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(ABSTRACT)

In this dissertation the question of whether or not a relative extension of number fields
has a relative integral basis is considered. In Chapters 2 and 3 we use a criteria of Mann
to determine when a cyclic quartic field or a pure quartic field has an integral basis over its
quadratic subfield. In the final chapter we study the question: if the relative discriminant
of an extension K/k is principal, where [K : k] = [ such that ! is an odd prime and & is

either a quadratic or a normal quartic number field, does K/k have an integral basis?
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Introduction

The fundamental question considered in this dissertation is whether or not a relative
extension of number fields has a relative integral basis. A number field is a finite extension
of the rational number field Q. An algebraic integer is a root of a monic polynomial with
coefficients in Z. The set of all algebraic integers in a number field K forms a ring and is
called the ring of algebraic integers of K. If K/k is an extension of number fields and R
and S denote the rings of algebraic integers of K and k respectively, then an R-basis for
S is called a relative integral basis for K over k. If k = @, or more generally, if £ has class
number 1, then the extension K/k has an integral basis.

When K/k is a relative quadratic extension; i.e. [K/k] = 2, Mann [ ] has given a
general criteria for a relative integral basis to exist. In Chapters 2 and 3 Mann’s criteria is
applied to obtain explicit results when K is either a cyclic quartic field or a pure quartic
field. Moreover, a relative integral basis is determined whenever it exists.

If an extension K/k has a relative integral basis then the relative discriminant of K/k
is principal. (See [21] for a definition of the relative discriminant.) However, this condition
is not in general sufficient. Thus the question arises as to when this condition is sufficient.
In the final chapter this question is studied when K/k is a normal extension of odd prime
degree, [, and k is either a quadratic or a normal quartic number field. Pierce [20] had

considered this problem for / = 3 (mod 4) only.



Chapter II: ON RELATIVE INTEGRAL BASES FOR CYCLIC
QUARTIC FIELDS

81. Introduction.

A necessary and sufficient condition is given for a cyclic quartic field to have an integral
basis over its quadratic subfield. An explicit integral basis is given for this relative extension
whenever it exists. For a fixed quadratic field k, it is shown that 1/29 of all cyclic quartic
fields which contain k have a felative integral basis. Here g denotes the 2-rank of the ideal
class group of k.

In [7], Edgar and Péterson give a criteria for a cyclic quartic field to have a relative
integral basis over its quadratic subfield. However, their criteria is not explicit and they
give no bases.

We use the description of cyclic quartic fields given in [10]). A criterion of Mann [17]
is used to determine when the extension has an integral basis. In [3], Bird and Parry have

obtained similar results for bicyclic biquadratic fields over their quadratic subfields.

§2. Notation.

L/M: An extension of number fields.
Ap/um: Discriminant of L/M.

K: A cyclic quartic extension of Q).

k = Q(v/D): Quadratic subfield of K.
€0 = 7 + tv/D: Fundamental unit of k.

P 0:if rteZ.
Tl 2if rtéZ

In [10], it is shown that K = Q(y/A(D + BV D)) where A is square free and odd, B > 0
and C > 0 with D = B? + C? square free and A, B,C € Z. Moreover, (A,D) = 1.

§3. Existence of an integral basis.
We first determine the relative discriminant of K/k.
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3

LEMMA 1. The relative discriminant of K[k is given by Ag/x = (A) where

4AVD ifD =0 (mod 2) or D=1 (mod 4), B =0 (mod 2),A+ B = 3 (mod 4)
A=4¢ AVD ifD=1 (mod4),B=0 (mod2),A+ B=1 (mod 4)

8AVD if D=1 (mod 4),B =1 (mod 2).
Proor: By [3]

9842D° if D =0 (mod 2)
Awrn = 2¢A’D% if D=1 (mod 4),B =0 (mod 2),A+ B =3 (mod 4)
K/Q= ) A2D®* ifD=1 (mod4),B=0 (mod 2),A+B=1 (mod 4)
2642D% if D=1 (mod 4),B =1 (mod 2).
Since

N D if D=1 (mod4)
Q=1 4D if D#1 (mod 4)

and

Agiq=N k/Q(AK/k)AZ/Q = A;(/kAi/Q’

the lemma follows.

LEmMA 2. K/k has an integral basis if and only if K = k(v/ A'e\/D) where

A = 2A if D=1 (mod 4) and B =1 (mod 2)
“ 1l A otherwise

and € is a unit of k with norm —1. In fact, we may choose € = €.

Proor: Mann [17] shows that K /k has an integral basis if and only if K = k(v/A) for some
generator A of Ag/x. By Lemma 1, this is equivalent to K = k( m) = k( m)
for some unit € of k, where a = 1 when B and D are both odd and a = 0 otherwise.

But K = k(1/ A(D + BVD)) = k(v/22 Aev/D) if and only if A(D+ BvD) = 2°Aev/Ds?
for some s € k. Equivalently, B + v/D = 2%s?. Taking norms gives —C? = B> - D =

(2%)2Ny/q(€)(s8)?, so € has norm —1.
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Since k(y/ A(D + BVD)) = k(\/2¢Aev/D),€ > 0, so € = € for some integer i. Since ¢
has norm —1, i must be odd so k(v/2¢Aev/D) = k(\/?“AeoQD).
For the remainder of the article, we will assume, unless otherwise stated that N(e) =

—1. Recall that o = r + tv/D and 2%/2r, 25/t are integers with § = 0 or 2.

LemMA 3. If 25/2(r 4+ i) = (u 4 vi)3(X + Yi) in Z[4] with X + Yi square free and X > 0

then

T < { VD +XVD) if6=0

k(y/D +|Y|VD) if§=2.
Moreover, when D =1 (mod 4),X =6§/2 (mod 2) andY =6/2+ 1 (mod 2).
Proor: Note that k(vevD) = k(VtD +r/D) = k(\/2'5t(25t2D+25/2r\/25t—2D))
k(v/A1(Dy + B1v/D;)) where A; = 2%¢,B; = 28/2r and Dy = 2%#*D. Also, D, — B? =
262D — 2672 = 25 = C? where C; = 2°/2. Since By + Cyi = 25/3(r + i) = (u+ vi)*(X 4+ Yi),

it follows that 2°¢2D = D; = B} 4+C} = (u?4v?)}(X%+Y?). Since X +Y'i is square free and
has no rational factor (because 2%/2(r + i) has none), it follows that X2 + Y2 is also square
free. Thus 25/%t = u? + v? and X? + Y? = D. Moreover, By = X(u? — v?) - Y (2uwv),C; =

X(2uv) 4+ Y(u? — v?) and D; = (u? 4 v?)2D. It follows from [10, p. 5-6] that

k(\/ VD) = ky 41(D1 + Biv/Dr)) = k(4 41(u2 + 0?)(D + XVD))

= k(y/26226/2(D + X /D)) = k(y/25/2(D + X VD))
KvVD+XVD) ifé=0
- { k(y/D +|Y|VD) ifé=2.
If D is odd, then —25 = N(26/2. ¢) = (26/2r)% — (25/2t)2D. Thus 25/%t = u? + 4% is

odd, and hence u? — v? is also odd. Since 25/% = C; = X(2uv) + Y (u? — v?), we see that

Y=2/2=6/241(mod2). Thus X =X2=D-Y?2=1-Y =6/2 (mod 2).

THEOREM 1. If D is odd then K/k has an integral basis if and only if B+C' divides 25/2(r+1)
in Z[i]. If D is even then K[k has an integral basis if and only if r + i = (u + vi)%(B £ C1)

for some u,v € Z.
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ProOF: As in Lemma 3, write 25/2(r 4 i) = (u + vi)%(X 4 Yi), where X > 0. Let Z = X
or |Y| according as § =0 or § = 2 and set Z' = v D — Z2.

If K/k has an integral basis then Lemmas 2 and 3 show that
K = k(y/ A(D + BVD)) = k(\/ A'«V'D) = k(y/ A'(D + ZV'D)).

Unless both B and D are odd, Lemma 2 shows that A’ = A. Theorem 1 of [10] shows that
B+ Ci = i%/%(X + Yi). Moreover, when D is even, § = 0,50 B+ Ci = X + Yi. If D and

B are both odd then A’ = 2A. It follows from Lemmas 2 and 3 and Theorem 2 of [10] that

k(\/A(D + BVD)) = K = k(y/24(D + Zv/D)) = k(y/A(D + ZVD)).

Thus B + Ci = (i)!~¥/3(X £ Yi).

Conversely, assume D is odd and B+ Ci divides 2%/%(r+1), so 2°/?(r+4) = (z +yi)(B+
Ci) for some z,y € Z. Taking norms, we obtain 2°t2D = 25(r2 +1) = (22 + y?*}(B*+C?) =
(z2 + y2)D so z% + y? = (25/2t)2. Since 25/3(r + i) is not divisible by a rational prime,
neither is z + yi. Because its norm is a square, z + yi = i®(w + 2i)? with b = 0 or 1 and
wz € Z. Thus

(w+20)%(B+Ci) ifb=0

25/2(7- +1i)= ib(w + zi)2(B +Ci) = { (w + 2i)2%(£C + Bi) ifb=1.

Hence
B+ Ci (mod 2) when =10
C + Bi (mod 2) when b=1.

Also, when § = 2, note that 25/2(r + i) = 1 (mod 2). If §/2 # b (mod 2) then B = 1

2/2(r 4 i) = {

(mod 2), so by Lemmas 1 and 3 and Theorem 2 of [10],

k(VEe) = (\/2,450\/5) =k (\/2,4(1) + c«/ﬁ)) —k ( A(D + BVD)) = K.
When 6/2 = b (mod 2), B =0 (mod 2), so k(v/Aeo) = k(v AeoV/D) = k(y/ A(D + BVD)) =

K. Thus Lemma 2 applies to show K /k has an integral basis.
Finally, if D is even and r+¢ = (u+ vi)?>(B £ Ci) then by Lemmas 1 and 3, k(v/A€) =
k(v/ Aeov' D) = k(1/ A(D + BVD)) = K. Thus Lemma 2 again applies.



§4. An Integral Basis.

In this section an explicit integral basis is given for K/k whenever it exists. Let s =

1(2r+1).

THEOREM 2. If D is odd and K = k(\/m) then 1, \/m is an integral basis for
K/k. If K = k( \/m) then an integral basis for K/k is given by
i) 1,3(*CE0VD 4 /4o /D) if D=1 (mod 4), A =3 (mod 4) and § = 2
ii) 1@ ifD=A+7r=1(mod4)and =0
iii) 1, \/m otherwise.

ProoF: First assume that D is odd and K = k(v/24eVD) = k(\/2A(D + Z+/D)) where

by Lemma 3, Z = X or |Y| according as § = 0 or § = 2. By Theorem 2 of [10] K =
k(1/ A(D + Z'V/D)) where Z' = /D — Z2. By Lemma 3, Z is even so Z’ is odd. Hence, by
Lemma 1, Ag/; = (SA\/E). Since the field basis 1, \/m has discriminant 8Aegv/D,
it is an integral basis for K/k.

For the remainder of this proof, we have K = k( m) In cases (i) and (ii), it is
sufficient to show that the second element of the basis is an integer. In (i) this is equivalent

to showing

w =y AeVD (mod 2)

or

(M)z = AeoVD (mod 4).
2

The last congruence can be restated in the form

%(1—2—12 +(-1°VD) = A(r + /DD = AP +2A(2T)‘/5 (mod 4).

This can be proved by showing 2 = A(2t)D (mod 4),(-1)° = A(2r) (mod 4), and
% —(-1)* = A(2t)D — A(2r) (mod 8). First note that since 2r and 2t are odd integers

—4 = N(2¢0) = (2r)? = (2t)2D =1 - D (mod 8),s0 D = 5 (mod 8). Also, from the proof
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of Lemma 3, 2t is the sum of two squares, so 2t =1 (mod 4). Therefore,

A2t)D=A=3= % (mod 4).

Also, since s = 1(2r + 1), (-1)° = -2r = A(2r) (mod 4).

The congruence values of D (mod 16) will be used to prove the final condition. f D = 5
(mod 16) then —4 = (2r)? — D(2t)? = (2r)? — 5(2t)?> (mod 16). Since 2r and 2t are odd,
their squares are 1 or 9 (mod 16). It follows that (2r)? = (2t)? (mod 16) and 2r = +2t

(mod 8). Hence,

4 (mod 8) if 2r =2t (mod 8)
2 (mod 8) if 2r = -2t (mod 8).

But %’2 —(1)* =3 — (-1)* (mod 8) has the same value.

A(2t)D — A(2r) = A(10t — 2r) = {

Similarly, when D = 13 (mod 16),—4 = (2r)% — (2t)?D = (2r)? + 3(2t)? (mod 16), so

that (2r)% = (2t)? + 8 (mod 16). Hence 2t + 2r = 4z for some odd integer z. Thus

(8t +42)A=0 (mod 8)if 2r =2t (mod 4)

A(2t)D ~ AQ2r) = (10t - 2r)A = { (12t — 42)A =6 (mod 8) if 2r = —2¢ (mod 4).

Also,
1+D (-1 =7 (-1) = 0 (mod 8) if 2r =2t (mod 4)
2 - | 6 (mod 8)if 2r= -2t (mod 4).
In (ii), we first note that —1 = —r% — 2D implies r is even and t is odd. Since ¢ is the sum

of two squares, t = D = 1 (mod 4). Thus AepvV'D = AtD + Arv/D = A+ r =1 (mod 4),
so VAeVD = 1 (mod 2) and hence m@ is an integer. In (iii) we only need to
show that Ag/; = (4AVD). First, assume D is odd, A + r = 3 (mod 4) and r,t € Z.
From the proof of Lemma 3, r = (u? — v*)X — 2uvY with 7, X and exactly one of u or v
even, so r = X (mod 4). Thus, A+ X = A+ r = 3 (mod 4), so Lemmas 3 and 1 show
A = (4AV/D). When D is odd with A = 1 (mod 4) and r,t ¢ Z then Y is even by
Lemma 3. Since —4 = (2r)? — (2t)?D = (2r) - (2)A( X2 +YH) =1- (Y2 +1) = -Y?
(mod 8), we have Y = 2 (mod 4). Thus A + |Y| = 3 (mod 4), so Lemmas 3 and 1 again
show Ak = (4AV'D).

When D is even, Lemma 1 shows that Ay = (4AVD).



§5. Class Number Considerations.
In this section a connection is established between the existence of an integral basis for
K/k and the class number of k. In Theorem 3, a new proof of Theorem 1 of 7] is given,

while Theorem 4 strengthens the results of Theorem 2 of [7].
THEOREM 3. If k has odd class number then K/k always has an integral basis.

ProoF: If h(k) is odd then D =2 or D = p=1 (mod 4) with p prime. Thus N(¢) = -1
and D can be expressed as a.' sum of two squares in a unique way. When D = 2,B =1
and ¢ = 1+ V2, so k(m) = k(y/A(2 + v2)) = K. Hence by Lemma 2, K/k has an
integral basis.

Assume now D = p = B2 4+ C2. Since X2+ Y? = D, and the representation of D as a
sum of two squares is unique, B £ C¢ and X + Y'i are associates. It follows from Lemma 3

and Theorem 1 that K/k has an integral basis.

THEOREM 4. Assume h(k) is even and that D = p,...p,(n > 2) with py,...,p, distinct
primes, p; = 1 or 2 (mod 4). If N(&) = +1 then K/k never has an integral basis. If

N(eg) = —1 then the ratio p of cyclic quartic extensions K/Q such that K/k has an

1

integral basis to all cyclic quartic extensions K/Q which contain k is 271__1 = 3; where g is

the 2-rank of the ideal class group of k.

Proor: If N(e) = +1 then Lemma 2 shows K/k never has an integral basis.

Assume next that N(e) = —1 and D is odd. Then D = B2 + C?, with B # C, can be
expressed as the sum of two squares in 2"~! ways, so there are 2" distinct fields of the form
k(1/ A(D + Bv/D)) for any fixed odd integer A. If X + Yi is determined as in Lemma 3,
then by Theorem 1, only k(1/A(D + Xv/D)) and k( \/A(D + |Y'|v/D)) have integral basis

over k. Thus p = % = 5i5. Since N(€) = —1,n — 1 = g is the 2-rank of the ideal class

group of k (see Satz 106 and 107 of [12].)

Assume now that N(¢) = —1 and D is even. Since h(k) is even, D # 2. Here
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D = B? + C?, with B # C, can be expressed as the sum of two squares in 2”2 ways.
Hence for any fixed odd integer A, there are 2*~! fields of the form k(y/A(D + BV/D)). By
Theorem 1, there is only one field K such that K/k has an integral basis. Thus p = 2_1—_1

and as above g =n - 1.

§6. Examples.

1. D =1105 = 5-13-17 €0 = 28488+857v/1105 r+i = 28488+ = (29—44)%(32+9i).

By Theorem 1 K = k(\/A(1105+ B+/1105)) has an integral basis over k for B = 9
and 32, but does not have a basis for B = 4,12,23,24,31 and 33. For B = 32,K =
k( m) by Lemma 2, so by Theorem 2, a basis is
{ 1@ if A=1 (mod 4)
1,VAevVD ifA=3 (mod 4).
For B=9,K = k(m) by Lemma 2, so by Theorem 2, a basis is 1, \/m.
2. D=1189 =29-41 € = (25689 + 745V/1189) 2%/2(r + i) = 25689 + 2i = (27 -

4i)%(33 4 10i). By Theorem 1, K = k(\/A(1189 + B+/1189)) has an integral basis over
k for B = 10 and 33, but not for B = 17 and 30. For B = 10, K = k(m) by
Lemma 2, so by Theorem 2 a basis is
1,12 + /4¢V/D) if A=3 (mod 4)
{ 1,V AeoV/'D if A=1 (mod 4).
For B = 33, K = k( m) by Lemma 2, so by Theorem 2, a basis is 1, m.
3. D =2210 = 2-5-13-17 € = 474+ v2210 r +i = 47 + i. By Theorem 1,

K

k(\/A(2210+ B+/2210)) has an integral basis over k for B = 47, but not for
B = 1,19,23,29,37,41 and 43. For B = 47, K = k( Aeo\/ﬁ) by Lemma 2, so by
Theorem 2, a basis is 1, \/m.

4. D = 221 = 13 -17 0 = 3(15+ v/221) has norm +1, so no cyclic quartic field

containing £ = Q(v/221) has an integral basis over k.



Chapter III: ON RELATIVE INTEGRAL BASES FOR PURE
QUARTIC FIELDS

§1. Introduction.

A relative extension of number fields may or may not have an integral basis. Let L
denote the Galois closure of a pure quartic field and K, k be subfields of L such that
[K : k] = 2. Explicit necessary and sufficient conditions are given for K/k to have an

integral basis and a basis is determined whenever it exists.

§2. Notation.

IANYII'S discriminant of M/K.

Apmyk(21,72,...,Z0): relative discriminant of z1,z2,..., Zn.

fs 9, h: positive, squarefree, relatively prime integers such that f > 1 and h is odd.
n=/fg@h%, 7= Fh, 0= V/fg?h

a_{(1+i)n g — odd
“10gn - even

o =17

=_ { (=17 f,g~odd
(FH)n  forg—even

k1= Q(V/FR)

k2 = Q(v/-FR)

ks = Q(v=1)

Ky =Q(n)

K2 =Q((1+9)n)

K3 = Q(vVfh,v-1)

L=Q(nv-1)

B;, b; (i=1,2): ideals of K; and k; respectively, whose square is 2, if they exist.

10
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I: the ideal of ky with 12 = (h).

p1-p2 =(2): prime ideals of k; when fh =1 (mod 8) such that p; ramifies in K, when
g is odd.

;31.- p2 = (2):  prime ideals of k; when fh = 7 (mod 8) such that p, ramifies in K, when
g is even.

p="p1, 0=
PPy =P prime ideals of K; which ramify in L when fh =1 (mod 8) and g is odd.
P P, =p,: prime ideals of K3 which ramify in L when fh =7 (mod 8) and g is even.
P, P: prime ideals of K, and K, lying over 2.
€ = a+ b/fh: fundamental unit of k.

j Yfe? h=1.
6=

/fg*hed  h#1and £ hisa principal divisor of k.
\ /—fg%he3 h #1and +2h is a principal divisor of k.

[ (g/2-m)(1—i)+2+/—f(g/2)?
1
4= (@9/2-M(A-9)+23/~1(g/2)*heg
1
(b-9/2=1)+(b-g/2+1)7+2/ f(9/2)*he3
\ 1

h=1and £2is not a principal divisor of k;.

h#1and £ h is a principal divisor of k.

+2h is a principal divisor of k;.

4

+o)(1—-4)+26 h=1
o
(ﬁw)_%)*'_” h#1and * hisa principal divisor of k.

. 1+?§7+9 +h is a principal divisor of k.
L0 49 is a principal divisor of k.
¢ = htedTEa where the signs are chosen according as g/2 = +1 (mod 4).
o = L+ (L+ieod
— 2 .
t: number of prime divisors of Ay /q.

p: for a fixed real quadratic field &y, p is the ratio of all pure quartic fields K such that
K, /k; has an integral basis to all those fields K; which contain &, for a fixed value of g.

~: used to denote that two ideals of a field belong to the same ideal class.



§3. Discriminants.

12

In this section we compute Ak, s, for i = 1,2, Ap/k,, for ¢ = 1,2,3 and Ay, .

THEOREM 1. The relative discriminants are given by:

Dgyv, =5 (9VTR)

[ (229v/fR)  fh #1 (mod 8),g — odd or

fh=1 (mod 4),9 — even

fh

= 3 (mod 8),9 — even

((¢/2)V'fR) fh =7 (mod 8),g — even
| p2(9VFR). - fh

=1 (mod 8),9 — odd

( (229v/-fR) fh=0 (mod 2),9 — odd
(229v/—fh) fh =3 (mod 4),9 — odd
A _J 29v~fh) fh=3 (mod 8) or fh =1 (mod 4)g — even;
Ka/ks = fh =5 (mod 8),9 — odd
p’((9/2)v=Fh) fh=7 (mod 8),9 — even
{ (9v/~fh) fh=1 (mod 8),g9 — odd
( (1) fh =3 (mod 4)
A _) P? fh =2 (mod 4)
LKy =\ (PP)? fh=1 (mod 8),g — odd
L (2) otherwise
[ (1) fh=1 (mod 4)
A p? fh =2 (mod 4)
L/Ka (PP)? fh=7 (mod 8),g — even
L (2) otherwise

AL/K, =4

TAV PR

\

( (1 +9)3%¢g/fR) fh =2 (mod 4),g9 — odd
(229v/fh)
(9V'FR)

((9/2)V/TR)
(29VfR)

fh =3 (mod 4),g9 — odd

fh =3 (mod 8),g9 — even or
fh =1 (mod 8),g9 — odd

fh =7 (mod 8),g9 — even
fh=1 (mod 4),g — even or
fh =5 (mod 8),9 — odd

((25f342h3) fh =2 (mod 4),9 — odd

(2°f3g%R3) fh =3 (mod 4),g9 — odd

(f39%h3)

(/9

fh =3 (mod 8),g — even or
fh=1 (mod 8),9 — odd
g°h%)  fh =7 (mod 8),9 — even

(22134%h3) fh =1 (mod 4),g — even or

fh =5 (mod 8),g — odd

ProoF: Integral bases for K;/Q and K,/Q are given in Ljunggren [15] or Funakura [8], so
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the discriminants of these extensions are easily computed. Using the formula

BDk,/@ = Niy@(Lk k)i 0

and the factorizations of (2) given by Parry [19], the values of Ak, /x, are readily determined.

Since 1,i form a basis for the extension L/Kj it follows that Ay x |(2)? for j = 1,2.
When fh = 3 (mod 4), no prime divisor of (2) in K, ramifies in L, so Ap/x, = (1).
Similarly, Ap/k, = (1) when fh'=1 (mod 4).

Since Apjg = Nk, /o(AL/k,) - A}’_/Q it follows that

2 =
e[S 21
Ki/Q = :
Therefore Nk, /o(Ar/k,) = 2% when fh =1 (mod 4) and Nk, ,o(Dr/k,) = 2* when fh =3
(mod 4).

Using Hilbert’s formula for the different it follows that all prime divisors of 2 in K
which ramify in L must divide Ap/k, to the same exponent. Using this fact and the
factorization of (2) given by Parry [19] we have that Ar x, = (2) if fA =1 (mod 4) and ¢
is even, or fh =5 (mod 8) and g is odd, and Ay, = (P1P;)? when fh =1 (mod 8) and
g is odd. Similarly, Ak, = (2) if fh =3 (mod 4) and g is odd or if fA =3 (mod 8) and

giseven, Ap g, = (P1P2)2 when fh =7 (mod 8) and g is even.

We now show Ay gk, = P? when f = 2 (mod 4). We have that (¥/fg2h3+ / f3g2h)? +

gh/Th = 2gh/Fh + 2fgh + fg/fR = 4/fh = 0 (mod 4) so (/fg2h3 + ¥/ f3g%h) +
iv/ fg?h3 =0 (mod 2). Thus ( Vfg’ha+vf;gah+iwgahs) is an integer of L. Now,

IR + 4 F3ath + i/ falh?
N (1, VfgPh3 + \/fzg +iv/fg ) — —gh /TR
Since (ged((2)?%, (-ghv/=fR))) = P2%,Apk,|P?. But Hilbert’s formula for the different
implies P?|Ap g, so Ap/k, = P2. Using a similar argument it follows that Ay g, = p?

when f =2 (mod 4).
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To compute A k,, we use the formula

Nk,jo(DLik,) - Dk, 19 = Driq = Ni,yo(Dr/k,) - Bk, /g

2*f2h?  fh # 2 (mod 4)
26f2h?  fh =2 (mod 4)
Hilbert’s formula for the different shows that all prime divisors of the same rational prime

and the values of Ak, /g = { given by Bird and Parry [3]. Since

must divide Ay g, to the same exponent,

Ak, = Niyjo(Dryx,)Y 4A}(/,2 10/ A}{/,z/Q'

The values for Ay /i, follow from the formula

Arjky = Ny (Bryk,) - Do sis

h h
and the values of AK;/ka = { gfi)z) ;;h i z EZZS :;

given by Bird and Parry [3].
§4. Integral Bases.

In this section necessary and sufficient conditions for the existence of relative integral
basis for the quadratic extensions Ky/ky, K3/ke, L/K,, L/ K2, L/K3 and the quartic ex-

tension L/k3 will be given. In addition an integral basis is given for each extension when it

exists.

THEOREM 2. Necessary and sufficient conditions are given for the existence of a relative
integral basis for the given extension. In addition, an integral basis is given, when it exists.

(Note: Here p.d. means principal divisor.)
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Extension Kx/kl Ifz/kz L/K1 L/I\'z L/Ks
Condition
fh=2 (mod 4) thisa f=2 P=(x) P = (%) fh=2
g-odd pd. of k;
1,0 1, 1, (H7t)x 1) | g, YOHA0eV3
fh=3 (mod 4) +hisa h=1 Always B; = ($2) thor+2hisa
g-odd pd. of ky p.d. of &
1,0 1,0 1,2 1,(144)8, 1,6
fh=3 (mod 8) +his a h=1 Always By = (82) thor+2hisa
g-even pd. of k; c . p.d. of ky
1,6 Le 1,2 1,(344)8, 1,6
Ffh=17 (mod 8) +2his a fh=Tor Always PP, = (%) thor+2hisa
g-even p.d. of k; fh =15 with p.d. of ky
h=3o0r5
117 1v¢ lriP 17(%")*1 117
fh=1 (mod 4) +hisa h=1 By = (81) Always thisa
g-even p.d. of k; p.d. of kg
1,0 lLa L (418 1, 34 Lyg
fh =5 (mod 8) thisa h=1 B, = () Always +hisa
g-odd p-d. of k; p.d. of k;
119 L(li'%ﬁ) ly(ldqi)ﬂl lo_i;ﬂ lv'l’
fh=1(mod8) [ I-pa=({) Never PP, = (my) Always +his a
g-odd p.d. of k;
17"%1 1’(3:2&),,1 l)azi lr(

First, we need

LEmMMA. Let fh =3 (mod 4), ¢o = a + b\/fh and dh = €s® withd = 1 or 2 and s € ky. If
d =1 then a is odd and b = 0 (mod 4). If d = 2 then a is even and b is odd. In addition,
if fh =7 (mod 8) then a =0 (mod 4).

ProorF: Since fh =3 (mod 4), a,b € Z and s = u + vy/fh with u,v € Z. Thus
dh = €s? = (a + by/fh)(u + v/ fh)*
= [a(u?® + v?fh) + 2buvfh] + [b(u? + v fR) + 2auv] /fh.

Since h is odd, a is odd when d = 1. Since fh = 3 (mod 4), 1 = a? — fhd? = 1 — fhb?

(mod 8) so fhb? = 0 (mod 8). Thus b = 0 (mod 4). Suppose now d = 2 and note a # b
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(mod 2) when fh =3 (mod 4). If bis even, then a is 0odd s0 2 = dh = a(u?+v2fh) = u?—v?
(mod 4). Since the last congruence has no solution, a is even and bis odd. If fh = 7 (mod 8)

then

1=a’- fRb?=a?+1 (mod 8)

0 a2 = 0 (mod 8). Thus a = 0 (mod 4).

PrROOF oF THEOREM: First we use the criteria of Mann [17] to determine necessary and
sufficient conditions for the ex.istence of an integral basis. In order to determine an integral
basis when it exists, it is sufficient to give a basis consisting of integers which has discrimi-
nant equal to the field discriminant given by Theorem 1. Since the discriminant of a basis
is routinely calculated, it suffices to show the basis consists of integers in each case.

Using Mann’s criteria K3/k; has an integral basis if and only if Ag,/x, = (D) is
principal and K; = kl(\/l_J) for some generator D of Ak, /x,. From Theorem 1, this is
equivalent to dh = es? where d = g/fh/D, € is a unit of k; and s € k;. By absorbing
square factors into s, unless fh = 1 (mod 8) with g odd, we may take d = 1 or 2. Taking
norms gives, (dh)? = (s3)2. Thus +dh = s3, so £dh is a principal divisor of ;.

Conversely, if £dh is a principal divisor of kq, then (dh) = (3)(3) for some s € k;. Since
dh divides Ay, /g, all prime divisors of dh ramify in k;. Thus (s) = (3), so (dh) = (s?).
Hence dh = €s? for some unit € of k; and so K;/k; has an integral basis.

If dh # 1 then it is not a square in k;, so dh = s%¢ if and only if € is an odd power of
the fundamental unit. Thus we may choose € = €.

If g is odd and fh # 1 (mod 8) or if fh = 1 (mod 4) and g is even then 1,8 is an
integral basis for K,/k;.

If fAh = 3 (mod 8) and g is even then d = 1, so by the Lemma a is odd and b = 0

(mod 4). If +h is a principal divisor, then

6 = gv/fheo = agy/fh = (1+ fh+ gy/fh) = (147 (mod 4).
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Hence 1—'5’123'—0 is an integer of K; and 1, H’—-";ﬂ is an integral basis for K /k;.
When fh = 7 (mod 8) and g is even then K;/k; has an integral basis if and only if
+2h is a principal divisor of k;. From the Lemma b is odd and a = 0 (mod 4). Thus, if

+2h is a principal divisor of k;, then

(9/2)0/Fh = (~g/2)b = (%)2 B (%) 2
- (S=t)’ - () (02 )
= [(22) 4 (922 V] o,

2

Thus </ f(g/2)%he} = (gﬁgb-l + (9/22)b+1\/77i (mod 2), so
y = (9/2)b—1+ ((9/2)“4' 1)7 + 2+/f(9/2)*heg

is an integer of K;. Moreover 1,7 is an integral basis for K;/k;.
When fh = 1 (mod 8) and g is odd K;/k; has an integral basis if and only if p? is
principal and h = Aes? where p?2 = (A) and s € k;. The last statement is equivalent

to the statement Ip is principal. Now (2) = q;q; in k; where q; = (%ﬂﬂ) and
q2 = (bgzﬂ2) Note p = q; or p = qa. Since p* ~ 1~ q142, 91 ~ P ~ qz. Thus Ip is

principal if and only if I'q; is principal, say Iq2 = ({). To show that hﬂ@ is an integer
it suffices to show its relative trace and norm for K;/k; are integers. Since the trace, 2h/(,

is in the ideal Iq; it is an integer. Now CzNKl/k, (m@) = h(h - g/fh) € Izq% =

(¢)?, so the norm is an integer of k;. Since p(gv/fh) = Ag, | Dk, Ik, (1, @) =

(iyh@ fh) = q%(gv/fh), it follows that p = q; and that 1, EE@ is an integral basis
for I(l/kl
Next we consider K,/k,. Note that K = Q((1+ 1) \‘/W) = ky(1/2ghv/—fh). From

Mann’s criteria and Theorem 1, it follows that K,/k, has an integral basis if and only if

dh = +s? for some s € k, where (d) = (2gv/=fh)/Ak,/k,- By absorbing square factors
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into s we have d = 2,1, or p2. If fh is even or fh =1 (mod 8) with g odd the equation
becomes 2k = +s2. Hence f = 2. In the remaining cases with fh odd, except when fh =7
(mod 8) and g is even, the equation becomes h = +s?,s0 h = 1. When fh = 7 (mod 8)
and g is even the condition becomes p ~ I and p? = (o) is principal. Since Niyglo) =4,
this can happen only when fh = 7 or 15. Moreover, when fh = 15, h = 3 or 5.

When an integral basis exists, it is given by
1,/ —gV=2h if f=2
1,4/29v/—f if fh =3 (mod 4) and g is odd

1, \/(g/?)\/—_f if g is even and fh =3 (mod 8) or
fh=1 (mod 4)
1, LEV2VT+V=F o g (mod 8) and g is odd

1¢\/_+1‘—+11\/ :H;‘lwg?
h+ /=15 + G0, /op /15 + (=1, /150
1, 2 -‘14 2 A

if fh=7Tand g is even

if fh=15and g is even

where the + holds if and only if g/2 =1 (mod 4).

We next consider L/K;. When fh = 3 (mod 4) Ap/k, = (1). Since L = Ky(v-1),
Mann’s criteria holds so L/ K, has an integral basis. It is easily checked that 1, 3@ is an
integral basis.

When fh = 2 (mod 4) an integral basis exists if and only if P2 is principal, say P? = (1)
where 7 € K3, and L = K;(y/T¢) where ¢ is a unit of K;. The second condition is true if
and only if (—1)-s% = 7€ for some s € K;. Equivalently (s)? = () = P? or in other words
P is a principal ideal in K.

When P is principal, say P = (7) we have Ty g, ((lﬂ@) 7r) = (1 + \/77{) 7 and
Ni/k, ((l‘h@) 7r) =2k g2y 2‘/{7'”2 are integers of K since (r)* = (2).

When fh = 1 (mod 8) and g is odd, using Mann’s criteria, L/K; has an integral
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basis if and only if (PyP,;)? is principal, say (P1P2)? = (r), and L = Ky(\/T€) where
€ is a unit of K;. As in the previous case this is true if and only if P, P, is principal,
say PiP; = (7). Now Tp/g, ((@) r) = {/f_th3 -7 is an integer of K; and
Ni/k, ((@) w) = (M) n2. While determining the basis for K,/k; we saw
that p = (%@,2). It follows that 1+ gh%j € p? = (). So (ﬁiﬁ) - 72 is an integer
of K. Hence, (5@) -7 is an integer of L.

When fh =5 (mod 8) a,I'ld-g is odd or .fh =1 -(mod 4) and g is even, using Mann’s
criteria, it follows that L/K; has an integral basis if and only if By is principal, say B; =
(B1)- Now Tk, ((%) ﬂl) = [ and Nk, ((lizﬂ) ,31) = € are integers of K; where ¢ is
some unit of K;. So (%51) [1 is an integer of L.

Proofs similar to those for L/K give the results for L/Ks.

We now consider L/K3. Mann’s criteria shows that L/ K3 has an integral basis if and
only if L = K3 (\/m) = K3( dg\/ﬁe) where (d) = (AL k,/9v/fh) is determined
by Theorem 1 and € is a unit of K3. This condition is equivalent to dh = ¢ - s2 for some
8 € K3. By absorbing square factors of d into s, we may assume d = 1 + ¢ when f = 2
(mod 4) and d = 1 otherwise.

When f=2and h=1

V2(1 +4)
1+v2+i

: 4
has an integral basis. Since w* = ( Y (1+')9\‘//§§(1+‘/§)) = ig®(1+/2)? is an integer and 1,w

2
dh=(1+i)=(1+\/§)-( ) = ¢ 5?50 L/Ks

is a basis for L/ K3 with discriminant generating the field discriminant, it follows that 1,w
form an integral basis for L/ K.

When fh = 2 (mod 4), (2)(h)? = (s3)? so (2) is the square of a principal ideal of k;.
Thus, when fh # 2, Satz 13 of Kuroda [14] applies to show that ¢ = °((1 + i)\/g_g-)j for
some integers ¢ and j. By combining square terms, we may take ¢,j € {0,1}. If = 0 then

(1 4 i)k = i°s? so that 2h% = (s3)2. Hence v/2 € k; contradicting that fh # 2. Thus j = 1
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so h = i°,/% s%. Taking conjugates gives
(_i)c ’%32 = ¢¢ ’%)32

If ¢ = 0 then s? € k; so either sori-s € k;. But s > 0503 € k. But h = /% . $2,

s0 3% = (—1)°s%.

so by squaring and taking norms we obtain 4h* = (ss')%, a contradiction. If ¢ = 1 then
32 = —s? s0o s = #(1 £ i) for some t € k;. So h = +2,/%t?. Squaring and taking norms
again gives

ht = 4(tt')%.

Thus no solution exists when fh = 2 (mod 4) and fh # 2.

When fh # 2 (mod 4), d = 1 so the condition for L/K3 to have an integral basis
becomes h = es?. When fh # 3 either € = i°% or € = i°(1 + i),/5 where € is a unit of k;
and ¢ = 0or 1. If € = i°(1 + i),/ then i°s%(1 + i)y/2 = h = (-i)°(3)*(1 — i){/%. Thus
$2(1 4+ 1) = (1726)32%(1 — i) = (:~%)32%(1 4 i)(—i). So (s})2 = (i71~%¢). This equation has no
solution in K.

If e = € then 2 = s € ky. If s € k; it follows that +h is a principal divisor of k;. I
s ¢ k; we have ky(s) = K3 = ki(v/=1). So 2 = —¢2 for some t € k1. Again it follows that
+h is a principal divisor of k;. On the other hand if +A is a principal divisor of k; then
h = s%¢ for some €, s € k; where ¢ is a unit.

If € = i€ we have h = s%i€ so h = —3%i¢’. Hence s? = —3% = (i3)? and so s = %i3.
This implies s = z(1 £ ¢) for some z € k;. Then s? = +222%i and so 2h = 222¢’. Therefore
+2h = (2z)%¢. It follows that +2h is a principal divisor of k;. Note that since 2h and —2h
are not squares in k; we may choose € = ¢y. On the other hand when +2h is a principal
divisor of k; it follows that +2h = z2¢g for some z € k;. Therefore +h = (ILJH) 2 (t€0). Note
that the equation £2h = z2¢y does not have a solution for z € k; when fh = 1 (mod 4),

since then 2 is unramified in k;.
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When fh =3, h=1=1-12 Thus in this case L/K3 always has an integral basis and
h is a principal divisor of k;.

When +h is a principal divisor of k; we have seen that 6 = \‘/,_fgz—he?, € L. When +2h
is a principal divisor of k;, we have +2h = s2¢ for some sek;. Hence h? = (1%4-:')4 (—€3).
Thus +/fg2h® = 13/~ fg?he} = 1% - 6. So it follows that 8 € L.

It was shown while determining the basis for K1/k; that when fh = 3 (mod 8), g is
even, and *h is a principal divisor of k;, § =. 1_4_-12)12 is an integer of L. If £2h is a principal
divisor of k;, then by the Lemma a is even and b is odd. Thus, (1 + ¢)? = 2i = gbfhi +
agv/=Fh = geov/—fh (mod 4). So 1+i = {/—fg?hel (mod 2) and § = M is an
integer of L.

While determining the basis for K;/k; it was shown when fh = 7 (mod 8), g is

even, and *2h is a principal divisor of k; that 4 is an integer of L. When h = 1,

(9/2‘ f)z = (o/2ivT = (F@RPY (mod 4). Thus y = CHRDLYTGRY _

1414 2

(9/2-+/H)(1-)+2 /= F(a/2)?
4

is an integer of L. When h # 1 and *h is a principal divisor
2
of k1, since a is odd and b = 0 (mod 4), (ﬂ’%@) = (ag/2)ivVfh = (/- f(9/2)%hed)?
o-g/’)—:!]h 4/ 2he3
( )+ f(g/2)%hed _ (a~g/2—\/‘_fz)(1—i)+2‘/—f(g/2)°he’
= 4

14 . .
2 is an inte-

(mod 4). Hence v = 5
ger of L.

When fh = 1 (mod 4), g is even, and %h is a principal divisor of ki, (#)2 =
(—g/2)i-/fh-€, where e = 1if h = 1 and € = ¢ otherwise, which is an integer of L.

When fh = 5 (mod 8), g is odd and *h is a principal divisor of k; it follows that
N(e) = 1. Note that € = r + s/fh where r,s € Z with r odd and s = 0 (mod 4).
Now [(1 + ¢)eo8)?® = 2ieg/Fh = 2¢/=Fh = 1 - fh + 2/~ fh = (1 + @)? (mod 4). Thus
ﬂ(;_-i-i)ﬁ is an integer of L.

Finally, we consider the case fh = 1 (mod 8) and g-odd. Let ag + bov/fh = € =
{ €9 h # 1

1 het Note that since fh = 1 (mod 8), ag and by are integers. When *h is a
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principal divisor of k1, N(¢) = 1. Since a2 — b3 fh
and bo = 0 (mod 4). Thus (%@)2 = gag\/fh
(gao+\/—7)(14-i)+2</fg=—he=

a -5 = 1 (mod 8), ap is odd

(¥/fg%he?)? (mod 4). Therefore,

i

is an integer of L.

THEOREM 3. L/k3 always has an integral basis. A basis is given by

4D+ A1+ a(1+3) fh=2 (mod 4),9 — odd

2 ’ 2 '’ 2
1,7),1-;—”7,”-'-7") fh =3 (mod 4),9 — odd
— —_ . o — A-1l =
1,1-;:1;,1+r2)+1),1+3z+17+(1-{;1)17+(—1) 7 in Fh=3 (mod 8),g — even
14 140+ (9/2h0 1+ (9/2)fi+n+ ((¢/Dh + )7+ (1) D25
1 = _
e 2T+ 1) ) 4(1+9) fh =7 (mod 8),9 — even
].yaa }%1 2 -;la fh = 1 (mOd 4))g - even
— — . oN— _1\(h=-1)/2;%
1,1;"’,1+;+a,1+3’+a+(1+2a+( e fh=5 (mod 8),g — odd
1+i@ 1+a+gha 1— fgi+a+(gh+i)a+(-1)"Tia
1 = —od

ProoF: Since k3 has class number 1, L/k3 always has an integral basis. As in Theorem
2, it is only necessary to check that all elements of each basis are integers and that its
discriminant equals the field discriminant in each case. The latter is routine and will be left
to the reader.

When fh = 0 (mod 2) and g is odd, 7> = fh = —fh = (i9)? (mod 4). So 7 = 7
(mod 2) and thus (52'—’)'77 is an integer. Since (17-(1—*'2'&-5)2 = (fg/2;ghi) 7+ fgh(21+i) and

fg/2=gh =1 (mod 2), (iy%’ﬁ) 7 is an integer of L. Hence 1(1—4'2')+—; is an integer. Since
(7)? = fg/Fh = —fg/Fh = (in)? (mod 4), 7 = 17 (mod 2) and so (1) 7 is an integer
of L.

When fh = 3 (mod 4), (i7)? = —fh = 1 (mod 4). So i = 1 (mod 2) and therefore
3—*'25’1 is an integer of L. We also have that h = f2h = —f (mod 4) and thus 7? = gh\/fh =

—fg/Fh = (in)? (mod 4). Thus = i7 (mod 2) so ﬂ%’i is an integer of L.
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When fh = 3 (mod 8) and g is even, (1 + )2 = (1 + fh) + 2v/Fh = gh/fh =
7? (mod 4). Therefore 1 + 7 = 7 (mod 2) and thus ﬁ%ﬂ is an integer of L. Hence
(@) (ﬁgﬁ) = (1/4)[1 + ifh + n + (1 + i) + ih7] is an integer of L. Since fh = 3
(mod 4), (1/4)[1 + 3i + n+ (1 + )7 + (—=1)"3"i7] is also an integer of L.
Suppose now that fh = 7 (mod 8) and g is even. Since 72 = gh\/fh = (1 + (g/2)h7)?

(mod 8), it follows that l—w’zi(l(ﬂ%)h—ﬁ is an integer of L. Hence (”;'7) (1+",‘:’('1(i/‘.§)hﬁ) =

m[l + (9/2)fh%* + 1 + ((9/2)h + ©)7 + ih7] is an integer of L. Also, since g is even
(1+9)|7. Thus goh[(1+ (9/2)f1) + 1+ (9/2)h + )7 + i) - (=02 () =
L+ (9/2)f) +n + ((g/2)h + i)7 + (=1)A=1/23] is an integer of L.

When fh =1 (mod 4), 1% = 10 = bzﬂ is an integer. In addition f = fR? = h
(mod 4), so when g is even, a® = (g/2)ihv/Fh = (g/2)ifV/Fh = (ia)? (mod 4). Hence #
is an integer of L.

When fh =5 (mod 8) and g is odd then (1+@)? = (1- fh)+2v/—fh = 2ghy/=fh = o?

(mod 4). Therefore 1£2+% is an integer of L. Hence (1) (k%iﬁ) - (l—fh:')+a4;(1+i)a‘+hio=z

. -y — A-1 3
is an integer of L. Since fh = 5 (mod 8) it follows that (1+3’)+°+(1+;)°’+(_1)T'“ is an

integer of L.

When fh =1 (mod 8)and gis odd, (14+gh@)? = (1-fg?h3)+2ghv/—fh = 2gh\/— fh =
a? (mod 8). Thus 1—42;‘(’1—"_;_91’)‘—3 is an integer of L. Hence (1) (1;‘(’14_;52;'5) = RllTi)[(l -
fgh%) + a + (gh + i)@ + iha] is an integer of L. Since f and g are odd (1 + ¢) divides a.
So srkl(1 = fgi) + o+ (gh + )@ + iha] - (”—-(-—;Z) (g) = (1 - foi) +a +

(gh + i)@+ (—1)"3"ia] is an integer of L.

§5. Class Number Considerations.

In this section we explicitly compute the value of p, which we defined in Section 2, and
show that it is related to the rank of the 2—class group of k;. Corollary 3 of this section is
a variation on Theorem 2 of [8]. Here 1, — fh will be referred to as trivial principal divisors

of k; while all others will be called nontrivial.
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THEOREM 4. If N(€o) = —1 then

: { 0 if fh =1 (mod 8) with g odd and p3 £ (1).
e g7 Otherwise.

If N(eo) = +1 and there are no nontrivial odd principal divisors of ky, then p = 2.1_,. If
N(eo) = +1 and ky has a nontrivial odd principal divisor then

=5 if fAh=3 (mod 8), or fh =17 (mod 8) with g odd.

7o5 if fh=2 (mod 4), fh =5 (mod 8), or fh =1 (mod 8) and
p2 generates a strongly ambiguous class of ky when g is odd.

0 otherwise.

ProofF: To insure f > 1, fix a prime divisor q of fh and require it to divide f. Wheﬂ fhis
even we will choose ¢ = 2.

When N(e) = —1 then fh # 3 (mod 4) and Theorem 3.1 of Barrucand and Cohn
[2] shows that k; has no nontrivial principal divisors. If fA = 1 (mod 8) with g odd and
p2 £ (1) then it follows from Theorem 2 that K;/k; never has an integral basis. Otherwise,
there is exactly one value of h for which K;/k; has an integral basis and exactly 2¢~!
possible values for h, so p = 1/2t~1,

Assume now that N(e) = +1 and that k; has no nontrivial odd principal divisors.
Note this can only occur when fh =3 (mod 4). If g is odd or fh =3 (mod 8) with g even
then Theorem 2 shows that K;/k; has an integral basis exactly when A = 1. Now the two
nontrivial principal divisors n; and n2 are both even and we may assume ¢|n;. Thus when
fh =7 (mod 8) and g is even, K;/k; has an integral basis if and only if 2h = £n; > 0.
Since there are 2!~2 possible values for h, p = 1/2¢72.

Assume now that N(¢) = +1 and that k; has a nontrivial odd principal divisor. If
fh = 3 (mod 4) then both principal divisors n; and n2 must be odd and as above we
assume ¢|n;. If fh = 3 (mod 8) or fh = 7 (mod 8) with ¢ od(i then Theorem 2 shows
K, /kq has an integral basis if and only if A = 1 or £n; with the sign chosen so that A > 0.

Since there are 2t=2 possible values for h, p = 7,1_—, If fh =2 (mod 4), fh = 5 (mod 8)
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or fh =1 (mod 8) with g even, then as above there are exactly two values of A such that

K1/k has an integral basis. However, here there are 2'~! possible values for h, so p = 2,1_, .

Suppose fh = 1 (mod 8) with g odd and p, generates a strongly ambiguous class of k;.
Thus p2 ~ I where I is an ambiguous ideal of k;. This means I|(v/fk). Since (/fR) is a
principal ideal of k;, we can always choose I with (I,(q)) = 1. Now the principal divisor
(n2) satisfies J2 = (n2) for some ideal J of k;. Let IJ = J2J, where J; is a square free
ideal of k3. Then K,/k; has an integral basis precisely for the values h = hy and h = h,
where Ay > 0, hg > 0 and I? = (hy), JZ = (hs). As above p = 5. If fh =1 (mod 8) with
g odd and p; does not bélong to a strongly ambiguous class of k1, then pa # I or Ips # (1)
for any choice of I. Thus no extension K,/k; has an integral basis in this case. If fAh =7
(mod 8) and g is even, then since all principal divisors must be odd, it also follows that no

extension K,/k; has an integral basis.

CoROLLARY 1. Let u denote the rank of the 2-class group of k; and assume p # 0. If

N(e) = —1 then p=1/2*. If N(&o) = +1 then
2.—1_; if fh is the sum of two squares, or fh =3 (mod 4) and
k1 has a nontrivial odd principal divisor.
51: if fh=1,2 (mod 4) and is not the sum of two squares,or
fh =3 (mod 4) and k,; has no nontrivial odd principal divisors.

p:

ProoF: It is shown in Theorem 3.1 of [2] that u = ¢t — 1 or t — 2 according as fh is the sum

of two squares or not. The results are now immediate from Theorem 4.

CoRrOLLARY 2. If p # 0 and k; has odd class number then every extension K,/ky has an

integral basis.

Proor: Since k; has odd class number u = 0. If fh is the sum of two squares then ¢t = 1,
so N(eg) = =1 and p = 1. If fh = 3 (mod 4) then t = 2, so no nontrivial odd principal
divisors exist. Thus we always have p = 1, so K/k; always has an integral basis.

COROLLARY 3. For a fixed real quadratic field ky, K,/k; has an integral basis for all pure

quartic fields K containing kq, if and only if p # 0 and fh = 2, p, q, 29, q1¢2, or fh = 2p,
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p1p2 with N(eo) = +1, or fh = pq where xp and tq are principal divisors. Here the p’s

and ¢’s denote primes which are congruent to 1 and 3 (mod 4) respectively.

ProoF: The first condition is equivalent to p = 1. When N(e) = —1, then t = 1 so
fh = 2 or p. Since k; has N(¢g) = —1 for these values of fh, the converse also holds. If
fh=1,2 (mod 4) and is not the sum of two squares or fh =3 (mod 4) and no nontrivial
odd principal divisors exist then p = 1 if and only if ¢ = 2 which is true exactly when
fh =q,2q or ¢1q2. If N(&g) = 41 and fh is the sum of two squares, p = 1 if and only if
t=2or fh =2por pyp;. If fh =3 (mod 4) and k; has nontrivial odd principal divisors,
p =1if and only if ¢ = 3 so fh = pq. Here the nontrivial odd principal divisors must
necessarily be £p and +gq.

It should be noted that the requirement p # 0 in Corollaries 2 and 3 cannot be dropped.
For example, when fh = 321 = 3-107 the field k; has class number 3 and p; belongs to an

ideal class of order 3. Hence K;/k; never has an integral basis when g is odd.



Chapter IV: STEINITZ CLASSES OF ORDER 2 IN QUADRATIC
AND QUARTIC FIELDS

§1. Introduction.

If an extension M /K of number fields has an integral basis then its relative discriminant
Apyk must be principal. Since the converse is false, this gives rise to the question: Given
a number field K, does there exist an extension M of K such that Ay g is principal, but
M /K has no integral basis? - | |

If d is the discriminant of any K basis for M then Apr/x = B%*(d) for some ideal B of
K. The ideal class of B is called the Steinitz class of M with respect to K. Artin [1] has
shown that M has a relative integral basis over K if and only if the Steinitz class for M/ K
is principal. Since Apg g is principal whenever the Steinitz class of M/K has order 1 or 2,
the question can be rephrased as: Does there exist an extension M/K having Steinitz class
of order 27

In [20], Pierce claims to have shown that if K is a quadratic or normal quartic number
field with even class number and ! = 3 (mod 4) is a prime then there exists a normal
extension M /K of degree | which has no integral basis, but Aps/x is principal. If such a
field M exists, Pierce says K has property (*) with respect to I. We shall also refer to the
conditions in this manner. In this article, the primary concern is whether or not K has (*)
for primes [ = 1 (mod 4), but the main results are valid for all odd primes. For quadratic
and cyclic quartic fields, new proofs of Pierce’s results are given. However, in the case of
bicyclic, biquadratic fields, we discovered Pierce’s result was not quite correct. A corrected

version of his result is given in the last section of this article.

§2. Notation and Terminology.
K: Algebraic number field.
l: 0dd rational prime which does not divide [K : Q].

27
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H =~ Zyoy X Zgsy X -+ X Zpea X H': Ideal class group of K where by > b > --- > b, and
H' is the maximal subgroup of H of odd order.

C1,C2,...,Cyp: Basis for the 2-Sylow subgroup of H so that C; generates a cyclic sub-
group of H of order 2%. '

A Prime ideal of K in C;.

(a;) = Ain Q.

H: Subgroup of H that consists of all elements C such that C(~1)/2 has odd order.
K’ 2-part of the Hilbert elass field of K-

Ky: Subfield of K’ corresponding to H;.

Apyne Discriminant for M /N.

[ —1=2¢].

¢: Primitive [-th root of unity.

2%y, 2°r: Ramification indices of l in K and K(() respectively where l; and r are odd.
2¢2l, = [K(¢) : K] where [ is odd.

L: a prime ideal of K(() lying over (I).

L=CLNnK.

vo: the 2-adic valuation on Q.

§3. Preliminary Results.

In [16], Long showed that for a fixed odd prime I, an ideal class of K is a Steinitz class
for some normal extension of degree [ over K if and only if it is of the form C(=1)/2 where
C is a class containing a prime divisor of ! or a prime of K which splits completely in K(().
He also showed that the classes of K which are Steinitz classes for some normal extension
of degree ! form a subgroup of the ideal class group of K. Hence, K has (*) for ! if and

only if this subgroup contains an element of even order.

ProPosITION 1. If eg > by then K does not have property (*) with respect to l. (Here l

may divide [K : Q].)
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ProoF: If C € H then C""1)/2 has odd order. Hence K does not have (*) with respect to

l.

For the remainder of the article K/Q will be a normal extension. Let I and Iy denote

the inertia fields for £ over Q) and K respectively and I; denote the inertia field for L over
Q.
LEMMA 2. The inertia fields satisfy IN K = I and IK = I.

ProoF: Let Ly = LN = LN 1. Since L; is unramified over @, I; C I. Since L; ramifies
totally in K, [ = INn K. Since K/I is a normal extension, [IK : K] = [I : I;]. Since
I/I is a normal extension, L does not ramify in I. Thus the different of I/I; is relatively
prime to L;. Since the different of IK/K divides the different of I/}, it is also relatively
prime to L. In particular, L does not ramify in K, so IK C Iy. Suppose IK ;Ct Io. Let
Lo = LN Iy and let I’ denote the inertia field of Lo over I. Since Lo is unramified over I K,

[I': 1> [lo:IK]> 1. But LoN I’ is unramified over Q, so I’ = I. Thus IK = I,.
LEMMA 3. The 2—part of the ramification index of L over Q is determined by e = max{eo, € }.

Proor: Since I 1 [K : Q], G(IK/I) ~ G(K /L) is cyclic of order 2¢*/;. Hence there exists
a unique subfield J’ of IK with I C J' and [J’ : I] = l;. Since £ N I is unramified over
@ and (1) is totally ramified in Q({), IN Q(¢) = Q. Thus [I({) : I] = I -1 and some
prime divisor of (I) in I ramifies totally in I({). Since ! + [K(() : Q], G1 = G(K({)/I)
is cyclic and hence G; ~ Z3. X Z,. Since ly = [J’ : I] is odd and 2% |l -1 = [I(¢) : I],
2% | [J'(€) : J']. Also, 2¢|[K(() : I] implies 2°|[K(¢) : J']. Since G is cyclic there exist
unique subfields Jo C J'(¢) and J C K(¢) with [Jo : J'] = 2% and [J : J'] = 2°. Because
e > max(eg,e1), Jo € J and IK C J. Also, since [J'({) : J'] is a divisor of ¢(I) = 2%,
[Jo(¢) : Jo] = [J'(C) : J,] is a divisor of lo and hence is odd.

Since G(J/J') =~ Zse, either IK C Jyor Jo C IK. If Jo C IK then [Jo(¢)NIK : Jo] is

both odd and a power of 2. Thus Jo({)NIK = Jo and so [K({) : IK] = [Jo(¢) : Jo] is odd.
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Hence e = 1p[K({) : I] = vo[IK : I] = e1. f IK C Jo, then K(¢) C Jo(¢) = J'(¢) € K(¢),
so J'(¢) = K(¢). In this case, eg = 12[J({) : I] = v2[K({) : I] = e.

LemMma 4. Let K C F C K(() with [F : K] = 2%. Then L does not ramify in F if and only

ifd<ei+e—e.

Proor: If e(L/L) denotes the ramification index of £ over L then vy(e(L/L)) = e — ;.
If T is the largest subfield of I, which contains K with [I : K] being a power of 2 then
[T: K] =2%"¢ Since G(K(C)/K) is cyclic, d < e1 + ez — e if and only if F C I. But

F C I if and only if F C I if and only if L does not ramify in F.

COROLLARY 5. Ifeg < e; and K C F C K(() with [F : K] = 2¢ then F/K is unramified at
.
ProoF: Since eg < €1, € = €1 50 €; + e2 — e = e3. Since [K(() : K] = 2%l with I3 odd,

d < e; so Lemma 4 applies.

CoroLLaRY 6. IfQ(C)NK = Q and K C F C K(¢) with [F : K] = 2% where d < e; then
F/K is unramified at (I).

ProoF: Since Q({)NK = @, e; = eg so e; + e3 — e = min(e;, ez2) by Lemma 3. Since d < ¢;

and d < ez, Lemma 4 applies.

LEmMMa 7. When eg < by, K does not have (*) with respect to ! if and only if K; C K(()

and LU-1/2 s in a class of odd order for all prime divisors L of (1) in K.

Proor: By Long [9] we need only show that K; C K(¢) if and only if PU~1)/2 is in a class
of odd order for all prime ideals P of K which split completely in K({). Now, K1 C K(()
if and only if the set of primes which split completely in K(() also split completely in Kj;.
Since a prime P of K splits completely in K if and only if P~1)/2 belongs to a class of

odd order, the result follows.

THEOREM 8. If by > eg or by > eg + €1 + e — e then K has (*) with respect to .
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Proor: If not then by Lemma 7, K; C K(¢). Since G(K({)/K) is cyclic, it follows that
H/H, is cyclic. Since Hy = Y . 3 2%7°% Zou x 30y .oy Zg»i x H' and H/H, is cyclic,
it follows that by < eg— 1 and vy ([H : Hy]) = by —eo +1 < e; + e; — e by Lemma 4. The

result now follows.
CoroLLARY 9. If L ramifies totally in K({) and by > eg then K has (*) with respect to l.

ProorF: Since L ramifies totally in K({), e = e; +e;. Thus eg = €9+ €1 +e3 —e, so Theorem

8 applies.

COROLLARY 10. If e = ey + €2 and by > ep then K has (*) with respect to l.
CoRroLLARY 11. Ifl does not ramify in K and b, > eg then K has (*) with respect to l.
Proor: Immediate from Corollary 9.

CoROLLARY 12. Let M be the subfield of Q(¢) such that [M : Q] = 2. If M C K and

b1 > eg then K has (*) with respect to l.
ProoF: If M C K then e; = e and e; = 0 so Corollary 10 applies.

THEOREM 13. Let K be imaginary and H ~ Zyo X H' with0 < b—ep+1 < €1 + ez —e.

Then K does not have (*) with respect to | if and only if L=1)/2 js in a class of odd order.

Proor: Let Jo denote the maximal subfield of Iy which has degree a power of 2 over K.
Then Jo C K’ and [Jp : K] = 2*¢27¢, Since [K; : K] = 20+ withb; —ep+1 < e;+e;—e
and G(K'/K) is cyclic, K1 C Jo C K(¢). By Lemma 7, K does not have (*) with respect

to [ if and only if LU-1/2 is in a class of odd order.

COROLLARY 14. Let K bereal and H ~ Z,o x H' with0 < b—eg+1<ej+e;—e. Ife; <e
orb—eg+1< ey +e;—e then K does not have (*) with respect to l if and only if L(=1)/2

is in a class of odd order. If ey = e and b— eg + 1 = e; then K has (*) with respect to l.

Proor: If e; < e then e; + €2 — e < e; so Jy is real and the proof of Theorem 13 applies. If

b—eo+ 1< ey +ey—ethen Jy can be replaced with its maximal real subfield in the proof
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of Theorem 13. If e; = e and b—eg + 1 = e3 then [Ky : K] = [Jo : K] = 2. Thus Jp is the
maximal subfield of K(¢) with degree over K equal to a power of 2. Hence Jy is imaginary.

Since K, is real, K, ¢_ K(() so by Lemma 7, K has (*) with respect to [.

THEOREM 15. Assume that L(=1)/2 js in a class of odd order. Suppose b; > by > 0, by < eg,
and by = eg+t with0 <t <e;—1whene; =eand Kisreal,and 0 <t < e;+¢€; —e
otherwise. Let Ko be the unique subfield of K' N K(¢) with [Ko : K] = 2!*! and Hg be the
subgroup of H corresponding to Ko. Then K has (*) with respect to ! if and only if Hy

contains an element of order 2°°.

Proor: Since by = ep +t and b2 < eg,

Hy = 21700, X Zgsy X --+ X Zooa X H'

I~ Zgb,—i-x X Z2bq X oo X Z2bn x H'.

Now [H : Hy] = 2!*! = [H : Ho] and K' N K(¢)/K is a cyclic extension. By Lemma 7, K
has (*) with respect to [ if and only if Ky # Ko or equivalently, H; # Ho. But |Ho| = |H4|,

so Ho # Hy if and only if Hp contains an element of order 20—t — 9o

PROPOSITION 16. Assume that LU~1/2 js jn a class of odd order. Suppose K is real, e; = e,

by > by >0 and by < eg = by — ez + 1. Then K has (*) with respect to l.

ProoF: Let Ky be the subfield of K'(¢) such that [Ky : K] = 2¢2. From the proof of Theorem
15, [K; : K] = 2°. By Lemma 7 it follows that K has (*) with respect to [ if and only if

K, # K. But Ko is imaginary so Ko/K is a ramified extension. Hence K; # Ko.

CoroLLARY 17. If in addition to the hypothesis of Theorem 15, [Ko : K| = 2 then K has

(*) with respect to l if and only if A; stays prime in Ko for some i > 1.

Proor: Note that A; stays prime in Ko for some ¢ if and only if C; ¢ Ho. So Aj; stays

prime in Ko for some j with b; = b; if and only if Ho contains fewer elements of order 2b:
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than H. Since [H : Ho] = 2 this is true if and only if Ho has an element of order 2%'. The

result now follows from Theorem 15.

For the remainder of the article K¢ and Hy will be as defined in Theorem 15.

§4. Quadratic Fields.

In this section we specialize to the case where K = Q(\/zi-) is a quadratic field. If b; < eo
then Proposition 1 shows that K does not have (*) with respect to I. If b; > eg and ! does
not ramify in K then Corollary 9 shows that K has (*) with respect to . Hence we may
assume that ! divides d, which will be assumed to hold for the remainder of this section.
Thus we have e; = 1, e = ep and e2 = eg — 1 or eg according as K C Q({) or not. Set § =0
or 1 according as K C Q(({) or not. If b1 > e + & then Theorem 8 shows that K has (*)
with respect to I. Thus we need only consider the case b; = ¢g and K ¢ Q(¢). When I =3
(mod 4), o = 1 and Theorem 8 shows that K has (*) with respect to ! unless H ~ Z; x H'.
Assuming H has this form, Corollary 14 shows that K has (*) for  when K is real. If K is
imaginary then K = Q(v/=1d;) where d; > 1, so L and hence L#~1)/2 belongs to a class of
order 2. Theorem 13 shows that K has (*) for I. This is Pierce’s result for quadratic fields.

If I =1 (mod 4), by = eg, by = 0, e3 = €p and €; = 1 then LU~1/2 is principal. Thus
Theorem 13 or Corollary 14 applies to show K does not have (*) with respect to I.

For the remainder of this section we shall assume that ! = 1 (mod 4), by = eg, 0 <
by < ep and [ ramifies in K, but K # Q(V/1). It follows that K(v/I)/K is an unramified

extension and that K(v/7) is the field Ko described in Theorem 15.

ProposiTION 18. K has (*) with respect to ! if and only if the subgroup Ho of H corre-

sponding to Kg contains an element of order 2% .
Proor: This is immediate from Theorem 15.
THEOREM 19. K has (*) with respect to l if and only if (&I".) = —1 for some i > 1.

Proor: First assume that (ai) = —1 for some ¢ > 1. If (al—l) = 1 then C; belongs to Hp,
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so Ho contains a class of order 2%:. Thus K has (*) with respect to I. If (al—l) = -1 then
neither A; nor A; split completely in K(v/1), so neither Cy nor C; belongs to Ho. Since
[H : Ho] = 2, C1C; belongs to Ho and C1C; has order 2. As above K has (*) with respect
to l.

Conversely, assume that (ai) =1 for 2 < i £ n. Thus, for each ¢ > 1, C; belongs to
Hy. If Hp contains an element of order 2% then Ho = H, contradicting that [H : Ho] = 2.

Thus Hp contains no element of order 2>* and hence K does not have (*) with respect to I.

REMARK. Ifl =5 (mod 8) we need only use Theorem 19 when H ~ Z4 X Za X ---X Zyx H'.
In this case C,,...,C, are ambiguous classes which are not in the principal genus. If 2
ramifies in K then since (3) = —1, K does have (*) for I. There are numerous examples
where this happens, for example d = —65 and | = 5 or 13. Here H ~ Z4 X Z;. For
d=-2755=-5-19-29, H = Z4 X Z; and K does not have (*) for | = 5, but has it for

1 = 29.

CoroLLARY 20. The imaginary quadratic field K = Q(v/—d) has (*) for the prime [ if
and only if 22 + dy? = 47dpz%" has a solution with do | Ag/q, do square free 1 # do # d,

(z,Ak/9) =1, (ﬁ) =-1,(z,y)=1,j=0o0r1and a< by If Agq is even then j = 0.

Proor: If K has (*) with respect to [ then Theorem 19 shows there exists a prime p which
has a prime factor p in K belonging to an ideal class of order 2° with b < b, and (i—) =-1.
Thus p?~" belongs to an ambiguous class of K, so p2*J = (ﬂl(z\,/—_—dl) wherea=b6-1,1

is an ambiguous ideal and z,y € Z. Taking norms gives
2% + dy? = £ dop™

where dp is the norm of I. Since I is an ambiguous ideal it can be chosen with do|Ag/q-
Since p?° is not principal, neither is I, so d, # 1 and dy # d. Since p was any ideal belonging

to the given class, it can be chosen relatively prime to Ag/q. Since we may choose I to be
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a square free ideal, do will be square free. Suppose some prime ¢ divides both z and y. If
g = 2 then j = 0. Thus ¢?|dop*, so q|p and hence ¢ = p. Thus p|p*'I, so p|p?" since
p t Ak/q- But p belongs to a class of order 2% > 1, so p splits completely in K. Thus
pt p* so(z,y) = 1.

Conversely, assume the quadratic form has a solution. Let z = p{* ... p§* where py, ..., p;
are distinct primes. Since z2 = —dy? (mod p;) and p; + A K/Q» €ach prime splits completely
in K. Say (p;) = p;,pi,- Now.(dp) = I? for some ideal of K and (mzé,'——dl) = IB for
some ideal B of K having norm 2%°. If (p;)| B then z = y = 0 (mod p;) contradicting that

(z,y) = 1. Thus after rehumbering the prime ideals
B=(p-p3---p5)" = A%

Now AT ~ (1) so A*® ~ I. Hence A belongs to an ideal class of order 2**!. Since
(L) = —1, the class of A does not belong to Ho. Since [H : Ho] =2 and a+ 1 < by, Hp

z

contains a class of order 21. Theorem 15 shows that K has (*) with respect to I.

Using the table of Oriat [18], we have determined whether or not Q(v/—d), with 1 <
d < 24572, has (*) with respect to ! for all primes ! = 1 (mod 8) which divide d with
I =1+ 2% (mod 25t!) and 1 < b, < €. Note the case b, = 1 can easily be decided
by Theorem 19. In the range of the table b, = 2. Hence there exist primes p and ¢ with
q| Ag/q and (5) = —1 such that the quadratic form in Corollary 20 has a solution with
z=panda=1.1If (%) = —1 then Corollary 20 shows that Q(v/—d) has (*) with respect
to l. Assume (117) = +1, then any prime divisor p of p in K belongs to Hp, but is not in the
principal genus. If the 2-rank of H is 2 then Hp contains no element of order 2% 5o K does
not have (*) with respect to I. When the 2-rank of H is 3, we need to determine whether or
not C3 belongs to Hp. In the range of the table b3 = 1, so there exists an ambiguous ideal
A for K/Q which is not in the principal genus. Let a = Ng/q(A4). If (ZI;) = —1 then K has

(*) with respect to [ by Theorem 19 while if ({) = +1 then it follows from Proposition 18



36

that K does not have (*) with respect to .

Invariants

d of H ! do P j z v [ (B)] « *)
2329 C) 137 2 3 | 0 37 T | -1 Yes
3262 (4.8) 233 34 17 | 0 28 1| 1 Yes
3358 (4.8) 73 23 13 | 0 23 1| 1 Yes
3934 (4.8) 281 14 a0 | 0 | 140 | 1 | Yes
4633 (4.8) a1 82 23 | 0 41 3 | 1 113 No
4658 | (4,16) 17 17 | 109 | 0 | 357 | 4 | 1 Yes
4718 | (4,16) 337 14 20 | 0 84 1| -1 Yes
4117 | (4,16) 281 17 37 | o | 136 |1 | -1 Yes
5134 (4.8) 17 2 53 | 0 22 1| 1 | 181 No
5986 (48) a | 2 1| 0 64 1| -1 Yes
5986 (4.8) 73 2 1 | o 64 1|1 41 No
6953 | (4,16) 17 2 59 | 0 3 1| 1 | 409 No
7769 | (4,83) 457 2 17 | o | 123 [ 1 | 1 17 No
8322 | (2:4.8) 73 73 23 | 0 73 2 | 1 3 3 | No
8638 (4,8) 617 34 29 | 0 56 1| -1 Yes
8738 | (4,16) 17 17 a7 | 0 51 2 | 1 | 257 No
9214 | (4,16) 17 17 1 [ o | 221 | 2| 4 Yes
9554 | (4,8,5) 281 2 93 | 0 88 1 | 1 Yes
10001 | (4.8,5) 73 2 1 | 0 9 1| 1 | 137 No
10001 | (4,8,5) 137 2 n | o 9 1 | 1 Yes
10074 | (24,8) 73 46 37 [ o | 280 | 1| 1 23 [ 23 | No
10549 | (2,4,8) 137 22 23 | 0 33 1| 1 Yes
10961 | (4,32) 97 194 | 4 | 0 [ 200 | 5 | 1 | 13 No
11326 | (48,3) 809 7 4 | 0 21 1| -1 Yes
12206 | (4,16,3) 17 34 [ 1713 | 0o | 1m0 | 9 | -1 Yes
12505 | (24.8) 41 5 59 | 0 70 1| 1 61 2 | No
12037 (4.8) 761 17 43 | 0o | 13 | 1 | A Yes
13022 | (4,16) 17 17 8 | 0 | 255 | 2 | 1 | 38 No
13073 | (4,16) 17 17 67 | o | 187 | 3 | 1 | 769 No
13143 | (4,16) 336 3 67 | 0 18 1 | 1 Yes
13359 | (4.83) 73 3 71 | 0 42 1| 1 61 No
13906 | (4,16) 17 17 3 | 0 | 187 | 2 | -1 Yes
15538 | (4,16) 17 3 a0 | 0 | 204 | 1 | Yes
15742 | (4,16) 17 17 61 | 0 17 2 | - Yes
16814 | (4,163) | 1201 2 107 | 0 78 1| Yes
18649 | (4,16) 17 17 37 |0 68 1| -1 Yes
18721 | (4,32) 97 194 | 103 | 0 | 1261 | 5 | 1 | 193 No
20658 | (2,4,8) 313 22 31 | 0 22 1| -1 Yes
20734 | (4,83) 1481 2 103 | 0 22 1| 1 Yes
21243 (4.8) 73 3 23 | 1| 35 | 1| 1 97 No
22654 | (4,16) 241 47 23 | 0 a7 1| -1 Yes
23137 | (4,16) 17 34 3 | o | 153 | 1 | - Yes
23137 | (4,16) 1361 | 34 37 |0 153 | 1 | -1 Yes
23377 | (4,16) 241 194 | 13 | 0 97 1| -1 Yes
23871 | (4.83) 73 109 | 103 | 0 | 545 | 6 | -1 Yes

§5. Cyclic Quartic Fields.

In this section we consider the case where K is a cyclic quartic extension of Q and k is

its unique quadratic subfield.
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ProprosiTioN 21. If K C Q(¢) orl 1 Akyq then K has (*) with respect to l if and only if
by > eo. FQ(VI) C K & Q(C) orl + Agyq but I|Agjq and by # eo, then K has (*) with
respect to | if and only if by > eo. If Q(V1) # k, but l| Ag/q and by # e or eg + 1 then K

has (*) with respect tol if and only if by > eg + 1.

ProoF: If l = 3 (mod 4) then e; < 1, so in all cases it follows from Lemma 3 that e = eq.
Thuseg +e1 +e2—e=e1+e2. f K C Q(¢) then e; =2 and ez = eg — 2 so €1 + €2 = eg.
Similarly, when [ t Ag/q, e1 = 0 and e; = € 50 €; + €2 = €o. If QWHCK ¢ Q(¢) then
e1=2,e3=€ —1s0oe; +e;=e+1. Whenlt Ag/q, but I|Ag/g, e1 =1and ez = ¢
so e; +e; = ey + 1. When llAk/Q and Q(\/i);é kthen e; =2, e3 =€ soe; +ex =€+ 2.

The results are now immediate from Theorem 8 and Proposition 1.

COROLLARY 22. Assume the 2-class group of K is cyclic, by = eg, ! is totally ramified in
K, but K ¢ Q(¢). Then K has (*) with respect to l if and only if | = 5 (mod 8) and the

prime divisor of | in k belongs to a class of even order or K is real with e = €;, and e3 = 1.

Proor: It follows from Theorem 13 and Corollary 14 that K has (*) with respect to [ if and
only if L=1)/2 or equivalently L2*”", belongs to a class of even order in K or K is real
and e = e; and ez = 1. Since [ is totally ramified in K, ! =1 (mod 4). Thus the condition
can only be fulfilled when ! = 5 (mod 8) and L? belongs to a class of even order. But L? is
an ideal of k.

Note that by Corollary 14, if e; = e and ez = 1, K has (*) with respect to I. The result

now follows.

CoROLLARY 23. Assume the 2—class group of K is cyclic, by = eo+1,1| Agjq but k # Q).
Then K has (*) with respect to l if and only ifl =5 (mod 8) and the prime divisor of | in

k belongs to a class of even order or K is real with e = e; and e; = 2.

Proor: Same as the previous Corollary.
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CoROLLARY 24. Assume the 2-class group of K is cyclic, by = eo, | Agyq, but 1 + Aygyq. If

=1 (mod 4) and [ stays prime in k then K does not have (*) with respect to l.

Proor: Since L(—1)/2 = (1)(\=1)/4 5 principal, Theorem 13 or Corollary 14 applies to show
K has (*) with respect to .

Pierce’s result [20] is now easily obtained.

CoRroLLARY 25. Ifl =3 (mod 4) then K has (*) with respect tol if and only if K has even

class number.

Proor: Since ! =3 (mod 4), !t A/q. Thus from Theorem 8 and Proposition 21, only the
case l|Ak/q@, by = 1 and by = 0 remains. If K is real then Corollary 14 applies to show
that K has (*) with respect to I. Hence we may assume that K is imaginary. Here L is in

a class of even order so it follows from Theorem 13 that K has (*) with respect to 1.

We now give eleven examples where | = 5 (mod 8) and the class group structure has
been determined, in all but one case, by Brown and Parry [5,6] to satisfy the hypothesis of
Corollary 17. In all these k¥ has odd class number and it was shown in the articles referred
to above that all ambiguous classes of K/k are strong.

For the first eight examples, K has the form Q(\/_-—de—\/ﬁ) such thatl|d,ptd,p#lisa
prime and ¢ is the fundamental unit of Q(,/p). In the last four examples, K = Q(\/—dT\/-—l-)

with d = p or 2p where p # | is a prime.

d Conditions (*)
1. ! p=5 (mod 8), (})4:—(%)4 =1 No
2. 2 p=5(mod8), (1) =-(8),=-1 No
g P =5 (mod 8), g-prime, ¢g=1 (mod 4), g# por [, No
(=(3), =~ (5) =1
4. lq p=5 (mod 8), ¢-prime, ¢ =1 (mod 4), ¢ # p or I, Yes
()= () =-(5),=-(5),=
5. lg p=1 (mod 8), ¢-prime, ¢ =3 (mod 4), ¢ # p or [, No
G=m=-®.()=-
6. 1 p=1 (mod 8), (’%) =1, (3)4 = (3) = (~=1)¥7/8 Yeu
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d Conditions )
7. lq P=2,¢=1 (mod 8), (3)‘ # (=10 = (?Mf) =1=-(} Yes
8. ) p=1(mod ), (3),=-(4) =1 No
9. 2p p=3 (mod 4), () = (§),=1 Yes

10. 2p p=1(mod4), () =(%),=-(%), Yes

11. P ~ p=3 (mod 4), (3),=(2) =-1 Yes

We prove examples 2 and 4. The proofs of examples 1, 3, 5 and 8 are similar to the
proof of example 2, and the p-ro.ofs of exam;;les 6, 7; 9, 10 and 11 are similar to the proof
of example 4.

In example 2,

HxZyx2ZyxZyx H.

Let A, P, L, and L, be the prime ideals of K lying above 2, p and ! respectively. By
Corollary 17 we need to show A, P, L; and L split completely in K(v1) = K (v/—2¢/p).
Since (ﬁ) = 1, p splits completely in Q(v/) and so P splits completely in K (/). Because
l-p=1 (mod 8), 2 splits completely in Q(+/I- p). Since 2 stays prime in Q(,/p) and ramifies
in K, A must split completely in K (/7).

Now [ splits completely in Q(,/p) and ramifies in K. If we show [ splits completely
in Q(\/:m) then L; and L2 must split completely in K (m) Since (i)4 =
~1, 1 splits completely in Q(,/p) and gains degree two in Q(y/—¢,/p). Because | = 5
(mod 8), ! stays prime in Q(v/2). Thus ! does not split completely in Q(v/2, vp) Ifl
does not split completely in Q(m) then Q(,/p) is the decomposition field for [ in
the extension Q(v/2, \/_—W_;;)/Q Since Q(v?2, \/T\/—f))/Q(\/ﬁ) is not a cyclic extension [
splits completely in Q(/—2¢,/p).

We now prove example 4. We first show that

HzZ4XZ2XZ'2XZQXH’.

Let (I) = I -1 and (q) = a1 - q2 where I; and q; are ideals of k. Also let A denote the class
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number of k¥ and I* = (a + b\/p), = (a- by/P), ¢t = (c+d./p) and @ =(c- d,/p). Then

we have the following character table:

Norm\\Charscter /P L [} a0 92
v 1 [O) 1), G, ),
a+ b\/i : (;’;)4 (i) (E()fx : (%)4 z z (’;)
o | (), (®), OHOR =(3) :

e+dp | (3), v FOIEEOHOR

e—as [ (), | () v O) 06,

-(2),

where z is the quadratic character of a+b,/p modulo q; and y is the quadratic character

of ¢ + d,/p modulo I;. When (é) = (%)4 = - (5)4 = - (:—,)4 = 1 the table becomes

Norm \ Cheracter /P L b a 92
/D 1 1 -1 1 1
a+b/p -1 - (%), () x x
a-b/p -1 _(3), -(8), x x
c+d,/p 1 y y -1 -1
c—d/p 1 y y -1 -1

So exactly two ambiguous classes are in the principal genus and hence
H%Z4XZ2XZ2XZ2XH’.

If we show that L stays prime in K (V1) = K(\/—g¢,/p) then Corollary 17 applies to
show K has (*) with respect to . Now ! splits completely in Q(,/p) and ramifies in K. If we
show ! does not split completely in Q(,/—ge,/p) then L must stay prime in K(,/—ge,/p).
Since (%)4 = —1, I splits completely in Q(,/p) and gains degree two in Q(,/—¢€,/p). Since
we also have that (%) = 1, [ splits completely in Q(,/q,/P). Therefore I does not split

completely in Q(,/q, /—¢€/P) so it does not split completely in Q(/—g¢\/P)-

§6. Bicyclic, Biquadratic Fields.
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We begin this section with an example which shows that Pierce’s result is not correct
in this case. That is, there exist fields with even class number which do not have (*)
with respect to a prime ! = 3 (mod 4). Let K = Q(+v/-15,/=7). Since the quadratic
subfields Q(v/—15), Q(v/105), Q(v/=7) of K have class numbers 2, 2 and 1 respectively, it
follows from the class number formula [14] that K has class number 2. Since K(v/=3)/K
is unramified, K(1/=3) is the Hilbert class field of K. Thus all primes of K which split

completely in K(1/—3) = K({) are principal. Also, 3 has only one prime divisor in K.

2
Since (%) = 41+:3 —= = —3¢ where ¢ is a unit of Q(V 105), it follows that the prime

divisor of 3 in K is also principal. Thus K has no nonprincipal Steinitz classes for the prime

3. Later, we give a corrected version of Pierce’s result.

ProposITION 26. If either | + Ay g or KN Q(¢) # Q then K has (*) with respect to | if
and only if by > eo. f KN Q(() = Q, !|Ag/q and by # eo then K has (*) with respect to

l if and only if by > eq.

ProoF: If b; < ey then Proposition 1 shows that K does not have (*) with respect to [.
The converse of the first statement follows from Corollaries 9 and 11. If K N Q(¢) = @Q, but

l| Agyq then e = e,e1 = 1,e2 = eo, so the last statement follows from Theorem 8.

CoRoOLLARY 27. Ifl =3 (mod 4) then K has (*) with respect to !l if and only if K has even
class number, h, and at least one of the following is satisfied:

(a) 1+ Akyq

(b) KNnQ(¢) #@Q

(¢) K is real

(d) h=0 (mod 4)

(e) 1 has exactly two prime divisors in K.

Proor: Suppose K is real and all of a,b, and d are false, but A is even. Then Corollary

14 shows K has (*) with respect to l. Thus it follows from Proposition 26 that we may
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assume that a,b,c and d are all false but A = 2(mod 4) and prove that K has (*) with
respect to ! if and only if [ has exactly two prime divisors in K. Since I = 3 (mod 4) and
h = 2(mod 4), it follows that H, = H' and [K; : K] = 2. Since | Ag/q, KNQ(() = Q
and K is imaginary K(v/=1)/K is unramified and hence K; = K(y/=I). First, assume that
!l has exactly one prime divisor L in K. Thus L has degree 2 and index 2 over l. Since
G(K1/Q) = Z3 x Z3 X Z3, L must split in K;. Thus L belongs to a class of odd order in
K. Theorem 13 shows that K- does not have (*) with respect to .

Assume now that [ has exactly two prime divisors L and L’ in K. Since [ must ramify
in exactly two quadratic‘ subfields of K, one of the imaginary subfields has the form k =
Q(V/-1d). Since /=1 ¢ K, d > 1. Note that k(~/=I)/k is unramified. Also, since h =
2(mod 4) the class number hg of k must satisfy either hg = 2 (mod 4) or hg = 4 (mod 8).
Moreover, hg = 4 (mod 8) if and only if K/k is unramified. Since d > 1, the prime divisor
of I in k must belong to a class of order 2. If hg = 2 (mod 4), it must gain degree 2 in
k(\/—_l), while if hg = 4 (mod 8), it must gain degree 2 in K;. In either case, both L and
L’ must gain degree 2 in K;. Thus L and L’ belong to classes of order 2 in K. Theorem 13

shows that K has (*) with respect to [.

CoROLLARY 28. Assumel =1 (mod 4), 1| Ag/q, Vi¢ K, H/H' is cyclic and eg = by. Then
K has (*) with respect to ! if and only ifl splits completely in some quadratic subfield k of
K and the prime divisors of l in k belong to ideal classes whose order is divisible by 2°° or

classes whose order is divisible by 2°°~! which lift to classes of the same order in K.

ProoF: Theorem 13 or Corollary 14 shows K has (*) with respect to ! if and only if L(-1)/2
or equivalently L2 belongs to a class of even order in K. Let & be the quadratic subfield
of K which is the inertia field for L over Q. Then L? is a prime divisor of [ in k. Note if an
ideal I of k lifts to a principal ideal (a) then I? = (a!*?) where (¢) = G(K/k). Thus L?

lifts to an ideal class of K of either the same order, or half the order of the class it belongs
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to in k. The result now follows.

COoROLLARY 29. Assume | = 1 (mod 4), I|Agyq, V1 ¢ K and H/H' is cyclic. Ifl is
unramified in a quadratic subfield k = Q(\/J) of K where k has even class number then
K = Q(/dy,/d) with dy|d and 1 < d; < |d|. Moreover, the 2-class group of k must be

cyclic.

ProoF: Sincel =1 (mod 4),/| Ag/q and \/i_¢ K, it follows that K(v/1)/K is an unramified
extension of degree 2. Since k has even class number, there is a divisor d; of d such that
k(+/d1)/k is unramified. Since K/k is ramified at the prime divisors of (!),k(v/d;) # K, so
K(+/d1)/K is also unramified of degree 2. Since H/H' is cyclic it follows that K(v/d;) =
K(V1). Thus Q(VI,Vd) N K # Q. Since VI,/d; ¢ K, it follows that \/Id; € K, so
K = Q(v/1dy,/d). Since K/k is ramified, the class group of k is embedded in that of K.

Hence k& must have cyclic 2-class group.

CoroLLARY 30. If in addition to the hypothesis of Corollary 29, K is imaginary then d =
—p # —2 or d = —pq where p # ¢ are primes with p = 1 or 2 (mod 4) and ¢ = 2 or 3

(mod 4). In either case d; = p.

Proor: If d > 0 then K is real, so d < 0. Since the 2-class group of k is cyclic, the
discriminant of k has exactly two prime divisors. Thus d has one of the values listed above.

Since k(+/d1)/k is unramified, we may choose d; = p.

REMARK. The hypothesis that H/H' is cyclic in the previous two Corollaries can be replaced

with the assumption that K (/1) is the genus field of K over Q.

CoroLLARY 31. Let K = Q(v/d,+/Ip) where ! =1 (mod 4) and d satisfies the conditions of
Corollary 30. Then Ko = K(¢)n K’ = K(v/1) and Hy is the subgroup of H generated by

ideals from the three quadratic subfields of K.

Proor: Note K({)N K’ is clearly contained in the genus field of K over Q. But the genus
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field is K (v/7) which is clearly contained in K(¢) N K'. It is shown in Kubota [13] that Hy

is as described.

CoRrRoOLLARY 32. Let K be as in Corollary 30 with l = 1 (mod 4) and eg = b; > b; > 0.

Then K has (*) with respect to ! if and only if one of the following conditions is satisfied:

(i) 1 splits completely in a quadratic subfield k of K and the prime divisors of | in k belong
to ideal classes of k whose order is divisible by 2° or classes whose order is divisible by
92¢0=1 which lift to classes of the same order in K.

(ii) Some quadratic subfield of K contains an ideal class of order 2%°*! or a class of order

2% which lifts to a class of the same order.

ProoF: Let k be the inertia field of L over Q. Since L? is a prime divisor of [ in k,
LU-1/2 = (12)(-1)/4 belongs to a class of even order in K if and only if condition (i) is
satisfied. When (i) holds, Lemma 7 shows that K has (*) with respect to /. In order to use
Theorem 15 to complete the proof, it needs to be shown that Hg has an element of order
2% if and only if (ii) holds. Since Hy is the subgroup of H generated by the ideal classes of

the quadratic subfields, this is immediate.

CoroLLARY 33. Let K = Q(y/=p,+/pl) where |l and p are primes with | = 5 (mod 8) and
p=1 (mod 4).
(a) If p=5 (mod 8) and (}) = —1 then H/H' = Z, X Z, and so K does not have (*) with
respect tol.
(b) If p = 5 (mod 8) and (2) = +1 then K has (*) with respect to ! if and only if
2y = (L) =
(= (), =1
(c) If p=1 (mod 8) then K has (*) with respect to l.
Proor: Let ko = Q(/Ip),k1 = Q(v/=p),k2 = Q(v/—=1) and h;(i = 0,1,2) denote the class
number of k;. It follows from Kuroda [14] that h = %hohlhz or h = hohyhs according as the

fundamental unit €g of ko has norm —1 or +1. Moreover, Halter-Koch [9] shows that the
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lift maps on the class groups of k; and k2 are injections and the lift map for ko has a kernel
of order 1 or 2 according as the norm of ¢ is +1 or —1. Congruence conditions modulo 4
on hg will be obtained from Brown [4] and on h; and h; from Hasse [11].

In part (a), N(eo) = —1 and hg = hy = h2 = 2 (mod 4). Thus b = 4 (mod 8). In
the field ko, (2) = p1p2 and (p) = p? for some prime ideals p;,p2 and p of ko. Since
Eo = Q(V1, /) is the Hilbert 2-class field of ko and (2) = (3) = () = -1, it follows
that p and P, belong to ideal classes of even order in kg while pp; belongs to a class of odd
order. Since p = (y/—p) becomes principal in K, p; belongs to a class of odd order in K.
Now p; = Pf,pg = P22 fdr some prime ideals P; and P, of K. But (2) = q? for some prime
ideal q of k;, so q = P, P,. Since q lifts to a class of order 2 in K, P; and P, generate
distinct cosets of H/H', each of order 2. Thus H/H' ~ Z3 X Z; and Proposition 26 shows
K does not have (*) with respect to .

In part (b), hy = hy = 2 (mod 4) and h = 0 or 8 (mod 16) according as (%), =
(%)4 = 1 or —1. Moreover, when h = 8 (mod 16),ho = 4 (mod 8) or hg = 2 (mod 4)
according as N(gg) = —1 or +1. Since the kernel of the lift map for kg has order 2 exactly
when N(go) = —1, it follows that condition (ii) of Corollary 32 is not satisfied when h = 8
(mod 16). Moreover, E; = Q(v/—1,/=p) is the Hilbert 2-class field of k1, so the prime
divisors of [ in k; belong to classes of odd order. Thus condition (i) is not satisfied either.
Since Eg = Q(\/i, /P) is contained in the Hilbert 2-class field Fp of ko and Fy/ko is a cyclic
extension of degree 2 or 4, it follows that a prime divisor p, of (2) in ko generates the 2-class
group of ko. In any case p; generates a class of even order in K. Since p, = P in K, P,
belongs to an ideal class of order divisible by 4. Since Ho/H' = Z; X Z3, it follows that
H/H' =~ Z4 X Z,, so Corollary 32 shows K does not have (*) with respect to I.

When (?)4 = (ﬁ)4 = 1 then hg = 0 or 4 (mod 8) according as N(gg) = —1 or +1.

In either case (ii) of Corollary 32 is satisfied. Thus either Proposition 26 or Corollary 32

applies to show K has (*) with respect to .
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In part (c), b1 = 0 (mod 4) so Proposition 26 or Corollary 32 shows K has (*) with

respect to l.

To simplify notation in the following result, we adopt the convention that (%) = (2)

for any odd integer n > 1.

CoRroLLARY 34. Let l,p and g denote distinct primes withl = 5 (mod 8),p =1 or2 (mod 4)
and ¢ = 2 or 3 (mod 4). Let K = Q(v-pg,VIp),ko = Q(VIp),k1 = Q(v/=pg),k2 =
Q(v/—lq) and h;(i = 0,1,2) denote the class number of k;.

(a) If(3) = (%) = (g’-) = —1 then H/H' is cyclic of order 4 and K has (*) with respect to

l

t

(b) If (B2) = —1 then K does not have (*) with respect to l if and only if (2) = +1, (})
®,- (:-,)4 = —1 and either (s) =-1lor (5) = +1 and h; = 4 (mod 8). Moreover,

when the latter condition holds H/H' ~ Z, or H/H' =~ Z4 X Z; according as (5) =1
or (f;’-) = +1.

(c) If (B1) = +1 then K does not have (*) with respect to l if and only if (8) = (}) =
+1,(?)4 (%)4 = —1,hs = 4 (mod 8) and either (s) = -1or (E) =+1 and h; =14

(mod 8). When the latter conditions hold H/ H' = Z4x Z; or Z4 according as (s) =+1

or —1.

Proor: Here h = %hohlhz and the lift map on the class group of ko is an injection. More-
over, the lift maps on the class groups of k; and k; have kernels of order 1 or 2 according

as the norm of ¢g is +1 or —1.

In part (a), ho = hy = hy = 2 (mod 4) so h = 4 (mod 8). Now (p) = p1Pp, splits
completely in k2 and each p; ramifies in K, say p; = P2. Since E; = Q(\/i,\/—q) is the
Hilbert 2-class field of k2 and (%) = —1, it follows that each p; belongs to an ideal class

!

of even order in k3. Moreover, since (;) = —1, go has norm —1, so the lift maps for k;

and ko are injections. Thus p; belongs to a class of even order in K and so P; belongs to a
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class that has order divisible by 4. Hence H/H' ~ Z,. Here [ splits completely in k; and
its prime factors in k; gain degree 2 in E; = Q(y/p,v/—¢)- Since E, is the Hilbert 2-class
field of k;, these primes belong to classes of even order in k;. Corollary 28 shows that K
has (*) with respect to [.

In part (b) when (’,3) = —1, then €9 has norm —1 and the lift maps for k; and k, are
injections. Since ($) = +1,h2 = 0 (mod 4), so h = 0 (mod 8). Here either Corollary 32
or Proposition 26 shows that K -has (*) with-respect to /. Similarly when (%), (;7)4 = +1,
ho = 0 (mod 4) and the result follows. Assume now that (',3)4 (£)4 = -1, then hg = 2
(mod 4) and N(eo) = +1. If, in addition, (2) = +1 then hy = 0 (mod 4). If hy = 0
(mod 8) then Hy contains an element of order 4, so Corollary 32 or Proposition 26 again
applies. Thus we may assume (s) = —-1lor (g) = +1 and h; = 4 (mod 8). Since the
lift map for k; has kernel of order 2, Hy contains no elements of order 4. Moreover, h = 4
(mod 8) or h =8 (mod 16) according as (g—) = -1or (g) = +1. In the latter case hy =4
(mod 8) so the Hilbert 2-class field F} of k; has cyclic Galois group over k3. Since K/ K is
ramified F; K/K is a cyclic unramified extension of degree 4. Here H/H' ~ Z4 X Z;. When
(s) = —1, the argument used in part (a) applies to the prime ¢ and the field ko showing
H/H' ~ Z,4. Since ! stays prime in k;, either Corollary 32 or Corollary 28 applies to show
K does not have (*) with respect to I. Thus we may assume (2) = (%) = +1. Similarly, if
any of (1})4 (%)4 =41, h =0 (mod 8) or h; =0 (mod 8) (and hence (s) = +1) then Hy
contains an element of order 4 and K has (*) with respect to l. Hence we may also assume
that (%), (%)4 = —1, hy = 4 (mod 8) and either (5) = ~lor (f}) = +1and hy =4
(mod 8). Here h =4 (mod 8) or h = 8 (mod 16) according as (s) = —1 or +1. Moreover,
H, contains no elements of order 4. Since h; = 4 (mod 8), the Hilbert 2-class field F3 of &k
has cyclic Galois group of order 4. As in part (b), H must contain an element of order 4,
so H/H' = Z4y X Z; or Zs according as (2) =+lor (5) = —1. Since E1 = Q(v/P,vV—q) is

q

the 2-Hilbert class field of k;, the prime divisors of ! in k; do not belong to classes having
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order divisible by 4. Thus Corollary 28 or Corollary 32 applies to show that K does not

have (*) with respect to [.

THEOREM 35. Let K = Q(/m, \/J) where m and u are squarefree, | = 1 (mod 4),K N
Q(¢{)=Q, and l + m-u. Suppose by = €9 and 1 < by < b,. Then K has (*) with respect to
l if and only if either

(a) LU-1/2 js in a class of even order, or

(b) for some i > 1, (;—"—) =1or0, (f—) = -1or 0,(;"—) = —1 or 0, and if a?|m - u then

(E&) = (1‘-‘%), i.e. A; is of degree 1 over Q and gains degree 2 in KW/D.

ProorF: If condition (a) holds then K has (*) with respect to . Assume condition (b) holds.
Here Ko = K(¢)N K’ = K(V/1). If C; € Ho then Theorem 15 shows that K has (*) with
respect to l. Thus we may assume C1 € Hp. Now condition (b) implies C; ¢ Hy also. Since
[H : Ho] = 2,C1C; € Hy, but C,C; has order 2. Thus Theorem 15 again applies to show
K has (*) with respect to [.

Now assume that condition (a) does not hold and for each i > 1 condition (b) is
not satisfied. Then for each i > 1, A; splits completely in K (\/i), so C; € Hp. Since
[H : Ho) = 2, Hy contains no element of order 2%*. Theorem 15 shows K does not have (*)

with respect to [.

In the next two corollaries all hypotheses of Theorem 35 except conditions (a) and (b)

are assumed to hold.
CoroLLARY 36. If (T) = —1 then K has (*) with respect to l if and only if (b) holds.
Proor: Since (3) = —1, L? = (I). Because I = 1 (mod 4), L~1)/2 is principal.

CoroLLARY 37. If the 2-part of the exponent of the ideal class group of Q(/m) divides

2%~2 then K has (*) with respect to I if and only if (b) holds.

Proor: Here LU-1)/2 is principal.
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Let K = Q(v6,v/=370),ko = Q(v6),k1 = Q(v/=370), and k> = Q(v/—555). Now,
ho = 1,hy =12,and hy =4. So h=(1/2)-1-12-4 = 23.3. The standard formula shows
that the number of ambiguous classes for K /kq is 4. Since hg = 1, these are precisely the
classes of order 1 or 2in K, s0 H = Z4 X Z7 X Z3.

In K, (5) = P?-P? = (14 v6)(1 - v6). Since (3) = 1t follows that Ps stays prime
in K (\/ﬁ ). This means the class of Ps is not in Hp, then it follows that the ideal class of
Ps is not a square. Hence, Ps-is-in a class of-order 2. Thus we can choose 4; = Ps.

When [ = 5,m = 6 and u = —74 with (‘T") = 1. Thus Corollary 37 shows K does not
have (*) with respect to 75. |

When ! = 37,m = 6, and u = —10 with (§) = 1,(=2) =0, (%) = -1 and 5% t mu.
Thus Corollary 37 shows that K has (*) with respect to 37.

Let K = Q(v/5,v/=33), ko = Q(v/5), k1 = Q(v/=33), and k; = Q(v/=165), ho = 1,h; =
4,and hy = 8. So h = % -1.4-.8 = 16. The standard formula shows that the number of
ambiguous classes for K/kq is 8. Since hg = 1, these are precisely the classes of order 1 or
2 in K. It follows that H =~ Z4 X Z3 X Z,.

In K, (11) = P - P} = (4 + V5)(4 — V5). Since (1) = —1 it follows that Py, stays
prime in K(v/=3). It then follows that the ideal class of Pj; is not a square. Hence, Py is
in a class of order 2. Then we can choose A; = Py;.

Since (&) = 1, Corollary 36 applies to show that K does not have (*) with respect to

l=235.
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