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V. INTRODUCTION 

Fatigue failures in structural components of aircraft, other 

vehicles, and machinery are caused by the initiation and cyclic growth 

of one or more cracks from areas of stress concentrations. The rates 

at which these cracks propagate and the maximum crack size at failure, 

depend primarily on the material, environmental conditions, structural 

configuration, and the type and magnitude of loading applied to the 

component. In the last decade, many investigators (for example, see 

refs. 1-3) have observed that a correlation exists between the crack tip 

stress-intensity factor and the rates of fatigue crack propagation in 

simple and complex specimens. Reference 3 has demonstrated that the 

stress-intensity solutions can be used to predict the crack propagation 

life of built-up structures. Therefore, a technique for calculating 

the stress-intensity factors for simply and multiply connected regions 

containing cracks should be useful to designers working in the fields of 

fatigue and fail-safe concepts. 

Several investigators in the past two decades have obtained 

theoretical solutions for cracks growing in the vicinity of stress 

concentrations. For example, Bowie (ref. 4) presented the solution for 

radial cracks originating from a ~ircular hole in an infinite plate 

subjected to a biaxial state of stress. Grebenkin and Kaminskii 

(ref. 5) have analyzed the propagation of cracks from the edge of a 

curvilinear hole in an infinite plate subjected to a biaxial state of 

stress. Erdogan (ref. 6) has presented the analysis for cracks in the 

vicinity of various notches in infinite and finite plates under 

.1 
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longitudinal shear. Isida (ref. 7) has analyzed the case of a crack 

approaching a circular hole in an infinite plate subjected to a remote 

state of stress. References 4 through 6 employed a conformal mapping 

procedure to obtain the various solutions and reference 7 employed 

superposition of appropriate series stress functions to satisf'y the 

stress conditions on the hole and crack boundary. 

In the present investigation, theoretical stress·analyses were 

performed for the case of cracks emanating from, or in the vicinity of 

holes or boundaries of various shapes in two-dimensional elastic bodies. 

The solution is based on the complex variable method developed by 

Muskhelishvili (ref. 8) and a numerical technique known as boundary 

collocation or point matching (ref. 9) for approximating the boundary 

conditions. Several techniques were used in the collocation method to 

approximate the boundary conditions and the results were compared in a 

few selected problems. These techniques included specifying boundary 

stresses at equally spaced points on the boundary, specif'ying the 

resultant forces along arcs on the boundary, and a least-squares tech-

nique developed in the text for minimizing the resultant force or dis-

placement residuals along the boundary. The complex stress functions 

developed for simply and multiply connected regions containing cracks 

automatically satisfy the boundary conditions on the crack surfaces. 

The influence of the remaining boundaries on the crack tip stress-

intensi ty factor for numerous boundary-value problems has been 

calculated. The types of configurations investigated included the 

case of cracks emanating from a circular hole, the case of a crack 
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approaching and intersecting multiple-circular holes along the plane 

of the crack, the case of a crack propagating between nrultiple-circular 

holes where the centerline of the holes is perpendicular to the plane 

of the crack, and the case of cracks emanating from an elliptical hole. 

The configurations investigated were in an infinite plate and subjected 

to either internally or externally applied loads. 

In the vicinity of stress concentrations, the local stresses may 

exceed the proportional limit of the material at some time in the 

loading history. In this situation, the local elastic solution becomes 

invalid and more elaborate elastic-plastic analyses are required to 

determine the local stresses and strains. In the past decade, 

Barenblatt (ref. 10) and Dugdale (ref. 11) have developed a simple 

model of yielding at the tip of a crack. Vitvitski and Leonov (ref. 12) 

have extended the model to the case of yielding at the edge of a 

circular hole. The Barenblatt-Dugdale model assumes that yielding 

occurs along a strip (wedge-shaped) in front of the crack. In the 

present investigation, the boundary collocation technique and the 

complex stress functions formulated are used to develop a new model of 

yielding at a crack tip. The new model assumes that the yield zone is 

circular instead of the wedge-shaped zone, thereby introducing a two-

dimensional yield zone. Plastic zone lengths are calculated from' the 

new model and are compared with those calculated from the Barenblatt-

Dugdale model for the case of a crack in an infinite plate. 



An 

Asn 

a 

VI. SYMBOLS 

nth coefficient in complex stress f'unction 

nth coefficient for sth influence f'unction 

crack length, in. 

nth coefficient in complex stress f'unction 

measurement of elliptical axis (major or minor) along the 

y a.xis, in. 

nth coefficient in complex stress function 

nth coefficient for jth pole in complex stress function 

distance from centerline of the crack to the back edge of 

the circular plastic zone, in. 

nth coefficient in complex stress f'unction 

nth coefficient for the jth pole in complex stress function 

distance from centerline of the crack to the center of the 

circular hole, in. 

error function at point m on the boundary 

stress-intensity correction factor for the influence of a 

particular boundary condition 

desired resultant force per unit thickness boundary 

condition in y direction, kips/in. 

resultant force per unit thickness in x direction, kips/in. 

resultant force per unit thickness in y direction, kips/in. 

nth coefficient for sth influence f'unction 

defined in equation (7) 
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desired resultant force per unit thickness boundary 

condition in x direction, kips/in. 

nth coefficient for sth influence function 

defined in equation (7) 

nth coefficient for sth influence function 

stress-concentration factor 

stress-intensity factor, ksi-in112 

jth boundary 

total number of points at which the error function was 

evaluated 

resultant moment per unit thickness about origin, kips 

number of coefficients in each series stress function 

total number of coefficients used in the solution of a 

particular boundary-value problem 

total resultant force per unit thickness acting on the 

boundary in x direction, kips/in. 

pressure, ksi 

total resultant force per unit thickness acting on the 

boundary in y direction, kips/in. 

measurement of elliptical axis (major or minor) along the 

x axis, in. 

min:inrum radius of curvature for ellipse, in. 

applied stress at infinity, ksi 

displacement in x direction, in. 

displacement in y direction, in. 
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coordinate location of pole on x axis, in. 

coordinate location of pole on y axis, in. 

complex variable, z = x + iy 

location of pole in x,y plane 

angle measured between the x axis and the normal to a 

boundary, radians 

angle measured between x axis and a line aonnecting the 

origin and a point on the boundary, radians 

defined by equation (12) 

coordinate measured along the contour of the boundary, in. 

material constant 

contour around hole boundary Lj 

ratio of applied stress at infinity in the y direction to 

the stress in the x direction 

Lame's constant (shear modulus) 

Poisson's ratio 

plastic zone length, in. 

yield stress for an elastic-perfectly plastic material, ksi 

internal stress in the x direction, ksi 

internal stress in the y direction, ksi 

applied stress normal to the boundary, ksi 

applied shear stress tangential to the boundary, ksi 

internal shear stress, ksi 

complex stress functions 



VII. THEORETICAL DEVELOPMENTS 

Complex Stress Functions For Cracked Bodies 

One of the major developments in the field of two-dimensional 

elasticity has been the works of :Muskhelishvili (ref. 8) on the complex 

potentials due to Kolosov for the two-dimensional equations of 

elasticity. The representation of biharmonic functions by analytic 

functions of the complex variable, z = x + iy, has led to a general 

method for solving plane strain and generalized plane stress problems. 

Further details on the Kolosov-Muskhelishvili method are given in 

appendix A. 

The formulation of the complex potentials or stress functions for 

simply and multiconnected regions containing cracks follows that of 

Erdogan (ref. 13) and Kobayashi, Cherepy, and Kinsel (ref. 14). 

In the sequel, it will be assumed that the configuration .and 

loading are s;ymmetric about the x and y axes. However, in the general 

case of nons;ymmetrical loading and configuration, boundary-value 

problems can also be treated by the Kolosov-:Muskhelishvili method. 

Suppose we consider a straight crack which is located along the 

x a.xis as shown in figure 1. The complex stress functions for the 

configuration cut out by the dashed lines (annulus region) are given by 

~(z) = ~0 (z) + ~1 (z) 

and (1) 

1 
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The subscripts denote the corresponding stress functions which are used 

to approximate the boundary conditions on boundaries Lo and L1, 

respectively. The complex stress functions given in equation (1) are 

analytic inside the annulus region. The stress functions used to 

satisfy the boundary conditions on the external boundary Lo are 

expressed as 

and 

00 00 

(2) 

where the coefficients An and Bn are real. Further details on the 

formulation of these and other stress functions are given in appendix B. 

In the situation where the boundary Lo is located at infinity, the 

coefficients Ao and ~ can be written in terms of the applied stress 

at infinity, 

and (3) 

~ =~("A - 1) 

and the remaining coefficients are set equal to zero. For the internal 

boundary L1, the stress functions are expressed as 
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00 00 

and (4) 

00 

n=l 

00 

5!.. - z \ 
z2n L 

n=l 

where the coefficients Cn and Dn a.re real. These functions contain 

poles of various order at the origin and a.re used, primarily, to satisfy 

boundary conditions for cracks emanating from a circular hole. The 

stress functions, equations (2) and (4 ), automatically satisfy the 

boundary conditions on the crack surfaces. ,The conditions on the 

remaining boundaries are approximated by the series solution. The 

stress-intensity factor at the crack tip, z = ±a, in figure 1 as 

calculated from equations (2) and (4) by using equation (31) and the 

relation ~(z) = ~ 1 (z) can be written as follows 

(5) 

where the term in the brackets is a dimensionless function which accounts 

for the influence of boundaries Lo and 11 on the stress-intensity 

factor for a single crack in an infinite plate. 

In the special case of internal boundaries (multicircula.r or 

elliptical holes) which require the use of poles at various stations 

along the x or y axis, the stress functions are given by 
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= /z2 - a2 

and (6) 

= Jz2 - a2 - z 

where the coefficients Cjn and Djn are real. In these particu1ar 

stress functions the pole, Zj, must lie on either the x or y axis and 

be symmetric about the y or x a.xis, respectively. These stress f'unctions 

are used to satisfy the boundary conditions for a crack emanating from 

an elliptical hole and for the case of a crack in the presence of 

mu1tiple-circu1ar holes on the x or y axis. It should be noted that 

when the crack length approaches zero in these stress f'unctions, they 

reduce to the form for nrultiply connected regions without cracks. For 

the general case where poles must be located off the axes, stress 

f'unctions analogous to those in equation (6) may be generated to solve 

other types of boundary-value problems. 



VIII. BOUNDARY COLLOCATION METHOD 

The method of boundary collocation is a numerical technique used 

for obtaining solutions to various t;ypes of boundary-value problems. 

The technique begins with an exact series solution to a given linear 

partial differential equation which contains a specified number of 

unknown coefficients. The conditions of symmetry can be used to 

eliminate those terms in the series which are inappropriate for the 

problem being investigated. In the case of two-dimensional elasticity 

problems the biharmonic equation is the governing partial differential 

equation for the region of interest. The values of the unknown 

coefficients are then detennined from linear simultaneous equations 

that satisfy certain specified conditions on the boundaries; such as 

stress, force, or displacement. The series solution obtained satisfies 

the prescribed conditions in the interior of the region exactly, and 

those on the boundary approximately. 

Various techniques have been used by several investigators to 

satisfy the conditions along the boundary of simply and multiconnected 

regions. In a technique used by Conway (ref. 15), the values of the 

coefficients were determined from the criterion that the boundary 

conditions should be satisfied exactly at a specified number of evenly 

spaced points along the boundary. Hulbert, et al. (ref. 16) and 

Hooke (ref. 17) used the criterion that the coefficients should be 

selected so that the sum of the squares of the stress residuals at a 

specified number of points on the boundary should be a minimum. 

Kobayashi, Cherepy, and Kinsel (ref. 14) used the former technique and 

11 



12 

Hulbert, et al. (ref. 16) used the latter technique for analyzing a 

finite plate with a crack. The techniques employed in the present 

investigation consist of specif'ying the stresses at equally spaced 

points on the boundary, specify'ing the resultant forces along arcs on 

the boundary, and a least-squares technique used for minimizing the 

resultant force or displacement residuals along the boundary. The 

three techniques were used in the solution of several boundary-value 

problems in order to compare their rates of convergence. Further 

details on the technique used for specif'ying the boundary stresses are 

given in appendix C. The techniques treated herein concern the methods 

used for specifying the resultant forces or displacements on the 

boundary and that used for minimizing the resultant force or displace-

ment residuals along the boundary. 

The complex equation for the resultant forces and displacements, 

see appendix A, can be written in terms of ~ and ~ as 

~~(z) + ~(z) + (z - z)~'(z) = f + ig (7) 

where 

~ = 1 f = -Fyls g = Fxls 
so so 

~ = -K f = -2µu g = -2µv 

The location of ~ is completely arbitrary, however, for all 

problems considered the location was the intersection of the boundary 

with the x or y axis. Further details on the location of So are 
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given in the section on the "Application of the Boundary Collocation 

Method." From the complex stress functions ~ and ~ (for example, 

eq. (2)) the expression for f and g can be written as 

(8) 

where Fsn and Gsn (s = 1,2) denote the influence functions for the 

respective unknown coefficients. In the case of multiple boundaries 

or poles the contribution to f and g due to each additional stress 

function must be added to equations ( 8). It should be noticed that in 

equations ( 8), the number of terms in each series are truncated to the 

same number of coefficients. This was found to be a computational 

advantage in fornru.lating the matrix solution. The values of the 

functions Fsn and Gsn at the lower limit ~O were determined from 

the location of ~ in the various stress boundary-value problems. 

For displacement boundary-value problems, the values of Fsn and Gsn 

at the lower limit must be set equal to zero, see equation (7) .. The 

values of Ao and Bo were determined from the stress conditions at 

infinity for the case of a crack in an infinite plate. The conditions 

along the various boundaries were specified for the particular boundary-

value problem considered. 



14 

In the technique used for specifying the resultant forces along 

arcs on the boundary, equations (8) were evaluated at N points on the 

boundary and the resulting equations were solved on a computer for the 

unknown coefficients. Further details on the computer and matrix 

solutions are given in the section on "Digital Computer and Matrix 

Solution." The resulting coefficients were then used to calculate 

the stress-intensity factor and the local stress distributions from 

the appropriate stress functions. 

In general, there will be an error in the boundary condition at a 

given point m, since there are only a finite number of unknown 

coefficients in equations (8), and the square of this error is written 

as 

ei = Fo - I AnFin I -{ 
N s 

n=O so 

(9) 

where F0 and G0 are the desired boundary conditions and Fsn and 

Gsn are the influence functions from equations (8) evaluated at point 

m. In the case of multiple boundaries or poles the contribution of 

additional stress functions to the error at point m must be added to 

each term in equation (9). If the criterion is used that the sum of 

the squares of the errors at a specified number of points, M, along 

the boundary should be a minimum, 



15 

M M 
0 l ei 0 l ei 

m=l m=l 
= 0 = 0 (10) 

a~ 011> 

a set of symmetrical sinnil.taneous equations for the coefficients An 

and Bzi are obtained 

where 

and 

N N l °'npAn + l 13npBn = ~ 
p=l p=l 

M 

°'np = l (F lnF lp + GlnGlp) 
m=l 

M 

l3np = l (F2nFlp + G2nGJ..1) 
m=l 

M 

'1np = l (F2nF2p + G2nG2p) 
m=l 

M 

~ = l (Fiflp + GoG1p) 
m=l 

M 

eP = l (FoF2p + GoG2p) 
m=l 

(11) 
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The second partial of the error f'unction with respect to the unknown 

coefficients is positive indicating a definite minimum. These equa-

tions were solved on the computer and the resulting coefficients were 

resubstituted into the appropriate stress f'unction to calculate the 

stress-intensity factor and the local stress distributions. 

In the least-squares boundary ~allocation method, previously 

described, it was necessary to specify the :points on the boundary at 

which the error function, equation (9), was evaluated. The procedure 

used to specify these locations on the circular and elliptic boundaries 

was to vary in equal increments the angle e, see figure 2. The values 

of r, R, and b are the radius of curvature (defined in fig. 2), 

major axis and minor a.xis for the elliptical hole, respectively. The 

increment, !::13, is determined by 

90 
M (12) 

where M is the total number of points on the boundary at which the 

error f'unction is evaluated. This procedure automatically concentrates 

more points along the sections of the boundary which have smaller 

radii of curvature. In general, the value of M used in the solution 

of the boundary-value problems in the section "Application of the 

Boundary Collocation Method" was twice the total number of unknown 

coefficients in the stress f'unctions. 



IX. APPLICATION OF THE :OOUNDARY COLLOCATION METHOD 

In the following section the boundary collocation method and the 

complex variable method of Muskhelishvili were used to analyze various 

boundary-value problems. The ty:pes of configurations considered can be 

grouped into three categories: (1) cracks emanating from a circular 

hole, (2) cracks in the vicinity of multiple-circular holes, and 

(3) cracks emanating from an elliptical hole in an infinite plate. In 

each category a variety of boundary conditions were investigated. The 

least-squares technique, as previously discussed, was used to satisfy 

the boundary conditions in the final analysis of each boundary-value 

problem. The number of unknown coefficients used in the complex stress 

f\lnction (eq. (41)) was 90 for the circular holes .and 160 for the 

elliptical hole. The results are presented in terms of a crack tip 

stress-intensity correction factor which accounts for the influence of 

the various boundaries on the stress-intensity factor for a single crack 

in an infinite plate. 

Circular Hole 

For the case of cracks emanating from a circular hole, figure 3, 

several collocation techniques were used to satisfy the conditions on 

the circular boundary. The results of these techniques are compated in 

figure 4 and included such techniques as specifying the stresses at 

equally spaced points on the boundary, specifying the resultant forces 

along arcs on the boundary and the least-squares technique used for 

minimizing the resultant force residuals along the boundary. In the 

17 
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force equations (eq. (7)), the location of the lower l:il!lit !;a was the 

intersection of the hole boundary with the x axis in the first quad.rant. 

In all of the techniques used the complex stress function had a pole at 

the origin, zj = o. The anal:ysis using the least-squares technique was 

found to converge considerably faster than the other two methods. The 

complex stress functions, equations (36) and (41), were both used in the 

comparison of convergence in the case of the technique· using resultant 

forces. In specifying stresses at points, the convergence curve is only 

shown for equation (36). In the least-squares technique two convergence 

curves are presented, one for the situation where the number of points, 

M, considered on the boundary was equal to the total number of coeffi-

cients in the stress functions and the other was for the case where the 

number of points considered was five t:il!les the number of coefficients. 

All techniques were found to converge as the number of coefficients 

increased. 

The correction factors for cracks growing from a circular hole 

subjected to a remote stress at infinity were originally solved by Bowie 

(ref. 4), using a conformal mapping procedure; however, the values given 

in figure 5 (open circles) were obtained from a table listed in 

reference 18. The solid curves in figure 5 show the results obtained in 

the present investigation for three states of remote stress. The · 

overall agreement with Bowie's solutions was considered good. 

In a similar configuration to that above, internal pressure was 

applied to both the circular and crack boundaries as shown in figure 6. 

The correction factors for two values of pressure applied on the crack 
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surfaces are showrl in figure 7. In the situation where no pressure is 

applied to the crack surfaces (A = O), the correction factor approaches 

zero as the crack length approaches infinity. The dashed curve shows 

the stress-intensity solution for the case of wedge-force loading on the 

crack surfaces expressed in terms of the correction factor, F. The 

wedge-force equation (ref. 18) is given as 

p 2Rp 
k=--=-

rcVa 1tVa 
(13) 

where the value of P is the resultant force per unit thickness acting 

in the y direction due to the internal pressure, p. The solid and 

dashed curves converge as the crack length increases. In the case where 

I\ = 1 the correction factor approaches unity, as would be expected. 

As previously mentioned, Vitvitski and Leonov (ref. 12) presented 

the solution for the Barenblatt-Dugdale model for a circular hole in an 

infinite plate subjected to a unia.xial remote stress, see figure 8. In 

the present investigation the correction factors given in figures 5 and 7 

were used to derive the solution for the Barenblatt-Dugdale model for 

the circular hole subjected to three separate states of remote stress. 

The plastic zone lengths calculated are shown in figure 9 as a f'unction 

of the ratio of applied stress to that of the yield stress of the 

material. The solid circles plotted in figure 9 show the plastic zone 

lengths calculated by Vitvitski and Leonov; and these values were 

obtained from a table given in reference 19. The agreement between the 

solid circles and the present solution is good at the lower values of 

applied stress; however, at the larger values the disagreement 
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is considerable. At the larger values of applied stress, the plastic 

zone calculations in the present solution approach the Barenblatt-Dugdale 

model, indicating that the circular hole had a negligible effect on the 

crack tip stress-intensity factor for large values of plastic zone 

length. 

For the case of a biaxial stress at infinity (A = 1), Savin 

(ref. 20) presented a closed form solution for the pl~stic zone size and 

the results are shown in figure 9 as the dashed curve. The analysis 

given by Savin assumes that the plastic zone is a concentric circle 

around the circular hole. The disagreement between the solid and dashed 

curves for A = 1 is expected, primarily, because of the differences 

in the assumed plastic zone configurations. 

Multiple-Circular Holes 

In the case of a multiconnected region as shown in figure 10, the 

complex stress function (eq. (41)) was used with poles located at 

Zj = ±d. The location of the lower limit s0 used in the force 

equations (eq. (7)) was the intersection of the hole boundary with the 

x axis at x = R + d. The correction factors for the case of a crack 

approaching two circular holes in an infinite plate subjected to a 

uniaxial state of stress are shown in figure 11 for several values of 

d/R. The correction factors are plotted against the ratio of crack 

length, a, to the net section between the two holes, d - R. The 

correction factors increase from their initial values at a = 0 to 

extremely high values as the crack length approaches the edge of the 

hole. The correction factors are elevated at small values of crack 
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length because of the increase in the local stresses between the 

two holes. 

In the maintenance of aircraft structures the growth of fatigue 

cracks is ver-y connnonly delayed or stopped by drilling holes at the ends 

of the crack to eliminate the high stress concentrations. The resulting 

boundar-y-value problem is similar to the configuration previously shown, 

see figure 10, and corresponds to the case where the crack intersects 

the two circular holes (a = d). The stress concentration factor at the 

edge of the hole (x = R + d) was calculated as a function of the ratio 

of hole radius, R, to the pole location, d, see figure 12. The stress 

concentration factors were compared with those calculated from the 

elliptical hole solution as shown by the dashed line. The elliptical 

hole had the same radius of curvature as the circular holes and their 

overall lengths were equivalent. The stress concentration factor for 

the elliptical hole was consistently lower than those for the case of 

two circular holes connected by a crack or slit. 

As previously mentioned, Barenblatt and Dugdale have developed a 

simple model of yielding at the tip of a crack. The plastic zone is 

assumed to be an extension of the crack with surface tractions applied 

along the extension to simulate the plastic behavior. In the present 

investigation, a new model of yielding at the crack tip under extensional 

loading is developed. The new model assumes that the yield zone is 

circular, thereby introducing a two-dimensional yield zone, see 

figure 13. As a matter of interest, the plastic zone size at a crack 

tip subjected to longitudinal shear is circular, see reference 21. 
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The plastic material (shaded region) is assumed to carry load only in 

the y direction and the stress component on the circular boundary is 

set equal to the yield stress of the material. The criterion used to 

calculate the plastic zone size, p, is that the local stress at the 

front edge of the circular zone (x = c + p) is equal to the yield stress 

of the material. This criterion is similar to that used by Barenblatt 

and Dugdale. In figure 14, the plastic zone lengths calculated from the 

new model are compared with those calculated from the Barenblatt-Dugdale 

model for a crack in an infinite plate. The equation for the Barenblatt-

Dugdale model is 

p = c rsec n:S 
( 2cr0 

(14) 

The results based on the new model show a considerable reduction in the 

plastic zone length from those calculated by the Barenblatt-Dugdale model 

for low values of applied stress. In actuality, the plastic zone is 

neither circular nor wedge shaped, as in the Barenblatt-Dugdale model, 

but takes a similar shape to that of a "butterfly wing," see 

reference 22. 

A further example of a multiconnected region containing cracks is 

that of a crack located between two circular holes where the centerline 

of the holes is perpendicular to the plane of the crack, see figure 15. 

The correction factors for this case are shown in figure 16 for several 

values of d/R. An interesting observation from the stress-intensity 

solution is that the value of the correction factor, F, is equivalent 
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in magnitude to the local stress concentration factor at the origin as 

the crack length approaches zero. The stress-intensity factor at the 

crack tip as the crack length approaches zero can be written in terms of 

the local stress at the origin and the remote stress as follows 

(15) 

where cry is the local stress at the origin for the case of an infinite 

plate with two circular holes. From equation (15), the relation between 

the local stress and the correction factor is 

cry 
F = - = ~ s (16) 

The local stress concentration at the origin for the case of two circular 

holes in an infinite plate with no crack was obtained from reference 20 

for a value of d/R = 2 and is plotted as the open circle on the 

ordinate axis. 

Elliptical Hole 

For the case of cracks emanating from an elliptical hole, 

figure 17, the complex stress functions, equations (36) and (41), 

contained multiple poles located either on the x or y axis. The poles 

were always located along the major axis of the ellipse. These poles 

were equally spaced between and located at the origin and the center 

of the minimum radius of curvature. In order to show convergence, both 

collocation techniques employing the force equations were used to 

satisfy the conditions on the elliptic boundary. The results of these 

techniques are shown in figure 18. The ratio of the minor to the major 
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axis was 0.25 and the ratio of crack length to the major axis was 1.01. 

The major axis was located along the x axis, see figure 17. In the 

specification of resultant forces along arcs on the boundary, 

equations (36) and (41) were both used with 16 poles located on the x 

axis in the first quadrant. In the least-squares technique used to 

minimize the resultant force residuals, there were also 16 poles located 

on the x axis. The least-squares technique was found ·to converge 

considerably faster than the technique using only resultant forces. 

The correction factors for cracks growing from an elliptical hole 

subjected to a uniaxial stress at infinity are shown in figure 19 for 

several values of b/R. However, only two ratios of major to minor 

axis were considered and they were 2 to 1 and 4 to 1. The number of 

poles used in equation (41) for the 2 to 1 and 4 to 1 ellipse were 4 and 

16, respectively. The dashed curves show the theoretical limits 

expressed in terms of the correction factor, F, as the value of b 

approaches either zero or infinity. The crack tip stress-intensity 

factor in the limiting case, b = oo, was obtained from the edge crack 

solution (ref. 18) and is written as 

k = 1.12 s.j a - R (17) 

The other limit is for the case where the elliptical hole reduces'to a 

crack or slit. In all cases, except the edge crack solution, the value 

of the correction factor approaches unity as the crack length approaches 

infinity. The edge crack solution approaches 1.12. 



X. DIGITAL COMPUTER AND MATRIX SOLUTION 

The computer system which was used to solve the linear simultaneous 

equations and make the necessary calculations was a Control Data 

Corporation 6000 Series Digital Computer using single precision 

(14 digits). The linear simultaneous equations were solved by a 

subroutine called from storage in the Langley Research Center computer 

complex which employed Jordan's method (ref. 23) to solve for the 

unknown coefficients. The computer calculations required from 1 to 

4 minutes of computer time to solve 90 to 180 equations, respectively, 

and to furnish the necessary output. 
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XI. CONCLUDJNG REMARKS 

Stress-intensity factors have been presented for several boundary-

value problems involving cracks in the presence of stress concentrations. 

The types of configurations investigated included the case of crack 

emanating from a circular hole, the case of a crack in the presence of 

multiple-circular holes, and the case of cracks emanating from an 

elliptical hole in an infinite plate subjected to a variety of loading 

conditions. The solution of these problems was based on the complex 

variable method of Muskhelishvili and a numerical technique referred to 

as boundary collocation. The complex stress f'unctions developed auto-

matically to satisfy the boundary conditions on the crack surfaces. 

The conditions on the remaining boundaries were approximated by the 

series solution. In general, the least-squares technique used for 

minimizing the resultant force residuals along the boundary gave better 

convergence in the boundary conditions than the techniques employing 

only the resultant force or stress equations. 
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XII. APPENDIX A 

KOLOSOV-MUSKHELISHVILI METHOD 

In the following section, the basic equations of the Kolosov-

Muskhelishvili method (ref. 8) are given and the series stress functions 

for simply and multiply connected regions are formulated. 

Suppose we consider a region, figure 20, simply er multiply 

connected, on the x,y plane bounded by a number of contours, Lj. The 

interior of the region is considered to represent a disk of unit 

thickness. The known surface tractions are to be applied on the 

boundaries of this region. The body forces are assumed to be zero and 

the material is assumed to be isotropic and homogeneous. The equili-

brium and compatibility equations for this region can be combined to 

form the biharmonic equation 

where U(x,y) is the Airy stress function. It is a well-known fact 

that the biharmonic function U(x,y) can be expressed as 

U(x,y) = Re~~(z) + X(zLJ 

where ~(z) and X(z) are two analytic functions. Therefore, the 

generalized plane stress and plane strain problems of elasticity are 

reduced to the determination of these functions from the specified 

27 

(18) 

(19) 
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boundary conditions. For this purpose, we must express the boundary 

conditions in terms of ~(z) and X(z). 

In the case of the first fundamental problem of elasticity the 

complex equation for the normal and tangential. shear stress applied to 

the boundary can be expressed in terms of the redefined stress functions 

(cp(z), n(z)) as 

O'n - i,.nt = cp(z> + qi""{Z) - CT-z - z)cp' cz> - cp(z) + nczue2ia. c20> 

where 

cp(z) = ~· (z) 

and 

n(z) = i•(z) + zi"(z) +i"(z) = V'(z) 

The stresses at an interior point z are given by 

(21) 
cry - o-x + 2iTxy = 2(jz - z)cp' (z) - cp(z) 

In the case of the second fundamental. problem, the displacements 

at a point are given by 

Jz Jy ~ 
2µ(u + iv) = K cp{z)dz - O(z)dZ - (z - z)cp(z) 

0 0 
(22) 

where K = 3 - 4v for the case of plane strain, 
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3 - v 
1 + v 

for the case of plane stress, v and µ are Poisson's ratio and Lame's 

constant, respectively. 

In addition, we have the following expressions for the resultant 

forces, Fx and FY' and the moment, Mo' about the origin due to the 

surface tractions acting on the arc s0 - s on the boundary. 

(23) 

If the complex functions on the right-hand side of equations (20) to 

(23) are known, a separation into real and :imaginary parts will deter-

mine the components on the left-hand side. 

For the particular case of an infinite plate with a single hole 

with the origin of the coordinate system located inside the hole, the 

stress functions ~(z) and n(z) outside the boundary of the hole can 

be written as 
co 

n=:-oo 
(24) 

co 



In these equations the coefficients A:l and B:l are not 

independent but are related by 

The values of P and Q are the total resultant forces per unit 

(25) 

thickness exerted on the contour of the hole. If no resultant forces 

are applied to the hole boundary the magnitude of P and Q is zero. 

If the stress components at infinity are to remain finite, the coeffi-

cients ~ and J3Ii in the stress functions must be zero for n > l. 

Therefore, the functions will be of the tY:Pe 

cp(z) = AQ +cpl (z)} 

n(z) = B0 + ~(z) 

where the complex coefficients AQ and Be) can be written in terms 

of the applied stress at infinity. The functions cp1 (z) and D.:i_(z) 

are holomorphic outside the hole boundary and including the point at 

(26) 

infinity. Therefore, for sufficiently large lzl they may be expanded 

in a series of the form 

A' A' A' -2 -3 -4 =-+-+-+ ... 
z2 z3 z4 

(27) 
B' B' B'4 -2 ...,_-;z:. -
=-+~+-+ 

z2 z3 z4 
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For the case where the single hole is circular and loading is either 

unifonn stress at infinity or unifonn stress around the boundary of the 

hole, the exact solution can be written from a finite number of terms 

in equation (27). 

In the general case, as in figure 20, for a multiply connected 

region the formulation of the complex stress functions are more com-

plicated and are given by 

where lies inside the internal boundary, In these equations 

the coefficients Aj1 and Bj1 are not independent but are related by 

equation (25). These stress functions are used to satisfy the boundary 

conditions for regions which contain no singularities on the hole 

boundary. 



XIII. APPENDIX B 

FORMULATION OF THE COMPLEX STRESS FUNCTIONS 

FOR CRACKED :OODIES 

The theoretical formulation of the stress functions for two-

dimensional cracked bodies follows that of Erdogan (ref. 13), which was 

based on Muskhelishvili's method (ref. 8) for an infinite plate, 

isotropic and homogeneous, containing cracks and subjected to inplane 

loading. From reference 8 it is seen that at the crack tip (z = a) the 

functions cp(z) and n(z) can be written as, 

cp(z) = 
H1 (z) 

+ ~(z) 
l./z - a 

n(z) 
H1 (z) 

+ H3(z) = 
v'z - a 

where Hs(z) are holomor:phic and can be expressed as 

00 

Hs ( z ) = l A~n ( z - a) n 
n=O 

The strength of the singularity at the crack tip is characterized in 

what is referred to as the stress-intensity factor. The stress-

intensity factor is determined by 

k = 2 {2 lim J z - a cp ( z ) 
z~a 
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(29) 

(30) 

(31) 
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In the sequel, the fo:rmu.1.ation of the complex stress functions for 

simply and nrultiply connected regions containing cracks is restricted to 

the situation where the configuration and loading are synnnetric about 

the x and y axes. The boundary conditions that must be satisfied by 

cp and n are given as follows 

(I) a: :T =0 y xy lxl <a y = 0 

(II) Txy = V = 0 Ix! >a y=O (32) 

(III) Txy = U = 0 IYI >O x = 0 

where the coordinate system used is shown in figure 21. The notations 

xj and Yj denote the location of pol.es on the x and y axes, 

respectively. 

The boundary conditions stated in equation (32) are ,sufficient to 

define a relationship between the two analytic functions cp and n. 
The relationship for the term which contains the square root singularity 

is cp(z) = n(z) and for the term which contains no square root singu-

larity is cp(z) = -n(z). For the special case of symmetric loading 

about the x axis on the crack surfaces, the relationship between the 

two analytic functions is ~(z) = n(z). 

In addition to the boundary conditions stated in equation (32), 
the condition which requires the single valuedness of displacements in 

a multiply connected domain must also be satisfied. This condition 

can be stated as 



~ j cp(z)dz - f n(z)dz = o 
Aj Aj 

(33) 

where Aj is the contour around each separate hole boundary, Lj· 

The fonnulation of the stress functions for the external and the 

internal boundaries will be treated separately. For the external 

boundary which is symmetric about the x and y axes, the stress function 

can be written as 

B' z2n n (34) 

where ~ and ~ are real coefficients. This function is similar to 

the function used by Kobayashi, Cherepy, and Kinsel (ref. 14) for the 

case of a crack in a finite plate. In order to use this function in the 

least-squares boundary collocation method employing force equations, it 

is convenient to express cp0 in terms of ~0 , where ~0 (z) = cp0 (z). 

The redefined stress function is obtained by integrating equation (34) 

and is given by 

00 

n=O 
A z2n + z n 

00 

l. B z2n 
n 

n=O 

Where An and Bii are redefined coefficients. This function is 

identical to the function used by Hulbert, et al. (ref. 16), for 

the case of a crack in a finite plate. 

(35) 

For the case of internal boundaries which are symmetric about the 

x and y axis, the stress function can be expressed as 
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(36) 

where Cjn and Djn are real coefficients. The pole zj must be 

located either on the x or y axis as shown in figure 21. Again it is 

convenient to express ~j in terms of ~j' as previously defined. 

However, for the situation where the poles are located on the x axis, 

the integral of equation (36) depends upon the relative magnitude of 

xj. Therefore, it is of interest to investigate the four possible 

locations of the pole, Xj• Reference 24 was used to evaluate some of 

the more difficult integrals. 

Case I: zj = xj = 0 

;!;. ta.n-1 ( a 
a V 2 z -

a2 x~J ~ __ _....J + L 
z2 _ 2 

a n=2 

z 
Djn ------

(z2 - 2)n-l xj 

co 

\~ 
+ L z2n-3 

n=2 

(37) 

(38) 
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Case III: zj = xj = a 

00 

~ l (z - x -~ + D· - ln J 
Jl 2Xj Z + Xj 

/ z2 - a2 
2 2 n-1 (z - X•) J 

00 

+ \ Djn __ __.z ___ _ 
L 2 2 n-1 

n=2 (z - xj) 

Case IV: z x > a j = j 

00 

+ Djl5~j ln(: ~ :~)] + n~-2, Djn 2 z 2 n-l 
(z - x.) J 

In equations (37) through (4o), the coefficients Cjn and Djn are 

redefined coefficients. In equation (40), it is necessary to set 

(39) 

(40) 

Cjl = Djl = 0 to satisfy the displacement conditions along the x axis 

between the crack tip and the location of the pole. 

In order to obtain a general stress function which can be used for 

all possible locations of the poles on the x or y axis, the coefficients 

Cjl and Djl are arbitrarily set equal to zero in equations (37) 

through (40). The resulting stress function is 

00 

= l 
n=2 

(41) 



37 

This stress function was used for the case of poles located on and 

symmetric about the x or y axis. In the application of the boundary 

collocation method, equations (36) and (41) were both used in the 

solution of a few selected boundary-value problems in order to compare 

their individual convergence. This stress function was also used to 

analyze various notch problems by setting the crack length equal to 

zero. 



XIV. APPEND IX C 

STRESS CONDITIONS ON THE CIRCULAR :OOUNDARY 

The boundary collocation technique treated herein concerns the 

method used to specify the normal stress and tangential shear stress 

components on a circular boundary. The case investigated had two cracks 

emanating from a circular hole in an infinite plate. · The complex 

equation for the two stress components on the boundary can be written 

as 

crn - iTnt = cp(z) + cp(z) - Qz - z)cp' (z) - cp(z) + TI(zLJe2i9 (42) 

where 

and 

N 
\ C' cp(z) = -;::::::::z== L n + 

Vz2 - a2 n=l z2n 

N 
z l C' n(z) = --;:::::== n 

'I z2 _ a2 z2n 
V n=l 

N 
\ D' 
L. 2: 

n=l z 
+ no (z) 

The stress functions cp0 and n0 were determined from the desired 

stress conditions either on the crack surfaces or at infinity for a 

single crack in an infinite plate. The remaining coefficients were 

(43) 

(44) 

determined from the conditions that crn = 0 and Tnt = 0 at equally 

spaced points on the circular boundary, see figure 22. The resulting 
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simultaneous equations were solved on the computer using single 

precision. The equation for the stress~intensity factor for the 

configuration shown in figure 22 as cal~ulated by equation (31) is 

as follows 

where the term in the brackets is the correction factor for the 

influence of the circular hole on the stress-intensity factor for 

a single crack in an infinite plate. 

(45) 



XV. REFERENCES 

1. Paris, P. C., Gomez, M. D., and Anderson, W. E., "A Rational 
Analytic Theory of Fatigue," The Trend in Engineering, 
University of Washington, Vol. 13, No. 1, January 1961. 

2. Donaldson, D. R., and Anderson, W. E., "Crack Propagation Behavior 
of Some Air Frame Materials," Crack Propagation Symposium, 
The College of Aeronautics, Cranfield, England, 1961. 

3. Figge, I. E., and Newman, J. C., Jr., "Prediction of Fatigue-
Crack-Propagation Behavior in Panels With Simulated Rivet 
Forces," NASA TN D-4702, 1968. 

4. Bowie, O. L., "Analysis of an Infinite Plate Containing Radial 
Cracks Originating From a Circular Hole," Journal of Math 
and Phys., Vol. 23, No. 1, 1956. 

5. Grebenkin, G. G., and Kaminskii, A. A., "Propagation of Cracks 
Near an Arbitrary Curvilinear Hole," Fiziko-Khimicheskaya 
Mekhanika Materialov, Vol. 3, No. 4, 1967. 

6. Erdogan, F., "Elastic-Plastic Anti-Plane Problems in Infinite 
Planes and Strips With Cracks or Cavities, NASA Contract 
NGR 39-007-011, Lehigh University, 1966. 

7. Isida, M., "Crack Tip Stress Intensity Factors For a Crack 
Approaching a Hole Centered on Its Plane," Lehigh 
University, 1966. 

8. Muskhelishvili, N. I., Some Basic Problems of Mathematical Theory 
of Elasticity, P. Noordhoff, 1953· 

9. Hulbert, L. E., The Numerical Solution of Two-Dimensional Problems 
of the Theory of Elasticity, Bulletin 198, Engineering 
Experiment Station, Ohio State University. 

10. Barenblatt, G. I., "Mathematical Theory of Equilibrium Cracks in 
Brittle Fracture," Advances in Applied Mechanics, Vol. VII, 
Academic Press, 1962. 

11. Dugdale, D. S., "Yielding of Steel Sheets Containing Slits," 
Jour. Mech. Phys. Solids, Vol. 8, 1960. 

12. Vitvitski, P. M., and Leonov, M. Y., "Slip Bands at Nonuniform 
Deformation of a Plate," VMRTT, Izdat, USSR, No. 1, Keiv, 
1962. 

4o 



13. 

14. 

15. 

16. 

17. 

18. 

19. 

21. 

22. 

23. 

24. 

41 

Erdogan, F., "On the Stress Distribution in Plates With Collinear 
Cuts Under Arbitrary Loads," Proceedings Fourth U.S. National 
Congress of Applied Mechanics, 1962. 

Kobayashi, A. S., Cherepy, R. D., and Kinsel, W. C., "A Numerical 
Procedure For Estimating the Stress Intensity Factor of a Crack 
in a Finite Plate, Journal of Basic Engineering, 1964. 

Conway, H. D., "The Approximate Analysis of Certain Boundary Value 
Problems, Journal of Applied Mechanics, 1960. 

Hulbert, L. E., Hahn, G. T., Rosenfield, A. R., and Kanninen, 
M. F., "An Elastic-Plastic Analysis of a Crack· in a Plate 
of Finite Size, Baltelle Memorial Institute, 1968. 

Hooke, C. J., "Numerical Solution of Plane Elastostatic Problems 
By Point Matching," The Journal of Strain Analysis, 1968. 

Paris, P., and Sih, G., "Stress Analysis of Cracks," Fracture 
Toughness Testing, ASTM STP-381, 1964. 

Wnuk, M. P., "Review of Some Russian Papers Pertinent to the 
Fracture of Solids," National Aeronautics and Space 
Administration Research Grant No. NsG-172-60, GALCIT 
SM 67-9, 1967. 

Savin, G. N., Stress Concentration Around Holes, Vol. l, 
Pergamon Press, New York, 1961. 

Hult, J. A. H., and McClintock, F. A., "Elastic-Plastic Stress and 
Strain Distribution Around Sharp Notches Under Repeated Shear," 
IXth International Congress of Applied Mechanics, Vol. 8, 
University of Brussels, 1957· 

Hutchinson, J. W., "Singular Behavior at the End of a Tensile Crack 
in a Hardening Material," Journal of Mechanics, Physics and 
Solids, Vol. 16, 1968. 

Fox, L., An Introduction to Numerical Linear A1gebra, Oxford 
University Press, 1965. 

Grabner, w., and Hofreiter, N., Integraltafel, Springer-Verlag, 
1957· 



The vita has been removed from 
the scanned document 



s 
~ 

~
 

( 
y t 

~~:
"'!

'!!
!:~

.~ 
L 

' 
-
-

...
. x

 
A

S
 

~
 

.
.
.
.
:
~
I
.
i
i
i
~
~
 

'-..
. 

~
 

' 

F:
ig

ur
e 

1
.-

C
ra

ck
 i

n
 a

n 
in

f'
in

it
e 

pl
at

e 
su

bj
ec

te
d 

to
 a

 b
ia

xi
al

 s
ta

te
 o

f 
st

re
ss

. 



t b _l
_ 

~
R
-
·
 

Fi
gu

re
 2

.-
C

on
fi

gu
ra

ti
on

 u
se

d 
fo

r 
de

te
rm

in
in

g 
th

e 
lo

ca
ti

on
 o

f 
th

e 
co

ll
oc

at
io

n 
po

in
ts

 f
or

 t
he

 c
ir

cu
la

r 
an

d 
el

li
p

ti
c 

bo
un

da
ri

es
. 

t: 



s 

I 
• 

A
 s 

aj 

F
ig

ur
e 

3
.-

C
ra

ck
s 

em
an

at
in

g 
fr

om
 a

 c
ir

cu
la

r 
ho

le
 i

n
 a

n 
in

fi
n

it
e 

p
la

te
 

su
bj

ec
te

d 
to

 a
 b

ia
xi

al
 s

ta
te

 o
f 

st
re

ss
. 

~
 

\J
I 



F 

.9
0 

.8
8 

.8
6 

.8
4 

.8
2

1
-,

 I
 

Fo
rc

e 
eq

s.
 

L
ea

st
-s

qu
ar

e 
E

q.
 (

41
) Fo

rc
e 

eq
s.

 
E

q;
 (

36
) 

"-
..

B
ow

ie
's

 s
ol

n.
 

F 
= 

0.
82

3 
.8

0 
{R

ef
. 4

) 

0 
20

 
40

 
60

 
80

 

k=
S

.j
'["

 F
 

A
=O

 
a R

 =
 1

.1
0 

Fo
rc

e 
eq

s.
 

E
q.

 (
41

) 

10
0 

12
0 

N
T,

 t
ot

al
 n

um
be

r 
of

 c
oe

ff
ic

ie
nt

s 

14
0 

16
0 

18
0 

Fi
gu

re
 4

.-
C

on
ve

rg
en

ce
 c

ur
ve

s 
fo

r 
cr

ac
ks

 e
m

an
at

in
g 

fr
om

 a
 c

ir
cu

la
r 

ho
le

 i
n 

an
 i

nf
'in

it
e 

pl
at

e 
· 

su
bj

ec
te

d 
to

 a
 u

ni
ax

ia
l 

st
at

e 
of

 s
tr

es
s.

 

~
 



1.
4 

I\ 
= 
-1

 

1.
2 .8

 
-

C
ol

lo
ca

ti
on

 
k 

= S
 .J

a F
 

F 
0 

B
ow

ie
's

 s
ol

n.
 

.6
 

(R
ef

. 4
) 

.4
 

.2 0 
u.
--
-:
..
--
:-
'"
:"
--
--
--
-i
.-
--
--
--
:-
i-
--
--
--
~-
--
--
-~
--
--
--
~-
--
--
--
:~
--
--
~ 

1.
0 

1.
2 

1.
4 

1.
6 

1.
8 

2.
0 

2.
2 

2.
4 

2.
6 

a R
 

F
ig

ur
e 

5
.-

C
or

re
ct

io
n 

fa
ct

o
r 

fo
r 

cr
ac

ks
 e

m
an

at
in

g 
fr

om
 a

 c
ir

cu
la

r 
ho

le
 i

n
 a

n 
in

fi
n

it
e 

p
la

te
 

su
bj

ec
te

d 
to

 a
 b

ia
x

ia
l 

st
at

e 
o

f 
st

re
ss

. 

~
 

-.:
i 



I-
a~
 

F
ig

ur
e 

6.
-

C
ra

ck
s 

em
an

at
in

g 
fr

om
 a

 c
ir

cu
la

r 
ho

le
 i

n
 a

n 
in

fi
n

it
e 

p
la

te
 

su
bj

ec
te

d 
to

 i
n

te
rn

al
 p

re
ss

ur
e.

 

&
 



F 

1.
0 .8
 .6
 .4 .2
 

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
·
-
~
-
-
-
-
-
-
-
-
-
-
-

-.
--

--
--

.... .... ......
.. ..... 

----
f 

W
ed

ge
-f

or
ce

 
.... _

 -- -
-

-- -
- --

--

-
C

ol
lo

ca
tio

n 
k 

= 
pJi

"'"
 F 

p 
k 

= 
1T-

lit" 
{R

ef
. 

18
) 

---
---

---
---

--
---

o _
__

__
__

__
__

__
_ _

_. _
__

__
__

__
__

__
__

__
__

__
_ ..

..&
 _

_
_

_
_

_
 _

,,
 _

_
_

_
_

_
 _

,,
 _

_
_

_
_

_
 _

, 

1.
0 

1.
2 

1.
4 

1.
6 

1.
8 

2.
0 

2.
2 

a R
 

2.
4 

2.
6 

F
ig

ur
e 

7.
-

C
or

re
ct

io
n 

fa
ct

or
 f

or
 c

ra
ck

s 
em

an
at

in
g 

fr
om

 a
 c

ir
cu

la
r 

ho
le

 i
n

 a
n 

in
fi

n
it

e 
pl

at
e 

su
bj

ec
te

d 
to

 i
n

te
rn

al
 p

re
ss

ur
e.

 

$ 



s 

I 
• 

A
S

 

~a
--
--
M 

F
ig

ur
e 

8
.-

Y
ie

ld
in

g 
fr

om
 t

he
 e

dg
e 

of
 a

 c
ir

cu
la

r 
ho

le
 i

n
 a

n 
in

fi
n

it
e 

p
la

te
 

su
bj

ec
te

d 
to

 a
 b

ia
x

ia
l 

st
at

e 
o

f 
st

re
ss

. 

\J
1 0 



1.0 

.8 

.6 

e. 
a 

.4 

.2 

0 

51 

- Collocation 

• Vitvitski and Leonov (Ref. 12) 

Barenblatt - Dugdale 
model for crack 

.2 .4 

I 
I 

I 

I 
I 

I 
I 

I 

/"A.= 1 

.6 

I 
I 

I 
I 

I 
I 

I 

I 
I 

I 

I 

1 
'/ 

I 
I 

I 
I 

1"- Savin (Ref. 20) 
"A. = 1 

.8 1.0 

Figure 9.- Plastic zone length for a circular hole in an infinite plate 
subjected to a biaxial state of stress. 
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Figure 10.- Cracks approaching two circular holes in an infinite plate 
subjected to a uniaxial state of stress. 
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Figure 11.- Correction factor for a crack approaching two circular holes in 
an infinite plate subjected to a unia.xial state of stress. 
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Figure 12.- Maximum stress concentration factor for two circular holes 
connected by a crack in an infinite plate subjected to a 

unia.xial state of stress. 
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Figure 13.- Circular yield zones at the tip of a crack in an infinite plate 
subjected to a uniaxial state of stress. 
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Figure 15.- Crack located between two circular holes in an infinite plate 
subjected to a uniaxial state of stress. 
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Figure 17.- Cracks emanating from an elliptical hole in an infinite plate 
subjected to a uniaxial state of stress. 
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STRESS ANALYSIS OF SIMPLY AND MULTIPLY CONNECTED REGIONS 

CONTAilUNG CRACKS BY THE METHOD OF 

BJUNDARY COLLOCATION 

By J. c. Newman, Jr. 

ABSTRACT 

Theoretical stress anaJ.yses were performed for the case of cracks 

emanating from, or in the vicinity of holes or boundaries of various 

shapes in two-dimensional. elastic bodies. The solution is based on the 

complex variable method developed by Muskhelishvili and a numerical 

technique known as collocation for approximating the stress or displace-

ment conditions on the boundary with appropriate series stress functions. 

These stress functions automaticall.y satisfy the boundary conditions on 

the crack surfaces. The boundary collocation method included techniques 

such as, specifying stresses at equal.ly spaced points on the boundary, 

specifying the resultant forces along arcs on the boundary, and a least-

squares technique used to minimize the resultant force or displacement 

residuals along the boundary. The types of configurations investigated 

included the case of cracks emanating from a circular hole, the case of 

a crack in the presence of multiple-circular holes and the case of 

cracks emanating from an elliptical hole in an infinite plate. The 

configurations investigated were subjected to a variety of loading 

conditions. The results of the analyses are presented in terms of the 

crack tip stress-intensity factor. 
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