
Cem Ünsal Appendices 165

Appendix A. Glossary

A.1 Notations and Definitions

 a, b Learning parameters for linear reinforcement scheme
 α Set of outputs of an automaton
αi ith action of the automaton
α ()n Automaton action at time step n
β()n Environment response at time step n
ci Probability of (receiving) penalty for ith action (P-model

environment)
e j

r Unit vector of dimension r with jth element equal to 1

si Penalty strength for ith action
E[·] Mathematical expectation
E[· | pi(n)] Mathematical expectation given the probability pi(n)
F(·) State transition function for an automaton (Chapter. 3); mapping for

teacher responses (Chapter. 4)
f ij

β Probability of transition from state I to state j given the environment
response β

 g, h Continuous nonnegative functions of probability vector p
 G(·) Output function for an state-output automaton
 H(·,·) Output function for an automaton
 H(p) Update function used in nonlinear reinforcement scheme NLH

 k Learning parameter for nonlinear reinforcement schemes
 LI-P Linear inaction-penalty reinforcement scheme (a = 0)
 LR-I Linear reward-inaction reinforcement scheme (b = 0)
 LR-P or L=

R-P Linear reward-penalty reinforcement scheme with a = b
 L≠

R-P Linear reward-penalty reinforcement scheme with a ≠ b
 M(n) Average penalty to the automaton at time step n
 Mo Average penalty for a pure chance automaton
µ ηij ij, Coefficients of difference equation for action probabilities

 NLH Nonlinear reinforcement scheme with update function H
x k k th norm of vector x

 p(n) Action probability vector
 p ni () Probability of choosing ith action at time step n

 { }Φ = φ φ φ1 2, ,... s
Set of internal states of an automaton

Cem Ünsal Appendices 166

ϕ ψi i, Update functions of probability vector for nonlinear reinforcement
schemes

 r Number or automaton actions
σ ij

2 Covariance of pi(n) and pj(n)

θ Learning parameter for nonlinear reinforcement schemes
 V x() Lyapunov function

A.2 Acronyms and Abbreviations

AHS Automated Highway System
ASTM American Society for Testing and Materials
ATIS Advanced Traveler Information System
ATMS Advanced Traffic Management System
AVC Automatic Vehicle Control
AVCS Advanced Vehicle Control System
AVI Automatic Vehicle Identification
AVL Automatic Vehicle Location
DOT Department of Transportation
ELP Electronic License Plate
ETT Electronic Toll Tags
FHWA Federal Highway Administration
FLASH Flexible Low-cost Automated Scaled Highway (Laboratory)
GPS Global Positioning System
ITE Institute of Transportation Engineers
ITS Intelligent Transportation Systems
IVHS Intelligent Vehicle Highway System
LA Learning Automata
NAHSC National Automated Highway System Consortium
PATH Program on Advanced Technology for the Highway, California
PSA Precursor Systems Analyses
RIC Remote Intelligent Communications
RVC Roadside-Vehicle Communications
SAE Society of Automotive Engineers
TRB Transport Research Board
VRC Vehicle-to-roadside Communications
VORAD Vehicle On-Board Radar

Cem Ünsal Appendices 167

Appendix B. Proof of Convergence of the “Optimal”
Action with the Linear Inaction-Penalty Scheme LI-P

The linear inaction-penalty scheme LI-P can be derived by a modification of the general linear
reward-penalty scheme LR-P (See Section 6.1). This reinforcement scheme, as the name suggests,
does not update the action probabilities when the environment response is affirmative:

if n

for n
p n p n

p n p n j i

for n
p n b p n

p n
b

r
b p n j i

i

i i

j j

i i

j j

α α

β

β

()

()
() ()

() ()

()
() () ()

() () ()

=

=
+ =
+ = ≠





=
+ = − ⋅

+ =
−

+ − ⋅ ≠







0
1

1

1
1 1

1
1

1

 (B.1)

From the definition above, the expected value of the probability of an action at the next
step can be written as:

[] []

[]

[]

E p n p n E p n p n n p n

c E p n p n n n p n

c E p n p n n n p n

c p n b p n

i i i i k
k

r

k

k i i k
k

r

k

k i i k
k

r

k

i i i

() () () () () ()

() () () () ()

() () () () () ()

()() ()

+ = + ∧ = ⋅

= ⋅ + ∧ = ∧ = ⋅

+ − ⋅ + ∧ = ∧ = ⋅

= −

=

=

=

∑

∑

∑

1 1

1 1

1 1 0

1

1

1

1

α α

α α β

α α β

+
−

+ −





+ − + −

≠

≠

∑

∑

c p n
b

r
b p n

c p n p n c p n p n

k k
k i

r

i

i i i k k
k i

r

i

() () ()

() () () () () ()

1
1

1 1

 (B.2)

We will again consider the “ideal case” where the probability of penalty for the optimal action is
equal to zero, i.e., cα= 0 and 0 < cj≠α < 1. Then, for i = α, we have:

[]E p n p n c p n
b

r
b p n p n c p n p nk k

k

r

k k
k

r

α α
α

α α
α

α() () () () () () () () ()+ = +
−

+ −





+ + −
≠ ≠
∑ ∑1 0

1
1 12

(B.3)

Cem Ünsal Appendices 168

More explicitly:

[]E p n p n
b

r
c p n p n c p n bp n c p n

p n p n p n c p n p n

b

r
c p n bp n c p n p n p

k k
k

r

k k
k

r

i k k
k

r

k
k

r

k k
k

r

k k
k

r

k k
k

r

k

α α
α

α
α α

α
α

α
α

α

α
α

α
α

() () () () () () ()

() () () () ()

() () () () (

+ =
−

+ −

+ + −

=
−

− + +

≠ ≠ ≠

≠ ≠

≠ ≠

∑ ∑ ∑

∑ ∑

∑ ∑

1
1

1

2

2 n p n
k

r

) ()
≠
∑

α
α

(B.4)

Now, taking the expectation of both sides, and using the fact that p ni
i

r

()
=
∑ =

1

1, we obtain:

[] [] []
()[]

E p n
b

r
c E p n b E p n c p n E p n

E p n p n

k k
k

r

k k
k

r

α
α

α
α

α

α α

() () () () ()

() ()

+ =
−

− ⋅








 +

+ −

≠ ≠
∑ ∑1

1

1

2

 (B.5)

The simulations of the linear inaction-penalty scheme showed that the probability of the
optimal action converges to a steady-state value, as seen in Figure B.1 For such a steady-state
result, we can assume that:

[]

[] [] []

As n

E p n cons t p

E p n p n E p n E p n

p n

j j

→ ∞

= ≡

=

= ⋅














α

α α

σ
α

() tan

() () () ()

()
2 0 (B.6)

Conditions above state that, as we approach the steady-state value for the probability of
the optimal action, the expected value approaches the same value; the variance of the probability
is negligibly small and the probability of all other actions are independent of the optimal action’s
probability, although the sum of probabilities must be equal to 1. (Since the probability of the
optimal action is a constant value, this value and other probabilities can be treated as independent

variables.) Using these facts, the identity [] []E x E x x
2 2 2= − σ , and renaming E c p n Ak k

k

r

()
≠
∑






 ≡

α
,

we can simplify the equality in Equation B.5 as follows:

[] [] []
[] [] []

E p n
b

r
c E p n b E p n E c p n

E p n E p n E p n

k k
k

r

k k
k

r

α
α

α
α

α α α

() () () ()

() () ()

+ =
−

− ⋅ ⋅






+ + −
≠ ≠

∑ ∑1
1

2 2

 (B.7)

Or:

Cem Ünsal Appendices 169

p
b

r
A bpA p p p

b

r
A bpA

p
bA

bA r r

=
−

⋅ − + + − ⇔ =
−

⋅ −

⇔ =
−

=
−

1
0

1

1

1

1

2 2

() ()

(B.8)

where r is the number of actions. This proves that a learning automaton using the linear inaction-
penalty scheme in a stationary environment where there is one (and only one) “optimal” action is
not ε-optimal (except where r = 2). Furthermore, the probability of the optimal action converges
to 1/(r-1). Figure B.1 shows the probabilities of five actions where the optimal action’s
probability converges to 1/(5-1) = 0.25.

0 50 100 150
0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

iterations

LI-P scheme (a = 0 , b = 0.1, N = 5)

Figure B.1. Probabilities of five actions in the LI-P scheme; only c1 = 0.

Cem Ünsal Appendices 170

Appendix C. Simulation

C.1. The Program
The simulation for the work described in this dissertation is written in Matlab [Matlab96]. It
consists of a group of subroutines and functions coded as m-files, and can be run in Matlab
version 4.2 or higher. Graphic user interfaces are designed on a Sun workstation running Solaris
2.4 and Openwindows, but can be displayed on any platform running Matlab 4.2 or higher,
after making minor changes in the GUI subroutines.

Figure C.1. shows the overall structure of the simulation. The description of the files are
given in Table C.1. Subroutine m_run.m is the main simulation program which calls several
subroutines at each time step. At each time step, sensor outputs are evaluated and action
decisions are made. Then, those actions are carried out for each automated vehicle on the
highway. Sensor modules and flags are implemented as subroutines that take vehicle index and
returns corresponding output. The learning, decision (planning), and regulation subroutines work
similarly. When evaluations are complete, the highway is updated. The main program repeats the
loop until the final time is reached or the program is interrupted by the user.

Learning algorithm, learning parameters, processing speed and memory vector sizes
cannot be changed during the simulation run. Other parameters such as current vehicle speed,
desired speed, current vehicle lane, desired lane, permitted speed variations can be changed during
the simulation as well as other display parameters. For detailed description of some of the
graphic user interfaces, see Figures C.3-C.7. Command line interface can be used to change
parameters before the simulation run. It also displays several parameters and/or actions during
the simulation run (Figure C.2).

Files described in Table C.1 and Figure C.1 are provided here as zipped archives in two
different formats:

• Unix: mfiles.tar.Z
• Windows: mfiles.zip

Cem Ünsal Appendices 171

File Inputs Output Description
laneb.m Vehicle index Integer indicating

desired lane shift
Evaluates current vehicle lane based on link layer
information

mlma.m - - Main program
move2.m Vehicle index - Updates vehicle position
m_init.m - - Initializes all parameters, arrays, etc.
m_mvec.m - - Plots simulation data
m_movie.m - - Shows the movie of the simulation
m_plap.m - - Plots simulation data
m_plot.m - - Subroutine for Plot GUI
m_redo.m - - Subroutine for Scenario GUI
m_reinit.m - - Reinitializes all parameters, arrays, etc.
m_run.m - - Main subroutine for simulation runs
m_sandl.m - - Plots simulation data
m_setgui.m - - Displays the main graphic user interface
m_traj.m - - Plots simulation data
pinch.m Vehicle index Binary value

indicating pinch
condition

Function for pinch module

phmin.m Action probabilities,
action, environment
response

New action, new
action probabilities

Function for nonlinear nonlinear scheme of Baba
[Baba85].

Phfun.m Action probabilities,
action, environment
response

New action, new
action probabilities

Function for nonlinear reinforcement scheme of
Section 6.2.

plan2.m Vehicle index - Subroutine for planning layer
plot_h2.m Vehicle positions - Subroutine for display updates
plrp.m Action probabilities,

action, environment
response

New action, new
action probabilities

Function for general linear reward-penalty learning
scheme.

Reg2.m Vehicle index - Subroutine for regulation layer
sb_fr.m Vehicle index Function for headway module
sb_lft.m Vehicle index Function for left sensor module
sb_lftn.m Vehicle index Binary value Function for extended left sensor module
sb_sp.m Vehicle index indicating module

response
Function for speed module

sb_rgt.m Vehicle index Function for right sensor module
sb_rgtn.m Vehicle index Function for extended right sensor module
speedb.m Vehicle index Speed flag Evaluates vehicle speed condition

Table C1. Description of the subroutines and functions for multiple lane, multiple automata
intelligent vehicle simulation.

Cem Ünsal Appendices 172

plan2.m

sb_rgt.m

m_setgui.m m_init.m

mlma.m

m_run.m m_plot.mm_redo.m

m_reinit.m

m_movie.m

m_traj.m

m_plap.m

reg2.m

move2.m

plot_h2.m

sb_lft.m

sb_lftn.m

sb_rgtn.m

sb_fr.msb_sp.m

pinch.m

laneb.m

speedb.m plrp.m

phfun.m

phmin.m

m_mvec.m

m_sandl.m

Figure C1. Structure of the simulation program.

Cem Ünsal Appendices 173

Figure C.2. The simulation.

Cem Ünsal Appendices 174

Figure C.3. Graphic User Interface.

Side sensor ranges

Extended side
sensor switch

Front sensor
ranges

Learning
algorithm menu Learning

parameters

Processing
speed (1/sec)
and length of
memory
vectors

Index of the
current vehicle

On/off switches
for the current
vehicle

Speed and lane parameters
for current vehicle

Speed
increment

Permitted
speed
variation

Data file I/O

Switch for
saving flow
data

Highway
window size
adjustment

Display
update rate

Opens scenario
GUI (Fig. C.6)

Opens plot
GUI (Fig C.4)

Final time (sec)

Cem Ünsal Appendices 175

Figure C.4. GUI for data visualization.

Memory vector
and pinch module
outputs

Speed and lane
positions

Timed snapshots
(Fig. C.5)

Space-time
trajectories for
platoons

Speed and headway
for 2 vehicles

Flow-concentration
curve for single lane

Relative positions
of vehicles during
run

Matlab movie of
the simulation run

Indices of the
vehicles to be
plot

Reference
vehicle

Number of iterations
per frame

Time interval for
plots

Time data for
snapshots

Indices of the first
and last vehicle to
be plot

Switch for movie matrix

Time interval for plots

Indices of the first
and last vehicle to
be plot

Cem Ünsal Appendices 176

Figure C.5. “Trajectory” command for relative position plots.

Figure C.6. Scenario window: Clickable buttons
initialize several different scenarios.

Time interval:
t = 1sec to t = 16sec.

Vehicles to be plot:
1 to 4

Reference position:
vehicle 4 (at t = 1sec.)

Reference vehicle

Vehicle 1, moving faster
then vehicle 4, shifts to
middle lane and
continues

Cem Ünsal Appendices 177

Figure C.7. Timed snapshots of a simulation run.

Vehicle 1 to 4 are plotted

at t = [0 10 20 28 30 40 45]

Cem Ünsal Appendices 178

C.2. Additional Simulation Files

Additional simulation examples of the different highway situations are given in this
section. The following table gives the description of the situations and the mpeg movie file of the
test run.

File Simulation Parameters and Description
appCm1.mpg

0.263Mb
40sec
5 frames/sec

20 vehicles with various initial speed definitions changing to the same lane:
- Desired speed and lane for all vehicles are 85kmh and lane 2 respectively.
- Algorithm: NLH with k = 3, θ = 0.05.
- Memory vector sizes: 9 (lateral and longitudinal)
- Sensor ranges: 10m side, 11m, 15m, and 20m front sensor.
- All vehicles shift to lane 2, but due to speed variations, some of the vehicles
shift left and right to avoid collision. At t = 40sec, average platoon speed is
approximately 85kmh.

AppCm2.mpg

0.264Mb
40 sec.
5 frames/sec

Three platoons with various memory vector sizes:
- 3 ten-vehicle platoons with same initial speeds of 80mph and inter-platoon
distances of 15m. Leaders have a desired speed of 70mph.
- Algorithm: LR-P with a = 0.15 and b = 0.10.
- Memory vector sizes:
 Platoon 1 (yellow) - lateral: 25, longitudinal: 13
 Platoon 2 (green) - lateral: 13, longitudinal: 13
 Platoon 3 (red) - lateral: 13, longitudinal: 9
- Followers in the platoon try to match leaders speed change. In platoons 1 and 2,
some of the vehicle (4, 5, and 10) shifts lane to avoid collisions. The size of the
lateral memory vector affects the time to shift lanes slightly. The effect of the
longitudinal memory vector is more significant. No vehicle shift lane in platoon 3
because of faster reactions to headway changes.

appCm3.mpg

0.209Mb
40 sec.
5 frames/sec

Three separate group of four vehicles in the situation of Section 7.4.3:
- V1 = V2 =85mph, V1 = V2 =805mph; initial vehicle separations are 16m; no lane
preferences are set for vehicles 1 and 2.
- Algorithms and memory vector sizes:
 Group 1 (yellow) - LR P− (a = 0.15, b = 0.10) lateral: 25, longitudinal: 13

 Group 2 (green) - NLH (k = 10, θ = 0.05) lateral: 25, longitudinal: 13
 Group 3 (red) - NLH (k = 10, θ = 0.05) lateral: 13, longitudinal: 9
- Speed flags in groups 1 and 2 are set approximately at the same time (10.04 and
8.8 seconds for group 1; 9.64 and 9.36 for group 2). The lane changes are made
also made approximately at the same time. For group 1, lane changes occur before
the flags are set, due to short lateral memory vector.

Sensor ranges for the last two simulations are 10m side, 10m, 15m, and 20m front. Processing
speed for all simulations is 25Hz.

Table C.2. Description of the situations and simulation files.

Cem Ünsal Appendices 179

Appendix D. States of the Environment for Multiple
Vehicle Interactions

The tables given in this section show the possible positions of vehicles in a highway for the
scenarios described in Chapter 7. They indicate relative positions of multiple vehicles with
respect to each other’s sensor ranges. Each row in a matrix corresponds to a lane; each square
illustrates a road section which falls into the side sensor range of an automated vehicle. A dark
square indicates the presence of a vehicle. Not all possibilities are considered; instead, only the
situations that are of interest for a specific scenario are listed. Similar situations are then
combined into a single ‘state’ and simplified if necessary. Two situations are said to be similar if
the sensor module outputs and/or possible actions are the same for both. Three scenarios of the
Chapter 7 are:

• Two Vehicles on a Three-Lane Highway
Considering the immediate neighborhood of the vehicles, there are C(9,2) = 36 possible
situations shown in Figure D.1. Most of these situations are similar and, therefore, can be
combined as shown in Figure D.2. Further simplifications are illustrated in Figure D.3. These
final 12 situations are the states given in Section 7.4.

• Three Vehicles on a Three-Lane Highway
Considering the immediate neighborhood of the vehicles, there are C(9,3) = 84 possible
situations shown in Figure D.4. Some of these situations are similar and, therefore, are
combined as shown in Figure D.5. These final 64 situations are the states given for 3-vehicle
scenario in Section 7.4.

• Four vehicles on a Three-Lane Highway
This four vehicle situation of Figure 7.13 can be treated as a two-vehicle situation with other
vehicles treated as obstacles. The two vehicles in front are traveling at their desired speed and
lane, unaware of the other approaching vehicles (See Section 7.4.3). Therefore, there are
C(7,2) = 28 possible situations shown in Figure D.6. Since the conflict will be solved when
the two trailing vehicles are both in the middle lane, the states E3, E4, and/or F3 are goal
states. Again, we considered only immediate neighborhoods, and therefore, the physical
locations of the vehicles are shown using a 3x4 matrix.

Cem Ünsal Appendices 180

Figure D.1. All possible immediate neighborhood situations for two vehicles.

Figure D.2. Combined states for two vehicles: states not shown
are identical to those given here.

Cem Ünsal Appendices 181

Figure D.3. Further simplified states.

Cem Ünsal Appendices 182

Figure D.4. All possible immediate neighborhood situations for three
vehicles in a three-lane highway.

Cem Ünsal Appendices 183

A2

A

B

C

D

E

F

G
gg

H

I

J

K

L

1 2 43 5 6 7

A3 A5 A6

B7 C2

C2

C3 C6 C7 D5

E7

F2 F3 F6

G5

J3 J4

K2 L1

Figure D.5. Combined states for three vehicles: states not shown are
identical to those indicated.

Cem Ünsal Appendices 184

A

G

F

E

D

C

B

1 432

Figure D.6. Possible states for four vehicles  actually
a two-vehicle situation.

