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Minimally Corrective, Approximately Recovering Priors to Correct
Expert Judgement in Bayesian Parameter Estimation

Thomas J. May

(ABSTRACT)

Bayesian parameter estimation is a popular method to address inverse problems. However,
since prior distributions are chosen based on expert judgement, the method can inherently
introduce bias into the understanding of the parameters. This can be especially relevant in
the case of distributed parameters where it is difficult to check for error. To minimize this
bias, we develop the idea of a minimally corrective, approximately recovering prior (MCAR
prior) that generates a guide for the prior and corrects the expert supplied prior according
to that guide. We demonstrate this approach for the 1D elliptic equation or the elliptic
partial differential equation and observe how this method works in cases with significant and
without any expert bias. In the case of significant expert bias, the method substantially
reduces the bias and, in the case with no expert bias, the method only introduces minor
errors. The cost of introducing these small errors for good judgement is worth the benefit of
correcting major errors in bad judgement. This is particularly true when the prior is only
determined using a heuristic or an assumed distribution.
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Chapter 1

Introduction

The emergence of computational science has resulted in an increased reliance on simulation
to supplement theory and experiments. Consequently, the ability to accurately determine
the parameters of mathematical models and to quantify the uncertainty in their estimation,
as well as the resulting model predictions, has become paramount. This lead to the creation
of the field of uncertainty quantification which has found application in nearly every field of
engineering and science. Uncertainty quantification, or UQ, has recently become an activity
group of the Society of Industrial and Applied Mathematics (SIAM) and several new journals
were founded to disseminate research in this area. A typical problem is the estimation
and quantification of uncertainty of parameters when the observations are noisy, limited in
number, and possibly indirect.

One of the main statistical methods to handle the problems in UQ is Bayesian parameter
estimation. This method has the advantage of combining information from observations
and estimated observational noise, in the form of a likelihood distribution, as well as expert
judgement on the problem, in the form of a prior distribution, to form a distribution that
encapsulates all the information one has on a problem. Expert judgement can be beneficial
since there is no set of observations that will completely capture the essence of a physical
system. However, since the prior distribution is purely based on expert judgement, the prior
can introduce expert bias into the distribution produced by Bayesian parameter estimation.
Additionally, existing approaches to check for error in this expert judgement are limited in
scope or overly cautious.

This thesis presents a novel approach to address the issue of errors in expert judgement. The
minimally corrective, approximately recovering prior (MCAR prior) is a combination of two
steps:

1. The approximately recovering step which combines all the noisy observations to gener-
ate an approximation of the model via polynomial regression. Using this approximation
of the model, we generate a guide for the parameter estimation process by trying to

1
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recover the forcing term in a differential equation.

2. The minimally corrective step which takes an initial, expert supplied prior and makes
corrections to it, using the result of the approximately recovering step as a guide.

In Chapter 2, we introduce inverse problems and summarize the approach of Bayesian pa-
rameter estimation. we introduce the elliptic equation in Chapter 3 and in Chapter 4 we
specify a method to represent distributed parameters and a global approximation of the
model. Chapter 5 is the main contribution of this thesis which motivates the idea of the
minimally corrective, approximately recovering prior and presents an algorithm for deter-
mining the MCAR prior. Finally, in Chapter 6, we show a complete example of the MCAR
prior applied to the estimation of a distributed parameter for an elliptic PDE.



Chapter 2

The Inverse Problem

In this chapter, we provide an overview of parameter estimation, inverse problems, and the
Bayesian approach to solving them.

2.1 The General Inverse Problem

We begin by setting up a general formulation of the parameter estimation problem to lay out
notation that we use throughout this thesis. Let u denote the state of a physical phenomenon
that we are interested in with u : D ×Q → Y . The domain of the model is denoted by D,
with states in Y , and Q is the set of all possible choices of model parameters which we will
refer to as the parameter space. Often, our state is the solution to a difference or differential
equation and thus u may not be available in closed form. In theses cases, u is a solution to

Lq(u) = f, (2.1)

where Lq(·) is a differential or difference operator, dependent on the parameter q ∈ Q, and
f is a forcing term that we assume to be independent of q. The inverse problem is to find q
given perfect knowledge of f and u. In all practical applications, we have limited knowledge
of u and may only have access to observations of u (denoted by z). The observations z of our
observable space Z are limited in number and those observations we can make are subject
to random noise. We encapsulate this reality into an observational operator G : Q → Z
of states that we can observe and a random variable η which will augment the result of an
experiment. That is, we assume there exists a parameter q∗ ∈ Q, such that

z = G(q∗) + η. (2.2)

Using this framework, the problem we face is to combine the observations z generated by
(2.2) and domain knowledge of the model solution to generate the best estimate q̂ of the true
parameter set q∗. For a more general introduction of inverse problems, the reader is referred
to [1] and [2].

3
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2.2 Bayesian Parameter Estimation

One popular method of parameter estimation, Bayesian parameter estimation, combines
expert domain knowledge with noisy observations using Bayes’ rule. In this approach, the
parameter estimate q̂ = q̂(ω) is considered to be a random variable, with the realization
indexed by ω, and will be assigned a density or a measure.

2.2.1 Formulation

To set up the Bayesian approach, we have to provide two different but related densities:
a prior and a likelihood. The prior density π0(q) encapsulates all our knowledge about
the parameters we are trying to estimate before looking at the observational data. This is
represents expert judgement, parameter limitations, and other beliefs about the system. The
next step is to define is a likelihood density ρ(z|q) that describes how likely the observed data
set is to occur if we take q to be the true parameter set. It is in the likelihood density where
we encapsulate our observations of the system we are trying to model, as well as the solution
to that model. Combining these two densities via Bayes’ rule, we define the posterior density
of q as

πz(q) =
ρ(z|q)π0(q)∫

Q
ρ(z|q)π0(q) dq

, (2.3)

which encapsulates all our information about the parameters and their uncertainties. In
many applications, we are solely interested in the shape of the posterior and not the actual
values of the density. Since the denominator is a constant independent of q, we can also use
the proportional version of Bayes’ rule,

πz(q) ∝ ρ(z|q)π0(q), (2.4)

which reduces the computational complexity of estimators such as expected values. The
Bayesian parameter estimation process can be generalized to define Bayesian parameter
estimation in the measure theoretic framework. Instead of defining a prior density, we define
a prior probability space (Ω,F , µ0) where µ0 is called the prior measure. This has the same
role has the prior density but can be applied to a greater number of problems. Combining
the prior measure with the likelihood density ρ(z|q), we get a posterior measure µz on the
measurable space (Ω,F) by the Radon-Nikodym derivative

dµz
dµ0

=
1

Z
ρ(z|q) (2.5)

where Z = Z(z) is a normalization constant independent of q. Equation (2.5) can also be
expressed as

µz(E) =
1

Z

∫
E

ρ(z|q) dµ0(q) (2.6)
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for E ∈ F . For a more complete formulation of the Bayesian parameter estimation, the
reader is referred to [3], [4], and [5].

The posterior density or measure contains all the information we have about the parame-
ters of the model. In applying the posterior distribution to parameter estimation, we are
particularly interested in

1. The expected value of the posterior

E[q] =

∫
Q

q dµz(q) =

∫
Q

qπz(q) dq, (2.7)

which can be interpreted as the average value of the posterior distribution.

2. The maximum a posteriori (MAP) given by

qMAP = arg max
q∈Q

πz(q), (2.8)

which represents the parameter with the greatest density.

3. Credible intervals and prediction intervals.

2.2.2 An Example of Bayesian Parameter Estimation

We want to take a moment and present a complete, toy example of the Bayesian parameter
estimation process. Since this is a probabilistic approach, the most basic example involves
flipping coins.

Example 2.1. Suppose we want to determine if a given coin is fair or biased to either heads
or tails. Let Q = [0, 1], the goal is to find q∗ ∈ [0, 1] which represents the probability of a
tossed coin landing heads. If q∗ = .5 then the coin is fair, if q∗ > .5 then the coin is biased
towards heads, and if q∗ < .5 then the coin is biased towards tails. We consult an expert
on coin construction who believes the coin is biased towards tails. The standard way to
encapsulate this expert judgement is using the beta probability distribution which is defined
by two hyper-parameters α and β (The parameters specifying the shape of the distribution).
In this case, we represent the expert judgement the hyper-parameters α = 1 and β = 3
which has a prior probability density of

π0(q) =
1

B(1, 3)
(1− q)2, (2.9)

where B(α, β) = Γ(α+β)
Γ(α)Γ(β)

. The graph of this probability density function is shown in Fig-

ure 2.1. The expected value of this distribution is Eπ0 [q] = 1
4

which means we expect the
coin to come up heads a quarter of the time and tails three quarter of the time.
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Figure 2.1: The tails biased prior density for Example 2.1.
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Next, we flip the coin twenty times which results in it coming up tails thirteen times and
heads seven times. We can think of the observational operator as z = (h, t) = G(q∗) as
the result of twenty flips of a coin with probability of heads is q∗ where h is the number
of heads and t is the number of tails. So that means there exists a q∗ ∈ [0, 1] such that
z = (7, 13) = G(q∗). The standard likelihood function for this type of problems is the
binomial distribution with the number of heads as the number of successes and the number
of tails as the number of failures. So the likelihood function when z = (7, 13) is

ρ(z|q) =

(
20

7

)
q7(1− q)13. (2.10)

The likelihood function is shown in Figure 2.2.

Combining (2.9) and (2.10) using Bayes’ rule, we get a beta posterior distribution α′ = 8
and β′ = 16 which has a posterior density function of

πz(q) =
1

B(8, 16)
q7(1− q)15. (2.11)

The posterior density function is shown in Figure 2.3. The expected value of the posterior
is Eπz [q] = 1

3
. This means that we should expect the coin to come up heads one-third of

the time and tails two-thirds of the time. This means the posterior belief is that the coin is
indeed biased towards tails.
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Figure 2.2: The likelihood function with z = (7, 13) for Example 2.1
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Figure 2.3: The posterior density function for Example 2.1
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For a more complicated example of the Bayesian parameter estimation approach, we refer
the reader to [6] and [7].
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2.2.3 Criticism of Bayesian Parameter Estimation

The main criticism of Bayesian parameter estimation is how the prior is defined. The tra-
ditional approach is for it to be define solely by the expert’s judgement. In the previous
example, the prior was defined by an expert and that expert happened to be correct. How-
ever, the expert could easily have been wrong and this will affect the posterior.

Example 2.2. Again, suppose we are trying to determine if the coin from the Example 2.1 is
fair or biased to either heads or tails. In this example, the coin construction expert strongly
believes the coin is biased towards heads. This belief is encapsulated into a new beta prior
distribution with hyper-parameters α = 7 and β = 1 which has a probability density of

π0(q) =
1

B(7, 1)
q6. (2.12)

The prior probability density function is shown in Figure 2.4. Suppose we see the same thir-

Figure 2.4: The prior density function for Example 2.2
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teen tails and seven heads from twenty flips of the coin. This means the likelihood function
is again (2.10). Using Bayes’ rule on (2.10) and (2.12), we get the posterior distribution is
beta with α′ = 14 and β′ = 14 which has a posterior density function of

πz(q) =
1

B(14, 14)
q13(1− q)13. (2.13)
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Figure 2.5: The posterior density function for Example 2.2
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The posterior probability density function is shown in figure 2.5. The expected value of the
posterior distribution is Eπz [q] = 1

2
. This means that it is the posterior belief that the coin

is fair.

These two examples produced significantly different results. The only difference between
them is the expert’s belief in the coin. With only the information we have now, it is nearly
impossible to determine which expert opinion is more correct. Thirteen tails and seven heads
in twenty throws isn’t improbable with a fair coin; however, the data was generated as a
binomial random variable with q∗ = 1

4
. This means the first expert was correct.

One method to handle this issue is robust Bayesian analysis described in [8] and [9]. This
method primarily focuses on reducing the sensitivity of errors in the priors by defining
classes of priors that spread out the probability across more of the parameter space than
we would normally desire. The problem with these approaches is that they penalize experts
with accurate judgement in preparation for those with poor judgement. This thesis aims to
develop an approach that overcomes incorrect bias in the prior.
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2.3 Sampling from the Posterior with Monte Carlo

Methods

Most of the estimators that we are interested in on the posterior require generating a sample
from the posterior distribution. This becomes a challenge for two main reasons. First,
except in the special case of conjugate priors (see [10]), we shouldn’t expect (2.3) to be
one of the classical, closed form probability density functions. Second, in most Bayesian
parameter estimation problems, the dimension of the parameter space Q is large which
makes accurate numerical quadratures computationally intractable. While there has been
recent advances in spectral methods [11] and sparse grid quadratures [12], Markov Chain
Monte Carlo methods are still the work horse of the Bayesian community. We conclude this
chapter with a brie f overview of this important method. For more extensive introduction,
we recommend consulting [1], [13], and [14].

Monte Carlo methods rely on generating a large number of random samples from the pos-
terior distribution and then performing a numerical or statistical analysis on this sample
instead of treating the intractable problem of generating those analysis results directly from
the posterior. In the context of Bayesian analysis, the main class of Monte Carlo methods
are Markov Chain Monte Carlo methods (MCMC). These methods are favored because, by
constructing Markov Chains on the distribution, and using the posterior as the chain’s sta-
tionary distribution, we are guaranteed a representative sample of the posterior distribution.
In particular, we are going to focus on a version of MCMC called the Metropolis algorithm.
This algorithm works as follows: For a given starting parameter sample q0, a sample is taken
from an easier to sample distribution based on the last point in the chain. The distribution
is called the proposal distribution and is denoted by J . If the newly sampled point is ac-
ceptable to the posterior, then it is added to the chain. Otherwise, we set the next element
in the chain to be q0.

Suppose that qk−1 was the last point in the Markov chain, the main choices of proposal
distribution are J(qk−1) = N (qk−1, V ) with V being the covariance matrix of the posterior
or J(qk−1) = N (qk−1, D) where D is a diagonal matrix whose elements represents the scale
of each parameter value. After defining the proposal distribution, we can use the Metropolis
algorithm shown in Algorithm 1. When we say “with probability α = min{1, r}” in (2.15),
we mean that we sample a number α∗ from the uniform distribution on [0, 1] and accept q∗ if
α ≥ α∗. After running this algorithm, we will have a representative sample of our posterior
distribution on which we can perform analysis.
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Algorithm 1 The Metropolis MCMC Algorithm

Require: The likelihood function ρ(z|q), the prior π0(q), and the proposal distribution
J(qk|qk−1), an initial q0 such that ρ(z|q0)π0(q0) > 0, and an integer M > 0.
for k = 1, . . . ,M do

Take a sample q∗ ∼ J(qk−1).
Compute the ratio

r =
ρ(z|q∗)π0(q∗)

ρ(z|qk−1)π0(qk−1)
. (2.14)

Set

qk =

{
q∗ : with probability α = min{1, r}
qk−1 : otherwise

. (2.15)

end for



Chapter 3

The Elliptic Equation

Consider parameter estimates for the one dimensional elliptic equation of the form

− d

dx

(
q(x)

d

dx
u(x)

)
= f(x), x ∈ D = [a, b] (3.1)

where q(x) is a positive, distributed parameter and f(x) is the forcing term. We focus on
solutions in the classical sense, so we add the requirements that u ∈ C2(D), q ∈ C1(D), and
f ∈ C(D). Additionally, we need to impose boundary conditions of u(a) = ua and u(b) = ub.
One physical interpretation of this equation is the temperature field u in a one dimensional
rod subject to a distributed internal and external heat source f . Stating this in the form
(2.1), we see that

Lq(u) = − d

dx

(
q(x)

d

dx
u(x)

)
, (3.2)

which is a linear in both q and u. Sometimes, we will find it advantageous to work with the
form

Lq(u) = −
(

d

dx
q(x)

d

dx
u(x) + q(x)

d2

dx2
u(x)

)
. (3.3)

There is a vast body of work associated with equations of this type; however, we want to
focus on two properties: an idea of uniqueness of parameters and a way to numerically solve
(3.1). For more information on elliptic equations, we suggest the reader consult [15].

3.1 Identifiability of the Parameters

In this section, we present conditions that guarantee existence and uniqueness of solutions
of the parameter estimation problem. For existence, we provide conditions such that there
must be a q for which (3.1) generates the observation z. For uniqueness, we refer to the
usual notion of identifiability.

12
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Definition 3.1 (Identifiability). Let Φ be the parameter-to-output mapping of (3.1). The
parameter q is identifiable at q∗ with respect to Q if for any q ∈ Q, we have that Φ(q) = Φ(q∗)
implies that q = q∗.

While this seems to be a one-to-one requirement on the parameter-to-output map, the fact
that we fix q∗ means that we are only concerned about the mapping being one-to-one when
one of the inputs is our desired parameter set. Checking if a parameter q∗ is identifiable, we
pick any q ∈ Q. Then we determine the solutions u∗ and u to (3.1) for those parameters
with the same forcing function. Identifiability can be guaranteed by applying the following
theorem.

Theorem 3.2. If q∗, q ∈ L∞, f ∈ (H1)∗, and u∗, u ∈ H1, then

‖(q∗ − q)u∗x‖L2 ≤ 2‖q‖L∞‖u∗ − u‖H1 . (3.4)

Proof. See [16].

Using this theorem, we have that, when u = u∗, we know q∗ = q except at those values of
x ∈ D where u∗x(x) = 0. That is q∗ will be identifiable (from full observation) at all x ∈ D
except where ∇u(x) = 0. While the preceding theorem has specific technical requirements,
we have restricted our attention to classical solutions to the elliptic equation and can assume
they are automatically satisfied. Theorem 3.2 will be sufficient for this thesis, however there
are several other results on identifiability of the elliptic equation that generalize the regular-
ity assumption and include other observation operators. For those results, we recommend
consulting [16], [17], and [18].

3.2 The Finite Difference Approximation of Lq(u)

We need a method to approximate solutions to (3.1) and choose to use the finite difference
method described in [19]. Start by defining a spatial discretization parameter Nh > 1 which
is the number of equally spaced subintervals of [a, b]. Define h = b−a

Nh
and our difference

nodes as Dh = {xi : xi = a+ i× h, i = 0, 1, . . . , Nh} . We define approximations of ∇u(x)
and ∇2u(x) by

∇hu(xi) =
u(xi+1)− u(xi−1)

2h
(3.5)

and

∇2
hu(xi) =

u(xi+1)− 2u(xi) + u(xi−1)

h2
. (3.6)
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Applying these approximations to (3.3), we can approximate of Lq(u) as

L(h)
q (u)[xi] = −

(
∇q(xi)

u(xi+1)− u(xi−1)

2h
+ q(xi)

u(xi+1)− 2u(xi) + u(xi−1)

h2

)
. (3.7)

Next, we need to discretize ∇q for which we use the centered derivative of

∇hq(xi) =
q(xi+1)− q(xi−1)

2h
. (3.8)

For this to satisfy (3.1) at xi, we need

−
(
q(xi+1)− q(xi−1)

2h

u(xi+1)− u(xi−1)

2h
+ q(xi)

u(xi+1)− 2u(xi) + u(xi−1)

h2

)
= f(xi) (3.9)

which can be rearranged as

aiu(xi−1) + biu(xi) + ciu(xi+1) = −h2f(xi) (3.10)

where

ai =
1

4
q(xi−1) + q(xi)−

1

4
q(xi+1) (3.11)

bi = −2q(xi) (3.12)

ci = −1

4
q(xi−1) + q(xi) +

1

4
q(xi+1). (3.13)

We know the values of u(x0) = u(a) = ua and u(xNh
) = u(b) = ub, so they can be applied

directly to the system of equations (3.10). The other values of u(xi) are unknown so we
will need to solve for them. By evaluating (3.10) for i = 1, . . . , Nh − 1, we get a tridiagonal
system. Solving that system will give us our approximate value for u(x) at each xi.



Chapter 4

Representation of Distributed
Parameters

The focus of this thesis is on distributed parameters, so we need to specify a representation
for distributed parameters. Since we treat the parameters as stochastic processes that are
distributed according to the posterior, we will use the Karhunen-Loève representation. This
represents a distributed parameter using a series of the eigenfunctions derived from the
parameters covariance function. Additionally, we will use polynomial regression to convert
the noisy, finite observations into a right-hand side function for (2.1).

4.1 Karhunen-Loève Representation

Suppose we treat our unknown distributed parameter q(x) as a stochastic process q(x, ω),
distributed according to the probability space (Ω,F , P ) for each x ∈ D. We assume that
q(x, ω) ∈ L2(D) × L2(Ω,F , P ). The standard way to represent stochastic processes is us-
ing the Karhunen-Loève representation (KL representation) which is developed using the
Karhunen-Loève theorem. We start by defining Kq(x, y) = E[q(x, ·)q(y, ·)] to be the param-
eter’s covariance process. Next, define a linear operator TKq : L2(D)→ L2(D) by

TKq(f)[y] =

∫
D

Kq(x, y)f(x) dx. (4.1)

Using this linear operator, we define the eigenvalues λk and eigenfunctions ek(x) that satisfy∫
D

Kq(x, y)ek(x) dx = λkek(y). (4.2)

This now allows us to define the Karhunen-Loève theorem.

15
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Theorem 4.1. Let q ∈ L2(D)×L2(Ω,F , P ) with a continuous covariance function Kq(x, y).
Then the eigenfunctions {ek(x)} of Kq(x, y) from (4.2) form an orthonormal basis of L2(D).
Additionally, we can represent q(x, ω) by

q(x, ω) = E [q(x, ω)] +
∞∑
k=1

Qn(ω)ek(x), (4.3)

where

Qn(ω) =

∫
D

(q(x, ω)− E [q(x, ω)]) ek(x) dx (4.4)

and the random variables Qn(ω) are zero-mean, uncorrelated, and have variance λk.

Proof. See [20].

We now have a way to represent the stochastic process using an orthonormal decomposition.
However, it is inconvenient that we have to handle the expected value and centered version
of the process separately. Thus we modify the representation as follows. Since the set {ek}
is a basis for L2(D), we can represent the expected value as

E [q(x, ω)] =
∞∑
k=1

Akek(x) (4.5)

where

Ak =

∫
D

E [q(x, ω)] ek(x) dx. (4.6)

We apply (4.5) and (4.6) to (4.3) and (4.4) to get a modified representation.

Definition 4.2 (Modified KL Representation). The modified KL representation is defined
by

q(x, ω) =
∞∑
k=1

Q̂n(ω)ek(x) (4.7)

where

Q̂k = Qk + Ak =

∫
D

q(x, ω)ek(x) dx. (4.8)

The modification results in the KL representation taking the form of a standard orthonormal
decomposition for the basis {ek}. We can also use the truncated version for approximations.
Clearly the coefficients of the modification do not have zero mean, but they are uncorrelated.

Lemma 4.3. The Q̂k defined by (4.8) are uncorrelated.



Thomas J. May Chapter 4. Distributed Parameters 17

Proof. For any indices i, j,

E
[
Q̂iQ̂j

]
= E [QiQj] + AiE [Qj] + AjE [Qi] + AiAj = AiAj. (4.9)

Additionally, we see that

E[Q̂i] = E [Qi] + Ai = Ai and E[Q̂j] = E [Qj] + Aj = Aj. (4.10)

Therefore,

E
[
Q̂iQ̂j

]
− E[Q̂i]E[Q̂j] = 0 (4.11)

which implies Q̂i and Q̂j are uncorrelated.

To conclude our discussion of the Karhunen-Loève representation, we discuss the case when
we only have a probability distribution of q(x, ω) at a finite set {xi}Ni=1 ⊂ D. In this case, in-
stead of a covariance function, we get a covariance matrix Σ where Σij = E [q(xi, ω)q(xj, ω)] .
We develop a reduced basis {ei}Ni=1 from the solutions to the eigenvalue problem

Σei = λiei. (4.12)

To develop basis of functions for f L2(D), we take the values of ei and use them as interpo-
lation points at the points {xi}Ni=1. Then we develop the coefficients (4.8) using numerical
quadrature techniques. An important result requires q(xi, ω) being uncorrelated.

Lemma 4.4. If the random variables {q(xi, ω)}Ni=1 are uncorrelated, then ei will be the ith
canonical basis vector of RN .

Proof. Since the random variables are uncorrelated, we know Σij = E [q(xi, ω)q(xj, ω)] = 0
for all i 6= j. Thus, Σ will be a diagonal matrix and its eigenvectors are the canonical basis
vectors of RN .

The importance of this lemma is that the interpolation of ek will be one at xk and zero at all
other points. In this case instead of interpolating, we will use the standard piecewise-linear
finite element basis.

4.2 Polynomial Regression

Now that we have a representation for our parameter q, we need to handle how to turn our
noisy, finite observations of the state u into a global approximation across D. To handle this
challenge, we use polynomial regression. Polynomial regression is a special case of multiple
linear regression where we fit the coefficients of a polynomial to the data. Suppose we have
a set of data {yi}Mi=1 where yi is observed at xi. We assume that there is a function f which
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maps the inputs xi to yi with addtional zero mean, random noise. In polynomial regression,
we are trying to approximated f using a polynomial

yi = α0 + α1xi + α2x
2
i + . . .+ αnx

n
i + εi, (4.13)

where εi is a zero mean, unobserved random error. Evaluating this at every i = 1, . . . ,M ,
we can write this as a linear system

y = Xα+ ε (4.14)

where y = (y1, . . . , yM)T , α = (α1, . . . , αn)T , ε = (ε1, . . . , εM)T , and Xi,j = xj−1
i . This has

an easy to compute ordinary least squares estimate for the weights α.

Lemma 4.5. The ordinary least squares estimate of α in (4.14) is

α = (XTX)−1XTy. (4.15)

Proof. See [21].

Using these coefficients, our approximation of f is

fn(x) = α0 + α1x+ . . .+ αnx
n. (4.16)

The final step is to choose the degree of the polynomial. For this, we will consider the bias
vs. variance tradeoff presented in [22]. Bias measures the difference between the regression
model’s prediction and the true mean caused by our model being too simple: high bias
is an indicator of under-fitting. Variance in this context is the variance of the regression
model with respect to the mean caused by our model being too complex: high variance is an
indicator of overfitting. Simply put, if we have high bias then we must increase the degree
of polynomial we are using and if we have high variance then we must decrease the degree
of the polynomial we are using. Since we only have a finite number of observations of the
state to determine our fit, we can’t get exact measures of our bias and variance; however, we
can diagnose when (4.16) is suffering from high variance or high bias. We start by randomly
partitioning our data set into two different sets: around 80% of the data goes into a training
set St that we use to generate α by (4.15) and the other 20% goes into a cross-validation set
Scv that we will use to test the fit. Next, define two error functions, a training error

Jt(n) =
1

2|St|
∑

(x,y)∈St

(fn(x)− y)2 (4.17)

and a cross validation error

Jcv(n) =
1

2|Scv|
∑

(x,y)∈Scv

(fn(x)− y)2 (4.18)
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where |St| represents the number of elements in St and |Scv| represents the number of el-
ements in Scv. Finally we plot these two error functions. When both the bias and cross-
validation lines are high, (4.16) is experiencing high bias. When the bias line is small and
the cross-validation line is high, (4.16) is experiencing high variance. The ideal n is one that
simultaneously minimizes Jcv and Jt.



Chapter 5

MCAR Priors

In the general setting of Bayesian parameter estimation, determining the accuracy of a pa-
rameter estimate is extremely difficult since we only have access to the observed experimental
data and expert opinion on the parameters. However, we can defer back to the model that
we are attempting to fit as a guide to develop ideal priors for the Bayesian parameter es-
timation process. This will lead to the idea of the class of approximately recovering priors
developed in Section 5.1.2. Commonly, we will find that the original prior is outside of this
class. To correct the original prior to become approximately recovering while preserving as
much of the original prior’s information as possible, we will develop the idea of a minimally
corrected prior in Section 5.2 and combine these two new developments into one concept
of a minimally corrected, approximately recovering prior (MCAR prior). To conclude, in
Section 5.3 we will present an algorithm of how to determine the MCAR prior.

5.1 Recovering and Approximately Recovering Priors

Recall that our model u is a solution to a differential or difference operator of the form

L(u | q) = f. (5.1)

During parameter estimation, f is deterministic and completely known. Using (5.1) to
combine an estimate q̂ of q, developed though the Bayesian parameter estimation process,
with an estimate û of u, we get an estimate f̂ of f . An accurate prior will result in this
estimator being unbiased, that is E[f̂ ] = f which we can think of as the prior recovering our
forcing term.

20
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5.1.1 Recovering Priors

To start, we are going to assume we have perfect information about the values of our model
u on the domain D. Throughout the Bayesian parameter estimation process, we treat our
parameter estimate q̂ = q̂(ω) as a random variable distributed according to the posterior
density πz(q) which induced from the prior by (2.3). From our posterior, we will develop a
stochastic process estimating the forcing term f via

f̂ (u | q̂(ω)) = L (u | q̂(ω)) . (5.2)

It is key to note that f̂ is a random variable. Since we have perfect knowledge of u and
the operator L is deterministic, q̂ is the only source of randomness for f̂ . This means the
distribution of f̂ will be dependent on the Bayesian posterior of q̂. If we keep the likelihood
density fixed, the posterior πy is solely dependent on the choice of prior π0 meaning that

the only input to the distribution of f̂ is the prior. This gives us a natural definition of
recovering priors.

Definition 5.1 (Recovering Priors). A prior density π0 is recovering if, by (2.3), it gener-

ates a posterior πy(·) such that Eπy

[
f̂ (u | q̂(ω))

]
= f in the sense of equivalence classes of

functions.

The next lemma will show how satisfying this requirement will provide a parameter set for
a large class of model operators.

Lemma 5.2. If π0 is a recovering prior and the operator L(u | q) is affine with respect to
the parameter, then u satisfies

L
(
u
∣∣Eπy [q̂(ω)]

)
= f. (5.3)

That is Eπy [q̂] is a parameter satisfying our model operator.

Proof. Let πy be the posterior density generated from π0 by (2.3). Since Lq(u) is affine with
respect to q, we can write it as

L(u | q) = A(u | q) +B(u) (5.4)

where A(u | q) is linear with respect to q and B(u) is independent of q. By linearity, we have

f = Eπy

[
f̂ (u | q̂(ω))

]
= Eπy [A (u | q̂(ω)) +B(u)] = A

(
u
∣∣Eπy [q̂(ω)]

)
+B(u)

= L
(
u
∣∣Eπy [q̂(ω)]

)
.

This means that if our prior is recovering, we can easily calculate a parameter value satisfying
any inverse problem where the model operator is affine in the parameter space. Affine model
operators include a wide variety of ordinary and partial differential equations used in practice.
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5.1.2 Approximately Recovering Priors

While the idea of recovering priors and its property Lemma 5.2 are ideal, they require
complete knowledge of the model u(x) which we do not have. Since we don’t have that, we
are going to use an approximation û of u generated by (4.16) to develop a best approximation
of a recovering prior. An ideal approximation of a recovering prior would both converge to a
recovering prior as û(x)→ u(x) and would have a version of the affine parameter property of
Lemma 5.2. Since we are using a polynomial regression estimate of u(x) for û(x), we know
as the number of sensors Ns, number of readings Nr, and the regression model degree go to
infinity, û(x)→ u(x). Additionally, we will see that as û(x)→ u(x), the approximations of
the recovering prior will converge to a true recovering prior.

The first step is to take the observed data of u(x) and form a polynomial regression ap-
proximation according the procedure discussed in Section 4.2. Since we are interested in
the derivative of this approximation, minimizing the variance of the regression is extremely
important. Using this approximation, define a new estimate of f by

f̂ û (x |ω) = L (û(x) | q̂(x |ω)) . (5.5)

This new estimate gives us a natural definition for our approximately recovering priors.

Definition 5.3 (Approximately Recovering Priors). A prior density πû0 is recovering if, by

(2.3), it generates a posterior πûz such that Eπû
z

[
f̂ û(x |ω)

]
= f in the sense of equivalence

classes of functions.

It is key to note that the expected value of the approximately recovering posterior should
not be expected to be an acceptable parameter set as it was for the recovering prior in
Lemma 5.2. The inaccuracies in the approximation û of u will propagate into f̂ û and then
into πû0 . However, we know that û is the best linear approximation with the information we
have and of that model degree, so we can expect it to be reasonably accurate. What this
means is we should think of the expected value of our approximately recovering posterior as
a guide to correct large inaccuracies in our Bayesian parameter estimation process.

The first thing that we would like to verify is that our approximately recovering priors will
converge to a recovering prior in case of parameter affine model operators.

Lemma 5.4. Suppose we have a sequence ûn such that ûn → u and suppose L is continuous
with respect to the state argument, then any sequence of approximately recovering prior{
πûn0

}
will converge to a recovering prior.

Proof. Let ûn be a sequence of approximations of u such that ûn → u and let πûn0 be an

approximately recovering prior with respect to ûn. We know that Eπûn
z

[
f̂ ûn(x |ω)

]
= f for

all n. Passing ûn → u, we know that Eπû
z

[
f̂ û(x |ω)

]
= f . In this case the definition of
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approximately recovering and recovering are the same meaning that the limit of πûn0 is a
recovering prior.

Now that we have seen that our approximately recovering priors converge to a recovering
prior, we need to turn our attention to generating the approximately recovering prior which
we will focus on the affine case. Define E[q̂(x)] to be approximated by a truncated power
series with unknown coefficients, that is

Eπû
z
[q̂(x)] =

Nq∑
j=1

αjx
j. (5.6)

We consider the power series over a different representation because of the ease of taking
derivatives and because it multiplies nicely with different derivatives of û(x). To determine
the values of αj to make our posterior recovering, we start by using the same argument as
in the proof of Lemma 5.2 to get

f(x) = Eπz [L (û(x) | q̂(x |ω))] = L (û(x) |Eπz [q̂(x |ω)]) = L

(
û(x)

∣∣∣∣∣
Nq∑
j=1

αjx
j

)
. (5.7)

Since we are only considering L which are affine on the parameter space, (5.7) can be
rewritten as

f(x)− A(û(x)) =

Nq∑
j=1

αjB
(
û(x)

∣∣xj) . (5.8)

where A(·) is the parts of the model operator independent of the parameter and B is linear
with respect to the parameter space. At any x ∈ D, (5.8) gives a linear combination of the
unknown coefficients αj. There are numerous ways to now handle the calculations, we choose
to make an over determined system and calculate the linear least squares approximation.
This is to reduce the impact of local approximation errors in û. To complete the calculation
start by choosing {x1, . . . , xNs} ⊆ D such that Ns > Nq. Then calculate the vector b =
(b1, . . . , bNs)

T such that bi = f(xi) − A(û(xi)) as well as the Ns × Nq matrix X where
[X]i,j = B

(
û(xi)

∣∣xji) . The resultant α = (α1, . . . , αNq) is defined by

α = (XTX)−1XTb. (5.9)

For the full derivation of the solution to the general least squares problem, the reader is
referred to [23]. After determining α, we can say that our prior is recovering if it induces a

posterior such that Eπû
z
[q̂(x)] =

∑Nq

j=1 αjx
j for every x ∈ D.
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5.2 Minimally Corrected Approximately Recovering Pri-

ors

Bayesian priors are normally defined by the judgement of subject matter experts. While
the errors in judgement of the experts cause errors in the parameter estimation process, the
priors may still contain useful information meaning we don’t want to completely ignore the
expert judgement. However, we also want our priors to be recovering. To handle these two
goals, we will develop an optimization problem of minimizing information loss subject to our
prior being recovering.

5.2.1 Quantifying Information Loss

Let π0 be the prior density supplied by the subject matter expert. Before correcting this
density, we need to determine how to quantify the amount of information lost by modifying
the prior. There are several different ways to quantify the amount of information lost by
using a probability distribution Q to a approximate a probability distribution P . We choose
the Kullback-Leibler divergence of

DKL(P‖Q) =

∫
X

p(x) ln

(
p(x)

q(x)

)
dx (5.10)

where p and q are the density functions for P and Q respectfully. This is equivalent to

DKL(P‖Q) =

∫
X

p(x) ln (p(x)) dx−
∫
X

p(x) ln (q(x)) dx. (5.11)

We are concerned with the minimization of DKL(P‖Q) for fixed P and can therefore focus
on maximizing

dp(q) =

∫
X

p(x) ln (q(x)) dx. (5.12)

Using (5.12), we can easily define the amount of information lost by using π̃0 in place of π0.

Definition 5.5 (Prior Loss Function). Let π0 be our prior density supplied by our subject
matter expert and π̃0 be the prior density we are consider replacing it with. We define the
prior loss function `π0(π̃0) by

`π0(π̃0) = dπ0(π̃0). (5.13)

5.2.2 Correcting the Prior

Now that we have a quantification for the amount of information we are losing by modifying
the prior density, we can talk about what our desired modification will be.
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Definition 5.6 (Correcting Mapping and Corrected Prior). Let P be the space of all prior
densities. A mapping T : P→ P is a corrective mapping for π0 if T (π0) is a recovering prior.
The new prior T (π0) is called the corrected prior. The set PC is the set of all corrective
mappings for π0.

It will be an extremely rare case where there is only one corrective mapping for π0. It is our
objective to find the mapping that corrects the prior while preserving as much information
from the original prior as possible. Such a mapping is called a minimally corrective mapping
and is defined as follows:

Definition 5.7 (Minimally Corrective Mapping). Given a provided prior π0, a mapping
T ∗ ∈ PC is a minimally corrective mapping if

`π0 (T ∗(π0)) ≤ `π0 (T (π0)) (5.14)

for all T ∈ PC , where `π0 is defined as in Definition 5.5.

These definitions requires our priors to be recovering, however we can also apply these with
approximately recovering priors.

Definition 5.8 (Minimally Corrective, Approximately Recovering Priors). Let P̂C be the
set of all mappings T : P → P such that T (π0) is approximately recovering. An element
T ∗ ∈ P̂C is a minimally corrective, approximately recovering mapping (MCAR mapping) if

`π0 (T ∗(π0)) ≤ `π0 (T (π0)) (5.15)

for all T ∈ P̂C , where `π0 is defined as in Definition 5.5. The prior T ∗(π0) is called the
minimally corrected, approximately recovering prior (MCAR prior).

This definition can easily be reformulated as an optimization problem.

Problem 5.9. Find a mapping T ∗ ∈ P̂C which satisfies

min `π0(T (π0)) (5.16)

subject to

Eπz [q] =

Nq∑
j=1

αjx
j (5.17)

where πz is the posterior induced by T (π0).
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5.2.3 Determining the Corrected Prior

We have not yet placed any requirements on P except that each member is a probability
density function. In order to simplify our computations, we place two requirements on the
space. The first is that the members of P are from the same type of parametrized distribution.
With out this restriction, we would need to simultaneously handle a model selection problem
along side a hyper-parameter estimation problem. By adding this restriction, determining
the optimal member of P solely becomes a hyper-parameter optimization problem. Also it
makes members of PC functions on the hyper-parameters of the family of distributions. The
second requirement we place on P is that the family of distributions must be differentiable
with respect to the hyper-parameters. This requirement eases the computational complexity
of the optimization Problem 5.9 while not restricting us from using most of the popular
families of probability distributions.

With these new requirements, we can now attack Problem 5.9. The main tool we are going
to use is the penalty method described in [24]. This changes a constrained optimization
problem into an unconstrained optimization problem by defining an auxiliary function

h(q, λ) = `π0(T (π0)) + λ ‖Eπz [q(xs)]− E[q̂(xs)]‖∞ (5.18)

for a λ > 0 and where xs is the locations of the sensors. We start by fixing a small initial λ

and finding the q that minimizes h(q, λ). If
∥∥∥Eπz [q(x)]−

∑Nq

j=1 αjx
j
∥∥∥ < τ for some tolerance

τ > 0, then we accept q as the solution of Problem 5.9. Otherwise, we increase the value of
λ and start again. To minimize (5.18), we take advantage of being able to take derivatives
with respect to the hyper-parameters of the density functions using simultaneous perturbation
stochastic approximation discussed in [25]. This method has the advantage of only requiring
two evaluations of (5.18) per iteration, where as other methods would require significantly
more.

5.3 Summary of Determining the MCAR Prior

Before moving to a numerical example, we want to finish this chapter with a summary of
the steps required to calculate the MCAR prior. There are three main steps starting with
an expert supplied π0.

1. Take the observational data of u(x) and form a polynomial regression û(x) that is the
best linear approximation of u(x). The procedure calculates the ordinary least squares
approximation which was discussed in Section 4.2.

2. Next, we use û(x) to generate a recovery requirement on Eπû
z
[q] by (5.9). This was

another least squares problem.
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3. Finally, find a solution to Problem 5.9 using the penalty method on the auxiliary
function (5.18).

The result is the approximately recovering prior which is closest, in the KL divergence sense,
to our original prior.



Chapter 6

Numerical Results

We move to applying the idea of an MCAR prior to a distributed parameter estimation
problem with the elliptic equation.

6.1 Problem Formulation

One way model the steady state of the heat distribution along a one dimensional rod subject
to an internal heat source is Poisson’s equation of

− d

dx

(
q(x)

d

dx
u(x)

)
= f(x) On D (6.1)

which we discussed in Chapter 4. Start by setting up Ns number of sensors along the rod and
then take Ne number of readings from those sensors. In order to have complete knowledge
of the true values, we will numerically generate this data instead of collecting it from an
experimental set up.

For the rest of this chapter, we consider the following example:

D = [0, 1], (6.2)

u(0) = 0, (6.3)

u(1) = 2, (6.4)

q(x) = 1 + x, (6.5)

f(x) =
π2

2
(1 + x) sin

(π
2
x
)
− π cos

(π
2
x
)
. (6.6)

The forcing term is chosen so that the solution of (6.1) is u(x) = 2 sin
(
π
2
x
)
. To generate

the data, we set Ns = 10 which are equally spaced along the interior of the rod and take

28



Thomas J. May Chapter 6. Numerical Results 29

Figure 6.1: The experimental observations in blue vs. the true data in red.
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Ne = 10 readings. Additionally, we assume that each sensors is subject to uncorrelated
Gaussian white noise with variance 0.1. To numerically generate the data, first determine
the finite difference solution u = (u1, . . . , uNs) of (6.1) at the sensor locations {x1, . . . , xNs} .
Then generate the observation data ũ(i) with i ∈ {1, . . . , Ne} by the process

u(j) = u + ξ(j) (6.7)

for ξ(j) ∼ N (0Ns , 0.1INs×Ns) . The generated data is shown in Figure 6.1 and the sample
mean is shown in Figure 6.2. Since the draws of the noise distribution are independent, we
can define the likelihood function ρ(q|u) by

ρ(q|u) =
Ne∏
j=1

ρ(q|u(j)) (6.8)

where, by the suggestion of [7],

ρ(q|u(j)) =
1

(2π(0.1)2)5
exp

(
−‖F (q)− u(j)‖2

2

2(0.1)2

)
(6.9)

where F is the finite difference solution of (6.1). For our actual calculations, it is more
convenient to use the log-likelihood form of (6.8) which is

ln(ρ(q|u)) = −5Ne ln(2π(0.1)2) +
∞∑
j=1

−‖F (q)− u(j)‖2
2

2(0.1)2
. (6.10)
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Figure 6.2: The sample mean of the experimental observations in blue vs. the true data in
red.
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For the prior, we consider the case of the expert assigning a prior probability distribution of
the parameter value at each sensor location as well as the boundary points. Since the elliptic
equation requires that q(x) > 0 for all x ∈ D, the prior distribution at each sensor point will
have to be a gamma distribution which has a probability density function of

γ(x|k, θ) =
1

Γ(k)θk
xk−1e−x/θ (6.11)

for some shape parameter k > 0 and scale parameter θ > 0. Furthermore, we will consider
each sensor’s probability distribution independent.

6.1.1 Computing Environment

This example was performed with Python 2.7 [26] using the numerical packages NumPy [27]
and SciPy [28] as well as the graphics library Matplotlib [29]. To compute the system for
the approximate recovery requirement, we use symbolic computation via SymPy [30].

6.2 Determining the Recovery Requirement

Before being able to determine the MCAR prior, we must determine the recovery require-
ment. To accomplish this, we start by turning the observed data set D =

{
ũ(1) . . . , ũ(Ne)

}
into an approximation û(x) of the true u(x). The approximation is developed by using the
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polynomial regression approach discussed in section 4.2. The first step is to determine what
degree of polynomial regression to use. This is done by the bias vs. variance procedure.
Computing (4.17) and (4.18) for n = 1, . . . , 20, we get the results shown in Figure 6.3. As

Figure 6.3: The training error (4.17) (blue) and the cross-validation error (4.18) (red).

0 5 10 15 20

n

0.016

0.018

0.020

0.022

0.024

0.026

0.028

0.030

0.032

0.034

e
rr
o
r

we see from Figure 6.3 that both the training and cross-validation error rapidly decreases
until the cross validation error levels off at n = 5 and then increases. Examining the higher
degree polynomial regression shows this behavior is caused by small oscillations being gener-
ated by the higher order terms. To minimize these effects, we set the degree of our regression
to be the argmin of cross validation which is nu = 5. The regression is shown in Figure 6.4
and we see that this provides a good approximation of the true value of u(x). Since we
need to take a derivative of û(x) in applying (5.5), it is good to verify that the derivative
of û(x) is consistent with the derivative of u(x). The derivative of both functions are shown
in Figure 6.5. While the approximation of û′(x) is not as accurate to u′(x) as û(x) was to
u(x), it still provides a good enough approximation for our purposes.

Using û, we can now develop the recovery requirement. Start by defining a truncated power
series

E[q̂(x)] =

Nq∑
n=0

E
[
Q̂n

]
xn (6.12)

with which we define

E[f̂(x)] = − d

dx

(
E[q̂(x)]

d

dx
û(x)

)
. (6.13)

Through experimentation, we determined that the best point to truncate at was Nq = 10.

Since (6.13) is linear with respect to q, we know that E[f̂(x)] at any x ∈ D, will result in
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Figure 6.4: The approximation û(x) (blue) vs. the true u(x) (red).
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a linear combination of the E
[
Q̂n

]
. So we take the value of E[f̂(x)] at the sensor points,

set each linear combination equal to the values of f at the sensor points, and then solve
the resulting linear least squares problem. This results in the recovery requirement function
E[q̂(x)] shown in Figure 6.6. True to its name, Figure 6.7 shows that the recovery requirement
E[q̂(x)] does recover f(x). Even though E[q̂(x)] does deviate from the true parameter q(x),
it is close enough to serve our purpose as a guide to correct the Bayesian prior.

6.3 An Inaccurate Prior

For our first prior to correct, let’s look at a prior which is biased away from the true param-
eter. Suppose the expert is confident in his belief that the true parameter is q̃(x) = 2 + 2x2

and defines the prior density by

π0(q) =
Ns∏
j=1

γ(qj|kj, θj) (6.14)

where γ(·) is the gamma probability density function defined by (6.11), qj is the inputted
parameter value at sensor j, θj = 0.25, and kj = q̃(xj)/θj. The choice of kj is such that
Eπ0 [q(xj)] = q̃(xj). The prior expected value of q is shown in Figure 6.8. From the figure, it
is clear that the true parameter is statistically insignificant as far as the prior is concerned.
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Figure 6.5: The approximation û′(x) (blue) vs. the true u′(x) (red).
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Figure 6.6: The recovery requirement E[q̂(x)] (blue) vs. the true q(x) (red).
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Applying Bayes’ rule with (6.14) and the likelihood function (6.8), we get a posterior of

πz(q) =
1

C

(
Ne∏
j=1

ρ
(
q|u(j)

))( Ns∏
i=1

γ(qj|kj, θj)

)
(6.15)
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Figure 6.7: The E[f̂(x)] (blue) vs. the true f(x) (red).
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for some normalizing constant C. It is computationally more convenient to use the log
probability form of

ln(πz(q)) = C +
Ne∑
j=1

−‖F (q)− u(j)‖2
2

2(0.1)2
+

Ns∑
j=1

[
(kj − 1) ln(qj)−

qj
θj
− ln(Γ(kj))− kj ln(θj)

]
(6.16)

for some constant C. The graph of the expected value of the posterior is shown in Figure 6.9.
From the figure, we see that the expected value of the posterior is significantly different from
the true parameter set. Additionally, in Figure 6.10, we see that the expected value is also
significantly different from the recovery requirement. We now move on to correcting the
prior such that the expected value of the posterior converges to the recovery requirement.
As discussed in Section 5.2.3, we will use the simultaneous perturbation stochastic approx-
imation algorithm to determine the minimally corrective, approximately recovering prior.
For the cost function, we convert the penalty function (5.18) into

J(k,θ|λ) = `π∗0 (π0(·|k,θ)) + λ
∥∥Eπz(·|k,θ)[q(xs)]− E[q̂(xs)]

∥∥
∞ (6.17)

where k and θ are candidate hyper-parameters for the gamma prior and xs are the domain
locations for the sensors. We start with λ = 0.01 and run simultaneous perturbation stochas-
tic approximation on (6.17). This process will generate a candidate minimizer (k∗,θ∗) which
we will accept if

∥∥Eπz(·|k∗,θ∗)[q(xs)]− E[q̂(xs)]
∥∥
∞ < 0.1. If the candidate minimizer is reject,

we set λ = 10 ∗ λ and run the process again.

After four iterations penalty subproblem, we get a accepted candidate minimizer. The resul-
tant, and original, prior hyperparameters are shown in Table 6.1. Also, the expected value
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Figure 6.8: The prior expected value of q (blue) and the true value of q (red).
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Figure 6.9: The posterior expected value of q (blue) and the true value of q (red).
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of the posterior generated by the minimally corrective prior is shown in Figure 6.11. Com-
paring the corrected posterior expected value to the true parameter, we get the result shown
in Figure 6.12 Comparing this result with the original posterior (Figure 6.9), we see that we
have made a significant improvement in recovering the original distributed parameter.
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Figure 6.10: The posterior expected value of q (blue) and the recovery requirement (green).
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Table 6.1: The original and minimally corrective hyperparameters for the inaccurate prior
i xi ki θi k∗i θ∗i
0 0 4 .25 3.4488 0.2554
1 .0909 4.3636 .25 6.3487 0.1694
2 0.1818 4.7272 .25 5.4072 0.2345
3 0.2727 5.0909 .25 4.9016 0.2545
4 0.3636 5.4545 .25 6.0751 0.2477
5 0.4545 5.8181 .25 6.6934 0.2383
6 0.5454 6.1818 .25 7.1685 0.2211
7 0.6363 6.5454 .25 5.9860 0.2592
8 0.7272 6.9090 .25 6.7440 0.2333
9 0.8181 7.2727 .25 7.5633 0.2320
10 0.9090 7.6363 .25 7.1842 0.2349
11 1 8 .25 8.8121 0.1940

6.4 An Accurate Prior

After seeing how the developing an MCAR prior can significantly reduce the error in incorrect
expert judgement, we want to see how developing an MCAR prior will affect correct expert
judgement. So in this case, lets suppose the expert suspects the true parameter is q̃(x) = 1+x
and is feeling confident in this suspicion. Again, they encode this judgement into a prior of
the form (6.14), except this time the hyper parameters are θj = 0.25 and kj = (1 + xj)/θj.
This makes it so that Eπ0 [q(xj)] = 1 + xj which is the correct parameter values. Applying
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Figure 6.11: The corrected posterior expected value of q (blue) and the recovery requirement
(green).
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Figure 6.12: The corrected posterior expected value of q (blue) and the true parameter (red).
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Bayes’ rule, we get a posterior of the form of (6.15). The posterior of this distribution with
the true parameter set is shown in Figure 6.13 and with the recovering parameter set is
shown in Figure 6.14. This time, the posterior is already relatively accurate to the true
parameter. The current errors are mainly from the limited amount of observational data we
have available. We use the same penalty functions as (6.17) and the same procedure with
the new initial prior hyperparameters.
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Figure 6.13: The posterior expected value of q (blue) and the true value of q (red).
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Figure 6.14: The posterior expected value of q (blue) and the recovery requirement of q
(green).
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After three iterations penalty subproblem, we get a accepted candidate minimizer. The
resultant and original prior hyper-parameters are shown in Table 6.2. Also, the expected
value of the posterior generated by the minimally corrective prior is shown in Figure 6.15.
Comparing the corrected posterior expected value to the true parameter, we get the result
shown in Figure 6.16. In this case, we see that the expected value of the MCAR posterior
has more bias in it from the posterior generated by the original expert judgement. However,
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Table 6.2: The original and minimally corrective hyperparameters for the accurate prior
i xi ki θi k∗i θ∗i
0 0 8 .25 5.3816 0.2030
1 .0909 8.066 .25 8.0288 0.1473
2 0.1818 8.2644 .25 9.0241 0.1418
3 0.2727 8.5950 .25 8.4224 0.1595
4 0.3636 9.0578 .25 8.0129 0.1751
5 0.4545 9.6528 .25 8.1657 0.1921
6 0.5454 10.3801 .25 8.0561 0.2031
7 0.6363 11.2396 .25 7.4337 0.2281
8 0.7272 12.2314 .25 11.2298 0.1539
9 0.8181 13.3553 .25 11.4420 0.1603
10 0.9090 14.6115 .25 11.0652 0.1627
11 1 16 .25 14.3141 0.1269

Figure 6.15: The corrected posterior expected value of q (blue) and the recovery requirement
(green).
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this is a minor bias compared with the bias introduced by the first expert. So the benefit of
correcting bad expert judgement out weighs the newly introduced error.
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Figure 6.16: The corrected posterior expected value of q (blue) and the true parameter (red).
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Chapter 7

Conclusions

We considered the problem of reducing expert bias in Bayesian parameter estimation. In
contrast to the current approaches that focus on restricting prior distributions to robust
classes, we presented a novel approach that focuses on correcting expert bias. This approach
begins by developing a guide for the parameter set called the recovery requirement using
polynomial regression. Then we correct the prior using this guide. The MCAR approach was
applied to an example where we estimate the distributed parameter in an elliptic equation.
For this example, we considered one case with significant expert bias and a second case with
no expert bias. In the case of significant expert bias, this method resulted in a prior that
caused the posterior distribution that produces the true parameter with increased statistical
significance. In the case of no expert bias, the prior was shifted in a way that reduced
the statistical significance of the true parameter; however, this shift and the associated
reduction in statistical significance was minor. Since we wouldn’t know the true parameter
set in practice, we are willing to accept the introduction of small errors from this method
for the benefit of correcting large errors from expert bias.

These results are promising and further work is required to fully develop the method. Some
questions we hope to answer in the future are:

1. In the context of this method, is there a better choice of a basis for representing the
stochastic distributed parameter process instead of using the basis generated by the
Karhunen-Loève theorem? If not, can we prove optimality?

2. One significant, computational bottle neck is that an evaluation of (5.18) requires a
Monte Carlo integration. Is there a way to eliminate this Monte Carlo step? Applying
a method as described in [31] has potential.

3. For differential operators that are nonlinear with respect to the parameter, is there any
relationship between the expected value of the recovering prior and the parameter set
as we found in Lemma 5.2?

41
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[20] M. Loève. Probability Theory II, volume 46 of Graduate Texts in Mathematics. Springer,
fourth edition, 1994.

[21] Norman R. Draper and Harry Smith. Applied Regression Analysis. Wiley Series in
Probability and Statistics. Wiley-Interscience, 1998.

[22] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of Statistical
Learning: Data Mining, Inference and Prediction. Springer Series in Statistics. Springer,
second edition, 2011.



Thomas J. May Chapter 7. Conclusions 44

[23] Lloyd N. Trefethen and David Bau III. Numerical Linear Algebra. SIAM, 1997.

[24] Jorge Nocedal and Stephen Wright. Numerical Optimization. Springer Series in Oper-
ations Research and Financial Engineering. Springer, second edition, 2006.

[25] James C. Spall. Introduction to Stochastic Search and Optimization: Estimation, Simu-
lation, and Control. Wiley-Intercience Series in Discrete Mathematics and Optimization.
Wiley, 2003.

[26] Guido Rossum. Python reference manual. Technical report, Amsterdam, The Nether-
lands, 1995.
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