was calculated using a
transformed section that accounts for the presence of the
inner pipe and concrete grout. If the Young’s modulus of

the pile was taken to be that of steel (Ep = 29 000 ksi),
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Figure 3.41 Site Layout and Soil Strength Profile for the
University of Houston Test Site of a Laterally
Loaded Pile Group in Beaumont Clay (After Brown

et al., 1987)
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then the value of moment of inertia of the pile that has the
same flexural stiffness as the composite pipe was calculated
to be 243 in%*. The nine piles were driven close-ended in a
3 X 3 arrangement, with a spacing of 3 diameters center-to-
center. The piles penetrated to a depth of 43 ft.

The portion of the ground that 1is of greatest
importance to 1lateral 1load behavior is the top 8 pile
diameters (7 ft). It consists of stiff, preconsolidated
Beaumont clay with very closely spaced joints or fissures
(spacing on the order of 0.25 in.). From Fig. 3.41, it may
be seen that the average undrained shear strength for the
top 7 ft is approximately 10 psi.

The loads were applied 1 ft above ground, through a
loading frame that provided moment-free connections to the
piles. The deflections and bending moments that were
measured during the tests for the single pile and pile group
are shown in Figs. 3.42 and 3.43.

In order to study the 1load tests of Brown et al.
(1987), values of deflections and maximum bending moments in
a single free-head pile were estimated using the nonlinear
superposition procedure of Evans and Duncan (1982) to
account for the 1 ft eccentricity of the load. These values
of deflections and bending moments were then amplified to
estimate values of deflection and moment for the group using

Equations 3-16 and 3-20. Although Equations 3-16 and 3-20
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strictly apply only to groups of fixed-head piles, they can
be applied with some approximation to free-head piles. A
comparison of the calculated and measured values of
deflection are shown in Table 3.9, and the moments are shown
in Table 3.10.

The calculated values of single pile deflections and
maximum bending moments are in excellent agreement with the
measured values. At loads of 5 and 10 kips per pile, the
calculated values of group deflections and maximum moments
in the most heavily loaded pile in the group are also in
excellent agreement with the measured values. However, at a
load of 15 kips per pile, the group deflection was
underestimated by 36%, while the group moment was
underestimated by 15%. Overall, the accuracy of the
calculations is reasonable considering the fact that the
free-head group was analyzed using the simplified method

developed for fixed-head pile groups.

4. Brown et al. 1988

After performing the lateral load tests on the nine
pile group in Beaumont clay at the University of Houston
test site, Brown, Morrison and Reese (1987) conducted a
similar research program at the same site using the same

nine pile group. The natural Beaumont clay was excavated
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Comparison of predicted versus measured values of

Table 3.9
lateral deflection of pile groups in Beaumont clay
at the University of Houston test site (Brown et
al., 1987)

Lateral Yg Yg Ygq Yg
Load/Pilel Calculated | Measured Calculated Measured
(kips) (in.) (in.) (in.) (in.)

5 0.11 0.11 0.20 0.19
10 0.34 0.32 0.52 0.53
15 0.68 0.63 0.91 1.43
20 1.14 1.13 1.36 -
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Table 3.10 Comparison of predicted versus measured values of
bending moments in piles in pile groups in
Beaumont clay at the University of Houston test
site (Brown et al., 1987)

Lateral Mg Mg Mg Mg
Load/Pilel Calculated | Measured Calculated Measured
(kips) (kip=-in) (kip=in) (kip-in) (kip=in)

5 201 200 243 200

10 449 430 525 510

15 728 750 823 970

20 1030 1100 1124 -
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and sand backfill was compacted around the piles (Figqg.
3.44). The sand layer extends to a depth of approximately
10 pile diameters. Therefore, the response of the pile
group to lateral loading in these tests would be expected to
be governed by the strength and stiffness of the sand.

The sand was kept saturated during the test through the
use of a perforated pipe system at the bottom of the
excavation. The pipe system and penetration test results
(SPT and CPT) on the sand are shown in Fig. 3.44. By
applying Robertson and Campanella’s (1983) procedure for
estimating friction angle of sands from CPT data, the
compacted sand was estimated to have a friction angle of
42°. The buoyant unit weight was calculated to be 61.6 pcf.

Similar to the analysis on the pile group in Beaumont
clay, the deflection and maximum bending moments in a single
free-head pile were estimated using nonlinear superposition
to account for the eccentricity of the load, and amplified
to estimate the deflections and moments for the group. The
deflections and bending moments that were measured during
the tests for the single pile and pile group are shown in
Figs. 3.45 and 3.46. A comparison of the calculated and
measured results are shown in Table 3.11 for deflections and
Table 3.12 for bending moments. Based on these comparisons,

the following observations can be made:
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Table 3.11 Comparison of predicted versus measured values of
lateral deflection of pile groups in compacted
sand at the University of Houston test site (Brown

et al., 1988)

Lateral Yg Yg Ygq Y
Load/Pile Calculated | Measured Calculated Measured
(kips) (in.) (in.) (in.) (in.)

5 0.16 0.15 0.50 0.23
10 0.40 0.33 1.16 0.54
15 0.73 0.58 1.95 1.00
20 1.15 0.87 2.88 1.60
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Table 3.12 Comparison of predicted versus measured values of
bending moments in piles in pile groups in
compacted sand at the University of Houston test
site (Brown et al., 1988)

Lateral J Mg Mg Mg
Load/Pile Calculated | Measured Calculated Measured
(kips) (kip=-in) (kip=-in) (kip=-in) (kip-in)

5 221 200 325 200

10 471 410 697 410

15 742 740 1110 740

20 1030 910 1560 910
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1) The calculated values of group deflection are compared to
the deflection of piles in the middle row since they best
represent the deflection of the group for a given value of
an average load per pile. As can be seen in Table 3.11, the
calculated values of group deflection are about twice as
iarge as the measured values.

2) Since little difference is noted in the measured values
of maximum moment in the single pile and in the group, and
since the moment amplication factor Cy is always greater
than 1, the simplified method overestimates the maximum
moment in this pile group; the difference is about 60%.

3) In this load test, the simplified method tends to be
conservative when values of deflections and maximum moments
from a single free-head pile are used to estimate group
deflections and moments. One possible explanation may be as
follows: the loads were applied in several increments, and
at each load increment, the loads were cycled. This could
possibly have led to densification of the sand, resulting in
lower values of group deflections and moments when the loads

were increased.



CHAPTER FOUR
DEVELOPMENT OF PERFORMANCE FACTORS FOR LOAD FACTOR DESIGN OF

DEEP FOUNDATIONS

In the United States, load factor design (LFD) concepts
are used in the ACI design code (1989), in the AASHTO
specifications for Dboth concrete and steel bridge
superstructures (AASHTO, 1989), and in the AISC (1986)
specifications for the design of steel buildings. However,
there are no provisions for foundation design using LFD
procedures. Foundations are usually deéigned using working
stress design. Hence engineers who use LFD for structural
design must develop two sets of loads - one set of loads for
the design of the superstructure, and another set of loads
for the design of foundations. Development of load factor
design for foundations will make this duplication of effort
unnecessary. Other advantageé of developing LFD for
foundations include: (1) consistent safety margins are
attained in both structure and foundation, and (2). LFD
results in more economical use of materials.

In load factor design, safety against failure for a
given 1limit state requires that the factored ultimate
resistance exceeds the factored loads. There are at least

two ways in which the factored resistance can be specified:

196
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1) In the first format, an overall performance factor is
applied to the reistance side of the equation for each
applicable limit state. With this approach, the factored
resistance for a given limit state is given by ¢Rp, where
¢ = performance factor, with a value less than unity and
Rp = nominal resistance. This is the format followed by
ACI for concrete design, and AISC for LRFD of steel
structures. The advantages of this approach are its
simplicity and its familiarity to many designers.

2) The second approach employs partial resistance
factors which are applied directly to the individual
variables in the resistance equation. 1In this approach,
partial factors are applied to the individual soil
strength properties such as cohesion and angle of
internal friction. These partial resistance factors are
typically specified only once in the design code, and the

same factors are used for all ultimate limit states.

The second approach is more sophisticated, since the
partial factors are related directly to the parameters that
are the sources of variability in strength. This format was
adopted by the Danish Foundation Code (1985) and the Ontario
Highway Bridge Design Code (1983). However, in the Ontario
Highway Bridge Design Code, different partial factors were

used for the same soil parameters for different 1limit
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states. A disadvantage of the partial factor approach is
that it 1is not consistent with resistance factors on
structural elements which consider overall measures of
perfofmance, such as bending strength. The second approach
was considered by ACI but was not acceptable to many
engineers, and was rejecﬁed by the ACI membership. The
"overall performance factor" format is the preferred
approach to LFD of deep foundations, and will be the format
adopted.

In the sections that follow, the determination of
performance factors for axial capacities of driven piles and
drilled shafts for the AASHTO code (for bridges) and the
ASCE Standard 7-88 (for buildings and other structures) is
described. A procedure for extending the results of this
calibration exercise to any other design code will also be

presented.

4.1 Single Piles

4.1.1 Introduction

In this section, results of the code calibration are
presented for several methods of predicting pile capacity
described in Chapter 2. The methods considered include both
rational methods and empirical methods based on in situ

tests. Resistance statistics for driven piles and the
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results of the reliability analyses are ©presented.
Performance factors obtained by reliability based
calibration are summarized and the rationale for the

selection of the performance factors is discussed.

4.1.2 Resistance Statistics

The calculated ultimate bearing capacity, Qujt, of a
deep foundation in reality can differ from the measured or
actual bearing capacity, Qn. To account for the discrepancy
between Qui1+ and Qp, correction factors that represent the
different sources of uncertainties are introduced as

follows:

fo |

Qm = I Nj Quit (4-1)
1=1

where Nj is the correction factor for the error source i and
n is the number of sources of error.

The uncertainty associated with a correction factor
Nj, may be represented by the mean value, ﬁi and the c.o.v.,
Vi. The mean value of Nj is a measure of the bias caused by
the error source i, on the ultimate bearing capacity. The
c.o0.v., Vj, is a measure of the scatter of the correction
factor, which 1in turn affects the variability of the

ultimate bearing capacity. Assuming that the correction
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tors are statistically independent, first order analysis
the uncertainties affecting the ultimate bearing capacity

1d the mean and c.o.v. of Qn as follows:

n
Qm = HlNi Qult (4-2)

n
_ .2
Vo, = /E Vi (4-3)

The following sources of error are considered in the
iability analysis:
(1) model error where there may be an overall bias in the
prediction method.
(2) time and reconsolidation in the case of clays.
Because of the time dependent properties of clay, the
capacity will change with time. Pile load tests are
generally performed shortly after installation, but the
maximum load on the structure may occur years after
installation. Therefore, in clays which consolidate and
gain strength after pile installation, load tests hay
underestimate the pile capacity.
(3) inherent spatial variability. Soil properties are
known to be correlated between any two points. The

uncertainty associated with a soil property at a point is
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larger than if it were measured over a certain distance

or volume because of the averaging effect.

(4) systematic error in the soil strength which accounts

for the bias and repeatabiiity of the tests used for

measuring soil parameters. This may be due to equipment,

procedural and rate of testing effects.

Other possible sources of error include the following

(Tang, 1989):
(1) Statistical uncertainty due to insufficient soil samples
at the site - The uncertainty in the predicted value of a
soil parameter is inversely proportional to the square root
of the number of samples tested, i.e. the c.o.v. due to
statistical uncertainty is equal to V¢//Ngamples, Wwhere Vg
is the c.o.v. of the measured strength and Ngamples is the
number of samples tested. The reliability analysis
performed for deep foundations is not site specific, and
this quantity is assumed to be negligible. The bias factor
due to statistical uncertainty is assumed to be unity.
(2) Error in determining the value of the ultimate load -
Equipment used in load testing piles could take some of the
load applied to the piles via friction in the jack (Tang,
1989). Also, even if a certain failure criteria (eg.
Davisson’s, 1973) was used to define the ultimate load in

piles, different engineers using the same method could give
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different estimates of pile capacity. Such sources of error
are not easily quantified.

The resistance statistics for three rational («, B8, and
A methods) and two in situ methods (SPT and CPT methods) are

presented below.

a) Rational Methods For Driven Piles

Sidi (1986) analyzed numerous pile 1load tests in
cohesive soils and compared them to the predicted capacities
using rational methods. Three of the rational methods he
considered include the a«, g and A methods. The o method
(Tomlinson, 1987), which is a total stress method, and the 2
method (Vijayvergiya and Focht, 1973), which is a mixed
method, both require the knowledge of the undrained shear

strength of the clay. The g method (Esrig and Kirby, 1979),
which is an effective stress method, requires an estimation
of the stress history of the clay.

Sidi separated the resistance statistics for the o and
A methods into two distinct groups: the first group called
Type I clay is for clays with undrained shear strengths, Sy,
less than 1000 psf, while the second group (Type II) is for
clays with S, greater than 1000 psf.

Sidi (1986) accounted for the effect of inherent

spatial variability of soil parameters through the use of
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random field theory. Using a variance function (Vanmarcke,
1983), the c.o.v. of a soil property at a point can be
reduced to the c.o.v. of the soil property over a spatial
length. With an appropriate variance function, he found
that the coefficient of variation for inherent spatial
variability for the a and A methods is equal to 1//Z, where
Z is the pile length in ft. The bias factor for inherent
spatial variability can be taken as unity. The uncertainty
in the wunit weight (used for calculating the effective
overburden pressure in the A method) is disregarded because
it is small éompared to the uncertainty in the shear
strength. The bias factor for inherent spatial variability
of OCR used in the g method is assumed to be unity while the
c.o0.v is small and therefore, assigned a value of 0.05.
Statistics (bias factors and c.o.v.’s) for the various
sources of error considered by Sidi are summarized in Table

4.1.
b) In Situ Methods For Driven Piles
In situ tests are useful for estimating shear strengths

especially of sandy soils. The uncertainties associated

with the SPT and CPT tests are discussed below.
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Table 4.1 Sumary of statistics for axial capacity of

friction piles (After Sidi, 1986)
Correction Type I Clay Type II Clay Effective
Stress
Analysis
Mean cov Bias cov Bias cov.
Model Error

a method 1.104 0.208 2.34 0.568 - -

A method 1.02 0.414 0.84 0.174 - -

8 method - - - - 1.032 0.213
Time and 1.113 0.04 1.0 0.0 - -
Reconsolidation ‘

Inherent 1 1

Spatial 1.0 — 1.0 — 1.0 0.051
Variability JZ JZ

Systematic

Error

UU Triaxial

Su

—_ 0.945 0.179 1.02 0.098 - -
Uv’

Su

—_ 0.945 0.179 1.03 0.136 - -
Ov,

Su

—_ 0.945 0.179 1.03 0.153 - -
Ov’

Consolidation

Test

OCR 1.0 0.151

1 gstimated value
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The standard penetration test is the most common in
situ test for soils. However, many variations of the test
equipment give rise to different energy levels imparted into
the soil. Such factors include the type of hammer (which
affects the amount of energy delivered to the system),
length of drill rods, diameter of borehole, nature of
drilling fluid, type of drill bit, type of sampling spoon,
rate of blow count and type of drill rods (Seed and DeAlba,
1986) . Most of these effects may be minimized by
standardizing the test. Nevertheless, variability in the
equipment and procedure cannot be eliminated. Orchant et
al. (1988) found that systematic error due to equipment,
procedure and random effects cause a certain degree of
variation. They proposed the c.o.v. values shown in Table
4.2 for these effects. It is assumed that the bias factors
approach unity due to an averaging effect.

Other sources of error considered are also shown in
Table 4.2. Meyerhof (1976) suggests that correcting the
SPT-N value against a standard overburden preséure of 1 tsf
when estimating the end bearing would 1lead to improved
results of pile capacity prediction in sands. Studies have
shown that 5 models for overburden correction of SPT-N
values [Bazaraa (1967), Peck et al. (1974), Seed (1979),

Skempton (1986) and Liao and Whitman (1986)] give very
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Table 4.2 Summary of statistics for axial capacity of piles
using in situ test results

Correction

SPT
Mean

cov

Mechanical Conel
Mean Ccov

Electric Cone
Mean cov

Model Error

0.5

1.03 0.357

1.03 0.357

Equipment,
Procedure
and Random

1.0 0.15-0.45

1.0 0.15-0.25

1.0 0.05-0.15

Inherent 1.42 0.903 0.903
Spatial 1.0 _ 1.0 1.0 —
Variability JZ JZ JZ
Overburden 1.0 0.07 - - - -

Correction
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similar results. Meyerhof’s SPT method for predicting pile
capacity in sands was estimated to have a bias of 1.3 and a
c.o.v. of 0.5.

Vanmarcke showed that the c.o.v. of a soil property is
reduced when the property is averaged over a 1length or
volume. The amount of reduction depends on the variance
function, r(az), which is defined as the ratio of the c.o.v.
of a random variable averaged over a length az [(Vi)az], to
the point c.o.v. of that random variable [Vj]:

(Vi) az
r(az) = ——— (4-4)
Vi
Vanmarcke (1977) defined the scale of fluccuation, 45, as
"the distance within which the soil property shows
relatively strong correlation or persistence from point to
point." He further showed that the variance function is

related to the scale.of fluctuation as follows:

0511/2
rz) = |— (4-5)
AZ

Equating the expressions for I (az) given by Equations 4-4
and 4-5, the c.o.v. of a soil property over a depth Az can

be written as:

5.11/2
(Vi)az = t—i Vi (4-6)
AZ



208

where 65 is the scale of fluctuation of the soil property
and Vj is the c.o.v. of the soil property at a point.
Table 4.3 shows the scale of fluctuation and the point

c.0.v. for the SPT blow count.

Orchant et al. (1988) surveyed CPT data for both
mechanical and electric cones. The equipment, procedural
and random effects give rise to uncertainty in the cone
resistance indicated by the values of c.o.v. in Table 4.2.
It is however, not customary to correct CPT data for
overburden pressure. Using the load test data of Robertson
and Campanella (1988) and Horvitz et al. (1981), the model
error and c.o.v. for Schmertmann’s CPT method for predicting
pile capacities are shown in Table 4.2. The bias factor and
c.o0.v. for 1inherent spatial variability in the sleeve
friction resistance and cone resistance from the CPT are
also shown in Table 4.2. They were calculated using the
values of scale of fluctuation and point c.o.v. given in

Table 4.3.

4.1.3 Load Statistics

Load statistics for buildings and ©bridges are

summarized in Table 4.4.
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Table 4.3 Scale of fluctuation and point coefficients of
variation for in situ soil parameters
SCALE OF FLUCTUATION C.0.V.point
SPT 8 ft 0.42 4
(After Vanmarcke, 1977)| (After Briaud & Tucker, 1984)
CPT 2 m (6.56 ft) 0.35-0.71
(After Baecher et al., (After O’Neill, 1986)
1983)
0.33
(After Grigoriu et al., 1987)

Value used = 0.37
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Table 4.4 Statistics for dead and live loads
Bridges
Span = 60 ft Span = 250 ft
(Sn/St = 1.0) (Sn/Sy = 3.7)
Bigé L cov Bigé L cov
Dead Load 1.05 0.09 1.05 0.09
Live Load 1.22 0.11 1.05 0.11
Buildings
Influence Area, A (ftz)
1000 2000 5000 10000
Bias | cov Bias | cov Bias | cov Bias cov
Dead ILoad { 1.05 ]| 0.10 | 1.05|(0.10(1.05 ] 0.10{ 1.05 0.10
Live load | 1.08 | 0.25|1.09 | 0.25 | 1.11 [ 0.25 | 1.13 0.25
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Bridges
Grouni and Nowak (1984) attributed the dead load acting

on bridges to the Qeight of factory-made members and the
structural components produced in the field, which include
the weight of concrete and the weight of the wearing
surface. Dead load acting on bridges can be assumed to be
normally distributed. Grouni and Nowak found that the bias
factor for dead 1load is approximately 1.05 for Canadian
bridges. Because the dead load can usually be calculated
quite accurately, the same value of bias factor will be
applicable to bridges in the U.S. Moses and Ghosn (1985)
found that the <c.o.v. for dead 1load on bridges is
approximately 9%.

The bias factor for the maximum 1live 1load (truck
loading) acting on bridges vary with span 1length. The
values of the bias factor for live load on bridges with span
lengths ranging from 60 ft (Sp/Sp = 1.0) to 250 ft (Sp/Sp =
3.7) are shown in Table 4.4. According to Grouni and Nowak

(1984), the c.o.v. for live load is approximately 11%.

Buildings
Dead load in buildings may be attributed to the weight

of the structural elements, permanent equipment, partitions
and installations, roofing, floor coverings, etc.

(Ellingwood et al., 1982). As with bridges, the probability
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distribution for dead load can be assumed to be normal.
Ellingwood et al. (1982) proposed that values of the bias
factor and c.o.v. for dead load can be taken as 1.05 and 0.1
respectively.

Models for predicting the nominal value of the lifetime
maximum total live load for buildings have been published by
several authors (see reference by Ellingwood et al., 1982).
For office buildings, the nominal value of maximum total
live load (S;) is given by the ASCE Standard 7-88 (1990) as

follows:
Sy, (1b/ft?) = 50(0.25 + 15//A7) (4=7)

where Ay is the influence area. The mean value of
maximum live load (§L) can be calculated using the following

model for live load (Ellingwood et al., 1982):
S1, (1b/ft2)= 14.9 + 763//A71 (4-8)

The bias factor for live load (A7) is obtained by dividing
Equation 4-8 by Equation 4-7 as follows:
14.9 + 763//A1

AL, = SL/SL = (4-9)
50(0.25 + 15//A7)

It can be seen from Equation 4-9 that the bias factor for
live load varies with the influence area. According to

Ellingwood et al. (1982), the variation of c.o.v. with the
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influence area is small, and they suggested that a c¢.o.v. of
0.25 for maximum live load is sufficiently accurate.
Comparison of the 1load statistics and resistance
statistics show that the values of c.o.v. for resistance are
much larger than those for 1loads. Also, the magnitude of
the resistance should be larger than the magnitude of the
loads by a factor equal to the factor of safety. Therefore,
the uncertainty in the resistance will constitute a larger
percentage of the total uncertainty, implying that the
calibration results will not be highly sensitive to the load

statistics.

4.1.4 Results of Calibration

4.1.4.1 Reliability Indices

Reliability indices for the five methods selected for
calibration are shown in Figs. 4.1 and 4.2. Those in Fig.
4.1 were calculated using the lognormal method, and those in
Fig. 4.2 were calculated using the advanced procedure.
Values of reliability indices were calculated for two dead
to live load ratios (Sp/Sp = 1 and 3.7). It was found that
the reliability indices for bridges and buildings are
similar, because the uncertainty in the resistance

constitutes a larger percentage of the total uncertainty,
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and the values of reliability indices are thus relatively
insensitive to the load statistics.
Based on the results of the reliability analysis, the
following observations can be made:
1) The values of reliability index increase with
increasing span length for bridges. This is due to the
fact that the ratio of dead to live load increases with
span length. Since the uncertainty in the dead load is
lower than the uncertainty in the live load, this has the
effect of reducing the total uncertainty in the 1load,
thus resulting in higher values of reliability index.
2) The reliability indices for driven piles vary between
1.6 and 3.1 using the lognormal method while the advanced
method yielded values between 1.6 and 3.3.
The a, B8 and ) methods for predicting pile capacities
in clay and the CPT method for predicting pile capacities in
sand all employ a factor of safety of 2.5. The factor of

safety associated with the SPT method is typically 4.

4.1.4.2 Target Reliability Indices

Meyerhof (1970) suggested that the probability of
failure of foundations should be between 10”2 and 10_4,
which corresponds to values of reliability indices between 3

and 3.6 (Table 2.9).
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Reliability indices for offshore piles reported by Wu
et al. (1989) are between 2 and 3. They calculated that the
reliability index for pile systems is approximately 4.0,
corresponding to a lifetime probability of failure of
0.00005. Tang et al. (1990) reported that offshore piles
have reliability indices ranging from 1.4 to 3.0.

Reliability indices for driven piles are summarized in
Table 4.5. Values of reliability indices between 1.6 and
3.1 were obtained for the 1lognormal procedure, and the
values are relatively insensitive to the ratio of dead to
live load. Thus a target reliability index between 2.5 to
3.0 may be appropriate. However, piles are usually used in
groups. Failure of one pile does not necessarily imply that
the pile group will fail. Because of this redundancy in
pile groups, it is felt that the target reliability index
for driven piles can be reduced from 2.5 to 3.0 to a value

between 2.0 and 2.5.

4.1.4.3 Performance Factors

Performance factors obtained by fitting with the
existing working stress design specifications are shown in
Table 2.8 for dead to live load ratios ranging from 1 to 4.
As mentioned earlier, the safety factor for the three

rational methods and the CPT method is usually taken as 2.5,
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Table 4.5 Summary of reliability indices for driven piles

Ratio of Dead Lognormal Advanced
to Live Load

1.0 1.6-2.8 1.6-3.0

3.7 1.7-3.1 1.8-3.3
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while the safety factor for the SPT method is usually about
4. Calibration by fitting with working stress design at low
dead to live load ratios yields performance factors that are
unconservative. Since live load factors are usually greater
than dead load factors, low values of dead to live load
ratios result in lower total factored loads for the same

working load.

Bridges

Performance factors obtained from the reliability based
calibration procedure are shown in the top half of Table
4.6. The values shown are based on target reliability
indices of 2.0 and 2.5 and a dead to live load ratio of 3.7,
which corresponds to a bridge span length of 250 ft. The
values of performance factor varies from 0.38 to 0.96
depending on the method used for predicting pile capacity,
the type of soil, the length of the pile and the target
reliability index. Results of the calibration indicate that
performance factors are not sensitive to pile length. Also,
the performance factors are relatively insensitive to the
ratio of dead load to live load. This is due to the fact
that uncertainties in soil parameters and uncertainties in
the prediction equation are considerably higher than the

uncertanties associated with the loads.
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Table 4.6 Performance factors for driven piles
Bridges
Pile a-method p-method A-method CPT SPT
Length Type I Type II1 Type I Type IT
Br = 2.0
30 ft 0.78 0.92 0.79 0.53 0.65 0.59 0.48
100 ft 0.84 0.96 0.79 0.55 0.71 0.62] 0.51
Bp = 2.5
30 ft 0.65 0.69 0.68 0.41 0.56 0.48 0.36
100 ft 0.71 0.73 0.68 0.44 0.62 0.51 0.38
8elected 0.70 0.50 0.55 0.55 0.45
Buildings
Pile a-method p-method A-method CPT SPT
Length | Type I Type II Type I Type IT]
B = 2.0
30 ft 0.74 0.92 0.73 0.52 0.60 0.57] 0.48
100 ft 0.79 0.95 0.73 0.54 0.65 | 0.60 0.50
Bp = 2.5
30 ft 0.60 0.67 0.61 0.39 0.50 0.4§ 0.35
100 ft 0.65 0.70 0.61 0.42 0.55 0.48 0.37
Selected 0.65 0.45 0.50 0.50, 0.40
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Recommended values of performance factors for each of
the method are also summarized in the last row of Table 4.6.
Studies have shown that among the 3 rational methods for
predicting pile capacities in clays, the following is judged
to be the order of reliability of the methods in descending
order: (1) a method, (2) A method (3) g method. The
recommended values in Table 4.6 reflect this trend.
Calibration results indicate that the performance factor for
the g method is high (0.68 to 0.79). However, the g method
when applied by different engineers, can give widely
divergent estimates of pile capacity and therefore a lower
value of ¢ (0.5) is assigned to the method. The recommended
performance factor for the CPT method is 0.55 while for the
SPT method, a value of 0.45 is recommended. The CPT method
is more reliable than the SPT method because of the
continuous nature of measurements afforded in a CPT test,
even though the factor of safety associated with the SPT is
higher. Thus a higher value of performance factor is

recommended for the CPT method than the SPT method.

Buildings

Performance factors obtained from the reliability based
calibration procedure are shown in the bottom half of Table
4.6. The values shown in the table are based on target

reliability indices of between 2.0 and 2.5 and a dead to
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live load ratio of 2.0. The value of dead to live 1load
ratio of 2.0 was chosen to reflect more closely the ratios
of dead to 1live load in buildings It can be seen that
values of performance factors are 1lower than those for
bridges, ranging from 0.37 to 0.95. These values are lower
primarily because the load factors for buildings are less
than those for bridges, and thus lower ¢ factors are needed
to achieve the same level of reliability.

Performance factors derived from the reliability based
calibration for buildings are plotted against the
performance factors for bridges in Fig. 4.3. The figure
shows that an approximately 1linear relationship exists
between performance factors for buildings and those for
bridges. This approximate relationship can be established
as follows: the 1load factor design criteria for two
different codes, Code A and Code B, are given by the

following equations:

7DASDA/S1A + 1A

FS(Spa/Sia + 1)

For Code A: #ARn (4-10)

v

1DBSDB/SLB + YLB

FS(Spp/Ss + 1)

For Code B: $BRn (4-11)

v

Dividing Equation 4-10 by 4-11 gives the ratio ¢p/4g as

follows:
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¢n  YDASpA/SiA * vLa Spp/SiB t 1 (4-12)

¢B  TYDBSDB/SIB * 7B Spa/Sta t+ 1

If Code A refers to AASHTO and Code B refers to the building
code (ASCE Standard 7-88, 1990), then Equation 4-12 becomes:

A 1.3Spa/Sta + 2.17 Spp/Sip + 1
— = (4-13)

$B 1.2Spp/Sts + 1.6 Spa/Sia + 1

If Spa/Sia = 3.7 and Spp/SyB = 2.0, Equation 4-13 yields ¢p
= 0.94p. Using linear regression, the equation of the
straight line in Fig. 4.3 is ¢Building Code = 0.954aAASHTO-
The above exercise demonstrates that once the
calibration procedure has been carried out for one code, it
is easy to use the results and extend it to any other code
provided that the statistics for the 1loads are not

significantly different.

4.1.4.4 Other Performance Factors

Performance factors for driven piles including those
that have not been calibrated using reliability theory are
summarized in this section for the AASHTO code. The
corresponding performance factors for the building code are
between 0.9 and 0.95 times the values of performance factors

for bridges.
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Table 4.7 summarizes the performance factors for driven
piles including those for ultimate limit states that were
not calibrated using reliability theory. The bases for the
selection of the performance factors that were derived from
the reliability-based calibration procedure are presented

below.

End Bearing of Piles in Clay. The factor of safety for the
end bearing capacity of piles in clay typically varies
between 2 and 3. Skempton’s (1951) equation for end bearing
has been tried and tested and found to work well in
practice. Moreover, the end bearing of piles in saturated
clay is usually only a small percentage of the total pile
capacity. Thus it would be appropriate to use the smaller
factor of safety of 2 when determining the performance
factor by fitting with working stress design. The
corresponding value of ¢ using Equation 2-41, Sp/Sy = 3.7,

vp = 1.3, and vy, = 2.17, is approximately 0.7.

End Bearing of Piles in Sand. This method refers to the
effective stress method of estimating end bearing capacity
of piles in sand (Kulhawy et al., 1983) that requires an
estimation of the friction angle (usually from in situ
tests). The performance factors for the CPT and SPT methods

are 0.55 and 0.45 respectively. Additional uncertainties
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Under Axial Load

METHOD/SOIL/CONDITION

!

[PERFORMANCE FACTOR

ULTIMATE |

|
|
1
|
t

SKIN a-method ¢gs 0.70
BEARING FRICTION B~method ¢qs 0.50
CAPACITY A-method i $gs 0.55
OF Clay ; $gqp = 0.70
: (Skempton, 1951)
SINGLE | END Sand ;
| (Kulhawy, 1983) | }
PILES | BEARING ¢ from CPT ! ¢gp = 0.45
l |
| v
: ¢ from SPT | ¢qp 0.35
|
Rock - ¢qp 0.50
(Canadian Geotech.
Society, 1985) J
SKIN FRICTION |SPT-method ' ¢q 0.45
AND CPT-method ¢q 0.55
END BEARING Load Test ; ¢q 0.80
Pile Driving | ¢q 0.70
Analyzer j
BLOCK :
Clay | ¢g = 0.65
FATILURE ,
UPLIFT a-method | ¢y = 0.60
CAPACITY s-method | pu = 0.40
f |
OF A-method : ¢y = 0.45
SINGLE SPT-method : ¢y = 0.35
PILES CPT-method 29 0.45
Load Test du 0.80
GROUP Sand bug = 0.55
UPLIFT }
CAPACITY Clay ¢ug 0.55 J
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are involved when estimating the friction angle from cone
resistance and SPT blow counts. Therefore, the performance
factors must be reduced as follows: if the friction angle is
estimated from CPT data, then ¢ = 0.45, and if the friction
angle is estimated from SPT data, then ¢ = 0.35, i.e. the
performance factor is equal to that for the in situ method

of predicting pile capacity, less 0.1.

End Bearing of Piles in Rock. (See Equations 2-25 and 2-
26) . The Canadian Geotechnical Society (1985) recommends a
factor of safety of 3 for their method. The corresponding
performance factor calculated using Equation 2-41, Sp/Sp =

3.7, yp = 1.3, and 41, = 2.17, is approximately 0.5.

Capacity of Piles from Load Test. Pile load tests provide
one of the most reliable estimates of pile capacity. A high
value of performance factor is thus warranted. The value
selected is 0.8 which corresponds to a factor of safety of

approximately 1.9.

Pile Driving Analyzer. Careful monitoring of pile
installation with the pile driving analyzer allows the use
of a higher value of performance factor than those for the
static methods, but a lower value than that for the 1load

test. Thus, a performance factor of 0.7 is recommended if
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the pile driving analyzer is used by competent personnel to

monitor the pile driving.

Block Failure of Pile Groups in Clay. If the pile spacing
is small enough, pile groups can fail as a unit consisting
of the piles and the block of soil contained within the
piles. Piles are usually spaced at 2.5 to 4 pile diameters
apart (center-to-center). Block failure is seldom critical
at large spacings, and a performance factor of 0.65
corresponding to a factor of safety of 2.3 appears to be

appropriate.

Uplift Capacity of Piles and Pile Groups. Performance
factors for uplift capacity of piles and pile groups should
be lower than those for axial compression because (a) the
diameter and thus, the area of the pile shaft decreases in
tension due to the Poisson effect, thereby making uplift
capacity smaller than compressive 1load capacity, and (b)
piles in tension unload the so0il, which reduces the
overburden effective stress and hence the uplift skin
friction resistance of the pile. Therefore, performance
factors for uplift capacity are lower than those for axial

compression by 0.1.
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4.2 Single Drilled Shafts

4.2.1 Introduction

In this section, the results of the code calibration
for drilled shafts is discussed. The load statistics are
described in Section 4.1.3. Statistics for the capacity of
drilled shafts are presented, and the results of the
reliability analysis are summarized. Finally, the selection
of target reliability indices and performance factors is

discussed for both bridges and buildings.
4.2.2 Resistance Statistics

Methods for designing drilled shaft foundations that
were considered include Reese and 0O’Neill’s (1988) total
stress method for drilled shafts in clays, and two methods
of predicting side resistance of drilled shafts socketed'in
rock (Section 2.1.3).

Resistance statistics for these methods are summarized
in Table 4.8. Statistics for the model error shown in Table
4.8 have been compiled from data of load tests on drilled
shafts in clays (Reese and O’Neill, 1988), while those for
drilled shafts socketed in rock are based on load test data

reported by Horvath and Kenney (1979). The values of bias
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Table 4.8 Summary of statistics for axial capacity of
drilled shafts

Correction | Reese & O’Neilll Horvath & Kenneyl Carter & Kulhawy
Mean cov Mean cov Mean Ccov
Model Error 1.04 0.147 1.65 0.369 1.62 0.459
Systematic N
Error 1.02 0.098 1.00 0.200 1.00 0.200
Inherent 1 0.490 0.984*"
Spatial 1.00 — 1.00 1.00 _
Variabilit JZ JZ JZ

* Estimated value

** Based on a point c.o.v. of the uniaxial compressive strength

of 0.44 (After Savely, 1987) and a scale of fluctuation of
5 ft.



231

factor and c.o.v. for inherent spatial variability and
systematic error are also listed in Table 4.8.

As discussed previously in Section 2.1.3.2, five
methods [Touma and Reese (1974), Meyerhof (1976), Quiros and
Reese (1977), Reese and Wright (1977), and Reese and 0O’Neill
(1988) ] have been used for estimating the side resistance
and end bearing capacities of drilled shafts in sands and
gravels. Comparison of these methods shows that they may
result in widely divergent estimates of capacity for the
same conditions. Unfortunately, the information available
from field load tests at present is insufficient to enable
determination of resistance statistics for drilled shafts in
sands and gravels. Thus, these methods have not been

calibrated using reliability theory.

4.2.3 Results of Calibration

4.2.3.1 Reliability Indices

Values of reliability indices versus 1ength of drilled
shaft for the three methods (Reese and O0’Neill’s method,
Horvath and Kenney’s method, and Carter and Kulhawy’s
method) are shown in Fig. 4.4 (lognormal method) and Fig.
4.5 (advanced method). The graph at the top is for a dead
to live load ratio of 1, while the dead to live load ratio

is 3.7 for the bottom graph. Once again, reliability
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indices for drilled shafts in bridges are similar to those
for buildings because the uncertainty in the resistances
constitutes a larger percentage of the total uncertainty,
i.e. the reliability indices are fairly insensitive to the
load statistics.
Based on the results of the reliability analysis, the
following observations are made:
1) Reliability indices for Reese and O0O’Neill’s total
stress method vary between 2.9 and 3.7 for the lognormal
method, and between 3.1 and 4.3 for the advanced method.
2) Reliability indices for Horvath and Kenney’s method
are higher than those for Carter and Kulhawy’s method.
This is due to the higher c.o.v. for inherent spatial
variability in Carter and Kulhawy’s method. In Horvath
and Kenney’s method, the shaft resistance varies with the
square root of the uniaxial compressive strength of the
rock (Equation 2-24), while in Carter and Kulhawy'’s
method, the shaft resistance varies 1linearly with the
uniaxial compressive strength of the rock (Equation 2-
23). Evaluating the c.o.v. of the side resistance using
first-order-second- momént theory indicates that the
c.o0.v of the square root of a random variable is half the

c.o.v. of that random variable.
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4.2.3.2 Target Reliability Indices

Reliability indices for drilled shafts are summarized
in Table 4.9. For the légnormal format, the values of
reliability index range from 2.0 to 3.7. For the advanced
method, the reliability indices vary from 2.0 to-4.3. Thus,
a target reliability index between 2.5 and 3.0 may be
appropriate for the design of drilled shafts. It should be
noted that a slightly higher value was selected for the
target reliability index for individual drilled shafts as
compared to driven piles since drilled shafts are frequently

used individually, as well as in groups.
4.2.3.3 Performance Factors

Performance factors for the three methods obtained from
the reliability based calibration using a target reliability

index of 2.5 are shown in Table 4.10.

Bridges

The performance factors recommended for design are
based on a dead to live load ratio of 3.7, and are given as

follows:
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Table 4.9 Summary of reliability indices for drilled shafts

Ratio of Dead Lognormal Advanced
to Live Load

1.0 2.0-3.4 2.0-3.9

3.7 2.1-3.7 2.2-4.3
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Table 4.10 Performance factors for drilled shafts obtained
from reliabilty-based calibration with a target
reliability index of 2.5
Bridges
Pile Reese & 0’Neilll Horvath & Kenneﬂ Carter & Kulhawy
Length
Br = 2.5
10 ft - 0.70 0.49
30 ft 0.72 0.73 0.56
100 ft 0.80 - -
ﬁT = 3.0
10 ft - 0.56 0.37
30 ft 0.62 0.59 0.43
100 ft 0.71 - -
S8elected 0.65 0.65 0.55
Buildings
Pile Reese & O’Neilll Horvath & Kenney] Carter & Kulhawy
Length
Br = 2.5
10 ft - 0.66 0.47
30 ft 0.64 0.69 0.54
100 ft 0.70 - -
Br = 3.0
10 ft - 0.51 0.35
30 ft 0.53 0.54 0.41
100 ft 0.59 - -
Selected 0.60 0.60 0.50
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1) For estimating drilled shaft capacities in clays using
Reese and O’Neill’s method, the performance factor is
recommended to be 0.65.

2) Horvath and Kenney’s method should have a higher
performance factor (0.65) than Carter and Kulhawy’s

method (0.55) for reasons explained in Section 4.2.3.1.

Buildings

The performance factors recommended for design are
based on a dead to live load ratio of 2. It has been shown
in Section 4.1.4.3 that the performance factors for
buildings are approximately 0.9 times the values for
bridges. The values of performance factor in the bottom
half of Table 4.10 reflect this fact. A comparison of the
performance factors for buildings with those for bridges is
shown in Fig. 4.6. Using linear regression, the equation of

the line was found to be ¢pyilding Code = 0.914aASHTO-

Due to the lack of field data, it is not possible at
present to determine which of the methods of predicting
drilled shaft capacities in sands and gravels 1is most
reliable and most generally applicable. It is therefore,
not also possible to determine with precision, what values
of performance factors should be used for drilled shafts in

sands and gravels. Accordingly, the best procedure appears
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to be to estimate the capacity using judgment, and any
available experience with similar conditions. The large
variability of the capacities of drilled shafts in sand
logically suggests that vélues of performance factors for

shafts in sands should be smaller than for shafts in clay.
4.2.3.4 Other Performance Factors

Performance factors for drilled shafts are summarized
in Table 4.11 for the AASHTO code only. As discussed
previously, corresponding values of performance factors for
the building code are approximately 0.9 times the values in
Table 4.11.

Table 4.11 also shows values of performance factors for
ultimate limit states other than those for which performance
factors were obtained by the reliability based calibration
procedure. The bases for the selection of these performance

factors are given below.

8ide Resistance of Drilled shafts in Clay. This method
refers to the effective stress or B8 method for drilled
shafts in clay proposed by Stas and Kulhawy (1984). There
is considerable wuncertainty in the estimation of the

coefficeint of 1lateral earth pressure and therefore, a



Table 4.11

241

Summary of performance factors for drilled shafts
under axial loads

| METHOD/SOIL/CONDITION VPERFORMANCE FACTOR
ULTIMATE |SIDE a-method (Reese & 0.65
0’Neill)
BEARING RESISTANCE
p-method (Stas & 0.50
CAPACITY |IN CLAY Kulhawy)
OF BASE Total Stress 0.55
(Reese & 0O’Neill)
SINGLE RESISTANCE |
Effective Stress 0.45 |
DRILLED IN CLAY (Stas & Kulhawy) |
T
SHAFTS SIDE 1) Touma & Reese See
2) Meyerhof Discussion
RESISTANCE 3) Quiros & Reese in
4) Reese & Wright Section
IN SAND 5) Reese & 0’Neill 4,2.3.3
BASE 1) Touma & Reese See
2) Meyerhof Discussion
RESISTANCE 3) Quiros & Reese in
4) Reese & Wright Section
IN SAND 5) Reese & 0O’Neill 4.2.3.3
SIDE Carter & Kulhawy 0.55
RESISTANCE Horvath and Kenney 0.65
IN ROCK
BASE Canadian 0.50
Geotechnical Society
RESISTANCE
Pressuremeter Method 0.50
IN ROCK (Canadian Geotech.
Society, 1985)
SIDE
RESISTANCE & Load Test 0.80
END BEARING
BLOCK
Clay 0.65
FAILURE
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Table 4.11 Continued

METHOD/SOIL/CONDITION 'PERFORMANCE FACTOR
UPLIFT a-method (Reese & O'Neillf 0.55
CLAY |
CAPACITY p-method (Stas & Kulhawy) | 0.40
|
OF Belled Shafts ] 0.50
SINGLE ‘
1) Touma & Reese See
DRILLED 2) Meyerhof Discussion |
SAND 3) Quiros & Reese in :
SHAFTS 4) Reese & Wright Section
5) Reese & 0O’Neill 4.2.3.3
Carter & Kulhawy 0.45
ROCK
Horvath & Kenney 0.55
Load Test 0.80
GROUP Sand 0.55
UPLIFT
CAPACITY Clay | 0.55
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performance factor of 0.5 (similar to the 8 method for

piles) is appropriate.

Base Resistance of Drilled shafts in Clay. Thié method
refers to the effective stress method for estimating base
resistance of drilled shafts in clay by Stas and Kulhawy
(1984). The settlement required to mobilize base resistance
is larger than that required to mobilize side resistance.
Moreover, the movement required to mobilize the base
resistance is proportional to the diameter of the base, and
the diameter of the base of a drilled shaft can be
relatively large. Thus, a lower value of performance factor
(0.45) for base resistance of drilled shafts in clay using

the effective stress method is recommended.

Base Resistance of Drilled sShafts in Rock. Refer to
Equations 2-25 and 2-26 (Canadian Foundation Engineering
manual, 1985). The value of performance factor recommended
is 0.5, which is the same value that is recommended for
driven piles corresponding to a safety factor of 3. The
Canadian Foundation Engineering Manual also recommends a
safety factor of 3 for the pressuremneter method of
estimating base resistance of drilled shafts in rock.
Therefore, the performance factor for the pressuremeter

method is also recommended to be 0.50.
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Uplift Resistance of Belled Shafts in Clay. This refers to
the method of predicting the uplift capacity of drilled
shafts with an enlarged base assuming that the bell behaves
as an anchor (Yazdanbod et al., 1987). A safety factor of 3
is warranted for this method, and the corresponding value of

performance factor is recommended to be 0.5.

Performance factors for the bearing capacity of drilled
shafts obtained from load tests, block failure of groups of
drilled shafts in clays and uplift capacity of groups of
drilled shafts are the same as those for driven piles. The
performance factors for the static methods of estimating
uplift capacity of single drilled shafts from soil
parameters are the same as those for axial compression in
Table 4.11, less 0.1. The rationale for this is the same as
for piles, i.e. because:

(a) the diameter, and thus the area of the shaft
decreases in tension due to the Poisson effect, thereby
making uplift capacity smaller than compressive 1load
capacity, and

(b) shafts in tension unload the soil, which reduces the
overburden effective stress and hence the uplift skin
friction resistance of the drilled shaft.

It has been shown that reliability analysis can be used

for calibrating methods of predicting capacities of deep
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foundations with existing codes. However, the calibration
results should also be coupled with engineering judgment and
experience so as not to compromise on actual trends in

practice.
4.3 Groups of Piles or Drilled Shafts

The choice of a global factor of safety in WSD involves
a fairly large degree of empiricism. Often values of safety
factor are selected based on experience. Calibration of
codes in LFD format relies on this choice of safety factor,
and on the 1load and resistance statistics, which may
sometimes be difficult to evaluate because of a lack of
data.

The procedure for evaluating the probability of failure
of a group of piles or drilled shafts is even more involved
in that many other factors have to be considered. Some of
these factors can be illustrated by means of the following.
example (Rojiani, 1989).

A group of four piles (Fig. 4.7) 1is acted on by a
normally distributed load with a mean value of 320 kips and
a standard deviation of 20 kips. The mean bearing capacity

of each pile is 140 kips with a standard deviation of 20

kips.
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Load = 320 kips
Std. Dev. = 20 kips
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Figure 4.7 Example Problem for Probability of Failure of
Pile Groups
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The probability of failure of one pile <can be

calculated as follows:

Mean load on each pile = 320/4 = 80 kips
Standard deviation of the load on each pile = 20/4 = 5 kips

Using Equation 2-49, the probability of failure of one pile

is
140 - 80
Pf=1—¢—
JZO2 + 52
=1 - ¢[2.91]

=1 - 0.998193

0.001807

A group of piles can be modeled either as a series
system or as a parallel system. A series system is only as
strong as its weakest 1link, i.e. failure of any one pile
constitutes failure of the group. Failure of a parallel
system, however, requires failure of all the piles. Another
assumption that must be made pertains to the correlation
between individual piles. If F;j denotes failure of pile i,
and Sj denotes survival of pile j, then the probability of
failure of a group of piles with uncorrelated capacities
that behaves as a series system can be calculated as

follows:
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= P[F1S55354] + P[S1F2S3S4] + P[S1S3F3S4] + P[S1S2S3F4]

g
2 )
|

[

4(0.001807) (0.998193) 3

0.00719

I

If the capacities are perfectly correlated and the four pile
group is modeled as a series system, then if one pile fails,
the whole group will fail. The probabilty of failure of

such a pile group is evaluated as follows:

Pf

P[F1F2F3F4]
= P[F1/F2F3F4]P(F2/F3F4]P[F3/F4]1P[Fy]

(1) (1) (1) (0.001807)

0.001807

In order to evaluate the probability of failure of a
parallel system of piles, expressions for the mean and
variance of the resistance must first be evaluated. The

expressions are as follows:
Total capacity of 4 piles R = R; + Ry + R3 + Ry

Mean value of R,

§ = §1 + ﬁz + §3 + §4

4(140)

560 kips

Variance of R
2 _ 2 2 2 2 \
oR® = oR1“ + or2® + oRr3® + org“ + 2COV[RjRp] + 2COV[R1R3] +

2COV[R1R4] + 2COV[RoR3] + 2COV[RyR4] + 2COV[R3R4]



249

2

= oRr1” + 0R22

+ °R32 + 0R42 + 2pR1R29R1°R2 *+
2pR1R39R19R3 t 2pR1R49R19R4 t+ 2PR2R39R20R3 *t

2pR2R49R29R4 + 2PR3R49R39R4

where COV([X,Y] is the covariance of X and Y, defined as the
expected value of the products of (X - X) and (Y - Y), and
pXy 1is the coefficient of correlation between X and Y,
defined as:

CoV([X,Y]

PXYy = — (4-14)
oXoy

where ox and oy are the standard deviations of X and Y

respectively. If the pile capacities are uncorrelated,
PRiRj = O-
R = 560 kips
2 _ 2 2 2 2
9R” = oRr1” + oR2” * oR3” + oRr4
= 4(20)2
= 1600

or = 40 kips

The probability of failure of the same group of four piles
assuming that the capacities are statistically independent,
and that the pile group behaves as a parallel system can be

evaluated as follows:
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[ ®-3§5 |

| 560 - 320
ST ¢\ 402 + 20|
=1 - ¢[5.37)

Pg 0.0000000415

If the pile capacities are perfectly correlated, pRrjrj = 1.

oR? = 4(20)2 + 2(1)(20) (20)6
= 6400

or = 80 kips

The probabilty of failure, assuming a parallel system of
piles and perfect correlation in the pile capacities, can be

calculated as follows:

560 - 320
EE e /802 + 202
=1 - ¢[2.91]
Pf = 0.001807

The results of these calculations are summarized below:

CORRELATED INDEPENDENT

SERIES 0.00181 0.00719

PARALLEL 0.00181 0.0000000415




251

It is clear from the results of these calculations that
one of the important issues that must be considered when
evaluating the probability of failure of a group of piles is
the degree to which the capacities are correlated. Perfect
correlation between piles 1in both series and parallel
systems implies that if one pile fails, then all the other
piles will fail too. The group failure probability in the
case of perfect correlation between piles thus reduces to
the probability of failure of a single pile. In reality,
the occurrence of perfect correlation is highly unlikely.

The opposite of perfect correlation 1is complete
statistical independence. In this case, the assumption of
whether the pile group behaves as a parallel (ductile) or a
series (brittle) system is important. Failure of one pile
in a ductile system will mean that the additional load is
redistributed to the other piles, and if a second pile
fails, the 1load will be further redistributed to the
remaining piles, and so on. Failure of the group will only
occur if the last surviving pile fails. The other extreme
is the brittle system where some feature in the pile group
exists that has the effect that as soon as the first pile
fails, all of the other piles will fail immediately.

In the example above, the assumption of statistical
independence in the piles yields a probability of failure of

a brittle system that is 5 orders of magnitude higher than a
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ductile system. The question of whether piles are perfectly
correlated versus statistically independent, or whether the
group 1is ductile as opposed to brittle, is thus extremely
important with regard to evaluating the group failure
probability. Such large differences in the probability of
failure are clearly significant.

The problem of pile group failure 1is further
complicated by the nature of failure itself. Failure of
groups of piles can take one of several forms:

(1) Plunging failure may be preceded by settlement, which
can constitute an unacceptable mode of behavior.
Therefore safety and failure is not a "black or white"
issue. What constitutes failure depends also on the
amount of settlement that can be tolerated by the
structure.

(2) Piles bearing on sound rock can fail structurally,
which brings into consideration other reliability issues
and other statistical data.

(3) Groups of piles that are closely spaced can fail as a
block containing the piles and the soil between the
piles. This mode of failure is not governed by the
statistics relating to the individual pile capacities.

(4) Pile groups that are founded in a strong stratum
overlying a weaker layer can fail by punching into the

weaker layer.
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Therefore, the example problem above is a simplified
view of actual behavior.

Factors that would make a pile group tend to a series
system as opposed to a parallel system, and factors that
would make the piles tend to be correlated as opposed to be
statistically independent are examined. Some of these
factors include the following:

1) properties of the structural elements (eg. rigidity of
the pile cap)

2) properties of the soil which can influence the rate of
pore pressure dissipation

3) magnitude and eccentricity of the load

4) geometric positions of the piles in the group

5) installation effects such as driving order and vertical
alignment of the piles, and

6) interaction of cap and soil.

SERIES VERSUS PARALLEL

An example of a series system of piles would be one in
which failure of one pile causes failure of the surrounding
soil, then failure of neighboring piles, and ultimately the
failure propagates until the whole group fails (i.e.
progressive type of failure). A pile group that was 1load

tested by O’Neill et al. (1982) behaved in this way. The
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soil was an overconsolidated slickensided clay. It would
therefore be reasonable to assume that pile groups in
overconsolidated clays with inherent planes of weaknesses
such as slickensides, or heavily jointed clays that undergo
strain softening, or highly sensitive or structured clays

are more likely to behave as series systems.

CORREIATED VERSUS UNCORRELATED

Factors that influence the correlation between piles
include:

1) Variability of Soil Properties - The variability of
soil is influenced by its mode of formation. Calm-water
sedimentary deposits for instance, will very likely
exhibit fairly uniform properties. Oon the other hand,
residual soils will more likely have random and erratic
properties, typified by pockets of weak and strong
materials. It seems reasonable to expect a higher
correlation between the capacities of piles if the group
is in a uniform soil than if it is in a nonuniform soil
deposit.

2) Rate of Pore Pressure Dissipation - The rate of pore
pressure dissipation is a function of the soil properties
such as permeability and compressibility, and the

geometry and boundary conditions of the flow regime.
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O’Neill (1983) argued that pore pressures dissipate at a
much slower rate around pile groups than around single
piles. The more piles there are in the group, the slower
the rate of dissipation. Flaate (1972) found that pore
pressures dissipate at a much slower rate around interior
piles than around exterior piles. Since pile capacities
are related to the effective stresses, the capacities of
the corner piles would be expected to be highest soon
after driving, followed by the edge and interior piles.
A pile group constructed in cohesive soils would
therefore exhibit low correlation between the capacities
of its piles if it were 1loaded prior to complete
dissipation of pore pressures.

3) Eccentricity of the Loads - Most piles in an axially
loaded pile group carry compressive loads. However, some
piles, especially those furthest away from the point of
application of the load, may carry uplift forces if the
eccentricity is large. While piles in compression derive
their resistances from downward skin friction and end
bearing, piles in tension derive their resistances from
upward skin friction, soil suction and the weight of the
pile. It is therefore reasonable to assume that there
might be little correlation between piles in tension and
piles in compression, because the sources of contribution

to the resistances are different.
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4) Pile Aligﬁment - Piles in a group that are all
vertical will be expected to have a higher correlation
than those in which the piles are driven out of plumb.
Thus it is also reasonable to assume that there will be a
higher correlation in a group of vertical piles than a
group of batter piles.

5) Driving Order - Model and full scale tests on pile
groups 1in cohesive soils [Whitaker (1957) and O’Neill et
al. (1982)] indicate that the order of driving affects
the distribution of loads to the piles. This effect in
pile groups in cohesive soils can be seen in Fig. 4.8,
where driving orders A and B are those for the model
tests conducted by Whitaker (1957), while driving order C
is that of a full scale load test conducted by 0’Neill et
al., (1982).

The effects of driving order of piles in cohesive soils
are also related to the magnitude of the 1lcads, as
indicated in Table 4.12. At low loads, a correlation
exists between the loads in the piles since the gradients
of the curves in Fig. 4.8 are all fairly constant. At
higher loads, the curves cross over each other in groups
A and C, thereby obscuring the correlation between piles.
However, pile group B exhibited a constant correlation in
loads carried by piles, even when the 1load was

approaching the failure load.



257

o (4]

% AVG. PLE LOAD AT FALURE
»

‘% GROUP CAPACITY

A=MODEL;%-I6,-S--4, DRIVING ORDER :
CORNER , EDGE , CENTER
B : MODEL ;15-5,-3--4, DRIVING ORDER :
N CENTER , EDGE , CORNER
C: FULL-SCALE ; §=48 ,-%-*3, DRIVNG ORDER :
CENTER , MIX OF EDGE
AND CORNER

Figure 4.8 Clay: Driving Order and Load Level Effects on
Load Distribution in Piles in Pile Groups
(From O’Neill, 1983)
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Table 4.12 Degree of correlation between piles as related
to pile driving order and magnitude of loads

DRIVING ORDER
"Outside-In" "Inside-Out"
Group A Group B
MAGNITUDE Small High High
?EADS Large Low High*

* Except for pile groups in overconsolidated slickensided
soils (such as Group C) that have a tendency to behave as
a series system.
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Pile group C was driven in an overconsolidated
slickensided clay. Although driving order C was similar
to driving order B, the excess pore pressures dissipated
so quickly during and immediately after installation that
the load distribution in group C resembled that of group
A, i.e. the center piles carried the most 1load when
failure was imminent. O’Neill and Hawkins (1983)
explained that this effect was brought about by
progressive failure in group C, where the corner piles
failed first. The failure then propagated to the other
piles. As discussed earlier, a progressive type of
failure implies that the pile group behaves as a series
systen.

Load tests on pile groups in sands indicate that the
load on the center piles are always the highest,
irrespective of whether the piles are driven "outside-in"
[See Fig. 4.9, Kishida (1967)], "inside-out" [See Fig.
4.9, Beredugo (1966)] or whether the piles are installed
simultaneously [Vesic (1969)].

6) Interaction of Cap and Soil - Contact of the cap with
the soil can increase the load carrying capacity of the
group. The implication of cap-soil contribution to group
capacity is that any correlation that exists between
resistances of individual piles is inaccurate if the

contribution of the cap is not considered. 1In fact, the
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KISHIDA (1967) BEREDUGO (1966)

9

A

S=25D (GENERAL) S=3D
$s328° $= 35°
D240 mm (TOPNTAPERED) D= 9.5 mm (PRISMATIC)
Le6m L= 265mm
(x) (o) .

(EQUALLY PENETRATING PILES)

Q,, *CAPACITY OF Nth PILE DRIVEN
Q, *CAPACITY OF FIRST PILE DRIVEN

| S 10 1S 20 25
N (ORDER DRIVEN)

Figure 4.9 Sand: Driving Order Effects on Load
Distribution in Piles in Pile Groups
(From O’Neill, 1983)
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contributioh of the cap-soil interaction is usually
ignored in conventional practice.

There currently exist no rational guidelines for
determining whether a pile group tends to behave as a series
system or a parallel system of piles, and for determining
the degree of correlation between piles in pile groups.
Even though these concepts cannot be quantified accurately,

an attempt has been made above to present them in a

qualitative manner.



CHAPTER FIVE

SUMMARY AND CONCLUSIONS

The studies described herein have been concerned with
the development of simplified procedures for analyzing
laterally 1loaded deep‘foundations, and the development of
performance factors that can be used in load factor design
of axially loaded deep foundations.

The simplified procedure for analyzing laterally loaded
deep foundations began with development of a computer
program, PGROUPD. This program uses the Evans and Duncan
(1982) procedure, which simulates p-y analyses, to estimate
deflections and maximum bending moments in single fixed-head
piles and drilled shafts. Group deflections are estimated
through the Focht and Koch (1973) procedure in the progran,
while bending moments in the group are obtained by softening
the soil until the single pile deflection matches the group
deflection (Duncan, 1988). The bending moment in the group
is then approximated as the value of the single pile moment
in the softened soil.

The computer program PGROUPD was used to develop charts
for estimating deflections and maximum bending moments in
some of the more common types of single fixed-head piles and
drilled shafts. It was also used to perform parametric

studies of a large number of groups of piles and drilled

262
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shafts. Based on the results of these analyses, simple
formulae for estimating group deflections and moments were
derived. These simple formulae will enable engineers to
analyze and design groups of deep foundatiions more quickly.

The simplified procedure was then used to analyze four
well-documented and well-instrumented pile group load tests.
Two of the groups were in cohesive soils, and two were in
cohesionless soils.

The results of the lateral load tests on fixed-head
pile groups conducted by Kim et al. (1976) were compared to
those calculated using the simplified procedure. Studies
were made on two groups with pile spacings of 3.7 and 5
diameters. Comparison of the results showed that measured
values of deflections and moments in the group with the
smaller pile spacing agreed well with the calculated values.
The results of the calculations were also reasonable for the
group with the larger pile spacing at low magnitude of
loads. However, the moments and deflections were
overestimated by 100% at high loads.

Studies were also made on a 1load test conducted by
Holloway et al. (1981) on a group of timber piles connected
by a cap 3 ft above ground. In terms of calculated single
pile deflections, the behavior of a pile fixed 3 ft above
ground was found to be intermediate between a fixed-head

pile and a free-head pile. The single pile deflections and
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moments for this boundary condition weré'estimated using p-y
analyses as well as an approximate procedure that was
developed from beam theory and the Evans and Duncan
nonlinear superposition procedure. They were then amplified
to those for the group using the simplified procedure.
Comparison of the measured and calculated values of group
deflection showed that the simplified procedure
overestimated the group deflections by 95% at low loads, but
the calculated and measured group deflections agreed very
well at high values of 1load. The bending moments were
overestimated by as much as 35%. These results are
satisfactory considering that the simplified procedure was
developed for fixed-head pile groups, and that the 1load
deflection response indicated that the piles may be yielding
structurally.

A third load test on a group of nine steel pipe piles
in Beaumont clay was conducted by Brown et al. (1987).
Single free-head pile deflections and moments were estimated
using the“Evans and Duncan procedure, and amplified to
values for the group using the simplified procedure
discussed above. Comparison of the measured and calculated
values showed that the group deflections and moments were in
good agreement.

A fourth load test on the same nine-pile group was

conducted by Brown et al. (1988) after excavating the
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Beaumont clay and compacting sand around the piles.
Analysis of the group behavior using the simplified
procedure yielded values of group deflections and maximum
bending moments that were conservative. This may be due to
the fact that the cyclic nature of the loads could have 1led
to densification of the sand and thus reduced values of
group deflections and moments.

It can be concluded based on the results of the
analysis of the four case histories that the newly developed
simplified procedure provides a method of analyzing pile
groups that gives either fairly accurate values of group
deflections and moments, or values that are conservative.

Studies were also made to develop performance factors
for load factor design of axially loaded driven piles and
drilled shafts. An overall performance factor that 1is
applied to the resistance side of the LFD equation can be
obtained through reliability analysis. Statistics for
methods of calculating pile and drilled shaft capacities and
statistics for the loads were obtained. Reliability indices
were calculated for these methods to determine the levels of
reliability inherent in current designs. Target reliability
indices were then selected and used to obtain performance
factors for several methods of estimating pile and drilled

shaft capacities.
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The probability of failure of groups of piles and
drilled shafts was also examined. Through an example of a
four pile group (Rojiani, 1989), it was found that the
probability of failure can differ greatly depending on
whether the capacities are correlated or uncorrelated, and

whether the group behaves as a series or a parallel system.

5.1 Recommendations for Future Research

5.1.1 Deep Foundations Under Lateral Load

The case histories analyzed have shown that the
simplified procedure for fixed-head piles and drilled shafts
can be used effectively to analyze and design 1laterally
loaded groups of deep foundations. However, out of the four
case histories, only one was a fixed-head group of piles.
Additional load tests on groups of fixed-head piles would
provide valuable additional information.

The simplified procedure does not indicate the
distribution of load among the piles in a group. Evans and
Duncan (1982) and Brown et al. (1987 and 1988) have shown
that in a laterally loaded group, the piles in the leading
row carry more load than the rear piles whereas methods
based on the theory of elasticicty indicate symmetrical
distribution of loads (eg. Focht and Koch, 1973). Further

research into the mechanism of load transfer through the
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soil and cap in pile groups is required so that a more
reliable method for estimating load distribution among piles
can be developed.

Although no distinction is correctly made between
groups of piles and drilled shafts in analyses of lateral
load effects, the two different methods of installation for
piles and drilled shafts can result 1in significantly
different post-construction 1in situ stresses and soil
properties. Improved models of soil behavior that account
for installation effects are required in order to develop
more reliable methods for estimating the behavior of deep

foundations under lateral loads.

5.1.2 Deep Foundations Under Axial Load

A shortage of 1load test data has prevented a
comprehensive review of the reliability of methods for
estimating drilled shaft capacities in cohesionless soils.
Additional well-instrumented and weil-documented load tests
will be valuable to the profession as they will allow a
better assessment of the current state-of-the-art.

Groups of piles or drilled shafts with uncorrelated
capacities can have widely divergent values of probability

of failure depending on whether the group is assumed to be a

series or a parallel system. Studies on quantifying the
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degree to which pile or drilled shaft capacities in a group
are correlated versus uncorrelated, and on quantifying the
tendency of a group to behave as a series or a parallel
system are needed before fully rational assessments of the

probability of failure can be made.
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PGROUPD: A computer program for estimating lateral
deflections and maximum bending moments in
laterally loaded groups of fixed-head piles
and drilled shafts

Al Introduction

PGROUPD is a computer program written in Microsoft
Quick Basic that can be used to calculate the following: (1)
lateral deflections of single fixed-~head piles or drilled
shafts, (2) maximum bending moments 1in single fixed-head
piles or drilled shafts, (3) lateral deflections of groups
of fixed-head piles or drilled shafts, and (4) maximum
bending moments in groups of fixed-head piles or drilled
shafts. The program utilizes the Evans and Duncan (1982)
procedure for analyzing laterally loaded single piles and
drilled shafts, and the Focht and Koch (1973) procedure for
calculating deflections of laterally loaded groups of piles
and drilled shafts. The maximum bending moments in groups
of piles and drilled shafts are estimated by softening the
soil (reducing ¢’ in sands or Sy in clays) until the single
pile deflection matches the deflection of the group (Duncan,

1988).
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A2 System Requirement

This program runs on any IBM or IBM compatible computer

using DOS.

A3 Program Execution

The program is interactive and user friendly. The
following procedure is used to run the program:

1) Insert the PGROUPD program disk in drive A.

2) Type "PGROUPD" followed by "Carriage Return" to run the
program.

3) Follow the instructions on the screen. The user can
select one of several options: (a) create a data file,
(b) review a data file, (c) run the program, or (d)
return to DOS.

4) Upon completion of the execution, select 4 to return to

DOS.

A4 Program Operation

The program consists of four modules - a main program
and three subroutines: CREATE, REVIEW and PGROUPD. CREATE
is the subroutine for creating new data files. REVIEW is

the subroutine for reviewing and editing existing data
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files. PGROUPD is the subroutine that performs the analysis
of laterally loaded piles. The flow diagram for PGROUPD is

shown in Fig. Al.
A4.1 Description of Input Data

The program reads the following parameters from the
data file:
1) Title of the job
2) Soil type (sand or clay)
3) Lateral load per pile (Pg) - For a group of piles, divide
the total lateral load acting on the group by the number of
piles.
4) Pile width or diameter (D)
5) Length of pile (2)
6) Young’s modulus of pile (Ep)
7) Moment of inertia of pile (Ip)
8) Number of piles (Npile)
9) Coordinates of piles - The user has the option of
specifying either the coordinates of every pile, or the
number of fows of piles, number of piles per row, and the
center-to-center pile spacing if- - the piles are uniformly
spaced. In the latter ©option, the program will
automatically generate the pile coordinates internally based

on the information given.
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Figure Al Flow Diagram for Program "PGROUPD"
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The orientation of the lateral load is always along the
x-direction, which is along the direction of the rows of the
piles. If the option of specifying pile coordinates 1is
selected, then they should be specified such that the
direction of loading is oriented in the x-direction. If the
option of specifying the number of rows of piles, number of
piles per row and the pile spacing is chosen, they should be
specified such that the direction of loading is oriented
along the rows.

Consistent units should be used for all the input data.

A4.2 Estimation of Deflections and Maximum Bending Moments

in Single Fixed-Head Piles

The Evans and Duncan procedure for <calculating
deflections of and maximum bending moments in single fixed-
head piles has been described in Section 3.2.1. Single pile
deflections are estimated using Fig. 3.1 for sand and Fig.
3.2 for clay. Equations for these curves have been
determined by regression analysis and incorporated in the

program. These equations are as follows:

Yg Pg Pg 2
For sand — = 1.33 |[—| + 149 (— (Al)
D Pc Pc
Ys Ps PS 2
For clay — = 0.107 |—| + 20.3 |— (A2)
D Pc Pe
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Maximum bending moments are estimated using Fig. 3.10 for
sand and Fig. 3.11 for clay. Equations for these curves
have also been determined by regression analysis and

incorporated in the program. The equations are as follows:

Mg [Ps Pg]?

For sand — = 0.482 |—| + 17.4 |(— (A3)
Mc Pe PC,
Mg [Pg Pg]?

For clay — = 0.235 |—| + 2.93 |[— (A4)
MC L PC:_ PC_

A4.3 Estimation of the Characteristic Length of the Soil-

Pile System (T)

The Evans and Duncan procedure and the Focht and Koch
procedure apply only to long piles (i.e. pile length greater
than 5T, where T is the characteristic length of the soil-
pile system). The characteristic length of the soil-pile
system (T) can be calculated using the single pile delection
(Yg) and the following equation (Matlock and Reese, 1961):

YsEpIp| /3
T= |—— — ‘ (AS)
0.93Pg
The criterion that the piles must be long is checked before
proceeding with the analysis. If the piles are not 1long,

the program will stop running, and warn the user of the
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problem. Alternate design procedures are needed for short

piles.
A4.4 Iteration for Soil Modulus

It was discussed in Section 3.3.1 that the group
deflection estimated using the Focht and Koch procedure is
sensitive to the relative stiffness factor (R), which in
turn is sensitive to the soil modulus (Eg). Therefore, one
of the most critical part of the analysis is the selection
of the value of soil modulus. One advantage of using this
program is that an iterative routine described in Section

3.3.1, is incorporated in the program to estimate the soil

modulus. The procedure’requires the value of the influence
factor, I,F, from Fig. 2.14. Equations for the curves of
I,r versus the pile flexibility factor (Kg = EpIp/ESZ4),

have been obtained through regression analysis. The general

form of the equation is as follows:

I, = Ag + AjlogigKR + Az(10910KR)2 + A3(10910KR)3 +

A4(logigKg)? (A6)

where Ag, Aj, A3, A3 and A4 are constants. Their values for
pile length to diameter ratios (Z/D) of 10, 25, 50 and 100

are given in the table below. For intermediate values of
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pile length to diameter ratios, I, 1is obtained by

interpolation in the program.

z/0) Ag Aq A Aj Ay
10 1.11 -0.166 0.159 -0.0529 -0.0677
25 1.30 -0.281 0.193 -0.0280 0.0
50 1.41 -0.363 0.326 0.0463 0.0105

100 1.51 -0.362 0.335 0.0296 0.00975

A4.5 Assembly of the Matrix of Coefficients, a,r and R

Equations 3-10 and 3-14 provide a set of (Npjle + 1)
simultaneous equations which can be soived using matrix
techniques. The unknowns are the group deflections (Yg) and
the lateral forces in the piles (P§) . The coefficients in
the matrix consist of the interaction factors, a,r and the
relative stiffness factor, R. R 1is ~calculated wusing
Equation 3-12, whereas a,f 1is obtained from Fig. 2.15.
Equations for a,F versus Kr have been obtained by

regression, and they have the following general form:

D D] 2 D] 3 D)4
a,F = Bp + Bj—+ By’ + B3 + By (A7)
S S S S

Values of Bg, B3, B, B3 and B4 for values of Z/D of 10, 25
and 100, ¢ of 0° and 90°, and KR of 107> and 0.1, are given

in Table Al, where 4§ is the angle between the direction of
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Table Al: Regression coefficients Bg, Bj, By, B3 and By
Bo By Bo Ba Bg
§ = 0°, KR = 0.1 0.0174 3.02 -7.45 10.8 -6.98
2/D = 10
¢ = 0°, KR = 10-5 0.00149 0.938 0.282 -0.570 0.0
z/D = 10
§ = 0°, K = 0.1 0.0824 4.08 -16.2 33.6 -22.7
z/D = 25
§ = 0°, Kg = 10”2 |-0.00691] 1.77 -1.11 0.0 0.0
z/D = 25
§ = 0°, K = 0.1 0.244 2.31 -7.68 15.4 -12.1
2/D = 100
§ = 0°, KR = 10_5 0.0394 3.16 -6.56 5.62 0.0
z/D = 100
§ = 90°, KR = 0.1 0.00996 1.55 -1.43 0.0 0.0
Z/D = 10
§ = 90°, Kg = 1072 0.0383 | -0.500 7.31 |-19.6 17.2
Z2/D = 10
§ = 90°, KR = 0.1 0.0472 2.32 -4.99 4.15 0.0
2/D = 25
§ = 90°, Kr = 1(:).5 0.0249 0.0698 5.98 -17.4 15.7
2/D = 25
= 90°, KR = 0.1 0.164 2.05 -6.60 13.4 -11.3
2/D = 100
§ = 90°, Kr = 10-5 -0.0203 2.93 -11.1 25.3 -21.8
z/D = 100
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loading and the line joining the centers of the interacting
piles, j and k. For intermediate values of Z/D, 4 and Kg,
a,f is obtained by interpolation.

A Gauss elimination routine is used to solve for the

values of Yg and P§ (J = 1 to Npjle)-.

A4.6 Iteration for the Maximum Bending Moment in the Pile

Group

Duncan (1988) proposed that the maximum bending moment
in the most severely loaded pile in a pile group can be
estimated by first obtaining the 1lateral group deflection
through the Focht and Koch procedure, and then softening the
soil by reducing S, for clays or ¢’ for sands; until the
group lateral deflection matches the single pile deflection.
The corresponding value of maximum moment in that single
pile gives a reasonable approximation of the maximum bending
moment in the most severely loaded pile in the pile group.

Using softened shear strengths, single pile deflections
can be calculated using the Evans and Duncan procedure,
described in Section A4.2. The single pile deflections are
estimated with the aid of Equation Al for sand or Equation
A2 for clay. A trial and error routine is used in the
program to obtain the value of the shear strength, that

results in a match between the deflection of the single pile
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in a softened soil and the group deflection. Using the
value of the "softened" shear strength, the maximum bending
moment in a single pile is then estimated with the aid of
Equation A3 for sand or Equation A4 for clay. This value of

moment is a reasonable approximation of the maximum bending

moment in the group.
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