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ABSTRACT 

The overall objectives of this dissertation were to (1) determine whether leaf area index 

(LAI) (Chapter 2), as well as stem density and height to live crown (Chapter 3) can be estimated 

accurately in intensively managed pine plantations using small-footprint, multiple-return 

airborne laser scanner (lidar) data, and (2) ascertain whether leaf area index in temperate mixed 

forests is best estimated using multiple-return airborne laser scanning (lidar) data or dual-band, 

single-pass interferometric synthetic aperture radar data (from GeoSAR) alone or both in 

combination (Chapter 4). In situ measurements of LAI, mean height, height to live crown, and 

stem density were made on 109 (LAI) or 110 plots (all other variables) under a variety of stand 

conditions. Lidar distributional metrics were calculated for each plot as a whole as well as for 

crown density slices (newly introduced in this dissertation). These metrics were used as 

independent variables in best subsets regressions with LAI, number of trees, mean height to live 

crown, and mean height (measured in situ) as the dependent variables. The best resulting model 

for LAI in pine plantations had an R2 of 0.83 and a cross-validation (CV) RMSE of 0.5. The CV-

RMSE for estimating number of trees on all 110 plots was 11.8 with an R2 of 0.92. Mean height 

to live crown was also well-predicted (R2 = 0.96, CV-RMSE = 0.8 m) with a one-variable model. 

In situ measurements of temperate mixed forest LAI were made on 61 plots (21 hardwood, 36 

pine, 4 mixed pine hardwood). GeoSAR metrics were calculated from the X-band backscatter 

coefficients (four looks) as well as both X- and P-band interferometric heights and magnitudes.
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 Both lidar and GeoSAR metrics were used as independent variables in best subsets 

regressions with LAI (measured in situ) as the dependent variable. Lidar metrics alone explained 

69% of the variability in temperate mixed forest LAI, while GeoSAR metrics alone explained 

52%. However, combining the LAI and GeoSAR metrics increased the R2 to 0.77 with a CV-

RMSE of 0.42. Analysis of data from active sensors shows strong potential for eventual 

operational estimation of biophysical parameters essential to silviculture.  
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1. INTRODUCTION 

Forest management relies on information on forest conditions and the use of descriptors, 

such as tree height, tree diameter, number of trees per unit area, and amount of leaves, which are 

fundamental for estimations of forest growth, biomass, wood volume, and productivity. Ground-

based forest inventories are traditionally used to collect most of these parameters. Although they 

are the most simple and direct way to acquire this information, they represent a high cost and 

time consuming activity that can be prone to errors. 

The use of remote sensing technologies to monitor and therefore help to improve the 

management of forest resources at regional and global scales has exponentially increased over 

the last 30 years.  Aerial photography has been and continues to be utilized primarily for  

sampling and forest type classification, while satellite data are used to describe, classify, and 

quantify vegetation by relating reflectance values to ground-based assessments (Huete et al. 

1997; Jensen et al. 1997; Lefsky et al. 2002).  However, some limitations of using optical 

imagery are that: (1) reflectance values can be affected by atmospheric characteristics and the 

background optical properties of the ground, (2) the vegetation indices developed from satellite 

imagery, used to quantify green vegetation, have shown saturation points at high leaf area index 

values (3 to 5), (3) it can be used to examine the variation of features on a horizontal distribution 

basis only, so cannot account for tree architecture, crown length or foliage clumping effects, and 

their dynamics (Fassnacht et al. 1994; le Maire et al. 2006; Zheng and Moskal 2009).  

Newer remote sensing technologies such as laser (lidar, Light Detection and Ranging) 

and radar interferometry (InSAR) can overcome the problems identified from optical sensors. 

These technologies generate data related to ground object heights; both are physically oriented, 
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and in the case of lidar the data are acquired as three-dimensional cloud of points, which can be 

used to evaluate vertical variation of forest attributes. The InSAR (Interferometric Synthetic 

Aperture Radar) system used in this study, GeoSAR (Geographic Synthetic Aperture Radar), 

acquires two bands of data at spatial resolutions of 3 m (X-band) and 5 m (P-band), representing 

a lower density ‘cloud’ of three dimensional points when compared to lidar data. 

The development of models and indices from remotely sensed data to estimate height, 

stem density, or LAI offers not only a cost-effective and non-destructive estimation, but also an 

accurate way to retrieve information over the landscape at different spatial and temporal scales. 

The use of newer remote sensing technologies, such as LiDAR and GeoSAR, for the 

examination of forest ecophysiological parameters might still be in an early research phase, but 

its potential to aid forest resource assessments and management has rapidly evolved over the past 

ten years. These technological developments represent an opportunity to improve regional LAI 

models and estimation of tree heights derived from optical remote sensing data, where success in 

many cases has been limited and the estimates are often not precise enough to be widely used by 

forest managers.  

However, developing good models from airborne remote sensing datasets requires 

considerable investment due to the high cost of acquiring data, their subsequent preprocessing 

and analysis, and validation on the ground. The relatively small number of industrial forest 

managers currently using lidar technology might be influenced by both the ratio of high cost to 

the limited number of products that are being generated (basically height, biomass and volume), 

and by the relative newness of the remote sensing tool; quoting Stanturf et al. (2003) … “We 

have seen that over the years some forest companies adopt new technologies at early stages, 

while others wait until the technology has been proven”.... Fortunately, the previous traditional 
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way of management where most of the forest industries or organizations tried to minimize wood 

production costs, is no longer valid; nowadays, forest organizations are managing their 

forestlands as assets, focusing on maximizing return on investment. Allocation of capital to the 

land creates the need to make efficient decisions, which inevitably generates the need for 

information (Smith et al. 2003). Adding the ability to estimate leaf area and stem density to the 

suite of the already validated forest applications of LiDAR and GeoSAR will likely increase 

forest managers use of these tools for monitoring purposes.  

 

1.1 Objectives and general hypotheses 

The primary goal of this study is to help improve forest management and silvicultural 

prescriptions by developing methods to accurately estimate key forest attributes in intensively 

managed pine plantations and temperate mixed forests using newer, active, remote sensing 

technologies. The general objectives are as follows:   

� Determine whether leaf area index (LAI) can be accurately estimated in pine plantations 

under a large range of silvicultural regimes and management purposes using multiple-

return small-footprint airborne laser scanner (lidar) data.  

� Estimate the usefulness and performance of multiple-return small-footprint airborne lidar 

data to predict stem density, tree height, and mean crown height in pine plantations with 

different establishment densities and silvicultural management.  

� Evaluate the effectiveness of estimating LAI in eastern U.S. mixed temperate forests 

using a set of metrics derived from two remote sensing technologies: light detection and 

ranging and interferometric synthetic aperture radar alone and combined. 
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For the leaf area index estimations, this research is approached on the basis that leaf 

biomass and crown development is related to site and climate conditions, the number of 

vegetation strata, the combination of plant species per forest type, the species tree crown 

architecture, the size and amount of leaves, and the tree responses to applied silvicultural 

management, among other factors. If the number, size, location of branches, and leaves vary 

among forest types and silviculture regimes, and there are well-defined understory, midstory, and 

canopy layers within the forest, then the density and heights of the data points from these remote 

sensing technologies should be able to describe such structural differences within the forest 

stands.  

In pine plantations, the estimation of number of trees per unit area at mid-rotation or at 

the end of the rotation is an important parameter for forest management because, although initial 

stem density is known at the beginning of the rotation, as trees start growing and competing for 

resources, tree mortality, as well as planned thinning operations, incorporates changes in number 

of trees per unit area over time. It was hypothesized that lidar distributions and return ratios 

should be a function of canopy gaps, current number of canopy trees, and understory vegetation. 

For instance, groups of trees closely located should have more canopy returns and less ground 

returns (within those trees) than those more separated from each other (i.e., thinned).  
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2. ESTIMATING LEAF AREA INDEX IN INTENSIVELY MANAGED 

PINE PLANTATIONS USING AIRBORNE LASER SCANNER DATA 

 

2.1 Abstract 

The objective of this study was to determine whether leaf area index (LAI) can be 

accurately estimated in intensively managed pine plantations using multiple-return airborne laser 

scanner (lidar) data. In situ measurements of LAI were made using the LiCor LAI-2000 Plant 

Canopy Analyzer on 109 plots under a variety of stand conditions (i.e., stand age, nutritional 

regime, and stem density) in North Carolina and Virginia, USA in late summer, 2008. 

Distributional metrics were calculated for each plot using small footprint lidar data (average 

pulse density 5 pulses per square meter; up to four returns per pulse) acquired in the month 

preceding the field measurements. Distributional metrics were calculated for each plot as a whole 

as well as for ten one meter deep crown density slices (newly introduced in this study), five 

above and five below the mode of the vegetation returns for each plot. These metrics were used 

as independent variables in best subsets regressions with LAI (measured in situ) as the dependent 

variable. The best resulting models had an R2 ranging from 0.61 (for a 2-variable model) to 0.83 

(for a 6-variable model). The laser penetration index (LPI) was an important variable regardless 

of the number of variables used. Other important variables included the mean intensity value, the 

mean and 20th percentile of the vegetation returns, and various crown density slice metrics. 

These results indicate that LAI can be estimated accurately using lidar data in intensively 

managed pine plantations over a wide variety of stand conditions. 
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2.2 Introduction  

Stemwood production is influenced by climate, nutrients, and water, but is also 

determined by the amount of light intercepted and the photosynthetic efficiency of canopies 

(Vose and Allen 1988).  Canopy structure throughout the vertical and horizontal profiles can be 

described by biophysical forest parameters such as leaf area and tree height. Leaf area is a 

structural parameter of vegetation canopies that plays an important role in several key ecosystem 

processes by the exchange of energy and gases (e.g., CO2 and water-vapor fluxes) between 

terrestrial ecosystems and the atmosphere. It is also central to describing rainfall interception. As 

a result, leaf area varies along with hydrological, biogeochemical, and biophysical processes, 

either due to natural stand development or forest management practices (e.g., thinning, 

fertilization, and vegetation control).  

Leaf area index (LAI) is defined as the total one-sided area of leaf tissue per ground 

surface area (Watson 1947). Along with leaf biomass, leaf area has a strong relationship with 

productivity (Cannell 1989). In loblolly pine (Pinus taeda L.) for example, leaf biomass 

dynamics are dependent on phenology, climatic conditions, site factors and stand density, thus 

LAI represents a measure of site occupancy that integrates tree size, stand density and site 

resource supply (Vose and Allen 1988). Based on these relationships, forest managers have 

observed crown development and leaf production as responses to fertilization and thinning; such 

responses are consequently related to carbon accumulation and tree growth (Albaugh et al. 1998; 

Carlyle 1998; Martin and Jokela 2004).  Traditional approaches to directly estimate leaf area 

index, such as using destructive sampling, although very accurate, are labor intensive, time 

consuming, and costly. The resulting paucity of samples limits their utility for forest 

management. 
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The use of remote sensing technologies to monitor, and therefore to improve the 

management of forest resources at regional and global scales has increased exponentially over 

the last 30 years (Lefsky et al. 2002b; Lu 2006; Lutz et al. 2008).  Previous research has shown 

that satellite data can be used to estimate LAI accurately in areas where LAI has been 

empirically related to satellite-measured reflectance values (Curran et al. 1992; Flores et al. 

2006; Gholz et al. 1997; Jensen and Binford 2004). Green vegetation amounts and leaf area 

index have been associated with spectral reflectance, and frequently with vegetation indices. 

Nonetheless, researchers have observed that optically-derived vegetation indices reach an 

asymptote or saturation point when LAI values are on the order of 3 to 5 (Anderson et al. 2004; 

Birky 2001; Spanner et al. 1990b; Turner et al. 1999).  

The estimation of LAI using satellite data can be complicated by variation in atmospheric 

characteristics, the background optical properties (i.e., understory vegetation, senescent leaves, 

soil, bark and shadows) (Eriksson et al. 2006; Spanner et al. 1990a), and the challenge of 

accounting for tree architecture (Soudani et al. 2002).  A drawback of optical imagery is that it is 

only appropriate for examining the variation of features on horizontally distributed basis. Newer 

remote sensing technologies such as lidar (light detection and ranging), which is physically 

oriented and generates data points in a three-dimensional cloud, can be suitable to evaluate 

variation in vertically distributed canopy features. Researchers have employed lidar to estimate 

forest biophysical parameters, especially in forest inventory applications, such as estimating 

stand height and volume (Næsset 1997a, b; Nilsson 1996; Popescu et al. 2002); forest biomass 

(Bortolot and Wynne 2005; Drake et al. 2003; Lefsky et al. 2002a; Nelson et al. 1997; van Aardt 

et al. 2006); canopy structure (Lovell et al. 2003; Nelson et al. 1984); tree crown diameter 

(Popescu et al. 2003); stem density (Maltamo et al. 2004; McCombs et al. 2003), species 
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classification (Farid et al. 2006; Ørka et al. 2009) and leaf area index (Jensen et al. 2008; 

Morsdorf et al. 2006; Zhao and Popescu 2009). The studies in which lidar data were used to 

estimate LAI did not find a maximum LAI or saturation problems.  However, none of the past 

studies have used multiple return lidar data, nor have they examined the accuracy of lidar-based 

LAI estimates in stands that have been fertilized at different rates and have different stem 

densities. The primary objective of this study was to predict LAI accurately across multiple sites 

of loblolly pine plantations and under a variety of intensive silviculture regimes using laser 

technology. Traditional approaches, used in previous published work, to extract information 

from lidar data were followed, as well as the calculation and evaluation of new metrics to better 

explain variation in LAI. 

 

2.3 Methods 

2.3.1 Study sites 

Five study sites located in North Carolina and Virginia, USA were used for this research. 

All five sites were established and maintained in support of research studies investigating the 

role of intensive management in optimizing loblolly pine (Pinus taeda L.) production.    These 

studies were established and/or maintained as a joint effort among the Forest Productivity 

Cooperative (FPC 2011), academic institutions, the USDA Forest Service, the Virginia 

Department of Forestry, and private industry.  

The Nutrient by Stand Density Study (NSD) was installed in 1998 and is located in 

Buckingham County, Virginia (37°34'59" N, 78°26'49" W) (fig. 2.1), at 184 meters above sea 

level. The aim of the study was to investigate the effects of two tree planting spacings and 

fertilization on tree growth development. It has 3 different fertilization regimes: low, medium 
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and high, (designed to achieve a site index (SI) at 25 years of 15, 21 and 24 meters, respectively), 

and 2 different stem densities (897 and 1794 trees per hectare). Fertilizer applications mainly 

contained nitrogen and phosphorus. Plot size is 676 m2 (26 m x 26 m) with each block containing 

6 plots, for a total of 18 plots. Refer to Carlson et al. (2009) for a more detailed explanation of 

the treatments. 

The second study site was a recently established trial, RW195501 (RW19), which is part 

of a regionwide study examining the effects of fertilization and thinning in mid-rotation stands. 

This trial is located in the Piedmont of Virginia in Appomattox County at 37º26'32" N and 

78º39'43" W (fig. 2.1). A total of 32 plots were installed in a 13 year old stand. The plots vary in 

size from approximately 400 m2 to 1280 m2. At the time of the lidar acquisition in summer 2008, 

only the plots had been established and no additional silvicultural technique had been applied 

besides the traditional forest operation practices used in the area. 

The third study in Virginia, RW180601 (RW18), is also part of a regionwide study 

designed with the objective of understanding optimal rates and frequencies of nutrient additions 

for rapid growth in young stands.  The trial is located in a Piedmont site of Brunswick County at 

36°40'51" N and 77°59'13" W (fig. 2.1). A total of 40 plots were installed in 1999 in a 6-yr-old 

planted stand. These plots had complete weed control and 5 nutrient treatments, as follows: 0, 

67, 134, 201, and 269 kg/ha nitrogen (N) applied with phosphorus (0.1 x N), potassium (0.40 x 

N) and boron (0.005 x N). Nutrient application frequencies were at 1, 2, 4 and 6 year intervals. 

30 plots were thinned in 2008. Plots vary in size from approximately 400 m2 to 470 m2. 

One of the two sites located in North Carolina, is The Southeast Tree Research and 

Education Site (SETRES), geographically positioned in the sand hills at 34º54'17" N and 79º29' 

W (Scotland County) (fig. 2.1). This trial was established in 1992 in an 8-yr-old plantation. The 



10 
 

aim of the study was to quantify the effects of nutrient and water availability on above and below 

ground productivity and growth efficiency in loblolly pine. Treatments consisted of nutrient 

additions (nitrogen, phosphorous, potassium, calcium and magnesium), and irrigation. See 

Albaugh et al. (1998) for complete site and treatment descriptions. Plot size is 900 m2 (30 m x 30 

m), 4 blocks and 4 plots per block, for a total of 16 plots. 

The final site in North Carolina, and also the oldest stand measured, is the Henderson 

Long Term Site Productivity Study (Henderson) located at 36º26'52" N, 78º28'23" W (Vance 

County) (fig.2.1). It was established in 1982 with the objective of monitoring the effects of soil 

management practices on soil structure, organic matter and nutrient contents, and pine growth. 

Treatments consisted of two levels of biomass harvest, stem wood only or whole tree removals; 

two site preparation methods, chop and burn, or shear, pile and disk; and vegetation control for 

the first 5 years or no vegetation control. Plot measurement size is 450 m2 (15 m x 30 m), and 

there are 3 blocks, with 8 plots per block, totaling 24 plots in the study. For a detailed description 

of the treatments and study see Vitousek and Matson (1985). 

 

2.3.2 Field data collection and analysis 

2.3.2.1 Inventory data 

All studies were measured during the 2008 dormant season. Total tree height (HT) and 

height to live crown (HLC) were assessed for every tree within the measurement plots using a 

Haglöf Vertex hypsometer. 
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2.3.2.2 Leaf area measured with an optical sensor 

Leaf area index data were assessed using the LiCor LAI-2000 Plant Canopy Analyzer on 

each plot during late summer (September 7 to September 19, 2008) except for the RW19 trial, 

which was measured in January 2009. Above canopy readings were recorded remotely every 15 

seconds by placing an instrument in an open field adjacent to the stand during the same date and 

time that measurements were taken inside the stand. The measurements inside the stand were 

made holding the instrument at a height of 1 m facing upwards. This same procedure was 

repeated in every single plot regardless of the presence of understory or mid-story vegetation, 

such as that found in some plots part of the Henderson study. Due to the instrument’s design, 

measurements were taken under diffuse sky conditions to ensure that the sensor measured only 

indirect light. Thus, measurements were taken during the dawn and predusk periods, with the 

above and below instruments facing north, using a 90º view cap. Sampling points were 

distributed systematically in the plots along a transect perpendicular to the tree-rows. Two 

transects were used, one close to the plot edge and the other in the middle of the plot. Between 

fourteen and twenty five readings were recorded, based on the plot dimensions. The calculation 

of LAI was accomplished using the FV-2000 software which averaged all the readings per plot. 

The canopy model used to calculate LAI was Horizontal (Li-COR 2010); the ring number 5 was 

masked to reduce the error introduced by the stem and branches of pine trees; the option of 

skipping records with transmittance > 1 was used in order to avoid bad readings that can alter the 

mean values of LAI per plot. The above and below canopy records were matched by time 

(Welles and Norman 1991).  

Since RW19 leaf area was measured in early winter (January 2009), a regression model 

was developed to generate an approximation of the summer 2008 LAI values. The model was 
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based on Licor LAI ground measurements made in summer (August) 2005 and winter (February) 

2006 from 17 plots (100 m x 100 m) established in 7 and 10-year old loblolly pine stands. See 

Peduzzi et al. (2010) for a description of the plots. The resulting equation was LAIsummer = 

1.2768(LAIwinter) and had an R2 of 0.8. Previous research has shown that loblolly pine LAI 

differences between summer and winter estimates, based on litterfall, are higher than the 

differences of seasonal LAI estimates using the Licor LAI-2000 (Dewey et al. 2006; Hebert and 

Jack 1998), this is probably due to Licor underestimations of LAI (Sampson and Allen 1995); 

hence, predicted LAI values from the developed equation were low compared to litter trap 

estimates (Dalla-Tea and Jokela 1991; Greshman 1982) but in agreement with Licor 

measurements (Sampson et al. 2003). In addition, an unrealistic estimated LAI value (0.12) 

collected in one of the heavily thinned plots of the RW18 study was deleted from the dataset. 

 

2.3.2.3 Lidar data 

Small footprint lidar data were acquired for all the study areas in late August 2008. The 

system was an Optech ATLM 3100 with an integrated Applanix DSS 4K x 4K DSS camera. The 

data have multiple returns with a sampling density of 5 pulses per square meter, with at least 4 

returns per pulse. The scan angle was less than 15 degrees. Instrument vertical accuracy over 

bare ground is 15 cm, and horizontal accuracy is 0.5 m.  

Ground returns were already extracted by the lidar provider, and the data were reviewed 

to determine whether the ground return classification had any flaws. Based on the size of the 

lidar dataset, these study sites represent a relatively small area, which is an advantage in terms of 

the computation time necessary to run interpolation models. Therefore, the kriging method was 

applied to the provided ground returns to generate a digital elevation model (DEM) for the area 
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(Popescu et al. 2002). Next, lidar data points per plot were separated in three classes: “ground 

returns” (hag = 0 m), “all returns” (hag > 0.2 m), and “vegetation returns” (hag > 1 m). 

Vegetation returns were classified using a 1 m threshold because the instrument used to estimate 

LAI in situ was held at approximately 1 m above the ground. The metrics derived from the 

ground returns class (Gr) were: frequency (count) of returns and frequency (count) of pulses 

(table 2.1). The metrics derived from the all returns class (All) were: frequency (count), mean 

height, standard deviation, coefficient of variation, minimum, maximum, percentiles (10, 20, 25, 

40, 50, 75, and 90), and frequency (count) of pulses (Holmgren 2004; Magnussen and Boudewyn 

1998; Popescu et al. 2002). The metrics derived from the vegetation returns class (Veg) were the 

same described for the all returns class with the addition of the mode. The distribution of 

intensity values (I) were described using the mean, minimum, maximum, standard deviation, and 

coefficient of variation.  First, second, third and fourth returns were classified as such and 

divided by the total number of “vegetation returns” (R).  The Laser Penetration Index (LPI) 

(Barilotti et al. 2005) was calculated per plot as the proportion of ground pulses to the total 

pulses (ground pulses + all pulses). Density metrics (d) were calculated following Naesset  

(2002), as the proportion of returns found on each of 10 sections equally divided within the range 

of heights of vegetation returns for each plot. Additionally, another set of metrics, crown density 

slices (Cd), was calculated using the mode value of vegetation returns. Ten 1-meter sections of 

vegetation returns (5 above and 5 below the mode value, based on the maximum value of crown 

length observed) were classified and proportion of returns to the total number of returns, mean, 

standard deviation, and coefficient of variation were calculated (fig. 2.2).  Frequency of returns 

(count), calculated from each of the lidar data point classes, were used only to estimate other 
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metrics, such as proportions of returns, but they were not used in the development of the models 

(table 2.1). 

The height values obtained from the lidar data collected in RW18 were too high in one 

portion of the study area, with values several meters higher than the forest stand heights. A 

threshold, maximum return hag  ≥ 1 m higher than field-measured tree height per plot was used 

to eliminate erroneous lidar measurements. After this threshold was applied only 19 plots 

remained in this study area. 

 

2.3.2.4 Statistical analysis 

A dataset of 109 plots was assembled with all lidar derived metrics and ground truth 

measurements. Results from the data diagnostic methods applied to the dataset showed normality 

between the Studentized residuals and the predicted values, and normal order statistics. There 

was no need to transform the dependent variable, and because the existing outliers were also 

influential points, they were not deleted from the dataset. Pearson correlation coefficients were 

used to evaluate relationships among lidar metrics, ground data, and LAI. Multiple regressions 

were used to fit the dataset. Best subset regression models were examined using the RSQUARE 

method for best subsets model identification (SAS 2010). This method generates a set of best 

models for each number of variables (1, 2, …, 6, etc.). The criterion to choose the models was a 

combination of several conditions as follows: 

• High coefficient of determination (R2) value.  

• Low residual mean square (RMSE).  
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• Similarity between the adjusted coefficient of determination R2
adj’ and R2 values. The 

R2
adj’ is a rescaling of R2 by degrees of freedom, hence involves the ratio of mean squares 

instead of sum of squares. 

• Mallows’ Cp statistic values (Hocking, 1976).  When the model is correct, the Cp is close 

to the number of variables in the model.  

• Low values from two information criteria, the Akaike (1969) Information Criterion (AIC) 

and Schwarz (1978) Bayesian Criterion (SBC). The AIC is known for its tendency to 

select larger subset sizes than the true model; hence the SBC was used for comparison, 

since it penalizes models with larger number of explanatory variables more heavily than 

AIC. 

The best models chosen per subset size (based on number of variables in the models) 

were evaluated for collinearity issues. Computational stability diagnostics were then used to 

check for near-linear dependencies between the explanatory variables. In order to make 

independent variables orthogonal to the intercept and therefore remove any collinearity that 

involves the intercept, independent variables were centered by subtracting their mean values 

(Belsley 1984; Marquart 1980). The variance Inflation Factor (VIF) quantifies how much the 

variance of an estimated regression coefficient is inflated, and a threshold of 10 is commonly 

used, which in the case of higher values, suggests weak (10 < VIF < 30) to high (VIF > 30) 

collinearity problems.  However, since VIF neither detects multiple near-singularities nor 

identifies the source of singularities (Rawlings et al. 2001), condition index (CI) was evaluated 

for all variables within the models. This index is the square root of the ratio of the largest 

eigenvalue to the corresponding eigenvalue from the matrix. Similar to VIF, the CI indicates 

weak dependencies when 10 > CI > 30 to high dependencies when CI > 30.  
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Additional data to test the models were not available, thus cross-validation analysis was 

performed using the predicted residual sum of the squares (PRESS) statistics (Allen 1971), 

which is the sum of squares of the difference between each observation and its prediction when 

that observation was not used in the prediction equation. The root mean square error from the 

cross validation analysis (CV-RMSE) was then calculated as the square root of the ratio between 

the PRESS statistic and the number of observations. The CV-RMSE is an indicator of the 

predictive power of the model, thus a small CV-RMSE is desirable. The significance level used 

for all the statistical tests was α= 0.05 (p-value < 0.05). This p-value was used to evaluate if the 

variables included in the model were statistically significant as well. The squared semipartial 

correlation coefficients (SSCC) were calculated using partial sum of squares to determine the 

contribution from each variable to the models, while controlling the effects of other independent 

variables within the model. These coefficients represent the proportion of the variance from the 

dependent variable associated uniquely with the independent variable. 

 

2.4 Results 

2.4.1 Summary statistics from ground measurements and lidar metrics 

Stand age ranged from 11 to 26-yr-old. Forest canopy was closed in all plots, except for 

the plots in NSD that had the spacing twice as large as that traditionally used in forest operations, 

and the plots from RW18 that were thinned. Table 2.2 summarizes the average growth metrics of 

plots, within the study sites, as treatment and control, and in the case of NSD, these were 

distinguished by the number of trees per hectare. In RW19 all plots were classified as fertilized, 

since the stand had been under traditional forest management. Studies in which there were 

different levels of fertilization were classified together as fertilized, regardless of the rate and 
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frequency of nutrient additions.  In RW18, thinning was recently applied to some of the control 

and fertilized plots, thus the plots at this site were also classified by the number of trees per 

hectare. Individual tree height ranged from 4.8 m to 27.9 m and averaged 15.7 m among all the 

study areas, the highest standard deviation (> 2 m) from the mean of tree height was observed in 

the SETRES and Henderson studies. Crown length ranged between 0.8 m (a damaged tree) and 

10.8 m, and averaged 6.9 m. Leaf area index measured on the ground ranged from 0.45 to 4.91. 

The lowest values of LAI were observed in the plots from the RW18 study, and they 

corresponded to the thinned plots which had an average of 16 trees distributed in a 400 – 470 m2 

plot area. Leaf area index assessment in these plots was expected to be low, not only due to the 

reduced number of trees, but also due to the difficulty of using an indirect method to measure it. 

The highest LAI values were observed in the control plots in Henderson. Regardless of the other 

treatments applied to these plots (harvesting and site preparation), the control plots had 

consistently higher LAI than the vegetation control plots. In most plots, the presence of 

competing vegetation (mostly hardwood trees) increased the LAI as much as twice the LAI value 

from the plots with vegetation control. 

Lidar ground returns were lowest (131) at the control plots in Henderson (table 2.3). This 

set of plots can be compared to the vegetation control plots (297) from the same study and to the 

fertilized plots (223) from RW18, which had comparable tree densities. However, when the 

number of vegetation returns are taken into account, the proportion of ground pulses relative to 

the total number of pulses (LPI = 0.08) shows that the canopy in the control plots from 

Henderson generated more returns (1601) and hence did not penetrate to the ground as much as 

the other two set of plots. The opposite was observed in the thinned plots from RW18, which had 
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the highest LPI (0.42 and 0.50), and the lowest number of trees per plot, ground penetration was 

high (461 and 427), and canopy interception low (478 and 670).  

Heights of vegetation returns were consistently lower than the tree heights measured on 

the ground, except for a few returns that were a few centimeters higher than the maximum tree 

height of the plot. These minor anomalies could be attributable to measurement and estimation 

errors. Fertilized plots showed higher intensity mean values than control plots; however, as 

expected, Henderson control plots had higher intensity means than the treated plots, since 

classification of these plots is not based on nutrient additions but on competing vegetation 

control.   

The vertical profiles (fig. 2.3) show graphically the range of heights for the vegetation 

returns according to their frequency. The mode for each of the sites is highlighted on the profiles; 

this metric had a Pearson correlation coefficient of 0.92 with the mean mid-crown height of the 

individual plots (n = 109). The frequency of returns at the Henderson site, and at the RW18 and 

RW19 sites (fig. 2.3) show that there are a number of returns that come from below the canopy, 

whereas SETRES and NSD frequencies are closer to zero. The latter two sites have been 

maintained with no understory vegetation. RW18 unthinned plots are also free of understory 

vegetation, but they represent only 4 of the 19 plots used from this study. The site that showed 

less frequency of returns was RW18 (fig. 2.3); this observation could be due to the fact that most 

of the 15 plots at this site had been intensively thinned (313 to 470 TPH) and they are also the 

smallest plots among all the study sites. SETRES and Henderson have a higher number of trees 

per hectare than RW19; however the frequency of returns in fig. 2.3 was higher in RW19 than in 

the other two sites. This result could be explained by the number and area of the plots: 32 plots 
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(400 m2 to 1280 m2) in RW19, compared to 24 plots (450 m2) in Henderson, and only 16 plots 

(900 m2) in SETRES. 

 

2.4.2 Variable selection and modeling 

Among all the lidar metrics, LPI has the highest correlation with LAI (-0.757) (table 2.4). 

A graphic representation of the LAI and the LPI contrast is shown in fig. 2.4, where the high 

values of LAI are in concordance with the low values of LPI. The crown density slices (1 m 

section) were calculated with the objective of examining the relationship of the shape of the 

frequency profiles to LAI. The metrics that contributed to the best models were the proportion of 

returns at 1 m above the mode (Cd+1) and its standard deviation, the coefficient of variation at 4 

m above the mode (Cd+4cv), and the proportion of returns at 4 m below the mode (Cd-4). 

Correlations of these metrics are shown in table 2.4. Although the standard deviation at 1 m 

above the mode (Cd+1stdv) was the only one to have a statistically significant correlation with 

LAI, the other three metrics (Cd+1, Cd+4cv, and Cd-4) had a highly significant contribution to 

the LAI predictive models when used in combination with other variables. The other variables, 

which were significantly correlated with LAI included Vegstdv, and Imean (table 2.4). Also, 

variables such as the Veg-percentiles, crown density slices, and the rest of the densities, had 

significant correlations with LAI, but since their correlations were similar to the ones from the 

variables shown in table 2.4, and they were not part of the best models observed, their Pearson 

coefficients have not been reported. Variables derived from all returns > 0.2 m were also 

significantly correlated with LAI, but not as highly correlated as the variables derived from 

vegetation returns > 1 m. Due to collinearity problems among these metrics, only one set of 
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variables was used at a time in the best subset analysis, and ultimately variables with higher 

correlations and models with better R2 were chosen.  

All variables from ground measurements showed significant correlations with LAI, that is 

mean tree height (0.270), mean crown length (-0.343), and number of trees (0.427). However, 

the best models generated from the best subsets analysis, did not have an increase in R2 

compared to the models using lidar metrics only. Therefore, these models were not reported. 

 Combinations of the metrics reported in table 2.4 for models including 2, 3, 4, 5 and 6 

variables are summarized in table 2.5. R2
adj’ values ranged between 0.60 and 0.82 for 2 and 6 

variable models respectively. Despite the collinearity issues that lidar derived metrics can 

produce in predictive models, all parameters had variance inflation factors (VIF) lower than 6. 

All variables had a CI lower than 5 (table 2.5). The increment in R2 and R2
adj’ gained from 

adding a variable to the model is more noticeable where 2 to 3 and 3 to 4 variables were 

included. The root mean square error (CV-RMSE) and PRESS statistics (from the cross 

validation analysis) became lower as the number of variables included in the models increased.  

LPI, which was highly correlated with LAI, was found in all the models, as well as Imean except 

for the 2-variable model; and as these two variables were added to the models, the Vegmean and 

Veg20th became common variables also.  The variable contributions among the models, in 

descending order of importance, were LPI, Vegmean, Veg20th, and Imean; except for the 6-variable 

model were Imean had higher contribution than Veg20th. Crown density metrics were the lesser 

contributors compared to the rest of the variables, nonetheless these were responsible for 

increasing the R2 values from the models. Among all the models reported, the 4-variable model 

represents the best way to estimate LAI, in terms of maximizing R2 while minimizing the 

number of variables. However, predicted LAI values using this model were plotted against the 
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observed LAI from all the plots (fig. 2.5) and it was noticeable that one of the plots from RW18 

control thinned stands with very low LAI (0.6) was predicted as no LAI (0) whatsoever. 

Therefore, for comparison purposes, LAI estimations using the 6-variable model were plotted 

versus the observed LAI values (fig. 2.6), in which the same plot was estimated with and LAI of 

0.4. Although, the R2 and R2
adj’ values are similar between these two models, the 6-variable 

model predicted low LAI values better (more realistically) than the 4-variable model. Data 

distribution within the graphs tended to cluster at the center, since this was the range of the 

observed LAI from most of the sampled plots.  

In addition, a modified dataset was used to evaluate the influence that plot size had on the 

models. As described previously, the area of the plots differed from one site to another. For this 

modified dataset, all plots were buffered and reduced to the smallest area plots (between 400 and 

450 m2), and lidar metrics for this new set of plots were then calculated. Despite the expectation 

that the results using similar plot sizes could improve, the models derived using same plot size 

consistently showed lower R2 values than those generated using different plot size. Nonetheless, 

the combination of variables within the models was very similar. This result was supported by 

the absence of correlation between LAI and plot area (r = -0.010).   

 

2.5 Discussion 

Good correlations of certain lidar metrics with LAI were expected. Laser penetration 

index is physically related to the level of canopy development; the closer and denser the 

vegetation, the less the laser pulses penetrate to reach the ground. This index has been used in 

previous research to predict LAI, and reported models were able to explain 80% or more of the 

variation of leaf area in natural forest ecosystems (Barilotti et al. 2005; Kwak et al. 2007). 
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Vegetation return percentiles, and canopy densities have also correlated well with other stand 

attributes, including tree height, diameter, and volume (Holmgren 2004; Magnussen and 

Boudewyn 1998; Naesset 2002; Popescu et al. 2002). Recurrent variables in the models, besides 

LPI, were:  

1) The average intensity of the returns (Imean), which as a measure of the return signal 

strength, depends, among other things, on the reflectance and reflectivity of the target. 

This metric is therefore closely related to the amount of vegetation (leaves and branches) 

when a forest is such target.  Previous research has used metrics calculated from intensity 

values to estimate forest biomass (van Aardt et al. 2006); however, since the intensity 

values from lidar sensors are frequently not calibrated, researchers have advised to using 

them with caution (Bater et al. 2011). Fortunately, the dataset used in this research 

encompasses large variability in many aspects. Lidar data acquisition dates were not the 

same for most sites, the terrain relief ranged from flat to hilly, and the forest stands varied 

in age, stem density and fertilization rates.  Therefore, the intensity metrics used for 

developing the models inherently possessed a large amount of variation.  

2) The average height from the vegetation returns (hag > 1 m) and the Veg20th percentile.  

These two metrics are lidar return height values, hence they are descriptors of the canopy 

density and height of the forest stands. The mean values from the lidar returns are related 

to the distribution of return heights across the stand vertical profiles, and such heights 

will therefore relate to the target heights (on the ground). The more targets (i.e. branches, 

leaves, etc.) the laser would encounter within a range of heights, the more returns will be 

obtained from that section of the stand. Thus, the mean value from all the vegetation 

returns will be influenced by the heights from where most of the returns were acquired. 
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Similarly, the percentile values, in this case the 20th, meaning that 80% of the return 

heights are above that height; can refer to the density of such targets on the ground.  

3) The standard deviation of the returns found between 1 and 2 meters above the mode of 

the height values of vegetation returns (Cd+1stdv). This variable had a negative correlation 

with LAI, meaning that the higher the LAI, the less the dispersion observed from the 

mean of the height values. This section is located above the mode, within the top part of 

the tree crowns, which in closed canopy stands such as these is likely to be where most of 

the foliage would be located.  

Despite the fact that ground-based variables (number of trees, mean tree height, and 

crown length) showed significant correlations with LAI, these were not strong enough to 

increase the performance of lidar metrics when added to the models.  

Previously developed leaf area predictive models (that used discrete lidar data, first and last 

returns) were reported to explain between 40% and 89% of the variance. Interestingly enough, 

the tendency observed is that relationships (between LAI and lidar metrics) favor the sampling of 

mixed species forests more than pure coniferous stands. For example, Riaño et al. (2004) 

measured forests in Spain and reported R2 > 0.8 for deciduous species and R2 < 0.4 for pines. 

Other researchers modeling pure pine stands reported an R2 of 0.69 in Sweden (Morsdorf et al. 

2006), and an R2 of 0.70 in the U.S. (Jensen et al. 2008); but the results from mixed species 

stands have R2 values of 0.89 (Barilotti et al. 2005), 0.80 (adjusted R2) (Sasaki et al. 2008), and 

0.84 (Zhao and Popescu 2009). Using loblolly pine plantations only, Roberts et al. (2005) 

developed a model that explained 69% of the variation.  

Based on these previous results, and considering that the stands sampled in the current 

study were not only pure coniferous stands, but also of uniform age within each site, and 
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growing under intensive management (with different fertilization rates, little or no understory 

vegetation, and different tree spacing), the models obtained performed close to the best models 

reported in the literature, since they explained up to 83% of the variation. The use of multiple 

return data might have made the characterization of such variation across the study sites feasible, 

since many of the variables included in the model were based on the number of returns, instead 

of using the number of pulses.  

A group of models explaining between 61% and 83% of the LAI variation was reported. 

The reason for this range is the number of variables in each model. Although the most 

parsimonious model is generally considered best, this applies to cases when the stability of the 

model can be compromised or when the estimation of an additional variable impact on the 

research or operation costs, which is usually the case in biological sciences (Rawlings, 2001). 

Adding a lidar metric to the model will not increase the cost in a significant matter, since the 

highest cost is the acquisition of the lidar data itself. It will only add computational time, 

therefore a 6-variable model (with stable regression estimates) for predicting LAI can only 

increase the accuracy of the predictions. The decision of which model should be used will 

depend on a forest manager’s needs. If a good approximation of the estimates and relative 

variation of LAI values is sufficient, the 2-variable model will be appropriate, but if higher 

accuracy is wanted, a 6-variable model will be the best choice.  

LAI is a useful index for intensive plantation management because it provides an 

estimate of the amount of light captured by the stand and is thus a proxy variable that defines the 

stand’s current growing conditions. For instance, LAI allows foresters to identify stands that are 

in need of fertilization (e.g., when LAI is low) or thinning (e.g., when LAI is high), in order to 

improve tree growth and maximize returns. The 6-variable model, with an RMSE for prediction 
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(CV-RMSE) of 0.46, provides a precise tool for this type of management, in which decisions are 

usually made based on LAI thresholds. In this case, an error of this magnitude in estimating LAI 

for forest management purposes is not as important as the consistency of the estimated values 

across stands under different conditions (the ability to use the same model across different stand 

ages, fertilization regimes, vegetation controls, etc.). For forest managers, the advantage of 

having a model that estimates LAI using remotely sensed data resides in the accuracy and 

robustness of such models. Although satellite-derived LAI estimates rely on models with R2 

values similar to those of the lidar model developed in this research (Flores et al. 2006), such 

estimates have not been consistent, mainly due to issues associated with sensor saturation, 

atmospheric conditions, and the inability to account for the vertical structure of the stand 

(Peduzzi et al. 2010). Lidar data are not without acquisition issues; in the past, there have been 

concerns about the consistency of metrics derived from lidar returns given variations in lidar 

sensor configurations, flight characteristics, atmospheric conditions, topography, and target 

objects (Bater et al. 2011). In view of creating a robust model, this research has taken into 

account much of the variation associated with these issues. For all sites, the sensor configuration 

was similar; however, the acquisition date and time did not coincide for most of them, 

topography differed, and, given the different stand ages, stem densities and fertilization regimes 

included in the dataset, target objects also varied. 

Laser technology has been successfully used in the past to estimate forest height, volume 

and biomass to the stand and plot levels. Lately, attempts to estimate leaf area index have 

broadened the potential of this tool. The results from this research complement these efforts. A 

robust model with a unique set of variables was developed that explained 83% of the variation of 

LAI in loblolly pine plantations. The model was constructed from and tested through cross 
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validation on multiple research studies across a wide range of site conditions and silvicultural 

regimes, giving foresters managing for different purposes (i.e. sawtimber, pulp, etc.) the 

opportunity to use it as a robust application in decision making.  
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Figure 2.1 Geographic representation of the study sites in North Carolina and Virginia, USA. 
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Figure 2.2 Graphic description of crown density slices derived from lidar Vegmode value. Mode 
value per plot was significantly correlated (0.92) with mid-crown height, which was calculated 
as follows: Tree total height – (crown length/2). Five 1 m sections above and below the mode 
were defined, and the descriptive statistics (i.e., frequency, mean, standard deviation, and 
coefficient of variation) from the returns within each section were obtained.  See table 2.1 for 
variable names and how they were calculated. (a) Crown density values for a vegetation control 
plot from the Henderson site.  

 

 

  

 

Cd0 (mode) 

Height to live crown 

Total tree height 

Cd-1 

Cd-2 

Cd-3 

Cd-4 

Cd-5 

Cd+1 

Cd+2 

Cd+3 

Cd+4 

Cd+5 

 1 m section 

Proportions of returns to the total number of returns

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20

C
ro

w
n

 d
e

n
s

it
y
 s

lic
e

s

Cd-5

Cd-4

Cd-3

Cd-2

Cd-1

Cd0

Cd+1

Cd+2

Cd+3

Cd+4

Cd+5 Henderson vegetation control plot 
Age = 26 
LAI = 2.75 

(a) 



34 
 

Figure 2.3 Vertical profiles for lidar vegetation returns (hag > 1 m) in each study site. The mode for the vegetation returns is circled on 
the y axis. Study sites are: (a) NSD, (b) RW19, (c) RW18, (d) SETRES, and (e) Henderson. 
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Figure 2.3. Continued. 
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Figure 2.4 Graphic representation of LAI and LPI mean values for a subset of plots at the 
SETRES study site. LAI and LPI have a negative correlation (-0.76), hence when LAI is high 
(dark) the LPI should be low (light).  Aerial photography was taken at the same time that lidar 
data were acquired (Summer 2008). 
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Figure 2.5 Relationship between estimated LAI and measured LAI using the 4-variable model 
with lidar metrics only (n = 109). Plots were classified first by stem density, and then by control 
and treatment.  
 
Model (refer to table 2.1 for variable names): 
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Figure 2.6 Relationship between estimated LAI and measured LAI using the 6-variable model 
with lidar metrics only (n = 109). Plots were first separated by stem density, and then by control 
and treatment.  
 
Model (refer to table 2.1 for variable names): 
 
LAI = 2.767 + 0.345 (Vegmean) – 0.236 (Veg20th) – 6.475 (LPI) + 0.113 (Imean) – 10.772 (Cd+1) – 
18.581 (Cd-4) 
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Table 2.1 Explanatory variables derived from lidar.  Return hag refers to the return height above 
the ground. Statistics in subscripts were as follows: frequency (total), mean, mode, standard 
deviation (stdv), coefficient of variation (cv), minimum (min), maximum (max), and height 
percentiles (10th, 20th, …, 90th). The metrics Grtotal, Alltotal, Vegtotal, Grpulses, Allpulses, and Vegpulses 
were determined for calculation of other metrics (i.e. proportions of returns), but were not used 
for model development. 
 
 

Lidar metrics Symbol 

Total number of ground returns Grtotal 

All returns (return hag  > 0.2 m) 
Units are meters for all metrics except for Alltotal 
and Allcv. 

Alltotal, Allmean, Allstdv, Allcv, Allmin, Allmax, 
All10th,…, All90th 

Vegetation returns (return hag  > 1 m) 
Units are meters for all metrics except for Vegtotal 
and Vegcv. 

Vegtotal, Vegmean, Vegmode, Vegstdv, Vegcv, Vegmin, 
Vegmax, Veg10th,...,Veg90th 

 
Pulses (number of lidar pulses per return 
class) 

 
Grpulses, Allpulses, Vegpulses 

 
Laser penetration index (LPI) 
 

 
LPI = Grpulses/(Grpulses + Allpulses) 
 

Intensity values (returns hag  > 1 m) 
Units are watts for all metrics except for Icv. 

Imean, Imin, Imax, Istdv, Icv  

Proportion of 1st, 2nd, 3rd and 4th returns  
Ri is a proportion of returns 

 

Ri = total number of i returns/ Vegtotal 

i = 1st, 2nd, 3rd, and 4th   

Density 
di is a proportion of returns 

 

di = [x + (Vegmax - Vegmin)/10]/Vegtotal  
x = Vegmin,1,..,10 
i= 1, 2, …,10 
 

Crown density slices around Vegmode  
See fig. 2.2 for a graphic representation 
of slices. 

Units are meters for Cdimean, Cdistdv, and Cdicv. 
Cdi is a proportion of returns 

Cdi, Cdimean, Cdistdv, Cdicv  

Cdi = [number of returns in i / (Alltotal + Grtotal)] 
(i=+1,+ 2,+3,+4,+5, 0, -1, -2, -3, -4, and -5) 
i=+1,…,+ 5 at i meters above Vegmode 
i = 0 at Vegmode 
i = -1,…,-5 at i meters below Vegmode 
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Table 2.2 Descriptive statistics for tree height, crown length and leaf area index (LAI) at control and treatment plots per study site. 
Statistics for total were calculated based on plot means. Column annotation: n (number of observations or plots), TPH (trees per 
hectare), Ntrees (number of trees per plot), and Stdv (standard deviation). 
 
 

Study 
Stand 

age 
Treatment n TPH 

Ntrees Height (m) Crown length (m) LAI 

(mean) Mean Stdv Range Mean Stdv Range Mean Stdv Range 

NSD 11 Control 3 897 61 11.0 0.9 7.1 12.9 7.2 1.0 6.5 7.6 2.57 0.20 2.38 2.78 

3 1794 125 11.1 0.9 6.5 13.2 5.8 0.9 5.6 6.1 3.72 0.39 3.35 4.13 

Fertilized 6 897 61 11.1 1.0 5.7 13.3 7.3 1.1 6.7 7.9 3.21 0.48 2.51 3.97 

6 1794 123 11.2 0.9 6.7 14.6 5.9 1.0 5.7 6.2 3.50 0.49 2.84 4.03 

RW19 13 Fertilized 32 1176 94 13.1 1.3 5.0 18.8 7.3 1.2 6.5 8.0 2.56 0.27 1.93 3.05 

RW18 16 Control and 
thinned 

2 (346 - 395) 16 16.7 0.7 15.5 18.0 7.7 1.0 5.7 10.8 0.79 0.30 0.57 1.00 

Fertilized 
unthinned 

4 1678 60 16.9 1.8 10.5 20.6 6.3 1.6 0.8 10.7 3.90 0.78 2.93 4.85 

Fertilized 
and 
thinned 

13 (313 - 470) 16 17.0 0.8 13.8 19.4 7.6 1.0 4.9 10.7 0.96 0.30 0.45 1.52 

SETRES 24 Control 4 1665 100 12.9 2.1 4.8 17.8 6.2 1.6 5.7 6.6 2.09 0.38 1.55 2.40 

Fertilized, 
irrigated 
or both 

12 1665 95 16.6 2.5 6.0 22.1 6.9 1.7 6.1 7.9 2.66 0.41 1.87 3.27 

Henderson 26 Control 12 1665 51 21.1 2.4 13.4 27.9 6.3 1.8 5.6 8.2 4.47 0.31 3.84 4.91 

Vegetation 
control 

12 1665 63 21.9 2.2 14.0 26.9 6.2 1.7 5.0 7.1 3.07 0.83 2.08 4.69 

Total   109 ____ 73 15.7 3.7 4.8 27.9 6.9 0.8 0.8 10.8 2.77 1.06 0.45 4.91 
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Table 2.3 Means of lidar returns per plot at each study site. Minimum values for vegetation returns heights above ground were set at 1 
m. Intensity minimum value was 1 for all plots (n = 109). Column annotation: n (number of observations or plots), Grtotal (total number 
of ground returns), Vegtotal (total number of all returns), Stdv (standard deviation), Max (maximum value), and LPI (Laser Penetration 
Index). 
 
 

Study Treatment n 
Ntrees 

(mean) 

Grtotal 

(mean) 

Vegtotal 

(mean) 

Veg return  heights (m) Intensity (watts) 
LPI 

Mean Stdv Max Mean Stdv Max 

NSD Control 3 61 592 1286 6.9 1.7 11.5 33.5 14.1 93 0.32 

3 125 719 1965 7.8 1.5 12.1 36.7 13.9 75 0.28 

Fertilized 6 61 589 1912 7.3 1.7 12.1 38.9 14.9 91 0.24 

6 123 660 2218 8.0 1.5 12.1 40.8 14.7 80 0.23 

RW19 Fertilized 32 94 1042 2201 9.2 2.1 15.2 36.8 16.0 115 0.30 

RW18 Control and 
thinned 

2 16 461 478 12.6 1.9 16.7 28.9 14.5 66 0.50 

Fertilized 
unthinned 

4 60 223 1031 12.5 3.7 18.6 34.5 13.2 71 0.18 

Fertilized and 
thinned 

13 16 427 670 11.9 3.5 19.4 31.4 15.2 87 0.42 

SETRES Control 4 100 814 2806 10.4 2.2 18.1 28.9 13.3 69 0.23 

Fertilized, 
irrigated or 
both 

12 95 757 2456 14.0 2.7 21.2 34.1 14.6 80 0.24 

Henderson Control 12 63 131 1601 15.2 5.0 24.7 32.0 19.4 103 0.08 

Vegetation 
control 

12 51 297 1395 17.1 5.6 25.7 30.4 15.8 105 0.18 
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Table 2.4 Pearson correlation coefficients for the independent variables used to predict leaf area 
index (LAI) (n = 109). For a description of the variable names refer to table 2.1. LAI was 
measured on the ground.  Bold values were significant at α = 0.05. 
 
 

 
LAI LPI Vegmean Vegstdv Veg20th Imean Cd+1 Cd+1stdv Cd+4cv Cd-4 

LAI 1 -0.757 0.187 0.397 -0.046 0.271 0.086 -0.328 -0.029 0.101 

LPI  1 -0.045 -0.271 0.060 -0.183 -0.254 0.239 -0.213 -0.185 

Vegmean   1 0.693 0.873 -0.436 0.153 -0.004 -0.453 0.391 

Vegstdv    1 0.366 -0.491 0.024 0.016 -0.249 0.227 

Veg20th     1 -0.271 0.250 0.045 -0.450 0.298 

Imean      1 0.172 -0.075 0.086 -0.179 

Cd+1       1 0.002 0.304 -0.326 

Cd+1stdv        1 0.135 0.125 

Cd+4cv         1 -0.093 

Cd-4          1 
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Table 2.5 Best predictive models of LAI using lidar metrics only, n = 109. The statistics R2
adj’, 

CV-RMSE, SSCC, VIF, and CI are the adjusted coefficient of determination, the RMSE from the 
cross validation analysis, the squared semipartial correlation coefficient from partial sum of 
squares, the variance inflation factor and the condition index, respectively. Since all the 
explanatory variables were centered, the intercept parameter for all models is 2.767. All variables 
in the models were highly significant at a p-value < 0.0001, except for Cd+1stdv with a p-value < 
0.01 (in the 5-variable model), and Cd+4cv with a p-value < 0.005 (in the 2-variable model). For 
a description of the variable names refer to table 2.1. 
 
 

# var. R
2 

R
2

adj’ RMSE CV-RMSE Variable Coefficient SSCC VIF CI 

2 0.61 0.60 0.67 0.67 LPI -7.518 0.61 1.05 1.10 

     Cd+4cv -0.237 0.04 1.05 1.24 

          3 0.71 0.70 0.58 0.59 Vegstdv 0.318 0.11 1.60 1.14 

     LPI -5.393 0.26 1.26 1.23 

     Imean 0.099 0.09 1.54 2.07 

          4 0.79 0.779 0.50 0.51 Vegmean 0.330 0.19 5.68 1.40 

     Veg20th -0.268 0.14 4.86 1.45 

     LPI -5.522 0.30 1.14 1.72 

     Imean 0.106 0.11 1.44 4.67 

          5 0.80 0.791 0.48 0.50 Vegmean 0.324 0.19 5.70 1.29 

     Veg20th -0.262 0.13 4.89 1.45 

     LPI -5.275 0.26 1.19 1.60 

      Imean 0.104 0.11 1.45 1.75 

     Cd+1stdv -13.046 0.01 1.07 4.68 

          6 0.83 0.82 0.45 0.46 Vegmean 0.345 0.20 5.93 1.27 

     Veg20th -0.236 0.10 5.26 1.42 

     LPI -6.475 0.34 1.38 1.52 

     Imean 0.113 0.12 1.47 1.84 

     Cd+1 -10.772 0.03 1.64 2.68 

     Cd-4 -18.581 0.04 1.64 4.98 
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3. ESTIMATING STEM DENSITY AND HEIGHT TO LIVE CROWN IN 

INTENSIVELY MANAGED PINE PLANTATIONS USING AIRBORNE 

LASER SCANNING DATA 

 

3.1 Abstract 

The objective of this study was to determine whether stem density and mean height to 

live crown can be estimated accurately in intensively managed pine plantations using metrics 

derived from multiple-return airborne laser scanning (lidar) data with and without knowledge of 

establishment density. Field measurements of mean height, height to live crown, and stem 

density were measured on 110 plots under a variety of stand conditions (i.e., nutritional regimes, 

stand ages, and stem densities) in North Carolina and Virginia, USA. Lidar distributional metrics 

were calculated for all returns as well as for ten one meter deep crown density slices (newly 

introduced in this study), five above and five below the mode of the vegetation returns for each 

plot. These metrics, along with establishment density, were used as independent variables in best 

subsets regressions with stem density, mean height to live crown, and mean height (all measured 

in situ) as the dependent variables. The cross-validation (CV) RMSE for estimating number of 

trees on all 110 plots was 11.8 with an R2 of 0.92. Mid-rotation age stands alone (70 plots) had a 

CV-RMSE of 8.7 and an R2 of 0.97, and end-of-rotation stands (40 plots) had a CV-RMSE of 

5.5% and an R2 of 0.96. Initial establishment density, the laser penetration index, and the ratio of 

the returns in a given crown density slice to the total number of returns per plot were all 

important variables when estimating stem density. Mean height to live crown was also well-

predicted (R2 = 0.96, CV-RMSE = 0.8 m) with a model containing only one independent 

variable, the 90th percentile of the heights of all returns more than 0.2 m above ground. These 
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results indicate that if initial planting density is known, stem density can be estimated accurately 

using lidar data in intensively managed pine plantations over a wide variety of stand conditions. 

Mean height to live crown, in contrast, requires only lidar data for accurate estimation on these 

sites. 

 

3.2 Introduction 

Forest volume, forest biomass, and site quality are some of the parameters used to 

quantify forest growth and productivity. The values and units of measurements vary depending 

on what they describe, but they always rely on primary forest biophysical parameters, such as 

tree diameter, tree height, height to live crown, and stem density. These parameters, especially 

tree height and stem density are critical elements of forest inventories; and they are used 

extensively by forest managers to define silviculture prescriptions in plantations throughout a 

rotation, and, more importantly at the end of the rotation, when standing timber volume 

estimations are necessary. However, field-based estimations or measurements of these variables 

by traditional cruising inventories can require large amounts of time and expense; since 

inventories are conducted periodically, such investments tend to multiply. There is a general 

interest in the development and application of new, non-field-based techniques that can more 

easily and inexpensively quantify forest metrics. Remotely sensed data has been attractive for 

collecting forestry attributes given their rapid acquisition and synoptic views; aerial photography 

has been and continues to be utilized primarily for the estimation of number of trees and tree 

crown diameters, while satellite imagery, as a substitute to aerial photos,  has primarily 

contributed information on quantifying and classifying vegetation and, most recently, aerial-

based laser technology have emerged as a valuable source of three-dimensional data.  
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Lidar sensors measure the time between the emission and reception of laser pulses, which 

multiplied by the constant speed of light results in the distance (round trip) between the sensor 

and a target feature. This information is used to obtain accurate surface representations (i.e., 

elevation, slope and aspect) for topographic applications (Anderson et al. 2006; Xiaoye Liu 

2008).  Furthermore, the vertical distribution of the lidar returns provides the ability to estimate 

important forest parameters, such as canopy heights (Goodwin et al. 2006). 

Previous work has reported strong correlations between lidar-based and field-based mean 

tree heights (Bortolot and Wynne 2005; Harding et al. 2001; Jupp et al. 2005; Lefsky et al. 

2002). There have also been attempts to estimate stem density using lidar datasets through a 

variety of different methods, such as segmentation techniques (Holmgren and Persson 2004; 

Persson et al. 2002); tree crown (outlines) extractions (Lee and Lucas 2007); canopy height 

models (Dalponte et al. 2009; Popescu et al. 2002); and clustering (Morsdorf et al. 2004).  Other 

procedures have incorporated the use of high spatial resolution images (i.e., aerial photography 

and multispectral satellite imagery) with lidar, consequently increasing forest inventory costs. 

However, the majority of these studies were based in natural or unmanaged forest environments.  

Little work has been done in intensively managed loblolly pine plantations. One of the few 

studies that estimated stand density in a 15-year-old loblolly pine spacing trial with high and low 

initial density plots (1736 and 1111 trees ha-1, 32 plots of 149 m2 per stem density) reported 

accuracies in the range of 65% to 87% using lidar data only, and 84% to 95% using fused lidar 

and multispectral imagery data (McCombs et al. 2003), but results from datasets constrained by 

age and management regime are difficult to extrapolate to other situations. 

The accuracy and precision of inventory estimations in pine plantations is very important; 

an error in estimated height and number of trees at mid-rotation would have an effect on forest 
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management decisions, while an error towards the end of the rotation would lead to inaccurate 

estimates of wood standing volumes.  

In the past, predictive models developed using remotely sensed data, although accurate, 

have been developed based on uniform stand conditions or low variation. Therefore, a reliable, 

accurate, and comprehensive way to estimate stand biometric attributes in pine plantations is 

needed. The general goal of this work was to generate methods that can accurately estimate key 

forest attributes in intensively managed plantations using small-footprint lidar data, regardless of 

the silvicultural history of the planted stands. The specific goals were to (1) evaluate the 

relationships between lidar-derived variables and ground-based stand biophysical parameters 

under a range of forest management regimes and stem densities, and (2) investigate differences 

in the stem density predicted accuracies for mid-rotation and end-of-rotation stand ages. 

 

3.3 Methods 

3.3.1 Study sites 

In order to cover a wide range of sites (Sandhills to Piedmont), silvicultural regimes (low 

to high fertilization intensities), stand ages (11 to 26 years), and densities (313 to 1794 trees per 

hectare, TPH), five loblolly pine (Pinus taeda L.) plantation silviculture research trials were used 

as study sites representing a total of 110 plots and 8056 trees. Three of these sites are located in 

Virginia: The Nutrient by Stand Density Study (NSD) trial is located in Buckingham County at 

37° 34’ 59” N and 78° 26’ 49” W (fig. 3.1). It was initiated in 1998 as a randomized complete 

block design with a 3x2 factorial: 3 different fertilization regimes of low, medium and high (site 

index (SI) at 25 years of 15, 21 and 24 m, respectively), and 2 different stem densities (897 and 

1794 trees per hectare). Each plot size is 676 m2 (26 m x 26 m) and each block has 6 plots, for a 
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total of 18 plots. Refer to Carlson et al. (2009) for a more detailed explanation about the 

treatments. 

The Forest Productivity Cooperative (FPC) RW195501 (RW19) trial established in 2009, 

in a 13-year-old stand as part of a mid-rotation thinning and fertilization region-wide study. This 

trial is located in the Piedmont area in Appomattox County (37º26’32” N, 78º39’43” W) (fig. 

3.1). There are 32 plots varying in size from approximately 400 m2 to 1280 m2. At the time of 

lidar acquisition in the summer of 2008, only the plots had been established; no additional 

silviculture treatments had been applied other than the traditional forest operation practices used 

in the area. 

The FPC RW180601 (RW18) is located in Virginia (Brunswick County) at 36°40’51” N 

and 77°59’13” W (fig. 3.1). It was established in 1999 on a 6-year-old planted stand as part of a 

region-wide study with the objective of understanding optimal rates and frequencies of nutrient 

additions for rapid growth in young stands.  A total of 40 plots of various sizes ranging from 400 

m2 to 470 m2 had complete weed control and nutrient additions (nitrogen, phosphorus, 

potassium, and boron) at different frequencies (1, 2, 4 and 6 year intervals). 30 plots were 

thinned in 2008.  

The Southeast Tree Research and Education Site (SETRES) site is located in the sand 

hills of Scotland County, North Carolina (34º54’17” N and 79º29’0” W) (fig. 3.1). This trial, 

established in 1992 in an 8-year-old plantation, was designed as randomized complete block 

design (4 blocks and 4 plots per block) with treatments of nutrient additions (nitrogen, 

phosphorous, potassium, calcium and magnesium), irrigation, and both. See Albaugh et al. 

(1998) for complete site and treatment descriptions. There are 16 plots of 900 m2 (30 m x 30 m) 

size. 
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The Henderson Long Term Site Productivity Study (Henderson) is located in Vance 

County, North Carolina (36º 26’52” N, 78º28’23” W) (fig.3.1). Established in 1982, this 2x2x2 

factorial split plot design consisted of two levels of harvest (stem wood only or whole tree 

removals) , two site preparation methods (chop and burn or shear, pile and disk), and vegetation 

control (during the first 5 years) or not. There are 3 blocks and 8 plots per block (24 plots total), 

with a plot size of 450 m2 (15 m x 30 m). For a detailed description of treatments and study see 

Vitousek and Matson (1985). 

These studies were established and/or maintained as a joint effort among the Forest 

Productivity Cooperative (FPC 2011), academic institutions, the USDA Forest Service, the 

Virginia Department of Forestry, and private industry.   

 

3.3.2 Field data collection and analysis 

3.3.2.1 Inventory data 

The studies were measured during the 2008 dormant season (December 2008 – February 

2009). Every tree, within the measurement plots, was measured using a diameter tape and a 

Haglöf Vertex hypsometer to obtain diameter at breast height (dbh), total tree height (ht), and 

height to live crown (htlc). Initial number of trees (Tree0) was defined as the number of trees that 

fit within each plot area based on planting tree spacing; this information was known from the 

time of plot establishment for 4 of the study sites (NSD, RW18, Henderson, and SETRES). For 

RW19, the initial number of trees was estimated by using the tree planting spacing and the area 

of the plots. The tree spacing in this study was not always uniform since the stand was planted 

manually, so an average of several random measures between trees was used. In addition, 

number of trees (Ntrees) was defined as the current number of trees in each plot; this information 
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was obtained from the tree growth measurements, since all trees within the plots are measured 

every year for research purposes. 

 

3.3.2.2 Lidar data 

Small footprint lidar data were acquired for all study areas in late August 2008. Using an 

Optech ATLM 3100 system with an integrated Applanix DSS 4K x 4K DSS camera. The data 

had multiple returns with a sampling density of 5 pulses per square meter, with at least 4 returns 

per pulse. The scan angle was < 15 degrees. The vertical accuracy over bare ground was 15 cm, 

and the horizontal accuracy was 0.5 m.  

Although ground returns had been extracted by the lidar data provider, an initial 

examination of the data was first made to determine if the ground/vegetation classification was 

true to the terrain reality. Since the size of the study sites was relatively small, so was the lidar 

dataset; this allowed the application of the kriging interpolation method to generate a DEM 

(Popescu et al. 2002) from the provided ground returns without compromising computational 

time. The rest of the non-ground returns were classified as “all returns” using a threshold of 0.2 

m of height from the ground and as “vegetation returns” for heights greater than 1 m. The 

metrics derived from the ground returns class (Gr) were: frequency (count) of returns and 

frequency (count) of pulses (table 3.1). The metrics derived from the all returns class (All) were: 

frequency (count), mean height, standard deviation, coefficient of variation, minimum, 

maximum, percentiles (10, 20, 25, 40, 50, 75, and 90), and frequency (count) of pulses 

(Holmgren 2004; Magnussen and Boudewyn 1998; Popescu et al. 2002). The metrics derived 

from the vegetation returns class (Veg) were the same described for the all returns class with the 

addition of the mode. The distribution of intensity values (I) were described using the mean, 
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minimum, maximum, standard deviation, and coefficient of variation.  First, second, third and 

fourth returns were classified as such and divided by the total number of “vegetation returns” 

(R).  The Laser Penetration Index (LPI) (Barilotti et al. 2005) was calculated per plot as the 

proportion of ground pulses to the total pulses (ground pulses + all pulses). Density metrics (d) 

were calculated following Naesset (2002), as the proportion of returns found on each of 10 

sections equally divided within the range of heights of vegetation returns for each plot. 

Additionally, another set of metrics, crown density slices (Cd), was calculated using the mode 

value of vegetation returns. Ten 1-meter sections of vegetation returns (5 above and 5 below the 

mode value, based on the maximum value of crown length observed) were classified and 

proportion of returns to the total number of returns, mean, standard deviation, and coefficient of 

variation were calculated (fig. 3.2).  Frequency of returns (count), calculated from each of the 

lidar data point classes, were used only to estimate other metrics, such as proportions of returns, 

but they were not used in the development of the models (table 3.1). 

The height values obtained from the lidar data collected in RW18 were too high in one 

portion of the study area, with values several meters higher than the forest stand heights. A 

threshold, maximum return hag ≥ 1 m higher than field-measured tree height per plot, was used 

to eliminate erroneous lidar measurements. After this threshold was applied only 20 plots 

remained in this study area. 

 

3.3.2.3 Statistical analysis 

Data diagnostic methods were applied to the dataset of 110 plots (8056 trees) lidar 

derived metrics, and ground truth measurements, to evaluate each for normality, necessary 

transformations, outliers, influential points, and correlations among all variables. Multiple 
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regressions were used to fit the dataset. Best subset regression models were examined using the 

RSQUARE method for best subsets model identification (SAS 2010). This method generates a 

set of best models for each number of variables (1, 2,…, 6, etc.). The criterion to select the best 

models was based on several conditions: (a) high coefficient of determination (R2) value, (b) low 

residual mean square (RMSE), (c) similarity between the adjusted coefficient of determination 

R2
adj and R2 values. The R2

adj is a rescaling of R2 by degrees of freedom; hence it involves the 

ratio of mean squares instead of sum of squares, (d) Mallows’ Cp statistic values (Hocking 1976).  

When the model is correct, the Cp is close to the number of variables in the model, and (e) low 

values from two information criteria, the Akaike (1969) Information Criterion (AIC) and 

Schwarz (1978) Bayesian Criterion (SBC). The AIC is known for its tendency to select larger 

subset sizes than the true model; hence the SBC was used for comparison, since it penalizes 

models with larger number of explanatory variables heavier than AIC. 

The best models chosen per each subset size (based on number of variables in the 

models) were evaluated for collinearity issues. Computational stability diagnostics were then 

used to check for near-linear dependencies between the explanatory variables. In order to make 

independent variables orthogonal to the intercept and therefore remove any collinearity that 

involves the intercept, independent variables were centered by subtracting their mean values 

(Belsley 1984; Marquart 1980). The variance inflation factor (VIF) was used to quantify the 

variance inflation of estimated regression coefficients; a threshold of 10 was used, as it is 

common in most statistical analyses. High VIF values (10 < VIF < 30) suggest weak to severe 

(VIF > 30) collinearity problems. Since VIF neither detects multiple near-singularities nor 

identifies the source of singularities (Rawlings et al. 2001), the condition index (CI) was also 

evaluated for all variables within the models. This index is the square root of the ratio of the 
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largest eigenvalue to the corresponding eigenvalue from a data matrix. Similar to VIF, the CI 

indicates weak dependencies when 10 < CI < 30 and severe dependencies when CI > 30.  

Additional data to test the models were not available, thus cross-validation analysis was 

performed using PRESS statistics (Allen 1971), which is the sum of squares of the difference 

between each observation and its prediction when that observation was not used in the prediction 

equation. The root mean square error from the cross validation analysis (CV-RMSE) was then 

calculated as the square root of the ratio between the PRESS statistic and the number of 

observations. The CV-RMSE is an indicator of the predictive power of the model, thus a small 

PRESS statistics is desirable. The significance level used for all the statistical tests was α = 0.05. 

This p-value was used to evaluate if the variables included in the model were statistical 

significant as well. The squared semipartial correlation coefficients (SSCC) were calculated 

using partial sum of squares to determine the contribution from each variable to the models, 

while controlling the effects of other independent variables within the model. These coefficients 

represent the proportion of the variance from the dependent variable associated uniquely with the 

independent variable. 

The previously described procedures were also used to evaluate models for subsets at 

different n values: n = 78, when excluding RW19 plots; n = 70 for mid-rotation age plots; and n 

= 40 for end-of-rotation age plots. 

 

3.4 Results 

3.4.1 Summary statistics from ground measurements and lidar metrics 

The plantation age for all the study sites was between 11 to 26 years-old. Trees per 

hectare ranged from 313 to 1794, and plot sizes were between 400 m2 to 1280 m2.  Given the tree 
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planting spacing, and the fact that some plots had been thinned, the number of trees per plot 

ranged from 12 to 184. Tree mortality, which was based on the initial number of trees (when 

planted), ranged from 0 to 82%; 0% mortality was observed in some plots at the NSD and RW19 

studies, and 82% mortality was observed at the RW18 plots that had been thinned, thus it is an 

artificial mortality. Plots were classified as control and fertilized. Summary statistics were 

calculated, mean dbh ranged from 15.2 to 21.8 cm (table 3.2), mean height was highest (21.9 m) 

in the plots at the Henderson study, as was the mean height to live crown. However, the 

differences between control plots and vegetation control plots were very small due to the 

previous application of other treatments to these plots (i.e. harvest type and soil preparation).  

The lowest ht (10.9 m) and hlc (3.8 m) values were observed at NSD, the youngest study site 

(table 3.3). 

Lidar returns per group of plots are summarized in table 3.4. The number of ground 

returns was very high in RW19 plots, SETRES and NSD, while at Henderson and RW18 

unthinned plots it was low. The difference between these two groups of plots is the level of 

canopy closure; the more vegetation found at the canopy level, the less the laser penetrated to 

reach the ground. Mean return height values for the lidar returns were always several meters 

lower than the mean tree heights measured from the ground; nevertheless, the maximum heights 

of the lidar returns were closer to the maximum tree heights observed on the ground (shown in 

table 3.3). Mean intensity values ranged from 28.9 in SETRES to 40.8 in NSD, but the range of 

intensities within each plot was large; this is noticeable in the standard deviations of the group of 

plots, which varied from 13.2 and 19.4. Maximum intensities ranged from 66 to 115.   
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3.4.2 Variable selection and modeling 

Several lidar metrics showed highly significant correlations with number of trees (Ntrees), 

but only the variables that appeared in the models are reported in table 3.5. Variables such as Icv 

(-0.441), d9 (-0.432), LPI (-0.384), d7 (0.359), Cd-1 (0.348), Cd-5 (-0.297), and All90th (-0.338) 

were not only significant when using the entire dataset (n = 110) but also for the subsets of plots. 

Other variables (All10th, Istdv, d5, d6, Cd-2, and Cd+4stdv) had significant correlations whether for 

the entire dataset or for some of the subsets. Although there are other variables in table 3.5 that 

showed no significant correlation with Ntrees, once they were combined with other variables in 

the models their contributions became statistically significant.  This was the case with Cd+2 and 

Cd-4 for the 110 plots; however in the model with the same number of plots Cd-4 was correlated 

with All10th and also with Cd+2. Also, Icv had significant correlations with LPI, All10th, All90th, 

Istdv, d6, d9 and Cd-1 at any of the subsets of plots evaluated. Among the ground based variables, 

initial number of trees (tree0) had highly significant correlations with Ntrees when using any of the 

datasets. This was the only ground variable that consistently appeared in the best models.  

Best models (for n = 110) using lidar metrics explained between 51%, using five 

variables in the model (table 3.6). Once the number of variables in the model was higher than 5, 

the adjusted R2 remained approximately the same; thus, this was as much variation in number of 

trees that could be explained by lidar-metrics-only models while using this particular dataset. 

The variable with the largest contribution in the model was d9 (0.23), followed by LPI (0.09), d5 

(0.08), Cd-5 (0.06) and Cd-1 (0.02). Near dependencies were evaluated by the variance inflation 

factor (VIF) and condition index (CI), which were both < 5 for all the parameters in the models. 

The RMSE from the cross-validation analysis (CV-RMSE) was high (29.3), as expected with a 

low R2 of 0.51.   
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After evaluating lidar metrics alone, ground based data were added to the best subset 

analyses. The top best models were reported in table 3.7, which was a 2-variable model using 

initial number of trees (Tree0) and LPI that explained 83% of the variation (CV-RMSE = 16.9), 

and a 5-variable model with an R2 of 0.92. The R2 from the 5-variable lidar-ground model was 

twice as much as the R2 from the 5-variable lidar only model. The statistics for the 5-variable 

lidar-ground model were also reduced, having an RMSE of 11.8 compared to 29.3 from the lidar-

only model. The biggest contribution in these two models was from the Tree0 ground variable 

(0.68 in the 2-variable model and 0.75 in the 5-variable model), followed by LPI (0.09 and 0.13, 

in the 2 and 5-variable models respectively), Cd-4 (0.05), Cd+2 (0.02) and All10th (0.01). No near 

dependencies among the variables were flagged by VIF or CI (< 5). Although the squared semi-

partial correlation coefficient values of some variables were very low, those variables were 

highly significant at p < 0.0001. 

After comparing the relationships between predicted and observed values from the 

models using the entire dataset (n = 110), the addition of Tree0 to the models showed a more 

accurate estimation with a CV-RMSE of 17 and 12, compared to 29.2 from the lidar-only model. 

This accuracy can be observed graphically in figure 3.3, as the points distribute close and along 

the 1:1 line in the 5-variable model. 

Among all the study sites evaluated, the estimation of initial number of trees for RW19 

was based on the average tree spacing. As this site was manually planted, the range in tree 

spacing was larger than the spacing at the rest of the study sites, which could have contributed to 

a larger error when calculating the initial number of trees. An aerial view of the studies shows 

the difference in the straightness of plantation rows between RW19 and the rest of the sites (fig. 

3.4). Based on this discrepancy, the best subsets were evaluated using the other 4 sites only (n = 
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78). Best models using lidar metrics and ground data, showed a plateau in the adjusted R2 values 

when more than 5 variables were included in the model. Therefore a 5-variable model was 

reported (table 3.7), which explains 95% of variation in number of trees. Tree0 contributed the 

most (0.30), and the variables LPI (0.26), Cd-4 (0.08), and Cd+2 (0.05) were included in this 

model and were common with the model fitted using 110 plots. Another contributor was d6 

(0.01). Despite the exclusion of RW19, the R2 and R2
adj’ values increased but not largely 

compared to those from the model with all plots, and the CV-RMSE was reduced from 12 to 9 

(fig. 3.5). Similarly, study sites were later grouped by stand age; a mid-rotation age group 

including NSD, RW18 and RW19, and an end-of-rotation age group composed by SETRES and 

Henderson. Aside from stand age, the differences between these two groups were that the 

majority of the plots in SETRES and Henderson were closed canopy stands compared to the 

many open canopy stands in the other group of sites, and that the trees per hectare was similar 

within the end-of-rotation age group, while in the mid-rotation age group TPH varied largely. 

Table 3.6 shows a 5-variable lidar-only model for the mid-rotation age group (n = 70), with an 

R2 of 0.62. Models from the best subsets analysis with more variables than 5 showed an increase 

in R2 and R2
adj’ but not significant enough to consider the addition of another variable. This 

model had three common variables with the model from all plots (n = 110) and those were d5, d9 

and Cd-1, but the variable that contributed the most was All90th (0.17).  The lidar-only model 

developed for the end-of-rotation group of sites was able to explain 96% of the variation of 

number of trees in these plots (fig. 3.6), and had a CV-RSME of 6 trees per plot (table 3.6). None 

of the variables included in this model (Istdv, Icv, d7, and Cd+4stdv, and Cd-2), were also part of the 

mid-rotation and all plots models. In fact, this model has no similarities with any of the lidar and 
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ground data models reported in table 3.7 either. All the variables in these three models (n = 78, 

70, and 40) had VIF and CI values less than 5. 

Best subsets were also evaluated for mid-rotation and end-of-rotation set of plots using 

the combination of lidar and ground data. For mid-rotation plots, a model of 4 variables was 

developed (table 3.7). In this case, a couple of lidar metrics (All90th and Cd-1) from the model of 

lidar metrics only were included, and LPI, which was recurrent in all the lidar and ground data 

models. This model explained 97% of the variation in number of trees per plot for mid-rotation 

age stands; the CV-RMSE was 9; and the VIF and CI were < 5 (fig. 3.6).  For the end-of-rotation 

group of plots, the models obtained from the best subset analysis, after including ground 

variables, did not perform better than the lidar-only models. R2 values were consistently lower 

than those from the lidar-only model and collinearity problems arose frequently. Therefore, a 

model to predict Ntrees at the end of the rotation using lidar and ground data was not reported. 

The 90th percentile for all returns (All90) had the highest correlation (0.98) with mean tree 

height (ht) and mean height to live crown (hlc). Estimated ht and hlc variables using 1-variable 

lidar metric model are shown in figures 2.8 and 2.9, respectively.  For mean tree height, 1-

variable model explained 97% of the variation and had an RMSE and a CV-RMSE of 0.6 m.  

Meanwhile, for mean height to live crown an R2 of 0.96 was obtained with an RMSE and CV-

RMSE of 0.8 m. There was no pattern observed regarding overestimation or underestimation for 

a particular group of plots or sites. 

 

3.5 Discussion 

In many aspects, variability was part of the sampled dataset; it included the intrinsic 

characteristics of each site, such as soil type, topography, and geographic location, and also the 
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stand characteristics that resulted from forest management, such as number of trees per hectare, 

fertilization rates, and vegetation control. Plot size and stand age varied as well.  

Laser penetration index (LPI) and the 90th percentile (All90th) for all lidar returns (hag > 

0.2 m) correlated negatively and significantly with number of trees (Barilotti et al. 2005; Woods 

et al. 2008). This was expected for LPI, since it is associated with the canopy interception, the 

higher the number of trees the less pulses would reach the ground level.   In the case of the 90th 

percentile, an increase in the number of trees decreases the value of the 90th percentile (height 

above the ground in m) (Naesset 2002), which suggests that a large amount of the returns was 

coming from lower levels of tree crowns. The relationships of these two variables and number of 

trees became stronger for the mid-rotation and end-of-rotation group of plots. Dispersion 

statistics for intensity values of lidar returns, such as standard deviation and coefficient of 

variation, were included in all models. These variables appeared either together or by 

themselves. Both statistics had negative correlations with number of trees (except for Istdv with 

70 plots), which indicates that the less variation within the intensity values in a given plot, the 

greater the number of trees found in that plot. Intensity values vary by the reflectance and 

reflectivity of targets. If the ground is primarily covered by tree crowns, the returns obtained will 

be mostly from the leaves and branches within the canopy; if only a few trees are present, other 

targets such as ground and understory vegetation might be responsible for the variability of 

intensity values. Although, in the past, metrics derived from intensity values were used in the 

estimation of forest biomass (van Aardt et al. 2006), researchers have recommended caution 

when using lidar intensity values because such values are not usually calibrated (Bater et al. 

2011). Nonetheless, the variability of the dataset used in this study resulted not only from the 
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lidar data acquisition (i.e., different acquisition dates) but also from the inherent condition of the 

targets (i.e., topography, soil type, stand age, stem density, fertilization regime).    

Although several density metrics (Naesset 2002) were significantly correlated with 

number of trees, most of them were part of the models using lidar metrics only, except for d6 

which was included in the best model for n = 78 plots. These variables relate to the crowns of the 

trees (with d10 as the section at the top of the trees). As the proportion of number of returns to the 

total number of returns, these variables are also physically related to the amount of targets 

(branches and leaves) that the laser could encounter. The low (d1, d2, and d3) and high (d8, d9, 

and d10) densities had a negative correlation with number of trees, while the mid-level densities 

(d4, d5, d6, and d7) were positively correlated. This suggests that the proportion of returns 

classified at the mid-level height above the ground relates to the tree crown density, which can 

also be explained by the fact that these mid-level densities were strongly correlated with mean 

height to live crown (d4 = -0.21, d5 = -0.54, d6 = -0.68, and d7 = -0.60); as the hlc was lower the 

values for those metrics were higher. Similar situation was observed among the crown density 

slices proportion of returns, since the 4th and 5th meters above and below the mode were 

negatively correlated with number of trees, while the rest of the sections from Cd+3 to Cd-3 

(refer to fig. 3.2) correlated positively. These new metrics, although not the largest contributors, 

were always included in the best models, adding enough weight to increase the R2 to a level of 

accuracy that can benefit forest management. 

Initial number of trees (Tree0) was expected to be highly correlated with number of trees. 

Although this variable is listed as ground based data along with tree height, diameter at breast 

height, and height to live crown, it is in fact the only one that requires no additional measurement 

or monitoring throughout the rotation. Forest managers usually keep this information from the 
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moment the stands are planted. Since this information is known, the model reported in this study 

using this particular ground data can be considered as lidar data only. Meanwhile, by using this 

variable, the accuracy of predicting the number of trees for a given area increased to 92% 

without incurring in additional costs.  

Separating the data set in groups of sites based on uniformity of tree spacing, mid-

rotation age and end-of-rotation age stands allowed a comparison of these lidar-ground models to 

the ones developed using all sites. Clearly, there is a little gain in R2 values and in accuracy 

between using more uniformed tree planting spacing (without RW19) plots and using all sites. 

However, such gain might not be completely related to the uniform tree spacing, perhaps it might 

be related to reducing the stem density variability within the dataset. When evaluating mid-

rotation age plots, an increase in R2 was obtained compared to using all plots even with the 

inclusion of fewer variables in the model. The major gain was observed among the lidar metrics 

only models. Since the end-of-rotation plots had a much higher R2 than any other lidar metrics 

only model, this suggests that robust and accurate models to estimate stem density using lidar 

metrics can be developed, but only under the condition that forest stands should be homogeneous 

in at least age and tree planting spacing.  

The results of this study have been consistent with those of previously published 

research. A study in Norwegian forest stands modeling groups of 19 to 37 plots, reported relative 

standard errors of predicted residuals (difference between observed values and predicted)  

ranging from 14% to 29%, or 97 to 466 trees ha-1 by modeling the natural log of stem density 

and lidar metrics (Naesset 2004). A subsequent study in Ontario Canada using 28 plots of 

plantation conifers showed predicted stem density results with a relative RMSE of 25%, or 257 

trees ha-1 (Woods et al. 2008). Another study in Oregon, USA, used 29 plots from a mixed forest 
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stand; modeling natural log of stem density with lidar-derived variables, it reported relative 

standard errors ranging from 27.2% to 39.3% or 128 to 185 trees ha-1 (Goerndt et al. 2011). In 

comparison, in this study the relative standard error of predicted residuals for the 5-variable 

model with lidar and ground data (110 plots) ranged from 14% to 16% (10 to 11 trees per plot, 

162 to 178 trees ha-1). For the mid-rotation age model using 70 plots the error range was between 

10% and 11% (7 to 8 trees per plot, 108 to 123 trees ha-1), and for the end-of-rotation model 

using 40 plots it was between 6% and 7% (4 to 5 trees per plot, 64 to 79 trees ha-1). The results 

from previous work (McCombs et al. 2003) and from this study suggest that when the number of 

plots was reduced the R2 from the models improved, and a similar relationship was observed 

when reducing the variability in stem density and plantation age. It is good news that lidar can 

accurately estimate stem density for uniform stands, however from the forest management point 

of view this might not be practical, since it will require the use of a different model based on the 

stand characteristics. For this reason, the model developed in this study using a dataset that 

includes a large variability in stem density and stand age represents a promising tool that has 

potential for use for forest managers regardless of the stand conditions.   

Researchers have used lidar data to derive other biometric attribute estimations besides 

stem density, such as dominant height, mean tree height, and crown height. Several studies have 

estimated tree height by delineating individual trees (Holmgren and Persson 2004; Popescu and 

Zhao 2008), while others used regression models based on a combination of lidar derived 

metrics; their reported RMSE values were between 0.59 m to 1.5 m (Dean et al. 2009; Maltamo 

et al. 2010; Woods et al. 2008).  The RMSE (0.6 m) obtained from the 1-variable model for 

mean height in this study is therefore in agreement with previous work. As also seen in 

Breidenbach et al (2008), the highest correlated variable with mean tree height was the 90th 
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percentile of lidar returns. The estimation of mean height to live crown from a 1-variable model 

showed an RMSE of 0.8 m, which is considerably lower than comparable published results; this 

might be attributed to the fact that most of the published work has been done in natural forest 

stands (Dean et al. 2009; Popescu and Zhao 2008; Vauhkonen 2010). The level of accuracy for 

predicting mean height and mean height to live crown models was 97% and 96%, respectively; 

such a high performance could be attributable to both the characteristics of lidar and their 

multiple returns, and to the uniform distribution and growth of trees in pine plantations.  

Models of stem density have been developed in the past to estimate number of trees per 

hectare; however, the models reported in this study are based on the plot sampling area. In other 

words, the lidar metrics used in the model were estimated based on the lidar returns acquired per 

plot area, and the dependent variable used was the current number of trees for that given area or 

plot. Given this condition, such models can be used for estimating number of trees per area of 

lidar acquisition. For example if a lidar flight line (i.e. a strip of returns) is used to generate the 

metrics needed to utilize the model, the number of trees estimated will be associated with the 

area covered by such flight line. Furthermore, the slow rate at which forest managers in the 

United States have adopted the use of lidar technology is in principle related to the high cost 

associated with lidar. However, lidar data do not need to be acquired over the entire management 

area; just as with traditional inventories, a sampling of the forest stand area could be sufficient 

for evaluation purposes. Number of trees, mean height, and mean height to live crown 

estimations from lidar strips, distributed according to established inventory sampling protocols 

(i.e. systematic, random, stratified) across the entire managed land, will give forest managers the 

possibility of extrapolating to stand scales while maintaining higher accuracy, lower costs and 

fewer man-hours work than ground-based inventories.   
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Forest attributes such as height and height to live crown in intensively managed pine 

plantations depend on the type of silviculture applied. Thus, the uniqueness of the dataset used in 

this study, composed of plots with a variety of stem densities, fertilization regimes, etc., 

contributed to the development of robust models for mean tree height and mean height to live 

crown that are ready to use in forest plantations, regardless of management history or objectives. 

Moreover, a predictive model to estimate mean tree height from lidar in pine plantations gives 

forest managers the flexibility to use such estimates for calculating dbh and tree standing volume 

by using their own allometric equations. 

The fusion of optical data and lidar data represents a good tool for estimating biometric 

attributes per individual basis since the geographic location of each tree is assessed. But a couple 

of disadvantages using fused data arise; the predictive error associated with it has been reported 

larger than the results found in this study, and there is an increase not only in the acquisition cost, 

but also in the processing time of such data. 

The models developed in this study offer a more accurate, affordable, and simple 

approach to estimate key forest attributes using lidar data alone, and can be considered a 

practical tool to use for forest management decisions.  
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Figure 3.1 Geographic location of the study sites in North Carolina and Virginia, USA. 
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Figure 3.2 Crown density slices derived from the vegetation lidar returns mode (Vegmode) value. 
Mid-crown height value per plot was calculated as: Tree total height – (crown length/2), and was 
significantly correlated (0.92) with Vegmode. Five 1 m sections above and below the mode were 
defined, and the descriptive statistics (i.e., proportion of returns to the total number of returns, 
mean, standard deviation, and coefficient of variation) from the returns within each section were 
obtained.  See table 3.1 for variable names and how they were calculated. (a) Crown density 
values for a fertilized unthinned plot from the RW18 site.  
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Figure 3.3 Relationship between estimated and measured number of trees (Ntrees) using a 5-
variable model with lidar metrics and ground data (n = 110). Plots were classified by stem 
density.  
 
Model (refer to table 3.1 for variable names):  
 

Ntrees = 73.373 + 0.911 (Tree0) – 1.373 (All10th) – 129.548 (LPI) – 305.065 (Cd+2) – 736.945 
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Figure 3.4 Subsets of aerial photos per study site, where straightness of plantation rows can be 
observed. From left to right: (a) RW19, (b) NSD, (c) RW18, unthinned (left) and thinned plots 
(right), (d) SETRES, and (e) Henderson, each study has 32, 18, 40 (only 20 used in this 
research), 16, and 24 plots, respectively. Aerial photography was acquired at the same time as 
lidar data. Plot boundaries are represented as white squares and rectangles. 
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Figure 3.5 Relationship between estimated and measured number of trees (Ntrees) using a 6-
variable model with lidar variables and ground data (n = 78). Plots were classified by stem 
density.  
 
Model (refer to table 3.1 for variable names): 
 

Ntrees = 68.686 + 0.689 (Tree0) – 143.229 (LPI) + 48.499 (d6) – 368.642 (Cd+2) – 737.816 (Cd-4) 
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Figure 3.6 Relationship between estimated and measured number of trees (Ntrees) per plot using a 
5-variable model with lidar metrics only for end-of-rotation age plots (n = 40). Plots have same 
number of trees per hectare based on initial tree planting spacing. Plot size in Henderson is 450 
m2 and in SETRES is 900 m2.  
 
Model (refer to table 3.2 for variable names): 
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Figure 3.7 Relationship between estimated and measured number of trees (Ntrees) using a 5-
variable model with lidar metrics and ground data for mid-rotation age plots (n = 70).  
 
Model (refer to table 3.1 for variable names): 
 

Ntrees = 73.167 + 0.954 (Tree0) – 3.299 (All90th) – 83.305 (LPI) + 205.669 (Cd-1) 
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Figure 3.8 Relationship between estimated mean tree height and measured mean tree height (ht) 
using a 1-variable (90th percentile for all returns with height above ground > 0.2 m, All90th) 
model, (n =110).  
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Figure 3.9 Relationship between estimated mean height to live crown (hlc) and measured mean 
hlc using a 1-variable (90th percentile for all returns with height above ground > 0.2 m, All90th) 
model, (n =110). 
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Table 3.1 Explanatory variables derived from lidar.  Return hag refers to the return height above 
the ground. Statistics in subscripts were as follows: frequency (total), mean, mode, standard 
deviation (stdv), coefficient of variation (cv), minimum (min), maximum (max), and height 
percentiles (10th, 20th … 90th). The metrics Grtotal, Alltotal, Vegtotal, Grpulses, Allpulses, and Vegpulses 
were determined for calculation of other metrics (i.e. proportions of returns), but were not used 
for model development. 
 
 

Lidar metrics Symbol 

Total number of ground returns Grtotal 

All returns (return hag  > 0.2 m) 
Units are meters for all metrics except for Alltotal 
and Allcv. 

Alltotal, Allmean, Allstdv, Allcv, Allmin, Allmax, 
All10th,…, All90th 

Vegetation returns (return hag  > 1 m) 
Units are meters for all metrics except for Vegtotal 
and Vegcv. 

Vegtotal, Vegmean, Vegmode, Vegstdv, Vegcv, Vegmin, 
Vegmax, Veg10th,...,Veg90th 

 
Pulses (number of lidar pulses per return 
class) 

 
Grpulses, Allpulses 

 
Laser penetration index (LPI) 
 

 
LPI = Grpulses/(Grpulses + Allpulses) 
 

Intensity values (returns hag  > 1 m) 
Units are watts for all metrics except for Icv. 

Imean, Imin, Imax, Istdv, Icv  

Proportion of 1st, 2nd, 3rd and 4th returns  
Ri is a proportion of returns 

 

Ri = total number of i returns/ Vegtotal 

i = 1st, 2nd, 3rd, and 4th   

Density 
di is a proportion of returns 

 

di = [x + (Vegmax - Vegmin)/10]/Vegtotal  
x = Vegmin,1,..,10 
i= 1, 2, …,10 
 

Crown density slices around Vegmode  
Refer to fig. 3.2 for a graphic representation 
of the slices 

Units are meters for Cdimean, Cdistdv, and Cdicv. 
Cdi is a proportion of returns 

Cdi, Cdimean, Cdistdv, Cdicv  

Cdi = [number of returns in i / (Alltotal + Grtotal)] 
(i=+1,+ 2,+3,+4,+5, 0, -1, -2, -3, -4, and -5) 
i=+1,…,+ 5 at i meters above Vegmode 
i = 0 at Vegmode 
i = -1,…,-5 at i meters below Vegmode 
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Table 3.2 Summary statistics for dbh and number of trees (Ntrees) per group of plots (control and 
fertilized) within each site. Statistics for the total were calculated based on the plot means. 
Columns annotation: n (number of observations or plots), TPH (trees per hectare), Ntrees (number 
of trees per plot), and Stdv (standard deviation).  
 
 

Study Treatment n 
Age 

(yr) 
TPH 

Plot 

area (m2) 

Ntrees dbh (cm) 

(mean) Mean Stdv Range 

NSD Control 3 11 897 676 61 17.4 1.9 11.2 23.9 

3 1794 125 14.3 1.9 6.6 18.8 

Fertilized 6 897 61 18.5 2.0 6.6 23.6 

6 1794 123 15.2 1.9 5.8 21.3 

RW19 Fertilized 32 13 1176 (400-1280) 94 18.1 3.1 4.6 27.9 

RW18 Control and 
thinned 

2 16 (346 - 395) (400-470) 16 20.5 2.2 17.5 28.7 

Fertilized 
unthinned 

4 16 1678 60 19.8 3.5 9.7 29.9 

Fertilized 
and 
thinned 

14 16 (313 - 470) 16 21.8 2.2 16.3 28.2 

SETRES Control 4 24 1665 900 100 16.6 3.9 6.5 29.3 

Fertilized, 
irrigated 
or both 

12 1665 95 20.9 4.7 5.7 35.2 

Henderson Control 12 26 1665 450 63 20.3 4.6 9.1 35.9 

Vegetation 
control 

12 1665 51 21.8 3.9 10.4 32.8 

Total ---------- 110 --- ----- 642 73 19.6 2.2 13.6 24.7 
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Table 3.3 Summary statistics for height (ht) and height to live crown (hlc) for groups of control 
and fertilized plots. Statistics for the total were calculated based on the plot means. Column 
annotation: n (number of observations or plots), and Stdv (standard deviation). 
 
 

Study Treatment n 
Age 

(yr) 

ht (m) hlc (m) 

Mean Stdv Range Mean Stdv Range 

NSD Control 3 11 11.0 0.9 7.1 12.9 3.8 0.7 2.0 5.6 

3 11.1 0.9 6.5 13.2 5.4 0.7 2.1 7.1 

Fertilized 6 11.1 1.0 5.7 13.3 3.8 0.9 1.5 6.6 

6 11.2 0.9 6.7 14.6 5.3 0.8 1.9 8.6 

RW19 Fertilized 32 13 13.1 1.3 5.0 18.8 6.1 0.9 2.6 9.1 

RW18 Control and 
thinned 

2 16 16.7 0.8 15.5 18.0 9.0 0.9 7.1 11.3 

Fertilized 
unthinned 

4 16 16.9 1.8 10.5 20.6 10.6 1.0 7.0 13.3 

Fertilized 
and 
thinned 

14 16 16.9 0.8 13.8 19.4 9.3 0.9 6.4 11.8 

SETRES Control 4 24 12.9 2.1 4.8 17.8 6.7 1.3 2.7 9.7 

Fertilized, 
irrigated 
or both 

12 16.6 2.5 6.0 22.1 9.7 2.1 3.8 15.5 

Henderson Control 12 26 21.1 2.4 13.4 27.9 14.8 1.7 8.9 20.8 

Vegetation 
control 

12 21.9 2.2 14.0 26.9 15.8 1.8 6.2 20.9 

Total  110  15.8 3.7 10.6 23.8 8.8 3.9 13.6 24.7 
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Table 3.4 Summary statistics for lidar ground and all returns (hag > 0.2 m), and the intensity 
values for the vegetation returns (hag > 1m). Intensity minimum values were 1 for all groups of 
plots. Column annotation: n (number of observations or plots), Grtotal (total number of ground 
returns), Alltotal (total number of all returns), Stdv (standard deviation), and Max (maximum 
value). 
 
 

Study Treatment n 
Grtotal 

(mean) 

Alltotal 

(mean) 

Return heights (m) Intensity (watts) 

Mean Stdv Max Mean Stdv Max 

NSD Control 3 592 1992 6.2 2.6 11.5 34 14 93 

3 719 2882 7.2 2.4 12.1 37 14 75 

Fertilized 6 589 2685 6.7 2.5 12.1 39 15 91 

6 660 3095 7.5 2.4 12.1 41 15 80 

RW19 Fertilized 32 1042 2460 8.3 3.4 15.2 37 16 115 

RW18 Control and 
thinned 

2 461 510 11.8 3.5 16.7 29 15 66 

Fertilized 
unthinned 

4 223 1139 11.3 5.0 18.6 35 13 71 

Fertilized and 
thinned 

14 430 740 10.9 4.7 19.4 31 15 87 

SETRES Control 4 814 2986 9.8 3.2 18.1 29 13 69 

Fertilized, 
irrigated or 
both 

12 757 2589 13.3 4.0 21.2 34 15 80 

Henderson Control 12 131 1628 14.9 5.4 24.7 32 19 103 

Vegetation 
control 

12 297 1487 16.1 6.7 25.7 30 16 105 
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Table 3.5 Pearson correlation coefficients for the independent variables used to predict number 
of trees, for each subset of plots (n = 110, 78, 70, and 40). The first row of each variable 
corresponds to the coefficients of determination when using all the plots (n = 110). Statistically 
significant correlations at α = 0.05 are in bold. Field based variables are Ntrees (number of trees 
per plot) and Tree0 (initial number of trees per plot); lidar variables are described in table 3.1. 
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Ntrees Tree0 LPI All10th All90th Istdv Icv d5 d6 d7 d9 Cd-1 Cd-2 Cd-4 Cd-5 Cd+2 Cd+4stdv 

Ntrees 

1 

0.856 -0.384 -0.050 -0.338 -0.170 -0.441 0.111 0.326 0.359 -0.432 0.348 0.175 -0.089 -0.297 0.049 0.193 

(n = 78) 0.775 -0.637 0.171 -0.278 -0.460 -0.598 0.417 0.462 0.349 -0.416 0.539 0.315 -0.056 -0.286 -0.005 0.146 
(n = 70) 0.904 -0.494 -0.182 -0.572 0.090 -0.403 0.024 0.216 0.359 -0.496 0.405 0.219 -0.171 -0.313 0.053 0.169 
(n = 40) 0.859 0.641 0.417 -0.608 -0.841 -0.792 0.511 0.783 0.744 -0.741 0.143 0.065 0.094 -0.388 0.063 0.336 

Tree0 
 

1 

-0.090 0.168 -0.233 -0.142 -0.308 0.026 0.325 0.382 -0.389 0.197 0.105 0.097 -0.108 0.117 0.290 

(n = 78) 
 

-0.268 0.481 -0.183 -0.374 -0.447 0.328 0.420 0.400 -0.394 0.335 0.218 0.209 -0.043 0.137 0.320 

(n = 70) 
 

-0.136 -0.172 -0.318 0.235 -0.108 -0.144 0.056 0.261 -0.337 0.200 0.069 -0.114 -0.226 0.062 0.120 
(n = 40) 

 
0.746 0.692 -0.796 -0.559 -0.837 0.542 0.816 0.747 -0.732 0.095 0.092 0.289 -0.052 0.178 0.585 

LPI 
  

1 

-0.029 -0.108 0.091 0.250 -0.170 0.029 0.099 0.014 -0.528 -0.397 -0.159 -0.074 -0.126 -0.245 

(n = 78) 
  

-0.032 -0.153 0.099 0.234 -0.101 0.009 0.117 -0.005 -0.565 -0.437 -0.162 -0.081 -0.119 -0.276 

(n = 70) 
  

0.192 0.665 0.178 0.662 -0.453 -0.271 -0.283 0.549 -0.498 -0.371 0.016 0.130 -0.109 -0.335 

(n = 40) 
  

0.274 -0.759 -0.520 -0.488 0.707 0.772 0.370 -0.571 -0.101 -0.015 0.211 -0.095 0.084 0.507 

All10th    
1 

0.309 -0.216 -0.229 -0.160 -0.007 -0.005 0.157 0.324 0.306 0.290 0.264 0.099 0.071 
(n = 78) 

   
0.164 -0.064 -0.230 -0.101 -0.028 0.116 0.010 0.260 0.269 0.286 0.235 0.167 0.223 

(n = 70) 
   

0.288 -0.389 -0.349 -0.104 -0.046 -0.161 0.268 0.287 0.232 -0.030 0.022 -0.085 -0.292 

(n = 40) 
   

-0.423 0.001 -0.608 0.092 0.355 0.526 -0.361 0.062 0.163 0.317 0.294 0.255 0.576 

All90th     
1 

0.031 0.558 -0.552 -0.658 -0.561 0.730 0.175 0.212 0.392 0.413 -0.015 -0.199 

(n = 78) 
    

0.218 0.616 -0.677 -0.780 -0.527 0.683 0.122 0.185 0.414 0.381 0.100 -0.076 
(n = 70) 

    
-0.061 0.484 -0.455 -0.648 -0.374 0.686 -0.125 0.013 0.328 0.406 -0.172 -0.329 

(n = 40) 
    

0.355 0.480 -0.720 -0.775 -0.422 0.640 -0.113 -0.104 -0.168 -0.011 -0.235 -0.619 

Istdv      
1 

0.418 -0.128 -0.378 -0.257 0.274 -0.199 -0.118 0.019 0.150 0.140 0.104 
(n = 78) 

     
0.468 -0.305 -0.401 -0.372 0.466 -0.164 -0.107 0.044 0.238 0.147 0.030 

(n = 70) 
     

0.457 0.004 -0.251 -0.059 0.076 -0.274 -0.206 0.113 -0.155 0.180 0.186 
(n = 40) 

     
0.542 -0.416 -0.563 -0.468 0.539 -0.061 0.045 0.042 0.577 0.140 0.049 

Icv       
1 

-0.282 -0.518 -0.541 0.506 -0.385 -0.187 0.171 0.296 0.083 0.009 
(n = 78) 

      
-0.395 -0.574 -0.572 0.543 -0.390 -0.186 0.192 0.304 0.150 0.034 

(n = 70) 
      

-0.190 -0.370 -0.171 0.289 -0.672 -0.461 0.149 0.165 0.129 0.113 
(n = 40) 

      
-0.220 -0.578 -0.715 0.541 -0.317 -0.067 -0.157 0.222 -0.106 -0.265 

d5        

1 

0.543 0.270 -0.628 -0.107 -0.153 -0.167 -0.247 0.173 0.307 

(n = 78) 
       

0.818 0.292 -0.821 -0.050 -0.114 -0.203 -0.242 0.086 0.310 

(n = 70) 
       

0.325 0.048 -0.479 0.000 -0.058 -0.048 -0.142 0.240 0.318 

(n = 40) 
       

0.820 0.323 -0.808 -0.095 -0.112 -0.029 -0.185 0.203 0.443 

d6         

1 

0.660 -0.802 -0.052 -0.086 -0.153 -0.277 -0.024 0.235 

(n = 78) 
        

0.702 -0.899 -0.040 -0.086 -0.175 -0.312 -0.001 0.267 

(n = 70) 
        

0.469 -0.631 0.071 -0.005 -0.250 -0.224 -0.096 0.076 
(n = 40) 

        
0.724 -0.903 -0.009 0.010 0.185 -0.151 0.152 0.541 

d7          
1 

-0.714 0.027 -0.002 -0.148 -0.326 -0.075 0.136 
(n = 78) 

         
-0.688 0.074 0.053 -0.120 -0.292 -0.175 0.036 

(n = 70) 
         

-0.376 0.278 0.225 -0.164 -0.345 -0.083 0.100 
(n = 40) 

         
-0.757 0.184 0.114 0.191 -0.116 0.029 0.313 

d9           
1 

0.099 0.100 0.163 0.247 -0.058 -0.337 

(n = 78) 
          

0.040 0.050 0.141 0.198 0.034 -0.242 

(n = 70) 
          

-0.078 -0.067 -0.058 -0.036 -0.160 -0.532 

(n = 40) 
          

-0.043 -0.033 -0.072 0.204 -0.133 -0.393 

Cd-1 
           

1 

0.738 0.146 -0.026 -0.268 -0.252 

(n = 78) 
           

0.746 0.120 -0.067 -0.296 -0.207 
(n = 70) 

           
0.780 0.009 -0.179 -0.357 -0.310 

(n = 40) 
           

0.471 0.006 -0.126 -0.305 -0.314 

Cd-2 
            

1 

0.561 0.302 -0.543 -0.250 
(n = 78) 

            
0.531 0.269 -0.543 -0.170 

(n = 70) 
            

0.448 0.120 -0.606 -0.361 

(n = 40) 
            

0.635 0.425 -0.659 -0.155 

Cd-4 
             

1 

0.754 -0.321 0.069 
(n = 78) 

             
0.772 -0.251 0.198 

(n = 70) 
             

0.696 -0.362 -0.050 
(n = 40) 

             
0.732 -0.534 0.123 

Cd-5 
              

1 

-0.162 0.152 
(n = 78) 

              
-0.089 0.274 

(n = 70) 
              

-0.206 0.102 
(n = 40) 

              
-0.275 0.155 

Cd+2 
               

1 

0.652 

(n = 78) 
               

0.631 

(n = 70) 
               

0.699 

(n = 40) 
               

0.560 
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Table 3.6 Best predictive models to estimate number of trees (Ntrees) using lidar metrics only for 
the entire dataset (n = 110), mid-rotation age plots (n = 70), and end-of-rotation age plots (n = 
40). The explanatory variables were centered. CV-RMSE refers to RMSE from the cross 
validation analyses, R2

adj’ is the adjusted R2 from the model, SSCC is the squared semipartial 
correlation coefficient from partial sum of squares, VIF is the variance inflation factor, and CI is 
the condition index. All coefficients were significant at p < 0.05. Variable names are described in 
table 3.1. 
 
 

n # var. R
2
 R

2
adj’ RMSE CV-RMSE Variables Coefficient SSCC VIF CI 

110 5 0.51 0.48 28.65 29.28 Intercept 73.373 ----- ----- ----- 

      LPI -131.721 0.09 1.56 1.09 

      d5 -170.974 0.83 1.85 1.34 

      d9  -219.750 0.23 1.70 1.42 

      Cd-5 -946.509 0.06 1.12 1.96 

      Cd-1 280.712 0.02 1.50 2.42 

70 5 0.62 0.59 29.91 31.44 Intercept 41.053 ----- ----- ----- 

      All90th -13.902 0.17 2.33 1.68 

      d5 -177.600 0.09 1.36 1.97 

      d6 -295.245 0.08 1.95 2.23 

      d9 -285.096 0.09 2.28 3.40 

      Cd-1 581.975 0.10 1.02 4.89 

40 5 0.96 0.95 4.96 5.48 Intercept 73.315 ----- ----- ----- 

      Istdv -6.245 0.26 1.61 1.32 

      Icv -0.976 0.02 2.37 1.50 

      d7 42.287 0.01 2.26 1.76 

      Cd+4stdv 48.911 0.06 1.28 3.14 

      Cd-2 114.877 0.01 1.09 3.25 
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Table 3.7 Best predictive models to estimate number of trees (Ntrees) using lidar and ground data 
for the entire dataset (n = 110), for a subset without the RW19 study (n = 78), and for mid-
rotation age plots (n = 70). The explanatory variables were centered. CV-RMSE refers to RMSE 
from the cross validation analyses, R2

adj’ is the adjusted R2 from the model, SSCC is the squared 
semipartial correlation coefficient from partial sum of squares, VIF is the variance inflation 
factor, and CI is the condition index. Tree0 is the initial number of trees at the moment of 
planting.  All coefficients were significant at p < 0.005. Variables in the models are described in 
table 3.1. 
 
 

n # var. R
2
 R

2
adj’ RMSE CV-RMSE Variables Coefficient SSCC VIF CI 

110 2 0.83 0.82 16.69 16.94 Intercept 73.373 ----- ----- ----- 

      Tree0 0.850 0.68 1.01 1.04 

      LPI -108.503 0.10 1.01 1.10 

110 5 0.92 0.92 11.43 11.82 Intercept 73.373 ----- ----- ----- 

      Tree0 0.911 0.75 1.05 1.06 

      All10th -1.373 0.01 1.16 1.20 

      LPI -129.548 0.13 1.07 1.22 

      Cd+2 -305.065 0.02 1.23 1.32 

      Cd-4 -736.945 0.05 1.34 1.77 

78 5 0.95 0.94 8.25 8.61 Intercept 68.686 ----- ----- ----- 

      Tree0 0.689 0.30 1.53 1.09 

      LPI -143.229 0.26 1.12 1.17 

      d6 48.499 0.01 1.38 1.31 

      Cd+2 -368.642 0.05 1.16 1.53 

      Cd-4 -737.816 0.08 1.30 2.09 

70 4 0.97 0.97 8.34 8.74 Intercept 73.167 ----- ----- ----- 

      Tree0 0.954 0.53 1.22 1.07 

      All90th -3.299 0.01 2.33 1.45 

      LPI -83.305 0.02 2.78 1.85 

      Cd-1 205.669 0.01 1.60 4.70 
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4. COMBINED USE OF AIRBORNE LASER SCANNING DATA AND 

DUAL-BAND, SINGLE-PASS INTERFEROMETRIC SYNTHETIC 

APERTURE RADAR DATA TO ESTIMATE LEAF AREA INDEX IN 

TEMPERATE MIXED FORESTS 

 

4.1 Abstract 

The objective of this study was to determine whether leaf area index in temperate mixed 

forests is best estimated using multiple-return airborne laser scanning (lidar) data or dual-band, 

single-pass interferometric synthetic aperture radar data (from GeoSAR) alone or both in 

combination. In situ measurements of LAI were made using the LiCor LAI-2000 Plant Canopy 

Analyzer on 61 plots (21 hardwood, 36 pine, 4 mixed pine hardwood; stand age ranging from 12-

164 years; mean height ranging from 0.4 to 41.2 m) in the Appomattox-Buckingham State 

Forest, Virginia, USA.  Lidar distributional metrics were calculated for all returns and for ten one 

meter deep crown density slices (a new metric), five above and five below the mode of the 

vegetation returns for each plot. GeoSAR metrics were calculated from the X-band backscatter 

coefficients (four looks) as well as both X- and P-band interferometric heights and magnitudes 

for each plot. Lidar and GeoSAR metrics were used as independent variables in best subsets 

regressions with LAI (measured in situ) as the dependent variable. Lidar metrics alone explained 

69% of the variability in LAI, while GeoSAR metrics alone explained 52%. However, 

combining the lidar and GeoSAR metrics increased the R2 to 0.77 with a CV-RMSE of 0.42. The 

most important metrics in the combined model were the 50th percentile of the X-band 

interferometric height and the 50th percentile of the lidar returns above 0.2 m. This study 

indicates the clear potential for X-band backscatter and interferometric height (both now 
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available from spaceborne sensors), when combined with small-footprint lidar data, to improve 

LAI estimation in temperate mixed forests. 

 

4.2 Introduction  

Leaf area index (LAI) is an important canopy descriptor used to estimate growth and 

productivity in forest ecosystems. Watson (1947) stated one of the early definitions of LAI as the 

total one-sided area of leaf tissue per unit of ground surface area.  Thus, LAI is a dimensionless 

index that represents an important method to quantify the amount of photosynthesizing tissue in 

forests. Leaves are radiation receivers (depending on the amount of productive leaves and their 

specific surface area, they absorb between 80 to 90% of the light assimilated by forests), they are 

the main photosynthesizing organ in forest stands, thus variations in leaf production and light 

interception are directly related to forests growth and development. Accordingly, LAI is a key 

variable that can be used to monitor current forest stand growth and has become a key 

explanatory variable for ecosystem process models.  

Remote sensing estimation of LAI has been mostly based on empirical modeling, using 

vegetation indices, generally developed with the spectral reflectance from the near-infrared and 

red wavelengths, and their correlations with ground-truth estimates. However, the use of optical 

imagery carries some disadvantages: It is only suitable to evaluate horizontal variation, optical 

sensors are unable to obtain data from the ground under a cloud cover, and most importantly, 

vegetation indices calculated using optical imagery tend to reach a saturation point when LAI 

values are between 3 to 5; this limitation can be particularly important when estimating LAI in 

the eastern US hardwood and mixed forests where reported estimations have ranged from 3.9 to 

7.3 (Vose et al. 1995) and from 3.5 to 5.1 (Sampson et al. 1997). 
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Two fairly recent technologies could potentially improve the estimate of LAI in these 

forests where canopies can vary greatly not only horizontally but also vertically, and the 

likelihood of reaching a reflectance saturation point is high. Light detection and ranging (lidar) 

sensors measure the time between the emission and reception of laser pulses to estimate the 

location and height of the target feature. They thus acquire information in three dimensions (x, y, 

and z coordinates) and provide the means to evaluate variation across a vertical profile. Previous 

studies in which LAI was estimated in mixed forests using lidar data report the following results: 

(1) an R2 of 0.89 (RMSE = 1.53) using eighteen 400 m2  plots (14 coniferous, 6 hardwoods) 

(Barilotti et al. 2005), in which the laser penetration index (LPI, taking into account the 

transmission of the laser beams through the canopy) was used; (2) an R2 of 0.86 (RMSE = 0.09) 

using 10 plots (400 m2) in a hardwood forest (Kwak et al. 2007), using the LPI and an 

interception index (LII) that uses the vegetation returns; (3) an adjusted R2 of 0.80 (RMSE = 

0.23) using 17 plots with areas ranging from 60 m2 - 400 m2 distributed in a broad-leaved forest 

(Sasaki et al. 2008), and (4) an R2 of 0.84 (RMSE = 0.29) for 53 plots of 491 m2, 14 mixed 

hardwoods and 39 coniferous (18 in young pine plantations and 21 in mature pine stands) (Zhao 

and Popescu 2009). No prior study has reported a maximum LAI or saturation problem using 

lidar (Jensen et al. 2008; Morsdorf et al. 2006).  

Dual-band interferometric synthetic aperture radar (DBInSAR) can now be collected 

using the geographic synthetic aperture radar (GeoSAR) airborne radar mapping system. 

GeoSAR acquires X-band (VV, 9.7 GHz and P-band (HH, 0.35 GHz) simultaneously over 11 km 

swaths (Williams et al. 2009). GeoSAR has emerged as a potential instrument to be used to 

estimate forest attributes, such as canopy height (Sexton et al., 2009) and biomass (Williams et 

al. 2009; Williams et al. 2010). Long wavelengths from the P-band (0.85 m) penetrate the upper 
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canopy and can reach the ground; short wavelengths (0.03 m) from the X-band are scattered at 

the top of the canopy. This technology has been widely used in tropical regions where forest 

canopies are usually under clouds most of the year (Carson 2008; Williams and Jenkins 2009).  

Previous attempts to estimate LAI using SAR (Synthetic Aperture Radar) data have 

found low correlations between ERS-2 (European Remote Sensing Satellite-2) SAR backscatter 

and LAI or biomass, but significant correlations between a green leaf biomass index (calculated 

using ERS-2 SAR backscatter) and LAI, in Mediterranean vegetation (Svoray et al. 2001). Other 

researchers have found saturation problems for the C-band (radar band that operates at a 

wavelength of 4-8 cm) backscatter with high values of LAI in tundra ecosystems and plantation 

forests (Durden et al. 1995; Paloscia 1998). Manninen et al. (2005) used a C-band backscatter 

ratio from ENVISAT (ENVIroment SATellite)/ASAR (Advanced Synthetic Aperture Radar) in a 

mixed forest obtaining an RMSE of 0.27. While these and other studies have used radar 

backscatter to estimate LAI, none to date has assessed the potential utility of interferometric 

heights for LAI estimation. Given that lidar data have been shown to enable robust LAI 

estimation, and both lidar and DBInSAR can be used to estimate canopy heights, we posited that 

the DBInSAR data from GeoSAR could be useful for remote sensing of LAI. As such, the 

objective of this study was to determine whether leaf area index in temperate mixed forests is 

best estimated using multiple-return airborne laser scanning (lidar) data or dual-band, single-pass 

interferometric synthetic aperture radar data (from GeoSAR) alone or both in combination. 
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4.3 Methods 

4.3.1 Study site 

The study area is located in Appomattox Buckingham State Forest in Virginia, at 

37º25'9" N and 78º40'30" W (fig. 4.1). The elevation range is between 180 to 200 meters. This 

forest is composed of coniferous, hardwoods, and mixed stands. Three pine species are found: 

loblolly pine (Pinus taeda L.), shortleaf pine (Pinus echinata Mill.), and Virginia pine (Pinus 

virginiana Mill.); and among the deciduous trees are: northern red oak (Quercus rubra L.), white 

oak (Quercus alba L.), red maple (Acer rubrum L.), yellow poplar (Liriodendron tulipifera L.), 

blackgum (Nyssa sylvatica Marsh.), and american beech (Fagus grandifolia Ehrh.). 

Measurement plots are of two types: fixed radius plots and variable radius plots, the latter based 

on basal area guidelines. The fixed radius plots were installed in 1999 following U.S. National 

Forest Inventory and Analysis (FIA) guidelines. The plots are composed of 4 circular sub-plots 

(one in the center and three in a triangle shape around the center); each sub-plot has a radius of 

7.32 meters (for tree measurement), and they are 36.58 meters apart from each other. 219 

variable radius plots installed in 2002 using a basal area factor of 10 (BAF) and following a grid 

of 201.17 meters (10 chains) (van Aardt et al. 2006). For more details about this study design see 

Popescu et al. (2002).  
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4.3.2 Field data collection and analysis 

4.3.2.1 Inventory data 

All plots were measured during the 2008 dormant season. Total tree height (ht) and 

diameter at breast height (dbh) were assessed for every individual with a dbh > 2.54 cm within 

the measurement plots using a Haglöf Vertex hypsometer and diameter tape.  

 

4.3.2.2 Leaf area measured with an optical sensor 

Leaf area index data were collected during late summer (September, 2008), using the 

LiCor LAI-2000 Plant Canopy Analyzer. Above-canopy readings were recorded remotely every 

15 seconds by placing an instrument in an open field adjacent to the stand during the same date 

and time that measurements were taken inside the stand. The measurements inside the stand, 

below-canopy readings, were made holding the instrument at the height of 1 m facing upwards. 

This same procedure was repeated in every plot regardless of the presence of understory or mid-

story vegetation. Due to the instrument design, measurements were taken under diffuse sky 

conditions to ensure that the sensor used indirect light only. Thus, measurements were taken 

during the dawn and predusk periods, with the above instrument facing north and using a 90º 

view cap. Sampling points were distributed in the following manner: one reading at the center of 

the plot, and one reading at 5 meters away from the center in each cardinal direction (north, 

south, east and west), for a total of 5 readings per plot. The calculation of LAI was accomplished 

using the FV-2000 software which averaged all the readings per plot. The canopy model used to 

calculate LAI was Horizontal (LI-COR 2010); the ring number 5 was masked to reduce the error 
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introduced by the stem and branches of trees; and the option of skipping records with 

transmittance  > 1 was used in order to avoid bad readings that can alter the mean values of LAI 

per plot. The above and below canopy records were matched by time (Welles and Norman 

1991).  

The center of the plots was found using GPS navigation, only 51 fixed radius plots were 

measured since 12 of them had been clear cut. Additionally, 30 variable radius plots were 

measured, distributed mainly near the access roads (fig. 4.1).  

 

4.3.2.3 Lidar data 

Small footprint lidar data were acquired in late August 2008. The system was an Optech 

ATLM 3100 with an integrated Applanix DSS 4K x 4K DSS camera. The data have multiple 

returns with a sampling density of 5 pulses per square meter, with 4 or fewer returns per pulse. 

The scan angle was less than 15 degrees. Instrument vertical accuracy over bare ground is 15 cm, 

and horizontal accuracy is 0.5 m.  

The inverse distance weighted interpolation method was used to generate a digital 

elevation model (DEM) with the data classified as ground returns (Popescu 2002). Next, all data 

points ≥ 1 m of height above the ground (hag) were classified as vegetation returns; this 

threshold was selected to match the height at which  the instrument was used to estimate LAI on 

the ground. Another set classified as “all returns” was defined using a threshold of ≥ 0.2 m hag. 

Next, lidar data points per plot were separated in three classes: “ground returns” (hag = 0 m), “all 

returns” (hag > 0.2 m), and “vegetation returns” (hag > 1 m). Vegetation returns were classified 

using a 1 m threshold because the instrument used to estimate LAI in situ was held at 

approximately 1 m above the ground. The metrics derived from the ground returns class (Gr) 
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were: frequency (count) of returns and frequency (count) of pulses (table 4.1). The metrics 

derived from the all returns class (All) were: frequency (count), mean height, standard deviation, 

coefficient of variation, minimum, maximum, percentiles (10, 20, 25, 40, 50, 75, and 90), and 

frequency (count) of pulses (Holmgren 2004; Popescu 2002). The metrics derived from the 

vegetation returns class (Veg) were the same described for the all returns class with the addition 

of the mode. The distribution of intensity values (I) were described using the mean, minimum, 

maximum, standard deviation, and coefficient of variation.  First, second, third and fourth returns 

were classified as such and divided by the total number of “vegetation returns” (R).  The Laser 

Penetration Index (LPI) (Barilotti et al. 2005) was calculated per plot as the proportion of ground 

pulses to the total pulses (ground pulses + all pulses). Density metrics (d) were calculated 

following Naesset (2002), as the proportion of returns found on each of 10 sections equally 

divided within the range of heights of vegetation returns for each plot. Additionally, another set 

of metrics, crown density slices (Cd), was calculated using the mode value of vegetation returns. 

Ten 1-meter sections of vegetation returns (5 above and 5 below the mode value, based on the 

maximum value of crown length observed) were classified and proportion of returns to the total 

number of returns, mean, standard deviation, and coefficient of variation were calculated (fig. 

4.2).  Frequency of returns (count), calculated from each of the lidar data point classes, were 

used only to estimate other metrics, such as proportions of returns, but they were not used in the 

development of the models (table 4.1). 

Ground plots were overlaid on digital orthophotographs acquired at the same time as the 

lidar data. Sixteen plots partially encompassed roads or herbaceous areas. These plots were 

eliminated from the dataset.  
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4.3.2.4 GeoSAR data  

GeoSAR data were acquired in late summer 2008. The system recorded data from two 

microwave bands, X (VV, 9.7 GHz) with a 0.03 m wavelength and P (HH, 0.35 GHz) with a 

0.85 m wavelength, in single passes. Postings from the X-band were 3 m; those from the P-band 

were 5 m. GeoSAR X-band interferometry yields a digital surface model (DSM) and P-band 

interferometry is used to create a digital elevation model (DEM). Previous research has used the 

difference between the DSM and DEM to create a canopy height model used to estimate forest 

biomass (Williams et al. 2009). The provider (Fugro EarthData, Inc.) performed the 

preprocessing, including both the interferometry and generation of two orthorectified magnitude 

images: (1) the magnitude from bands X and P, expressed as the squared root of the intensity 

values and (2) the sigma-0 (σ0) or backscatter coefficient from all four looks (North, South, East, 

West), defined as the backscatter power per unit area on the ground. 

Analogous to those used with lidar-derived heights and intensities, GeoSAR metrics were 

developed using the following approach (see also table 4.1):  

• In order to evaluate the vegetation height, the difference between X-band (mostly 

backscattered from the vegetation/canopy surface) and P-band (mostly from the ground 

and lower tree branches) interferometric heights was calculated. In addition, the X-band 

was divided by the P-band with the purpose of evaluating any other relationship between 

the two layers. 

• The high resolution DEM created from the lidar data were used to generate the heights 

above ground for the X and P bands.  

• No changes were made to the magnitude layers or the σ0 layers.  
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• The cell values from all the layers (10 in total) were extracted and the frequency, mean, 

standard deviation, coefficient of variation, minimum, maximum, and percentiles (10th to 

90th) were calculated for all plots.  

 

4.3.2.5 Statistical analysis 

Based on the sampling distance and the conical view of the Licor LAI-2000 sensor 

(which radius is three times the canopy height), a buffer of 20 m was used from the center of 

each plot, generating circular plots of 1256.6 m2 of size. A dataset of 81 plots was compiled for 

all lidar-derived, GeoSAR-derived and ground-truth metrics. However, after deleting plots for 

proximity to roads and for being outliers (but not influential), the number of plots was reduced to 

61. Pearson correlation coefficients were used to evaluate relationships among lidar metrics, 

GeoSAR metrics and measured LAI. Multiple regressions were used to fit the dataset. Best 

subset regression models were examined using the RSQUARE method for best subsets model 

identification (SAS 2010). This method generates a set of best models for each number of 

variables (1, 2, …, 6, etc.). The criterion to choose the models with the best group of variables 

was a combination of several conditions, as follows: 

• High coefficient of determination (R2) value.  

• Low residual mean square (RMSE).  

• Similarity between the adjusted coefficients of determination R2
adj’ and R2 values. The 

R2
adj’ is a rescaling of R2 by degrees of freedom, hence involves the ratio of mean squares 

instead of sum of squares. 

• Mallows’ Cp statistic values (Hocking 1976).  When the model is correct, the Cp is close 

to the number of variables in the model.  
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• Low values from two information criteria, the Akaike (1969) Information Criterion (AIC) 

and Schwarz (1978) Bayesian Criterion (SBC). The AIC is known for its tendency to 

select larger subset sizes than the true model; hence the SBC was used for comparison, 

since it penalizes models with larger number of explanatory variables heavier than AIC. 

The best models chosen per each subset size (based on number of variables in the 

models) were evaluated for collinearity issues. Near-linear dependencies between the 

explanatory variables were evaluated using computational stability diagnostics. In order to make 

independent variables orthogonal to the intercept and therefore remove any collinearity that 

involves the intercept, independent variables were centered by subtracting their mean values 

(Belsley 1984; Marquart 1980). The variance inflation factor (VIF) with a threshold of 10 was 

used to quantify how much the variance of an estimated regression coefficient was inflated.  

However, condition index (CI) was also evaluated for all variables within the models since VIF 

neither detects multiple near-singularities nor identifies the source of singularities (Rawlings et 

al. 2001). Condition index is the square root of the ratio of the largest eigenvalue to the 

corresponding eigenvalue from the dataset matrix. Similar to VIF, the CI indicates weak 

dependencies when higher than 10 but lower than 30, and severe dependencies when higher than 

30.  

Additional data to test the models were not available, thus cross-validation analysis was 

performed using the prediction sum of squares (PRESS), which is the sum of squares of the 

difference between each observation and its prediction when that observation was not used in the 

prediction equation (Allen 1971). The root mean square error from the cross validation analysis 

(CV-RMSE) was then calculated as the square root of the ratio between the PRESS statistic and 

the number of observations. The CV-RMSE is an indicator of the predictive power of the model. 



96 
 

The significance level used for all the statistical tests was α = 0.05 (p-value < 0.05). This p-value 

was used to evaluate if the variables included in the model were statistically significant as well. 

The squared semipartial correlation coefficients (SSCC) were calculated using partial sum of 

squares to determine the contribution from each variable to the models, while controlling the 

effects of other independent variables within the model. These coefficients represent the 

proportion of the variance of the dependent variable associated uniquely with the independent 

variable. 

Although the statistical analyses applied to the dataset of 61 plots did not show the 

presence of outliers, three of these plots with measured low LAI values (1.34 to 1.43) could 

potentially be influencing the dependent versus independent variable relationships. Therefore, 

best subset analyses were also applied to the dataset after removing these three observations (n = 

58).    

 

4.4 Results 

4.4.1 Summary statistics from ground measurements and lidar metrics 

The 61 plots were distributed within the different forest types as follows: 3 in bottomland 

hardwoods, 18 in upland hardwoods, 4 in mixed pine-hardwoods, 24 in loblolly pine, 6 in 

shortleaf pine, and 6 in Virginia pine. For all forest types, stand age ranged between 10 and 164 

years. Mean tree height ranged from 13 m to 16 m, and mean dbh from 13 cm to 24 cm. Leaf 

area index values estimated on the ground were between 3.4 to 4.1 (table 4.2). For all groups of 

forest types, the mean number of lidar ground returns ranged between 222 and 555, and for all 

returns (hag > 0.2 cm) from 4343 to 5278. Mean lidar heights above ground were between 9.9 m 

to 13.2 m, with standard deviations ranging from 4.5 m to 6.8 m (table 4.3). Minimum heights 



97 
 

were set to 0.2 m, and maximum values ranged from 25.3 m to 37.6 m. Intensity mean values 

from vegetation returns (hag > 1 m) were observed between 37 to 51 watts. Standard deviations 

from the intensity values were over 20 watts for all groups of plots. Laser penetration index 

(LPI) was lowest (0.003) for the pine-hardwoods and shortleaf pine group of plots, and highest 

(0.039) for the upland hardwood plots. 

The mean number of cells per plot from the GeoSAR P-band was 49, and for the X-band 

was 138. Mean heights from the P-band ranged from 5.46 m to 10.48 m, while for the X-band 

they ranged from 10.84 m to 16.06 m (table 4.4). Mean heights from the X-band were always 

higher than lidar returns, except for the upland hardwood plots. However, maximum values from 

the lidar returns were as much as 10 m higher than the maximum values from the X-band. P-

band mean height values were high (up to 18 m) from the ground, which made the difference of 

X and P bands to be low, sometimes as low as half the mean height observed from the lidar 

returns. A comparison between lidar returns and GeoSAR heights for an upland hardwood plot 

can be visualized in figure 4.3. The range of magnitude values from the P-bands was larger than 

from the X-band, as shown by the standard deviation.  

The vertical profile (distribution of heights vs. frequency) from lidar returns (fig. 4.4) 

showed two peaks, one at the mode value (13 m) and a second one at lower height. The latter 

might be related to a well-defined understory stratum in the forest stands. Also, a graph was 

obtained from the distribution of GeoSAR X-band heights, showing two peaks at similar heights 

to the lidar (fig. 4.4).  
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4.4.2 Variable selection and modeling  

Pearson correlation coefficients were summarized for the variables included in the best 

models (table 4.5). Laser penetration index (LPI) had the highest correlation with LAI (-0.698), 

followed by All10th (0.638) and X50th (0.609). Also, d2 (-0.347) and Xcv (-0.485) were statistically 

significant. The 10th and 20th percentiles (height values) were the only percentiles of any type 

significantly correlated with LAI.  

The best models from lidar metrics had R2 values up to 0.69 with 4 variables in the 

model. Adding more variables increased the R2 and resulted in no collinearity problems. 

However, there was always at least one variable not contributing significantly to the model. 

Hence, only models with 2 and 4-variables were reported (table 4.6). Common variables in these 

models were LPI and All10th, the increase in R2 (from 0.58 to 0.69) was given by the d10 and Cd-

3 metrics. The largest contribution in both models was from the LPI (0.174 and 0.202), and in 

the 4-variable model the other three variables (All10th, d10, and Cd-3) had a similar contribution 

(0.053, 0.064, and 0.059). Predicted values from the 4-variable model were plotted against the 

measured LAI (fig. 4.5). The results from the best subset analyses for GeoSAR metrics showed 

that although the R2 values increased when adding more variables to the model, the R2
adj’ did not, 

therefore only a 4-variable model with an R2 of 0.52 is shown in table 4.6. The variable that 

contributed the most was X50th (0.127), followed by Xcv (0.098), sn01xlcv (0.047), and Xmagstdv 

(0.035). All variables included in the lidar only and GeoSAR only models had a VIF and CI 

lower than 5.  

The best-performing models from the best subsets regressions using the metrics from 

lidar and GeoSAR combined are reported in table 4.7. The R2 values ranged from 0.66 from a 2-

variable model to 0.77 from a 6-variable model. The All50th and X50th variables were included in 
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all models; the latter was the only variable from GeoSAR that was included. Other variables 

included in these models from lidar were LPI, d2, and two crown density metrics (Cd-1, and Cd-

3stdv). The largest contributions (always higher than 0.1) were from the All50th and X50th variables. 

Between the 5 and 6-variable model, the R2 and R2
adj’ increased and the RSME decreased with an 

extra variable, but the CV-RMSE stayed the same. There were no collinearity issues flagged by 

the VIF and CI, which were under 5 for all variables. Predicted values from the 4-variable model 

and 6-variable model are shown in figures 4.6 and 4.7 for comparison. The difference in R2 

values between these two is only 0.04, but the observations from the 6-variable model are 

distributed closer to the 1:1 line, suggesting a better fit.  

The best models obtained from the best subset regression analyses applied to the dataset 

without the low LAI plots (n = 58), consistently included the same variables than the best models 

obtained when using the dataset of 61 plots. The R2 values were lower (0.1 lower) than the R2 

values observed when using the 61 plots (fig. 4.8), however, this reduction of the R2 values can 

be attributed to the reduced number of plots representing the low levels of the LAI range. In 

addition, the fact that the best models included the exact same variables than the models from the 

61 plots, and that the reduction of the R2 values is only 0.1 confirms that such plots are not 

influential enough to drive the relationship in the models. Therefore, since the exclusion of these 

three plots did not affect the relationship of measured LAI with the lidar and GeoSAR metrics, 

most of the results reported in this research used the dataset with 61 plots.   

Crown density metrics were included in the best models using 5 or more variables. These 

were removed as independent variables, and the data re-analyzed. The results from these 

analyses are shown in table 4.8. It was noticeable than in the absence of the crown metrics from 

lidar, more variables from GeoSAR were included in the models, to the point of obtaining R2 and 
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RMSE values comparable to the models in table 4.7. The additional metrics from GeoSAR were 

Pmagstdv and Pmagmax. The VIF values from these two models increased to 7.6 compared to the 

models with the crown metrics, due to the high correlation between Pmagstdv and Pmagmax 

(0.931).  

 

4.5 Discussion 

The LAI range of values, among all plots, was large enough to develop a relationship 

with lidar metrics. There were few representatives (3) at the low range of LAI. These three plots 

were influential, and therefore, were not deleted from the dataset. Previous research has shown 

success estimating LAI in mixed forest using lidar metrics.   

The high correlation of LPI with leaf area index was expected (Barilotti et al. 2006). 

Laser penetration index, defined as the proportion of ground pulses to the total number of pulses, 

is directly related to the amount of leaves and canopy thickness. The more open the canopy the 

more pulses reach the ground, and vice versa. This variable was included in the models that were 

developed with either lidar metrics alone or with the combination of lidar and GeoSAR metrics. 

There were two models where LPI was not included, in which the 50th percentile of lidar returns 

took its place.   

Lidar return percentiles are height values calculated based on the vertical density of 

returns (Naesset 2002). They describe the height of the vegetation density across the stand 

vertical profiles. In other words, such heights relate to the target heights on the ground, as more 

targets (i.e. branches, leaves, etc.) the laser encounters at certain height or section from the 

ground, more returns are obtained from that section of the stand. For example, the 50th percentile 

value means that 50% of the return heights are above or below that height. In addition, the 10th 
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percentile was included in the lidar only models, this metric ranged from 0.40 m to 8.08 m, with 

a mean of 3.54 m for all 61 plots. At this height (of the vertical profile) in the measured forest 

stands, mostly understory was present, making this stratum an important contributor to the LAI 

value of the plot.  

Similar to the 10th percentile of the lidar returns, the density metric d10, defined as the 

proportion of returns found at the top of the canopy with respect to the total number of returns 

from the vegetation, was included in the lidar metric models only (Naesset 2002),. The top of the 

canopy is directly related to tree crowns, and hence LAI. Almost opposite to d10, the density 

metric d2 was selected in the models using lidar and GeoSAR metrics together. This variable 

relates to the low section of the vertical profile of the stand.   

Crown density slice metrics are descriptors of tree crowns, and metrics related with the 

proportions of returns and standard deviation of the return heights at 1 and 3 meters below the 

mode value were included in the models. These variables contributed as much as the density 

metrics. Interestingly, the combination of all returns percentiles, densities, and crown density 

metrics in the models managed to describe the vegetation at the top, medium, and low level of 

the vertical profile.  For instance, d10, Cd-3, and All10th were together in the 4-variable model for 

lidar metrics only. 

The interferometric heights from the X-band, after corrected by the DEM developed from 

lidar data, showed the largest correlations with LAI. The 50th percentile of the height values per 

plot was positively correlated with LAI. The coefficient of variation from all the height values 

within a plot correlated negatively, suggesting more variability among the height values in plots 

with low LAI values. In addition, the metrics of the layer generated from the difference between 

X-band and P-band (X- minus P-band), and the metrics from the P-band interferometry showed 
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significant correlations with LAI but they were not included in the best models. Moreover, the 

coefficient of variation obtained from the values of one of the σ0 layers contributed significantly 

to the model when only GeoSAR data were used.  

In the past, models for LAI prediction in mixed hardwood and coniferous forests using 

only lidar data have reported R2 values ranging from 0.8 to 0.9, using either very few plots 

(between 10 to 18) or small plot sizes (400 m2 to 500 m2) (Barilotti et al. 2005; Kwak et al. 2007; 

Sasaki et al. 2008; Zhao and Popescu 2009). The results reported in this research, using 61 plots 

of 1257 m2 size, reveal an R2 of 0.69 (CV-RMSE = 0.48) for lidar only models, and an increased 

R2 value of 0.77 (CV-RMSE = 0.42) when using lidar and GeoSAR data together. Considering 

the variability observed, from the set of plots used in this study, in stand age (10 to 164), forest 

type (21 plots of hardwoods, 36 plots of pure pine, and 4 plots of pine-hardwood), and also in 

measured LAI values (1.3 to 4.9), the models developed represent a robust and accurate way to 

estimate LAI in temperate mixed forests. Importantly, given that the most important metric in the 

combined model was the 50th percentile of the X-band interferometric height, X-band 

interferometry – currently possible using spaceborne sensors – shows clear utility for LAI 

estimation at landscape to regional scales. 

At present, a rising hardwood utilization industry, and the current diversity in land 

ownership and in management plans and goals, requires decision support tools that can aid 

management, planning, and policy making under these conditions. Leaf area index is a key 

variable for the estimation of wood production and carbon storage when using such tools. 

Consequently, robust and accurate models to remotely estimate this variable are essential. The 

results from this research provide a suite of models in line with these needs.   
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Figure 4.1 Geographic distribution of plots in Appomattox Buckingham State Forest, VA, USA. 
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Figure 4.2 Hypothetical representation of crown density slices derived from lidar Vegmode value, 
height to live crown was not measured on the ground. Five 1 m sections above and below the 
mode were defined, and the descriptive statistics (i.e., frequency, mean, standard deviation, and 
coefficient of variation) from the returns within each section were obtained.  See table 4.1 for 
variable names and how they were calculated. (a) Crown density values for an upland hardwood 
plot. 
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Figure 4.3 Lidar returns and GeoSAR X- and P-band heights from an upland hardwood plot of 108 yr-old and LAI = 3.23. Three-
dimensional plots are: (a) Lidar returns (from ground and vegetation), and (b) GeoSAR interferometric heights from bands X and P, 
after subtracted from a DEM created from lidar. Ground returns are drawn for reference. 
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Figure 4.4 Vertical profiles for all plots: (a) lidar vegetation returns (hag > 1 m) and (b) heights generated from GeoSAR X-band 
(cells), after corrected by a DEM generated from lidar returns. The mode calculated from the lidar vegetation returns is circled on the y 
axis: (a) black, (b) gray, drawn as a reference for visual comparison. 
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Figure 4.5 Relationship between estimated LAI and measured LAI using the 4-variable model 
with lidar metrics only (n = 61). Plots were classified by forest type.  
 
Model (refer to table 4.1 for variable names):  
 
LAI = 3.405 – 7.480 (LPI) + 0.134 (All10th) – 12.498 (d10) – 15.113 (Cd-3) 
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Figure 4.6 Relationship between estimated LAI and measured LAI using the 4-variable model 
with lidar and GeoSAR metrics (n = 61). Plots were classified by forest type.  
 
Model (refer to table 4.1 for variable names): 
 

LAI = 3.391 – 3.044 (LPI) – 0.147 (All50th) – 3.027 (d2) + 0.201 (X50th) 
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Figure 4.7 Relationship between estimated LAI and measured LAI using the 6-variable model 
with lidar and GeoSAR metrics (n = 61). Plots were classified by forest type.  
 
Model (refer to table 4.1 for variable names): 
 

LAI = 3.475 – 4.246 (LPI) – 0.185 (All50th) – 4.979 (d2) + 0.208 (X50th) – 14.977 (Cd-3stdv) – 

7.805 (Cd-1) 
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Figure 4.8 Relationship between estimated LAI and measured LAI using the 6-variable model 
with lidar and GeoSAR metrics and excluding the three plots of low LAI values from the dataset 
(n = 58). Plots were classified by forest type.  
 
Model (refer to table 4.1 for variable names): 
 

LAI = 3.658 – 8.933 (LPI) – 0.193 (All50th) – 4.800 (d2) + 0.211 (X50th) – 18.042 (Cd-3stdv) – 

8.531 (Cd-1) 
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Table 4.1 Explanatory variables derived from lidar and GeoSAR.  Return hag refers to the return 
height above the ground. Statistics in subscripts were as follows: frequency (total), mean, mode, 
standard deviation (stdv), coefficient of variation (cv), minimum (min), maximum (max), and 
height percentiles (10th, 20th, …, 90th). The metrics Grtotal, Alltotal, Vegtotal, Grpulses, Allpulses, and 
Vegpulses were determined for calculation of other metrics (i.e. proportions of returns), but were 
not used for model development. 
 
 

Lidar metrics Symbol 

Total number of ground returns Grtotal 

All returns (return hag  > 0.2 m) 
Units are meters for all metrics except for Alltotal 
and Allcv. 

Alltotal, Allmean, Allstdv, Allcv, Allmin, Allmax, 
All10th,…, All90th 

Vegetation returns (return hag  > 1 m) 
Units are meters for all metrics except for 
Vegtotal and Vegcv. 

Vegtotal, Vegmean, Vegmode, Vegstdv, Vegcv, 
Vegmin, Vegmax, Veg10th,...,Veg90th 

Pulses (number of lidar pulses per return 
class) 

Grpulses, Allpulses 

Laser penetration index (LPI) LPI = Grpulses/(Grpulses + Allpulses) 

Intensity values (returns hag  > 1 m) 
Units are watts for all metrics except for Icv. 

Imean, Imin, Imax, Istdv, Icv  

Proportion of 1st, 2nd, 3rd and 4th returns  
Ri is a proportion of returns 

Ri = total number of i returns/ Vegtotal 

i = 1st, 2nd, 3rd, and 4th   
Density 

di is a proportion of returns 

 

di = [x + (Vegmax - Vegmin)/10]/Vegtotal  
x = Vegmin,1,..,10 
i= 1, 2, …,10 

Crown density slices around Vegmode  
Refer to fig. 4.2 for a graphic explanation 
of the slices 

Units are meters for Cdimean, Cdistdv, and Cdicv. 
Cdi is a proportion of returns 

Cdi, Cdimean, Cdistdv, Cdicv  

Cdi = [number of returns in i / (Alltotal + Grtotal)] 
(i=+1,+ 2,+3,+4,+5, 0, -1, -2, -3, -4, and -5) 
i=+1,…,+ 5 at i meters above Vegmode 
i = 0 at Vegmode 
i = -1,…,-5 at i meters below Vegmode 

GeoSAR metrics  

Values from all cells per plot itotal,  imean, istdv, icv, imin, imax,  
i10th, i20th, i25th, i40th, i50th, i60th, i75th, i80th, and i90th 

Units are meters for all metrics (except for itotal 
and icv) obtained from the interferometric height 

bands. 

Units from magnitude bands are �watts m�⁄  

Units for
 
σ0 are dB/m2 (dB=decibels) 

i = P (P-band interferometric heights), 
X (X-band interferometric heights), 
X-P (X minus P), 
Pmag (P-band magnitude), 
Xmag (X-band magnitude), 
sn01xl (σ0 for flight line 1), 
sn02xl (σ0 for flight line 2), 
sn03xl (σ0 for flight line 3), 
sn04xl (σ0 for flight line 4) 
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Table 4.2 Descriptive statistics for tree height, tree dbh, and leaf area index (LAI) at plots per 
forest type classes. Statistics for total were calculated based on plot means. Column annotation: n 

(number of observations or plots), ht (mean tree height), dbh (diameter at breast height), and 
Stdv (standard deviation). 
 
 

Forest type n Stand 
age 

ht (m) dbh (cm) LAI 

Mean Stdv Range Mean Stdv Range Mean Stdv Range 

Bottomland hardwood 3 89 14.0 6.4 0.4 26.8 18.7 11.2 3.1 43.7 3.94 0.40 3.68 4.40 

Upland hardwood 18 12 - 164 16.3 6.3 2.7 41.2 23.7 11.9 2.5 55.1 3.08 0.74 1.43 4.23 

Pine-hardwood 4 45 - 118 14.9 5.9 2.4 35.4 17.0 9.0 2.5 50.0 4.06 0.68 3.41 4.90 

Loblolly pine 24 10 - 63 13.3 3.8 0.9 33.8 16.3 6.9 2.5 86.1 3.37 0.86 1.34 4.48 

Shortleaf pine 6 30 - 38 12.9 3.8 4.0 24.1 14.1 7.4 2.5 42.7 4.09 0.28 3.68 4.39 

Virginia pine 6 60 14.1 3.6 4.3 33.5 12.4 8.0 2.8 73.7 3.75 0.44 2.89 4.06 

Total 61 10 – 164 14.2 3.2 0.4 41.2 17.0 5.9 2.5 86.1 3.71 0.57 1.34 4.90 
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Table 4.3 Means of lidar returns per forest type. Minimum values for all returns heights above 
ground were set at 0.2 m. Intensity minimum value was 1 for all plots (n = 61). Column 
annotation: n (number of observations or plots), Grtotal (total number of ground returns), Alltotal 
(total number of all returns), Stdv (standard deviation), Max (maximum value), and LPI (Laser 
Penetration Index). 
 
 

Forest type n Grtotal 

(mean) 

Alltotal 

(mean) 

Return  heights (m) Intensity (watts) 
LPI 

Mean Stdv Max Mean Stdv Max 

Bottomland hardwood 3 222 4343 12.7 6.8 36.6 51 29 136 0.019 

Upland hardwood 18 537 5278 13.2 6.8 31.0 44 28 150 0.039 

Pine-hardwood 4 264 5009 12.7 5.9 34.9 49 28 126 0.003 

Loblolly pine 24 534 4436 10.2 4.8 32.7 41 24 149 0.034 

Shortleaf pine 6 353 5165 9.9 4.5 25.3 43 27 137 0.003 

Virginia pine 6 555 4617 13.2 5.1 37.6 37 22 125 0.005 

Total 61 411 4808 12.0 5.7 37.6 44 26 150 0.017 
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Table 4.4 Means of GeoSAR cell values per forest type. P and X band heights were calculated by subtracting the values from a DEM 
created from the lidar returns (n = 61). Column annotation: X – P (X-band minus P-band), Pmag (P-band magnitude values), Xmag (X-
band magnitude values), n (number of observations or plots), Stdv (standard deviation), and Max (maximum value). 
 
 

Forest type n 
P-band heights (m) X-band heights (m) (X – P) heights (m) Pmag (watts/m2) Xmag (watts/m2) 

Mean Stdv Max Mean Stdv Max Mean Stdv Max Mean Stdv Max Mean Stdv Max 

Bottomland hardwood 3 10.48 1.70 14.71 16.06 2.35 25.30 5.57 1.85 11.78 0.24 0.05 0.45 0.13 0.04 0.31 

Upland hardwood 18 6.65 1.35 13.53 11.96 1.81 20.91 5.20 1.99 13.40 0.26 0.05 0.62 0.11 0.03 0.25 

Pine-hardwood 4 8.03 1.52 16.27 13.72 1.66 24.77 5.47 1.71 11.74 0.23 0.05 0.48 0.12 0.04 0.41 

Loblolly pine 24 5.46 1.30 13.26 10.84 1.22 22.55 5.46 1.70 15.40 0.36 0.08 0.99 0.07 0.02 0.27 

Shortleaf pine 6 6.89 1.45 11.77 11.78 1.44 18.83 4.98 1.55 12.95 0.30 0.06 0.55 0.09 0.03 0.21 

Virginia pine 6 6.83 1.94 18.38 15.04 1.71 30.02 8.15 1.86 15.46 0.41 0.09 0.88 0.08 0.03 0.25 

Total 61 7.39 1.54 18.38 13.23 1.70 30.02 5.80 1.78 15.46 0.30 0.06 0.99 0.10 0.03 0.41 
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Table 4.5 Pearson correlation coefficients for the independent variables used to predict leaf area index (LAI) (n = 61). For a 
description of the variable names refer to table 4.1. LAI was measured on the ground.  Bold values were significant at α = 0.05.  
 
 

 
LAI LPI All10th All50th d2 d10 Cd-1 Cd-3 Cd-3stdv Xcv X50th Xmagstdv Pmagstdv Pmagmax sn01xlcv 

LAI 1 -0.698 0.638 -0.116 0.085 -0.347 0.030 -0.084 0.223 -0.485 0.609 0.241 -0.013 -0.092 -0.124 

LPI 
 

1 -0.546 0.063 -0.054 0.160 -0.237 -0.242 -0.262 0.693 -0.520 -0.065 0.181 0.187 0.071 

All10th 
  

1 0.163 -0.091 -0.148 0.106 -0.031 0.168 -0.451 0.685 0.269 0.072 0.054 -0.075 

All50th 
   

1 -0.292 0.508 -0.438 -0.168 0.013 0.087 0.550 0.168 -0.116 -0.112 0.252 

d2 
    

1 -0.083 -0.286 -0.290 0.085 0.050 0.086 0.331 0.078 0.031 0.105 

d10 
     

1 -0.242 -0.181 0.199 0.039 0.080 -0.041 -0.190 -0.146 0.286 

Cd-1 
      

1 0.562 -0.269 -0.429 -0.285 -0.421 0.136 0.216 -0.251 

Cd-3 
       

1 -0.062 -0.326 -0.176 -0.413 0.024 0.131 -0.083 

Cd-3stdv 
        

1 -0.127 0.316 0.176 -0.408 -0.430 0.105 

Xcv 
         

1 -0.363 0.222 -0.074 -0.109 0.044 

X50th 
          

1 0.345 -0.096 -0.111 0.159 

Xmagstdv 
           

1 -0.225 -0.358 0.210 

Pmagstdv 
            

1 0.931 -0.196 

Pmagmax 
             

1 -0.185 

sn01xlcv 
              

1 
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Table 4.6 Best predictive models of LAI using lidar metrics only and GeoSAR metrics only, n = 
61. The statistics R2

adj’, CV-RMSE, SSCC, VIF, and CI are the adjusted coefficient of 
determination, the RMSE from the cross validation analysis, the squared semipartial correlation 
coefficient from partial sum of squares, the variance inflation factor and the condition index, 
respectively. For a description of the variable names refer to table 4.1. All variables in the 
models were highly significant at a p-value < 0.001. 
 
 

Sensor # var. R
2
 R

2
adj’ RMSE CV-RMSE Variable Coefficient SSCC VIF CI 

Lidar 2 0.58 0.57 0.52 0.53 Intercept 3.363 ---- ---- ---- 

      LPI -6.602 0.17 1.43 1.28 

      All10th 0.173 0.09 1.43 1.94 

            4 0.69 0.67 0.46 0.48 Intercept 3.405 ---- ---- ---- 

      LPI -7.480 0.20 1.58 1.24 

      All10th 0.134 0.05 1.50 1.28 

      d10 -12.498 0.06 1.06 1.56 

      Cd-3 -15.113 0.06 1.14 2.16 

           GeoSAR 4 0.52 0.49 0.56 0.58 Intercept 3.407 ---- ---- ---- 

      Xcv -0.032 0.10 1.37 1.08 

      X50th 0.104 0.13 1.49 1.20 

      Xmagstdv 16.887 0.04 1.37 1.38 

      sn01xlcv -0.002 0.05 1.06 2.00 
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Table 4.7 Best predictive models of LAI using lidar metrics (including crown density slices) and 
GeoSAR metrics, n = 61. The statistics R2

adj’, CV-RMSE, SSCC, VIF, and CI are the adjusted 
coefficient of determination, the RMSE from the cross validation analysis, the squared 
semipartial correlation coefficient from partial sum of squares, the variance inflation factor and 
the condition index, respectively. All variables in the models were highly significant at a p-value 
< 0.0001. For a description of the variable names refer to table 4.1. 
 
 

# var. R
2 

R
2

adj’ RMSE CV-RMSE Variable Coefficient SSCC VIF CI 

2 0.66 0.65 0.47 0.47 Intercept 3.439 ---- ---- ---- 

     All50th -0.153 0.29 1.43 1.27 

     X50th 0.229 0.65 1.43 1.88 

          3 0.71 0.69 0.44 0.45 Intercept 3.393 ---- ---- ---- 

     LPI -3.732 0.04 1.80 1.27 

     All50th -0.120 0.14 1.88 1.43 

     X50th 0.176 0.21 2.57 2.97 

          4 0.73 0.71 0.42 0.44 Intercept 3.391 ---- ---- ---- 

     LPI -3.044 0.03 1.91 1.20 

     All50th -0.147 0.16 2.39 1.33 

     d2 -3.027 0.03 1.28 1.58 

     X50th 0.201 0.24 3.00 3.34 

          5 0.76 0.74 0.40 0.42 Intercept 3.401 ---- ---- ---- 

     LPI -4.253 0.05 2.19 1.11 

     All50th -0.148 0.16 2.39 1.20 

     d2 -3.996 0.04 1.39 1.46 

     X50th 0.183 0.18 3.20 2.00 

     Cd-3 -11.703 0.03 1.36 3.41 

          6 0.77 0.75 0.40 0.42 Intercept 3.475 ---- ---- ---- 

     LPI -4.246 0.05 2.13 1.19 

     All50th -0.185 0.20 3.00 1.33 

     d2 -4.979 0.05 1.65 1.41 

     X50th 0.208 0.24 3.22 2.31 

     Cd-3stdv -14.977 0.02 1.34 2.98 

     Cd-1 -7.805 0.04 2.07 3.92 
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Table 4.8 Best predictive models of LAI using lidar metrics (excluding crown density slices) and 
GeoSAR metrics, n = 61. The statistics R2

adj’, CV-RMSE, SSCC, VIF, and CI are the adjusted 
coefficient of determination, the RMSE from the cross validation analysis, the squared 
semipartial correlation coefficient from partial sum of squares, the variance inflation factor and 
the condition index, respectively. All variables in the models were highly significant at a p-value 
< 0.0001. For a description of the variable names refer to table 4.1. 
 
 

# var. R
2 

R
2

adj’ RMSE CV-RMSE Variable Coefficient SSCC VIF CI 

          5 0.74 0.72 0.42 0.44 Intercept 3.442 ---- ---- ---- 

     All50th -0.180 0.34 1.72 1.16 

     d2 -4.187 0.05 1.23 1.38 

     X50th 0.247 0.68 1.59 1.47 

     Pmagstdv 16.079 0.04 7.63 2.47 

     Pmagmax -2.731 0.04 7.61 5.50 

          6 0.77 0.74 0.40 0.42 Intercept 3.406 ---- ---- ---- 

     LPI -3.110 0.03 2.00 1.17 

     All50th -0.147 0.16 2.45 1.31 

     d2 -3.455 0.03 1.30 1.45 

     X50th 0.199 0.23 3.04 1.75 

     Pmagstdv 16.643 0.04 7.64 3.71 

     Pmagmax -2.632 0.04 7.63 0.07 
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5. CONCLUSIONS 

This study provided a set of robust models that accurately explained the variation of leaf 

area index, stem density, mean tree height, and mean height to live crown on loblolly pine 

plantations across a wide range of site conditions, stand ages, and silvicultural regimes, as well 

as a model to estimate LAI on different forest types in a mixed temperate forest. Wall-to-wall 

estimates of these important biophysical parameters are becoming increasingly essential to forest 

management.  

Previous attempts to estimate forest attributes (stand tree height, biomass, stand volume, 

and leaf area index) using lidar data reported the utility of a number of metrics that were also 

found to be useful in this study. The laser penetration index (LPI), a measure of stand canopy 

closure or amount of leaves and branches, was one of the most consistent contributors in the 

models (Barilotti et al. 2006). In company of LPI, vegetation return percentiles and density 

metrics improved estimations of the dependent variables (Naesset 2002; Popescu et al. 2002). 

Fewer results have been reported using GeoSAR data to estimate stand height or any other forest 

parameter, however, the percentile metrics as well as the bands’ descriptive statistics were 

important variables.   

Other major contributions of this research to forestry remote sensing are as follows: 

1. The development of a new set of lidar metrics that increase the potential utilization of 

lidar data for estimating forest parameters. Crown density slices of one meter depth, five 

above and five below the mode value of the vegetation lidar returns, showed significant 

correlations and significant contributions to the estimation of leaf area index and stem 

density, and were also responsible for increasing model accuracy, even when GeoSAR 

metrics were included.      
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2. The use of intensity values. Descriptive statistics for intensity values from lidar data were 

found to be useful estimating leaf area index and stem density in pine plantations. The 

variability in intensity values is a result of the variability in reflectance and reflectivity of 

the ground targets. Previous research has used absolute values of intensity with caution, 

particularly because most of the times lidar instruments are not calibrated for intensity 

prior to data acquisition; however, the use of the dispersion measures of these values is an 

effective way to utilize these data.    

3. The use of a ground variable (initial number of trees) as a resource to increase accuracy 

(up to 92%) to estimate stem density from lidar returns. Previous attempts to estimate 

number of trees in pine plantations using remote sensed data have used optical data, lidar, 

or the fusion between optical and lidar data. Nonetheless, this important ground-based 

variable has not been taken into account. The number of trees planted at the beginning of 

the rotation, for each of the stands, is information recorded and archived by forest 

managers; and unlike other ground-based variables (i.e., tree height, dbh, etc.), this value 

does not require monitoring. Therefore, even when this variable is considered as ground 

based data, the models in which it is included can still be considered lidar only models. 

4. The use of X-band interferometric heights from GeoSAR to estimate leaf area index. The 

X-band height percentiles were shown to be useful, particularly when combined with 

lidar data, for estimating leaf area index in mixed temperate forests in the eastern U.S. 

Previous research has assessed the potential utility of high frequency radar backscatter to 

quantify LAI. However, these same studies have shown that backscatter tends to saturate 

at high LAI values. Although follow-up studies to confirm these results are necessary, X-

band interferometry – currently possible using spaceborne sensors – shows strong 
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promise for enabling robust wall-to-wall mapping of LAI at the landscape- to regional-

scale.  

The models developed in this study highlight the eventual promise of accurate, 

affordable, and straightforward mapping of key forest attributes using active remote sensing to 

improve forest resource management.  
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APPENDICES 

Appendix A: Ground-based variables and lidar metrics used for the LAI models (Chapter 2)* 
 

Site Plot 
TPH/ 

block 
Treatment LAI htmean Crownlength dbhmean Grtotal Vegtotal Vegmean Vegstdv Vegcv 

NSD 1 1794 fertilized 2.84 11.43 5.94 15.11 745 2378 8.098 1.518 18.741 

NSD 2 897 fertilized 3.13 11.12 7.23 18.43 790 2543 7.258 1.730 23.838 

NSD 3 1794 fertilized 3.92 11.14 5.66 15.21 575 1377 8.103 1.440 17.766 

NSD 4 897 control 2.38 10.56 6.46 17.01 474 1191 6.841 1.581 23.106 

NSD 5 897 fertilized 3.97 11.17 7.08 18.76 395 1413 7.434 1.567 21.074 

NSD 6 897 fertilized 3.18 10.78 7.95 18.82 486 1499 7.030 1.728 24.579 

NSD 7 897 control 2.78 10.91 7.51 17.88 629 1529 6.898 1.676 24.299 

NSD 8 1794 control 4.13 10.98 5.57 13.60 595 1265 7.526 1.526 20.282 

NSD 9 897 control 2.56 11.46 7.59 17.42 673 1139 6.940 1.705 24.573 

NSD 10 897 fertilized 3.04 11.27 7.18 18.60 630 1617 7.488 1.755 23.443 

NSD 11 1794 fertilized 2.98 11.10 5.67 14.74 789 2395 7.942 1.425 17.948 

NSD 12 1794 fertilized 3.53 11.25 6.16 15.34 544 2340 8.129 1.382 17.006 

NSD 13 1794 fertilized 4.03 11.35 5.82 15.70 566 2383 8.407 1.365 16.236 

NSD 14 1794 control 3.68 11.14 6.09 14.74 730 2204 7.853 1.545 19.676 

NSD 15 1794 fertilized 3.67 10.72 6.18 14.96 739 2432 7.466 1.438 19.257 

NSD 16 897 fertilized 3.4 11.19 7.83 18.63 622 2223 7.404 1.678 22.660 

NSD 17 1794 control 3.35 11.20 5.62 14.64 832 2428 7.836 1.309 16.704 

NSD 18 897 fertilized 2.51 11.28 6.69 17.99 608 2175 7.050 1.777 25.200 

Henderson 3 ----- vegetation control 4.36 22.40 6.26 21.83 83 1612 17.225 4.941 28.685 

Henderson 4 ----- control 4.69 23.00 5.88 22.94 143 1569 16.753 6.598 39.386 

Henderson 5 ----- vegetation control 4.6 21.09 5.73 20.21 186 1477 16.274 4.802 29.507 

Henderson 6 ----- control 4.71 20.83 5.91 19.65 152 1640 15.179 5.560 36.631 

Henderson 9 ----- vegetation control 2.85 21.12 5.32 20.87 422 1276 18.430 3.686 19.999 

Henderson 10 ----- control 4.8 20.75 7.27 19.92 76 1570 14.851 3.838 25.845 

Henderson 11 ----- vegetation control 2.75 21.06 6.48 22.82 256 1310 17.478 4.533 25.933 

Henderson 12 ----- control 3.09 21.95 6.49 21.61 242 1376 17.023 5.459 32.069 

Henderson 13 ----- control 4.65 20.07 6.81 19.77 82 1528 14.475 3.885 26.841 

Henderson 14 ----- vegetation control 2.43 22.54 7.11 21.78 369 1255 16.598 5.107 30.769 

Henderson 15 ----- control 4.02 21.77 6.37 19.39 204 1347 14.900 5.818 39.042 

Henderson 16 ----- vegetation control 2.08 20.02 5.95 20.76 331 1403 15.182 5.225 34.416 

Henderson 17 ----- vegetation control 4.43 18.45 6.03 19.25 92 1362 14.279 3.748 26.247 

Henderson 18 ----- control 4.57 21.34 5.79 20.00 169 1782 15.165 5.369 35.407 

Henderson 19 ----- vegetation control 2.69 23.33 5.94 22.24 317 1264 19.554 4.239 21.677 

Henderson 20 ----- control 3.84 20.26 6.13 19.37 188 1703 14.206 5.098 35.883 

Henderson 24 ----- vegetation control 2.18 20.76 6.05 20.13 497 1585 16.786 3.752 22.353 

Henderson 25 ----- control 3.52 22.87 5.03 22.20 317 1320 19.003 5.516 29.026 

Henderson 26 ----- control 2.85 19.95 6.30 21.24 216 1603 14.261 5.923 41.529 

Henderson 27 ----- vegetation control 4.3 17.48 5.64 17.66 126 1708 12.415 3.374 27.175 

Henderson 28 ----- control 4.91 22.01 6.24 20.64 81 1760 15.895 5.887 37.038 

Henderson 29 ----- vegetation control 3.22 22.75 6.51 21.75 295 1255 17.532 6.280 35.822 

                                                
* Site = study site (refer to fig. 2.1), TPH/block = trees per hectare or block, for other variable names refer to table 
2.1 
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Site Plot 
TPH/ 
block 

Treatment LAI htmean Crownlength dbhmean Grtotal Vegtotal Vegmean Vegstdv Vegcv 

Henderson 30 ----- vegetation control 4.49 23.40 8.23 24.25 131 1724 16.808 5.200 30.938 

Henderson 31 ----- control 4.53 23.80 6.87 22.93 154 1526 17.079 7.067 41.380 

RW18 3 ----- fertilized thinned 1.27 16.00 7.39 21.61 374 1501 11.150 4.467 40.064 

RW18 12 ----- fertilized unthinned 3.94 16.35 7.55 18.96 235 1318 14.135 1.700 12.027 

RW18 14 ----- fertilized thinned 1.52 16.87 7.67 21.88 498 762 13.366 2.213 16.557 

RW18 15 ----- fertilized unthinned 2.93 15.05 7.20 18.94 216 889 7.097 3.637 51.247 

RW18 16 ----- fertilized thinned 0.82 16.14 6.98 21.26 498 681 13.137 2.114 16.093 

RW18 20 ----- fertilized thinned 0.92 15.67 6.80 20.27 406 424 12.672 1.989 15.695 

RW18 21 ----- fertilized thinned 0.84 15.87 7.27 20.15 399 470 12.714 1.763 13.870 

RW18 22 ----- fertilized thinned 0.57 15.77 7.19 20.92 434 566 12.446 1.852 14.883 

RW18 23 ----- fertilized unthinned 3.87 15.27 7.02 19.12 216 943 13.115 1.793 13.668 

RW18 26 ----- fertilized thinned 0.92 16.50 7.34 20.89 315 333 13.407 1.813 13.523 

RW18 27 ----- fertilized thinned 1.09 16.19 7.53 21.17 319 402 13.092 1.766 13.486 

RW18 28 ----- control and thinned 1.00 16.55 7.89 20.78 453 586 12.901 1.952 15.131 

RW18 29 ----- fertilized thinned 0.8 15.87 7.10 19.34 589 729 11.446 3.447 30.117 

RW18 30 ----- fertilized thinned 1.32 16.19 7.37 21.65 516 703 12.775 2.023 15.837 

RW18 31 ----- fertilized thinned 1.06 15.77 7.56 21.52 390 1256 9.050 3.851 42.553 

RW18 45 ----- fertilized thinned 0.96 16.70 7.02 20.83 287 308 13.418 1.827 13.619 

RW18 46 ----- control and thinned 0.57 15.42 7.20 18.76 469 369 12.148 1.672 13.762 

RW18 47 ----- fertilized unthinned 4.85 16.74 7.56 19.94 223 975 14.483 2.094 14.460 

RW18 48 ----- fertilized thinned 0.45 16.06 7.30 21.07 530 579 13.023 1.888 14.498 

RW19 1 ----- fertilized 2.34 14.10 7.47 19.01 394 1398 10.163 1.979 19.478 

RW19 2 ----- fertilized 2.53 13.00 7.01 18.59 496 1072 9.311 2.027 21.766 

RW19 3 ----- fertilized 2.20 12.95 6.71 17.93 2090 2901 9.449 1.926 20.388 

RW19 4 ----- fertilized 2.48 12.59 6.87 19.14 1098 2315 8.982 2.135 23.769 

RW19 5 ----- fertilized 2.39 12.23 6.15 17.78 1006 1417 9.062 1.843 20.334 

RW19 6 ----- fertilized 2.09 13.41 6.89 18.19 721 1215 9.576 1.869 19.513 

RW19 8 ----- fertilized 2.76 12.99 7.20 19.50 1875 3101 9.020 1.827 20.259 

RW19 9 ----- fertilized 2.39 12.98 6.94 18.44 1077 1829 9.005 1.900 21.103 

RW19 10 ----- fertilized 2.49 13.15 7.10 19.21 1073 1547 9.202 2.150 23.361 

RW19 11 ----- fertilized 2.54 13.86 7.15 17.68 864 1624 9.681 1.869 19.303 

RW19 12 ----- fertilized 2.85 13.58 7.05 18.78 1252 4089 10.057 1.753 17.432 

RW19 13 ----- fertilized 2.87 12.68 6.69 17.29 2137 3663 8.889 2.088 23.495 

RW19 14 ----- fertilized 2.99 14.00 7.45 18.18 1249 2404 9.733 1.979 20.335 

RW19 15 ----- fertilized 2.69 13.66 7.45 18.40 1114 1776 9.326 1.998 21.426 

RW19 17 ----- fertilized 3.05 13.45 7.47 20.26 386 1545 9.570 2.015 21.054 

RW19 18 ----- fertilized 2.90 13.48 7.57 17.68 1844 3945 9.233 1.946 21.073 

RW19 19 ----- fertilized 2.86 13.45 7.23 19.70 587 1904 9.314 2.129 22.861 

RW19 20 ----- fertilized 2.97 12.99 6.56 18.97 854 2263 9.681 1.847 19.078 

RW19 21 ----- fertilized 2.34 12.80 6.35 16.90 632 1580 9.237 2.167 23.459 

RW19 22 ----- fertilized 2.29 12.83 6.74 16.53 1687 4134 8.932 2.258 25.282 

RW19 23 ----- fertilized 2.55 12.68 6.78 17.34 969 2123 9.009 2.012 22.329 

RW19 24 ----- fertilized 2.52 13.66 7.07 18.36 593 2074 10.202 1.812 17.757 

RW19 25 ----- fertilized 2.63 12.47 6.33 16.70 944 1876 8.807 2.209 25.087 

RW19 26 ----- fertilized 2.54 13.13 7.37 19.12 755 1323 9.080 2.004 22.067 

RW19 27 ----- fertilized 2.55 12.36 6.93 18.58 1720 3295 8.464 2.357 27.847 

RW19 28 ----- fertilized 2.69 12.81 7.31 17.99 930 2025 8.137 2.631 32.335 

RW19 29 ----- fertilized 2.90 12.57 7.44 18.27 868 1621 8.621 2.201 25.525 
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Site Plot 
TPH/ 
block 

Treatment LAI htmean Crownlength dbhmean Grtotal Vegtotal Vegmean Vegstdv Vegcv 

RW19 30 ----- fertilized 2.43 13.58 7.52 19.27 576 1629 9.726 1.960 20.151 

RW19 31 ----- fertilized 2.34 13.58 7.65 18.81 493 1072 9.278 1.878 20.238 

RW19 32 ----- fertilized 1.93 12.88 7.09 17.26 1586 3830 9.040 2.001 22.139 

RW19 33 ----- fertilized 2.44 12.45 7.06 17.62 772 1857 8.504 1.909 22.442 

RW19 34 ----- fertilized 2.49 13.21 6.88 17.63 716 1983 9.462 1.729 18.268 

Setres 1 1 control 2.4 13.72 6.64 16.76 887 3005 10.864 2.091 19.244 

Setres 1 2 control 2.19 14.73 6.75 17.78 770 2143 11.724 2.043 17.422 

Setres 1 3 control 2.6 15.99 6.69 20.76 779 2298 13.687 1.861 13.596 

Setres 1 4 control 2.79 18.36 7.90 22.41 819 3777 15.302 2.367 15.470 

Setres 2 1 fertilized, irrigated 2.32 13.38 5.79 17.30 770 2352 11.074 2.074 18.725 

Setres 2 2 fertilized, irrigated 2.51 14.54 6.99 18.28 767 1313 11.816 2.058 17.415 

Setres 2 3 fertilized, irrigated 3.27 18.54 6.37 23.21 614 2782 15.609 1.837 11.768 

Setres 2 4 fertilized, irrigated 3.23 19.10 6.06 23.07 609 2666 15.878 2.209 13.911 

Setres 3 1 fertilized, irrigated 1.55 11.05 5.73 15.71 906 2455 9.042 2.023 22.367 

Setres 3 2 fertilized, irrigated 2.31 14.72 6.52 17.80 844 2788 12.380 2.192 17.704 

Setres 3 3 fertilized, irrigated 2.96 17.42 6.97 22.61 826 2962 14.423 2.077 14.402 

Setres 3 4 fertilized, irrigated 2.58 17.90 7.44 22.12 829 2985 14.926 2.540 17.019 

Setres 4 1 fertilized, irrigated 2.08 12.90 6.48 16.57 905 2556 10.577 2.051 19.393 

Setres 4 2 fertilized, irrigated 1.87 13.60 6.72 18.03 783 2505 10.815 2.030 18.771 

Setres 4 3 fertilized, irrigated 2.74 16.47 7.09 21.53 636 2741 14.008 1.916 13.678 

Setres 4 4 fertilized, irrigated 2.86 18.92 7.91 24.67 597 1365 15.987 2.104 13.161 
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Appendix A: Continued*. 

Site Plot 
TPH/ 

 block 
Treatment Veg20th Imean Imax Istdv Icv Cd+4cv Cd+1stdv Cd+1 Cd-4 LPI 

NSD 1 1794 fertilized 6.830 35.633 100 15.675 43.990 0.000 0.289 0.101 0.007 0.027 

NSD 2 897 fertilized 5.750 37.487 84 16.322 43.539 1.933 0.284 0.104 0.012 0.030 

NSD 3 1794 fertilized 6.920 39.054 104 15.587 39.911 0.000 0.273 0.108 0.005 0.033 

NSD 4 897 control 5.460 31.826 106 16.348 51.365 0.698 0.294 0.080 0.015 0.023 

NSD 5 897 fertilized 6.070 41.085 99 16.325 39.735 0.000 0.308 0.071 0.033 0.047 

NSD 6 897 fertilized 5.490 40.021 115 16.679 41.675 1.303 0.278 0.107 0.017 0.052 

NSD 7 897 control 5.440 34.785 109 16.854 48.451 2.734 0.282 0.103 0.001 0.050 

NSD 8 1794 control 6.275 33.441 106 15.975 47.771 2.019 0.275 0.106 0.000 0.071 

NSD 9 897 control 5.450 30.902 101 15.647 50.634 2.927 0.285 0.094 0.001 0.072 

NSD 10 897 fertilized 6.020 34.923 97 15.745 45.085 2.115 0.288 0.111 0.007 0.047 

NSD 11 1794 fertilized 6.730 35.996 99 15.844 44.015 0.000 0.286 0.090 0.006 0.011 

NSD 12 1794 fertilized 7.010 42.909 80 16.647 38.796 0.000 0.287 0.120 0.005 0.050 

NSD 13 1794 fertilized 7.140 42.791 91 16.000 37.391 0.000 0.266 0.069 0.021 0.018 

NSD 14 1794 control 6.530 35.432 92 15.519 43.800 0.294 0.287 0.089 0.011 0.037 

NSD 15 1794 fertilized 6.210 37.627 107 16.412 43.618 0.000 0.285 0.070 0.014 0.054 

NSD 16 897 fertilized 5.910 38.762 102 16.713 43.116 2.330 0.280 0.100 0.009 0.020 

NSD 17 1794 control 6.670 35.512 99 15.426 43.439 0.000 0.268 0.078 0.006 0.045 

NSD 18 897 fertilized 5.530 34.242 99 17.109 49.965 2.394 0.292 0.088 0.008 0.025 

Henderson 3 ----- vegetation control 12.494 30.946 97 17.988 58.128 0.934 0.282 0.114 0.027 0.023 

Henderson 4 ----- control 9.417 29.259 92 16.504 56.408 0.000 0.294 0.099 0.034 0.002 

Henderson 5 ----- vegetation control 12.057 31.912 89 18.560 58.162 1.173 0.275 0.111 0.012 0.019 

Henderson 6 ----- control 8.326 29.067 84 17.517 60.264 1.147 0.287 0.120 0.014 0.001 

Henderson 9 ----- vegetation control 17.715 31.067 94 16.078 51.754 0.000 0.276 0.143 0.015 0.008 

Henderson 10 ----- control 11.444 38.393 98 22.845 59.503 1.523 0.286 0.101 0.038 0.001 

Henderson 11 ----- vegetation control 16.671 33.367 82 17.289 51.816 0.000 0.289 0.125 0.026 0.009 

Henderson 12 ----- control 16.537 31.709 73 16.653 52.518 0.000 0.289 0.142 0.011 0.005 

Henderson 13 ----- control 10.219 34.759 103 21.304 61.291 1.166 0.286 0.113 0.018 0.008 

Henderson 14 ----- vegetation control 14.507 28.654 95 16.657 58.133 0.824 0.288 0.104 0.039 0.027 

Henderson 15 ----- control 7.685 28.154 86 16.389 58.213 0.077 0.276 0.059 0.032 0.002 

Henderson 16 ----- vegetation control 14.724 26.989 83 15.150 56.135 0.000 0.296 0.129 0.010 0.009 

Henderson 17 ----- vegetation control 11.525 41.809 94 23.444 56.073 1.212 0.295 0.103 0.051 0.004 

Henderson 18 ----- control 9.253 27.867 94 17.204 61.737 0.000 0.282 0.082 0.022 0.001 

Henderson 19 ----- vegetation control 18.542 29.877 91 16.985 56.850 0.000 0.295 0.055 0.061 0.051 

Henderson 20 ----- control 7.657 25.524 72 14.673 57.487 0.000 0.273 0.062 0.030 0.012 

Henderson 24 ----- vegetation control 15.970 27.166 96 14.990 55.179 0.000 0.271 0.095 0.025 0.017 

Henderson 25 ----- control 18.602 31.217 105 16.607 53.200 0.000 0.304 0.113 0.028 0.002 

Henderson 26 ----- control 10.918 26.570 84 15.261 57.437 0.438 0.291 0.123 0.015 0.010 

Henderson 27 ----- vegetation control 9.503 36.635 97 22.637 61.792 1.253 0.284 0.091 0.042 0.021 

Henderson 28 ----- control 8.427 27.882 93 16.831 60.365 1.103 0.281 0.092 0.036 0.002 

Henderson 29 ----- vegetation control 16.785 29.961 78 16.171 53.973 0.529 0.293 0.132 0.017 0.036 

Henderson 30 ----- vegetation control 11.604 28.649 85 17.093 59.664 0.000 0.299 0.052 0.063 0.010 

Henderson 31 ----- control 7.028 30.506 89 17.213 56.426 0.785 0.279 0.112 0.020 0.002 

RW18 3 ----- fertilized thinned 5.824 26.153 74 14.887 56.924 1.688 0.294 0.080 0.029 0.183 

                                                
* Site = study site (refer to fig. 2.1), TPH/block = trees per hectare or block, for other variable names refer to table 
2.1 
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Site Plot 
TPH/ 
 block 

Treatment Veg20th Imean Imax Istdv Icv Cd+4cv Cd+1stdv Cd+1 Cd-4 LPI 

RW18 12 ----- fertilized unthinned 12.963 27.965 78 13.179 47.128 0.000 0.266 0.067 0.027 0.008 

RW18 14 ----- fertilized thinned 11.819 35.512 97 21.676 61.039 0.000 0.306 0.065 0.033 0.255 

RW18 15 ----- fertilized unthinned 3.055 30.276 71 13.392 44.232 1.025 0.296 0.059 0.035 0.011 

RW18 16 ----- fertilized thinned 11.897 31.233 83 16.997 54.420 0.000 0.302 0.107 0.012 0.319 

RW18 20 ----- fertilized thinned 11.459 31.541 80 16.965 53.789 0.000 0.291 0.085 0.015 0.399 

RW18 21 ----- fertilized thinned 11.067 30.074 83 17.208 57.220 0.000 0.292 0.080 0.030 0.359 

RW18 22 ----- fertilized thinned 10.890 28.450 77 15.578 54.756 0.000 0.309 0.084 0.035 0.322 

RW18 23 ----- fertilized unthinned 11.985 35.950 62 13.739 38.217 0.000 0.260 0.077 0.036 0.011 

RW18 26 ----- fertilized thinned 11.952 34.128 97 18.857 55.252 0.000 0.310 0.073 0.022 0.369 

RW18 27 ----- fertilized thinned 11.579 29.366 72 15.610 53.155 0.000 0.276 0.104 0.020 0.334 

RW18 28 ----- control and thinned 11.425 27.885 74 15.127 54.249 0.000 0.289 0.064 0.031 0.358 

RW18 29 ----- fertilized thinned 10.254 30.995 88 17.988 58.036 0.000 0.287 0.064 0.011 0.404 

RW18 30 ----- fertilized thinned 11.368 32.453 83 17.196 52.988 0.000 0.288 0.096 0.018 0.327 

RW18 31 ----- fertilized thinned 5.692 27.686 87 14.731 53.208 2.218 0.279 0.071 0.036 0.199 

RW18 45 ----- fertilized thinned 12.188 34.092 75 17.647 51.764 0.000 0.281 0.137 0.007 0.405 

RW18 46 ----- control and thinned 10.882 29.349 80 16.312 55.580 0.000 0.298 0.066 0.007 0.474 

RW18 47 ----- fertilized unthinned 13.361 38.776 68 15.513 40.008 0.000 0.271 0.118 0.015 0.009 

RW18 48 ----- fertilized thinned 11.670 29.647 78 16.079 54.237 0.648 0.289 0.094 0.001 0.373 

RW19 1 ----- fertilized 8.560 34.632 104 16.796 48.499 1.981 0.291 0.140 0.025 0.015 

RW19 2 ----- fertilized 7.823 33.820 82 17.220 50.916 1.896 0.292 0.113 0.019 0.044 

RW19 3 ----- fertilized 7.860 33.440 128 18.493 55.303 1.964 0.290 0.098 0.011 0.230 

RW19 4 ----- fertilized 7.359 31.708 117 17.879 56.388 2.199 0.293 0.108 0.023 0.044 

RW19 5 ----- fertilized 7.581 34.718 105 17.207 49.561 1.915 0.286 0.098 0.015 0.058 

RW19 6 ----- fertilized 8.007 32.340 108 16.371 50.621 1.964 0.294 0.108 0.011 0.034 

RW19 8 ----- fertilized 7.527 39.159 119 18.027 46.035 1.915 0.288 0.104 0.020 0.164 

RW19 9 ----- fertilized 7.475 33.712 127 17.553 52.068 1.989 0.292 0.092 0.018 0.103 

RW19 10 ----- fertilized 7.666 35.690 114 18.293 51.255 2.172 0.293 0.101 0.016 0.045 

RW19 11 ----- fertilized 8.167 34.217 98 17.334 50.659 0.000 0.273 0.091 0.023 0.067 

RW19 12 ----- fertilized 8.575 38.507 112 17.128 44.481 1.626 0.291 0.128 0.023 0.090 

RW19 13 ----- fertilized 7.471 33.884 116 17.453 51.508 1.430 0.287 0.096 0.014 0.186 

RW19 14 ----- fertilized 8.180 35.439 106 17.115 48.294 0.906 0.266 0.093 0.030 0.085 

RW19 15 ----- fertilized 7.730 34.840 103 16.922 48.570 1.742 0.290 0.072 0.042 0.061 

RW19 17 ----- fertilized 8.122 37.540 118 17.421 46.407 1.666 0.298 0.102 0.029 0.027 

RW19 18 ----- fertilized 7.878 34.698 116 16.712 48.165 1.772 0.291 0.116 0.013 0.062 

RW19 19 ----- fertilized 7.799 35.510 104 16.940 47.705 2.188 0.298 0.149 0.019 0.031 

RW19 20 ----- fertilized 8.331 35.570 122 16.834 47.328 1.887 0.283 0.139 0.008 0.072 

RW19 21 ----- fertilized 7.847 37.634 100 19.129 50.828 0.000 0.281 0.092 0.033 0.055 

RW19 22 ----- fertilized 7.522 37.395 114 18.994 50.794 0.000 0.286 0.070 0.038 0.067 

RW19 23 ----- fertilized 7.591 38.421 109 18.947 49.313 1.622 0.281 0.108 0.014 0.088 

RW19 24 ----- fertilized 8.710 35.003 91 16.506 47.156 1.420 0.285 0.142 0.017 0.026 

RW19 25 ----- fertilized 7.423 38.746 121 19.333 49.896 1.832 0.287 0.107 0.014 0.042 

RW19 26 ----- fertilized 7.636 35.453 109 17.316 48.842 0.000 0.288 0.064 0.032 0.029 

RW19 27 ----- fertilized 6.875 33.603 110 18.689 55.617 1.625 0.287 0.082 0.023 0.163 

RW19 28 ----- fertilized 6.274 35.982 115 18.638 51.797 2.091 0.306 0.087 0.030 0.097 

RW19 29 ----- fertilized 7.094 33.525 111 18.101 53.991 2.040 0.301 0.091 0.020 0.069 

RW19 30 ----- fertilized 8.038 36.915 120 17.387 47.100 1.273 0.289 0.106 0.035 0.052 

RW19 31 ----- fertilized 7.686 34.413 100 16.918 49.161 1.623 0.259 0.114 0.024 0.023 

RW19 32 ----- fertilized 7.495 33.865 117 18.359 54.212 1.921 0.291 0.103 0.020 0.158 
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Site Plot 
TPH/ 
 block 

Treatment Veg20th Imean Imax Istdv Icv Cd+4cv Cd+1stdv Cd+1 Cd-4 LPI 

RW19 33 ----- fertilized 6.912 36.535 112 17.835 48.817 1.785 0.301 0.122 0.021 0.088 

RW19 34 ----- fertilized 8.057 35.577 116 17.098 48.059 2.131 0.301 0.132 0.013 0.045 

Setres 1 1 control 9.075 27.298 88 13.581 49.749 1.779 0.287 0.103 0.041 0.053 

Setres 1 2 control 10.010 27.733 101 13.922 50.202 1.758 0.292 0.084 0.038 0.055 

Setres 1 3 control 12.230 35.395 90 15.924 44.991 1.396 0.287 0.121 0.031 0.044 

Setres 1 4 control 13.620 32.084 97 15.195 47.362 1.421 0.286 0.143 0.026 0.035 

Setres 2 1 fertilized, irrigated 9.410 28.440 63 14.088 49.536 1.823 0.293 0.110 0.036 0.053 

Setres 2 2 fertilized, irrigated 10.050 29.125 72 14.288 49.058 1.785 0.278 0.092 0.032 0.074 

Setres 2 3 fertilized, irrigated 14.210 36.579 72 15.467 42.283 0.452 0.289 0.124 0.033 0.026 

Setres 2 4 fertilized, irrigated 14.250 33.546 75 15.428 45.992 1.458 0.291 0.122 0.039 0.020 

Setres 3 1 fertilized, irrigated 7.420 27.466 88 14.676 53.434 2.616 0.296 0.126 0.012 0.090 

Setres 3 2 fertilized, irrigated 10.560 29.806 80 14.630 49.084 1.775 0.292 0.079 0.059 0.037 

Setres 3 3 fertilized, irrigated 12.810 35.613 69 15.751 44.229 0.928 0.293 0.103 0.049 0.029 

Setres 3 4 fertilized, irrigated 13.040 31.957 80 15.629 48.906 0.781 0.272 0.104 0.063 0.040 

Setres 4 1 fertilized, irrigated 8.820 28.462 86 13.934 48.958 1.757 0.302 0.093 0.040 0.077 

Setres 4 2 fertilized, irrigated 9.075 27.560 71 14.416 52.308 1.966 0.289 0.106 0.037 0.066 

Setres 4 3 fertilized, irrigated 12.510 35.971 78 15.574 43.295 1.433 0.287 0.136 0.027 0.022 

Setres 4 4 fertilized, irrigated 14.365 36.929 76 16.191 43.845 1.290 0.294 0.126 0.029 0.046 
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Appendix B: Normal quantiles vs. Studentized residuals plot (top) and predicted vs. residuals 
plot (bottom) for the LAI 2-variable model with lidar metrics only, n = 109 (Chapter 2). Refer to 
table 2.1 for variable names. 

Model LAI = 2.767 – 7.518 (LPI) – 0.237 (Cd+4cv) 

  

Li cor_LAI  = 2. 7671 -7. 5185LPI _pul sesc -0. 2369r4m_coef f _varc

N     
109   

Rsq   
0. 6114

Adj Rsq
0. 6041

RMSE  
0. 6648

S
tu

d
e

n
ti

z
e

d
 R

e
s

id
u
a

l 
w

it
h

o
u

t 
C

u
rr

e
n
t 

O
b
s

-3

-2

-1

0

1

2

3

Normal Quantile

-3 -2 -1 0 1 2 3

Li cor_LAI  = 2. 7671 -7. 5185LPI _pul sesc -0. 2369r4m_coef f _varc

N     
109   

Rsq   
0. 6114

Adj Rsq
0. 6041

RMSE  
0. 6648

S
tu

d
e
n

ti
z

e
d

 R
e
s

id
u
a

l 
w

it
h
o

u
t 

C
u

rr
e

n
t 

O
b

s

-3

-2

-1

0

1

2

3

Predicted Value

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0



133 
 

Appendix C: Normal quantiles vs. Studentized residuals plot (top) and predicted vs. residuals 
plot (bottom) for the LAI 3-variable model with lidar metrics only, n = 109 (Chapter 2). Refer to 
table 2.1 for variable names. 

LAI = 2.767 + 0.318 (Vegstdv) – 5.393 (LPI) + 0.099 (Imean) 
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Appendix D: Normal quantiles vs. Studentized residuals plot (top) and predicted vs. residuals 
plot (bottom) for the LAI 4-variable model with lidar metrics only, n = 109 (Chapter 2). Refer to 
table 2.1 for variable names. 

LAI = 2.767 + 0.330 (Vegmean) – 0.268 (Veg20th) – 5.522 (LPI) + 0.106 (Imean) 
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Appendix E: Normal quantiles vs. Studentized residuals plot (top) and predicted vs. residuals 
plot (bottom) for the LAI 5-variable model with lidar metrics only, n = 109 (Chapter 2). Refer to 
table 2.1 for variable names. 

LAI = 2.767 + 0.324 (Vegmean) – 0.262 (Veg20th) – 5.275 (LPI) + 0.104 (Imean) – 13.046 (Cd+1stdv) 
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Appendix F: Normal quantiles vs. Studentized residuals plot (top) and predicted vs. residuals 
plot (bottom) for the LAI 6-variable model with lidar metrics only, n = 109 (Chapter 2). Refer to 
table 2.1 for variable names. 

LAI = 2.767 + 0.345 (Vegmean) – 0.236 (Veg20th) – 6.475 (LPI) + 0.113 (Imean) – 10.772 (Cd+1) – 

18.581 (Cd-4)  
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Appendix G: Ground-based variables and lidar metrics used for the number of trees models (chapter 3)*
 

 

Site Plot 
TPH/ 
block 

Treatment Ntrees Tree0 htmean htlcmean dbhmean Grtotal LPI Alltotal Allmean Allstdv Allcv All10th All90th 

NSD 1 1794 fertilized 120 128 11.43 5.48 15.11 745 0.027 3399 7.484 2.556 34.155 5.050 9.970 

NSD 2 897 fertilized 62 64 11.12 3.89 18.43 790 0.030 3528 6.760 2.450 36.240 4.060 9.460 

NSD 3 1794 fertilized 126 128 11.14 5.48 15.21 575 0.033 1844 7.639 2.317 30.329 5.800 9.830 

NSD 4 897 control 62 64 10.56 4.10 17.01 474 0.023 1938 5.940 2.681 45.124 0.410 8.770 

NSD 5 897 fertilized 62 64 11.17 4.09 18.76 395 0.047 1899 7.026 2.249 32.011 4.760 9.390 

NSD 6 897 fertilized 59 64 10.78 2.83 18.82 486 0.052 2052 6.629 2.314 34.903 4.080 9.240 

NSD 7 897 control 61 64 10.91 3.40 17.88 629 0.050 2316 6.347 2.423 38.183 3.585 9.045 

NSD 8 1794 control 128 128 10.98 5.42 13.60 595 0.071 1912 6.651 2.759 41.474 0.360 9.410 

NSD 9 897 control 60 64 11.46 3.86 17.42 673 0.072 1724 6.291 2.551 40.546 1.080 9.180 

NSD 10 897 fertilized 62 64 11.27 4.09 18.60 630 0.047 2263 6.903 2.585 37.451 3.990 9.670 

NSD 11 1794 fertilized 123 128 11.10 5.44 14.74 789 0.011 3552 7.247 2.583 35.641 4.590 9.750 

NSD 12 1794 fertilized 122 128 11.25 5.10 15.34 544 0.050 3138 7.768 2.128 27.398 5.920 9.860 

NSD 13 1794 fertilized 125 128 11.35 5.53 15.70 566 0.018 3147 8.020 2.184 27.232 6.220 10.190 

NSD 14 1794 control 124 128 11.14 5.05 14.74 730 0.037 3159 7.399 2.339 31.606 5.260 9.800 

NSD 15 1794 fertilized 124 128 10.72 4.54 14.96 739 0.054 3490 6.976 2.280 32.683 4.985 9.265 

NSD 16 897 fertilized 61 64 11.19 3.36 18.63 622 0.020 3131 6.966 2.357 33.838 4.540 9.560 

NSD 17 1794 control 122 128 11.20 5.57 14.64 832 0.045 3576 7.307 2.303 31.521 5.600 9.500 

NSD 18 897 fertilized 62 64 11.28 4.59 17.99 608 0.025 3239 6.171 2.806 45.476 0.390 9.280 

Henderson 3 ----- vegetation control 62 75 22.40 16.14 21.83 83 0.023 1627 17.069 5.178 30.335 8.887 21.945 

Henderson 4 ----- control 64 75 23.00 17.12 22.94 143 0.002 1604 16.397 6.948 42.376 4.027 22.594 

Henderson 5 ----- vegetation control 58 75 21.09 15.36 20.21 186 0.019 1506 15.967 5.234 32.780 7.524 20.867 

Henderson 6 ----- control 63 75 20.83 14.92 19.65 152 0.001 1665 14.956 5.805 38.814 5.814 20.400 

Henderson 9 ----- vegetation control 63 75 21.12 15.80 20.87 422 0.008 1357 17.352 5.576 32.135 6.988 21.136 

Henderson 10 ----- control 29 75 20.75 13.48 19.92 76 0.001 1581 14.750 4.012 27.200 8.731 19.036 

Henderson 11 ----- vegetation control 60 75 21.06 14.59 22.82 256 0.009 1391 16.483 5.947 36.078 4.548 20.857 

Henderson 12 ----- control 69 75 21.95 15.45 21.61 242 0.005 1432 16.372 6.249 38.168 4.001 21.117 

Henderson 13 ----- control 38 75 20.07 13.26 19.77 82 0.008 1546 14.310 4.152 29.018 8.195 18.741 

Henderson 14 ----- vegetation control 51 75 22.54 15.44 21.78 369 0.027 1344 15.526 6.370 41.031 2.875 20.729 

                                                
* Site = study site (refer to fig. 2.1), TPH/block = trees per hectare or block, for other variable names refer to table 3.1  
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Site Plot 
TPH/ 
block 

Treatment Ntrees Tree0 htmean htlcmean dbhmean Grtotal LPI Alltotal Allmean Allstdv Allcv All10th All90th 

Henderson 15 ----- control 71 75 21.77 15.40 19.39 204 0.002 1379 14.563 6.153 42.252 4.078 19.929 

Henderson 16 ----- vegetation control 63 75 20.02 14.07 20.76 331 0.009 1551 13.777 6.588 47.815 1.050 19.044 

Henderson 17 ----- vegetation control 20 75 18.45 12.42 19.25 92 0.004 1390 13.997 4.197 29.983 7.753 18.178 

Henderson 18 ----- control 58 75 21.34 15.55 20.00 169 0.001 1823 14.831 5.746 38.746 5.618 20.399 

Henderson 19 ----- vegetation control 61 75 23.33 17.39 22.24 317 0.051 1392 17.793 6.851 38.506 2.214 22.792 

Henderson 20 ----- control 67 75 20.26 14.13 19.37 188 0.012 1754 13.804 5.534 40.092 5.087 18.892 

Henderson 24 ----- vegetation control 65 75 20.76 14.72 20.13 497 0.017 1752 15.222 5.997 39.398 1.165 19.499 

Henderson 25 ----- control 63 75 22.87 17.84 22.20 317 0.002 1406 17.867 6.957 38.938 2.456 22.789 

Henderson 26 ----- control 67 75 19.95 13.65 21.24 216 0.010 1739 13.182 6.789 51.499 1.302 19.013 

Henderson 27 ----- vegetation control 32 75 17.48 11.84 17.66 126 0.021 1750 12.125 3.812 31.441 6.314 16.055 

Henderson 28 ----- control 62 75 22.01 15.77 20.64 81 0.002 1779 15.729 6.071 38.597 6.300 21.674 

Henderson 29 ----- vegetation control 62 75 22.75 16.23 21.75 295 0.036 1320 16.685 7.166 42.945 2.488 22.148 

Henderson 30 ----- vegetation control 46 75 23.40 15.16 24.25 131 0.010 1746 16.601 5.484 33.037 7.927 21.938 

Henderson 31 ----- control 64 75 23.80 16.94 22.93 154 0.002 1560 16.717 7.400 44.264 3.867 22.982 

RW18 3 ----- fertilized thinned 16 61 16.00 8.62 21.61 374 0.183 1505 11.122 4.494 40.409 4.056 16.084 

RW18 12 ----- fertilized unthinned 68 71 16.35 8.80 18.96 235 0.008 1594 11.743 5.453 46.436 0.318 15.937 

RW18 14 ----- fertilized thinned 16 68 16.87 9.20 21.88 498 0.255 1094 9.402 6.286 66.862 0.249 15.529 

RW18 15 ----- fertilized unthinned 61 70 15.05 7.85 18.94 216 0.011 953 6.660 3.874 58.167 1.268 11.567 

RW18 16 ----- fertilized thinned 16 67 16.14 9.16 21.26 498 0.319 786 11.419 4.800 42.036 0.299 15.301 

RW18 20 ----- fertilized thinned 16 69 15.67 8.87 20.27 406 0.399 455 11.827 3.668 31.011 9.359 14.800 

RW18 21 ----- fertilized thinned 16 74 15.87 8.60 20.15 399 0.359 567 10.585 4.958 46.838 0.267 14.846 

RW18 22 ----- fertilized thinned 16 66 15.77 8.58 20.92 434 0.322 607 11.624 3.543 30.483 8.944 14.748 

RW18 23 ----- fertilized unthinned 63 70 15.27 8.25 19.12 216 0.011 993 12.468 3.309 26.542 9.606 15.104 

RW18 26 ----- fertilized thinned 16 75 16.50 9.16 20.89 315 0.369 374 11.972 4.439 37.076 0.564 15.576 

RW18 27 ----- fertilized thinned 17 66 16.19 8.66 21.17 319 0.334 437 12.065 3.874 32.112 9.145 15.189 

RW18 28 ----- control and thinned 17 66 16.55 8.66 20.78 453 0.358 625 12.115 3.588 29.621 9.124 15.277 

RW18 29 ----- fertilized thinned 15 71 15.87 8.78 19.34 589 0.404 762 10.965 4.062 37.045 3.401 14.675 

RW18 30 ----- fertilized thinned 18 69 16.19 8.82 21.65 516 0.327 781 11.536 4.188 36.304 1.039 15.016 

RW18 31 ----- fertilized thinned 17 61 15.77 8.22 21.52 390 0.199 1296 8.786 4.070 46.327 3.181 14.625 

RW18 45 ----- fertilized thinned 13 66 16.70 9.68 20.83 287 0.405 327 12.656 3.548 28.036 10.462 15.449 

RW18 46 ----- control and thinned 14 64 15.42 8.22 18.76 469 0.474 395 11.365 3.365 29.605 9.336 14.311 

RW18 47 ----- fertilized unthinned 49 63 16.74 9.18 19.94 223 0.009 1017 13.896 3.492 25.130 11.191 16.611 

RW18 48 ----- fertilized thinned 16 86 16.06 8.76 21.07 530 0.373 634 11.922 4.005 33.593 7.417 15.164 
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Site Plot 
TPH/ 
block 

Treatment Ntrees Tree0 htmean htlcmean dbhmean Grtotal LPI Alltotal Allmean Allstdv Allcv All10th All90th 

RW18 7 ----- fertilized thinned 15 73 16.40 9.00 19.57 471 0.274 1156 8.593 3.440 40.027 3.383 12.471 

RW19 1 ----- fertilized 45 71 14.10 6.63 19.01 394 0.015 1496 9.516 3.103 32.607 6.326 12.481 

RW19 2 ----- fertilized 46 60 13.00 5.99 18.59 496 0.044 1179 8.497 3.222 37.922 3.806 11.677 

RW19 3 ----- fertilized 140 187 12.95 6.24 17.93 2090 0.230 3364 8.191 3.623 44.230 0.343 11.718 

RW19 4 ----- fertilized 83 108 12.59 5.72 19.14 1098 0.044 2814 7.449 3.828 51.386 0.316 11.296 

RW19 5 ----- fertilized 70 90 12.23 6.08 17.78 1006 0.058 1582 8.147 3.198 39.248 0.585 11.282 

RW19 6 ----- fertilized 47 71 13.41 6.52 18.19 721 0.034 1378 8.480 3.470 40.918 0.392 11.845 

RW19 8 ----- fertilized 137 187 12.99 5.78 19.50 1875 0.164 3284 8.534 2.673 31.326 5.921 11.261 

RW19 9 ----- fertilized 83 108 12.98 6.04 18.44 1077 0.103 2105 7.864 3.431 43.622 0.337 11.259 

RW19 10 ----- fertilized 67 90 13.15 6.05 19.21 1073 0.045 1738 8.225 3.443 41.858 0.458 11.614 

RW19 11 ----- fertilized 56 71 13.86 6.71 17.68 864 0.067 1844 8.562 3.510 40.997 0.375 11.903 

RW19 12 ----- fertilized 184 188 13.58 6.53 18.78 1252 0.090 4366 9.438 2.920 30.939 6.861 12.196 

RW19 13 ----- fertilized 166 187 12.68 5.99 17.29 2137 0.186 4331 7.570 3.637 48.041 0.339 11.136 

RW19 14 ----- fertilized 103 108 14.00 6.56 18.18 1249 0.085 2563 9.147 2.978 32.557 6.272 12.145 

RW19 15 ----- fertilized 78 90 13.66 6.21 18.40 1114 0.061 1920 8.649 3.056 35.333 5.473 11.670 

RW19 17 ----- fertilized 58 67 13.45 5.98 20.26 386 0.027 1657 8.945 3.030 33.868 5.435 11.939 

RW19 18 ----- fertilized 184 187 13.48 5.92 17.68 1844 0.062 4397 8.315 3.280 39.448 0.612 11.424 

RW19 19 ----- fertilized 90 108 13.45 6.22 19.70 587 0.031 2059 8.637 3.135 36.301 4.332 11.775 

RW19 20 ----- fertilized 71 90 12.99 6.43 18.97 854 0.072 2495 8.809 3.243 36.814 3.729 11.876 

RW19 21 ----- fertilized 58 71 12.80 6.45 16.90 632 0.055 1803 8.140 3.557 43.702 0.497 11.541 

RW19 22 ----- fertilized 186 187 12.83 6.09 16.53 1687 0.067 4658 7.970 3.440 43.158 0.615 11.350 

RW19 23 ----- fertilized 103 108 12.68 5.90 17.34 969 0.088 2366 8.118 3.253 40.071 0.826 11.257 

RW19 24 ----- fertilized 105 108 13.66 6.59 18.36 593 0.026 2207 9.605 2.940 30.614 7.039 12.405 

RW19 25 ----- fertilized 86 90 12.47 6.13 16.70 944 0.042 2015 8.221 3.030 36.852 2.879 11.178 

RW19 26 ----- fertilized 45 71 13.13 5.76 19.12 755 0.029 1499 8.051 3.391 42.120 0.431 11.358 

RW19 27 ----- fertilized 136 187 12.36 5.43 18.58 1720 0.163 4007 7.024 3.763 53.579 0.330 11.036 

RW19 28 ----- fertilized 90 108 12.81 5.50 17.99 930 0.097 2246 7.372 3.408 46.232 1.070 11.062 

RW19 29 ----- fertilized 65 90 12.57 5.13 18.27 868 0.069 1987 7.095 3.778 53.256 0.302 10.951 

RW19 30 ----- fertilized 66 90 13.58 6.05 19.27 576 0.052 1751 9.069 3.054 33.678 5.968 12.116 

RW19 31 ----- fertilized 41 60 13.58 5.93 18.81 493 0.023 1149 8.677 2.886 33.265 5.835 11.673 

RW19 32 ----- fertilized 156 187 12.88 5.79 17.26 1586 0.158 4251 8.179 3.218 39.347 1.115 11.423 

RW19 33 ----- fertilized 90 108 12.45 5.39 17.62 772 0.088 2046 7.750 2.982 38.477 3.698 10.830 

RW19 34 ----- fertilized 79 90 13.21 6.33 17.63 716 0.045 2185 8.617 3.118 36.188 5.248 11.627 
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Site Plot 
TPH/ 
block 

Treatment Ntrees Tree0 htmean htlcmean dbhmean Grtotal LPI Alltotal Allmean Allstdv Allcv All10th All90th 

Setres 1 1 control 107 150 13.72 7.07 16.76 887 0.053 3209 10.192 3.280 32.184 7.270 13.530 

Setres 1 2 control 102 150 14.73 7.98 17.78 770 0.055 2274 11.064 3.324 30.042 8.370 14.340 

Setres 1 3 control 97 150 15.99 9.31 20.76 779 0.044 2424 12.990 3.486 26.836 10.640 15.850 

Setres 1 4 control 91 150 18.36 10.46 22.41 819 0.035 4039 14.327 4.353 30.382 10.870 17.920 

Setres 2 1 fertilized, irrigated 104 150 13.38 7.59 17.30 770 0.053 2489 10.480 3.183 30.371 7.590 13.700 

Setres 2 2 fertilized, irrigated 101 150 14.54 7.55 18.28 767 0.074 1373 11.312 3.101 27.415 8.550 14.390 

Setres 2 3 fertilized, irrigated 94 150 18.54 12.17 23.21 614 0.026 2923 14.869 3.746 25.190 12.460 17.680 

Setres 2 4 fertilized, irrigated 99 150 19.10 13.03 23.07 609 0.020 2800 15.132 3.967 26.219 12.215 18.470 

Setres 3 1 fertilized, irrigated 84 150 11.05 5.32 15.71 906 0.090 2618 8.496 2.888 33.994 5.680 11.610 

Setres 3 2 fertilized, irrigated 109 150 14.72 8.21 17.80 844 0.037 2998 11.532 3.746 32.488 8.410 15.230 

Setres 3 3 fertilized, irrigated 91 150 17.42 10.45 22.61 826 0.029 3115 13.729 3.667 26.712 10.920 16.880 

Setres 3 4 fertilized, irrigated 80 150 17.90 10.46 22.12 829 0.040 3143 14.189 4.048 28.525 10.550 17.660 

Setres 4 1 fertilized, irrigated 104 150 12.90 6.42 16.57 905 0.077 2690 10.063 3.006 29.871 7.185 13.150 

Setres 4 2 fertilized, irrigated 88 150 13.60 6.88 18.03 783 0.066 2643 10.264 3.070 29.909 7.470 13.360 

Setres 4 3 fertilized, irrigated 101 150 16.47 9.38 21.53 636 0.022 2861 13.431 3.332 24.804 11.000 16.260 

Setres 4 4 fertilized, irrigated 87 150 18.92 11.01 24.67 597 0.046 1426 15.315 3.787 24.728 12.360 18.410 
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Appendix G: Continued*. 
 

Site Plot 
TPH/ 
block 

Treatment Istdv Icv d5 d6 d7 d9 Cd+4stdv Cd+2 Cd-1 Cd-2 Cd-4 Cd-5 

NSD 1 1794 fertilized 15.675 43.990 0.108 0.213 0.274 0.121 0.000 0.051 0.130 0.088 0.007 0.002 

NSD 2 897 fertilized 16.322 43.539 0.095 0.233 0.283 0.127 0.219 0.067 0.121 0.087 0.012 0.003 

NSD 3 1794 fertilized 15.587 39.911 0.084 0.195 0.284 0.132 0.000 0.042 0.143 0.086 0.005 0.000 

NSD 4 897 control 16.348 51.365 0.104 0.202 0.292 0.120 0.078 0.032 0.119 0.094 0.015 0.000 

NSD 5 897 fertilized 16.325 39.735 0.153 0.240 0.267 0.083 0.000 0.027 0.140 0.128 0.033 0.004 

NSD 6 897 fertilized 16.679 41.675 0.168 0.224 0.238 0.094 0.146 0.056 0.115 0.092 0.017 0.003 

NSD 7 897 control 16.854 48.451 0.195 0.242 0.213 0.067 0.285 0.079 0.105 0.048 0.001 0.003 

NSD 8 1794 control 15.975 47.771 0.114 0.255 0.304 0.081 0.227 0.063 0.120 0.053 0.000 0.002 

NSD 9 897 control 15.647 50.634 0.207 0.223 0.188 0.067 0.304 0.072 0.092 0.043 0.001 0.002 

NSD 10 897 fertilized 15.745 45.085 0.185 0.230 0.217 0.071 0.239 0.071 0.102 0.067 0.007 0.000 

NSD 11 1794 fertilized 15.844 44.015 0.092 0.232 0.280 0.102 0.000 0.038 0.139 0.102 0.006 0.000 

NSD 12 1794 fertilized 16.647 38.796 0.196 0.244 0.193 0.059 0.000 0.048 0.167 0.086 0.005 0.001 

NSD 13 1794 fertilized 16.000 37.391 0.183 0.195 0.188 0.063 0.000 0.014 0.182 0.136 0.021 0.002 

NSD 14 1794 control 15.519 43.800 0.179 0.209 0.216 0.074 0.035 0.038 0.143 0.102 0.011 0.004 

NSD 15 1794 fertilized 16.412 43.618 0.216 0.212 0.207 0.054 0.000 0.017 0.148 0.124 0.014 0.003 

NSD 16 897 fertilized 16.713 43.116 0.164 0.262 0.242 0.064 0.265 0.075 0.120 0.084 0.009 0.001 

NSD 17 1794 control 15.426 43.439 0.208 0.193 0.212 0.084 0.000 0.028 0.153 0.112 0.006 0.000 

NSD 18 897 fertilized 17.109 49.965 0.186 0.237 0.220 0.072 0.272 0.061 0.117 0.096 0.008 0.002 

Henderson 3 ----- vegetation control 17.988 58.128 0.005 0.005 0.038 0.451 0.226 0.072 0.136 0.125 0.027 0.015 

Henderson 4 ----- control 16.504 56.408 0.034 0.026 0.101 0.245 0.000 0.046 0.128 0.108 0.034 0.025 

Henderson 5 ----- vegetation control 18.560 58.162 0.012 0.020 0.062 0.343 0.263 0.103 0.112 0.072 0.012 0.016 

Henderson 6 ----- control 17.517 60.264 0.064 0.065 0.124 0.260 0.256 0.101 0.119 0.060 0.014 0.010 

Henderson 9 ----- vegetation control 16.078 51.754 0.018 0.016 0.055 0.355 0.000 0.072 0.155 0.080 0.015 0.006 

Henderson 10 ----- control 22.845 59.503 0.073 0.052 0.073 0.284 0.326 0.075 0.124 0.121 0.038 0.040 

Henderson 11 ----- vegetation control 17.289 51.816 0.023 0.047 0.076 0.297 0.000 0.066 0.145 0.098 0.026 0.012 

Henderson 12 ----- control 16.653 52.518 0.059 0.052 0.173 0.202 0.000 0.076 0.141 0.090 0.011 0.009 

Henderson 13 ----- control 21.304 61.291 0.035 0.021 0.054 0.304 0.237 0.087 0.130 0.098 0.018 0.026 

Henderson 14 ----- vegetation control 16.657 58.133 0.004 0.013 0.036 0.491 0.191 0.041 0.114 0.082 0.039 0.028 

Henderson 15 ----- control 16.389 58.213 0.088 0.085 0.182 0.217 0.018 0.019 0.147 0.124 0.032 0.016 

                                                
* Site = study site (refer to fig. 2.1), TPH/block = trees per hectare or block, for other variable names refer to table 3.1  
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Site Plot 
TPH/ 
block 

Treatment Istdv Icv d5 d6 d7 d9 Cd+4stdv Cd+2 Cd-1 Cd-2 Cd-4 Cd-5 

Henderson 16 ----- vegetation control 15.150 56.135 0.007 0.021 0.050 0.440 0.000 0.069 0.139 0.075 0.010 0.003 

Henderson 17 ----- vegetation control 23.444 56.073 0.006 0.009 0.031 0.414 0.247 0.070 0.140 0.111 0.051 0.035 

Henderson 18 ----- control 17.204 61.737 0.082 0.050 0.192 0.188 0.000 0.039 0.140 0.113 0.022 0.019 

Henderson 19 ----- vegetation control 16.985 56.850 0.015 0.061 0.111 0.348 0.000 0.009 0.138 0.135 0.061 0.026 

Henderson 20 ----- control 14.673 57.487 0.023 0.019 0.090 0.275 0.000 0.020 0.148 0.139 0.030 0.009 

Henderson 24 ----- vegetation control 14.990 55.179 0.004 0.010 0.048 0.381 0.000 0.034 0.152 0.113 0.025 0.010 

Henderson 25 ----- control 16.607 53.200 0.051 0.093 0.190 0.189 0.000 0.050 0.140 0.109 0.028 0.006 

Henderson 26 ----- control 15.261 57.437 0.053 0.051 0.061 0.273 0.093 0.070 0.127 0.097 0.015 0.008 

Henderson 27 ----- vegetation control 22.637 61.792 0.022 0.023 0.073 0.412 0.229 0.059 0.156 0.120 0.042 0.047 

Henderson 28 ----- control 16.831 60.365 0.030 0.015 0.043 0.323 0.269 0.047 0.122 0.099 0.036 0.016 

Henderson 29 ----- vegetation control 16.171 53.973 0.004 0.017 0.085 0.408 0.128 0.061 0.132 0.082 0.017 0.007 

Henderson 30 ----- vegetation control 17.093 59.664 0.007 0.021 0.096 0.312 0.000 0.029 0.108 0.111 0.063 0.044 

Henderson 31 ----- control 17.213 56.426 0.092 0.161 0.321 0.060 0.199 0.068 0.135 0.078 0.020 0.013 

RW18 3 ----- fertilized thinned 14.887 56.924 0.047 0.100 0.219 0.101 0.311 0.048 0.104 0.086 0.029 0.027 

RW18 12 ----- fertilized unthinned 13.179 47.128 0.010 0.142 0.307 0.137 0.000 0.012 0.183 0.160 0.027 0.010 

RW18 14 ----- fertilized thinned 21.676 61.039 0.022 0.085 0.189 0.297 0.000 0.035 0.086 0.073 0.033 0.011 

RW18 15 ----- fertilized unthinned 13.392 44.232 0.087 0.119 0.144 0.070 0.147 0.041 0.075 0.068 0.035 0.045 

RW18 16 ----- fertilized thinned 16.997 54.420 0.010 0.051 0.132 0.308 0.000 0.070 0.107 0.049 0.012 0.004 

RW18 20 ----- fertilized thinned 16.965 53.789 0.005 0.038 0.163 0.316 0.000 0.039 0.107 0.094 0.015 0.001 

RW18 21 ----- fertilized thinned 17.208 57.220 0.115 0.187 0.206 0.134 0.000 0.045 0.102 0.063 0.030 0.006 

RW18 22 ----- fertilized thinned 15.578 54.756 0.062 0.141 0.237 0.201 0.000 0.031 0.101 0.104 0.035 0.016 

RW18 23 ----- fertilized unthinned 13.739 38.217 0.050 0.106 0.242 0.168 0.000 0.012 0.207 0.162 0.036 0.029 

RW18 26 ----- fertilized thinned 18.857 55.252 0.027 0.081 0.261 0.246 0.000 0.019 0.096 0.093 0.022 0.012 

RW18 27 ----- fertilized thinned 15.610 53.155 0.139 0.189 0.162 0.077 0.000 0.063 0.091 0.077 0.020 0.009 

RW18 28 ----- control and thinned 15.127 54.249 0.063 0.172 0.213 0.160 0.000 0.019 0.115 0.105 0.031 0.035 

RW18 29 ----- fertilized thinned 17.988 58.036 0.021 0.069 0.214 0.188 0.000 0.030 0.122 0.079 0.011 0.009 

RW18 30 ----- fertilized thinned 17.196 52.988 0.024 0.064 0.185 0.284 0.000 0.056 0.108 0.086 0.018 0.015 

RW18 31 ----- fertilized thinned 14.731 53.208 0.180 0.130 0.112 0.075 0.278 0.059 0.072 0.063 0.036 0.041 

RW18 45 ----- fertilized thinned 17.647 51.764 0.013 0.026 0.153 0.338 0.000 0.049 0.091 0.047 0.007 0.005 

RW18 46 ----- control and thinned 16.312 55.580 0.068 0.233 0.282 0.130 0.000 0.045 0.105 0.065 0.007 0.002 

RW18 47 ----- fertilized unthinned 15.513 40.008 0.011 0.029 0.146 0.332 0.000 0.037 0.186 0.124 0.015 0.015 

RW18 48 ----- fertilized thinned 16.079 54.237 0.002 0.041 0.162 0.294 0.105 0.100 0.077 0.031 0.001 0.003 

RW18 7 ----- fertilized thinned 18.869 50.948 0.146 0.217 0.192 0.033 0.287 0.058 0.097 0.071 0.044 0.045 

RW19 1 ----- fertilized 16.796 48.499 0.259 0.094 0.228 0.102 0.284 0.087 0.134 0.112 0.025 0.015 
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Site Plot 
TPH/ 
block 

Treatment Istdv Icv d5 d6 d7 d9 Cd+4stdv Cd+2 Cd-1 Cd-2 Cd-4 Cd-5 

RW19 2 ----- fertilized 17.220 50.916 0.216 0.107 0.197 0.133 0.253 0.088 0.122 0.066 0.019 0.010 

RW19 3 ----- fertilized 18.493 55.303 0.060 0.133 0.226 0.104 0.262 0.072 0.094 0.067 0.011 0.003 

RW19 4 ----- fertilized 17.879 56.388 0.226 0.142 0.251 0.060 0.294 0.063 0.113 0.074 0.023 0.009 

RW19 5 ----- fertilized 17.207 49.561 0.272 0.127 0.236 0.085 0.254 0.054 0.117 0.066 0.015 0.012 

RW19 6 ----- fertilized 16.371 50.621 0.270 0.106 0.221 0.130 0.262 0.084 0.107 0.071 0.011 0.006 

RW19 8 ----- fertilized 18.027 46.035 0.058 0.151 0.254 0.064 0.255 0.058 0.118 0.091 0.020 0.006 

RW19 9 ----- fertilized 17.553 52.068 0.134 0.134 0.237 0.081 0.265 0.064 0.113 0.083 0.018 0.007 

RW19 10 ----- fertilized 18.293 51.255 0.303 0.123 0.215 0.080 0.290 0.065 0.090 0.059 0.016 0.004 

RW19 11 ----- fertilized 17.334 50.659 0.079 0.068 0.172 0.171 0.000 0.048 0.122 0.100 0.023 0.009 

RW19 12 ----- fertilized 17.128 44.481 0.032 0.089 0.213 0.104 0.233 0.071 0.148 0.105 0.023 0.006 

RW19 13 ----- fertilized 17.453 51.508 0.052 0.106 0.216 0.102 0.189 0.059 0.111 0.077 0.014 0.007 

RW19 14 ----- fertilized 17.115 48.294 0.115 0.098 0.214 0.115 0.129 0.055 0.129 0.103 0.030 0.009 

RW19 15 ----- fertilized 16.922 48.570 0.133 0.156 0.228 0.073 0.250 0.034 0.105 0.099 0.042 0.011 

RW19 17 ----- fertilized 17.421 46.407 0.071 0.113 0.227 0.089 0.238 0.056 0.150 0.132 0.029 0.017 

RW19 18 ----- fertilized 16.712 48.165 0.099 0.133 0.280 0.049 0.236 0.074 0.127 0.076 0.013 0.005 

RW19 19 ----- fertilized 16.940 47.705 0.131 0.122 0.229 0.072 0.292 0.092 0.124 0.071 0.019 0.012 

RW19 20 ----- fertilized 16.834 47.328 0.048 0.103 0.238 0.086 0.252 0.094 0.116 0.062 0.008 0.005 

RW19 21 ----- fertilized 19.129 50.828 0.132 0.069 0.161 0.175 0.000 0.035 0.135 0.110 0.033 0.009 

RW19 22 ----- fertilized 18.994 50.794 0.106 0.106 0.220 0.101 0.000 0.029 0.140 0.118 0.038 0.013 

RW19 23 ----- fertilized 18.947 49.313 0.082 0.118 0.222 0.092 0.215 0.064 0.124 0.091 0.014 0.007 

RW19 24 ----- fertilized 16.506 47.156 0.093 0.072 0.200 0.128 0.203 0.084 0.139 0.104 0.017 0.009 

RW19 25 ----- fertilized 19.333 49.896 0.272 0.111 0.216 0.085 0.243 0.064 0.125 0.089 0.014 0.006 

RW19 26 ----- fertilized 17.316 48.842 0.200 0.132 0.249 0.077 0.000 0.027 0.120 0.108 0.032 0.014 

RW19 27 ----- fertilized 18.689 55.617 0.062 0.155 0.242 0.066 0.214 0.055 0.109 0.085 0.023 0.013 

RW19 28 ----- fertilized 18.638 51.797 0.072 0.130 0.193 0.086 0.278 0.054 0.103 0.098 0.030 0.025 

RW19 29 ----- fertilized 18.101 53.991 0.071 0.126 0.224 0.082 0.272 0.047 0.108 0.085 0.020 0.015 

RW19 30 ----- fertilized 17.387 47.100 0.091 0.118 0.205 0.109 0.181 0.061 0.128 0.108 0.035 0.015 

RW19 31 ----- fertilized 16.918 49.161 0.584 0.135 0.230 0.111 0.216 0.083 0.122 0.093 0.024 0.004 

RW19 32 ----- fertilized 18.359 54.212 0.058 0.163 0.259 0.070 0.256 0.071 0.132 0.095 0.020 0.005 

RW19 33 ----- fertilized 17.835 48.817 0.132 0.132 0.218 0.099 0.219 0.088 0.107 0.070 0.021 0.006 

RW19 34 ----- fertilized 17.098 48.059 0.117 0.113 0.256 0.093 0.286 0.086 0.140 0.080 0.013 0.002 

Setres 1 1 control 13.581 49.749 0.177 0.273 0.250 0.048 0.274 0.071 0.139 0.109 0.041 0.016 

Setres 1 2 control 13.922 50.202 0.119 0.280 0.324 0.061 0.288 0.063 0.142 0.115 0.038 0.013 

Setres 1 3 control 15.924 44.991 0.025 0.120 0.290 0.181 0.255 0.048 0.145 0.120 0.031 0.012 
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Site Plot 
TPH/ 
block 

Treatment Istdv Icv d5 d6 d7 d9 Cd+4stdv Cd+2 Cd-1 Cd-2 Cd-4 Cd-5 

Setres 1 4 control 15.195 47.362 0.021 0.084 0.223 0.243 0.275 0.105 0.116 0.083 0.026 0.014 

Setres 2 1 fertilized, irrigated 14.088 49.536 0.243 0.210 0.157 0.023 0.281 0.071 0.141 0.107 0.036 0.014 

Setres 2 2 fertilized, irrigated 14.288 49.058 0.166 0.254 0.241 0.056 0.294 0.054 0.115 0.091 0.032 0.016 

Setres 2 3 fertilized, irrigated 15.467 42.283 0.041 0.122 0.265 0.170 0.091 0.040 0.170 0.121 0.033 0.019 

Setres 2 4 fertilized, irrigated 15.428 45.992 0.022 0.096 0.249 0.199 0.298 0.076 0.148 0.102 0.039 0.017 

Setres 3 1 fertilized, irrigated 14.676 53.434 0.295 0.255 0.175 0.022 0.325 0.102 0.123 0.058 0.012 0.002 

Setres 3 2 fertilized, irrigated 14.630 49.084 0.080 0.229 0.288 0.127 0.309 0.059 0.125 0.123 0.059 0.026 

Setres 3 3 fertilized, irrigated 15.751 44.229 0.030 0.132 0.291 0.159 0.180 0.051 0.153 0.122 0.049 0.026 

Setres 3 4 fertilized, irrigated 15.629 48.906 0.037 0.107 0.229 0.225 0.158 0.038 0.135 0.113 0.063 0.035 

Setres 4 1 fertilized, irrigated 13.934 48.958 0.260 0.246 0.138 0.008 0.270 0.053 0.139 0.112 0.040 0.020 

Setres 4 2 fertilized, irrigated 14.416 52.308 0.207 0.224 0.174 0.028 0.303 0.067 0.135 0.119 0.037 0.018 

Setres 4 3 fertilized, irrigated 15.574 43.295 0.032 0.131 0.302 0.155 0.262 0.084 0.144 0.112 0.027 0.012 

Setres 4 4 fertilized, irrigated 16.191 43.845 0.104 0.196 0.262 0.104 0.262 0.073 0.124 0.078 0.029 0.017 
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Appendix H: Normal quantiles vs. Studentized residuals plot (top) and predicted vs. residuals 
plot (bottom) for the number of trees 5-variable model with lidar metrics only, n = 110 (Chapter 
3). Refer to table 3.1 for variable names. 

Ntrees = 73.373 – 131.721 (LPI) – 170.974 (d5) – 219.750 (d9) – 946.509 (Cd-5) + 280.712 (Cd-1) 
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Appendix I: Normal quantiles vs. Studentized residuals plot (top) and predicted vs. residuals 
plot (bottom) for the number of trees 5-variable model with lidar metrics only, n = 70 (Chapter 
3). Refer to table 3.1 for variable names. 

Ntrees = 41.053 – 13.902 (All90th) – 177.600 (d5) – 295. 245 (d6) – 285.096 (d9) + 581.975 (Cd-1) 
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Appendix J: Normal quantiles vs. Studentized residuals plot (top) and predicted vs. residuals 
plot (bottom) for the number of trees 5-variable model with lidar metrics only, n = 40 (Chapter 
3). Refer to table 3.1 for variable names. 

Ntrees = 73.315 – 6.245 (Istdv) – 0.976 (Icv) + 42.287 (d7) + 48.911 (Cd+4stdv) + 114.877 (Cd-2) 
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Appendix K: Normal quantiles vs. Studentized residuals plot (top) and predicted vs. residuals 
plot (bottom) for the number of trees 2-variable model with lidar metrics and ground data, n = 
110 (Chapter 3). Refer to table 3.1 for variable names. 

Ntrees = 73.373 + 0.850 (Tree0) – 108.503 (LPI) 
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Appendix L: Normal quantiles vs. Studentized residuals plot (top) and predicted vs. residuals 
plot (bottom) for the number of trees 5-variable model with lidar metrics and ground data, n = 
110 (Chapter 3). Refer to table 3.1 for variable names. 

Ntrees = 73.373 + 0.911 (Tree0) – 1.373 (All10th) – 129.548 (LPI) – 305.065 (Cd+2) – 736.945 

(Cd-4) 
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Appendix M: Normal quantiles vs. Studentized residuals plot (top) and predicted vs. residuals 
plot (bottom) for the number of trees 5-variable model with lidar metrics and ground data, n = 78 
(Chapter 3). Refer to table 3.1 for variable names. 

Ntrees = 68.686 + 0.689 (Tree0) – 143.229 (LPI) + 48.499 (d6) – 368.642 (Cd+2) – 737.816 (Cd-4) 
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Appendix N: Normal quantiles vs. Studentized residuals plot (top) and predicted vs. residuals 
plot (bottom) for the number of trees 4-variable model with lidar metrics and ground data, n = 70 
(Chapter 3). Refer to table 3.1 for variable names. 

Ntrees = 73.167 + 0.954 (Tree0) – 3.299 (All90th) – 83.305 (LPI) + 205.669 (Cd-1) 
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Appendix O: Normal quantiles vs. Studentized residuals plot (top) and predicted vs. residuals 
plot (bottom) for the mean tree height 1-variable model, n = 110 (Chapter 3). Refer to table 3.1 
for variable names. 

ht = 15.503 + 0.911 (All90th) 
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Appendix P: Normal quantiles vs. Studentized residuals plot (top) and predicted vs. residuals 
plot (bottom) for mean height to live crown 1-variable model, n = 110 (Chapter 3). Refer to table 
3.1 for variable names. 

hlc = 8.699 + 0.946 (All90th) 
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Appendix Q: Ground-based variables used for the LAI models (chapter 4)*
 

                                                
* Radius = variable and fix radius plots (see section 4.3.1 for description), forest type = BH (bottomland hardwood), UH (upland hardwood), PH (pine-
hardwood), LP (loblolly pine), SP (shortleaf pine), and VP (Virginia pine), LAI = leaf area index, ht = total tree height, dbh (diameter at breast height). 
Subscripts mean (average), stdv (standard deviation), min (minimum), max (maximum). 

plot radius forest type age LAI htmean htstdv htmin htmax dbhmean dbhstdv dbhmin dbhmax 

2 var LP 17 3.01 14.57 2.45 10.36 18.29 18.85 2.87 13.72 25.40 

19 var PH 49 3.41 18.61 3.23 13.72 23.47 22.17 6.33 13.97 36.58 

33 var LP 20 2.54 16.73 1.63 14.33 20.12 18.19 2.18 14.22 24.64 

35 var UH 116 2.61 23.80 2.65 17.37 27.43 47.33 5.62 37.59 55.12 

42 var LP 16 3.93 14.42 1.50 11.89 16.46 19.72 1.82 15.49 22.86 

47 var SP 38 3.68 16.61 1.35 15.24 18.29 22.67 4.41 19.56 29.21 

49 var LP 18 3.9 16.15 1.25 14.33 18.59 19.94 2.48 16.51 23.62 

87 var LP 45 3.44 17.13 5.09 9.45 23.47 24.69 10.82 12.95 41.91 

109 var UH 164 3.52 27.26 7.28 11.28 41.15 39.28 10.42 14.48 50.80 

113 var UH 154 2.97 20.77 5.38 11.89 27.43 34.20 12.90 13.72 53.09 

115 var UH 58 1.43 18.55 2.71 14.02 22.86 25.99 6.77 13.46 36.83 

116 var UH 58 2.03 19.25 2.65 13.11 23.47 27.12 6.52 16.51 37.59 

126 var LP 15 2.51 11.25 2.36 7.01 13.41 17.19 2.75 12.70 22.86 

145 var LP 45 1.41 26.54 3.03 18.59 31.39 45.52 18.43 19.30 86.11 

LDABFB31 fix UH 108 3.23 19.13 9.09 7.32 30.18 27.27 17.47 6.60 49.28 

LDABFB32 fix PH 45 3.61 10.95 3.86 2.44 18.59 11.71 5.52 2.54 21.59 

LDABFB33 fix UH 108 3.96 13.06 9.00 3.96 24.38 23.37 16.69 6.35 48.01 

LDABFB34 fix UH 108 3.84 12.87 9.60 2.74 32.92 15.20 15.40 3.05 44.70 

LDABFB41 fix UH 12 3.52 13.38 6.70 5.79 26.21 17.98 14.02 2.79 46.74 

LDABFB42 fix LP 12 3.2 14.51 4.08 5.49 19.51 13.60 5.32 2.54 21.08 

LDABFB43 fix UH 12 4.23 14.99 5.81 6.40 21.95 24.17 13.76 8.13 48.26 

LDABFB44 fix UH 12 3.6 11.84 6.26 3.66 23.47 19.33 11.55 8.89 41.15 

LDABFB51 fix UH 108 2.66 14.06 7.36 3.66 23.16 18.51 12.28 2.54 36.32 

LDABFB53 fix UH 108 2.43 14.09 6.82 3.05 30.78 14.44 10.67 2.54 45.21 

LDABFB54 fix UH 12 2.8 16.64 6.65 7.01 24.38 21.95 10.62 6.60 42.67 

LDABFB61 fix UH 108 2.92 14.10 5.07 7.92 22.25 21.45 14.54 6.60 53.34 

LDABFB62 fix UH 108 2.77 12.78 8.33 2.74 25.30 17.21 14.32 2.79 50.04 

LDABFB63 fix UH 108 2.82 12.08 6.03 3.66 20.12 14.89 11.56 3.30 38.10 
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plot radius forest type age LAI htmean htstdv htmin htmax dbhmean dbhstdv dbhmin dbhmax 

LDABFB64 fix UH 108 4.11 14.13 5.46 3.35 21.64 16.48 9.83 6.60 37.34 

LDABFD11 fix LP 10 3.86 10.01 3.91 3.66 15.85 10.93 6.53 3.05 20.57 

LDABFD12 fix PH 118 4.33 11.16 4.94 4.27 24.08 13.97 10.89 3.56 50.04 

LDABFD13 fix LP 10 4.1 11.07 4.01 4.57 17.37 11.24 6.37 2.79 28.45 

LDABFD21 fix BH 89 4.4 12.88 9.01 4.88 26.82 16.17 10.46 7.37 39.88 

LDABFD22 fix BH 89 3.74 17.27 4.20 13.41 23.77 26.33 10.52 15.49 43.69 

LDABFD23 fix SP 30 4.02 10.03 3.63 6.40 20.42 12.13 12.61 3.56 42.67 

LDABFD24 fix PH 118 4.9 18.94 11.38 8.23 35.36 20.17 13.19 8.13 38.61 

LDABFD31 fix SP 30 4.39 12.63 4.60 4.88 18.90 11.54 6.48 2.79 22.10 

LDABFD32 fix SP 30 3.91 12.74 3.40 7.32 19.51 12.20 5.43 6.60 24.38 

LDABFD33 fix SP 30 4.39 13.69 6.31 3.96 24.08 13.78 7.51 2.54 27.18 

LDABFD34 fix SP 30 4.12 11.38 3.41 6.40 16.15 12.47 8.00 4.06 25.91 

LDABFD41 fix LP 10 3.08 9.77 2.73 4.27 13.41 11.36 4.34 3.05 18.80 

LDABFD42 fix LP 10 3.98 10.84 2.77 5.79 14.33 10.79 4.90 2.54 17.27 

LDABFD43 fix LP 10 2.84 12.36 2.36 7.62 15.24 15.21 4.25 6.35 20.57 

LDABFD44 fix LP 10 2.5 8.64 2.35 4.27 11.28 11.18 3.12 7.62 15.24 

LDABFD51 fix VP 60 3.8 13.07 1.87 7.01 16.46 10.10 3.33 3.81 20.83 

LDABFD53 fix VP 60 3.74 13.15 2.64 6.71 17.68 10.69 3.58 2.79 19.81 

LDABFD54 fix LP 10 3.97 13.07 3.11 5.79 16.76 14.63 5.00 3.30 21.08 

LDABFD61 fix BH 89 3.68 11.87 5.84 0.40 22.56 13.68 12.65 3.05 37.59 

LDABFD62 fix LP 18 1.34 15.74 4.70 6.10 22.56 14.54 6.53 2.54 24.38 

LDABFD63 fix LP 63 4.21 14.48 7.11 4.88 31.39 15.32 14.19 3.05 53.85 

LDABFD71 fix LP 10 4.12 11.08 3.31 0.88 15.54 11.22 3.62 6.35 18.03 

LDABFD72 fix LP 10 3.99 11.01 3.46 5.49 15.85 10.86 5.87 2.79 19.81 

LDABFD73 fix LP 10 4.48 14.70 8.12 5.49 27.43 17.62 11.96 3.05 36.32 

LDABFD74 fix LP 10 3.94 12.38 3.04 5.18 15.85 13.16 5.12 2.79 19.56 

LDABFD81 fix VP 60 4.04 13.86 4.41 8.53 25.91 14.41 12.06 5.59 44.20 

LDABFD82 fix VP 60 2.89 14.54 1.86 10.97 18.29 10.48 2.26 6.35 18.29 

LDABFD83 fix VP 60 4.06 13.66 7.68 5.49 33.53 16.69 20.32 6.35 73.66 

LDABFD84 fix VP 60 3.96 16.22 3.08 4.27 25.91 12.17 6.16 7.11 43.43 

LDABFD92 fix LP 63 3.74 15.47 10.09 6.71 33.83 26.81 22.14 7.11 59.44 

LDABFD93 fix LP 63 2.73 9.38 4.82 3.66 28.35 10.25 10.15 3.05 40.39 

LDABFD94 fix LP 63 3.94 7.76 2.75 3.66 15.85 7.81 5.22 2.54 24.13 
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Appendix R: Lidar metrics used for the LAI models (chapter 4)* 

 

plot radius 
forest 
type 

Grtotal Alltotal LPI Allmean Allstdv Allcv All10th All50th Imean Istdv d2 d10 Cd-3stdv Cd-3 Cd-1 

2 var LP 252 3620 0.017 9.966 4.035 40.490 4.367 10.626 38.223 21.596 0.112 0.001 0.280 0.060 0.099 

19 var PH 409 5678 0.005 12.697 5.543 43.658 3.156 14.143 48.568 30.079 0.039 0.014 0.286 0.074 0.083 

33 var LP 809 3836 0.011 11.908 4.791 40.229 3.299 13.608 29.568 17.057 0.047 0.037 0.275 0.081 0.135 

35 var UH 447 6898 0.007 13.116 6.917 52.741 2.630 15.561 45.158 29.496 0.088 0.084 0.297 0.041 0.079 

42 var LP 942 5486 0.014 9.462 3.985 42.120 3.076 10.323 37.436 21.891 0.049 0.021 0.288 0.091 0.103 

47 var SP 329 5358 0.005 8.711 4.118 47.274 3.704 8.087 46.296 28.553 0.068 0.018 0.294 0.062 0.108 

49 var LP 824 3858 0.023 9.464 4.616 48.777 1.984 10.750 29.237 17.599 0.077 0.019 0.267 0.058 0.086 

87 var LP 410 4783 0.012 9.167 4.831 52.699 2.882 8.941 46.427 28.341 0.134 0.004 0.279 0.043 0.070 

109 var UH 392 5198 0.008 16.669 7.595 45.562 4.400 19.151 48.807 30.860 0.064 0.050 0.297 0.062 0.075 

113 var UH 714 8205 0.040 10.608 6.997 65.959 1.070 10.585 35.239 23.237 0.106 0.016 0.291 0.035 0.053 

115 var UH 1165 3081 0.279 9.409 7.107 75.529 0.400 10.164 54.686 35.257 0.090 0.042 0.301 0.040 0.050 

116 var UH 675 4500 0.051 12.009 6.231 51.886 0.834 13.999 44.968 29.593 0.042 0.011 0.276 0.075 0.089 

126 var LP 608 5287 0.011 7.023 3.275 46.626 1.844 7.604 39.970 21.644 0.072 0.007 0.292 0.087 0.118 

145 var LP 1141 3148 0.181 15.233 8.828 57.952 0.540 19.114 40.191 26.572 0.029 0.017 0.273 0.054 0.076 

LDABFB31 fix UH 376 5810 0.010 14.990 7.294 48.662 3.267 16.697 48.460 31.070 0.068 0.025 0.289 0.063 0.070 

LDABFB32 fix PH 285 5237 0.002 11.268 5.322 47.229 4.437 11.509 53.261 30.002 0.104 0.021 0.287 0.057 0.062 

LDABFB33 fix UH 362 5545 0.011 15.080 8.282 54.920 3.593 16.551 50.427 30.586 0.124 0.011 0.286 0.054 0.062 

LDABFB34 fix UH 309 5466 0.005 15.709 7.396 47.081 3.844 17.769 46.871 30.047 0.081 0.049 0.301 0.052 0.057 

LDABFB41 fix UH 382 4872 0.004 14.195 6.181 43.545 5.383 14.777 42.691 25.226 0.077 0.038 0.295 0.061 0.070 

LDABFB42 fix LP 519 4475 0.004 11.589 5.090 43.918 3.305 13.294 31.736 19.575 0.057 0.007 0.293 0.073 0.109 

LDABFB43 fix UH 261 4630 0.020 10.589 6.133 57.921 2.009 11.314 44.251 25.754 0.132 0.006 0.298 0.052 0.058 

LDABFB44 fix UH 536 4106 0.042 11.394 6.025 52.883 3.285 11.110 39.187 23.912 0.103 0.015 0.286 0.047 0.053 

LDABFB51 fix UH 511 4994 0.028 13.991 6.981 49.895 2.947 15.829 37.470 24.775 0.082 0.039 0.295 0.045 0.076 

LDABFB53 fix UH 683 4746 0.048 13.033 7.373 56.573 1.504 14.279 39.404 25.299 0.076 0.036 0.291 0.045 0.052 

LDABFB54 fix UH 859 4283 0.092 12.442 6.857 55.111 0.993 14.858 37.603 24.990 0.067 0.019 0.274 0.060 0.072 

LDABFB61 fix UH 470 5756 0.012 13.268 6.174 46.530 3.807 15.106 45.131 30.353 0.062 0.055 0.293 0.069 0.086 

                                                
* Radius = variable and fix radius plots (see section 4.3.1 for description), forest type = BH (bottomland hardwood), UH (upland hardwood), PH (pine-
hardwood), LP (loblolly pine), SP (shortleaf pine), and VP (Virginia pine). See table 4.1 for description of other variables. 



157 
 

plot radius 
forest 

type 
Grtotal Alltotal LPI Allmean Allstdv Allcv All10th All50th Imean Istdv d2 d10 Cd-3stdv Cd-3 Cd-1 

LDABFB62 fix UH 491 6210 0.014 14.707 7.584 51.570 2.296 17.663 43.564 29.388 0.085 0.068 0.300 0.053 0.091 

LDABFB63 fix UH 497 5504 0.010 14.013 5.869 41.880 4.596 15.454 46.755 30.224 0.032 0.021 0.290 0.061 0.080 

LDABFB64 fix UH 544 5206 0.018 11.977 5.999 50.086 1.438 13.345 40.600 27.833 0.048 0.008 0.291 0.056 0.072 

LDABFD11 fix LP 290 4186 0.001 9.106 3.355 36.845 5.006 8.972 42.367 23.907 0.057 0.002 0.288 0.036 0.093 

LDABFD12 fix PH 245 3964 0.003 10.218 3.930 38.465 5.775 9.854 55.684 26.017 0.041 0.012 0.293 0.051 0.122 

LDABFD13 fix LP 408 4395 0.001 10.195 3.896 38.216 5.072 10.561 45.693 26.065 0.076 0.002 0.284 0.065 0.103 

LDABFD21 fix BH 160 4098 0.022 11.096 6.234 56.188 3.425 10.824 47.707 27.416 0.172 0.010 0.298 0.041 0.053 

LDABFD22 fix BH 169 4504 0.017 10.368 5.946 57.351 2.651 10.298 53.290 27.879 0.147 0.002 0.305 0.063 0.058 

LDABFD23 fix SP 295 3870 0.004 7.275 3.669 50.433 2.734 6.867 47.838 25.122 0.105 0.008 0.289 0.042 0.125 

LDABFD24 fix PH 116 5155 0.001 16.735 8.760 52.348 5.018 17.583 40.163 26.260 0.165 0.021 0.283 0.032 0.053 

LDABFD31 fix SP 391 5828 0.002 11.047 4.777 43.244 4.782 11.177 39.506 25.637 0.057 0.022 0.293 0.048 0.071 

LDABFD32 fix SP 439 5637 0.002 10.297 4.752 46.145 4.296 10.037 39.435 25.615 0.077 0.020 0.291 0.054 0.072 

LDABFD33 fix SP 334 5461 0.001 12.690 5.300 41.765 5.758 13.930 40.041 27.025 0.066 0.013 0.294 0.047 0.080 

LDABFD34 fix SP 328 4838 0.005 9.144 4.268 46.681 4.085 8.564 44.487 28.228 0.069 0.028 0.286 0.060 0.105 

LDABFD41 fix LP 353 4477 0.005 6.959 3.480 50.005 2.145 7.484 40.011 21.518 0.137 0.005 0.291 0.070 0.108 

LDABFD42 fix LP 515 5357 0.003 8.013 3.465 43.241 3.202 8.575 37.336 21.109 0.081 0.004 0.294 0.065 0.106 

LDABFD43 fix LP 403 4565 0.008 7.986 4.216 52.794 2.278 8.500 35.959 20.527 0.145 0.012 0.307 0.065 0.076 

LDABFD44 fix LP 912 3633 0.138 7.789 3.384 43.441 2.847 8.334 44.273 22.335 0.083 0.003 0.288 0.056 0.100 

LDABFD51 fix VP 533 4438 0.010 9.524 4.242 44.542 1.985 11.197 31.305 18.261 0.048 0.020 0.275 0.052 0.140 

LDABFD53 fix VP 536 4207 0.004 10.523 3.992 37.935 4.442 11.652 33.238 20.627 0.056 0.007 0.287 0.075 0.124 

LDABFD54 fix LP 302 4314 0.002 9.796 3.906 39.878 3.928 10.668 36.551 20.554 0.079 0.010 0.298 0.078 0.111 

LDABFD61 fix BH 337 4427 0.016 16.697 8.236 49.326 6.247 15.658 51.098 30.818 0.095 0.018 0.307 0.052 0.058 

LDABFD62 fix LP 1363 2396 0.318 11.035 6.909 62.608 0.447 14.012 43.738 30.481 0.054 0.034 0.267 0.038 0.065 

LDABFD63 fix LP 267 4799 0.005 15.612 8.255 52.876 4.811 14.958 43.288 27.898 0.114 0.027 0.304 0.025 0.038 

LDABFD71 fix LP 383 4967 0.001 10.026 3.417 34.079 4.893 10.602 43.654 23.735 0.044 0.004 0.285 0.064 0.145 

LDABFD72 fix LP 426 4772 0.001 10.453 3.803 36.382 4.970 11.069 40.245 23.504 0.048 0.011 0.293 0.050 0.101 

LDABFD73 fix LP 284 5156 0.005 13.466 5.973 44.357 5.684 13.580 50.267 28.571 0.069 0.010 0.281 0.044 0.057 

LDABFD74 fix LP 539 5225 0.002 10.321 3.837 37.180 4.478 11.130 37.760 21.661 0.064 0.009 0.287 0.078 0.114 

LDABFD81 fix VP 587 4693 0.002 13.335 4.429 33.214 7.291 13.738 42.309 24.059 0.034 0.018 0.288 0.066 0.116 

LDABFD82 fix VP 896 4633 0.007 11.579 4.193 36.209 4.728 12.631 33.077 18.997 0.038 0.012 0.279 0.058 0.137 

LDABFD83 fix VP 264 4961 0.003 19.462 7.918 40.684 8.076 20.262 42.789 26.783 0.071 0.017 0.286 0.043 0.048 

LDABFD84 fix VP 513 4771 0.007 14.717 5.712 38.814 6.171 15.119 40.876 24.562 0.051 0.007 0.283 0.061 0.090 

LDABFD92 fix LP 247 4822 0.006 13.175 8.577 65.102 3.299 10.238 45.413 29.817 0.208 0.015 0.285 0.051 0.064 
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plot radius 
forest 

type 
Grtotal Alltotal LPI Allmean Allstdv Allcv All10th All50th Imean Istdv d2 d10 Cd-3stdv Cd-3 Cd-1 

LDABFD93 fix LP 354 4620 0.047 10.025 7.001 69.840 3.673 7.620 46.355 27.597 0.304 0.020 0.272 0.052 0.104 

LDABFD94 fix LP 265 4293 0.002 7.937 3.441 43.356 4.260 7.481 56.889 26.350 0.111 0.009 0.289 0.062 0.136 
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Appendix S: GeoSAR metrics used for the LAI models (chapter 4)* 

plot radius forest type Pmean Pmin Pmax Pstdv Xmean Xmin Xmax Xstdv X50th X-Pmean X-Pmin X-Pmax X-Pstdv 

2 var LP 5.039 1.700 9.492 1.459 8.966 6.398 10.695 0.983 8.992 3.823 0.494 6.845 1.495 

19 var PH 7.883 5.434 9.616 1.097 12.711 10.813 15.569 0.936 12.550 4.489 2.135 9.708 1.585 

33 var LP 0.717 0.068 1.708 0.447 10.507 8.837 11.885 0.571 10.522 10.414 7.555 12.037 1.066 

35 var UH 6.325 3.493 8.960 1.610 11.169 9.383 13.260 1.019 11.215 4.211 1.764 6.731 1.229 

42 var LP 4.260 0.789 7.750 1.917 9.601 7.185 11.512 1.182 9.884 5.222 2.744 7.290 1.225 

47 var SP 6.269 3.502 8.472 1.029 9.639 8.234 10.698 0.714 9.856 3.571 1.608 5.663 1.057 

49 var LP 3.986 1.463 5.598 1.020 8.401 7.819 9.476 0.375 8.318 4.467 2.569 7.484 1.197 

87 var LP 4.298 1.953 6.888 1.356 7.953 7.191 8.660 0.319 7.949 3.395 0.891 6.185 1.467 

109 var UH 9.413 5.838 13.528 2.054 16.487 13.031 19.469 1.295 16.661 6.644 3.149 10.764 2.150 

113 var UH 8.210 5.005 11.062 1.596 9.101 1.970 14.244 2.992 9.798 1.140 -2.409 4.690 1.745 

115 var UH 2.178 0.884 4.774 0.979 4.012 0.939 8.066 1.660 3.703 1.869 -2.032 5.948 1.664 

116 var UH 2.916 0.570 4.944 1.012 7.867 2.022 11.457 2.426 7.912 5.024 -0.641 10.273 2.814 

126 var LP 6.162 4.836 7.571 0.750 7.686 5.632 11.580 1.099 7.665 1.683 -0.832 4.511 1.389 

145 var LP 5.236 2.960 8.607 1.170 7.777 3.278 14.060 3.004 6.982 2.721 -2.637 8.818 3.192 

LDABFB31 fix UH 6.874 4.856 8.562 1.008 15.057 11.742 18.946 1.956 14.823 8.238 4.119 13.397 2.690 

LDABFB32 fix PH 7.429 3.972 9.126 1.105 10.566 7.125 12.970 1.749 11.136 2.961 -0.611 6.745 1.956 

LDABFB33 fix UH 9.607 4.285 12.499 2.293 16.827 10.916 20.909 2.636 17.418 7.023 4.544 10.338 1.289 

LDABFB34 fix UH 7.476 4.133 9.433 1.270 16.183 13.000 18.908 1.153 16.130 8.598 5.896 11.782 1.178 

LDABFB41 fix UH 7.987 6.265 10.152 1.246 14.277 10.453 16.079 1.271 14.653 6.156 3.108 9.194 1.499 

LDABFB42 fix LP 6.336 4.510 7.619 0.692 12.273 11.087 14.324 0.671 12.178 6.162 5.090 8.314 0.771 

LDABFB43 fix UH 8.070 6.339 9.924 0.961 10.860 6.010 14.964 2.692 11.372 2.528 -0.947 5.814 2.094 

LDABFB44 fix UH 6.580 3.862 10.049 1.725 10.508 4.367 15.479 3.517 11.135 3.701 -0.047 8.206 2.253 

LDABFB51 fix UH 6.136 3.579 7.598 1.051 11.733 7.995 15.042 1.580 11.706 5.514 0.914 10.149 2.357 

LDABFB53 fix UH 6.209 3.126 8.030 1.386 11.940 5.829 15.917 2.930 12.539 5.555 0.393 10.415 2.871 

LDABFB54 fix UH 5.048 0.957 7.303 1.837 9.350 5.791 13.522 1.985 9.233 4.250 -1.291 12.372 3.661 

LDABFB61 fix UH 6.383 3.917 9.106 1.152 12.651 11.268 14.991 0.851 12.412 6.184 4.745 9.440 1.251 

LDABFB62 fix UH 7.525 5.385 9.681 1.152 13.080 10.748 15.251 1.107 13.244 5.282 1.532 9.370 2.159 

LDABFB63 fix UH 7.973 5.428 9.953 1.248 13.153 12.170 14.932 0.653 13.075 5.416 2.954 8.796 1.606 

                                                
* Radius = variable and fix radius plots (see section 4.3.1 for description), forest type = BH (bottomland hardwood), UH (upland hardwood), PH (pine-
hardwood), LP (loblolly pine), SP (shortleaf pine), and VP (Virginia pine). See table 4.1 for description of other variables. 
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plot radius forest type Pmean Pmin Pmax Pstdv Xmean Xmin Xmax Xstdv X50th X-Pmean X-Pmin X-Pmax X-Pstdv 

LDABFB64 fix UH 4.730 3.319 6.210 0.642 10.932 9.120 12.798 0.925 11.116 6.211 3.797 8.614 1.227 

LDABFD11 fix LP 4.319 1.959 7.529 1.348 9.539 7.160 12.864 0.893 9.315 5.105 0.872 8.781 1.832 

LDABFD12 fix PH 5.067 1.482 8.111 1.576 10.630 4.575 15.706 2.203 10.683 5.497 1.353 9.699 2.080 

LDABFD13 fix LP 5.356 2.663 7.909 1.691 11.344 9.185 14.007 1.008 11.273 5.983 2.637 10.285 1.699 

LDABFD21 fix BH 11.376 8.068 13.819 1.228 15.500 7.962 18.149 1.974 16.028 4.178 -1.695 7.965 2.092 

LDABFD22 fix BH 10.152 8.222 12.720 1.135 14.733 11.389 20.687 2.066 14.396 4.403 1.464 7.846 1.431 

LDABFD23 fix SP 5.843 2.802 9.593 1.429 8.698 4.828 11.679 1.385 8.679 2.859 -1.059 5.959 1.997 

LDABFD24 fix PH 11.744 7.772 16.273 2.284 20.952 17.696 24.773 1.753 20.761 8.949 6.816 11.744 1.211 

LDABFD31 fix SP 8.238 6.047 11.773 1.497 13.674 10.278 16.387 1.510 13.991 5.521 2.878 8.220 1.457 

LDABFD32 fix SP 6.092 3.470 11.189 2.010 11.826 9.201 15.589 1.813 11.207 5.793 4.109 8.955 1.015 

LDABFD33 fix SP 6.883 4.974 9.911 1.211 15.621 10.729 18.826 2.021 16.056 8.920 3.949 12.950 2.253 

LDABFD34 fix SP 8.002 4.088 10.315 1.531 11.197 8.712 14.136 1.198 11.191 3.201 0.922 6.336 1.524 

LDABFD41 fix LP 3.514 1.077 6.343 1.574 9.356 7.501 11.238 0.711 9.477 5.752 1.995 8.408 1.887 

LDABFD42 fix LP 3.975 1.281 6.964 1.232 10.827 9.424 11.809 0.502 10.803 7.017 4.386 9.800 1.073 

LDABFD43 fix LP 3.655 2.387 5.834 0.886 9.428 7.166 12.786 1.428 9.293 5.813 2.226 8.751 1.779 

LDABFD44 fix LP 7.128 4.504 8.328 0.863 9.150 6.829 11.468 0.839 9.254 2.152 -0.566 5.504 1.442 

LDABFD51 fix VP 5.366 3.091 6.918 1.209 11.200 8.852 12.461 0.904 11.514 5.681 3.289 8.693 1.054 

LDABFD53 fix VP 6.164 4.075 8.741 1.272 12.810 10.741 15.463 1.043 12.604 6.508 4.234 9.769 1.545 

LDABFD54 fix LP 5.527 2.592 9.337 1.998 12.624 10.131 14.610 1.088 12.748 6.875 2.117 10.114 2.207 

LDABFD61 fix BH 9.903 3.822 14.712 2.740 17.932 12.179 25.302 3.015 17.841 8.113 3.790 11.779 2.039 

LDABFD62 fix LP 5.405 1.938 10.035 1.792 7.664 3.432 14.678 3.023 6.128 2.735 -2.173 6.506 2.146 

LDABFD63 fix LP 10.983 8.892 13.258 1.125 17.779 15.046 22.551 1.439 17.544 6.654 2.917 10.511 1.659 

LDABFD71 fix LP 7.622 4.416 9.979 1.574 12.537 10.829 13.572 0.475 12.558 4.782 1.174 8.078 1.790 

LDABFD72 fix LP 4.318 2.364 7.138 1.259 13.291 11.532 14.628 0.752 13.501 9.009 5.659 11.277 1.138 

LDABFD73 fix LP 10.144 7.405 12.757 1.404 15.264 10.950 20.984 2.426 15.219 5.225 1.260 10.741 2.186 

LDABFD74 fix LP 4.790 0.710 8.611 2.065 12.404 10.235 13.618 0.654 12.463 7.823 3.376 11.010 1.960 

LDABFD81 fix VP 4.586 1.315 8.289 2.046 15.228 13.342 17.201 0.759 15.182 10.823 6.599 13.863 2.136 

LDABFD82 fix VP 4.931 0.913 7.230 1.431 13.509 11.277 15.805 1.183 13.353 8.442 5.281 11.319 1.734 

LDABFD83 fix VP 11.665 8.147 18.379 2.847 20.451 14.173 30.021 4.555 19.346 8.641 4.558 15.456 2.524 

LDABFD84 fix VP 8.262 2.962 14.166 2.817 17.021 14.653 22.266 1.785 16.642 8.814 5.211 12.756 2.164 

LDABFD92 fix LP 8.933 7.438 11.684 0.900 13.887 8.597 19.672 2.738 13.813 5.256 0.678 10.808 2.415 

LDABFD93 fix LP 6.405 4.240 8.517 1.201 10.763 8.588 14.023 1.215 10.466 4.544 1.923 6.379 1.046 

LDABFD94 fix LP 2.836 0.350 5.728 1.502 11.147 8.788 17.946 1.836 10.861 8.472 3.925 15.396 2.742 
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Appendix S: Continued*. 

plot radius forest type Pmagmean Pmagmin Pmagmax Pmagstdv Xmagmean Xmagmin Xmagmax Xmagstdv sn01xlcv 

2 var LP 0.439 0.319 0.685 0.074 0.071 0.033 0.214 0.030 111.342 

19 var PH 0.207 0.151 0.271 0.032 0.103 0.057 0.181 0.026 183.229 

33 var LP 0.493 0.349 0.624 0.071 0.040 0.024 0.066 0.009 270.541 

35 var UH 0.239 0.133 0.316 0.039 0.117 0.065 0.209 0.027 256.719 

42 var LP 0.326 0.198 0.459 0.057 0.049 0.028 0.128 0.017 158.966 

47 var SP 0.318 0.243 0.415 0.048 0.086 0.044 0.171 0.024 115.788 

49 var LP 0.657 0.354 0.917 0.149 0.040 0.027 0.065 0.007 131.048 

87 var LP 0.242 0.137 0.394 0.052 0.086 0.051 0.158 0.021 80.592 

109 var UH 0.246 0.151 0.406 0.056 0.119 0.058 0.254 0.036 145.414 

113 var UH 0.199 0.111 0.280 0.039 0.107 0.057 0.236 0.031 216.137 

115 var UH 0.211 0.124 0.350 0.047 0.100 0.043 0.173 0.024 243.696 

116 var UH 0.225 0.149 0.399 0.051 0.109 0.059 0.178 0.025 83.252 

126 var LP 0.459 0.287 0.700 0.099 0.053 0.033 0.127 0.016 131.342 

145 var LP 0.257 0.172 0.355 0.049 0.091 0.049 0.226 0.029 172.683 

LDABFB31 fix UH 0.261 0.180 0.352 0.036 0.134 0.066 0.252 0.040 250.640 

LDABFB32 fix PH 0.221 0.138 0.296 0.041 0.135 0.063 0.406 0.049 280.260 

LDABFB33 fix UH 0.270 0.140 0.349 0.050 0.132 0.062 0.233 0.038 170.710 

LDABFB34 fix UH 0.264 0.191 0.327 0.031 0.112 0.057 0.197 0.029 208.230 

LDABFB41 fix UH 0.266 0.159 0.421 0.049 0.117 0.065 0.223 0.033 249.900 

LDABFB42 fix LP 0.319 0.201 0.428 0.058 0.042 0.019 0.099 0.013 131.117 

LDABFB43 fix UH 0.241 0.146 0.378 0.049 0.122 0.061 0.230 0.034 118.706 

LDABFB44 fix UH 0.267 0.187 0.335 0.037 0.105 0.041 0.249 0.043 162.895 

LDABFB51 fix UH 0.281 0.195 0.387 0.048 0.097 0.056 0.168 0.021 276.021 

LDABFB53 fix UH 0.290 0.210 0.431 0.054 0.099 0.050 0.183 0.027 148.904 

LDABFB54 fix UH 0.291 0.173 0.438 0.063 0.095 0.043 0.223 0.031 293.076 

LDABFB61 fix UH 0.316 0.226 0.487 0.051 0.096 0.046 0.168 0.022 247.869 

LDABFB62 fix UH 0.235 0.145 0.327 0.040 0.119 0.045 0.224 0.029 94.000 

                                                
* Radius = variable and fix radius plots (see section 4.3.1 for description), forest type = BH (bottomland hardwood), UH (upland hardwood), PH (pine-
hardwood), LP (loblolly pine), SP (shortleaf pine), and VP (Virginia pine). See table 4.1 for description of other variables. 
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plot radius forest type Pmagmean Pmagmin Pmagmax Pmagstdv Xmagmean Xmagmin Xmagmax Xmagstdv sn01xlcv 

LDABFB63 fix UH 0.282 0.207 0.416 0.051 0.093 0.049 0.200 0.028 408.955 

LDABFB64 fix UH 0.349 0.204 0.615 0.088 0.087 0.045 0.173 0.025 175.082 

LDABFD11 fix LP 0.270 0.140 0.456 0.086 0.091 0.033 0.245 0.038 74.101 

LDABFD12 fix PH 0.211 0.138 0.309 0.043 0.125 0.048 0.328 0.045 70.532 

LDABFD13 fix LP 0.322 0.153 0.477 0.091 0.104 0.033 0.257 0.044 92.247 

LDABFD21 fix BH 0.301 0.190 0.448 0.071 0.123 0.055 0.314 0.046 236.164 

LDABFD22 fix BH 0.227 0.143 0.435 0.052 0.126 0.017 0.254 0.050 344.201 

LDABFD23 fix SP 0.221 0.139 0.363 0.052 0.111 0.048 0.205 0.029 237.079 

LDABFD24 fix PH 0.261 0.142 0.479 0.068 0.110 0.037 0.197 0.032 222.204 

LDABFD31 fix SP 0.286 0.204 0.393 0.048 0.075 0.033 0.163 0.026 131.259 

LDABFD32 fix SP 0.303 0.211 0.500 0.066 0.077 0.041 0.173 0.023 96.330 

LDABFD33 fix SP 0.311 0.206 0.424 0.051 0.088 0.038 0.184 0.029 147.752 

LDABFD34 fix SP 0.338 0.240 0.549 0.064 0.091 0.047 0.167 0.024 153.089 

LDABFD41 fix LP 0.462 0.294 0.686 0.078 0.059 0.031 0.124 0.017 130.744 

LDABFD42 fix LP 0.340 0.208 0.496 0.054 0.053 0.026 0.084 0.012 151.103 

LDABFD43 fix LP 0.330 0.182 0.482 0.059 0.050 0.033 0.096 0.011 67.776 

LDABFD44 fix LP 0.386 0.248 0.545 0.072 0.070 0.032 0.157 0.025 95.111 

LDABFD51 fix VP 0.417 0.286 0.562 0.064 0.065 0.033 0.133 0.018 85.486 

LDABFD53 fix VP 0.340 0.233 0.481 0.058 0.087 0.035 0.232 0.035 78.614 

LDABFD54 fix LP 0.402 0.236 0.645 0.103 0.051 0.029 0.082 0.010 143.437 

LDABFD61 fix BH 0.191 0.147 0.332 0.035 0.145 0.074 0.262 0.034 152.670 

LDABFD62 fix LP 0.383 0.194 0.991 0.138 0.076 0.028 0.128 0.019 162.273 

LDABFD63 fix LP 0.314 0.146 0.511 0.090 0.107 0.045 0.241 0.042 212.110 

LDABFD71 fix LP 0.328 0.204 0.439 0.049 0.068 0.036 0.159 0.025 243.892 

LDABFD72 fix LP 0.338 0.254 0.474 0.053 0.062 0.035 0.159 0.024 122.734 

LDABFD73 fix LP 0.201 0.129 0.357 0.045 0.120 0.050 0.211 0.031 86.386 

LDABFD74 fix LP 0.345 0.215 0.469 0.069 0.054 0.031 0.131 0.015 72.381 

LDABFD81 fix VP 0.418 0.219 0.811 0.121 0.080 0.042 0.162 0.025 176.298 

LDABFD82 fix VP 0.415 0.287 0.587 0.075 0.055 0.031 0.110 0.015 120.689 

LDABFD83 fix VP 0.543 0.274 0.881 0.126 0.115 0.045 0.247 0.037 136.815 

LDABFD84 fix VP 0.300 0.209 0.481 0.064 0.082 0.040 0.149 0.025 207.920 

LDABFD92 fix LP 0.339 0.212 0.477 0.066 0.096 0.037 0.205 0.027 260.643 

LDABFD93 fix LP 0.450 0.265 0.714 0.106 0.106 0.046 0.273 0.045 148.635 
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plot radius forest type Pmagmean Pmagmin Pmagmax Pmagstdv Xmagmean Xmagmin Xmagmax Xmagstdv sn01xlcv 

LDABFD94 fix LP 0.204 0.111 0.395 0.057 0.097 0.051 0.192 0.028 224.933 
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Appendix T: Normal quantiles vs. Studentized residuals plot (top) and predicted vs. residuals 

plot (bottom) for the LAI 2-variable model with lidar metrics only, n = 61 (Chapter 4). Refer to 

table 4.1 for variable names. 

LAI = 3.363 – 6.602 (LPI) + 0.173 (All10th) 
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Appendix U: Normal quantiles vs. Studentized residuals plot (top) and predicted vs. residuals 
plot (bottom) for the LAI 4-variable model with lidar metrics only, n = 61 (Chapter 4). Refer to 
table 4.1 for variable names. 

LAI = 3.405 – 7.480 (LPI) + 0.134 (All10th) – 12.498 (d10) – 15.113 (Cd-3) 
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Appendix V: Normal quantiles vs. Studentized residuals plot (top) and predicted vs. residuals 
plot (bottom) for the LAI 4-variable model with GeoSAR metrics only, n = 61 (Chapter 4). Refer 
to table 4.1 for variable names. 

LAI = 3.407 – 0.032 (Xcv) + 0.104 (X50th) + 16.887 (Xmagstdv) – 0.002 (sn01xlcv) 
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Appendix W: Normal quantiles vs. Studentized residuals plot (top) and predicted vs. residuals 
plot (bottom) for the LAI 2-variable model with lidar and GeoSAR metrics combined (including 
crown density slices), n = 61 (Chapter 4). Refer to table 4.1 for variable names. 

LAI = 3.439 – 0.153 (All50th) + 0.229 (X50th) 
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Appendix X: Normal quantiles vs. Studentized residuals plot (top) and predicted vs. residuals 
plot (bottom) for the LAI 3-variable model with lidar and GeoSAR metrics combined (including 
crown density slices), n = 61 (Chapter 4). Refer to table 4.1 for variable names. 

LAI = 3.393 – 3.732 (LPI) – 0.120 (All50th) + 0.176 (X50th) 
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Appendix Y: Normal quantiles vs. Studentized residuals plot (top) and predicted vs. residuals 
plot (bottom) for the LAI 4-variable model with lidar and GeoSAR metrics combined (including 
crown density slices), n = 61 (Chapter 4). Refer to table 4.1 for variable names. 

LAI = 3.391 – 3.044 (LPI) – 0.147 (All50th) – 3.027 (d2) + 0.201 (X50th) 
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Appendix Z: Normal quantiles vs. Studentized residuals plot (top) and predicted vs. residuals 
plot (bottom) for the LAI 5-variable model with lidar and GeoSAR metrics combined (including 
crown density slices), n = 61 (Chapter 4). Refer to table 4.1 for variable names. 

LAI = 3.401 – 4.253 (LPI) – 0.148 (All50th) – 3.996 (d2) + 0.183 (X50th) – 11.703 (Cd-3) 
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Appendix AA: Normal quantiles vs. Studentized residuals plot (top) and predicted vs. residuals 
plot (bottom) for the LAI 6-variable model with lidar and GeoSAR metrics combined (including 
crown density slices), n = 61 (Chapter 4). Refer to table 4.1 for variable names. 

LAI = 3.475 – 4.246 (LPI) – 0.185 (All50th) – 4.979 (d2) + 0.208 (X50th) – 14.977 (Cd-3stdv) – 

7.805 (Cd-1) 
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Appendix AB: Normal quantiles vs. Studentized residuals plot (top) and predicted vs. residuals 
plot (bottom) for the LAI 5-variable model with lidar and GeoSAR metrics combined (excluding 
crown density slices), n = 61 (Chapter 4). Refer to table 4.1 for variable names. 

LAI = 3.442 – 0.180 (All50th) – 4.187 (d2) + 0.247 (X50th) + 16.079 (Pmagstdv) – 2.731 (Pmagmax) 
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Appendix AC: Normal quantiles vs. Studentized residuals plot (top) and predicted vs. residuals 
plot (bottom) for the LAI 6-variable model with lidar and GeoSAR metrics combined (excluding 
crown density slices), n = 61 (Chapter 4). Refer to table 4.1 for variable names. 

LAI = 3.406 – 3.110 (LPI) – 0.147 (All50th) – 3.455 (d2) + 0.199 (X50th) + 16.643 (Pmagstdv) – 

2.632 (Pmagmax) 

 

Li cor_LAI  = 3. 4056 -3. 1101LPI _pul sesc -0. 1467al l _50c -3. 4551den2c +0. 1995x_50c +16. 643pmag_stdvc -2. 6325 pmag_maxi mc

N     
61    

Rsq   
0. 7687

Adj Rsq
0. 7430

RMSE  
0. 3984

S
tu

d
e
n
ti
z
e
d
 R

e
s
id

u
a
l 
w

it
h
o
u
t 

C
u
rr

e
n
t 

O
b
s

-3

-2

-1

0

1

2

3

Normal Quantile

-3 -2 -1 0 1 2 3

Li cor_LAI  = 3. 4056 -3. 1101LPI _pul sesc -0. 1467al l _50c -3.4551den2c +0. 1995x_50c +16. 643pmag_st dvc -2. 6325pmag_maxi mc

N     
61    

Rsq   
0. 7687

Adj Rsq
0. 7430

RMSE  
0. 3984

S
tu

d
e

n
ti

z
e
d

 R
e

s
id

u
a

l 
w

it
h

o
u

t 
C

u
rr

e
n

t 
O

b
s

-3

-2

-1

0

1

2

3

Predicted Value

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5



174 
 

Appendix AD: Normal quantiles vs. Studentized residuals plot (top) and predicted vs. 
residuals plot (bottom) for the LAI 6-variable model with lidar and GeoSAR metrics combined 
(excluding three plots with low LAI values), n = 58 (Chapter 4). Refer to table 4.1 for variable 
names. 

LAI = 3.658 – 8.933 (LPI) – 0.193 (All50th) – 4.800 (d2) + 0.211 (X50th) – 18.042 (Cd-3stdv) – 

8.531 (Cd-1) 
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Appendix AE: Plot coordinates from the datasets used in chapters 2 and 3*.  

Site Plot TPH/block treatment 
1 2 3 4 

Northing Easting Northing Easting Northing Easting Northing Easting 

NSD 1 1794 fertilized 4162720.923 725447.8057 4162737.142 725472.7062 4162718.083 725486.0687 4162701.144 725460.8399 

NSD 2 897 fertilized 4162679.508 725457.2795 4162695.956 725482.3117 4162676.258 725495.352 4162659.908 725470.156 

NSD 3 1794 fertilized 4162646.219 725479.4612 4162662.342 725504.6247 4162643.008 725517.7958 4162626.527 725492.9274 

NSD 4 897 control 4162612.389 725501.9651 4162629.495 725527.073 4162609.949 725540.6983 4162593.031 725515.6211 

NSD 5 897 fertilized 4162579.635 725523.5296 4162595.984 725548.4963 4162576.266 725561.6022 4162559.95 725536.6355 

NSD 6 897 fertilized 4162555.723 725485.8503 4162571.319 725510.9808 4162551.267 725524.0211 4162534.885 725498.7268 

NSD 7 897 control 4162588.986 725465.2085 4162604.418 725488.7008 4162584.785 725502.2654 4162568.999 725478.5438 

NSD 8 1794 control 4162622.877 725442.6664 4162638.637 725467.9608 4162619.044 725480.4769 4162602.629 725455.2153 

NSD 9 897 control 4162656.062 725421.8281 4162671.658 725445.3859 4162651.35 725458.8194 4162635.656 725435.065 

NSD 10 897 fertilized 4162697.564 725411.5672 4162712.628 725435.1034 4162693.117 725448.6732 4162677.286 725424.7153 

NSD 11 1794 fertilized 4162673.394 725374.4504 4162689.672 725399.3188 4162670.314 725412.4902 4162653.965 725387.3924 

NSD 12 1794 fertilized 4162632.165 725384.1683 4162647.87 725408.5842 4162627.571 725421.531 4162611.901 725397.2558 

NSD 13 1794 fertilized 4162598.841 725406.1323 4162614.287 725429.9865 4162594.333 725443.1907 4162578.508 725419.4035 

NSD 14 1794 control 4162565.336 725427.5947 4162580.801 725451.8406 4162560.749 725465.3724 4162544.563 725440.6023 

NSD 15 1794 fertilized 4162531.553 725449.5369 4162547.604 725473.3997 4162527.355 725487.3575 4162511.231 725462.4985 

NSD 16 897 fertilized 4162635.041 725329.3667 4162641.154 725358.494 4162617.891 725363.5398 4162611.665 725333.9533 

NSD 17 1794 control 4162673.961 725320.7849 4162680.583 725348.894 4162657.058 725354.7916 4162650.397 725326.2638 

NSD 18 897 fertilized 4162663.938 725280.0882 4162669.279 725304.1374 4162641.527 725311.2474 4162636.337 725286.913 

Henderson 3 ----- vegetation control 4036979.642 727240.8283 4036997.349 727217.3057 4037010.809 727226.4533 4036992.775 727249.976 

Henderson 4 ----- control 4037000.682 727205.4137 4037019.63 727179.0814 4037031.522 727188.2944 4037013.227 727214.3 

Henderson 5 ----- vegetation control 4037036.587 727158.6299 4037052.591 727133.4052 4037065.025 727141.6151 4037048.902 727166.6614 

Henderson 6 ----- control 4037057.707 727122.9345 4037076.923 727097.2339 4037090.011 727106.7527 4037071.212 727132.4533 

Henderson 9 ----- vegetation control 4036943.901 727223.1863 4036960.889 727197.7035 4036974.088 727205.8711 4036956.903 727230.9618 

Henderson 10 ----- control 4036965.136 727186.0729 4036982.125 727160.3287 4036994.866 727168.4309 4036978.466 727194.2404 

Henderson 11 ----- vegetation control 4036998.81 727136.9747 4037016.003 727111.5715 4037029.389 727119.3055 4037012.433 727144.7682 

Henderson 12 ----- control 4037019.156 727100.506 4037034.803 727075.4597 4037048.188 727082.8368 4037032.482 727108.24 

Henderson 13 ----- control 4036565.33 726427.585 4036585.699 726403.9034 4036598.203 726413.8398 4036577.999 726437.0245 

                                                
* Site = study site (refer to figs. 2.1 and 3.1), TPH/block = trees per hectare or block, for other variable names refer to tables 2.1 and 3.1. Projected coordinate 
system: NAD 1983 UTM Zone 17N 



176 
 

Site Plot TPH/block treatment 
1 2 3 4 

Northing Easting Northing Easting Northing Easting Northing Easting 

Henderson 14 ----- vegetation control 4036539.247 726462.445 4036558.126 726436.6105 4036571.126 726445.9673 4036551.999 726471.3049 

Henderson 15 ----- control 4036532.209 726400.1773 4036551.833 726376.8269 4036564.999 726386.9289 4036545.54 726410.0308 

Henderson 16 ----- vegetation control 4036506.043 726433.6296 4036526.413 726410.6933 4036539.247 726420.7952 4036519.126 726443.566 

Henderson 17 ----- vegetation control 4036501.323 726373.5976 4036522.521 726350.2472 4036534.776 726360.3492 4036513.827 726383.3683 

Henderson 18 ----- control 4036473.75 726406.3047 4036493.788 726382.6231 4036506.292 726391.9798 4036485.922 726415.6614 

Henderson 19 ----- vegetation control 4036469.858 726322.2599 4036491.47 726298.7439 4036503.145 726309.1771 4036481.699 726332.6102 

Henderson 20 ----- control 4036443.444 726353.2281 4036463.731 726330.0434 4036475.406 726339.5657 4036455.451 726362.5848 

Henderson 24 ----- vegetation control 4036402.615 725913.723 4036429.988 725896.6424 4036438.491 725909.3223 4036411.341 725926.4029 

Henderson 25 ----- control 4036366.29 725938.1131 4036392.187 725920.627 4036401.197 725932.2953 4036375.092 725949.3759 

Henderson 26 ----- control 4036351.224 725989.9515 4036379.567 725972.498 4036388.592 725985.4017 4036359.727 726002.7806 

Henderson 27 ----- vegetation control 4036316.69 726010.0156 4036343.765 725994.2776 4036351.895 726007.1813 4036324.745 726023.2176 

Henderson 28 ----- control 4036424.706 725810.4961 4036450.928 725795.0984 4036459.151 725808.0626 4036432.677 725823.2925 

Henderson 29 ----- vegetation control 4036378.119 725825.8642 4036407.31 725808.2863 4036416.689 725821.4466 4036387.969 725838.3878 

Henderson 30 ----- vegetation control 4036341.464 725872.1975 4036370.449 725856.5242 4036377.572 725869.4345 4036349.171 725884.9216 

Henderson 31 ----- control 4036306.171 725894.6646 4036333.728 725876.9963 4036342.38 725889.7931 4036315.333 725907.4613 

RW18 3 ----- fertilized thinned 4063294.957 769382.2434 4063316.36 769392.239 4063310.134 769409.2191 4063289.249 769398.465 

RW18 12 ----- fertilized unthinned 4062766.303 768902.0001 4062779.658 768932.6723 4062767.548 768938.5577 4062754.758 768907.6592 

RW18 14 ----- fertilized thinned 4062781.808 768970.9275 4062781.016 768996.8461 4062761.436 768997.1856 4062761.775 768971.4935 

RW18 15 ----- fertilized unthinned 4063587.488 769145.4904 4063579.322 769176.583 4063564.392 769173.8183 4063572.346 769143.7465 

RW18 16 ----- fertilized thinned 4062873.026 768875.088 4062878.904 768900.8913 4062863.96 768904.7768 4062857.983 768879.372 

RW18 20 ----- fertilized thinned 4062852.204 768930.1816 4062855.591 768950.9039 4062836.164 768954.7894 4062833.375 768934.5652 

RW18 21 ----- fertilized thinned 4064572.593 769666.0579 4064562.931 769689.8902 4064548.503 769681.5167 4064558.68 769658.0708 

RW18 22 ----- fertilized thinned 4064621.417 769703.4167 4064609.823 769728.6661 4064596.94 769722.2249 4064609.179 769697.2332 

RW18 23 ----- fertilized unthinned 4064749.198 769294.3413 4064749.748 769321.8775 4064731.712 769322.0152 4064731.781 769294.7543 

RW18 26 ----- fertilized thinned 4064726.315 769614.4414 4064717.362 769634.5303 4064700.549 769626.1236 4064709.611 769605.3796 

RW18 27 ----- fertilized thinned 4064610.725 769619.8103 4064598.486 769647.5073 4064588.567 769640.8085 4064600.161 769613.2403 

RW18 28 ----- control and thinned 4064799.589 769418.1166 4064783.824 769433.7434 4064770.745 769420.3195 4064787.266 769404.0731 

RW18 29 ----- fertilized thinned 4063194.002 769582.8687 4063181.082 769607.9597 4063166.804 769599.44 4063179.116 769574.3022 

RW18 30 ----- fertilized thinned 4064887.532 769401.6604 4064881.997 769422.2189 4064862.173 769417.1357 4064865.957 769396.6338 

RW18 31 ----- fertilized thinned 4063790.084 768991.6443 4063794.215 769022.1604 4063779.426 769022.9116 4063775.765 768992.0198 

RW18 45 ----- fertilized thinned 4062967.838 768775.4871 4062983.583 768797.0918 4062974.01 768803.3094 4062958.042 768782.0177 

RW18 46 ----- control and thinned 4062932.735 768809.1846 4062946.565 768830.6328 4062933.727 768840.0784 4062920.367 768818.3171 
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Site Plot TPH/block treatment 
1 2 3 4 

Northing Easting Northing Easting Northing Easting Northing Easting 

RW18 47 ----- fertilized unthinned 4062867.872 768793.8021 4062878.298 768814.331 4062862.847 768825.4599 4062851.557 768805.2011 

RW18 48 ----- fertilized thinned 4062751.568 769358.5148 4062740.07 769379.0126 4062722.238 769369.7636 4062732.904 769348.8492 

RW18* 7 ----- fertilized thinned 4063525.859 769476.2053 4063515.985 769501.3055 4063502.855 769493.3617 4063513.061 769467.3236 

RW19 1 ----- fertilized 4146597.453 706408.8282 4146615.784 706420.952 4146603.676 706439.2598 4146585.289 706427.0987 

RW19 2 ----- fertilized 4146544.095 706421.5319 4146593.578 706454.4772 4146581.736 706472.2636 4146532.152 706439.4701 

RW19 3 ----- fertilized 4146627.341 706436.6362 4146667.516 706463.2072 4146659.108 706475.921 4146618.932 706449.35 

RW19 4 ----- fertilized 4146608.842 706464.6064 4146646.22 706489.3275 4146638.653 706500.7699 4146601.274 706476.0488 

RW19 5 ----- fertilized 4146584.269 706544.6851 4146608.934 706560.9977 4146601.366 706572.4401 4146576.701 706556.1275 

RW19 6 ----- fertilized 4146495.833 706481.3685 4146545.416 706514.1619 4146533.644 706531.9611 4146484.061 706499.1677 

RW19 8 ----- fertilized 4146569.909 706490.5365 4146610.084 706517.1075 4146601.675 706529.8213 4146561.5 706503.2503 

RW19 9 ----- fertilized 4146516.528 706456.1631 4146553.907 706480.8842 4146546.339 706492.3266 4146508.961 706467.6055 

RW19 10 ----- fertilized 4146753.138 706944.1869 4146774.596 706964.5346 4146765.156 706974.489 4146743.699 706954.1413 

RW19 11 ----- fertilized 4146757.852 706799.7382 4146779.184 706799.172 4146780.761 706858.598 4146759.429 706859.1642 

RW19 12 ----- fertilized 4146759.914 706877.449 4146775.152 706877.0446 4146776.43 706925.1949 4146761.192 706925.5993 

RW19 13 ----- fertilized 4146725.853 706800.5874 4146739.567 706800.2235 4146740.756 706845.0215 4146727.042 706845.3854 

RW19 14 ----- fertilized 4146666.252 706759.7894 4146688.193 706759.2071 4146688.776 706781.149 4146666.834 706781.7314 

RW19 15 ----- fertilized 4146646.596 706800.5662 4146667.929 706800 4146669.506 706859.4261 4146648.173 706859.9922 

RW19 17 ----- fertilized 4146686.214 706799.5148 4146701.451 706799.1103 4146702.729 706847.2606 4146687.491 706847.665 

RW19 18 ----- fertilized 4146633.646 706737.7826 4146647.36 706737.4186 4146648.549 706782.2166 4146634.835 706782.5806 

RW19 19 ----- fertilized 4146423.359 706651.987 4146441.667 706664.0953 4146429.559 706682.4031 4146411.251 706670.2948 

RW19 20 ----- fertilized 4146458.773 706671.3887 4146476.573 706683.1606 4146443.779 706732.7441 4146425.98 706720.9722 

RW19 21 ----- fertilized 4146465.615 706600.2551 4146478.328 706608.6637 4146451.757 706648.839 4146439.044 706640.4303 

RW19 22 ----- fertilized 4146493.585 706618.7539 4146505.027 706626.3216 4146480.306 706663.7 4146468.864 706656.1323 

RW19 23 ----- fertilized 4146639.541 707030.7742 4146651.649 707040.0341 4146633.5 707063.765 4146621.392 707054.5052 

RW19 24 ----- fertilized 4146551.812 706932.208 4146599.032 706968.3217 4146586.068 706985.2726 4146538.848 706949.1588 

RW19 25 ----- fertilized 4146577.862 707002.0243 4146616.123 707031.2855 4146606.863 707043.3932 4146568.602 707014.1319 

RW19 26 ----- fertilized 4146527.736 706963.6881 4146563.333 706990.9123 4146554.999 707001.809 4146519.403 706974.5849 

RW19 27 ----- fertilized 4146426.894 706798.4283 4146445.202 706810.5366 4146433.094 706828.8444 4146414.786 706816.7361 

RW19 28 ----- fertilized 4146434.636 706756.0397 4146484.219 706788.8331 4146472.448 706806.6322 4146422.864 706773.8388 

RW19 29 ----- fertilized 4146360.167 706754.3409 4146400.343 706780.912 4146391.934 706793.6258 4146351.759 706767.0547 

                                                
* This plot was not used in the analysis for chapter 2 (modeling LAI) due to its low LAI (0.12) measured with Licor LAI-2000.  
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Site Plot TPH/block treatment 
1 2 3 4 

Northing Easting Northing Easting Northing Easting Northing Easting 

RW19 30 ----- fertilized 4146377.825 706727.626 4146415.203 706752.3472 4146407.636 706763.7897 4146370.257 706739.0685 

RW19 31 ----- fertilized 4146516.701 706653.0212 4146535.008 706665.1295 4146522.9 706683.4373 4146504.592 706671.329 

RW19 32 ----- fertilized 4146501.248 706691.2232 4146550.832 706724.0166 4146539.06 706741.8158 4146489.476 706709.0224 

RW19 33 ----- fertilized 4146552.716 706672.1005 4146592.892 706698.6715 4146584.483 706711.3853 4146544.308 706684.8143 

RW19 34 ----- fertilized 4146573.665 706739.0139 4146611.044 706763.7351 4146603.476 706775.1775 4146566.097 706750.4563 

SETRES 1 1 control 3863613.257 638635.7558 3863583.655 638646.9036 3863574.233 638617.7916 3863603.636 638607.4959 

SETRES 1 2 control 3863639.763 638560.8812 3863611.006 638572.1355 3863600.562 638544.3371 3863629.468 638532.9764 

SETRES 1 3 control 3863594.789 638576.9638 3863565.748 638588.2891 3863554.955 638559.6032 3863584.671 638548.9169 

SETRES 1 4 control 3863672.837 638615.5904 3863643.662 638626.5607 3863633.721 638597.6262 3863663.72 638586.9755 

SETRES 2 1 fertilized, irrigated 3863533.654 638596.9517 3863505.252 638609.4485 3863494.14 638581.6502 3863522.826 638569.2953 

SETRES 2 2 fertilized, irrigated 3863509.924 638683.4462 3863481.401 638696.156 3863469.451 638668.0381 3863498.35 638655.3993 

SETRES 2 3 fertilized, irrigated 3863550.375 638665.1873 3863521.59 638677.5066 3863510.045 638648.2526 3863539.76 638636.4659 

SETRES 2 4 fertilized, irrigated 3863484.114 638618.8318 3863454.931 638631.0801 3863443.57 638603.1753 3863472.475 638590.2297 

SETRES 3 1 fertilized, irrigated 3863595.392 638450.6108 3863567.161 638463.0721 3863556.801 638436.1258 3863585.771 638424.41 

SETRES 3 2 fertilized, irrigated 3863545.145 638469.8267 3863516.409 638481.4149 3863506.388 638452.3824 3863535.536 638440.753 

SETRES 3 3 fertilized, irrigated 3863567.985 638523.2842 3863538.646 638532.4769 3863530.787 638503.5771 3863560.232 638493.8863 

SETRES 3 4 fertilized, irrigated 3863617.759 638507.617 3863588.825 638518.1115 3863578.707 638490.7221 3863607.463 638478.3985 

SETRES 4 1 fertilized, irrigated 3863464.183 638567.2007 3863436.342 638581.0466 3863423.561 638553.6388 3863451.934 638540.3964 

SETRES 4 2 fertilized, irrigated 3863511.23 638545.1182 3863483.432 638559.2126 3863470.303 638532.3018 3863498.386 638519.2014 

SETRES 4 3 fertilized, irrigated 3863486.656 638490.338 3863459.433 638504.7165 3863445.409 638478.2317 3863473.456 638463.4272 

SETRES 4 4 fertilized, irrigated 3863438.82 638513.237 3863411.66 638527.509 3863398.51 638499.771 3863426.415 638485.783 
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Appendix AF: Plot coordinates from the dataset used in chapter 4*.  

Plot Radius Forest type Northing Easting 

2 var LP 4145368.677 704451.1704 

19 var PH 4145145.247 704653.8658 

33 var LP 4144947.095 704257.2504 

35 var UH 4144942.365 704660.4566 

42 var LP 4144950.527 706051.411 

47 var SP 4144940.293 707051.8397 

49 var LP 4144749.414 704250.999 

87 var LP 4144347.402 705448.2132 

109 var UH 4144139.491 706653.1936 

113 var UH 4143947.71 704250.6498 

115 var UH 4143981.274 704649.6836 

116 var UH 4143949.032 704851.0641 

126 var LP 4143949.651 706850.9102 

145 var LP 4143546.386 704239.4942 

LDABFB31 fix UH 4145079 704698 

LDABFB32 fix PH 4145117.75 704691.0625 

LDABFB33 fix UH 4145066 704736.0625 

LDABFB34 fix UH 4145055 704670.5 

LDABFB41 fix UH 4144867 704300.75 

LDABFB42 fix LP 4144909.75 704290.0625 

LDABFB43 fix UH 4144854.5 704338.5 

LDABFB44 fix UH 4144839.25 704269.75 

LDABFB51 fix UH 4144872.25 704497 

LDABFB53 fix UH 4144857.5 704538.8125 

LDABFB54 fix UH 4144844.75 704468.4375 

LDABFB61 fix UH 4144877.5 704700.375 

LDABFB62 fix UH 4144918.25 704692.6875 

LDABFB63 fix UH 4144866.25 704736.0625 

LDABFB64 fix UH 4144852.75 704672.125 

LDABFD11 fix LP 4144922.5 706700.4375 

LDABFD12 fix PH 4144964 706692.125 

LDABFD13 fix LP 4144910 706738 

LDABFD21 fix BH 4144935.25 706896.0625 

LDABFD22 fix BH 4144975.75 706889.125 

LDABFD23 fix SP 4144923 706933.25 

LDABFD24 fix PH 4144909 706864.625 

LDABFD31 fix SP 4144936.5 707102.625 

LDABFD32 fix SP 4144973 707094.5 

LDABFD33 fix SP 4144927.75 707136.0625 

LDABFD34 fix SP 4144912.25 707076.1875 

LDABFD41 fix LP 4144728 706707.3125 

LDABFD42 fix LP 4144766 706702.375 

                                                
* Radius = variable and fix radius plots (see section 4.3.1 for description), forest type = BH (bottomland hardwood), 
UH (upland hardwood), PH (pine-hardwood), LP (loblolly pine), SP (shortleaf pine), and VP (Virginia pine). See 
table 4.1 for description of other variables. Projected coordinate system: NAD 1983 UTM Zone 17N 
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Plot Radius Forest type Northing Easting 

LDABFD43 fix LP 4144715.5 706744.6875 

LDABFD44 fix LP 4144702.5 706676.5 

LDABFD51 fix VP 4144729.5 706869.4375 

LDABFD53 fix VP 4144720.75 706903 

LDABFD54 fix LP 4144706 706841.375 

LDABFD61 fix BH 4144738.75 707110.9375 

LDABFD62 fix LP 4144776 707110.8125 

LDABFD63 fix LP 4144726.5 707143.125 

LDABFD71 fix LP 4144530.5 706711.9375 

LDABFD72 fix LP 4144566.25 706706.375 

LDABFD73 fix LP 4144517.25 706746.25 

LDABFD74 fix LP 4144509 706681.375 

LDABFD81 fix VP 4144546 706911.8125 

LDABFD82 fix VP 4144582.5 706903.5 

LDABFD83 fix VP 4144537.25 706947.6875 

LDABFD84 fix VP 4144524.25 706886.3125 

LDABFD92 fix LP 4144596.75 707123.5625 

LDABFD93 fix LP 4144550 707164.75 

LDABFD94 fix LP 4144537.75 707102 

 


