A genetic algorithm with memory for mixed
discrete-continuous design optimization

Vladimir B. Gantovnik ®*, Christine M. Anderson-Cook ",
Zafer Giirdal ¢, and Layne T. Watson ¢

& Department of Engineering Science and Mechanics, Virginia Polytechnic Institute
and State University, Blacksburg, VA 24061, USA

b Department of Statistics, Virginia Polytechnic Institute and State University,
Blacksburg, VA 24061, USA

¢Departments of Aerospace and Ocean Engineering, and Engineering Science and
Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA,
24061

dDepartments of Computer Science, and Mathematics, Virginia Polytechnic
Institute and State University, Blacksburg, VA 24061, USA

Abstract

This paper describes a new approach for reducing the number of the fitness function
evaluations required by a genetic algorithm (GA) for optimization problems with
mixed continuous and discrete design variables. The proposed additions to the GA
make the search more effective and rapidly improve the fitness value from generation
to generation. The additions involve memory as a function of both discrete and
continuous design variables, multivariate approximation of the fitness function in
terms of several continuous design variables, and localized search based on the
multivariate approximation. The approximation is demonstrated for the minimum
weight design of a composite cylindrical shell with grid stiffeners.

Key words: Genetic Algorithm, Composite Structure, Response Surface
Approximation

* Corresponding author.
Email address: gantovnik@vt.edu (Vladimir B. Gantovnik).

Preprint submitted to Computers & Structures 9 September 2002

1 Introduction

Mixed discrete-continuous design optimization is an active research topic.
There are many diverse applications that are mathematically modelled in
terms of mixed discrete-continuous variables. The optimization of such mod-
els is typically difficult because of potential existence of multiple local minima
in the search space. The most general methods for solving such problems
are branch and bound method, simulated annealing (SA) method, and ge-
netic algorithms (GA) [1]. These methods do not require gradient or Hessian
information. However, to reach an optimal solution with a high degree of
confidence, they typically require a large number of analyses during the op-
timization search. Performance of these methods is even more of an issue for
problems that include continuous variables. The number of analyses required
is an important characteristic of any method in multidisciplinary optimization
(MDO). Several studies have concentrated on improving the reliability and ef-
ficiency of GAs. Hybrid algorithms formed by the combination of a GA with
local search methods provide increased performance when compared to a GA
with a discrete encoding of real numbers or local search alone [2]. In order to
reduce the computational cost, two of the authors earlier used local improve-
ments and memory for discrete problems so that information from previously
analyzed design points is utilized in later searches [3,4]. In the first method
a memory binary tree was employed for a composite panel design problem to
store pertinent information about laminate designs that have already been an-
alyzed [3]. After the creation of a new population of designs, the tree structure
is searched for either a design with identical stacking sequence or similar per-
formance, such as a laminate with identical in-plane strains. Depending on the
kind of information that can be retrieved from the tree, the analysis for a given
laminate may be significantly reduced or may not be required at all. The sec-
ond method is called local improvement [4]. This technique was applied to the
problem of maximizing the buckling load of a rectangular laminated composite
plate. The information about previously analyzed designs is used to construct
an approximation to buckling load in the neighborhood of each member of the
population of designs. After that, the approximations are used to search for
improved designs in small discrete spaces around nominal designs. These two
methods demonstrated substantial improvements in computational efficiency
for purely discrete optimization problems. The implementation, however, was
not suitable for handling continuous design variables.

The objective of the present work is to find a suitable algorithm for a GA
with memory that can work with discrete and several continuous variables
simultaneously. A local memory for the continuous part of the design space
at each discrete node of a binary tree based on multivariate approximation
is proposed for problems with several continuous variables. The efficiency of
the proposed multivariate approximation based procedure, as well as the use

of memory for a GA that can handle continuous variables, are investigated
for the weight optimization of a lattice shell with laminated composite skins
subjected to axial compressive load.

2 Genetic algorithm package

A Fortran 90 GA framework that was designed in an earlier research effort
was used for the composite laminate structure design [5]. This framework
includes a module, encapsulating GA data structures, and a package of GA
operators. The module and the package of operators result in what we call
a standard genetic algorithm. The proposed algorithm is incorporated within
the GA framework as a sample test program that illustrates performance of the
binary tree memory and multivariate approximation. An integer alphabet is
used to code ply genes. The continuous variables represented by floating-point
numbers had already been implemented in the GA framework data structure
as geometry chromosomes.

3 Binary tree memory

A binary tree is a linked list structure in which each node may point to up
to two other nodes. In a binary search tree, each left pointer points to nodes
containing elements that are smaller than the element in the current node;
each right pointer points to nodes containing elements that are greater than
the element in the current node. The binary tree is used to store data pertinent
to the design such as the design string and its associated fitness and constraint
function values. A binary tree has several properties of great practical value,
one of which is that the data can be retrieved, modified, and inserted relatively
quickly. If the tree is perfectly balanced, the cost of inserting of an element in
a tree with m» nodes is proportional to log, n steps, and rebalancing the tree
after an insertion may take as little as several steps, but at most takes log, n
steps. Thus, the total time is of the order of log, n [6].

In the standard genetic algorithm, a new population may contain designs that
have already been encountered in the previous generations, especially towards
the end of the optimization process. The memory procedure eliminates the
possibility of repeating an analysis that could be expensive. Algorithm 1 shows
the pseudo code of the fitness function evaluation with the aid of the binary
tree.

Algorithm 1 Evaluation of fitness function using binary tree.
search for the given design in the binary tree;
if found then
get the fitness function value from the binary tree;
else

perform exact analysis;
end if

After a new generation of designs is created by the genetic operations, the
binary tree is searched for each new design. If the design is found, the fitness
value is retrieved from the binary tree without conducting an analysis. Other-
wise, the fitness is obtained based on an exact analysis. This new design and
its fitness value are then inserted in the tree as a new node.

4 Response surface approximation

The procedure described above works well for purely discrete optimization
problems where designs are completely described by discrete strings. In case
of mixed optimization problems where designs include discrete and continuous
variables, the solution becomes more complicated. If the continuous variables
are also discretized into a fine discrete set, the possibility of creating a child
design that has the same discrete and continuous parts as one of the earlier
designs diminishes substantially. In the worst case, if the continuous design
variables are represented as a real numbers, which is the approach used by
most recent research work, it may not be possible to create a child design that
has the exact same real part as one of the parents, rendering the binary tree
memory useless, and result in exact analysis even if the real part of the new
child is different from one of the earlier designs by a minute amount.

The main idea of the memory approach proposed in this work is to construct
a response surface approximation for the fitness function as a function of the
continuous variables using historical data values, and estimate from the stored
data whenever appropriate. The memory in this case consists of two parts: a
binary tree, which consists of the nodes that have different discrete parts of the
design, and a storage part at each node that keeps the continuous values and
their associated fitness values. That is, each node contains a real array that
stores the continuous variable points’ value and their corresponding fitness
function values. In order for the memory to be functional, it is necessary
to have accumulated a sufficient number of designs with different continuous
values for a particular discrete design point so that the approximation can be
constructed. Naturally, some of the discrete nodes will not have more than a
few designs with different continuous values. However, it is possible that as
the evolution progresses good discrete parts will start appearing repeatedly

with different continuous values. In this case, one will be able to construct a
good quality response surface approximation to the data.

The response surface approximation approach is an extension of the previous
work by the authors where a spline-based approach was used for only one
continuous variable [7]. An evolving database of continuous variable points is
used in the current work to construct a multivariate response surface approx-
imation at those discrete nodes that are processed frequently. The modified
quadratic Shepard’s method is a local smoothing method used for the approx-
imation of scattered data for the case of two independent continuous design
variables [8]. This method may be the best known among all scattered data
interpolants for a general number of variables. Shepard’s method for fitting a
surface to data values has the advantage of small storage requirements and
easy generalization to more than two independent variables.

In addition to building a multivariate approximation, it is important to assess
accuracy of the multivariate approximation at new continuous points, so that
a decision may be made either to accept the approximation or perform exact
function evaluation. Based on the bivariate approximation, the proposed al-
gorithm described by the following pseudo code is then used to decide when
to retrieve the fitness function value from the approximation, and when to do
an exact analysis and add the new data point to the approximation database.
For the description of the pseudo code, let v € Z* be a k-dimensional integer
design vector for the discrete space, () € E™ a real m-dimensional design
vector for the continuous variables, and f (v,x(i)) the corresponding fitness

value of the individual defined by (v,x(i)). Furthermore, define d; € E to

be a real distance corresponding to point 2 to measure its proximity any
given point, ¢ € Z an integer counter, initially zero, and r € E a real range
value. Let T" be the set of observed exact analyses and their corresponding
information within a given discrete node, precisely

T:{ 2D f (v, 2®), d; }n
(29, £ (0,2) i)y
Each node in the binary tree memory structure records a tuple of the form

(v, T,c,r). The pseudo code for processing a candidate individual (v,x) is
defined by Algorithm 2.

The algorithm uses three real user-specified parameters, dy, d, and €. The
parameter dy > 0 is an upper bound on the trust region radius about each
sample point 2(?). The parameter § is chosen to satisfy 0 < § < 1, and in higher
dimensions protects against large variations in f in unsampled directions.
Finally, the parameter ¢ > 0 is the selected acceptable approximation accuracy,
and is solely based on engineering considerations.

Algorithm 2 Evaluation of fitness function using binary tree and m-
dimensional approximation.
if v is not found in the tree then
evaluate f(v,x);
T:= {(l‘, f(U,CL‘), O)}:
add a node corresponding to (v,7,1,0);
return f(v,x);
else
if c < (m+2)(m+1) then
evaluate f(v,x);

T:=TU {(:c,f(v,x),O)};

c:=c+1;
r := maXty — minty;
teT teT
return f(v,x);
else

construct an approximation S(x) using

the data in T' = {(x(i)a f(“?‘%(i))’di)}n

i=1
define k and d* by d* = dj, — ||z — 2™ || = Ezag%di — ||z — 2@||;
if d* >0 and |f(v,2®) - S(z)| < o7 then
return S(z);
else
evaluate f(v,x);
if |f(v,x) — S(z)| > € then
T:=TU{(z,f(v,),0)};
else
d := min {do, ||z — x(k)||}; dy := d;

T:=TU {(a:,f(v,x),d)};

end if
r = maxty — minty;
teT teT
return f(v,x);
end if
end if
end if

5 Local improvement

Once a multivariate approximation is in place at a given discrete node, a local
improvement procedure may be implemented to improve the performance of
the GA. The values of the continuous variables at a given discrete node are
either randomly assigned (if mutation operator is used) or obtained through
a crossover operation. If an explicit multivariate approximation and its first

partial derivatives are available at a given node, it is possible to generate
good candidates for the continuous design variables for the next child at that
node rather than depend on random action from the crossover operator. That
is, after construction of an initial approximation S(z) of f (;E) based on the
objective function values obtained at the design sites, one can easily find the
point z* that optimizes the approximate function S(z) in some compact subset
Q) C E™. This optimal z* value is stored at the discrete node in addition to
the rest of the T" database. If, in future generations, a discrete node that has
a stored z* value is reached through the crossover operation on the discrete
part v of the design, then, rather than performing crossover on the real part,
(v,2*) is used as the child design for the next generation. This child design
will then be treated like the other new designs in the child population and will
be checked if an approximation to it can be used without exact analysis.

6 Design optimization problem

The design of a lattice shell with specified radius, length, and axial load level
is considered. Such shells supported by a lattice have been considered as a
replacement to solid shells, stiffened shells and honeycomb structures [9-11].
Consider a lattice cylindrical shell loaded with compressive axial force P.
Proper design would involve, in general, determination of rib parameters (di-
mension of cross section, material, spacing, and orientation angle, ¢), skin pa-
rameters (the number of layers, their materials, thicknesses, and orientation
angles, 0;) that satisfy strength and stability constraints while minimizing
the weight of the shell. Constraints considered include rib strength constraint
(C) , skin strength constraint (Cs), rib local buckling constraint (C3), and
general buckling constraint (Cy). All constraint equations are based on the
lattice cylindrical shell model developed by Bunakov [12-14].

The mixed optimization problem considered here operates on three design
variables v, x1, and x5. The discrete variable is the stacking sequence of the
skins, v = {6, ...,60,}, where n is an implicit design variable dictated by the
number of layers in the skin stacking sequence. We shell restrict our consid-
eration to two continuous design variables, namely, the angle of helical ribs,
x1 = @, and the rib height, xo = H. The optimization problem can be formu-
lated as finding the stacking sequences of the skins, the angle of helical ribs,
and the rib height in order to minimize the mass of the shell, M. The set of
design variables is expressed as a vector 7 = (v, xq,x2). The design problem
is typically formulated to provide a minimum mass structure:

M =drpL [h (R Yhot 2[) + Hj(R 4 h)] , (1)

where p is the material density, L is the length of the shell, R is the shell
radius, h = >°)_, hék) is the skin thickness, hq is the single ply thickness, ¢ is
the rib width, a is the rib spacing. The optimization problem can be written
as

min M (7) (2)
such that
Ci(7) >0 (rib strength),
Co(1) > 0 (skin strength),
C3(7) > 0 (rib local buckling),
Cy(7) > 0 (general buckling),

H S [Hmma HmaxL

2 € [‘;Ominv @mam];
0p € {0°,£45°,90°}, (k= 1,n),

n e [nmirw nmax]a

where H,,;, and H,,,, are lower and upper bounds of the rib height; ©,,;, and
Vmae are are lower and upper bounds of the angle of helical ribs, 6, is the
ply orientation angle in the k-th skin ply, n is the total number of skin plies,
Nomin aNd Nype, are minimum and maximum possible values of n. The critical
constraint is defined as

Cor(7) = min{Ci(7)}, (3)

and the constrained optimization problem is transformed into an unconstrained
maximization problem for the genetic algorithm. This is done by using penalty
parameters. The fitness function ® to be maximized is defined as

oy = | MO HC Cotr) 0 "
—M(1)(1 = C(7))P, Ce(r) <0,

where ¢ and p are bonus and penalty parameters, respectively.

7 Results

A cylindrical lattice shell is made of fiberglass-epoxy composite material with
density p = 2100 kg/m?. The specified axial compressive load is P = 10° N/m.
The shell radius and length are R = 1.0 m and L = 1.5 m, respectively. The
lattice shell has £ unidirectional helical ribs with elastic modulus £ = 45.0
GPa, and shear modulus G = 1.0 GPa. The compressive strength of ribs is
" = 240.0 MPa. The shell has external and internal skins made of T300/5208
graphite-epoxy unidirectional plies. The material properties of the skin plies

are given in Table 1. The possible ranges for the design variables are given
in Table 2. The range of the shell mass throughout the entire design space is
approximately 31.12 < M < 303.74 kg.

7.1 GA parameters

The values of the GA parameters used in the experiments are shown in Table
3. The GA stopping condition is a limit on the total number of function eval-
uations conducted by the standard GA, (7;)mez = 500000. The best known
global optimal design obtained by the standard GA is presented in Table 4.
The table gives the average number of exact analyses from ten runs of individ-
uals (7.), the continuous design variables (z1, x2), the discrete design variable
(v), the critical constraint value (C,.), the mass (M), and fitness function
value (®). This design was obtained in an average of about 274545 function
evaluations by the standard GA. Table 5 shows reliability (fraction of runs in
which the optimum was found, out of 50 runs) for various geometry chromo-
some mutation probabilities p,, and population sizes. The conclusion from the
table indicates that that the GA works better with the large population size
along with very small mutation probability. A small population size causes the
GA to quickly converge on a local minimum, because it insufficiently samples
the parameter space. Note that the results given in Table 4 and in the rest of
study provided below were obtained with the population size of 20 and with
geometry chromosome mutation probability of 0.01.

7.2 Effect of continuous memory

The results presented in this section focus on the ability of the proposed algo-
rithm to save computational time during GA optimization with the multivari-
ate approximation used as a memory device. The performance of the GA with
the multivariate approximation is presented in Table 6, which shows averages
from ten runs. The table shows the best design (z1, x5, v, ®) after n; attempts
to evaluate the fitness function, of which n. are the number of exact fitness
function evaluations with e = 0.01, 6 = 0.1, dy = 0.5. In addition, Table 6
contains the average percent savings (£) in terms of fitness function evalua-
tions, mass (M) and critical constraint (C.,) corresponding to the best design
which are identical to the results presented earlier for the baseline algorithm.

The percent savings (£) in terms of number of fitness function evaluations is
defined by

¢ = <1 - Z) x 100%. (5)

The influence of the number of generations on the function evaluation savings
are shown in Table 7. This table contains average values for fitness function

(@), savings (§), and reliability (fraction of runs the optimum was found, out
of 20 runs). The number of successful runs and the percent savings (£) increase
when the algorithm is run for a longer time, as expected.

These results show that the cost of the GA with continuous variables could be
reduced up to 60% relative to the standard GA by using the approximation
procedure. For the problem considered, the computation of the fitness function
is not very expensive in terms of CPU time. However, this procedure has great
potential in problems with expensive objective functions.

The mean absolute error & due to the approximation and the savings () in
terms of the number of fitness evaluations for different values of the parameters

€, and 0 with dy = 0.5 are shown in Table 8. The mean absolute error ¢ is

defined as |
EZ*Z@(%)—S(%)’: (6)

Ns =1

where ny = n; —n, is the total number of acceptable approximate evaluations.
This error is computed every time that the algorithm decides to extract an
approximation of the fitness value without an exact analysis. It is possible to
further enhance the performance of the algorithm by a more precise tuning of
its parameters. Table 8 shows the expected trends; both average savings (€)
and average absolute error £ increase as either € or § increases. Table 8 also
shows that the saving are significant, but of course these percentages are likely
to be smaller for longer chromosomes that results in a larger design space.

For the above results, Algorithm 2 used the test ¢ < 20 rather than ¢ <
(m + 2)(m + 1) = 12, because of constraints in the Shepard algorithm code
from [8].

7.8 Effect of local improvement

Finally, the performance comparison of the considered GA modifications,
namely, (1) standard GA, (2) GA with approximation, and (3) GA with ap-
proximation and local improvement are presented in Table 9. The average
number of attempts to evaluate the fitness function n;, the number of exact
fitness function evaluations 7., the percent savings ¢ in terms of number of
exact fitness evaluations, and the percent savings ¢ defined as

Ne

¢= (1 "~ ni(Standard GA)

> x 100% (7)

in terms of number of exact fitness evaluations as compared with the standard
GA are shown in the table.

10

As one would expect, the GA with local improvement converges faster in
terms of number of fitness function evaluations than the GA with approxima-
tion. The two algorithms with approximation demonstrate good convergence
in comparison with the standard GA, and very substantial decrease in the
number of exact analyses required to find the optimal solution.

8 Conclusions

A GA with memory along with multivariate approximation was applied to the
problem of weight minimization of a lattice shell with mixed discrete design
variable and two continuous design variables. The use of memory based on
binary tree for discrete part of the design variables avoids repeating analyses
of previously encountered designs. The multivariate approximation for contin-
uous variables saves unnecessary exact analyses for points close to previous
values. Moreover, it is also demonstrated that the multivariate approximation
can be used to provide local improvement during the search and further re-
duce the number of exact function evaluations required to reach an improved
solution.

9 Acknowledgements

The authors are indebted to Dr. Samy Missoum for suggesting improvements
in the multivariate approximation algorithm. This research was supported in
part by Air Force Office of Scientific Research grant F49620-99-1-0128 and
National Science Foundation grant DMS-9625968.

References

[1] Stelmack MA, Nakashima N, Batill SM. Genetic algortihms for mixed discrete-
continuous optimization in multidisciplinary design. 38th ATAA/ ASME/ ASCE/
AHS/ ASC Structures, Structural Dynamics and Materials Conference, AIAA
Paper No. 1998-2033. Long Beach, California; 1998.

[2] Seront G, Bersini H. A new GA-local search hybrid for optimization based on
multi level single linkage clustering. Genetic and Evolutionary Computation
Conference (GECCO-2000). Las Vegas, Nevada; 2000.

[3] Kogiso N, Watson LT, Giirdal Z, Haftka RT. Genetic algorithms with
local improvement for composite laminate design. Structural Optimization
1994;7(4):207-218.

11

[4] Kogiso N, Watson LT, Giirdal Z, Haftka RT, Nagendra S. Design of composite
laminates by a genetic algorithm with memory. Mechanics of Composite
Materials and Structures 1994;1(1):95-117.

[6] McMahon MT, Watson LT, Soremekun GA, Giirdal Z, Haftka RT. A Fortran
90 genetic algorithm module for composite laminate structure design. Eng.
Computers 1998;14:260-273.

[6] Vowels RA. Algorithms and data structures in F and Fortran. Tucson, Arizona:
Unicomp, Inc; 1998.

[7] Gantovnik VB, Giirdal Z, Watson LT. A genetic algorithm with memory for
optimal design of laminated sandwich composite panels. 43rd AIAA/ ASME/
ASCE/ AHS/ ASC Structures, Structural Dynamics, and Materials Conference,
ATAA Paper No. 2002-1221. Denver, Colorado; 2002.

[8] Renka RJ. Multivariate interpolation of large sets of scattered data. ACM
Transactionson Mathematical Software 1988;14(2):139-148.

[9] Vasiliev VV, Lopatin AV. Theory of lattice and stiffened composite shells.
Mechanics of composite materials, edited by Tarnopolskii YM. (in Russian) Riga:
Zinatne; 1992:82-88.

[10] Vasiliev VV, Barynin VA, Rasin AF. Anisogrid lattice structures - survey of
development and application. Composite Structures 2001;54:361-370.

[11] Slinchenko D, Verijenko VE. Structural analysis of composite lattice shells of
revolution on the basis of smearing stiffness. Composite Structures 2001;54:341-
348.

[12] Bunakov VA, Protasov VD. Cylindrical lattice composite shells. Mechanics of
Composite Materials (in Russian) 1989;6:1046-1053.

[13] Belousov PS, Bunakov VA. Bending of cylindrical lattice composite shells.
Mechanics of Composite Materials (in Russian) 1992;2:225-231.

[14] Bunakov VA. Design of axially compressed composite cylindrical shells
with lattice stiffeners. Optimal Design, edited by Vasiliev VV, Giirdal Z.
Lancaster,PA: Technomic Publishing Co.; 1999:207-246.

12

List of Tables

The material properties of the skin (T300/5208).
Ranges for the design variables.

GA parameters used in the experiments.

The best known optimal design using standard GA.

The percent reliability for various geometry chromosome
mutation probabilities p,, and population sizes.

The efficiency of the multivariate approximation.

The performance of the GA with multivariate approximation
for different number of generations.

The error of the multivariate approximation (£) and the
percent savings (£) as a function of the parameters ¢ and 0
with dy = 0.5.

The performance comparison of the GA modifications.

13

14

15

16

17

18

19

20

21

22

Table 1
The material properties of the skin (T300/5208).

Stiffness parameters, GPa Strength parameters, MPa

Ey Ey G2 V12 Xy Y, X Y. S

181.0 10.3 7.17 0.28 1500.0 57.0 1340.0 212.0 68.0

14

Table 2
Ranges for the design variables.

Design variable Range
H € [Hpin, Hpaz] [0.001,0.1] m
@ € [(;Omina wmax] [507 850]

Op, k=1,n {0° £45°,90°}

n e [nmz’m nmam] [2’ 20]

15

Table 3
GA parameters used in the experiments.

Parameter Value
Maximal number of generations 25000
Population size 20
Laminate chromosome length 7

Probability of crossover (p.):

e for laminate chromosomes 1.0

e for geometry chromosomes 1.0
Probability of mutation (p,):

e for laminate chromosomes 0.05

e for geometry chromosomes 0.01
Crossover type:

e for laminate chromosomes two-point

e for geometry chromosomes one-point

16

Table 4
The best known optimal design using standard GA.

Me T To v C.r M P

274545 1.0000 0.0052 1111100 0.0 43.8228 -0.1443

17

Table 5
The percent reliability for various geometry chromosome mutation probabilities p,,
and population sizes.

Population size

20 50 100

> 0.5 0.00 0.00 0.00
0.5 0.04 0.02 0.00

0.4 0.10 0.00 0.02

0.3 0.14 0.20 0.00

0.2 046 0.38 0.14

0.1 0.60 0.78 0.52

0.01 052 0.72 0.96
0.001 0.36 0.78 0.94
0.0 028 044 0.96

Pm

18

Table 6
The efficiency of the multivariate approximation.

n; Ne 5, (%) 1 i) v Ccr M P

183995 74626 59.4 1.0000 0.0052 1111100 0.0 43.8228 -0.1443

19

Table 7
The performance of the GA with multivariate approximation for different number
of generations.

Number of o - _
Reliability @ ¢, (%)
generations
5000 0.1 -0.1508 428
10000 0.4 -0.1464 49.9
20000 0.9 -0.1444 53.3

20

Table 8

The error of the multivariate approximation (
function of the parameters € and J with dy =0

€) g &, (%)
0.1 0.00097 47.9

0.001 0.5 0.00128 50.5
1.0 0.00445 52.2

0.1 0.00185 55.6
0.005 0.5 0.01440 56.5
1.0 0.03040 58.3

0.1 0.02490 59.4

0.01 0.5 0.03310 62.0
1.0 0.04170 66.8

21

€
5.

and the percent savings (§) as a

Table 9
The performance comparison of the GA modifications.

Modification T Ne £ (%) ¢ (%)

e standard 274545 274545 0.0 0.0
e with approximation 183995 74626 59.4 72.8
e with approximation

and local improvement 53690 38280 28.7 86.1

22

