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V. INTRODUCTION

Fatigue failures in structural components of aircraft, other
vehicles, and machinery are caused by the initiation and cyclic growth
of one or more cracks from areas of stress concentrations. The rates
at which these cracks propagate and the maximum crack size at failure,
depend primarily on the material, envirommental conditions, structural
configuration, and the type and magnitude of loading ;pplied to the
component. In the last decade, many investigators (for exsmple, see
refs. 1-3) have observed that a correlation exists between the crack tip
stress-intensity factor and the rates of fatigue crack propagation in
simple and complex specimens. Reference 3 has demonstrated that the
stress-intensity solutions can be used to predict the crack propagation
life of built-up structures. Therefore, a technique for calculating
the stress-intensity factors for simply and multiply connected regions
containing cracks should be useful to designers working in the fields of
fatigue and fail-safe concepts.

Several investigators in the past two decades have obtained
theoretical solutions for cracks growing in the vicinity of stress
concentrations. For example, Bowie (ref. 4) presented the solution for
radial cracks originating from a circular hole in an infinite plate
subjected to a biaxial state of stress. Grebenkin and Kaminskii
(ref. 5) have analyzed the propsgation of cracks from the edge of a
curvilinear hole in an infinite plate subjected to a biaxial state of
stress. Erdogan (ref. 6) has presented the analysis for cracks in the

vicinity of wvarious notches in infinite and finite plates under



longitudinal shear. Isida (ref. 7) has analyzed the case of a crack
approaching a circular hole in an infinite plate subjected to a remote
state of stress. References 4 through 6 employed a conformal mapping
procedure to obtain the wvarious solutions and reference 7 employed
superposition of appropriate series stress functions to satisfy the
stress conditions on the hole and crack boundary.

In the present investigation, theoretical stress -analyses were
performed for the case of cracks emanating from, or in the vicinity of
holes or boundaries of various shapes in two-dimensional elastic bodies.
The solution is based on the compléx variable method developed by
Muskhelishvili (ref. 8) and a numerical technique known as boundary
collocation or point matching (ref. 9) for approximating the boundary
conditions. Several techniques were used in the collocation method to
approximate the boundary conditions and the results were compared in a
few selected problems. These techniques included specifying boundary
stresses at equally spaced points on the boundary, specifying the
resultant forces along arcs on the boundary, and a least-squares tech-
nique developed in the text for minimizing the resultant force or dis-
placement residuals along the boundary. The complex stress functions
developed for simply and multiply connected regions containing cracks
automatically satisfy the boundary conditions on the crack surfaces.
The influence of the remaining boundaries on the crack tip stress-
intensity factor for numerous boundary-value problems has been
calculated. The types of configurations investigated included the

case of cracks emanating from a circular hole, the case of a crack



approaching and intersecting multiple-circular holes along the plane

of the crack, the case of a crack propagating between multiple-circular
holes where the centerline of the holes is perpendicular to the plane
of the crack, and the case of cracks emanating from an elliptical hole.
The configurations investigated were in an infinite plate and subjected
to either internally or externally applied loads.

In the vicinity of stress concentrations, the local stresses may
exceed the proportional limit of the material at some time in the
loading history. 1In this situation, the local elastic solution becomes
invalid and more elaborate elastic-plastic analyses are required to
determine the local stresses and strains. 1In the past decade,
Barenblatt (ref. 10) and Dugdale (ref. 11) have developed a simple
model of yielding at the tip of a crack. Vitvitski and Leonov (ref. 12)
have extended the model to the case of yielding at the edge of a
circular hole. The Barenblatt-Dugdale model assumes that yielding
occurs along a strip (wedge-shaped) in front of the crack. In the
present investigation, the boundary collocation technique and the
complex stress functions formulated are used to develop a new model of
yielding at a crack tip. The new model assumes that the yield zone is
circular instead of the wedge-shaped zone, thereby introducing a two-
dimensional yield zone. Plastic zone lengths are calculated from the
new model and are compared with those calculated from the Barenblatt-

Dugdale model for the case of a crack in an infinite plate.



VI. SYMBOLS

nth coefficient in complex stress function

nth coefficient for sth influence function

crack length, in.

nth coefficient in complex stress function

measurement of elliptical axis (major or minor) along the
y axis, in. ‘

nth coefficient in complex stress function

nth coefficient for jth pole in complex stress function

distance from centerline of the crack to the back edge of
the circular plastic zone, in.

nth coefficient in complex stress function

nth coefficient for the jth pole in complex stress function

distance from centerline of the crack to the center of the
circular hole, in.

error function at point m on the boundary

stress-intensity correction factor for the influence of a
particular boundary condition

desired resultant force per unit thickness boundary
condition in y direction, kips/in.

resultant force per unit thickness in x direction, kips/in.

resultant force per unit thickness in y direction, kips/in.

nth coefficient for sth influence function

defined in equation (7)



=

desired resultant force per unit thickness boundary
condition in x direction, kips/in.

nth coefficient for sth influence function

defined in equation (7)

nth coefficient for sth influence function

stress-concentration factor

stress-intensity factor, ksi-inl/2

Jth boundary

total number of points at which the error function was
evaluated

resultant moment per unit thickness about origin, kips

number of coefficients in each series stress function

total number of coefficients used in the solution of a
particular boundary-value problem

total resultant force per unit thickness acting on the
boundary in x direction, kips/in.

pressure, ksi

total resultant force per unit thickness acting on the

boundary in y direction, kips/in.

measurement of elliptical axis (méjor or minor) along the

x axis, in.
minimum radius of curvature for ellipse, in.
applied stress at infinity, ksi
displacement in x direction, in.

displacement in y direction, in.



®,p, ¥, QX

coordinate location of pole on x axis, in.

coordinate location of pole on y axis, in.

complex variable, z = x + iy

location of pole in x,y plane

angle measured between the x axis and the normal to a
boundary, radians

angle measured between x axis and a line connecting the
origin and a point on the boundary, radians

defined by equation (12)

coordinate measured along the contour of the boundary, in.

material constant

contour around hole boundary Lj

ratio of applied stress at infinity in the y direction to
the stress in the x direction

Lame's constant (shear modulus)

Poisson's ratio

plastic zone length, in.

yield stress for an elastic-perfectly plastic material, ksi

internal stress in the x direction, ksi

internal stress in the y direction, ksi

applied stress normal to the boundary, ksi

applied shear stress tangential to the boundary, ksi

internal shear stress, ksi

complex stress functions



VII. THEORETICAL DEVELOPMENTS

Complex Stress Functions For Cracked Bodies

One of the major developments in the field of two-dimensional
elasticity has been the works of Muskhelishvili (ref. 8) on the complex
potentials due to Kolosov for the two-dimensional equations of
elasticity. The representation of biharmonic functions by analytic
functions of the complex variable, 2z = x + iy, has led to a general
method for solving plane strain and generalized plane stress problems.
Further details on the Kolosov-Muskhelishvili method are given in
appendix A.

The formulation of the complex potentials or stress functions for
simply and multiconnected regions containing cracks follows that of
Erdogan (ref. 13) and Kobayashi, Cherepy, and Kinsel (ref. 14).

In the sequel, it will be assumed that the configuration and
loading are symmetric about the x and y axes. However, in the general
case of nonsymmetrical loading and configuration, boundary-value
problems can also be treated by the Kolosov-Muskhelishvili method.‘

Suppose we consider a straight crack which is located along the
x axis as shown in figure 1. The complex stress functions for the

configuration cut out by the dashed lines (annulus region) are given by

\

0}

@(Z) (Do(Z) + CD].(Z)
and > (1)

¥(z)

Vo(z) + ¥ (2) )



The subscripts denote the corresponding stress functions which are used
to approximate the boundary conditions on boundaries Lo and I,
respectively. The complex stress functions given in equation (1) are
analytic inside the annulus region. The stress functions used to
satisfy the boundar& conditions on the external boundary L, are

expressed as

)
0p(z) = 22 - &2 E: A zPR + g EET B, z°"
n=0 n=0
and > 2)
Vo(z) = 22 - &2 X Az?R - 7 z B, 72"
=6 n=0 )

where the coefficients A, and B, are real. Further details on the
formulation of these and other stress functions are given in appendix B.
In the situation where the boundary Ly is located at infinity, the
coefficients Ay and By can be written in terms of the applied stress

at infinity,

\
=3
and > o (3)
_ S
By = E(x - l))

and the remaining coefficlents are set equal to zero. For the internal

boundary L, the stress functions are expressed as
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C
(I)l(z)= ze-aez._n.+zz_ril_
n=1 % n=1 2
and ) > (h)
[oe] 0]
C D
= 2 _ .2 _n it £
Wi(z) = \z al Ez —n z }Z —n
n=1 n=1

where the coefficients C, and D, are real. These functions contain
poles of various order at the origin and are used, primarily, to satisfy
boundary conditions for cracks emanating from a circular hole. The
stress functions, equations (2) and (4), automatically satisfy the
boundary conditions on the crack surfaces. /The conditions on the
remaining boundaries are approximated by the series solution. The
stress-intensity factor at the crack tip, =z = *a, in figure 1 as
calculated from equations (2) and (4) by using equation (31) and the

relation @(z) = ¢'(z) can be written as follows

00 ’ [os]
k=8SVa l+§2Ana2n+Z-2-02—E (5)

n=i n-1 %
where the term in the brackets is a dimensionless function which accounts
for the influence of boundaries Ly and Lj on the stress-intensity
factor for a single crack in an infinite plate.

In the special case of internal boundaries (multicircular or

elliptical holes) which require the use of poles at various stations

along the x or y axis, the stress functions are given by



10

(o] (o]
Cs D.
Jn Jn
0:(z) = V22 - a2 }: —_— 1t g —
J (z2 - z2)n (z° - z2)n
n=1 Jd n=1 J
and (6)
= - D
/ ' Jn Jn
Wj(z) = 22 - a? }; 2 o\n z }j 2 2\n
n=1 (2% - Zj) nel (2 - zj)

where the coefficients Cj, and Dy, are real. In ﬁhese particular
stress functions the pole, zj, must lie on either the x or ¥y axis and
be symmetric gbout the y or x axis, respectively. These stress functions
are used to satisfy the boundary conditions for a crack emanating from
an elliptical hole and for the case of a crack in the presence of
multiple~circular holes on the x or y axis. It should be noted that
when the crack length approaches zero in these stress functions, they
reduce to the form for multiply connected regions without cracks. For
the general case where poles must be located off the axes, stress

functions analogous to those in equation (6) may be generated to solve

other types of boundary-value problems.



VIII. BOUNDARY COLLOCATION METHOD

The method of boundary collocation is a numerical technique used
for obtaining solutions to various types of boundary-value problems.
The technique begins with an exact series solution to a given linear
partial differential equation which contains a specified number of
unknown coefficients. The conditions of symmetry can be used to
eliminate those terms in the series which are inappr&priate for the
problem being investigated. In the case of two-dimensional elasticity
problems the biharmonic equation is the governing partial differential
equation for the region of interest. The values of the unknown
coefficients are then determined from linear simultaneous equations
that satisfy certain specified conditions on the boundaries; such as
stress, force, or displacement. The series solution obtained satisfies
the prescribed conditions in the interior of the region exactly, and
those on the boundary epproximately.

Various techniques have been used by several investigators to
satisfy the conditions along the boundary of simply and multiconnected
regions. In a technique used by Conway (ref. 15), the values of the
coefficients were determined from the criterion that the boundary
conditions should be satisfied exactly at a specified number of evenly
spaced points along the boundary. Hulbert, et al. (ref. 16) and
Hooke (ref. 17) used the criterion that the coefficients should be
selected so that the sum of the squares of the stress residuals at a
specified number of points on the boundary should be a minimum.

Kobayashi, Cherepy, and Kinsel (ref. 14) used the former technique and

11
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Hulbert, et al. (ref. 16) used the latter technique for analyzing a
finite plate with a crack. The techniques employed in the present
investigation consist of specifying the stresses at equally spaced
points on the boundary, specifying the resultant forces along arcs on
the boundary, and a least-squares technique used for minimizing the
resultant force or displacement residuals along the boundary. The
three techniques were used in the solution of several boundary-value
problems in order to compare their rates of convergence. Further
details on the technique used for specifying the boundary stresses are
given in appendix C. The techniques treated herein concern the methods
used for specifying the resultant forces or displacements on the
boundary and that used for minimizing the resultant force or displace-
ment residuals along the boundary.

The complex equation for the resultant forces and displacements,

see appendix A, can be written in terms of & and V as

pa(z) + ¥(Z) + (z - 2)2'(2) = £ + ig (7)
where
1 f F ‘ ‘
B= = - g:F
Y CO ) CO
B = =k f = -2uu g = =2uv

The location of CO is completely arbitrary, however, for all
problems considered the location was the intersection of the boundary

with the x or y axis. Further details on the location of &5 are
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given in the section on the "Application of the Boundary Collocation
Method." From the complex stress functions ® and V¥ (for example,

eq. (2)) the expression for f and g can be written as

o e & ¢
- zAnFlnlc v ) BnF2n|g
n=0 0 n=0 - (0]
E o
¢ & ¢
o Gl Gl

where an and GSn (s = 1,2) denote the influence functions for the
respective unknown coefficients. In the case of multiple boundaries
or poles the contribution to f and g due to each additional étress
function must be added to equations (8). It should be noticed that in
equations (8), the number of terms in each series are truncated to the
same number of coefficients. This was found to be a computational
advantage in formuleting the matrix solution. The values of the
functions Fsn and Gg, at the lower limit {5 were determined from
the location of QO in the various stress boundary-value problems.
For displacement boundary-value problems, the values of Fgn and Ggp
at the lower limit must be set equal to zero, see equation (7)..:The
values of Ay and By were determined from the stress conditions at
infinity for the case of a crack in an infinite plate. The conditions
along the various boundaries were specified for the particular boundary-

value problem considered.
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In the technique used for specifiying the resultant forces along
arcs on the boundary, equations (8) were evaluated at N points on the
boundary and the resulting equations were solved on a computer for the
unknown coefficients. Further details on the computer and matrix
solutions are given in the section on "Digital Computer and Matrix
Solution." The resulting coefficients were then used to calculate
the stress-intensity factor and the local stress distributions from
the appropriate stress functions.

In general, there will be an error in the boundary condition at a
given point m, since there are only a finite number of unknown

coefficients in equations (8), and the square of this error is written

as
2
E AnFJ_nI Z BnF2n
n=0 n=0 n
2
z AnGlnl z BnG.?n '(9)
n=0 n=0 0

where Fn and Gp are the desired boundary conditions and Fgn and
Ggn are the influence functions from equations (8) evaluated at_point
m. In the case of multiple boundaries or poles the contribution of
additional stress functions to the error at point m must be added to
each term in equation (9). If the criterion is used that the sum of
the squares of the errors at a specified number of points, M, along

the boundary should be a minimum,
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M M
azles > ) &

- =0 ™ e (10)
A, OB,

a set of symmetrical simultaneous equations for the coefficients Aj

and B, are obtained

N N w
Z or‘npAn + Z Bann =8p
=l P=
N
Bpnfn * X TnpPn = €p
=1 =1
where
M
%np = Z (FlnFlp + GlnGlp)
m=
M
Bnp = Z (FQnFlp * GQnGlp) > (11)
-1
M
Tnp = Z (FonFap * Conlop)
m=1
M
Bp = z (FoFlp + c"OGlp)
m=1
and
M
m=l J
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The second partial of the error function with respect to the unknown
coefficients is positive indicating a definite minimum. These equa-
tions were solved on the computer and the resulting coefficients were
resubstituted into the appropriate stress function to calculate the
stress-intensity factor and the local stress distributions.

In the least-squares boundary collocation method, previously
described, it was necessary to specify the points on the boundary at
which the error function, equation (9), was evaluated. The procedure
used to specify these locations on the circular and elliptic boundaries
was to vary in equal increments the angle 6, see figure 2. The values
of r, R, and b are the radius of curvature (defined in fig. 2),
major axis and minor axis for the elliptical hole, respectively. The

increment, A9, is determined by

)

N = T (12)

where M 1is the total number of points on the boundary at which the
error function is evaluated. This procedure automatically concentrates
more points along the sections of the boundary which have smaller
radii of curvature. In general, the value of M wused in the éolution
of the boundary-value problems in the section "Application of the
Boundary Collocation Method" was twice the total number of unknown

coefficients in the stress functions.



IX. APPLICATION OF THE BOUNDARY COLLOCATION METHOD

In the following section the boundary collocation method and the
complex variable method of Muskhelishvili were used to analyze various
boundary-value problems. The types of configurations considered can be
grouped into three categories: (1) cracks emanating from a circular
hole, (2) cracks in the vicinity of multiple-circular holes, and
(3) cracks emanating from an elliptical hole in an infinite plate. In
each category a variety of boundary conditions were investigated. The
least-squares technique, as previdusly discussed, was used to satisfy
the boundary conditions in the final analysis of each boundary-value
problem. The number of unknown coefficients used in the complex stress
function (eq. (41)) was 90 for the circular holes and 160 for the
elliptical hole. The results are presented in terms of a crack tip
stress-intensity correction factor which accounts for the influence of
the various boundaries on the stress-intensity fdctor for a single crack

in an infinite plate.

Circular Hole

For the case of cracks emanating from a circular hole, figure 3,
several collocation techniques were used to satisfy the conditions on
the circular boundary. The results of these techniques are compared in
figure 4 and included such techniques as specifying the stresses at
equally spaced points on the boundary, specifying the resultant forces
along arcs on the boundary and the least-squares technique used for

minimizing the resultant force residuals along the boundary. In the

17
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force equations (eg. (7)), the location of the lower limit {; was the
intersection of the hole boundary with the x axis in the first quadrant.
In all of the techniques used the complex stress function had a pole at
the origin, zj = O. The analysis using the least-squares technique was
found to converge considerably faster than the other two methods. The
complex stress functions, equations (36) and (41), were both used in the
comparison of convergence in the case of the technique using resultant
forces. In specifying stresses at points, the convergence curve is only
shown for equation (36). In the least-squares technique two convergence
curves are presented, one for the situation where the number of points,
M, considered on the boundary was equal to the total number of coeffi-
cients in the stress functions and the other was for the case where the
number of points considered was five times the number of coefficients.
All techniques were found to converge as the number of coefficients
increased.

The correction factors for cracks growing from a circular hole
subjected to a remote stress at infinity were originally solved by Bowie
(ref. 4), using a conformal mapping procedure; however, the values given
in figure 5 (open circles) were obtained from a table listed in
reference 18. The solid curves in figure 5 show the results obtained in
the present investigation for three states of remote stress. The
overall agreement with Bowie's solutions was considered gocd.

In a similar configuration to that above, internal pressure was
applied to both the circular and crack boundaries as shown in figure 6.

The correction factors for two values of pressure applied on the crack
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surfaces are showr in figure 7. In the situation where no pressure is
applied to the crack surfaces (A = 0), the correction factor approaches
zero as the crack length approaches infinity. The dashed curve shows
the stress-inteﬁsity solution for the case of wedge-force loading on the
crack surfaces expressed in terms of the correction factor, F. The

wedge-force equation (ref. 18) is given as

S 2Rp

Va = Va

where the value of P 1is the resultant force per unit thickness acting

(13)

in the y direction due to the internal pressure, p. The solid and
dashed curves converge as the crack length increases. In the case where
A =1 the correction factor approaches unity, as would be expected.

As previously mentioned, Vitvitski and Leonov (ref. 12) presented
the solution for the Barenblatt-Dugdale model for a circular hole in an
infinite plate subjected to a uniaxial remote stress, see figure 8. 1In
the present investigation the correction factors given in figures 5 and 7
were used to derive the solution for the Barenblatt-Dugdale model for
the circular hole subjected to three separate states of remote stress.
The plastic zone lengths calculated are shown in figure 9 as a function
of the ratio of applied stress to that of the yield stress of the
material. The solid circles plotted in figure 9 show the plastic zone
lengths calculated by Vitvitski and Leonov; and these values were
obtained from a table given in reference 19. The agreement between the
solid circles and the present solution is good at the lower values of

applied stress; however, at the larger values the disagreement
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is considerable. At the larger values of applied stress, the plastic
zone calculations in the present solution approach the Barenblatt-Dugdale
model, indicating that the circular hole had a negligible effect on the
crack tip stress-intensity factor for large values of plastic zone
length.

For the case of a biaxial stress at infinity (A = 1), Savin
(ref. 20) presented a closed form solution for the plastic zone size and
the results are shown in figure 9 as the dashed curve. The analysis
given by Savin assumes that the plastic zone is a concentric circle
around the circular hole. The disagreement between the solid and dashed
curves for A =1 1is expected, primarily, because of the differences

in the assumed plastic zone configurations.

Multiple-Circular Holes

In the case of a multiconnected region as shown in figure 10, the
complex stress function (eq. (41)) was used with poles located at
zj = *d. The location of the lower limit §0 used in the force
equations (eq. (7)) was the intersection of the hole boundary with the
x axis at x = R + d. The correction factors for the case of a crack
approaching two circular holes in an infinite plate subjected to a
uniaxial state of stress are shown in fiéure 11 for several values of
d/R. The correction factors are plotted against the ratio of crack |
length, a, to the net section between the two holes, d - R. The
correction factors increase from their initial values at a = 0 to
extremely high values as the crack length approaches the edge of the

hole. The correction factors are elevated at small values of crack
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length because of the increase in the local stresses between the
two holes.

In the maintenance of aircraft structures the growth of fatigue
cracks is very commonly delayed or stopped by drilling holes at the ends
of the crack to eliminate the high stress concentrations. The resulting
boundary-value problem is similar to the configuration previously shown,
see figure 10, and corresponds to the case where the crack intersects
the two circular holes (a = d). The stress concentration factor at the
edge of the hole (x = R + d) was calculated as a function of the ratio
of hole radius, R, to the pole location, d, see figure 12. The stress
concentration factors were compared with those calculated from the
elliptical hole solution as shown by the dashed line. The elliptical
hole had the same radius of curvature as the circular holes and their
overall lengths were equivalent. The stress concentration factor for
the elliptical hole was consistently lower than those for the case of
two circular holes connected by a crack or slit.

As previously mentioned, Barenblatt and Dugdale have developed a
simple model of yielding at the tip of a crack. The plastic zone is
assumed to be an extension of the crack with surface tractions applied
along the extension to simulate the plastic behavior. In the present
investigation, a new model of yielding at the crack tip under extensional
loading is developed. The new model assumes that the yield zone is
circular, thereby introducing a two-dimensional yield zone, see
figure 13. As a matter of interest, the plastic zone size at a crack

tip subjected to longitudinal shear is circular, see reference 21.
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The plastic material (shaded region) is assumed to carry load only in

the y direction and the stress component on the circular boundary is

set equal to the yield stress of the material. The criterion used to
calculate the plastic zone size, p, is that the local stress at the
front edge of the circular zone (x = ¢ + p) is equal to the yield stress
of the material. This criterion is similar to that used by Barenblatt
and Dugdale. In figure 14, the plastic zone lengths calculated from the
new model are compared with those calculated from the Barenblatt-Dugdale

model for a crack in an infinite plate. The equation for the Barenblatt-

p = c {sec RISHN | ‘ (1)
204

The results based on the new model show a considerable reduction in the

Dugdale model is

plastic zone length from those calculated by the Barenblatt-Dugdale model
for low values of applied stress. In actuality, the plastic zone is
neither circular nor wedge shaped, as in the Barenblatt-Dugdale model,
but takes a similar shape to that of a "butterfly wing," see '
reference 22.

A further example of a multiconnected region containing cracks is
that of a crack located between two circular holes where the centérline
of the holes is perpendicular to the plane of the crack, see figure 15.

rThe correction factors for this case are shown in figure 16 for several
values of d/R. An interesting observation from the stress-intensity

solution is that the value of the correction factor, F, is equivalent
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in magnitude to the local stress concentration factor at the origin as
the crack length approaches zero. The stress-intensity factor at the
crack tip as the crack length approaches zero can be written in terms of

the local stress at the origin and the remote stress as follows

k=oy/a=8V/aF (15)

where Oy is the local stress at the origin for the case of an infinite
plate with two circular holes. From equation (15), the relation between

the local stress and the correction factor is
o.
F=-Sl=KT (16)

The local stress concentration at the origin for the case of two circular
holes in an infinite plate with no crack was obtained from reference 20
for a value of d/R = 2 and is plotted as the open circle on the

ordinate axis.

Elliptical Hole

For the case of cracks emanating from an elliptical hole,
figure 17, the complex stress functions, equations (36) and (41),
contained multiple poles located either on the x or y axis. The poles
were always located along the major axis of the ellipse. These poles
were equally spaced between and located at the origin and the center
of the minimum radius of curvature. In order to show convergence, both
collocation techniques employing the force equations were used to
satisfy the conditions on the elliptic boundary. The results of these

techniques are shown in figure 18. The ratio of the minor to the major
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axis was 0.25 and the ratio of crack length to the major axis was 1.01.
The major axis was located along the x axis, see figure 17. 1In the
specification of resultant forces along arcs on the boundary,

equations (36) and (41) were both used with 16 poles located on the x
axis in the first quadrant. In the least-squares technique used to
minimize the resultant force residuals, there were also 16 poles located
on the x axis. The least-squares technique was found -to converge
considerably faster than the technique using only resultant forces.

The correction factors for cracks growing from an elliptical hole
subjected to a uniaxial stress at infinity are shown in figure 19 for
several values of b/R. However, only two ratios of major to minor
axis were considered and they were 2 to 1 and 4 to 1. The number of
poles used in equation (41) for the 2 to 1 and 4 to 1 ellipse were 4 and
16, respectively. The dashed curves show the theoretical limits
expressed in terms of the correction factor, F, as the value of b
approaches either zero or infinity. The crack tip stress-intensity
factor in the limiting case, b = «, was obtained from the edge crack

solution (ref. 18) and is written as
k = 1l.12S\/a - R (17)

The other limit is for the case where the elliptical hole reduces to a
crack or slit. In all cases, except the edge crack solution, the value
of the correction factor approaches unity as the crack length approaches

infinity. The edge crack solution approaches 1l.12.



X. DIGITAL COMPUTER AND MATRIX SOLUTION

The computer system which was used to solve the linear simultaneous
equations and make the necessary calculations was a Control Data
Corporation 6000 Series Digital Computer using single precision
(14 digits). The linear simultaneous equations were solved by a
subroutine called from storage in the Langley Research Center computer
complex which employed Jordan's method (ref. 23) to solve for the
unknown coefficients. The computer calculations required from 1 to
4 minutes of computer time to solve 90 to 180 equations, respectively,

and to furnish the necessary output.
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XI. CONCLUDING REMARKS

Stress-intensity factors have been presented for several boundary-
value problems involving cracks in the presence of stress concentrations.
The types of configurations investigated included the case of crack
emanating from a circular hole, the case of a crack in the presence of
multiple-circular holes, and the case of cracks emanating from an
elliptical hole in an infinite plate subjected to a v;riety of loading
conditions. The solution of these problems was based on the complex
variable method of Muskhelishvili and a numerical technique referred to
as boundary collocation. The complex stress functions developed auto-
matically to satisfy the boundary conditions on the crack surfaces.

The conditions on the remaining boundaries were approximated by the
series solution. In general, the least-squares technique used for
minimizing the resultant force residuals along the boundary gave better
convergence in the boundary conditions than the techniques employing

only the resultant force or stress equations.
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XII. APPENDIX A

KOLOSOV-MUSKHELISHVILI METHOD

In the following section, the basic equations of the Kolosov-
Muskhelishvili method (ref. 8) are given and the series stress functions
for simply and multiply connected regions are formulated.

Suppose we consider a region, figure 20, simply or multiply
connected, on the x,y plane bounded by a number of contours, Lj. The
interior of the region is considered to represent a disk of unit
thickness. The known surface tractions are to be applied on the
boundaries of this region. The body forces are assumed to be zero and
the material is assumed to be isotropic and homogeneous. The equili-
brium and compatibility equations for this region can be combined to

form the biharmonic equation

M, , AN LM, (18)
axh ax23y2 Byh

where U(x,y) is the Airy stress function. It is a well-known fact

that the biharmonic function U(x,y) can be expressed as

U(x,¥) = Re[20(z) +X(z)]  (19)

where ®(z) and X(z) are two analytic functions. Therefore, the
generalized plane stress and plane strain problems of elasticity are

reduced to the determination of these functions from the specified

27
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boundary conditions. For this purpose, we must express the boundary
conditions in terms of &(z) and X(z).

In the case of the first fundamental problem of elasticity the
complex equatic.m for the normal and tangential shear stress applied to
the boundary can be expressed in terms of the redefined stress functions

@(z), 9(z)) as
op - ity = 0(z) +9(z) - [:(‘i - 2)9'(z) - o(z) + 0(z)]e?i™ (20)
where
o(z) = 9'(2)
and
2(z) = 3'(z) + 28"(z) +X"(2) - v'(2)
The stresses at an interior point z are given by

o * oy = 2Ep(z) +$Z_z_)-]
(21)
Oy - Op *2iT, = 2[('5 - z)p'(z) - 9(z) +'§(z)]

In the case of the second fundamental problem, the displacements

at a point are given by

3 —_—
2u(u + iv) = & fz o(z)dz - f Q(z)az - (z - Z)o(z) (22)

o (¢]

where k = 3 - 4y for the case of plane strain,



for the case of plane stress, Vv and p are Poisson's ratio and Lame's
constant, respectively.
In addition, we have the following expressions for the resultant

forces, F, and F,, and the moment, M,, about the origin due to the

X ¥

surface tractions acting on the arc §O - £ on the boundary.

N
—1|¢
FX+iFy=—i[fcp(z)dz+ fQ(E)d’Z +(z-E)cp(z)] .
> (23)
- - g
M0=Re[fpr(z)+Q(z)]d,zdz-pr(z)+Q(z)sz+z(z-'i)cp(z)] :
0
J

If the complex functions on the right-hand side of equations (20) to
(23) are known, a separation into real and imaginary parts will deter-
mine ﬁhe components on the left-hand side.

For the particular case of an infinite plate with a single hole
with the origin of the coordinate system located inside the hole, the

stress functions ¢(z) and Q(z) outside the boundary of the hole can

=
) s

N=:=00

) m

be written as

o(z)
) (24)
G(z)
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In these equations the coefficients Al; and B.; are not

independent but are related by

B!, = -KA!) = H - (25)
The values of P and Q are the total resultant forces per unit
thickness exerted on the contour of the hole. If no resultant forces
are applied to the hole boundary the magnitude of P and Q 1is zero.
If the stress components at infinity are to remain finite, the coeffi-
cients A} and By in the stress functions must be zero for n > 1.

Therefore, the functions will be of the type

?(z) = &) + ¢, (z)
(26)
o(z) = B) + Ql(z)

where the complex coefficients A6 and E% can be written in terms
of the applied stress at infinity. The functions @;(z) and ©(z)
are holomorphic outside the hole boundary and including the point at
infinity. Therefore, for sufficiently large |z| they may be expénded

in a series of the form

A' A' Al . w ‘
91 (z) = R e A
22 Z3 Z’+
> (27)
B! B! B!
Ql(z)= =2+ 20 4 -LL + .ee
22 23 Z )
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For the case where the single hole is circular and loading is either
uniform stress at infinity or uniform stress around the boundary of the
hole, the exact solution can be written from a finite number of terms
in equatibh (e7).

In the general case, as in figure 20, for a multiply connected
region the formulation of the complex stress functions‘are more com-

plicated and are given by

\
oo
RN
n=0 j=1'n=1 (z -z
} (28)
[o0]
Q(z):Eann+z }:
n=0 J=1 n-l
/
where z5 lies inside the internal boundary, Lj. In these equations
the coefficients Aél and Bél are not independent but are related by

equation (25). These stress functions are used to satisfy the boundary
conditions for regions which contain no singularities on the hole

boundary.



XIII. APPENDIX B

FORMULATION OF THE COMPLEX STRESS FUNCTIONS

FOR CRACKED BODIES

The theoretical formulation of the stress functions for two-
dimensional cracked bodies follows that of Erdogan (ref. 13), which was
based on Muskhelishvili's method (ref. 8) for an infinite plate,
isotropic and homogeneous, containing cracks and subjected to inplane
loading. From reference 8 it is seen that at the crack tip (z = a) the

functions ¢(z) and Q(z) can be written as,

. h
¢(z) = —}-I\/;—(T_-)—a + Hy(z)
) (29)
o(z) = _Eiﬁél; + H3(z) )

where Hs(z) are holomorphic and can be expressed as

(2]

H(z) = Z AL (z - a)" (%)

n=0

The strength of the singularity at the crack tip is characterized in
what is referred to as the stress-intensity factor. The stress-

intensity factor is determined by

k=2/2 lim Jz - a o(z) (31)

Z - a

32
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In the sequel, the formulation of the complex stress functions for
simply and multiply connected regions containing cracks is restricted to
the situation where the configuration and loading are symmetric about
the x and y axes. The boundary conditions that must be satisfied by

¢® and Q are given as follows

N
(1) Oy = Ty = 0 |x| <a ' y=0

(I1) Ty =v=0 |x| > a y=0 ? (32)
(III) Tgy =u =0 ly| >0 x=OJ

where the coordinate system used is shown in figure 21. The notations
X5 and V5 denote the location of poles on the x and y axes,
respectively.

The boundary conditions stated in equation (32) are sufficient to
define a relationship between the two analytic functions ¢ and Q.
The relationship for the term which contains the square root singularity
is o(z) = Q(z) and for the term which contains no square root singu-
larity is @(z) = -Q(z). For the special case of symmetric loading
about the x axis on the crack surfaces, the relationship between the
two analytic functions is o(z) = Q(z).

In addition to the boundary conditions stated in equation (32),
the condition which requires the single valuedness of displacements in

a multiply connected domain must also be satisfied. This condition

can be stated as



3k

K L%;j o(z)dz - \%;j Q(z)az = 0 (33)

where Aj is the contour around each separate hole boundary, Lj.

The formulation of the stress functions for the external and the
internal boundaries will be treated separately. For the external
boundary which is symmetric about the x and y axes, the stress function

can be written as

0

9o(z) = T;-=2 Z 220+ z Byz2" (34)
zZ

=8 n=0 n=0

where Aﬁ and Bﬁ are real coefficients. This function is similar to
the function used by Kobayashi, Cherepy, and Kinsel (ref. 14) for the
case of a crack in a finite plate. In order to use this function in the
least~squares boundary collocation method employing force equations, it
is convenient to express ¢, in terms of &, where @é(z) = @O(z).

The redefined stress function is obtained by integrating equation (34)

and is given by

0(z) = V22 - a2 Z Anz2n +z Z—' an2n (35)

n=0 n=0

where A, and B, are redefined coefficients. This function is
identical to the function used by Hulbert, et al. (ref. 16), for
the case of a crack in a finite plate.

For the case of internal boundaries which are symmetric about the

x and y axis, the stress function can be expressed as
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o] [ee]
ct A
z n n
fle) = m—s 2 ) i) s
z¢ - a% pn3 (2° - 2%) —1 (z° - z%)
J J
where Cﬁn and Dﬁn are real coefficients. The pole z; must be

located either on the x or y axis as shown in figure 21. Again it is

convenient to express Qj in terms of Qj’ as previously defined.

However, for the situation where the poles are located on the x axis,
the integral of equation (36) depends upon the relative magnitude of

X Therefore, it is of interest to investigate the four possible

J‘o

locations of the pole, Xy Reference 24 was used to evaluate some of

the more difficult integrals.

Case I: z5 = X5 = 0
o0 [o2]
= 1 -1 a V 22 - 32 D’n
%) = G-t =) * ) Cn Tt L
z- -8 n=2 2 n=2 *

(37)

(38)
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Case III: zj = xj = a
v 22 - Z - X4
05(z) = }j Cs a2 D31 n J
Jn 2 _,2 n-1 2xJ z + Xj
n=2 (z )
[o0]
+ ZDjn Z (39)
: > o0l
n=2 (z° - x%)
J
Case IV: zJ = xj > a
00
1 \/z - 82 \/x2 - a2 72 - g2
23(2) = Cq1l—7= 2 32 - * [ Cn 1
, n-
2V/xj - Vfi - of + n=2 (22 - x?)
e o]
+ Daq |2 n(Z2Z3) ] + D z (40)
J1 2X . z + x. , In 5 5 n-1
dJd J n=2 (Z - Xj)

In equations (37) through (40), the coefficients Cjn end Dj, are
redefined coefficients. In equation (40), it is necessary to set
le = Djl = 0 to satisfy the displacement conditions along the x axis
between the crack tip and the location of the pole.

In order to obtain a general stress function which can be used for
all possible locations of the poles on the x or y axis, the coefficients
le and Djl are arbitrarily set equal to zero in equations (37)

through (40). The resulting stress function is

=] o]

2 _ .2 '
= o Z -8 + D‘ z (""l)
Qj (Z) Z CJn 2 2 n"l 2 Jn 2 2 n_l
n=2 (25 - 25) = (25 - 29)




37

This stress function was used for the case of poles located on and
symmetric about the x or y axis. In the application of the boundary
collocation method, equations (36) and (41) were both used in the
solution of a few selected boundary-value problems in order to compare
their individual convergence. This stress function was ,also. used to

analyze various notch problems by setting the crack length equal to

Z€ro.



XIVv. APPENDIX C

STRESS CONDITIONS ON THE CIRCULAR BOUNDARY

The boundary collocation technique treated herein concerns the
method used to specify the normal stress and tangential shear stress
components on a circular boundary. The case investigated had two cracks
emanating from a circular hole in an infinite plate. - The complex

équation for the two stress components on the boundary can be written

as
op - ity = 0(z) +9(z) - ((Z - 2)9'(2) - 9(z) +0(2)]e?1O (42)
where
N C' LI
0(z) = e ) B+ ) B4 g(a) (:3)
72 - g2 ot z2n ] zen
and
C; o D!
(z) = ——2 MR = + 0y (z) (k)
722 . g2 &~ z2n ' zen
n=1 n=1

The stress functions ¢y and Qg were determined from the desired
stress conditions either oﬁ the crack surfaces or at infinity for a
single crack in an infinite plate. The remaining coefficients were
determined from the conditions that 0, =0 and Tpy =0 at equally

spaced points on the circular boundary, see figure 22. The resulting
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simultaneous equations were solved on the computer using single
precision. The equation for the stress-intensity factor for the
configuration shown in figure 22 as calculated by equation (31) is
as follows

N

: 2c!
k=S all+ 1

. 2n
n=la

(45)

where the term in the brackets is the correction factor for the
influence of the circular hole on the stress-intensity factor for

a single crack in an infinite plate.
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8F ® Vitvitski and Leonov (Ref. 12)
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Figure 9.- Plastic zone length for a circular hole in an infinite plate
subjected to a biaxial state of stress.
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Figure 10.— Cracks approaching two circular holes in an infinite plate
subjected to a uniaxial state of stress.
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Figure 1l.— Correction factor for a crack approaching two circular holes in
an infinite plate subjected to a unlaxial state of stress.
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Figure 12.—~ Maximum stress concentration factor for two circular holes
connected by a crack in an infinite plate subjected to a
uniaxial state of stress.
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Figure 13.— Circular yield zones at the tip of a crack in an infinite plate
subjected to a uniaxial state of stress.
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Figure 14.— Comparison of the plastic zone length for the Barenblatt-Dugdale
model and the circular yleld zone concept.
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Figure 15.— Crack located between two circular holes in an infinite plate
subjected to a uniaxial state of stress.
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Figure 17.— Cracks emanating from an elliptical hole in an infinite plate
subjected to a uniaxial state of stress.
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STRESS ANALYSIS OF SIMPLY AND MULTIPLY CONNECTED REGIONS
CONTAINING CRACKS BY THE METHOD OF
BOUNDARY COLLOCATION

By J. C. Newman, Jr.
ABSTRACT

Theoretical stress analyses were performed for the case of cracks
emanating from, or in the vicinity of holes or boundaries of various
shapes in two-dimensional elastic bodies. The solution is based on the
complex variable method developed by Muskhelishvili and a numerical
technique known as collocation for approximating the stress or displace-
ment conditions on the boundary with appropriate series stress functions.
These stress functions automatically satisfy the boundary conditions on
the crack surfaces. The boundary collocation method included techniques
such as, specifying stresses at equally spaced points on the boundary,
specifying the resultant forces along arcs on the boundary, and a least-
squares technique used to minimize the resultant force or displacement
residuals along the boundary. The types of configurations investigated
included the case of cracks emanating from a circular hole, the case of
a crack in the presence of multiple-circular holes and the case of
cracks emanating from an elliptical hole in an infinite plate. The
configurations investigated were subjected to a variety of loading
conditions. The results of the analyses are presented in terms of the

crack tip stress-intensity factor.
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