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The Effect of Anomalous Resistivity on the Electrothermal Instabil-
ity

Robert Leo Masti

(ABSTRACT)

The current driven electrothermal instability (ETI) forms when the material resistivity is
temperature dependent, occurring in nearly all Z-pinch-like high energy density platforms.
ETI growth for high-mass density materials is predominantly striation form which corre-
sponds to magnetically perpendicular mode growth. The striation form is caused by a
resistivity that increases with temperature, which is often the case for high-mass density
materials. In contrast, low-density ETI growth is mainly filamentation form, magnetically
aligned modes, because the resistivity tends to decrease with temperature. Simulating ETI is
challenging due to the coupling of magnetic field transport to equation of state over a large
region of state space spanning solids to plasmas. This dissertation presents a code-code
verification study to effectively model the ETI. Specifically, this study provides verification
cases which ensure the unit physics components essential to modeling ETI are accurate. This
provides a way for fluid-based codes to simulate linear and nonlinear ETI. Additionally, the
study provides a sensitivity analysis of nonlinear ETI to equation of state, vacuum resistivity,
and vacuum density. Simulations of ETI typically use a collisional form of the resistivity
as provided, e.g., in a Lee-More Desjarlais conductivity table. In regions of low-mass den-
sity, collision-less transport needs to be incorporated to properly simulate the filamentation
form of ETI growth. Anomalous resistivity (AR) is an avenue by which these collision-less
micro-turbulent effects can be incorporated into a collisional resistivity. AR directly changes
the resistivity which will directly modify the linear growth rate of ETI, so a new linear
growth rate is derived which includes AR’s added dependency on current density. This lin-
ear growth rate is verified through a filamentation ETI simulation using an ion acoustic based
AR model. Kinetically based simulations of vacuum contaminant plasmas provide a physical
platform to study the use of AR models in pulsed-power platforms. Using parameters from
the Z-machine pulsed-power device, the incorporation of AR can increase a collisional-based
resistivity by upwards of four orders of magnitude. The presence of current-carrying vacuum
contaminant plasmas can indirectly affect nonlinear ETI growth through modification of the
magnetic diffusion wave. The impact of AR on nonlinear ETI is explored through pulsed-
power simulations of a dielectrically coated solid metallic liner surrounded by a low-density
vacuum contaminant plasma.



The Effect of Anomalous Resistivity on the Electrothermal Instabil-
ity

Robert Leo Masti

(GENERAL AUDIENCE ABSTRACT)

High-energy-density physics (HEDP) is the study of materials with pressures that exceed
1 Mbar, and is difficult to reach here on Earth. Inertial confinement fusion concepts and
experiments are the primary source for achieving these pressures in the laboratory. Inertial
confinement fusion (ICF) is a nuclear fusion concept that relies on the inertia of implod-
ing materials to compress a light fuel (often deuterium and tritium) to high densities and
temperatures to achieve fusion reactions. The imploding materials in ICF are driven in
many ways, but this dissertation focuses on ICF implosions driven by pulsed-power devices.
Pulsed-power involves delivering large amounts of capacitive energy in the form of electrical
current over very short time scales (nanosecond timescale). The largest pulsed-power driver
is the Z-machine at Sandia National Laboratory (SNL) which is capable of delivering up-
wards of 30 MA in 130 ns approximately.

During an ICF implosion there exists instabilities that disrupt the integrity of the implo-
sion causing non-ideal lower density and temperature yields. One such instability is the
Rayleigh-Taylor instability where a light fluid supports a heavy fluid under the influence of
gravity. The Rayleigh-Taylor is one of the most detrimental instabilities toward achieving
ignition and was one of the main research topics in the early stages of this Ph.D. The study
of this instability provided a nice intro for modeling in the HEDP regime, specifically, in
the uses of tabulated equations-of-state and tabulated transport coefficients (e.g., resistivity
and thermal conductivity). The magneto Rayleigh-Taylor instability occurs in pulsed-power
fusion platforms where the heavy fluid is now supported by a magnetic field instead of a light
fluid. The magneto Rayleigh-Taylor instability is the most destructive instability in many
pulsed-power fusion platforms, so understanding seeding mechanisms is critical in mitigating
its impact.

Magnetized liner inertial fusion (MagLIF) is a pulsed-power fusion concept that involves
imploding a solid cylindrical metal annulus on laser-induced pre-magnetized fuel. The solid
metal liners have imperfections and defects littered throughout the surface. The imperfec-
tions on the surface create a perturbation during the initial phases of the implosion when
the solid metal liner is undergoing ohmic heating. Because a solid metal has a resistivity
that increases with temperature, as the metal heats the resistivity increases causing more
heating which creates a positive feedback loop. This positive feedback loop is similar to the
heating process in a nichrome wire in a toaster, and is the fundamental bases of the main
instability studied in this dissertation, the electrothermal instability (ETI).



ETI is present in all pulsed-power fusion platforms where a current-carrying material has a
resistivity that changes with temperature. In MagLIF, ETI is dominant in the early stages of
a current pulse where the resistivity of the metal increases with temperature. An increasing
resistivity with temperature is connected to the axially growing modes of ETI which is de-
noted as the striation form of ETI. Contrary to the striation form of ETI, the filamentation
form of ETI occurs when resistivity decreases with temperature and is associated with the
azimuthally growing modes of ETI. Chapter 2 in this dissertation details a study of how to
simulate striaiton ETI for a MagLIF-like configuration across different resistive magneto-
hydrodynamics (MHD) codes.

Resistivity that decreases with temperature typically occurs in low-density materials which
are often in a gaseous or plasma state. Low density plasmas are nearly collision-less and
have resistivity definitions that often overestimate the conductivity of a plasma in certain
experiments. Anomalous resistivity (AR) addresses this overestimation by increasing a colli-
sional resistivity through micro-turbulence driven plasma phenomenon that mimic collisional
behavior. The creation of AR involves reduced-modeling of micro-turbulence driven plasma
phenomenon, such as the lower hybrid drift instability, to construct an effective collision
frequency based on drift speeds. Because AR directly modifies a collisional resistivity for
certain conditions, it will directly alter the growth of ETI which is the topic of Chapter 3.

The current on the Z-machine is driven by the capacitor bank through the post-hole convo-
lute, the magnetically insulated transmission lines, and then into the chamber. Magnetically
insulated transmission lines have been shown to create low-density plasma through desorp-
tion processes in the vacuum leading to a load surrounded by a low-density plasma referred
to as a vacuum contaminant plasmas (VCP). VCP can divert current from the load by caus-
ing a short between the vacuum anode and cathode gap. In simulations, this plasma would
be highly conducting when represented by a collisionally-based resistivity model resulting in
non-physical vacuum heating that is not observed in experiments. VCP are current-carrying
low-density and high-temperature plasmas which make them ideal candidates to study the
role of AR as described in Chapter 4. Chapter 4 investigates the role AR in a VCP would
have on striation ETI for a MagLIF-like load.
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Chapter 1

Introduction

Controlled nuclear fusion is the pinnacle of energy sources and has been sought after for
generations. The fundamental premise behind nuclear fusion involves combining two light
nuclei to create a heavier nucleus. The rest mass energy, E0 = mc2, of the heavier nuclei
is less than the sum of the two lighter rest mass energies, and the difference is the energy
released from a nuclear fusion reaction. The location of two nuclei on the nuclear binding
energy curve shown in Figure 1.1 determines their ability to fuse and release energy. Fusing
two nucleons on the left side of the peak in this figure results in a net release of energy,
whereas fusing two nucleons on the right side of the peak in this figure requires additional
energy[1]. The peak in this curve represents the most stable elements from a nuclear binding
energy perspective and example of one such element is iron (Fe).

Figure 1.1: Nuclear binding is presented for varying atomic mass number. Source: link

1

https://www.britannica.com/science/nuclear-binding-energy
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Nuclear fission is the process where heavy nuclei split releasing energy through radioactive
decay. Nuclear fission occurs with a net release of energy on the right side of the peak in
Figure 1.1. A nuclear fission reaction of, e.g., uranium-235, would release around 200 MeV of
energy per reaction. A nuclear fusion reaction, for example deuterium-tritium, only releases
around 14 MeV which is significantly less than a nuclear fission reaction. Although a nuclear
fusion reaction releases less energy than a nuclear fission reaction on a per-reaction basis,
on a per-mass basis, nuclear fusion reactions release significantly more energy than nuclear
fission reactions. Additionally, nuclear fusion does not suffer from the issue of radioactive
waste as nuclear fission does in the form of spent fuel rods. There are many more benefits
to achieving controlled nuclear fusion not discussed here[1].

Figure 1.2: These figures present experimental examples of inertial confinement fusion im-
plosions. The left image is of a shot at the National Ignition Facility sourced from LLNL
link involving the use of lasers. The right image is of a shot at the Z-machine sourced from
SNL link involving pulsed-power.

There are many benefits to achieving controlled nuclear fusion, but actually achieving it
is extremely difficult. Nuclei are positively charged and combining them requires pen-
etrating the Coulomb barrier of repulsion (like charges repel). In order to have a chance
of penetrating this barrier, two nuclei will have to undergo a collision, and to achieve this
requires pushing light nuclei materials to high number density. In addition to having high
number density, the nuclei must be hot enough to have the necessary kinetic energy needed
for the collision to exceed the Coulomb barrier. Density provides the collision frequency
needed, and temperature provides the kinetic energy needed for a fusion reaction to take
place. These requirements are often summarized in the Lawson criterion which provides a
threshold to determine how dense, how hot, and how long one must hold nuclear fuel before
fusion reactions produce net fusion energy (energy output exceeds input)[2]. These three

https://lasers.llnl.gov
https://lasers.llnl.gov
https://www.sandia.gov/z-machine/
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criteria can be met through different approaches, but the primary focus of this dissertation
is on the inertial confinement fusion approach.

Inertial confinement fusion (ICF) approaches the Lawson criterion through achieving very
high densities and temperatures at the expense of short time scales (examples shown in
Figure 1.2). The ICF approach primarily involves accelerating a pusher to high velocities
letting its inertia compress a light density fuel1 to fusion conditions. There are many ways
to accelerate this pusher, but the one of interest in this dissertation is through the form of
electrical current (Section 1.1). The pusher in ICF implosions can compress nuclear fuel to
very high mass density (1 × 106 kg m−3) and very high temperatures (greater than 10 keV)[2],
and the study of materials at these densities and temperatures is referred to as high energy
density (HED) science[3]. For a material to be in a HED state it must be at pressures higher
than 1 Mbar which is easy to achieve in ICF where high densities and temperatures are
reached[3].

Figure 1.3: This plot shows Figure 1.1 of Drake [3], and depicts the region of high energy
density on a log temperature and log density scale. For reference 1 million atmospheres
pressure is 1 Mbar and denotes the approximate transition line into the high energy density
regime.

Reaching a HED state in an ICF implosion often happens at large ICF facilities such as
the National Ignition Facility at Lawrence Livermore National Laboratory (LLNL), and
the Z-machine at Sandia National Laboratory (SNL) shown in the left and right images of
Figure 1.2, respectively. However, these facilities cannot be run continuously as they take
time to set up the target and prepare the energy for the shot, and this time is characterized
by a “repetition rate” for a device. The finite repetition rate of these facilities limit the
opportunities for discovery, which is the main drive for developing ICF implosion concepts

1Fuel in fusion lingo refers to material that have small atomic number such as hydrogen.
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through simulations. Simulations are great in their lack of an associated repetition rate2,
but this often comes at a cost of accuracy when compared to the experimental results.
Simulations in the HED regime are challenging due to a myriad of factors, such as non-ideal
equations of state, electrical and thermal transport mechanisms, small temporal and spatial
scales, radiation mechanics, etc. These ICF implosions often produce plasmas3 which can
add even more complexity and challenges to the already challenging HED simulation regime.

1.1 Pulsed-Power

Pulsed-power refers to delivering massive amounts of stored capacitive energy to a target in
the form of electrical current. It is widely known, from fundamental electricity and mag-
netism[4], that two current carrying wires with current flow in the same direction experience
an attractive force4[4]. This fundamental force, often denoted as the J × B force in pulsed-
power, is what drives the implosion for the pulsed-power driven ICF platform known as a
Z-pinch[5]. The currents required to achieve HED states are on the order of 1 × 106 A, and
the largest pulsed-power device in use today is the Z-machine which is able to drive currents
up to 26 MA[6]. The Z-machine achieves these peak currents in a short amount of time,
around 100 ns, and provides an excellent source of X-ray emissions with peak emissions at
350 TW[6].

Currently, the Z-machine uses a ring of 36 Marx-generator capacitor banks with each gener-
ator composed of 60 2.6 µF capacitors which in totality store 22 MJ of energy[6]. The banks
are then triggered and the energy released enters a pulse forming region which connects to
magnetically insulated transmission lines (MITL) which then deliver the stored energy to
the target[6]. The MITLs deliver the large current exiting the pulse forming network to the
load, and in doing so heat causing desorption of molecules such as water[7, 8]. The des-
orption in these MITLs creates low-density and high-temperature plasma which enter the
target chamber and cause unwanted shorting of the current from the load[8]. The low-density
high-temperature plasmas will be referred to as vacuum contaminant plasmas (VCP) and
are a point of emphasis in this dissertation, primarily in Chapters 3 and 4. The targets shot
on the Z-machine vary, but the one of interest for this dissertation is the magnetized liner
inertial fusion (MagLIF) target[9].

2They do have an associated computation time, but this is mush less than the time it takes to have an
experiment performed at one of the aforementioned facilities.

3a plasma is a quasineutral gas of charged and neutral particles which exhibits collective behavior[2]
4A magnetic field can only exert force on a moving charge

https://www.sandia.gov/z-machine/about_z/index.html
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Figure 1.4: This provides an illustration of how the Z-machine works (source=SNL link),
note the magnetically insulated transmission lines are on the right where the red and blue
lines converge.

1.2 Magnetized liner inertial fusion

Figure 1.5 presents an overview of the MagLIF target and how it is intended to function.
MagLIF involves imploding a dielectrically coated cylindrical metallic liner onto a laser
induced pre-magnetized nuclear fuel (deuterium and tritium). This is accomplished by first
supplying an externally applied magnetic field which diffuses into the MagLIF load such that
the field lines enter and exit the top and bottom surface of the cylindrical target. Once the
axial field is in place inside the center of the MagLIF load a laser is triggered to preheat the
fuel causing it to magnetize or “lock” the magnetic field into place[2]. The laser causes the
fuel to heat and as the fuel heats it eventually ionizes and enters a plasma state. Once in a
highly conductive plasma state the magnetic field is locked in(see Alfvén’s Theorem[2, 10]).
After magnetizing the fuel the liner is imploded using pulsed-power, but laser-driven liner
implosions has also been pursued[11].

What makes MagLIF an innovative fusion concept is that it incorporates benefits of magnetic
confinement into an ICF platform. Magnetic confinement fusion will not be discussed here,
but one of the main benefits is the ability to direct plasma/fuel with magnetic fields. For the
case of MagLIF, pre-magnetizing the fuel increases the uniformity of the fuel burn by increas-
ing fuel temperature through α particle5 trapping[13], and stabilizing against instabilities
that disrupt the liner integrity[14]. As MagLIF implodes, it compresses the pre-magnetized
fuel lines which then increase the local magnetic field through flux compression[15]. Magnetic

5An α particle consists of two neutrons and two protons.

https://www.sandia.gov/z-machine/


6 Chapter 1. Introduction

Figure 1.5: This schematic is Figure 1 from Sefkow et al. [12] displaying the main components
of magnetized liner inertial (MagLIF).

flux compression hinges on magnetic flux conservation for an infinitely conductive fluid[2].
MagLIF on the Z-machine has reached convergence ratios (ratio of initial liner radius to liner
radius at peak burn) of approximately 40 which implies a maximum magnetic flux compres-
sion [6] factor of 1600. For an initial axial magnetic field of 20 T a convergence ratio of 40
would result in a peak magnetic field of 3200 T which greatly inhibits undesirable α particle
transport.

1.3 Rayleigh-Taylor instability

The previously mentioned axial magnetic field in MagLIF helps stabilize against disruptive
instabilities that compromise the liner shape and integrity. One of the most disruptive in-
stabilities in all of ICF is the Rayleigh-Taylor (RT) instability, which involves a light fluid
supporting a heavy fluid under the influence of a gravitational acceleration[16]. In con-
ducting fluids, an appropriately aligned magnetic field stabilizes against this instability[16].
Specifically, the magnetic field must be aligned parallel to the perturbation wave vector
for any stabilizing effect[17]. In the early stages of MagLIF development, Sinars et al. [14]
experimentally studied the magneto RT (MRT) instability6 on the Z-machine. This paper
provided a guide for the first two years of this journey which culminated in an interesting
discovery for the proper handling of equation-of-state in a finite-volume code[18].

Figure 1.6 presents the impact an axial magnetic field has on MRT growth through images
of density as a function of x and y following Sinars et al. [14]. The left plot shows the
growth without an axial magnetic field, and the right plot shows the growth with an axial
magnetic field. The impact of the magnetic field is apparent on the fine scale structure
which are notably absent on the right plot. The distance between the bubble and spike in
the mode growth of MRT is a good indicator for measuring instability growth. Although it
is not apparent in Figure 1.6 it is apparent in Figures 5.6 and 5.5 in Chapter 5. The MRT

6magneto RT is a special case because the heavy fluid is supported by a magnetic field instead of a light
fluid
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Figure 1.6: These plots present examples of Rayleigh-Taylor (RT) instability growth from
Srinivasan et al. [17], where the heavy fluid (aluminum) on the top is supported by the light
fluid (vacuum) on the bottom with a downward acceleration based on a MagLIF drive[? ].
The left plot shows RT growth without a horizontal magnetic field and the right shows RT
growth with a horizontal magnetic field[19].

instability only occurs when a perturbation or a seed is present7, and mitigating these seeds
will mitigate the growth of RT. The electrothermal instability (ETI) is the main instability
studied in this dissertation (see Chapter 1.5 for details on ETI), and its seeding of MRT is
its main motivation. In this dissertation, resistive magnetohydrodynamics simulations are
used to study various aspects of ETI, including the influence of anomalous resistivity (AR)
on its growth.

1.4 Resistive Magnetohydrodynamics

Magnetohydrodynamics (MHD), has been utilized for over 6 decades dating back to its
origins in the 1940s[10]. Resistive-MHD is an extension of MHD which includes electrical
resistive effects. Plasmas are inherently conducting[2], and because of this MHD serves as a
vital tool for studying plasma-based phenomenon such as the MRT instability. The MHD
equations are broken into conservation equations for mass, momentum, and energy, and the
induction equation which are given by

∂ρ

∂t
+∇ · [ρu] = 0, (1.1)

∂ρu
∂t

+∇ ·
[
ρuuT − BBT

µ0

+ I
(
P +

|B|2

2µ0

)]
= 0, (1.2)

7There exists unstable equilibriums!
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∂ε

∂t
+∇ ·

[(
ε+ P +

|B|2

2µ0

)
u − 1

µ0

B · uB
]
= Sε, (1.3)

and
∂B
∂t

= −∇× E, (1.4)

where µ0, ρ, u, P , ε, E, and B, are the magnetic permeability of free space, mass density,
3D velocity, total pressure, total energy density, electric field vector, and magnetic field
vector, respectively[20]. Sε represents the source terms on the energy equation, e.g., ohmic
heating. These equations are primarily work horse for many of the simulations done in the
pulsed-power community[14, 21, 22, 23, 24, 25]. In resistive-MHD, the electric field, E, is

E = −u × B + ηj. (1.5)

Equations 1.1- 1.5 are not yet closed, it requires an equation-of-state (EOS). Specifically,
there needs to be a relation of pressure (or internal energy density) to density and temper-
ature to close the equation system. In plasma physics this is often just specified using the
ideal gas EOS[2]. However, in simulations of pulsed-power ICF platforms the ideal gas EOS
is not sufficient for covering the wide array of states that exist in an implosion. The use of
an EOS that spans large ranges in temperature and density can address this issue, which
in practice is done through EOS tables (pressure and specific internal energy density on a
density and temperature grid)[26, 27]. The development of these tables is an active area
of research which has seen the use of molecular dynamic simulations and density functional
theory for construction[28]. In addition to tabulated EOS, there are tables for transport
coefficients, which for resistive-MHD, is just electrical resistivity (η)[29]8.

Hyperbolic and parabolic partial differential equations are solved using a wide array of
techniques[30]. This dissertation will isolate the use of finite-volume codes, which discretize
the weak (integrated equality) form of the above equations. Finite-volume methods uses the
notion of zones or cells to represent a fluid, where each cell has a constant value associated
with the variable given above, e.g., density. In addition to spatial discretization, there is
temporal integration as well, all of which are provided in Chapter 2 in detail. Chapter 2
presents how different choices of numerical techniques across two different codes can impact
ETI growth as shown in Figure 1.9.

1.5 Electrothermal Instability

ETI is the main subject of this dissertation, and connects Chapters 2- 4. ETI occurs for any
material whose resistivity depends on temperature and undergoes ohmic heating. Some of
the most common occurrences of ETI are for materials at solid density such as a perturbed

8Note, resistive-MHD can also include the use of thermal conductivity which is not explicitly stated and
does not change the classification to extended-MHD
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Figure 1.7: This shows a schematic of ETI growth. The gray region is the conducting
material which contains a uniformly distributed current which then perturbed in the axial
direction causes unstable ohmic heating → ETI growth.

nichrome wire subjected to electric current. The regions of the highest perturbed resistivity
will see the largest power generated from ohmic heating (I2R). Ohmic heating increases the
temperature and as a result resistivity (if resistivity increases with temperature), leading to
an unstable positive feedback loop. ETI is also referred to as the joule heating instability,
and overheat instability[21]. A schematic showing one of the forms of ETI growth is shown
in Figure 1.7. A uniformly distributed current that is perturbed along the axial direction,
in an annulus, will cause axial non-uniform ohmic heating that increases in intensity, called
the ETI (i.e., striation form).

There are two forms of ETI discussed in this work: the first is the striation form of ETI and
the second is the filamentation form of ETI. The striation form of ETI is associated with
magnetically perpendicular growing modes, and often only occurs at high density because
the resistivity tends to increase with temperature in this regime. The filamentation form
of ETI is associated with magnetically parallel growing modes, and occurs at lower density
where the resistivity tends to decrease with temperature. The sign of ∂η/∂T determines what
type is growing. Although this instability is always present in pulsed-power ICF platforms
throughout an implosion, it is a rather weak instability in comparison to MRT. The MRT
instability can physically disrupt the pusher and often quickly overshadows the ETI[22].
ETI is not as disruptive as MRT, but it can still seed MRT and be a cause for concern in a
pulsed-power ICF implosion. For MagLIF, in between when MRT overtakes ETI there is a
small “electro-choric” instability phase which is not explored in this dissertation[31].

ETI applied to MagLIF has been an active area of research[20, 22, 23, 24, 32, 33], but
the instability has been addressed through the use of dielectric coatings on the surface of
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Figure 1.8: This plot presents current as a function of time (along with outer liner radius)
including a pre-pulse and without a pre-pulse with the former being critical for simulating
ETI[20] (see Chapter 2).

a MagLIF liner[24, 32]. These dielectric coatings serve as a mass tamper which inhibit
expansion of the liner as it heats initially from ohmic heating[24]. An important aspect
that is often overlooked when simulating ETI in a MagLIF-like load is the structure of the
current pulse. From the original MagLIF paper (Slutz et al. [9]) the analytical form of current
as a function of time used a linear rise with a peak at approximately 100 ns, as shown in
Figure 1.8. This form of current is fine for running late stage large scale MRT simulations,
but for ETI which is on the µm length scale it is sensitive to the structure of the pulse early
in time. Chapter 2 details what numerical techniques and simulation choices impact ETI
modeling including sensitivity to vacuum resistivity, vacuum density, and EOS.

ETI has been experimentally shown to seed the MRT instability for the MagLIF concept[22,
23, 24, 32]. Understanding the formation of ETI is key to help mitigate the seeding of the
disruptive MRT instability. The “fast” form of ETI occurs when the skin depth is much
larger than the thickness of the liner and results in an ETI growth rate of[5, 22]

γ =
1

2

[
γz − γ0 +

√
(γz − γ0)

2 − 4γ0γz cos 2α
]
, (1.6)

where γz = ∂η
∂T

J2
z /(ρεT ) (striation ETI growth rate), γ0 = 2η|k|/(µ0h) (characteristic cur-

rent penetration time), and α is the angle between the perturbation wavevector k and the
magnetic field. η, T , Jz, ρ, εT , µ0, and h, are the resistivity, temperature, axial current den-
sity, mass density, derivative of specific internal energy density with respect to temperature,
permeability of free space, and characteristic shell height, respectively. A linear growth rate
is used to compare theory with simulation and is obtained through linearizing the equation
system (Equations 1.1-1.5) and extracting the first order terms by neglecting the higher
order terms. In application to ETI, one can track the exponential growth of a temperature
perturbation through time and compare this to the growth rate (see Chapters 2 and 3 for
examples). Filamentation ETI occurs when the perturbation is aligned with the azimuthal
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Figure 1.9: Density as a function of space for a set of points in time (correspond to green
stars in Figure 1.8) is plotted as an example of nonlinear ETI growth[20].

magnetic field direction (α = 0°), and the linear growth rate is

γ =
1

2

[
γz − γ0 +

√
(γz − γ0)

2 − 4γ0γz

]
.

Simulations of ETI typically use a collisional form of the resistivity as provided, e.g., in a
Lee-More Desjarlais conductivity table[29]. However, in regions of low density a collisional
form of resistivity is not sufficient, collision-less transport needs to be incorporated to prop-
erly simulate the filamentation form of ETI growth. Anomalous resistivity (AR) is an avenue
by which collision-less micro-turbulent effects can be incorporated into a collisional resistiv-
ity[34, 35] (see Chapter 1.6). Filamentation ETI has not been of particular interest to the
pulsed-power community in recent years, but with garnered interest on vacuum contaminant
plasmas, the filamentation ETI in pulsed-power warrants discussion[7, 8]. These current
carrying low density vacuum contaminant plasmas are a prime candidate for studying AR.
Chapter 3 evaluates the impact of AR on Equation 1.6 through the derivation of a new linear
growth rate.9 Lastly, Chapter 4 presents how AR indirectly influences the striation form of
the ETI through modifying the evolution of the magnetic diffusion wave.

9AR and ETI can also be applied to gas puff Z-pinches where instead of a solid liner like MagLIF has,
they have a gaseous liner[36, 37].
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1.6 Anomalous Resistivity

Anomalous resistivity is an augmentation of a collisionally based resistivity through micro
turbulent instabilities that exhibit collision-like behavior. For example, some of these micro
turbulent instabilities are manifestations of collision-less phenomenon such as the ion acoustic
wave[34, 38, 39, 40, 41, 42], the lower hybrid drift instability[35, 43], and the Buneman
instability[34, 43, 44]. Historically, AR models have mostly been applied to atmospheric
plasmas and have not, until recently, been applied to plasmas in HED fusion concepts[35, 45].

AR models are created using quasilinear theory[34, 43, 46] and kinetic simulations[35, 46].
These AR models manifest into resistivity through development of an AR characteristic
collision frequency of the form

ηAR ≡ σ−1τeiνAR =
memi

e2Zeffρ
νAR, (1.7)

where ηAR, σ, me, mi, e, Zeff, ρ, and νAR, are AR resistivity, collisional conductivity, electron
mass, ion mass, elementary charge, effective ionization level, mass density, and AR electron
scattering frequency, respectively. This form of ηAR assumes a Spitzer-like form of the
resistivity proportional to the electron-ion collision frequency. Additionally, Equation 1.7
incorporates the collisional resistivity through τei and the effective AR collision frequency
νAR which can be an individual frequency or a sum of frequencies dependending on whether
one or multiple AR models are used. This total ηAR resistivity is then added into the
collisional resistivity to get the effective resistivity as simply

ηeff = η + ηAR,

where η is the collisional resistivity which can be of any form (analytical, tabulated, etc.). For
the work in this dissertation, a tabulated collisional resistivity is primarily used. Figure 1.10
presents this incorporation into a tabulated conductivity and shows that AR can change the
collisional resistivity by upwards of 12 orders of magnitude.

AR couples to ETI directly through changes in γz and γ0 in Equation 1.6. Specifically, AR
will change γz through changes in the derivative of resistivity with respect to temperature,
and will change γ0 through changes in the resistivity alone. With no experimental validation
and so many available AR models, it is difficult to discern which AR model or combination
of models is the most accurate. However, all of these models are dependent on the drift
speed of electrons, so current-carrying low density vacuum plasmas are prime candidates to
investigate AR with respect to ETI. Chapters 3 and 4 study how AR influences the “fast”
form of ETI both directly and indirectly.

Although AR is shown to not have a significant impact on the striation form of ETI directly,
as discussed in Chapter 3, it can impact the striation form of ETI indirectly through the
magnetic diffusion wave. The magnetic diffusion wave occurs numerically in resistive-MHD
simulations through magnetic field accumulation in the liner. Pulsed-power simulations
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Figure 1.10: Plot of ηtable/ηeff (note σ = 1/η) for aluminum with a current density of
j = 1.8 × 1011 A m−2. A), B), C), and D), represent the ion acoustic, Buneman, Davidson
LHD, and Tummel LHD AR models, respectively [47].

are usually driven by injected magnetic flux at the outer radial boundary (in cylindrical
coordinates). The magnetic field diffuses dynamically into the liner which results in a build
up of magnetic field through a wave that manifests in mass density[22]. This “magnetic
diffusion wave” controls the current distribution over time which can affect the striation ETI
growth in a MagLIF liner. Chapter 4 examines how AR’s manipulation of the magnetic
diffusion wave influences the subsequent ETI growth in the presence of current-carrying
vacuum contaminant plasmas[7].

1.7 Structure and Content

This dissertation follows the Manuscript format and the next three chapters each consist of
a peer-reviewed journal publication. The dissertation is divided into two parts focusing on
modeling ETI, Chapter 2, and assessing AR influence on ETI, Chapters 3 and 4.

The content of each chapter is as follows:

Chapter 1: is divided into an ETI section which introduces ETI, pulsed-power, HED,
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MagLIF, and the “fast” thermal form of ETI growth rate, and an AR section which
introduces AR, the elevant quantities therein, applications, and how it couples to ETI.

Chapter 2: Consists of a peer reviewed paper, entitled “Cross-Code verification and sen-
sitivity analysis to effectively model the electrothermal instability” and published in
the Journal of High Energy Density Physics[20]. This paper presents the important
aspects of modeling ETI from a numerical algorithm level, and investigates nonlin-
ear ETI sensitivity to the equation-of-state, vacuum density, and vacuum resistivity.
Additionally, this paper provides a verification test suite for the important individual
components of ETI such as magnetic diffusion and ohmic heating.

Chapter 3: Consists of a peer reviewed paper, entitled “The effect of anomalous resistivity
on the fast electrothermal instability” and to be submitted following post-review revi-
sions to the Physics of Plasmas (or journal of Plasma Physics). This paper presents
anomalous resistivity models and how they change the effective resistivity with Z-
machine-like conditions. Additionally, a newly derived growth rate is included that
incorporates a resistivity dependence on current density. This growth rate is then
verified through simulation of filamentation ETI with and without AR included.

Chapter 4: Consists of a peer reviewed paper, entitled “The impact of anomalous resistivity
in vacuum contaminant plasmas on the electrothermal instability” in a completed state
in preparation for submission to a journal. This paper presents the indirect impact
anomalous resistivity has on the electrothermal instability for a MagLIF-like config-
uration through the magnetic diffusion wave. The magnetic diffusion wave is shown
to vary in the delay of the peak liner current location across the different anomalous
resistivity models using 1D simulations. These delays manifest into different evolutions
of ETI and are shown through 2D simulations.

Chapter 5: Culminates the main takeaways from the previous sections and provides an
avenue for future work.

1.8 Contributions

The main contributions of this dissertation towards the modeling of ETI are the following:

1. Provides a verification test suite that evaluates a code’s handling of equations directly
relevant to ETI such as the induction and energy equation.

2. Highlights what aspects of a numerical scheme are most important in modeling ETI,
e.g., time integration of parabolic equations.

3. A sensitivity analysis of nonlinear ETI to vacuum conditions shows insensitivity to
vacuum density and sensitivity to vacuum resistivity.
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4. A liner-to-vacuum resistivity ratio of 1.0 × 104 obtains the converged result, converged
meaning in the limit of near infinite vacuum resistivity (ratio of greater than 1.0 × 1010 ).

5. Nonlinear ETI is shown to be highly sensitive to equation-of-state in the high density
and low temperature region of state space.

The main contributions of this dissertation towards determining the role of AR in ETI growth
are the following:

1. The regimes in which AR is relevant to 1.0 × 107 A pulsed-power machines are at low
densities (under 1.0 × 10−3 g m−3).

2. AR is only applicable in the region where ∂η/∂T < 0 at these lower densities meaning
it is significant to filamentation ETI growth.

3. AR is conversely shown to not influence the striation ETI when using conditions typical
of Z-machine pulsed-power machines, but it can begin to play a role at much larger
current densities.

4. A newly derived growth rate shows that resistivity dependence on current density will
affect the filamentation ETI only and is supported through basic physics arguments.

5. The new growth rate is verified through simulation and the added current density
dependence is shown to reduce the magnitude of growth over time.

The main contributions of this dissertation towards determining the impact of AR in VCP
on ETI are the following:

1. VCP parasitically divert current away from the drive and in resistive-MHD simulations,
this results in a delay of the current pulse penetrating the liner.

2. AR in VCP is shown to mitigate this delay equally for both a dielectrically-coated
aluminum and beryllium liner.

3. For MagLIF-like settings this delay is shown to be around 8 ns at 60 ns and is reduced
to nearly 0 ns through use of AR models DA, KT, and IA. The BU AR model is shown
to reduce only by 4 ns.

4. The 2D simulations show a two-fold reduction in the delay due to 2D turbulence
disrupting the VCP layer early in time.

5. Significant RT mode growth is observed on the outside of the dielectric and varies with
AR model.

6. The beryllium liner simulations show the largest variation in ETI growth across AR
models, and the aluminum liner simulations show very little variation.
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7. The aluminum liner simulations show the largest variation in peak liner current density
across the AR models conversely to the beryllium liner simulations.

1.9 Publications

Peer-reviewed journal publications related to the modeling ETI:

• Robert L. Masti, C. Leland Ellison, Jacob R. King, Peter H. Stoltz, and Bhuvana
Srinivasan. Cross-Code verification and sensitivity analysis to effectively model the
electrothermal instability. Journal of High Energy Density Physics, 2021.https://
doi.org/10.1016/j.hedp.2021.100925.

Peer-reviewed journal publications related to AR role in the ETI:

• Robert L. Masti, C. Leland Ellison, William A. Farmer, Kurt Tummel, and Bhuvana
Srinivasan. The effect of anomalous resistivity on the fast electrothermal instability.
Physics of Plasmas, 2021.(post-review draft complete, and preparing for resubmission).

Peer-reviewed journal publications related to impact of AR in VCP on ETI:

• Robert L. Masti, William A. Farmer, and Bhuvana Srinivasan. The impact of
anomalous resistivity in vacuum contaminant plasmas on the electrothermal insta-
bility. Journal of High Energy Density Physics, 2021.(draft complete preparing for
submission).

Other peer-reviewed journal publications published during my Ph.D. studies:

• Jacob R. King, Robert L. Masti, Bhuvana Srinivasan, and Kris Beckwith. Multi-
dimensional Tests of a Finite-Volume Solver for MHD With a Real-Gas Equation of
State. IEEE Transactions on Plasma Science, 2020.https://doi.org/10.1109/TPS.
2020.2981238.

• Bhuvana Srinivasan, Petr Cagas, Robert Masti, Chirag Rathod, Rajath Shetty, and
Yang Song. A survey of fluid and kinetic instabilities relevant to space and laboratory
plasmas. Radiation Effects and Defects in Solids, 2019.https://doi.org/10.1080/
10420150.2019.1577853.

• Bhuvana Srinivasan, Petr Cagas, Robert Masti, Chirag Rathod, and Yang Song.
Fluid and kinetic simulations of plasma instabilities. Radiation Effects and Defects in
Solids, 2017.https://doi.org/10.1080/10420150.2017.1398247.

https://doi.org/10.1016/j.hedp.2021.100925
https://doi.org/10.1016/j.hedp.2021.100925
https://doi.org/10.1109/TPS.2020.2981238
https://doi.org/10.1109/TPS.2020.2981238
https://doi.org/10.1080/10420150.2019.1577853
https://doi.org/10.1080/10420150.2019.1577853
https://doi.org/10.1080/10420150.2017.1398247
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1.10 Attributions

Technical research is collaborative in nature and is reflected in the number of co-authored
papers produced during my Ph.D. studies. The individual contributions of the co-authors
to this research are as follows:

• Dr. Bhuvana Srinivasan is my Ph.D. advisor. She participated in big-picture planning,
giving direction, discerning phenomena, and reviewed and edited my writing.

• Dr. Jacob R. King is a collaborator from Tech-X. He helped in debugging any unphys-
ical numerical artifacts visualized in USim simulation results and guided in other tools
such as python.

• Dr. Peter H. Stoltz is a collaboration from Tech-X. He helped in developing USim
simulation prefiles.

• Dr. C. Leland Ellison is a collaborator formerly of Lawrence Livermore National Lab-
oratory. He guided in the use of Ares, setting up simulations, providing understanding
and references for AR, and participated in planning paths to publications.

• Dr. William A. Farmer is a collaborator from Lawrence Livermore National Labora-
tory. He provided continued support with Ares as well as guidance with all theoretical
based questions, especially in linear theory.
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Abstract

This manuscript presents verification cases that are developed to study the electrothermal instability (ETI). Specific
verification cases are included to ensure that the unit physics components necessary to model the ETI are accurate,
providing a path for fluid-based codes to effectively simulate ETI in the linear and nonlinear growth regimes. Two
software frameworks with different algorithmic approaches are compared for accuracy in their ability to simulate diffusion
of a magnetic field, linear growth of the ETI, and a fully nonlinear ETI evolution. The nonlinear ETI simulations show
early time agreement, with some differences emerging, as noted in the wavenumber spectrum, late into the nonlinear
development of ETI. A sensitivity study explores the role of equation-of-state (EOS), vacuum density, and vacuum
resistivity. EOS and vacuum resistivity are found to be the most critical factors in the modeling of nonlinear ETI
development.

Keywords: electrothermal instability, MagLIF, z-pinch, vacuum resistivity, equation-of-state sensitivity

1. Introduction

The current-driven electrothermal instability (ETI)
forms when the material resistivity is dependent on tem-
perature, occurring in nearly all Z-pinch-like high energy
density (HED) platforms.[1] Previous work models the
early time behavior of current-driven metallic explosions
for pulsed wire array configurations as well as for implod-
ing metal liner configurations such as in the magnetized
liner inertial fusion (MagLIF) experiments.[2, 3] A num-
ber of codes have been used to simulate and understand
the ETI, making it important to quantify how numerical
modeling choices influence the evolution of the instability.
[1, 2, 4, 5]

This work provides a series of verification cases in both
linear and nonlinear regimes ensuring ETI-relevant unit
physics is simulated accurately. Comparing these cases
across codes highlights which differences between the codes
are most important when simulating ETI such as time inte-
gration schemes for diffusion, spatial differencing methods,
and numerical treatment of the highly resistive vacuum in
which the ETI target resides. Additionally, this work per-
forms cross-code comparisons for simulations of nonlinear
ETI in regimes relevant to MagLIF and other pulsed-power
driven HED platforms.

The two codes are USim, a commercially available
multiphysics fluid code from Tech-X [6], and Ares, a

∗Corresponding Author
Email addresses: rlm7819@vt.edu (R. L. Masti),

srinbhu@vt.edu (B. Srinivasan )

Lawrence Livermore National Laboratory (LLNL) mul-
tiphysics radiation-hydrodynamics code.[7, 8, 9] USim
is an unstructured-mesh-based Eulerian code while Ares
is a structured-mesh-based arbitrary Lagrangian-Eulerian
(ALE) code, and for this study, diffusion is temporally
handled explicitly in USim and implicitly in Ares. Both
codes solve the resistive magneto-hydrodynamics (MHD)
equations with thermal conductivity. Obtaining similar re-
sults with such different algorithmic approaches provides
confidence in the underlying discretization techniques and
implementation in both codes.

This paper is structured as follows. Section 2 presents
code descriptions for Ares and USim along with details
on equation-of-state (EOS). Section 3 presents code ver-
ification that ensures the magnetic diffusion is captured
accurately relative to an analytic solution and that the
linear growth of ETI, in regimes of relevance to the Z-
machine experiments [2, 4, 5], compares well with theory.
Following code verification in the analytic and linear ETI
regime, Section 4 presents comparisons of nonlinear ETI
including a sensitivity study of nonlinear ETI dynamics to
EOS treatment, vacuum resistivity, and vacuum density.

The key contributions of this paper are two-fold. First,
analytic and theory-driven unit physics cases provide ver-
ification of the critical physics components necessary to
accurately model ETI. Second, the nonlinear studies high-
light the sensitivity of vacuum parameters and EOS in
converged nonlinear ETI behavior. The sensitivity analy-
sis shows nonlinear ETI behavior is influenced by vacuum
resistivity more than vacuum density.
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2. Code Descriptions

For this study, the Ares and USim codes solve the mag-
netohydrodynamic equations which are given in conserva-
tive form as

∂ρ

∂t
+∇ · [ρu] = 0, (1)

∂ρu

∂t
+∇ ·

[
ρuuT − BBT

µ0
+ I
(
P +

|B|2

2µ0

)]
= 0, (2)

∂ε

∂t
+∇ ·

[(
ε+ P +

|B|2

2µ0

)
u− 1

µ0
B · uB

]
= Sε, (3)

and
∂B

∂t
= −∇× SE, (4)

where µ0, ρ, u, P , ε and B, are the magnetic permeability
of free space, mass density, 3D velocity, total pressure, to-
tal energy density, and magnetic field vector, respectively.
Sε and SB represent the source terms for ohmic heating
and thermal conduction in the former, and resistive mag-
netic diffusion in the latter.

The codes differ in multiple ways such as in their variable
storage scheme (e.g. zone or node storage), mesh evolu-
tion, diffusion evaluation, and diffusion time integration.
The different treatment of the diffusion terms, represented
in Sε and SB in Equations 3 and 4, respectively, signifi-
cantly influences ETI growth. For this work, Sε is given
by

Sε =
−1

µ0
∇ · ( η

µ0
∇×B), (5)

where η is the electrical resistivity, and the contribution
to the SB in Equation 4 is given by

SB = −∇× (
η

µ0
∇×B). (6)

For this study, differences exist algorithmically in the tem-
poral integration and spatial differentiation of these terms.
Section 4 explores these differences leading to substantially
different computational challenges and numerical limita-
tions.

2.1. USim Code

USim uses finite-volume algorithms on an unstructued
Eulerian grid to solve conservative equation systems. In
the simulations presented here, USim uses the Monotone
Upwinding Scheme for Conservation Laws (MUSCL) to
perform cell interface reconstruction for the computation
of the Eulerian fluxes.[10] For these fluxes, USim utilizes
the Harten-Lax-van Leer-Discontinuities (HLLD) approx-
imate Riemann solver given by Miyoshi and Kusano [11]
(5-wave) modified to incorporate the changes to the waves
introduced by the real-gas EOS.[12] Additionally, USim
utilizes hyperbolic divergence cleaning as given by Dedner

et al. [13]. For hyperbolic temporal integration, USim uses
a 2nd order Runge-Kutta time integration scheme with
variable time step.

For this study, USim uses super-time-stepping (STS)
to handle the parabolic terms embedded in Sε and SB.
STS modifies the number of Runge-Kutta stages for the
parabolic terms so they can be evolved at the hyperbolic
time step. [14] The number of stages is proportional to
the ratio of the hyperbolic time step to the diffusion time
step, which can be many orders of magnitude for the non-
linear ETI simulations in Section 4, albeit there are lim-
its to the number of stages before STS begins to impact
accuracy.[14] Although USim’s STS is capable of 2nd or-
der accuracy, only the first-order accurate implementation
is used for direct comparisons between codes. Section 3.1
tests the magnetic diffusion contribution to Sε in Equa-
tion 3 which is given by Equation 5, and contribution to
SB in Equation 4 which is given by Equation 6.

USim implements the divergence and curl operators
through a polynomial fit approximation as this algorithm
is suitable for problems with a general unstructured mesh.
With this method a field variable, such as Bx, is fit-
ted with a multi-dimensional polynomial and the value
of the derivative is computed to obtain the differentiated
quantity; e.g. the current density.[15] Discontinuities in
field variables can cause oscillations in the fitting proce-
dure of the least-squares method. Circumventing these
oscillations requires using a large stencil which reduces or
smooths out the magnitude of the derivatives at the dis-
continuity.1 As an example, SB from Equation 6, expe-
riences large gradients due to the discontinuous resistiv-
ity at the vacuum-liner interface during the nonlinear ETI
simulations, and a small stencil would over represent the
gradient magnitude at this interface. While USim typi-
cally uses a 2nd order derivative reconstruction, the large
gradients in the diffusive quantities in Eq. 6 require a first
order reconstruction due to numerical instability with the
higher order polynomial fits.

Nonlinear ETI simulations in Section 4 include thermal
diffusion in addition to magnetic diffusion augmenting the
Sε term. USim evolves the total energy density given in
Equation 3, so an inverse EOS operation is performed at
every time step to get the temperature from the internal
energy density. For this study, USim applies thermal dif-
fusion through a source term given as

∂T

∂t
= ∇ · (α∇T ), (7)

where α is the thermal diffusivity. This equation re-
quires the use of an additional EOS operation to com-
pute internal energy density (εint) updating the total en-
ergy density (ε) from Equation 3 through the relation
ε = εint+1/2ρu2 +1/(2µ0)B2. For the nonlinear ETI sim-
ulations in Section 4, both codes use thermal conduction,

1A stencil of 20 was found to be sufficient in evaluating diffusive
fluxes
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as it improves numerical stability and is physically relevant
in the linear ETI growth phase of the simulation.[1, 2]

USim handles the multi-material setup of the nonlin-
ear ETI simulation (liner-vacuum) through the use of a
marker which is a unit-less identifier (-1 to 1). This marker
is evolved with the normalized advective fluxes of Equa-
tion 1 which follows the movement of each material respec-
tively. Due to the density voids created in the nonlinear
ETI growth and the lack of vacuum energy conservation
(see Section 4 and Figure 8), this marker is filtered such
that a zone containing liner material above the interface
cannot transition to a vacuum zone (marker is always > 0
above interface). This implementation does not allow for
ejection of liner material into the vacuum, but it does al-
low for seldom transition from liner material to vacuum
along the continuous interface through the marker going
from > 0 to < 0.

2.2. Ares Code

Ares is one of LLNL’s multiphysics radiation hydro-
dynamics codes specializing in inertial confinement fu-
sion (ICF), high energy density (HED) physics, and en-
ergetic materials [9, 7, 8]. At its core, Ares solves single-
fluid multi-material multi-component2 Euler or Navier-
Stokes hydrodynamic equations on a structured, arbi-
trary Lagrangian-Eulerian (ALE), adaptive mesh refine-
ment (AMR) grid. Depending on the application, ad-
ditional physics packages are incorporated in an opera-
tor split fashion. Major physics packages include resis-
tive and extended magnetohydrodynamics, laser ray trac-
ing and energy deposition, single- or multi-group radia-
tion diffusion, Sn radiation transport, Reynolds-Averaged
Navier-Stokes (RANS) turbulence models, and thermonu-
clear burn.

For this work, all of the Ares simulations use the 2D re-
sistive MHD package without AMR. The 2D MHD package
assumes that currents reside in the x− y or r − z simula-
tion plane, while a single component of the magnetic field
evolves perpendicular to the simulation plane. During the
Lagrange step, the zone-centered magnetic field is frozen
into the fluid. After the Lagrange step, the mesh can op-
tionally be relaxed towards it’s initial position according
to the user’s ALE prescription. All mesh variables are then
interpolated from the post-Lagrange mesh to the relaxed
mesh using conservative, finite-volume, total variation di-
minishing flux-limited advection schemes. In the case of
the magnetic field, the finite volume advection preserves
magnetic fluxes. Note that for the purposes of this work,
Ares was run in full relaxation “Eulerian mode”, which
compares nicely to USim’s Eulerian formulation.

2I.e., Ares evolves a single fluid velocity but multiple material
densities and temperatures within any multi-material zones, and each
material allows multiple components (equations of state) that are
required to be in pressure and temperature equilibrium with other
components of the same material in the zone.

Resistive diffusion of the magnetic field and the hy-
drodynamics motion are treated separately using opera-
tor splitting methods. Both the magnetic diffusion equa-
tion and the thermal diffusion are advanced implicitly in
time using a first-order accurate backward-Euler method.
Similarly, both diffusion operations employ a second-
order accurate finite volume spatial discretization.[16] This
method is akin to a bilinear finite element discretization.

Ohmic heating is applied explicitly in time after the im-
plicit magnetic diffusion update. The updated magnetic
field is differenced to calculate edge-centered currents ac-
cording to Ampere’s Law. The ohmic heating incurred
by the edge-centered currents is partitioned into the two
adjacent zones by treating the two zones as resistors in
parallel.

Ares handles multi-material dynamics with a volume-
of-fluid approach. This approach assigns a volume frac-
tion to each material present within a given zone. In ad-
dition to the sub-zonal volume, each material is allowed
its own sub-zonal thermodynamic state including density,
temperature, and pressure. However, only a single (node-
centered) fluid velocity is maintained (thus the single-fluid
multi-material designation for the code). For MHD, a
zone-averaged conductivity is required for magnetic diffu-
sion and ohmic heating. For this study, Ares uses a mass-
fraction-weighted average of the conductivities for zones
that contain multiple materials.

2.3. Equation of State

Since ETI growth depends on the resistivity of a ma-
terial, and the resistivity is a function of the material’s
state, an accurate EOS is important. HED simulations
of experiments often rely on tabular EOS libraries to pro-
vide accurate representations of the material state across
a wide range of densities and temperatures. These EOS
tables provide the P and the ε as functions of density and
temperature, including into HED regimes. In previous
work[2, 4], the SESAME EOS database was used to model
ETI specifically using SESAME 3720 (SES3720) [17] for
an aluminum EOS, and Sandia Lee-More based Desjarlais
(QLMD) tables for aluminum transport properties.[18]

The nonlinear ETI simulations in Section 4 employ
an analytic Birch-Murnaghan EOS (BMEOS) for ease of
code-code comparisons. The magnetic diffusion and linear
ETI simulations in Section 3 employ an ideal gas EOS.
Sensitivity studies in Section 4.2 assess how the nonlin-
ear ETI behavior differs between BMEOS and SES3720
EOS. For this study, the QLMD effective ionization table
is used in conjunction with the BMEOS to span a large
state space. BMEOS is an analytic equation of state de-
termined through data regression, and this work uses the
functional form used by McBride and Slutz [19] where the

3
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pressure and internal energy are given by [20, 21, 22, 19]

P = P0 +
3

2
A1

[(
ρ

ρ0

)g1
−
(
ρ

ρ0

)g2]
[
1 +

3

4
(A2 − 4)

[(
ρ

ρ0

)g
− 1

]]
,

(8)

where for aluminum P0 = (1 + Zeff)kBρT/m, m =
4.509× 10−26 kg, A1 = 76× 109 Pa, ρ0 = 2700 kg m−3,
g1 = 7/3, g2 = 5/3, A2 = 3.9, and g = 2/3 with Zeff,
kB , ρ, T , representing the effective ionization level, Boltz-
mann constant, density [kg m−3], and temperature [K],
respectively.[19] Similarly, the specific internal energy den-
sity is given by

ε = ε0 +
9

16
A1ρ

−1
0

[
A2

[(
ρ

ρ0

)g
− 1

]3

+

[(
ρ

ρ0

)g
− 1

]2 [
6− 4

(
ρ

ρ0

)g]]
,

(9)

where ε0 = 3/2(1 + Zeff)kBT/m. BMEOS has a max dif-
ference to SES3720 of 40%; see Appendix A

Implementing tabulated EOS or tabulated transport co-
efficients requires a choice of interpolation algorithm such
as bilinear or bicubic. Section 4.2 shows the effect of
interpolation algorithm and EOS on the Ares nonlinear
ETI simulation. For this study, Ares uses LLNL’s LEOS
[23, 24, 25] algorithms for table interpolation, and USim
uses Los Alamos’s EOSPAC interpolation library. [26]

3. Cross Code Verification

This work provides a guide to running nonlinear ETI
simulations by sequentially verifying the individual physics
components relevant to ETI. The first verification test is
of magnetic diffusion where solutions from the two codes
are compared against an analytical result. The second
verfication test is a linear ETI simulation with negligible
magnetic diffusion relative to the ohmic heating in Sε of
Equation 3, isolating the ohmic heating and resistive feed-
back mechanisms.

3.1. Magnetic Diffusion

This test case involves an x-directed magnetic field vary-
ing sinusoidally along the y direction resistively diffusing
due to a constant resistivity in space and time. This test
uses Cartesian coordinates with the fluid initially at rest.
The magnetic field diffuses towards the steady state solu-
tion of a constant field. Comparing this time evolution to
the analytically-derived solution quantifies the numerical
error.

The diffusion equation in Equations 4 and 6 with con-
stant resistivity reduces the curl operations to a simple
Laplacian diffusion equation in Cartesian coordinates. In
order to isolate magnetic diffusion from the full MHD

equation, the initial conditions and strength of electrical
resistivity must satisfy certain conditions. These condi-
tions are that any thermal pressure due to ohmic heating
be negligble relative to the magnetic pressure, and that
any motion due to the magnetic pressure occurs at much
longer time-scales than the magnetic diffusion time-scale.
Using a plasma beta, the ratio of thermal pressure to mag-
netic pressure, of unity satisfies the first condition, and
a Lundquist number of unity satisfies the second condi-
tion. Although only the magnetic field is needed to ana-
lyze Equation 6, the codes evolve the full MHD equations;
hence, a low plasma beta and a low Lundquist number are
chosen to study the isolated effect of magnetic diffusion in
Equations 4 and 6.

The chosen simulation grid uses an x domain of 0.25 m
and an y domain of 1 m with a resolution of 50x200
grid cells, respectively. The uniform initial state is
P0 =1.0133× 105 Pa and ρ0 =0.164 kg m−3 with an ideal
gas equation of state (EOS) using γ = 5

3 .3 The initial mag-
netic field is B0 = 〈0.5044 cos(2πy), 0, 0〉T, and the initial
electrical resistivity is η =1.396× 10−3 Ω m. Given these
parameters, the characteristic magnetic diffusion rate is

γmd =
4π2

LyLu

√
2P0

βρ
≈ 4.387× 104 s−1, (10)

and the chosen simulation end time is tf =45.59 µs (2/γ).
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Figure 1: Plot A on the left shows the x-direction magnetic field in
[mT] along the vertical direction at the magnetic diffusion simulation
end time of 45.59 µs over a subset of the simulation range. Plot B
on the right shows the L2 norm of the error between the simulated
magnetic field and the analytically-derived magnetic field over time.

Figure 1 presents the error of both codes as a function
of time, and an instantaneous lineout of each simulation
along with the analytically-derived solution. This configu-
ration results in a maximum global error of less than 0.01%
for both the Ares and USim simulations. This low error
provides confidence in the magnetic diffusion capabilities
of both codes, and is critical for resolving the nonlinear
ETI magnetic diffusion wave.

3The choice of initial state or EOS has no impact on this test
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3.2. Linear ETI

ETI occurs whenever ohmic heating is applied to a ma-
terial with a temperature-dependent resistivity. The com-
bination of the changing resistivity and ohmic heating cre-
ates a positive feedback loop causing hot spots to develop
internally. The linear ETI growth rate is given by[27, 2]

γ =
ηTJ

2
z

(
1− 2 cos2 α

1+γ/γ0

)
− k2κ

ρεT
, (11)

where γ0 = 2kη/µ0∆r. k, κ, η, T , εT , and α, are the
wavevector, the thermal conductivity, the resistivity, the
temperature, the partial derivative of the specific internal
energy (J kg−1) with respect to temperature, and the angle
between the wavevector and magnetic field, respectively.
For ηT ≡ ∂η

∂T > 0 (most commonly the case for metals
at solid densities and low temperatures), the maximum
growth occurs when α = 90°, resulting in a growth rate of

γ =
ηTJ

2
z − k2

zκ

ρεT
. (12)

While the magnetic diffusion test verifies the effect of the
electrical resistivity on the magnetic field evolution, this
linear ETI test verifies the effect of the electrical resistivity
on the internal energy density evolution. Figure 2 shows
the problem setup. In the absence of thermal conductivity,
the growth rate becomes

γ =
ηTJ

2
z

ρεT
. (13)

This form of the theoretical growth rate depends heav-
ily on ohmic heating, so reproducing this analytical result
through simulation provides confidence in each code’s abil-
ity to capture ohmic heating and the feedback of such heat-
ing on the evolution of the material state. For this sim-
ulation, the initial parameters (relevant current, length,
and time scales) are set to reproduce ohmic heating in
a typical pulsed power regime. This test uses aluminum
as the conducting material following the state parameters
and conductivities derived from the SES3720 and QLMD
29373 tables, respectively.[17, 18].

This test uses initial parameters of ρ0 = 2700 kg m−3,
T0 = 250 K, I0 = 10 MA, over an annulus with a thickness
of 500 µm starting at a radial location of 2.68 mm. Uni-
formally distributing the current in the annulus results
in a current density of Jz = 1.09× 1012 A2 m−1, and is
similar to the values from Figure 4 of Peterson et al. [4]
(1× 1012 A2 m−1 to 7× 1012 A2 m−1). From the growth
rate defined in Equation 13, the ηT and the εT for this
simulation use values consistent with realistic solid metal-
lic parameters relevant to pulsed power HED regimes.

Figure 3 shows the conductivity for aluminum at
solid density over the entire range of the QLMD ta-
ble in panel A) and a linear fit to a small range
of temperatures in panel B).[18] The fit from plot B
yields an ηT = 1.099× 10−8 s K−1 (in mks: ηT =

r

z

Jz = C

δT

δη
More Resistive => Heat Faster

Less Resistive => Heat Slower

∂η
∂T > 0

kz perturbation

Figure 2: Schematic depicting the linear ETI test in cylindrical co-
ordinates wherein a spatially varying resistivity exists inside a uni-
formly distributed current. The perturbed temperature (or the inter-
nal energy density) perturbs resistivity, and provided the resistivity
increases with temperature, this configuration is ETI unstable as im-
plied by Equation 12.

1.099× 10−10 Ω m K−1). This ηT is valid for constant den-
sity solid aluminum between 200 K to 900 K; note that the
electrical resistivity is more sensitive to the density than
the temperature in this state space region. [2]
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Figure 3: Plot A on the left shows a constant density contour of the
logged QLMD conductivity table for aluminum for a certain temper-
ature range.[18] Plot B on the right shows a subset of Plot A in the
low temperature regime, where the resistivity linearly increases with
temperature. The fitted linear region in plot B yields an estimate
for ηT .

The specific heat capacity, εT , is approximately
822 J kg−1 K−1 based on SES3720 at the initial state. This
test uses an ideal gas EOS with the adiabatic index, γ, cho-
sen to maintain a constant εT . Knowing εT , the adiabatic
index is γ = 1 + [kB/(mεT )] where kB is the Boltzmann
constant and m is the atomic weight, resulting in an adi-
abatic index of γ ≈ 1.373.

The simulation radial domain is from 2.54 mm to
3.16 mm with the inner annulus radius set to 2.66 mm, and
the simulation axial domain is ±0.25 mm and is arbitrary
based on Equation 13 (absent kz dependence). The res-
olution varies in the radial direction from 38 to 300 cells
and in the axial direction from 25 to 200 using a factor of
two refinement levels to produce the convergence plot in
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Figure 4.
With these parameters, the ETI growth rate from Equa-

tion 12 is γ ≈ 5.891× 107 s−1. The end time for this sim-
ulation is three growth periods corresponding to 3/γ ≈
57.5 ns. The error between the simulated linear ETI
growth4 and the theoretical growth rate produces Figure 4
using different spatial resolutions and time steps.
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10 1

100

er
ro

r [
%

]
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Ares dt/10
Ares dt/100
USim
2nd Order

Figure 4: Plot of percent error, relative to the theoretical growth
rate, of the linear ETI simulation in Section 3.2 for different radial
and axial resolutions. The Ares convergence exhibits second-order
spatial convergence (error ∝ ∆z−2=zone size−2) provided the time
discretization errors are small (USim was not tested in this limit),
and both codes asymptote to similar percent error when using similar
time steps .

The rate (order) of convergence describes how the er-
ror (difference between exact solution and numerical ap-
proximation) decreases for increasing spatial or temporal
resolution. Figure 4 presents convergence results of USim
and Ares for the linear ETI simulation. For the largest
time step, Ares asymptotes to 0.1 percent error and USim
approaches first-order spatial convergence. This difference
is due to Ares using a fixed time step and USim using
an adaptive time step. The error depicted in Figure 4
has contributions from both the spatial discretization and
temporal discretization. The temporal discretization er-
ror, at sufficiently small time step size, becomes small rel-
ative to spatial discretization error thereby recovering the
Ares spatial order-of-accuracy of second order for uniform
meshes. Comparing the asymptotic errors exhibited by
Ares in the high resolution limit, there is reasonable agree-
ment with the anticipated first-order accuracy in time out-
lined in Section 2. Additionally, while Ares uses a fixed
maximum time step for this simulation, USim has an adap-
tively changing time step that decreases slightly as the so-
lution evolves, which likely contributes to the lower asymp-
totic error.

In summary, both codes accurately capture the theoret-
ical growth rate to within 0.1% in the asymptotic limit
given the maximum stable time step. Figure 4 shows the

4Obtained by fitting an exponential growth of the temperatue
deviation from the mean (maximum - minimum)
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100 µm

Figure 5: The simulation setup for the nonlinear ETI discussed in
Section 4, showing the different regions, densities, source terms, and
conductivities.

Ares spatial order-of-accuracy is second order, and the
temporal order-of-accuracy is approximately first order.
This case shows excellent agreement between the linear
ETI growth rate from Equation 12 and the simulated lin-
ear ETI growth across both codes.

4. Nonlinear ETI

The nonlinear ETI case explores, in planar coordinates,
the effect of resolving the magnetic diffusion wave through
a medium (aluminum). The subsequent current redis-
tribution, and the spatially non-uniform ohmic heating
leads to nonlinear growth of ETI. This nonlinear ETI case
builds upon the verfied magnetic diffusion from Section 3.1
and the verified ohmic heating from Section 3.2 to run a
physically-relevant ETI simulation for solid cylindrical and
wire explosion regimes.[1, 2, 4] This specific case, as shown
in Figure 5, is based on the simulation work done by Pe-
terson et al. [4].

4.1. Baseline Nonlinear ETI

For the current source in these simulations, Ares allows
the user to directly specify the current as a function of time
whereas USim requires specifying the value of the magnetic
field at the boundary. Within the code, Ares uses Am-
pere’s law to specify the magnetic field at the boundary,
and given the same coordinate system, this is the same as
directly specifying the magnetic field at the boundary as
done in USim. Limitations in the accuracy of USim’s curl
operator in cylindrical coordinates lead to using planar ge-
ometry in both codes for these simulations. Although the
simulations are in planar geometry, the specified magnetic
field boundary condition is consistent with the cylindrical
geometry.
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Figure 6: Liner outer radius rl(t), normal current I(t), and adjusted
current It(t) as a function of time with the adjusted current profile
providing inclusion of the prepulse phase typical of a Z-machine shot.

From Slutz et al. [3], closed-form expressions for liner
radius and current are empirically-derived from pulsed-
power experiments conducted on the Z machine. The pur-
ple dashed curve in Figure 6 represents the outer liner
radius, rl, as a function of time given by

rl(t) = rl0

(
1−

(
t

tp

)4
)
, (14)

where rl0 is the initial outer liner radius (2.92 mm to
3.168 mm) and tp is the pulse time (≈135 ns). [3, 28, 2]
Current, I, as a function of time is given by

I(t) = Ix

(
27

4

) 1
4

√(
t

tp

)2

−
(
t

tp

)6

, (15)

where Ix is the peak current (20 MA to 27 MA).
Most high power, pulsed-power machines, such as Z,

have a prepulse phase before the full pulse is delivered.
On the Z machine, this prepulse lasts anywhere from 40 ns
to 80 ns as evident from experimentally-measured load
data.[3, 28, 2] Equation 15 does not have slowly rising
pre-pulse behavior, which would cause premature ablation
disrupting the perturbation of the liner-vacuum interface.
To incorporate this experimentally-observed initial rise,
the functional form of the current drive in Equation 15
is modified to obtain It. Figure 6 depicts the original cur-
rent I and the modified current It. The adjusted form of
the current is

It(t) = I(t)

(
1− exp

[
−
(
t

tr

)2
])1.25

, (16)

where I(t) is given by Equation 15 and tr is the adjustable
pre-pulse time of 60 ns. Note that although the simula-
tions shown in this section are early in time, this current
form is usable to accurately approximate late time phe-
nomena in Z-like pulses. Though the peak current of the
adjusted form is noticeably smaller than the peak of the
original form, it is closer to the experimentally-measured
peak current from Figure 11b of Peterson et al. [2].

To convert this current drive to a planar magnetic
boundary condition for USim, Ampere’s law is used in

cylindrical coordinates to determine the magnetic field at
the time-varying radial location of the liner interface. For
Ares, the current is set as

IAres(t) =
It(t)

2πrl(t)
,

so that the magnetic field in both planar problems is the
same and representative of the magnetic field experienced
by the liner on Z.

Ares solves parabolic equations implicitly, contrarily,
USim solves parabolic equations semi-explicitly (as dis-
cussed in Section 2). With an implicit sover, Ares can
handle large vacuum resistivity values without excessive
computational cost. Because USim uses the semi-explicit
STS scheme, it is not computationally practical to run
with the same large vacuum resistivity as this leads to
an impractically large number of STS stages making the
computational cost significantly more expensive. Thus, a
much lower vacuum resistivity needs to be specified with
certain constraints. First, if the resistivity of the vacuum
is relatively low, this results in unphysical currents in the
vacuum, diverting the current away from the liner region.
These currents cause unphysical ohmic heating in the vac-
uum resulting in a highly restrictive time-step. Hence,
the vacuum resistivity is set to a large value, and ohmic
heating is neglected in the vacuum.5 Further numerical
challenges include the creation of density voids during ETI
development due to a finite diffusion rate of the magnetic
field through the vacuum. This finite diffusion rate leads
to waves in the vacuum creating low density regions where
large magnetosonic speeds further restrict the time-step.
Avoiding this requires a large enough vacuum resistivity
such that the vacuum magnetic diffusion transit time is
small relative to the hyperbolic time-step.

Figure 5 presents the simulation setup consisting of an
x domain of 85 µm and y domain of 250 µm with a resolu-
tion of 256x640 cells, respectively. The multimode pertur-
bation of the interface is of the form

δ =
1

32

m=32∑
m=1

βmcos

[
2π

(
m · x
λmax

+ βm

)]
, (17)

where β is a random number from 0 to 1, λmax = 200 µm is
the maximum wavelength associated with the lowest mode
(see Appendix B for the coefficients used). Figure 5 shows
the initial state. This setup uses a pressure equilibrium to
avoid bulk motion of the liner, as material strength models
are not employed. Note the EOS interpolation algorithm is
the birational LEOS interpolation scheme for Ares[23, 24,
25] and the birational EOSPAC interpolation scheme for
USim[26]. For thermal and electrical conductivities of the
liner, the QLMD table 29373 for aluminum is used, and

5This violates energy conservation (at least in the vacuum), but
is necessary for an accurate current rise in the liner given a finite
resistive vacuum when using an explicit or semi-explicit scheme.
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Figure 7: Density plots of the nonlinear ETI simulation outlined in Section 4 at different times (correspond to Figure 6) with the top row
showing the USim results, and the bottom row showing the Ares results. The current at these times is indicated by the green markers in
Figure 6
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the EOS for the vacuum and liner is BMEOS, as discussed
in Section 2.3.[18]

Figure 7 shows snapshots in time of the simulation re-
sults for USim (top) and Ares (bottom). Both codes show
a similar magnetic diffusion wave and a density spike that
is propagating inward in the 40 ns, 50 ns, and 60 ns snap-
shots at y ≈ 38 µm, y ≈ 79 µm, and y ≈ 122 µm, respec-
tively.6. While the USim results do not allow ablation
into the vacuum, resulting in no mixing of material re-
gions, the Ares results do show ablation into the vacuum,
as its multimaterial treatment handles mixing of mate-
rial regions. This ablation/finger development, seen in the
Ares results and slightly in the USim results, is the be-
ginning of the subsequent electro-choric instability (ECI)
as discussed by Pecover and Chittenden [29]. Due to the
difference in multimaterial treatment between the codes 7

this is not explored further, but note the time for when
ECI begins to form (60 ns) matches the observations from
the Pecover and Chittenden [29] simulations.

Earlier in time, the interface in the USim simulation is
diffuse, showing a smoother density gradient relative to the
Ares result at 30 ns and 40 ns. At 70 ns, the Ares result
shows smaller wavelength growth with a sharper density
gradient at the spike interface even though the spikes pene-
trate to a similar distance (≈ 40 µm). At 60 ns, both codes
show similar wavelength modes of ETI, whereas at 70 ns,

6Figures 7 uses a subsection of the simulation result and is why
the peak is not seen explicitly in the 70 ns plot

7USim currently does not have vapourisation capabilities
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Figure 9: Vertical lineouts of the temperature FFTs is shown in
the bottom row of Figure 8 at various times for both the Ares and
USim results. Note that the differences between the codes are more
pronounced early-in-time (top plot) whereas the solutions agree more
closely late-in-time (bottom plot).

Ares retains more shorter-wavelength modes compared to
USim.

Figure 8 presents a discrete fast Fourier transform of
density and temperature along the x-direction, and high-
lights how the mode structures change over time. Figure 8
also shows the early time (30 ns, 40 ns, and 50 ns) sup-
pression of the perturbation in the USim results due to
numerical diffusion at the interface. Diffusion is more pro-
nounced in the FFT of temperature (bottom left plot) in
Figure 8. Both codes converge later in time to lower mode
(lower k) growth, as is observed qualitatively in Figure 7
and quantitatively in Figure 8.

Figure 9 shows FFT of the temperature at several dif-
ferent times corresponding to the decrease and increase in
amplitude shown for the USim results in the bottom left
plot of Figure 8. By doing so, Figure 9 highlights the USim
result diverging from the Ares result early in time while
approaching the Ares result later in time. This suppression
and growth of the perturbation in USim could be due to
USim’s handling of the source terms in the vacuum. This
could also be due to the diffusion stencil at the interface
reducing mode amplitude early in time, and increases in
temperature variation caused by signifcant ohmic heating
raising mode amplitude late in time.

4.2. EOS Sensitivity

A sensitivity analysis performed with Ares shows how
different choices of EOS and interpolation scheme impact
the development of ETI in the nonlinear regime. From
Equation 12, the growth rate of ETI is dependent on εT
(specific heat capacity), and this value is deduced from the
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Figure 10: Density evolution of the nonlinear ETI simulations is
presented at 60 ns using different EOS interpolation schemes (bilinear
and bicubic) and different EOS (BMEOS and SES3720).[17]

representative EOS. Choices of table interpolation, inver-
sion, and monotonicity, will influence the nonlinear ETI
behavior directly through εT (indirectly through ηT ).

Figure 10 shows the effect of using different EOS on
the ETI mode growth in the Ares simulations with the
BMEOS (top) and the SES3720 EOS (bottom). Using
bilinear interpolation at low pressure and high density re-
sults in the crash of both the BMEOS and the SES3720
simulations as noted in the leftmost subplots (top for
BMEOS and bottom for SES3720) of Figure 10. This
crash is from the evaluation of the sound speed, obtained
from derivatives of the pressure with respect to density
and temperature, encountering imaginary values (imag-
inary time-step) for both EOS simulations. The qualita-
tive differences between the bilinear interpolation BMEOS
and SES3720 cases before the simulations crash (leftmost
plots) are likely due to the resolution of the table at the
high-density, low-temperature regime and/or the magni-
tude of the sound speed evaluated in this region. Using
bicubic interpolation produces the same result as more
high fidelity interpolation schemes such as birational, bi-
hermite, bimonotonic, and biquintic, not shown here.

The bilinear interpolation becomes suitable in the high-
pressure, high-density regime, as this is a better-defined
region of the table.8 The two right-most columns of Fig-
ure 10 reflect this by showing no difference between bicu-
bic and bilinear interpolation, and the simulation is able
to run to completion. Increasing the initial pressure moves
the initial state to higher temperature (not linearly) and

8Better as in satisfying monotonicity, or having positive pressure
and energy values. Negative values result from the imaginary state
space of the Van Der Waal’s isotherm loops

into a smoother region in both tables, permitting the sim-
ulation to run to completion. This smoother region has a
30 percent difference between the BMEOS and SES3720,
while the lower initial pressure region has 40 percent dif-
ference. This difference is still large and explains the qual-
itatively different result in the 2 right-most columns of
Figure 10. Initial pressure is varied instead of density be-
cause the electrical resistivity is highly sensitive to density
near reference solid density, as mentioned in Peterson et al.
[2], and it would change the ηT value through differences
in collisional quanities.

Qualitatively the representative SES3720 and BMEOS
simulations show differences late in time, while early in
time they show similar smaller wavelength mode structure
(not shown here). These differences late in time highlight
the importance of the EOS on nonlinear ETI development.
For the parameters surveyed in this study, the dependence
on interpolation algorithm is not as significant as long as
an interpolation scheme is used with higher fidelity than
bilinear interpolation.

4.3. Vacuum Resistivity Sensitivity

In this work, the vacuum is treated as a separate ma-
terial from the liner that has a fixed (i.e., constant) large
resistivity (5.65× 10−5 Ω m) while the liner material uses
tabulated electrical conductivity (see Section 2.3 and Fig-
ure 5). The only difference between the treatment of the
liner and vacuum regions in these Ares simulations is in
the different electrical and thermal conductivities. The
mesh is initialized such that the interface contains multi-
material zones which are handled with the method stated
in Section 2.2. The presence of multiple-materials due to
the liner being ejected into the vacuum is evident in the
late-stage evolution presented in Section 4.1 (60 ns and
70 ns).

The vacuum resistivity changes the rate that the mag-
netic field diffuses through the vacuum and is important
in evaluating the ohmic heating due to the spatial vari-
ation in resistivity. For explicit codes, the vacuum resis-
tivity should be as low as possible while still achieving
a similar result to the infinitely resistive vacuum limit.
To determine the role of vacuum resistivity on ETI de-
velopment, the Ares nonlinear ETI simulations are re-
peated while multiplying the vacuum resistivity by up to
100 times the nominal value used in the preceding studies
(5.65× 10−5 Ω m).

Figure 11 shows the result of varying the resistivity and
height of the vacuum. As the resistivity increases in the
vacuum, the solution converges as noted in the upper row
of Figure 11. Qualitatively, the 5x, 10x, and 100x ηv sim-
ulations show no differences, but the 1x and 2x ηv simu-
lations show noticeable differences. The main difference is
in the magnitude of density inside the liner hotspots. Fig-
ure 12 presents horizontal lineouts at y = 25 µm for the
top row of Figure 11. These lineouts show that the mag-
nitude of density inside the liner hotspots varies greatly
(50% at x = 5 µm) between the 1x and 2x runs, and varies
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Figure 11: Density evolution of the nonlinear ETI is presented at
60 ns with the resistivity varying by column and the initial height
of the vacuum (hv) varying by row. The bottom row is for half
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for all vacuum resistivity cases with the original vacuum height (hv).
The horizontal lineout, indicated by the dashed green line in the
upper leftmost plot of Figure 11, is at y = 25 µm for all cases.

little (<5% at x = 5 µm) between the 5x, 10x, and 100x
runs. These results indicate that a resistivity ratio of ap-
proximately 5.65× 10−4 Ω m (10x which has <1% varia-
tion with the 100x run and the not shown 1000x run) is
sufficient in capturing ETI in the infinitely resistive limit
for this nonlinear ETI setup.

To investigate the underlying mechanism for the con-
verged vacuum resistivity threshold, an additional resis-
tivity scan is performed in a configuration with half the
original vacuum height. The vacuum height is the ini-
tial spatial distance in the y-direction between the liner-
vacuum interface and the outer edge of the vacuum region
(lower boundary in the y-direction). For the simulations
presented in Figure 11, the vacuum height, hv, is 100 µm.
The bottom row of Figure 11 shows the reduced vacuum
size simulations of varying vacuum resistivity. Reducing
the vacuum height probes the influence of the characteris-
tic time for the magnetic field to diffuse through the vac-
uum on ETI development. Reducing the vacuum height by
a half would result in a quarter of the vacuum resistivity
needed to maintain the same vacuum magnetic diffusion
transit time. Reducing the vacuum resistivity needed for a
converged result would be beneficial for codes with explicit
diffusion algorithms.

The two left-most plots of Figure 11 have the same mag-
netic diffusion transit time, but show starkly different ETI
growth. This implies the vacuum magnetic diffusion tran-
sit time is not an underlying mechanism for the converged
vacuum resistivity threshold, suprisingly. The converged
vacuum resistivity is approximately 5 times the nominal
resistivity from previous studies, and is the same for both
vacuum sizes. A more relevant scale parameter for the con-
verged results may be the ratio of the liner resistivity to the
vacuum resistivity, as this influences the reconstruction of
derivatives given the spatially-varying resistivity. Chang-
ing the numerical derivatives leads to different values of
current through its impact on ohmic heating, thereby pro-
ducing differences in the nonlinear ETI growth.

Based on these findings, to get the converged ETI result
(infinitely resistive vacuum) requires a minimum vacuum-
to-liner resistivity ratio of 2× 104. Ares is used here be-
cause of the challenges associated with performing such
a convergence study with an explicit diffusion vacuum
model, such as with USim’s STS diffusion algorithm, so
care is needed when checking the convergence of vacuum
resistivity using explicit codes.

4.4. Vacuum Density Sensitivity

When simulating a vacuum using a fluid code, the vac-
uum density is traditionally set relatively low. [2, 4] Not
evolving ohmic heating, Sε in Equation 3, and the mag-
netic acceleration of the vacuum, Equation 2 through SB

in Equation 4, allows for a less restrictive time step by
reducing the sound speed. For the nonlinear ETI simula-
tions, the vacuum density is evolved with a floor value of
the initial vacuum density (2.7× 10−2 g cm−3). Varying
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Figure 13: Density evolution of the nonlinear ETI simulations is
presented at 60 ns varying the vacuum density.

this floor value determines the effect of vacuum hydrody-
namics on nonlinear ETI behavior for this particular setup.

Figure 13 shows the nonlinear ETI simulation at 60 ns
for vacuum density varying from 50x to 0.01x of the base
vacuum density (2.7× 10−5 kg m−3). There is no discern-
able difference between the simulations in Figure 13. All
other values of vacuum density show qualitatively simi-
lar results when neglecting ohmic heating and magnetic
acceleration of the vacuum. Running with too small of
a vacuum density leads to long simulation times due to
short time steps required to resolve potential hydrody-
namic (acoustic) oscillations in the vacuum. More mod-
erate values of vacuum density of approximately 2 to 3
orders of magnitude lower than the reference liner density
produce converged results. Using such a large vacuum den-
sity only changes the dynamics when significant vacuum
inertia is added that impedes the ablation of the liner.
Including magnetic acceleration and ohmic heating would
change the outcome of this converged density ratio, but is
not explored here.

5. Conclusion

This work compares nonlinear ETI simulations using
two different codes with significantly different algorithmic
approaches to solving the resistive-MHD equations. Al-
though these codes differ in many ways, the most signif-
icant difference, relative to simulating nonlinear ETI, is
in the spatial and temporal discretization of the diffusion
terms as discussed in Section 2. The handling of these
terms directly affects the evaluation of the magnetic diffu-
sion wave and ohmic heating which are both essential in
simulating nonlinear ETI growth. Furthermore, the range
of viable parameters for stable and efficient computational
results is dictated by the discretization methods. For these
nonlinear ETI simulation comparisons, a tabulated EOS
for aluminum, BMEOS, is developed that compares well
with the previously used SES3720 table. [2]

Section 3 shows development of verification test cases
evaluating each code’s diffusion capabilities for Sε and SB

from Equations 3 and 4, respectively. First, the codes
simulate a simple magnetic diffusion test case showing
that both codes accurately recover the analytical solution.

Next, the codes recover the theoretical linear ETI growth
rate shown in Equation 13. Comparing the simulation
growth rate to the theoretical one for varying spatial reso-
lution and time step size results in the convergence shown
in Figure 4, where the anticipated orders of accuracy of
spatial and temporal discretization are obtained. These
tests give confidence in each code’s ability to handle the
fundamental aspects of simulating nonlinear ETI.

Section 4 compares the codes for simulating nonlinear
ETI with the baseline setup shown in Figure 5. This sim-
ulation has full coupling of both source terms Sε and SB

to the full set of MHD equations, Equations 1-4, and also
includes the non-ideal-gas BMEOS. The simulation uses
an analytic form for the current rise akin to a typical Z-
machine current rise with a correct prepulse as represented
in Figure 6. Figures 7-9 show qualitative and quantitative
agreement between the two codes, although interesting dif-
ferences arise in the details of mode evolution.

Additionally, the Ares nonlinear ETI simulation under-
goes a sensitivity analysis for the vacuum conditions shown
in Sections 4.3 and 4.4. The analyses show a strong de-
pendence on the vacuum resistivity, but not the vacuum
density. Specifically, the resistivity analysis shows that
a vacuum-to-liner resistivity ratio of ≈ 2× 104 is suffi-
cient to capture the converged (i.e., the infinitely resistive
vacuum limit) nonlinear ETI simulation. The EOS im-
plementation is tested across different interpolation algo-
rithms, EOS tables, and initial conditions, showing a large
dependence of nonlinear ETI growth to the EOS table and
interpolation algorithm, specifically near the solid density
and low pressure state. These sensitivity analyses provide
guidelines for how codes that explicitly integrate diffusion
terms can still capture nonlinear ETI without the need for
a infinitesimally dense and infinitely resistive vacuum.
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Appendix A. Comparison of BMEOS and
SES3720
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Figure A.14: Percent difference of the specific internal energy density
between the BMEOS and SES3720 in the state space relevant to the
nonlinear ETI evolution in HED regimes. The plot on the right is
an expanded scale of the left plot to highlight the region of largest
difference.

Appendix B. Coefficients of the multimode per-
turbation

mode (i) βi
1 0.883494
2 0.313251
3 0.139670
4 0.438109
5 0.642904
6 0.176107
7 0.856669
8 0.630685
9 0.682887
10 0.941226
11 0.236611
12 0.699510
13 0.440243
14 0.124690
15 0.643533
16 0.018313
17 0.415389
18 0.403712
19 0.122180
20 0.313884
21 0.207358
22 0.915150
23 0.038463
24 0.991615
25 0.755673
26 0.558353
27 0.586421
28 0.896183
29 0.305981
30 0.495188
31 0.476349
32 0.057556
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This manuscript presents a new theoretical contribution towards the growth rate of the “fast” form of the
electrothermal instability (ETI) in the presence of anomalous resistivity (AR). The current-driven ETI is
present in all pulsed-power platforms, and has been shown to seed the disruptive magneto Rayleigh-Taylor
instability. Fluid simulations of low-density, current-carrying plasmas are often subject to unphysical runaway
ohmic heating due to an under predicted resistivity when using purely collisional resistivity models. AR models
provide mechanisms to increase the resistivity as the drift speed increases through increased current density.
The derivation of a new, generalized growth rate is presented for the ETI, which includes a resistivity that
is dependent on current density, and marks the key contributions of this work. This new growth rate is then
compared to the growth rate without AR. Although the striation form of the ETI growth rate is unaffected
by the inclusion of AR, the filamentation form of the ETI growth rate depends on the AR. Hence, the new
growth rate is verified through 3D ETI simulations of the filamentation form of ETI. The impact of AR can be
significant: up to twelve orders of magnitude on the temporally-varying local growth rate for a certain choice
of parameters. For experimentally relevant conditions based on kinetic simulations, the growth rate can be
increased by up to four orders of magnitude if the AR is dominated by the lower-hybrid drift instability.

I. INTRODUCTION

The pulsed-power high energy density (HED) com-
munity has exhibited increased interest in the influence
of vacuum contaminant plasmas on current delivery1,2.
These parasitic plasmas can contribute to current loss
from the target. In resistive magnetohydrodynamic
(MHD) simulations, these contaminant plasmas can ex-
perience unphysical runaway heating and cause short-
ing when a classical resistivity model is applied to the
contaminants3. A resolution to the discrepancy between
the resistive MHD simulations and the experimentally
observed current delivery is the presence of anomalous re-
sistivity (AR). An important mechanism at play in these
ohmic-heating plasmas is the ubiquitous electrothermal
instability (ETI)4–6, which is always unstable in either
the axial or azimuthal direction, depending on the sign
of the derivative of the temperature-dependent resistiv-
ity. Understanding ETI growth in this vacuum contami-
nant plasma with AR is important to understanding the
dynamic evolution of these systems and, ultimately, the
amount of shorting incurred by the contaminant plasma.

In resistive-MHD simulations, the aforementioned run-
away heating of the vacuum contaminant plasma can
be remedied by approximate collisionless kinetic effects.
AR enhances magnetic diffusion and reduces ohmic heat-
ing of the weakly collisional plasma. AR augments the
collisionally-based resistivity because of micro-turbulent
plasma phenomenon driven by an underlying plasma in-
stability, e.g., the ion acoustic instability7. Observa-
tions of enhanced magnetic diffusion in high-temperature

a)Electronic mail: rlm7819@vt.edu
b)Electronic mail: srinbhu@vt.edu

plasmas have motivated the development of AR models,
which provide a mechanism to incorporate additional dis-
sipation mechanisms apart from collisions8–18. This was
observed in both theta and screw pinch plasmas8–12 and
in space and laboratory plasmas13–18. These observa-
tions have motivated the development of reduced models
approximating the effect of these micro-turbulent insta-
bilities on material conductivity19–22. This work explores
how AR influences the fast thermal instability6 form of
ETI through linear theory, and assesses its relevance in
pulsed-power HED regimes.

This fast thermal instability occurs when the thick-
ness of the distributed current is much less than the skin
depth (which removes the radial dependence of ETI),
and the mechanical motions of the shell are neglible6.
The canonical ETI theory considers two configurations
of the instability: the striation form wherein the per-
turbation wave vector is perpendicular to the magnetic
field (kz), and the filamentation form wherein the per-
turbation wave vector is aligned with the magnetic field
(kθ)

4,5. These two configurations are unstable in comple-
mentary configurations dependent on the sign of ∂η/∂T
with striation corresponding to ∂η/∂T > 0 and filamen-
tation corresponding to ∂η/∂T < 0, where η is resistivity
and T is temperature.

Traditional ETI theory has only considered a ma-
terial’s resistivity dependence on temperature and
density4–6,23, but the inclusion of AR introduces addi-
tional dependencies such as current density. This work
examines how AR affects the traditional theory for both
the striation and filamentation form of ETI5, and de-
rives a new growth rate for the filamentation form that
includes the resistivity’s dependence on current density
(Eq. (6)). AR does not affect the functional form of
the ETI growth rate in the striation configuration, yet
it modifies both the functional form and dramatically al-
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ters the magnitude of the growth rate in the filamentation
mode (increasing it by approximately six orders of mag-
nitude in parameter regimes of interest). This increase
in growth rate is attributed to the enhancement of the
material’s resistivity by the micro-turbulence; the added
dependence on current density is shown to be stabilizing,
but insufficient to overcome the overall enhancement of
the instability. The key contribution of this work is in
the derivation of this new theoretical growth rate of the
ETI instability that incorporates the effect of AR along
with a verification of this growth rate through 3D ETI
simulations.

This work is organized as follows. Section II presents
the effect of AR on ETI theory through the derivation of a
new growth rate. Section III presents simulation results
verifying the theory shown in Sec. II. In the appendix,
Sec. A presents the four AR models used in this work, and
how these AR models are incorporated into a tabulated
collisionally-based resistivity model.

II. ELECTROTHERMAL INSTABILITY THEORY

While aluminum is relevant to the study of ETI in solid
density pulsed power targets,5,24,25 hydrogen is more rel-
evant to the study of ETI in vacuum contaminant plas-
mas due to the prominent contribution of water in these
contaminants2. The water desorption process from power
flow electrodes is an active area of research for under-
standing the current loss in the load1,26,27. Thus, hydro-
gen is chosen to study the effect of AR on ETI specifically
for the filamentation form of the instability in this sec-
tion.

For the theory presented here, the skin depth is much
greater than the thickness of the annulus, the assump-
tion of which denotes the fast form of ETI6. This form
of ETI is useful in studying the experiments on mega am-
pere pulsed-power accelerators. This derivation assumes
the radius of the current annulus is much larger than the
thickness of the annulus allowing for the use of a Carte-
sian coordinate system, where the radial, azimuthal, and
axial directions are denoted by the x, y, and z direc-
tions, respectively. For this derivation, the unperturbed
equation system is the conservation of energy equation
neglecting radiation, Ampere’s law, Faraday’s law, and
Ohm’s law represented as

ρεT
∂T

∂t
= η|J|2,∮

B · ds = µ0

∫
J · dA

∂B

∂t
= −∇×E,

E = ηJ,

where ρ is the mass density, εT is the derivative of specific
internal energy density with respect to temperature, B
is the magnetic field, E is the electric field, and µ0 is the

magnetic permeability of free space. Using Ohm’s law,
the surface electric field in terms of perturbed resistivity
and perturbed current density results in

δEz
h

= ηsδJz + δηsJz, (1)

where δ denotes perturbation of the form
exp[γt+ ikyy + ikzz], and the subscript s denotes
surface quantities (e.g. ηs = η/h where h is the charac-
teristic depth). Faraday’s law in Cartesian coordinates
gives the perturbed magnetic field in terms of perturbed
electric field as

γδBx = ikzδEy − ikyδEz. (2)

Using separation of variables, the curl-free magnetic field
on either side of current annulus, and boundary condi-
tions with Ampere’s law gives the perturbed x-direction
magnetic field in the current annulus as

δBx
h

=
µ0ik

2ky
δJz, (3)

where µ0 is the magnetic permeability of free space, and

k =
√
k2
y + k2

z . Combining Eqs. (1) - (3), and noting

Jy = 0, k2
y/k

2 = cos2 α, and γ0 = 2ηsk/µ0, the perturbed
current densities are

δJz = −Jz
cos2 α

1 + γ/γ0

δηs
ηs

and δJy = −kz
ky
δJz, (4)

where α is the angle between the perturbation wave vec-
tor and the azimuthal magnetic field. These perturba-
tions are then applied to the linearised energy equation,
which assumes negligible radiation and thermal conduc-
tion effects, resulting in

ρεT γδT = 2ηJzδJz + δηJ2
z .

Expanding the first order quantities (δ),

δη = δT
∂η

∂T
+

δJz
cosα

∂η

∂J
,

and δT =
2ηJz
γρεT

δJz +
J2
z

γρεT
δη.

Solving this system of equations results in the growth
rate of

γ =
∂η
∂T J

2
z

ρεT

(
1− 2 cos2 α

1 + γ/γ0

)(
1 +

cos2 α

1 + γ/γ0

∂ log η

∂ log J

)−1

,

(5)
which contains a novel contribution through the last par-
enthetic multiplicative term. Unlike previous theoreti-
cal growth rates of ETI, this new growth rate formula
incorporates the contribution of the current-density-
dependent resistivity on the growth of the ETI. When
excluding this last parenthetic multiplicative term, it is
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identical to Peterson et al. 5 . Replacing ∂η/∂TJ2
z /ρεT →

γz and solving for γ (positive root) results in

γ =
1

2

[
γz − γ∗0 +

√
(γz − γ∗0)

2 − 4γ0γz cos 2α

]
, (6)

where γ∗0 = γ0(1 + cos2 α(∂ log η/∂ log J)). In the limit
that ∂ log η/∂ log J = (J/η)∂η/∂J → 0, Eq. (5) reduces
to Eq.(6) from Peterson et al. 5 . Eq. (6) contains both
the filamentation and the striation form corresponding
to α = 0◦ and α = 90◦, respectively.

A. Filamentation without current-density-dependent
resistivity

Considering the growth without the added current-
density dependence is useful in testing the configura-
tions of a filamentation ETI simulation as discussed in
Sec. III. The filamentation form of the instability occurs
when k is parallel to B, or cosα = 1. With α → 0 and
∂ log η/∂ log J << 1, Eq. (6) reduces to

γ =
1

2

[
γz − γ0 +

√
γ2
z − 6γzγ0 + γ2

0

]
. (7)

The ∂ log η/∂ log J can be negligible for circumstances
where the density and temperature are small. This
form, which excludes the current density dependence, is
still applicable to studying the effect of including AR at
lower temperatures, below approximately 0.25 eV. This
is highlighted in the differences between Fig. 1 and Fig 2.

Figure 1 presents the ratio of γ computed from Eq. (7)
with AR effects included to when AR effects are excluded.
Plots are presented on a log scale for the AR models dis-
cussed in Appendix A. Note that this shows the mag-
nitude of the growth can change a maximum of 12 or-
ders of magnitude when AR is included. This means
that filamentation instability growth in these high tem-
perature and low density regimes occurs at much shorter
time scales than a purely collisionally based resistivity
would suggest. Although AR can change the growth rate
by a maximum of 12 orders of magnitude, this maxi-
mum occurs at much lower-density plasmas (2 orders
of magnitude lower) than observed in kinetic simula-
tions of vacuum contaminant plasma from magnetically-
insulated transmission lines2. The densities of inter-
est (1.0× 10−6 g cm−3 to 1.0× 10−7 g cm−3)2 show the
growth rate changing by approximately 4-7 orders of
magnitude.

Table I shows the different contributions to the growth
rate formula of Eq. (7) for hydrogen at parameters of in-
terest. Using T = 100 eV and ρ = 1.0× 10−6 g cm−3

from the kinetic simulations of Welch et al. 2 , the growth
rate is increased a minimum of approximately one or-
der of magnitude with a maximum of approximately five
orders of magnitude. The minimum corresponds to the
Buneman AR model (Appendix A 2), and the maximum
corresponds to the Davidson lower-hybrid-drift (LHD)
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FIG. 1. The ratio of γ (Eq. (7)) when including AR ef-
fects to excluding AR effects is plotted for hydrogen at Jz =
4.06× 1011 A m−2, h = 25 µm, and kθ = 5.34× 104 rad m−1.
A), B), C), and D), represent the ion acoustic, Buneman,
Davidson lower-hybrid-drift, and Tummel lower-hybrid-drift
AR models, respectively. The AR models used here are de-
scribed in the Appendix A.

AR model (Appendix A 3) with the other two mod-
els, ion acoustic AR model (Appendix A 1) and Tum-
mel LHD AR model (Appendix A 3), in between. All of
the growth rates correspond to time-scales that are less
than a nanosecond, making AR directly relevant to 107A
pulsed-power current pulses with rise times around 100
nanoseconds.

B. Filamentation with current-density-dependent
resistivity

In Sec. II A the filamentation ETI growth rate is ex-
plored neglecting the ∂ log η/∂ log J term. With this
term,

γ =
1

2

[
γz − γ∗0 +

√
(γ∗0 − γz)

2 − 4γ0γz

]
, (8)

where γ∗0 = γ0 (1 + ∂ log η/∂ log J). This form is simi-
lar to the filamentation ETI growth rate in Eq. (7). To
understand the effect of the added current density de-
pendence there are two things to consider: how large is
the unit-less quantity ∂ log η/∂ log J compared to unity,
and how large is γ0 relative to γz. A fractional change in
a large γ0 relative to γz will have a significant impact on
the overall growth rate.
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FIG. 2. The ratio of growth rate from Eq. (8) to Eq. (7)
representing when the current density dependence is included
to when it is excluded for hydrogen. The parameters for these
AR models are Jz = 4.06× 1011 A m−2, h = 25 µm, and kθ =
5.34× 104 rad m−1. A), B), C), and D), represent the ion
acoustic, Buneman, Davidson LHD, and Tummel LHD AR
models, respectively.

Figure 2 shows how the current density dependence
changes the growth rate for the specified hydrogen con-
ditions. Specifically, this figure compares the ratio of
growth rate calculated using Eq. (8) to using Eq. (7). At
a maximum, this added dependence reduces the growth
rate by up to an order of magnitude, as is the case for
the Buneman model. Note this change in the growth rate
is in addition to the effect of the ∂η/∂T and η when in-
cluding the different AR models as shown in Fig (1). In
Fig. 2 the added current density dependence does not ex-
tend to the lower density and lower temperature regions
of the table which showed AR significantly modifying the
growth rate in Fig. 1. The ion acoustic AR model has
the weakest influence due to the current density depen-
dence because of its linear variation of collision frequency
(Eq. (A3)) with drift speed.

Table I presents the growth rate contributions for the
filamentation ETI from Eq. (7) resulting in total growth
rates of 1.1× 1011 s−1, 4.3× 1010 s−1, 1.0× 1014 s−1, and
2.5× 1011 s−1, corresponding to the ion acoustic, Bune-
man, Davidson LHD, and the Tummel LHD AR models,
respectively. Including the effect of current density de-
pendence from Eq (8) would change these total growth
rates to 5.9× 1010 s−1, 1.1× 1010 s−1, 3.5× 1013 s−1, and
8.7× 1010 s−1, respectively. The added current density
dependence then decreases the predicted growth rate
(Eq. (7) →Eq. (8)). Although these are only fractional

TABLE I. Tabulated growth rate contributions toward the
filamentation ETI in Eq. (7) and Eq. (8) for Hydrogen. The
estimates are for T = 100 eV, ρ = 1.0× 10−6 g cm−3, Jz =
4.06× 1011 A m−2, h = 25 µm, and kθ = 5.34× 104 rad m−1.
The rows correspond to without AR (W/O AR), ion acoustic
AR (IA AR), Buneman AR (BU AR), Davidson LHD AR (DA
AR), and Tummel LHD AR (TU AR), respectively, and the
columns correspond to the different contributions and total
growth rate for Eqs. (7) and (8).

unit: [s−1] −γz γ0 γ:Eqn. 7 γ:Eqn. 8

W/O AR 3.7× 109 1.2× 1010 2.5× 109 2.5× 109

IA AR 1.3× 1011 1.1× 1012 1.1× 1011 5.9× 1010

BU AR 9.0× 1010 1.2× 1011 4.3× 1010 1.1× 1010

DA AR 1.4× 1014 6.6× 1014 1.0× 1014 3.5× 1013

TU AR 3.0× 1011 2.7× 1012 2.5× 1011 8.7× 1010

changes with this added dependence, the time-scales of
less than a nanosecond make any variation substantial
for a nanosecond current pulse. Additionally, all of the
changes reduce the total growth rate, but these reduc-
tions will not completely stabilize the filamentation ETI
for the AR models chosen here. The reduction in growth
rate is expected because of the effective resistivity being
directly proportional to current density, where AR effects
will oppose the redistribution of current occurring due to
the filamentation ETI growth.

C. Striation

The striation form of the instability occurs when k is
perpendicular to B, or cosα = 0. As a result, γ∗0 = γ0,
and

γ = γz =
ηTJ

2
z

ρεT
. (9)

Note that this striation form of the growth rate does not
depend on ∂ log η/∂ log J . Thus, the only modification to
striation growth from incorporated AR arrives through
alterations of ∂η/∂T .

A material state is striation unstable if the resistiv-
ity increases with temperature (∂η/∂T > 0) which is
the case for high-density, low-temperature metallic liner
material, e.g., copper, aluminum, and beryllium. For
aluminum based on the QLMD 29373 table28 this state
region corresponds to densities within 10% of solid den-
sity and is reflected in Fig. 3(a). Comparing this region
to Fig. 6, there is no overlap between where AR affects
resistivity and where the material state is striation unsta-
ble. The same is true for hydrogen as shown in Fig. 3(b)
and Fig. 7, where this form of the instability occurs at
≈0.1 g cm−3 to 1.0 g cm−3. AR models are derived using
kinetic plasma theory, and the region of unstable stria-
tion ETI is exclusively for non-plasma states of matter
which may explain why the two regions do not overlap.
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FIG. 3. Log |∂η/∂T | as a function of log density and log
temperature is presented for the aluminum28 and hydrogen29

QLMD tables (29373 and 25271) corresponding to the left
plot and the right plot, respectively. On each plot there are
two distinct regions which are separated by a green line. This
green line indicates the location where the bulk ∂η/∂T tran-
sitions from greater than to less than zero with the former
being striation ETI unstable and the latter filamentation ETI
unstable.

Although AR is not important to striation ETI for
these conditions, AR can become relevant at very high
current densities. As an example, AR will not modify re-
sistivity at solid density and room temperature until the
current density exceeds ≈1.0× 1014 A m−2 (a wire with
17 MA of current and radius 200 µm). Simulated cur-
rent densities near 7.0× 1012 A m−2 have been reported
at fairly high mass density (0.4 g cm−3), but is still not
large enough to make AR relevant for striation ETI24.
Future pulsed-power machines may achieve current den-
sities at high enough mass density to see AR influence
striation ETI, where the anomalous collision frequency
time-scales are comparable to the electron-ion collision
time. Accurate representation of the effects of anoma-
lous resistivity would need to be re-derived in the warm
dense matter regime given the strongly coupled character
of these high density plasmas.

III. THEORY VERIFICATION AND ANALYSIS

To verify the AR-revised ETI growth rate, 3D fila-
mentation ETI simulations are performed as shown in
Fig. 4. This is done in Ares, a multi-physics radiation-
hydrodynamics code30–32. Only the filamentation mode
of ETI is simulated because AR would not influence stri-
ation ETI in a physically-relevant regime as shown the
Sec. (II C). Ares is used to model pulsed-power experi-
ments, and has been used recently for detailed ETI cross-
code comparison33. For these simulations, Ares solves the
resistive magnetohydrodynamic equations (MHD) with-
out hydrodynamic motion34. This is done because ETI
occurs even without motion, though there have been
studies of the impact of hydrodynamic motion on ETI
growth4. For more details on the equations being solved,
numerical algorithms, see Masti et al. 33 .

Figure 4 illustrates the domain of the simulation. The
radial, azimuthal, and axial zone counts of these simula-

h = 25 µm

dr = 500 µm

dθ = 2o

r = 3.168 mm

Hy: ρ = 1 µg/cm3

T = 100 eV

Perturb ε along θ̂

I = 1.7 MA
Jz = 40.6 MA/cm2

FIG. 4. This schematic presents the simulation setup for hy-
drogen in a filamentation ETI unstable configuration with
relevant initial conditions, length scales, and electric current
values. The wedge is radially surrounded with a 62.5 µm thick
insulating vacuum region with η = 1.0× 1010 mΩ cm.

tions are 192, 84, and 2, respectively. All time-relevant
quantities such as time step and simulation end time vary
because of the large differences in growth rates as ob-
served in Table I across the different models. The time
step is approximately one thousandth of the simulation
end time which is a varying number of inverse growth
rates (1-100) dependent on the increase in temperature.

For this work, a portion of the current in the liner
is assumed to be diverted into a surrounding parasitic
vacuum hydrogen plasma. Using conditions from Welch
et al. 2 , 17 MA is distributed uniformly over an annulus
of outer radius 3.168 mm35 with a thickness of 500 µm24.
A diverted current from the liner of 10% (1.7 MA) is dis-
tributed uniformly over a thickness of 200 µm based on
the findings of Welch et al. 2 using low density hydrogen
(ρ = 1µg cm−3) at 100eV. Appendix A 4 provides the
justification for incorporating AR effects in this param-
eter regime when using the presented AR models due to
their relevance only at low densities (under 10−4g cm−3).

The current is uniformly distributed over the entire
annulus with only a fractional arc length corresponding
to one azimuthal wavelength (2◦). The internal energy
density is perturbed by 1 % along the azimuthal direc-
tion to seed the instability. A short azimuthal resolution
is used to reduce 3D resolution requirements, and does
not significantly affect the comparison of including AR
effects to excluding AR effects. As time evolves the de-
viation of the maximum temperature from the average
temperature is tracked to produce Fig. 5 along with av-
eraged temperature and resistivity used in the growth
rate equations.

The theory presented in Sec. II is for the “fast” thermal
instability6 where the skin depth is much greater than the
thickness of the current-carrying annulus. This assump-
tion implies there is no radial variation in the distribution
of heating, but some AR models such as the Buneman,
Davidson LHD, and Tummel LHD (Appendix A) depend
on the magnetic field. This magnetic field dependence in-
herently introduces a radial dependence on the resistivity
and therefore, on the heating rate. For this reason, this
work simulates just the ion acoustic AR model to ver-
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ify the newly derived growth rate. To verify the “fast”
thermal instability, the magnetic diffusion transit times
in the radial direction over the annulus are compared
against the inverse growth rates of ETI both with and
without AR.

The initial magnetic diffusivity without AR is
5.04× 105 µm2 ns−1 and with ion acoustic AR is
4.58× 107 µm2 ns−1. These would diffuse the magnetic
field over the annulus thickness in approximately 79 ps
and 0.87 ps, respectively. To assess the assumption that
this configuration is indicative of the “fast” thermal in-
stability form discussed in Sec. II, these time scales are
compared against inverse ETI growth times. From Ta-
ble I, the timescales for ETI growth without AR and with
ion acoustic AR is roughly 0.4 ns and 0.17 ns, respectively
based on Eq (8). These times are larger than their com-
parative diffusion rate estimates making this configura-
tion a valid simulation setup to study the “fast” thermal
instability.

In deriving the growth rates from Sec. II, the heat loss
from radiation is assumed to be negligible. To assess
the validity of this assumption the power rates are com-
pared. The power induced as a result of ohmic heating is
ηJ2

z ≈ 7.5× 1016 W m−3, and the power radiated, assum-
ing a blackbody, would be σT 4/r ≈ 3.246× 1019 W m−3

for this configuration where r is the radius. This large
difference between radiative cooling and ohmic heating
would negate any ETI growth due to this large dissipa-
tive cooling rate. But when including the ion acoustic
AR, this ohmic heating rate increases by more than 2
orders of magnitude making it comparable to the radia-
tive cooling loss. Including the Davidson LHD AR model
would increase ohmic heating rate by 5 orders of magni-
tude making it much larger than the radiative cooling
rate. As T increases due to ETI, the radiative cooling
eventually overwhelms the non-uniform ohmic heating
due to ETI for resistivities that decrease with temper-
ature slower than T−4, which is the case for the models
considered here. The increase in resistivity due to these
AR models increases this maximum perturbed temper-
ature. For these simulations, hydrogen is considered at
T = 100 eV and ρ = 10−6g cm−3 based on Welch et al. 2 .
For a cooler plasma at T = 10 eV, the ohmic heating
rate would be over 4 orders of magnitude higher than
radiative cooling without AR and would be substantially
higher with AR. So although radiative cooling can have
a substantial influence on the ETI growth, when includ-
ing AR effects ohmic heating rates become comparable
(for the considered current density) and can exceed ra-
diative cooling rates. Additionally, this assumes a per-
fect black body emitter which is not entirely accurate for
these magnetized low-density, high-temperature plasmas
surrounding dense metal target liners. The metal tar-
get liners themselves act as black body emitters partially
canceling out the radiative loss.

Figure 5 presents simulated perturbation growth and
ETI growth rate of the simulation setup shown in Fig. 4.
The filamentation growth rate without ∂η/∂J depen-
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FIG. 5. Simulation results are presented excluding AR (left)
and including ion acoustic AR (right). Each figure shows per-
turbed temperature and corresponding growth rate as a func-
tion of time, with the perturbed temperature compared with
the theoretical prediction using Eq. (10). All dashed lines rep-
resent the result of using Eq. (7) which applies for the case
without AR in the left plot as well as the case with AR but
without a ∂η/∂J dependence in the right plot. All dash-dot
lines represent the result of using Eq. (8) which incorporates
AR with the ∂η/∂J dependence (right). The solid blue line
represents the simulated perturbed temperature growth and
the orange line represents the predicted perturbation growth
from Eq. (10). Blue and orange lines correspond to the left
vertical axis and green lines correspond to the right vertical
axis of each plot.

dence, Eq. (7), and with ∂η/∂J dependence, Eq. (8) both
have dependencies on the instantaneous resistivity via γ0.
This dependence causes the growth rate to be transient
in nature. Note that the ratio of γ/(∂γ/∂t) is still large
in comparison to the simulation time which makes the
assumptions used in deriving the growth rate still valid,
e.g., the reduced form of Faraday’s law in Eq (2). Thus,
in comparing theory to simulation in Fig. 5,

δT = δT0 exp

[∫
γdt

]
, (10)

is used where δT , δT0, γ, and t, are the instantaneous
perturbation magnitude, initial perturbation magnitude,
transient growth rate, and time. The instantaneous per-
turbation magnitude is obtained from the simulation
through measuring the peak-to-valley amplitude of the
difference between temperature and average bulk tem-
perature along the green line of Fig 4. As a result of the
time-varying growth rate, the perturbation growth is not
exponential as seen in Fig. 5 with the blue and orange
lines.

The perturbation growth from theory is computed us-
ing Eq. (10) as described and the perturbation growth
from simulation is directly calculated from the numer-
ical output. These perturbation growths along with
the growth rates without and with AR are presented in
Fig. 5. The left plot of Fig. 5 shows the perturbation
growth without AR, i.e., no ∂η/∂J dependence and no
AR contribution to the resistivity, producing agreement
to within 5% between theory (Eq. (7) denoted by the
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dashed orange line) and simulation (denoted by the blue
line) in the absence of AR.

Note that Eq. (7) captures the effect of not including
any AR contribution to the resistivity as well as includ-
ing AR without any ∂η/∂J dependence. This is the key
difference between the perturbation growth (dashed or-
ange line) and the growth rate (dotted green line) in the
left and right plots of Fig. 5 with the right plot includ-
ing AR. The right plot of Fig. 5 shows the perturba-
tion growth and growth rate when ion acoustic AR is
included without and with the ∂η/∂J contribution. The
perturbation growth with AR but without the ∂η/∂J
dependence in the right plot (dashed orange line) and
the corresponding growth rate (dotted green line) are
significantly different from the left plot which does not
include any AR. Also, note the difference in the time
scales between the left and right plots associated with
growth. In the right plot, when including AR without
the ∂η/∂J dependence, there is a significant difference
between the theory (orange dashed line) and simulation
(blue line) perturbation growths. When the ∂η/∂J con-
tribution to the growth rate is included (green dash-dot
line) as shown in the right plot with AR, the simulation
perturbation growth (blue line) agrees with the theory
in Eq. (8) (orange dash-dot line) to within 5%. This
agreement illustrates that when AR effects are included
one must account for the dependence on electric current
density in determining ETI growth rates.

From the right plot of Fig. 5, the theoretical prediction
with AR shows a reduction in the perturbed temperature
growth. This is consistent with the initial values from the
two right-most columns of Table I, and the reduction in
growth shown in Fig. 2. Although the ∂η/∂J term re-
duces the growth rate, including AR increases the overall
ohmic heating rate.

The results presented here highlight three main conclu-
sions. First, the newly-derived generalized growth rate
presented in this work agrees with simulation as shown in
the right plot of Fig. 5 (blue and orange dash-dot curves).
Second, the ∂η/∂J term reduces the growth rate. Lastly,
AR causes ohmic heating power to be comparable and
exceed the radiative dissipative power. This makes
current-carrying, low-density, and low-temperature plas-
mas ideal conditions to experimentally validate AR mod-
els where the radiative condensation instability6,36,37 is
not as prevalent as ETI.

IV. SUMMARY AND CONCLUSIONS

Section II derives and presents a new ETI growth rate
that includes the dependence of anomalous resistivity,
including the novel contribution of the current density
dependence of resistivity on the ETI growth rate. This
added dependence has no effect on the striation form of
ETI, and the highest current densities currently accessi-
ble are not significant enough to affect the growth rate.
However, the filamentation ETI exhibits the effect of AR

more than striation because of its application in the low
density regime of vacuum contaminant plasma where AR
is relevant (Fig. 3).

Appendix A presents the effects of including several
AR models in combination with the tabular conductivity
models for parameters of interest to pulsed power exper-
iments. With realistic conditions based on Welch et al. 2 ,
AR produces a significant increase in resistivity for both
aluminum and hydrogen as shown in Figs. 6 and 7, re-
spectively. The effect of AR is significant in the low den-
sity regions for both aluminum and hydrogen, at orders
of magnitude less than atmospheric densities.

AR’s influence on filamentation ETI growth is high-
lighted in Fig. 1 showing the ratio of the growth rate
when including AR to excluding AR for the hydrogen
configuration. AR increases the growth rate by many or-
ders of magnitude, but the added dependence on current
density (Eq. 8) mitigates this increase in growth as shown
in Fig. 2. Table I shows values relevant to Eq. 7 and 8
for hydrogen at 1.0× 10−6 g cm−3 and 100 eV.

Section III presents simulation results of the filamen-
tation ETI growth (problem setup in Fig. 4) that verify
the newly derived growth rate in Eq. 8, and highlight
the important role of AR when simulating ETI through
a comparison of ohmic heating rates to radiative cooling
rates. Theory compares well with simulation resulting in
less than 5 % difference globally as shown in Fig. 5. The
inclusion of the current density dependence is shown to
substantially reduce the growth rate due to ohmic heat-
ing as illustrated in Fig. 2(a).

The revised “fast” thermal instability growth rate in
Eq. 8 is verified through simulation. Material state re-
gions for which AR is relevant and impacts resistivity are
explored, and its subsequent effect on ETI growth is in-
vestigated. AR is shown to not significantly impact the
striation form of ETI, but has a significant impact on the
filamentation form. Which AR model is appropriate for
a given situation depends on the relative strength of the
drift speed to the electron and ion thermal speeds and
the relative strength of the magnetic field.

Once experimental data of vacuum contaminant
plasma for pulsed-power experiments becomes available,
future work can explore the role of AR and current-
density-dependent resistivity in a more quantitative man-
ner for specific experimental parameters. As an alter-
native to experimental validation through vacuum con-
taminant plasmas, the gas-puff staged Z-pinch38,39 pro-
vides accessible experimental date to validate this growth
rate when using AR models. The density in a gas-
puff staged Z-pinch is 1.0× 1017 cm−3 which corresponds
to a mass density of 1.0× 10−6 g cm−3 at 780 kA38.
This corresponds to an approximate current density of
1× 107 A cm−2 evaluated from the Narkis et al. 38 semi-
analytical model which indicates AR could have a sig-
nificant impact. Although the gas-puff staged Z-pinch
would provide experimental validation, it is outside the
scope of this paper.
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and G. Lapenta, Journal of Geophysical Research: Space Physics
120, 2675 (2015).

14M. Zhou, H. Li, X. Deng, S. Huang, Y. Pang, Z. Yuan, X. Xu,
and R. Tang, Journal of Geophysical Research: Space Physics
119, 8228 (2014).

15R. Torbert, J. Burch, B. Giles, D. Gershman, C. Pollock,
J. Dorelli, L. Avanov, M. Argall, J. Shuster, R. Strangeway, et al.,
Geophysical Research Letters 43, 5918 (2016).

16S. C. Hsu, T. Carter, G. Fiksel, H. Ji, R. Kulsrud, and M. Ya-
mada, Physics of Plasmas 8, 1916 (2001).

17R. Commisso and H. R. Griem, Physical Review Letters 36, 1038
(1976).

18H. Ji, S. Terry, M. Yamada, R. Kulsrud, A. Kuritsyn, and
Y. Ren, Physical review letters 92, 115001 (2004).

19K. Papadopoulos, Reviews of Geophysics 15, 113 (1977).
20R. Davidson and N. Krall, Nuclear Fusion 17, 1313 (1977).
21S. P. Gary, The Physics of Fluids 23, 1193 (1980).
22K. Tummel, C. Ellison, W. Farmer, J. Hammer, J. Parker, and

K. Lechien, Physics of Plasmas 27, 092306 (2020).
23K. Wang, Z. Shi, H. Xu, and J. Zhao, Physics of Plasmas 27,

112102 (2020).
24K. J. Peterson, E. P. Yu, D. B. Sinars, M. E. Cuneo, S. A. Slutz,

J. M. Koning, M. M. Marinak, C. Nakhleh, and M. C. Herrmann,
Physics of Plasmas 20, 056305 (2013).

25T. J. Awe, “Electrothermal instability evolution on z-pinch rods
and imploding liners pulsed with intense current.” Tech. Rep.
(Sandia National Lab.(SNL-NM), Albuquerque, NM (United
States), 2016).

26J. M. D. Lane, K. Leung, A. P. Thompson, and M. E. Cuneo,
Journal of Physics: Condensed Matter 30, 465002 (2018).

27B. T. Hutsel, P. A. Corcoran, M. E. Cuneo, M. R. Gomez, M. H.
Hess, D. D. Hinshelwood, C. A. Jennings, G. R. Laity, D. C.
Lamppa, R. D. McBride, J. K. Moore, A. Myers, D. V. Rose,
S. A. Slutz, W. A. Stygar, E. M. Waisman, D. R. Welch, and
B. A. Whitney, Phys. Rev. Accel. Beams 21, 030401 (2018).

28M. Desjarlais, J. Kress, and L. Collins, Physical Review E 66,
025401 (2002).

29M. P. Desjarlais, Contributions to Plasma Physics 41, 267 (2001).
30B. E. Morgan and J. A. Greenough, Shock Waves 26, 355 (2016).
31C. L. Ellison, H. D. Whitley, C. R. D. Brown, S. R. Copeland,

W. J. Garbett, H. P. Le, M. B. Schneider, Z. B. Walters, H. Chen,
J. I. Castor, R. S. Craxton, M. Gatu Johnson, E. M. Garcia,
F. R. Graziani, G. E. Kemp, C. M. Krauland, P. W. McK-
enty, B. Lahmann, J. E. Pino, M. S. Rubery, H. A. Scott,
R. Shepherd, and H. Sio, Physics of Plasmas 25, 072710 (2018),
https://doi.org/10.1063/1.5025724.

32R. M. Darlington, T. L. McAbee, and G. Rodrigue, Computer
Physics Communications 135, 58 (2001).

33R. Masti, C. Ellison, J. King, P. Stoltz, and B. Srinivasan, High
Energy Density Physics 38, 100925 (2021).

34W. Farmer, C. Ellison, and J. Hammer, Physics of Plasmas 26,
072120 (2019).

35D. B. Sinars et al., Physics of Plasmas 18, 056301 (2011),
http://aip.scitation.org/doi/pdf/10.1063/1.3560911.

36G. B. Field, The Astrophysical Journal 142, 531 (1965).
37I. Aranson, B. Meerson, and P. V. Sasorov, Physical Review E
47, 4337 (1993).

38J. Narkis, H. Rahman, J. Valenzuela, F. Conti, R. McBride,
D. Venosa, and F. Beg, Physics of Plasmas 26, 032708 (2019).

39H. Rahman, E. Ruskov, P. Ney, F. Conti, J. Valenzuela, N. Ay-
bar, J. Narkis, F. Beg, E. Dutra, and A. Covington, Physics of
Plasmas 26, 052706 (2019).

45



9

40L. Spitzer, Physics of Fully Ionized Gases (1956).
41D. Baldwin and G. Rowlands, The Physics of Fluids 9, 2444

(1966).
42B. Kadomstev, A. Mikhailovskii, and A. Timofeev, rn 2, 4ne2n0

(1965).
43S. L. Ossakow, Journal of Geophysical Research 73, 6366 (1968).
44A. Galeev and R. Sagdeev, RvPP 7, 257 (1979).
45V. N. Tsytovich, in Nonlinear Effects in Plasma (Springer, 1970)

pp. 1–19.
46P. C. Liewer and N. Krall, The Physics of Fluids 16, 1953 (1973).
47V. Y. Bychenkov, V. P. Silin, and S. Uryupin, Physics Reports
164, 119 (1988).

48O. Buneman, Physical Review 112, 1504 (1958).
49J. Huba, in Symposium-International Astronomical Union, Vol.

107 (Cambridge University Press, 1985) pp. 315–328.
50S. D. Crockett, Los Alamos National Laboratory, Los Alamos,

NM, Report No. LA-UR-04-6442 (2004).
51R. More, K. Warren, D. Young, and G. Zimmerman, The Physics

of fluids 31, 3059 (1988).
52D. A. Young and E. M. Corey, Journal of applied physics 78,

3748 (1995).
53F. N. Fritsch, “The leos interpolation package,” Tech. Rep.

(Lawrence Livermore National Lab., CA (US), 2003).

Appendix A: Anomalous Resistivity

Anomalous resistivity (AR) is an avenue by which col-
lisionless micro-turbulent effects are incorporated into an
otherwise collisional resistivity model. The inclusion of
these effects is particularly important in low density re-
gions where collisional resistivity models predict a near
infinitely conductive medium in the high temperature
limit. This is apparent in the Spitzer resistivity40, which
is weakly dependent on the electron density (only via the
Coulomb Log) and dependent on the electron tempera-
ture (∝ T−3/2). This section introduces how AR models
are incorporated into a tabulated resistivity and inves-
tigates their effect on two relevant materials considered
in this work, hydrogen and aluminum, using conditions
based on Welch et al. 2 .

The ion acoustic, Buneman, and lower-hybrid drift
based micro-turbulent phenomena are chosen because
they have different dependencies on magnetic field, tem-
perature, and current density. Although which model
is appropriate for a given situation is beyond the scope
of this manuscript, we highlight several relevant criteria
for the models to be valid. The ion acoustic instabil-
ity occurs when vd ∼ v̄i, where vd is the drift speed of
electrons relative to ions and v̄i is the ion thermal speed,
and when the free electron temperature (ZeffTe) is greater
than the ion temperature. The derivation neglects mag-
netic fields. In attempting to generalize this theory to
include a magnetic field, the Landau-Bernstein paradox
arises41, and we know of no theory describing a mag-
netized ion-acoustic instability. However, the lack of a
magnetic field makes it useful for the verification study in
Sec. III. The Buneman instability occurs at much larger
drift speeds, vd ∼ v̄e, where v̄e is the electron thermal
speed. These large drifts can occur at the current den-
sities and temperatures relevant to vacuum contaminant
plasmas, making it of interest to this study. The two

lower-hybrid drift (LHD) instability models (Davidson
LHD20 and Tummel LHD22) are formulated using kinetic
simulations and theory and are presented in Sec. A 3.
The lower-hybrid model by Tummel et al. 22 highlights
recent developments in AR models for regimes relevant
to Z-machine vacuum contaminant plasmas. Although
there are additional AR models in the literature, these
four AR models cover a representative set of models for
current-driven applications.

Quasi-linear models of these micro-turbulent phenom-
ena produce an AR through a corresponding anomalous
collisional frequency. The form of the AR is given by

ηAR ≡ ητeiνAR =
memi

e2Zeffρ
νAR, (A1)

where ηAR, τei, me, mi, e, Zeff, ρ, and νAR, are AR,
electron-ion collision time, electron mass, ion mass, ele-
mentary charge, effective ionization level, mass density,
and AR electron scattering frequency, respectively. Note
that Eq. (A1) can include multiple AR models through
the addition of their corresponding AR electron scatter-
ing frequency.

The total resistivity is the addition of the classical re-
sistivity and the AR. This effective resistivity is

ηeff = η + ηAR = η (1 + τeiνAR) , (A2)

where η is the collisional resistivity and ηAR is the anoma-
lous resistivity. In this equation, η can have an analyt-
ical form such as the Spitzer resistivity formula40, or a
tabulated resistivity. By incorporating AR effects into
a collisionally-based tabulated resistivity, the resistivity
dependencies are expanded beyond just density and tem-
perature. The effective resistivity becomes a function of
density, temperature, current density (J), magnetic field
(B), and effective ionization level. The expansion of the
dependencies of resistivity will modify the ETI growth
rate.

Sections A 1-A 3 detail the four different models used
for νAR in this study. Some of these models treat the
plasma using a two-temperature model, but for this work,
we assume a single material temperature Te = Ti = T .
An analysis of how a two-temperature model influences
ETI is outside of the scope of this work.

1. Ion Acoustic

The current-driven ion acoustic instability occurs when
electrons traveling near the phase velocity of the ion
acoustic wave interact with this ion acoustic wave. This
instability has been used for anomalous transport for
decades for applications ranging from fusion plasmas to
atmospheric plasmas.42–47

For this work, the form of νAR is given by20,44,46

νIA = 6

√
π

2

ωe
neTe

ε,

46
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where νIA, ωe, ne, Te, and ε, are AR collision frequency,
electron plasma frequency, electron number density, elec-
tron temperature, and energy density, respectively. Us-
ing the saturated ε from Bychenkov, Silin, and Uryupin 47

the saturated anomalous collision frequency is

νIA = 2.8× 10−2ωi
vd
cs

ZeffTe
Ti

, (A3)

where ωi, vd, cs, and Ti, are ion plasma frequency, drift
speed, sound-speed, and ion temperature, respectively.
Note the drift speed (j/ene) has an inverse dependence
on the mass density, thus for low density plasmas this
becomes quite large. The parameter scan shown in the
paper vary the mass density and electron temperature,
and this AR model varies like n−1T 0.5

e ., and its temper-
ature dependence will directly influences ETI growth as
shown in Sec. II.

2. Buneman

The Buneman instability is the classic two-stream in-
stability between electrons and ions.48 It has been stud-
ied for anomalous transport extensively for a wide range
of applications.19,20,46 Specifically, the formulation from
Liewer and Krall 46 with some modification is used in this
work. The assumptions are that the drift speed is on the
order of the electron thermal speed, the magnetic field
is aligned with the perturbation growth, and the elec-
tron thermal speed is larger than the ion speed. These
assumptions lead to the following form of anomalous col-
lision frequency46

νBU =
1 +A2

A2
γB

2εB
nemev2

d

,

where A is the ratio of electron plasma frequency to elec-
tron cyclotron frequency, and γB is the instability growth

rate. For this work the max εB of 1/2nemev
2
d is used re-

sulting in the instability growth rate

γB =

√
3

2
ωe

(
meZeff

2mi

) 1
3
(

1 +A2

A2

) 5
6

exp

[
−v

2
e

v2
d

]
, (A4)

where ve is the electron thermal speed (
√
Te/me). Unlike

the ion acoustic form of the anomalous collision frequency
the temperature dependence is more pronounced through
the electron thermal speed. The Buneman insability is
only present for large currents where the electron drift
speed is large relative to the ion acoustic speed and elec-
tron thermal speed.

3. Lower-Hybrid Drift

The lower-hybrid drift instability is a kinetic instabil-
ity in magnetized plasmas where the electron temper-
ature is less than the ion temperature (opposite for ion
acoustic turbulence). Davidson and Krall 20 proposed the
lower-hybrid drift instability for anomalous transport in
solenoidal fusion plasmas. The most widely known satu-
rated anomalous collision frequency is given by49

νDA =
(vd/vi)

2√
(ΩiΩe)−1 + ω−2

i

, (A5)

where Ωi, Ωe, and vi, are ion cyclotron frequency, elec-
tron cyclotron frequency, and ion thermal speed, respec-
tively. The denominator is the lower-hybrid drift fre-
quency (1/ωLH).

Additonally, there is a newly developed form by Tum-
mel et al. 22 which has direct application to these vacuum
contaminant plasmas. The Tummel LHD model, a gen-
eralization of Eq. (A5), is given by

νTU =
16πc2e2ne

5me

veτ
1
4

viΩe

me

mi

(
j̄

1 + τ

)2(
Ωe
ωe

)2
(√

π

2

j̄

1 + τ
exp

[
−j̄2

]
+

1

2τ

(
1 +

Ω2
e

ω2
e

)
exp

[
−
√

2τ

2j̄

])
, (A6)

where c is the speed of light, and j̄ = j/(enevi). This
form is extensive and informed through kinetic simula-
tions of the lower-hybrid drift instability. For this study
the anomalous collision is described in Equations A3,
A4, A5, and A6, representing the ion acoustic, Bune-
man, Davidson LHD, and Tummel LHD AR models, re-
spectively. Note that the Buneman, Davidson LHD, and
Tummel LHD AR models all depend on the magnetic
field via cyclotron frequency. For this work, the mag-
netic field for each of the models is set to the maximum
magnetic field in the current annulus |Bθ| = µ0I/(2πr)

where I is the total current and r is the outer radius of
the annulus.

4. Significance of AR on Tabulated Resistivity

To visualize the effect of AR on a representative con-
figuration, we assume a uniformly distributed current
in some annulus and use QLMD table 2937328 and
SESAME 372050 for aluminum. Using conditions from
Welch et al. 2 , 17 MA is distributed uniformly over an
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FIG. 6. Plot of ηtable/ηeff (note σ = 1/η) for aluminum with
a current density of j = 1.8× 1011 A m−2. A), B), C), and
D), represent the ion acoustic, Buneman, Davidson LHD, and
Tummel LHD AR models, respectively.
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FIG. 7. Plot of ηtable/ηeff (note σ = 1/η) for hydrogen with
a current density of j = 4.0× 1010 A m−2. A), B), C), and
D), represent the ion acoustic, Buneman, Davidson LHD, and
Tummel LHD AR models, respectively.

annulus of outer radius 3.168 mm35 with a thickness of
500 µm24. Figure 6 shows the ratio of electrical conduc-
tivity with AR to electrical conductivity without AR for
a subset of QLMD 29373.28 Notice the densities are ap-
proximately four orders of magnitude smaller than solid
aluminum density (2.7 g cm−3). At low densities AR can
reduce the collisionally based conductivity by more than
ten orders of magnitude. The lower-hybrid drift models
(Davidson LHD and Tummel LHD) show the largest re-
duction of conductivity given the modestly large current
density (1.8× 1011 A m−2). As expected, the ion acous-
tic and Buneman AR models do not significantly change
the conductivity until the thermal speed becomes com-
parable to the sound speed at T ≈ 0.5 eV.

The conductivity and equation of state tables used for
hydrogen in this work are QLMD 2527129 and LEOS
101151–53, respectively. Figure 7 shows that incorporat-
ing AR effects is relevant only at low densities (under
10−4g cm−3) and has a similar maximum reduction in
conductivity (10-12 orders of magnitude) as Fig. 6. This
provides the justification for the importance of AR in
the parasitic vacuum hydrogen plasma for the conditions
chosen in Sec. III
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Chapter 4

The impact of anomalous resistivity
in vacuum contaminant plasmas on
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Abstract

This manuscript presents an assessment of the electrothermal instability (ETI) in the presence of anomalous resistivity
(AR) in vacuum contaminant plasmas (VCP) when applied to a magnetized liner inertial fusion (MagLIF)-like load.
Pulsed-power driven dielectrically coated metallic liners, like in MagLIF, experience the current-driven electrothermal
instability which occurs when a material’s resistivity changes with temperature and is subject to ohmic heating. Large
scale pulsed-power facilities that use magnetically insulated transmission lines (MITL) have been shown to generate
low-density plasma which enters the target chamber and coalesces around the load. The low-density high-temperature
vacuum contaminant plasmas (VCP) can parasitically divert current from the load through causing a short in the anode-
cathode gap inside the target chamber. Resistive magnetohydrodynamic (MHD) simulations of these VCP experience
unphysical runaway ohmic heating due to under predicting the resistivity by using a purely collisional resistivity model.
AR provides a physics-based way to address this runaway heating through increasing the resistivity in a proportional
way with the drift speed. In this work, 1D simulations probe the effect that AR in VCP has on the magnetic diffusion
rate, and 2D simulations show how this effect manifests in the nonlinear striation form of the ETI for a MagLIF-like
load. Beryllium and aluminum dielectrically coated liners are used for the 1D and 2D simulations in this work. The
1D simulations show that a VCP causes a delay in the current delivery to the load by upwards of 8 ns at 60 ns into a
typical current pulse for an 1 × 107 A scale pulsed-power accelerator. The 2D simulations show the delay observed in
the 1D simulations is reduced substantially (4 ns) by 2D turbulence that disrupts the VCP layer early in time. The 2D
simulated ETI growth varies across AR models, more so for the beryllium liner than the aluminum liner because the
beryllium liner shows an enhanced rate of penetration for the magnetic diffusion wave in comparison to the aluminum
liner. The 2D simulations show the bulk dielectric thickness varies across AR models with the Davidson AR model being
the largest and the Buneman AR model being the smallest, and in connection with the thickness the Rayleigh-Taylor
bubble-spike distances varies correspondingly.

Keywords: electrothermal instability, MagLIF, anomalous resistivity, contaminant plasmas, magnetic diffusion wave

1. Introduction

There is an extensive effort in the pulsed-power high en-
ergy density community to understand the impact of vac-
uum contaminant plasmas (VCP) on current delivery[1, 2].
These conducting VCP can parasitically divert current
away from the load. In resistive magnetohydrodynamic
(MHD) simulations, the parasitic current in these plas-
mas induces runaway heating, further diverting the current
from the load when a classical resistivity model is used for
the contaminant plasma[3]. The resulting runaway heat-
ing causes resistive-MHD simulations to diverge from the
experimentally observed current. A resolution to this dis-
crepancy is by including anomalous resistivity, which lo-
cally increases the resistivity based on local quantities out-

∗Corresponding Author
Email addresses: rlm7819@vt.edu (R. L. Masti),

srinbhu@vt.edu (B. Srinivasan )

side of density and temperature such as magnetic field, cur-
rent density, and effective ionization level. In simulations
of VCP, including AR effects dynamically changes the re-
sistivity which diverts current back into the load through
a physics-based method. Altering the current delivery to
the load should affect the evolution of the current-driven
electrothermal instability (ETI)[4, 5, 6] which is present in
all HED pulsed-power configurations[7, 8, 5].

In solid-density metallic loads the resistivity increases
with temperature making them susceptible to the striation
form of ETI[5]. Although AR is shown not to significantly
influence the striation form of ETI directly[9], it may in-
fluence the striation form of ETI indirectly. Specifically,
by altering the current delivery to the load through AR
in VCP the striation ETI in solid-density metallic loads
should change, but this is found not to be the case in
Section 3. Dielectric coatings mitigate ETI growth in
both simulations[10] and experiments[7] of pulsed-power
driven solid metal loads. A dielectric coating acts as a

Preprint submitted to Journal of High Energy Density Physics May 7, 2021
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tamper which inhibits mode growth as the surface of the
solid-metallic load expands from ohmic heating into the
dielectric. One fusion concept that suffers from striation
ETI is the magnetized liner inertial fusion (MagLIF) con-
cept that involves imploding a dielectrically coated liner
onto a laser-induced pre-magnetized deuterium and tri-
tium fuel[11, 12]. This work explores the impact AR has
on ETI growth for a MagLIF-like configuration following
Sinars et al. [12].

As mentioned previously, AR can address the run-
away heating issue encountered in resistive-MHD sim-
ulations of current-carrying VCP. This is accomplished
through AR enhancing magnetic diffusion thereby reduc-
ing ohmic heating in these weakly collisional plasmas.
This enhancement of magnetic diffusion arises from AR
increasing a collisionally-based resistivity by incorporating
micro-turbulent effects, which are fundamentally driven by
plasma instabilities. An example of a plasma instability
that drives collisionless micro-turbulence is the Buneman
instability[13, 14, 15, 9]. The origin of AR models stems
from observations of enhanced magnetic diffusion in high-
temperature plasmas present in both theta pinch plasmas
and screw pinch plasmas[16, 17, 18, 19, 20] as well as labo-
ratory generated plasmas[21, 22, 23, 24, 25, 26]. These ob-
servations sparked the development of reduced models that
approximate the effect of micro-turbulent plasma instabil-
ities on material conductivity[13, 27, 28, 29]. This study
applies these reduced models to assess the indirect impact
it has on the simulated current delivery and the possible
impact on the subsequent ETI growth for resistive-MHD
simulations of a MagLIF-like load.

This paper is organized as follows. Section 2 presents the
impact of AR in VCP on the magnetic diffusion wave as-
certained from 1D cylindrical simulations of a MagLIF-like
load. Section 3 investigates the striation form of ETI[5, 30]
in the presence of a current-carrying VCP through 2D
cylindrical simulations of a MagLIF-like load. The key
contributions of this paper are three-fold, the first contri-
bution shows a maximum delay of 8 ns between 1D simu-
lations without AR and with AR in a VCP plasma. The
second contribution shows that in 2D simulations the pres-
ence of a VCP does impact the growth of striation ETI in
the beryllium liner simulations and to a lesser extent in
the aluminum liner simulations. 2D turbulence disrupts
the conducting VCP layer resulting in reduced peak liner
current variation observed in 2D compared to 1D. The
third contribution shows differences in the deformation of
the dielectric when a VCP is present in 2D simulation of
striation ETI.

2. Magnetic Diffusion Wave

Many resistive-MHD codes that simulate pulsed-power
implosions often supply the current through magnetic flux
at the outer radial boundary of a simulation[30]. This
magnetic flux is typically determined through Ampere’s
law and varies with the current pulse. The injection of

magnetic field at the outer boundary then diffuses through
a highly resistive vacuum and accumulates in the conduct-
ing load. This process of diffusing through the vacuum
(and dielectric) into and through the load is commonly re-
ferred to as the “magnetic diffusion wave”. This magnetic
diffusion wave is modified when the vacuum is no longer
highly resistive, as is the case with these VCP. As a result
the magnetic field builds up in the vacuum delaying the
magnetic diffusion wave from penetrating into the load.
This delay in the magnetic diffusion wave will change the
dynamic distribution of current in the load.

Resolving the magnetic diffusion wave through a
low-density VCP is challenging due to the restrictions
high magnetosonic speeds present for the resistive-MHD
equations[31, 30]. The magnetic diffusion wave occurs
during the initial phases of the simulated pulse and in-
volves resolving the radial thickness of the load, which
for a MagLIF load is approximately 465 µm (aspect ratio
of 6)[12]. These small spatial scales in combination with
the restrictions from resolving magnetic diffusion in VCP
make large 2D and 3D simulations of the magnetic dif-
fusion wave with AR computationally expensive. A 1D
simulation provides a computationally inexpensive way to
probe the affect of AR on the magnetic diffusion wave. The
four AR models used in this study, as described in Masti
et al. [9], are the Buneman (BU)[15], Davidson (DA)[27],
Tummel (KT)[29], and ion acoustic (IA)[32, 15, 27] AR
models.

The density of the vacuum prior to the current pulse is
on the order of 1.0 × 10−13 g cm−3[12], which is not com-
putationally feasible to simulate with a fluid-based code.
At these densities, the vacuum is weakly collisional caus-
ing a breakdown of the continuum approximation. Welch
et al. [2] performed kinetic simulations of the magnetically
insulated transmission lines (MITL) for a 1.0 × 107 MA
accelerator and showed that near the load the plasma
would reach 1.0 × 1015 cm−3 at 1 keV (Section 4). This
plasma near the load appears late in time in a current
pulse, at approximately 80 ns corresponding to a current
of 10 MA[1]. A number density of 1.0 × 1015 g cm−3 corre-
sponds to a mass density on the order of 1.0 × 10−9 g cm−3

(hydrogen plasma) which is difficult to reach in fluid sim-
ulations. In this work, a minimum density is set as
low as possible whilst allowing for reasonable computa-
tion time1. The simulations presented in this work use
a mass density of 1.0 × 10−7 g cm−3 and a temperature of
100 eV for hydrogen VCP (with a minimum floor density of
1.0 × 10−8 g cm−3. Although this density is much higher
than the physically present VCP at early times, it provides
the best possible comparison for fluid-based codes at this
time.

1For reference, the 1D simulations took 1 Day to run and the 2D
simulations took over 2 weeks.
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2.1. 1D Simulation Setup

A few conducting loads used for MagLIF include liners
made of beryllium, aluminum, and copper[11, 33, 5, 34,
12]. Loads that have a dielectric coating produce more
stable fuel columns at stagnation[12] and the main dielec-
tric thickness used for MagLIF is 75 µm thick[10, 7, 12].
The dielectric coating acts as a tamper so that when the
solid Be or Al expands due to heating it reduces the am-
plitude of surface roughness perturbations on the ETI
growth[10, 7, 12]. Although ETI is a 2D phenomenon,
1D simulations provide insight into the current dynamics
when VCP are present.

All simulations shown are done using Ares, a Lawrence
Livermore National Laboratory multi-physics radiation-
hydrodynamics code[35, 36, 37]. Ares is used to model
pulsed-power experiments and has recently been used for
a cross-code comparison study of ETI[30]. Additionally,
Ares was used to study the impact AR has directly on
ETI growth along with a comparison to linear theory[9].
This work explores the indirect impact AR may have on
ETI growth in an experimentally-relevant setting based
on Sinars et al. [12]2. The 1D simulations presented here
utilize the 2D cylindrical coordinate system in Ares rep-
resenting the axial direction with a single zone and re-
solving the radial direction. For this work, Ares solves
the resistive-MHD equations using purely Eulerian set-
tings (see Masti et al. [30] for details) with tabulated equa-
tions of state (EOS) and tabulated transport coefficients
[38, 39, 40, 41, 42, 43]. Radiation is included in the simula-
tions that follow, but is found not to substantially impact
the findings herein[37]. Although the Hall term in the in-
duction equation (J × B) for a VCP would likely impact
the magnetic diffusion wave, this study looks to isolate the
impact of AR alone on the induction equation[9].

Fig. 1 represents a schematic of the 1D simulation setup
(excluding the perturbation) which is based on Sinars et al.
[12] and Masti et al. [30]. The current drive for these sim-
ulations is from Eqs. (16) and (17) in Masti et al. [30], and
as a reference, 60 ns into the drive corresponds to 7.9 MA.
The radial direction uses 1884 uniformly distributed zones
and the axial direction is 1 zone. The left and right bound-
ary conditions are reflecting walls, the top boundary con-
dition is an outflow condition, and the bottom boundary
is a reflecting wall. The magnetic field is specified at the
top boundary based on Ampere’s law and requires a resis-
tive buffer for numerical stability, so as these simulations
progress, the top most row of zones has vacuum resistiv-
ity (1.0 × 1010 mΩ cm). The minimum density of these
simulations is 1.0 × 10−8 g cm−3 and zones that fall below
1.01 × 10−8 g cm−3 are reassigned with vacuum electrical
and thermal conductivities (as shown in Fig. 1)[44]. Mixed
zone treatment in Ares, is based on the recommended set-
tings from Farmer et al. [44].

2All dimensions are gathered from the MagLIF section of Sinars
et al. [12]
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Figure 1: This schematic presents the simulation setup for both the
1D simulations (without perturbations) and the 2D simulations (with
perturbations). VA, HY, DI, Al, Be, represent the vacuum region,
hydrogen region, dielectric region, aluminum liner region, beryllium
liner region, respectively. Each region displays the corresponding
initial conditions (ρ is mass density, and T is temperature), EOS,
and transport coefficients for this study. Besides the vacuum region
being represented by an ideal gas EOS (γ is the adiabatic index) and
constant transport coefficients, all the regions use tabulated EOS and
transport coefficients. The tabulated quantities used originate from
the LEOS database[38, 39, 40] and the SESAME database[41, 42, 43].

2.2. 1D Simulation Results

The impact of AR on the magnetic diffusion wave is di-
agnosed through its manifestation in the current density
as a function of time. Fig. 2 presents the current den-
sity of the 1D lineouts at 60 ns for a few configurations
involving a change of liner material and with and with-
out the presence of the VCP. The top and bottom rows
correspond to runs with an aluminum liner and beryllium
liner, respectively, and the left column represents when a
VCP is present and the right column when a VCP is ab-
sent. The effectiveness of an AR model depends heavily
on the drift speed which is a function of current density
and mass density as well as the local electron-ion colli-
sion time3. Without a low-density conducting VCP the
effect of AR on the magnetic diffusion wave is negligble
and results in no variation of the current density as shown
in the right column of Fig. 2. Additionally, the KT, DA,
and IA AR models are qualitatively close to the profile
without a VCP present, specifically, in the location of the
current density peak in the liner (0.265 µm for aluminum
and 0.257 µm for beryllium at 60 ns).

The left column of Fig. 2 shows a substantial temporal
variation in the current density between the different AR
models used and not used. Although the temporal varia-
tion is noticeable inside the liner, the qualitative variation
inside the liner is not noticeable, and is reasoned through

3Shorter collision times reduce the impact of AR[9]
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Figure 2: Log jz as a function of radius is presented at 60 ns for when
a hydrogen VCP is present (left column) and absent (right column).
The top row corresponds to the simulations using an aluminum and
the bottom row corresponds to the simulations using a beryllium
liner. Each plot has 5 different lines which are labeled as NO, KT,
DA, IA, and BU, which represent no AR model and Tummel, David-
son, ion acoustic, and Buneman, AR models, respectively[9]. The
star indicates the location of the transition from liner to dielectric
(note for some plots this lies below the minimum jz shown).

there being no change in the liner and dielectric material
between the simulations. The impact of AR on the qualita-
tive behavior of these simulations is apparent in the outer
radial regions where there exists ablated dielectric material
that is low-density and conducting. The current density
profiles in this outer region vary greatly between the AR
models with the BU AR model most closely resembling
the profile without AR. The KT, DA, and IA AR models
show significant reduction in the current density present
in the outer region near 0.28 cm.

The AR impacts the magnetic diffusion wave by reduc-
ing the delay a VCP would cause on the diffusion through
the vacuum (and dielectric) and into the liner. The lower-
hybrid drift based AR models, DA and TU, significantly
increase the diffusion rate through the vacuum to the point
that the inner liner current peak location closely resem-
bles the location in the simulations where a VCP is absent
(right column of Fig. 2). In addition to the lower-hybrid
drift based AR models, the IA AR model also shows a sig-
nificant increase in the diffusion rate. The KT, DA, and
IA AR model simulations have penetrated approximately
50 µm farther than the simulation without AR (NO). This
increase in penetration distance of the magnetic field is
temporally correlated and corresponds to approximately
a 8 ns reduction in the delay between the KT, DA, and
IA AR models (orange, green and red lines), and with-
out an AR model (blue line). The BU AR model (purple
line) corresponds to approximately a 4 ns reduction which
is half the delay reduction observed from the other AR
models. Qualitatively inside the liner the KT, DA, and
IA AR models closely resemble the case where a VCP is
absent with similar penetration distances. These tempo-
ral delays are the same between both the aluminum liner

simulations and the beryllium liner simulations which is
explained by noting that AR only impacts the VCP4.

3. Electrothermal Instability

The striation form of ETI occurs when the resistivity
of a material increases with temperature and is subjected
to ohmic heating[5]. This instability occurs in all pulsed-
power fusion concepts that involve solid density metallic
liners or wires (e.g. MagLIF). Section 2 shows that a VCP
can alter the current delivery as a function of time which
should manifest into a variation in ETI growth. This sec-
tion shows that although the VCP delays the magnetic
diffusion wave in the 1D cylindrical resistive-MHD simula-
tions, in the 2D cylindrical resistive-MHD simulations the
magnetic diffusion wave is not as significantly altered. The
2D striation ETI simulations show there is little variation
across AR models for the aluminum liner and a larger vari-
ation for the beryllium liner. The main similarity between
the 1D and 2D simulations is in the impact AR has on the
peak current densities in the liners which varies across the
different AR models.

3.1. 2D Simulation Setup

Figure 1 presents the setup of the ETI simulations in this
work, which involve a perturbed liner-dielectric interface
and a perturbed dielectric-hydrogen interface (unlike the
1D simulations). The form of the perturbation at the liner-
dielectric interface follows Masti et al. [30] which is

δLI−DI =
1

32
A

m=32∑
m=1

βmcos

[
2π

(
m · x
λmax

+ βm

)]
, (1)

where A is the amplitude of the perturbation (12 µm), β
is a random number from 0 to 1, and λmax = 200 µm is
the maximum wavelength associated with the lowest mode
(see Appendix A for the coefficients used). The dielectric-
hydrogen interface uses the multi-mode perturbation form
of

δDI−HY =
1

32
A

m=32∑
m=1

βmsin

[
2π

(
m · x
λmax

+ βm

)]
, (2)

with the same β and λmax as Eq. (1), but with a smaller
amplitude (A = 6 µm). Although not shown here, the per-
turbation of the dielectric-hydrogen interface does not im-
pact the growth as the wavelength and amplitude are var-
ied. The perturbation of the perturbed dielectric-hydrogen
interface is estimated from the initial radiographs in Pe-
terson et al. [10].

Outside of the perturbed surfaces, the 2D simulations
differ from the 1D simulations in the axial width and in
the resolution. The 2D simulations use an axial width of

4AR is inversely proportional to the mass density so at higher
density, i.e. collisionality, AR is not as impactful
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85 µm with a axial resolution of 256 zones[30], and the
same radial length as the 1D simulations except for a 1564
zone radial resolution. The 1564 zone radial resolution and
the 256 axial resolution are chosen because they result in
square zones of size 0.27 µm. As mentioned in Section 2, it
is computationally intensive to resolve low-density plasmas
at small spatial scales hence a lower radial resolution was
chosen for the expensive 2D simulations.

3.2. 2D Simulation Results

The results from Section 2 suggest a large variation in
the ETI growth observed across the different models, but
this is not qualitatively observed in the 2D simulations.
Figure 3 presents a frame of the current density across a
subsection of the domain at 60 ns for both the aluminum
(top row) and beryllium (bottom row) liners. Figure 4
presents the corresponding plot of density at the same in-
stance in time. Comparing Fig 2 to Fig 3, the 1D result
for the aluminum liner case does not show the same de-
lay separation of the peak internal liner current density as
the beryllium liner case. Although the magnitude of peak
current density in the liner varies across the columns in
the top row of Fig 3, the location of the peak in the liner
is nearly identical across the different AR models. There
is some underlying physical mechanism that in 2D, would
allow for reduced current density peak separation across
AR models for aluminum and not for beryllium. A few
hypotheses to explain this are that the aluminum EOS
used has a significantly different physical basis than the
beryllium EOS used; the initial aluminum electrical con-
ductivity is higher than the initial beryllium conductivity
which creates a larger initial resistivity gradient[30]; the
sensitivity of the aluminum resistivity to density is larger
than the sensitivity of beryllium resistivity to density. For
brevity, NO, KT, DA, IA, and BU, denote the simulations
which used NO, KT, DA, IA, and BU AR models, respec-
tively.

The current density plots for an aluminum liner as
shown in the top row of Fig. 3 show a variation in peak
current density inside the liner. The NO, KT, DA, IA,
and BU simulated peak aluminum liner current density
are 1.28 A cm−2, 1.29 × 108 A cm−2, 1.34 × 108 A cm−2,
1.31 × 108 A cm−2, and 1.30 × 108 A cm−2, respec-
tively. For the beryllium liner case (bottom row),
the peak simulated liner current density for NO,
KT, DA, IA, and BU, are 8.84 × 107 A cm−2,
9.42 × 107 A cm−2, 9.66 × 107 A cm−2, 9.47 × 107 A cm−2,
and 9.18 × 107 A cm−2, respectively. All of the current
densities in the aluminum liner case are greater than
the beryllium liner case and this is mainly due to higher
conductivities for aluminum at the location of the peak.
The separation or delay across the different AR models
is greater for the beryllium liner simulations than it is
for aluminum and this is also seen in Fig. 2 but not to
the same extent. This suggests that the 2D turbulence
in the vacuum region causes enhanced magnetic diffusion
through the vacuum which implies faster accumulation in
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Figure 3: Current density plots of the ETI simulation outlined in
Section 3 are shown at 60 ns for different configurations. The top
and bottom rows correspond to ETI simulations using an aluminum
and beryllium liner, respectively. The columns represent simulations
using different AR implementations. NO, KT, DA, IA, and BU rep-
resent the use of no AR model, Tummel AR model, Davidson AR
model, and Buneman AR model, respectively[9].
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Figure 4: Density plots of the same simulations as described in Fig. 3.

the liner. This explains the reduction in variation across
peak liner current density locations for the different AR
models in 2D (Fig. 3) in comparison to the separation in
1D (Fig. 2). Figure 3 also highlights the impact that each
AR model has on limiting the runaway current in the
vacuum, with the DA model corresponding to the most
effective vacuum current limiter. The weakest AR model
is BU which shows nearly no variation in peak vacuum
current density in comparison to the NO simulation.
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Figure 5: Temperature is plotted on a logarithmic scale for the same
simulations described in Fig. 3.

Figure 4 presents mass density plots at 60 ns for the
aluminum (top row) and beryllium (bottom row) liners us-
ing different AR models (columns). Since the separation
across the aluminum peak liner current density does not
vary greatly, there are no qualitatively observable differ-
ences across the AR models in ETI growth. The beryllium
liner does have a larger variation in the location of peak
current density in the liner which manifests as differences
in the observed ETI growth. For the beryllium liner, the
spot sizes, the size of the density void created from nonlin-
ear ETI growth[30], between the BU and NO AR models
are nearly the same and both are significantly smaller than
the spot sizes of the KT, DA, and IA AR models. The spa-
tial variation in peak current location due to the delay in
the magnetic diffusion wave is the cause for the qualitative
differences in ETI growth observed across the bottom row
of Fig. 4. The outer dielectric interface shows significant
variation in mode growth across the different AR models
for both the beryllium and aluminum liners. Comparing
Fig. 4 to Fig. 3 the IA and DA are the most effective
at reducing the current or magnetic field accumulation in
the low density outer region and forcing it to lower radii,
KT is the next most effective, with BU and NO following
thereafter. The Rayleigh-Taylor instability occurs when a
light fluid supporting a heavier fluid under the influence
of a gravitational acceleration is perturbed, and is appli-
cable to the VCP-dielectric interface. The more effective
the AR model is at reducing the current in the VCP the
smaller the outer dielectric RT instability structure is. The
peak bubble-spike distance for the developing RT instabil-
ity in order of least to most is DA, IA, KT, BU, and NO
AR models corresponds to the same order as observed in
the peak internal liner current location in Fig. 2 for both
aluminum and beryllium liners. The dielectric does induce

mitigated ETI growth when comparing with Figs. 7 and 10
of Masti et al. [30] keeping in consideration the differences
of EOS used.
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Figure 6: Electrical conductivity (including AR) is plotted on a log-
arithmic scale for the same simulation set described in Fig. 3.

The temperature at 60 ns is displayed in Fig. 5 where a
log scale is used to highlight the low density plasma that
surrounds the dielectric. The material in the upper region
of these plots is primarily the dielectric where the surface
of the dielectric has ablated into a low density conducting
material which is subjected to ohmic heating, and is why
the outer region is so hot in comparison to the ETI spots.
The differences across AR models shows the peak temper-
ature is in the DA AR model in Fig. 5. The peak temper-
ature for DA is understood through Fig. 4 where the DA
AR model shows the lowest mass density in the VCP. The
peak temperature corresponding to the smallest density of
the DA AR model is observed in both the beryllium and
aluminum liner simulations. The bulk thickness of the di-
electric varies across the AR models and is the same in
both the aluminum and beryllium liner simulations and
is shown in Fig. 5. Based on these simulations, the vari-
ation in bulk thickness of the dielectric would provide a
useful measurement from an experiment to determine the
most physically accurate AR model. Note that the bulk
thickness does increase in variation across the different AR
models over time.

Figure 6 displays the electrical conductivity for the same
simulations shown in Fig. 3-5. In the vacuum region the
density is on the order of 1.0 × 10−5 g cm−3 nearest to the
dielectric with a corresponding temperature around 1 keV,
and at this density and temperature the electrical resis-
tivity is well represented by the Spitzer form of resistivity
which has a stronger temperature dependence than density
dependence[45]. The opposite is said for the liner material
which is a stronger function of density[5]. This explains
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the correlation of high temperature to high electrical con-
ductivity in the low density region near the dielectric and
the correlation of high density to high electrical conductiv-
ity in the liner region through comparing Fig. 5 and Fig. 4
to Fig. 6, respectively. The dielectric has a small con-
ducting layer that varies in size based on the AR model,
and is the most resistive portion of the simulation when
excluding the outer most vacuum resistivity buffer. This
dielectric conducting layer is due to thermal diffusion from
the current carrying low density surrounding material into
the bulk dielectric material causing it to heat creating a
density and temperature separation inside the dielectric.
The size of this layer is determined from the magnitude of
current in the low density material which is highest for the
NO AR model case and the lowest for the DA AR model
case. Note the dielectric warm conducting layer thickness
is the same for both the beryllium and aluminum simu-
lations, as this is an interplay between the dielectric and
VCP.

4. Conclusions

This work investigates striation ETI when AR is present
in a VCP that is surrounding a pulsed-power-driven
dielectrically-coated solid metal liner for a typical MagLIF-
like load based on Sinars et al. [12]. There are four AR
models chosen for the comparisons which are the Tum-
mel, Davidson, ion acoustic, and Buneman AR models[9],
and they are applied in a VCP surrounding dielectrically
coated aluminum and beryllium liners[12]. First, 1D fluid
simulations are used to evaluate the impact a VCP would
have on the magnetic diffusion wave keeping in considera-
tion that the vacuum density is pushed as low as feasibly
possible for present computational means. 2D simulations
provide striation ETI simulations and evaluate the effect
a VCP, early in time, has on ETI growth. The simula-
tions in 1D and 2D follow the setup described in Fig. 1,
and the conditions used for the VCP are as close to the
values reported by Welch et al. [2] as possible for density
and temperature (see Section 2).

Section 2 presents the impact of AR on the magnetic
diffusion wave in the presence of a VCP using 1D resistive-
MHD simulations. The current density is shown to vary
greatly between the different choices of AR models which is
characterized by a “delay” in the magnetic diffusion wave.
The delay is measured at 60 ns to be around a maximum
of 8 ns which implies the magnetic field accumulation in
the VCP delays the wave by 8 ns. Figure 2 shows this de-
lay and it originates from the temporal difference between
liner current density peaks between the left and right plots.
The most effective AR model at reducing magnetic field
accumulation in the electrically conducting vacuum is the
DA AR model followed by the IA, KT, and BU AR mod-
els and this is determined by the location of the internal
peak liner current compared to the simulations where a
VCP is absent. The current in the VCP is substantially
different across the different AR models, but the current

in the liner varies less than 10 %. Between the beryllium
and the aluminum, the beryllium shows the largest spatial
variation in the current peaks but still has nearly the same
delay as the aluminum case.

Section 3 explores how the delay impacts striation ETI
growth through the use of 2D resistve-MHD ETI simula-
tions. Unlike in 1D, the 2D simulations allow for disrup-
tion of the VCP layer early in time sourced through the
dielectric-hydrogen interface perturbation. The disruption
of the VCP allows for enhanced magnetic diffusion mean-
ing the delay is slightly smaller in the 2D simulations than
the 1D simulations when comparing Fig. 2 to Fig. 3. The
rationale follows the same approach as Yu et al. [46] where
the instead of a resistive inclusion there is a conducting in-
clusion and the fluid is magnetic field instead of current
density. Although there were observable differences in the
ETI growth for the beryllium liner (see Fig. 4), the main
impact of the VCP comes from the structure and dynam-
ics of the outer dielectric interface. The VCP is shown to
cause ablation of the dielectric surface (see Fig. 5) lead-
ing to a current-carrying, low density, high temperature
vacuum plasma of dielectric material. The outer surface
of the dielectric is shown to develop RT-like bubbles and
spikes for high Atwood number. A dielectric conducting
layer develops inside the dielectric, and is sourced from
thermal conduction of the low density vacuum dielectric
plasma to the bulk dielectric material. This warm dielec-
tric conducting layer has an electrical conductivity that
is many orders of magnitude smaller than the electrical
conductivity in the liner or vacuum themselves (excluding
the resistive buffer in the axial layer at outermost radial
zone). An experiment that would measure this variation
in dielectric thickness can help determine the physical cor-
rectness and accuracy for the use of AR models in these
regimes.
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Appendix A. Coefficients of the multimode per-
turbation

mode (i) βi
1 0.883494
2 0.313251
3 0.139670
4 0.438109
5 0.642904
6 0.176107
7 0.856669
8 0.630685
9 0.682887
10 0.941226
11 0.236611
12 0.699510
13 0.440243
14 0.124690
15 0.643533
16 0.018313
17 0.415389
18 0.403712
19 0.122180
20 0.313884
21 0.207358
22 0.915150
23 0.038463
24 0.991615
25 0.755673
26 0.558353
27 0.586421
28 0.896183
29 0.305981
30 0.495188
31 0.476349
32 0.057556

Table A.1: These coefficients are the same as the ones from Masti
et al. [30], and are used in Eqs. (1) and (2).
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Chapter 5

Conclusions and Future Work

This dissertation’s main focus is in the study of ETI with AR. The result of this study
features three peer reviewed papers in which various aspects of ETI are investigated. The
first paper provides a code comparison of nonlinear ETI simulations including verification
tests. The second paper investigates the role of AR on the linear ETI growth. The third
paper investigates the indirect role of AR on nonlinear ETI growth for a setup similar to the
one used in the first paper. In totality, these three papers describe effective and accurate
modeling of ETI simulations, the direct impact of AR on linear ETI, and the indirect impact
AR has on nonlinear ETI evolution. The first and third papers study the striation form of
ETI, while the second paper studies both but only verifies with the filamentation form of
ETI1.

Chapter 2 uses Ares[1], a multi-physics rad-hydro code developed by LLNL, and USim, a
multi-physics code developed by Tech-X[2], to model the important physical aspects relevant
to simulating nonlinear ETI growth (see Chapter 2.2 for details about the codes). Chapter 2.3
provides two test cases which investigates the necessary contributions to capturing nonlinear
ETI evolution. Specifically, the magnetic diffusion test case (Chapter 2.3.1) determines a
code’s ability to solve the induction equation, and the linear ETI test case (Chapter 2.3.2)
determines how the code couples the magnetic diffusion to the resistive-MHD energy equa-
tion. The later case provides a direct comparison to theoretical growth which can be used
to obtain convergence information about a code’s numerical scheme. With both of the codes
verified using these test cases, they are then used to simulate nonlinear ETI growth in Chap-
ter 2.4. The nonlinear ETI simulations are compared qualitatively and quantitatively and
are shown to give similar characteristics, but the differences in evaluating the spatial deriva-
tive lead to the most stark differences as described in Chapter 2.4. Once compared across
USim and Ares, Ares is then used to perform a sensitivity analysis of the nonlinear ETI.
Chapter 2.4.2 shows that the nonlinear ETI growth is highly sensitive to EOS, and also
highlights the need for high fidelity tabulated EOS interpolation algorithms. Chapter 2.4.3
shows the nonlinear ETI growth sensitivity to vacuum resistivity, which results in guidance
on appropriate choices of vacuum resistivity. The optimal vacuum resistivity was found to
be approximately 1 × 104 times higher than the initial liner resistivity, as this provides a

1These forms of ETI are attributed to the “fast” form which assumes the skin depth is much greater
than the current thickness, i.e, no radial variation only azimuthal and axial.
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converged2 result. Lastly, Chapter 2.4.4 presents the sensitivity of nonlinear ETI growth to
vacuum density, and shows that it is not sensitive to vacuum density to the extent that it is
to vacuum resistivity and EOS.

Chapter 3 presents new linear ETI theory incorporating the added dependence resistivity has
on current density when AR is present extending its dependencies beyond just density and
temperature. The new linear theory is then verified through filamentation ETI simulations
in Ares. Chapter 3.2 presents the derivation of the new linear growth rate from conservation
of energy, Ampere’s law, Faraday’s law, and Ohm’s law. The new form is then used to probe
the striation and filamentation form of ETI and assess the impact of AR for those configura-
tions. Even without the added dependence of current density, the linear filamentation ETI
growth rate increases greatly when AR effects are included, see Chapter 3.2.1. The added
dependence is shown to have a stabilizing impact on filamentation ETI growth when AR is
included, see Chapter 3.2.2. Chapter 3.2.3 presents the impact of AR on the striation ETI
linear growth rate, and is found to not have an impact with the current densities achievable
today3. The linear growth rate derived in Chapter 3.2 is then verified through simulation
in Chapter 3.3. A filamentation ETI growth in a wedge is used for this verification, note
the comparison to theory is not as direct as it is for striation linear ETI. The indirectness
is due to striation linear ETI having a constant growth rate, while the filamentation ETI
growth rate is inherently dynamic due to its dependence on η and jz. One of the subtle
discoveries in Chapter 3.3 comes from the comparison of radiation with and without AR,
which shows that radiative cooling does not become dominant until higher temperatures in
the 1 keV range for a 1.0 × 10−6 g cm−3 plasma.

Chapter 4 dives into the indirect role of AR in VCP on the striation nonlinear ETI growth.
Specifically a dielectric-coated, MagLIF-like liner is simulated with a surrounding VCP using
the lowest possible density settings and temperature settings based on Welch et al. [3]. In
fluid simulations of pulsed-power implosions the current is driven by setting a magnetic field
at the outer boundary which diffuses through the vacuum, dielectric, and accumulates in the
liner. In resistive-MHD simulations, this process is not instantaneous which is denoted as
the magnetic diffusion wave. Chapter 4.2 shows that the presence of a VCP without AR can
delay the magnetic diffusion wave by upwards of 8 ns when the current pulse has reached the
60 ns mark. Three AR models almost entirely remove the delay (Davidson, Tummel, and
ion acoustic AR models), and one AR model only partially removes the delay (Buneman
AR model). A delay in the magnetic diffusion wave causes the current evolution to change
because they are inherently tied through Ampere’s law (J = ∇ × B/µ0 for electrostatic
fields), and this subsequently influences nonlinear ETI development. The impact of altering
the current evolution is more noticeable for beryllium liners vs aluminum liners. The 2D
simulations in Chapter 4.5 show that the delay of the magnetic diffusion wave is significantly

2Converged meaning the simulation is identical to a simulation which uses a near infinitely resistive
vacuum

3With large enough current densities AR can have a prominent role in the striation form of ETI growth
(1.0 × 1014 A m−2).
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overpredicted by the 1D simulations in Chapter 4.2. The reduction in the delay is due to
2D turbulence disrupting the VCP layer early in time. The most impactful finding of this
chapter is the variation across the dielectric for the different AR models which can provide
an avenue for AR validation through experiments.

During this journey many ideas and concepts could not be pursued due to time constraints,
some are presented in the sections that follow and others are mentioned briefly here. First,
the simulations in Chapter 4 could have used a mass flux source at the outer boundary instead
of pre-existing VCP. The density would then be able to ramp up, and in combination with a
temperature ramp, provide an even more physically accurate representation of AR in a VCP.
Another interesting avenue forward is to investigate metallically coated MagLIF liners instead
of dielectrically coated liners, as this would alter the dynamics of the magnetic diffusion
wave and provide improved integration with a VCP. Although it was mentioned heavily in
Chapter 1 that the axial magnetic field in MagLIF is critical, none of the ETI simulations
presented here used an axial magnetic field or assess its impact on ETI which would provide
fruitful future work, specifically with AR in 3D. Lastly, one of the main arguments against
the use of AR in the pulsed-power HED community is their lack of experimental validation.
The next two sections discuss an in depth analysis that would hypothetically address these
concerns, the first uses MAGPIE experiments of wire-array explosions[4] and the latter
explores gas puff Z-pinches[5, 6].

MAGPIE Experiments

Although the Z-machine was the sole pulsed-power device modeled in this dissertation, many
other pulsed-power devices exist. The Mega Ampere Generator for Plasma Implosion Ex-
periments (MAGPIE) at Imperial College London is a pulsed-power machine that can reach
1 MA in 250 ns, and was one of the first pulsed-power machines to observe azimuthal struc-
ture in wire-array implosions[7]. Recent experiments on MAGPIE have explored magne-
tized plasmas[8] and astrophysical plasmas[9] through this wire-array configuration. These
university-based accelerators provide valuable open access to HED regimes that would oth-
erwise not be accessible.

Hare et al. [4] performed a wire array explosion, schematic shown in Figure 5.1, near a barrier
to drive magnetized turbulence, and observed azimuthal structure when using tungsten wires
as shown in Figure 5.2. The origin of the azimuthal structure is unknown, but was not present
when aluminum wires were used as shown in Figure 5.3. There are currently three hypotheses
as to the origin of the observed structure: a two-stream instability, radiative condensation
instability, and the ETI. The plasma at the time of the observed structure is magnetized
with a plasma beta of approximately 0.8, which is the ratio of dynamic pressure to magnetic
pressure. At this instance in time, the plasma density is 5.0 × 1017 cm−3 which is ideally
suited for the use of AR models, see Chapter 1.6. Masti et al. [10] provides an avenue to
address the aforementioned third hypothesis, that with a combination of ETI and AR, the
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Figure 5.1: Schematic of
the MAGPIE wire array
experiment for aluminum
and tungsten wires[4].

Figure 5.2: Tungsten radiog-
raphy of the MAGPIE exper-
iment[4] showing the stratified
structure.

Figure 5.3: Aluminum radio-
graphy of the MAGPIE ex-
periment[4] showing absence of
structure (does show a reverse
shock).

observed striation structure may be explained.

The radiography images in Figures 5.3 and 5.2 are taken in the x-z plane where x̂ is directed
from the wire array center to the barrier, and ẑ is directed in the axial current direction.
Figure 5.3 shows striations aligned with a kz perturbation, this implies the possible presence
of striation ETI[11, 12, 13]. Masti et al. [10] shows that the striation form of ETI is insensitive
to AR effects for aluminum, which could explain the lack of observed structure from the
aluminum radiograph. The same study will be applied to tungsten, and will hopefully
validate experimentally the AR models that are being used. The validation would provide
confidence in the physics-based applicability of AR which can be an integral part in studying
the seeding structure of MagLIF.

Gas-Puff Z-pinch

The work in Chapter 2 utilizes the techniques presented in a semi-analytical model of
MagLIF, SAMM[14]. Narkis et al. [6] presents a semi-analytical model for a gas-puff staged
Z-pinch. The gas-puff staged Z-pinch, as shown in Figure 5.4, is similar to the MagLIF con-
cept with the main difference being in how the fuel is pre-magnetized. In gas-puff Z-pinches
the liner is gaseous instead of the solid metal in MagLIF. A current is driven in the same way
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Figure 5.4: This schematic is Figure 1 from Narkis et al. [6] displaying a gas-puff staged
Z-pinch.

through this gaseous liner, but the dynamics of the problem change significantly. Because of
its low-density, the gaseous liner will accelerate to very high speeds as the current is driven.
The large acceleration would push the plasma fuel into a supersonic state which induces
a shock front. The shock front then heats the plasma fuel resulting in its magnetization.
Although very similar to MagLIF, this concept has a very different setup from a simulation
standpoint. Particularly, the gas-puff Z-pinch simulations require separate electron and ion
temperatures, anisotropic transport coefficients, and radiation physics to name a few.

The densities proposed for the gas-puff staged Z-pinch are 1.0 × 1017 cm−3 which corresponds
to roughly 1.0 × 10−6 g cm−3. Although Chapter 4 used very low density plasmas to simulate
the VCP they were still not at the experimentally reported values[16]. The staged gas-puff
Z-pinch provides a good platform to test the role of AR on ETI growth. A density of
1.0 × 10−6 g cm−3 is on the edge of simulation capability for nanosecond time scales and
micro metre spatial scales[10]. The proposed concept from Narkis et al. [6] investigates an
experiment conducted on the Zebra pulsed-power driver which is capable of achieving 1 MA
currents in 100 ns. The use of AR should be validated against experiments of the model
proposed by Narkis et al. [6], but comparing to this semi-analytical model would be a first
step to investigate AR in gas-puff Z-pinches. Additionally, upon further consultation with
the author, the estimated current density is approximately 1.0 × 107 A cm−3 at a modest
780 kA!

Rahman et al. [15] preformed experiments on the Zebra facility using Ar and Kr gas-puff
staged Z-pinches with deuterium as fuel. The experiments were conducted both with and
without an axial magnetic field. Figure 5.5 shows the result without an axial field in which
there are significant MRT fingers that have developed and are more noticeable in the krypton
shots. Figure 5.6 shows the radiographs when an axial magnetic field is present resulting in
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Figure 5.5: These radiographs are from Figure 7 of Rahman et al. [15] displaying a gas-puff
Z-pinch when an axial field is absent for argon (top row) and krypton (bottom row).

Figure 5.6: These radiographs are from Figure 8 of Rahman et al. [15] displaying the result
of using an axial field.

two key observations. First, without an axial field larger convergence ratios are achieved due
to the lack of additional pressure through magnetic flux compression. Second, the magnitude
of MRT growth with the axial magnetic field is significantly reduced, which was one of the
main benefits of using axially magnetized cylindrical loads[17]. Future work can benefit
from using the semi-analytical model from Narkis et al. [6] to verify the setup of a simulated
gas-puff staged Z-pinch, followed by using the data from Rahman et al. [15] to validate the
simulation and to understand the accuracy of AR models in these regimes.

The helical structure in Figure 5.6 can be compared between simulations using AR in
resistive-MHD for ETI growth and J × B in Hall-MHD for an axially magnetized current-
carrying VCP. ETI has the aforementioned filamentation and striation form of growth cor-
responding to azimuthally and axially growing modes, respectively. AR has a dependence
on the local magnetic field which changes the transition from one form of ETI to another
and could provide an explanation for the helical structure’s origin. Seyler et al. [18] de-
termined the helical structure originates from the J × B force in Hall-MHD simulations of
magnetized current-carrying VCP, but there were assumptions on the VCP resistivity such
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that the simulation resulted in a match to the experimental observations of Awe et al. [19].
A study of the helical structure origin using an axially magnetized gas-puff staged Z-pinch
would provide novel insight and potentially validate the findings of Seyler et al. [18].
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