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Novel Quantum Chemistry Algorithms Based on the Variational Quan-
tum Eigensolver

Harper R. Grimsley

(ABSTRACT)

The variational quantum eigensolver (VQE) approach is currently one of the most promising

strategies for simulating chemical systems on quantum hardware. In this work, I will describe

a new quantum algorithm and a new set of classical algorithms based on VQE. The quantum

algorithm, ADAPT-VQE, shows promise in mitigating many of the known limitations of

VQEs: Ansatz ambiguity, local minima, and barren plateaus are all addressed to varying

degrees by ADAPT-VQE. The classical algorithm family, O2DX-UCCSD, draws inspiration

from VQEs, but is classically solvable in polynomial time. This group of algorithms yields

equations similar to those of the linearized coupled cluster theory (LCCSD) but is more

systematically improvable and, for X = 3 or X = ∞, can break single bonds, which LCCSD

cannot do. The overall aim of this work is to showcase the richness of the VQE algorithm

and the breadth of its derivative applications.



Novel Quantum Chemistry Algorithms Based on the Variational Quan-
tum Eigensolver

Harper R. Grimsley

(GENERAL AUDIENCE ABSTRACT)

A core goal of quantum chemistry is to compute accurate ground-state energies for molecules.

Quantum computers promise to simulate quantum systems in ways that classical computers

cannot. It is believed that quantum computers may be able to characterize molecules that are

too large for classical computers to treat accurately. One approach to this is the variational

quantum eigensolver, or VQE. The idea of a VQE is to use a quantum computer to measure

the molecular energy associated with a quantum state which is parametrized by some classical

set of parameters. A classical computer will use a classical optimization scheme to update

those parameters before the quantum computer measures the energy again. This loop is

expected to minimize the quantum resources needed for a quantum computer to be useful,

since much of the work is outsourced to classical computers. In this work, I describe two

novel algorithms based on the VQE which solve some of its problems.
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Chapter 1

General Background and Introduction

to Quantum Algorithms for

Chemistry

1.1 The Electronic Schrödinger Equation

A fundamental goal of electronic structure theory is the exact or approximate solution of

the time-independent Schrödinger equation given in equation 1.1.

Ĥ |Ψ〉 = E |Ψ〉 (1.1)

where Ĥ is the molecular Hamiltonian, |Ψ〉 is a ground or excited state of the molecule, and

E is the associated molecular energy. Let us introduce two assumptions which are typical in

quantum chemistry:

1. The Born-Oppenheimer approximation holds, i.e. nuclei can be treated as static rela-

tive to the electrons in a molecule.

2. Relativistic effects beyond the existence of electronic spin can be safely ignored.

1
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Within these approximations, only the non-relativistic, electronic part of the Hamiltonian is

of interest to us. This Hamiltonian, Ĥ, is given in equation 1.2 in atomic units. [1]

Ĥ = −1

2

Ne∑
i

∇2
i −

Ne∑
i

NN∑
j

Zj

|r̂i − R̂j|
+

1

2

Ne∑
i 6=j

1

|r̂i − r̂j|
(1.2)

where Ne and NN are the number of electrons and nuclei, Zj is the charge of nucleus j,

r̂i is the position of electron i, and R̂j is the position of nucleus j. To be clear, nuclear-

nuclear interactions are important for computing accurate energies, even within the Born-

Oppenheimer approximation, but they are trivially included. The electronic Hamiltonian

in equation 1.2 is cumbersome, and the first two terms are often collected into a set of

one-electron terms {hi} as in equation 1.3. [1]

Ĥ =
∑
i

hi +
1

2

∑
i 6=j

1

rij
(1.3)

The notation has been streamlined as there is now no explicit nuclear dependence in the

Hamiltonian. Note that we could have included all nuclear-nuclear interactions as a single,

constant term, and the eigenstates of Ĥ would not change. The energy would simply be

shifted by this constant. We now have an explicit, simple form of the electronic Hamiltonian,

which defines the electronic structure problem in terms of one- and two-electron interactions.

We note in passing that the Schrödinger equation is trivial to solve for one electron and one

nucleus (a hydrogenic atom). These solutions constitute atomic orbitals, which will be useful

in the next section.
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1.2 Hartree-Fock Theory

Let us now introduce a new approximation: A set of M spin orbitals can represent where

electrons might be in real space. These spin orbitals are typically approximations to a finite

subset of the infinite number of atomic orbitals obtained from treating each nucleus in a

molecule independently and as a one-electron system. We call this set of spin orbitals the

atomic orbital basis, {|χi〉}. We can orthogonalize and normalize the atomic orbitals so that

for all i and j, 〈χi|χj〉 = δij.

We will now consider the form of a minimally complex wavefunction in terms of Ne orbitals.

Naïvely, we could simply use

|Ψ〉 = χ1(1)χ2(2) . . . χNe(Ne), (1.4)

which is called a Hartree product. While it is normalized, this tensor product of spin orbitals

does not account for the antisymmetry of fermions. The simplest way to do so is to instead

use a Slater determinant:

|Ψ〉 = 1√
N !

det

∣∣∣∣∣∣∣∣∣∣∣∣∣

χ1(1) χ2(1) . . . χNe(1)

χ1(2) χ2(2) . . . χNe(2)

. . . . . . . . . . . .

χ1(Ne) χ2(Ne) . . . χNe(Ne)

∣∣∣∣∣∣∣∣∣∣∣∣∣
. (1.5)

From now on, we will use |χ1χ2 . . . χNe〉 to refer to the associated Slater determinant.

Hartree-Fock (HF) theory attempts to answer the following question: What is the best way

to mix the basis orbitals so that the occupied set of Ne molecular orbitals gives the best (i.e.

lowest energy) determinant? This mixing can be understood from a physicist’s perspective
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as using unitary rotations to create the lowest-energy product state. From a chemist’s

perspective, one is minimizing a Lagrangian which is the sum of the single-determinant

energy as a function of the orbitals and constraints enforcing orthonormality of the orbitals

themselves:

L = 〈χ1χ2 . . . χN |Ĥ|χ1χ2 . . . χN〉 −
∑
ij

εij (δij − 〈χi|χj〉) (1.6)

Minimizing this Lagrangian gives the HF energy, but the orbitals which minimize it are not

well-defined. Arbitrary mixing between occupied orbitals or between virtual (unoccupied)

orbitals will not change the wavefunction energy. When one creates the stationary condition

δL = 0, the multipliers εij appear in the equations. The specific details of these equations

are beyond the scope of this work, but it is possible to solve the stationary condition with

the constraint that εij = 0 if i 6= j. Performing this constrained minimization gives the HF

energy and a set of well-defined, “canonical” HF orbitals.

Hartree-Fock is frequently used interchangably with the self-consistent field (SCF) approach.

We will use HF to refer specifically to the canonical orbitals, while SCF refers to any choice

of orbitals which yields the HF energy. For more details on this process, the reader is

encouraged to consult the textbook of Szabo and Ostlund. [2] The end result of HF is that

one obtains a set of well-defined orbitals to be used in post-HF calculations, as well as a

crude, variational approximation to the energy.

1.3 Electron Correlation

Unfortunately, Hartree-Fock is not generally able to reproduce experimental quantities such

as reaction energies. Hartree-Fock is unable to reproduce experimental energies because
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it fails to explicitly capture the instantaneous interactions between electrons, only treating

electron-electron interactions in an average manner. Equivalently, we can say that even if

one chooses the best single determinant to represent the wavefunction, they ignore all the

other Slater determinants. These other determinants can be expressed in terms of excitations

away from the reference determinant |0〉.

Excitations are represented as strings of creation operators â†j and annihilation operators

âk. These operators create an electron in spin orbital j and annihilate an electron from spin

orbital k respectively. Any Slater determinant can be represented as a string of only creation

operators acting on the vacuum state |〉. The vacuum state has no electrons in it. We follow

the convention of reference [2] and define the action of a creation operator by how it affects

a Slater determinant:

â†j |χkχl . . . χn〉 = |χjχkχl . . . χn〉 (1.7)

In addition to representing Slater determinants this way, it is convenient to decompose

operators into sums of excitations. These excitation operators typically have annihilation

operators in them, whose action is defined as

âj |χjχk . . . χn〉 = |χk . . . χn〉 . (1.8)

It is important to note that these operators create or delete an electron in the first position of

the Slater determinant. This importance is a result of the antisymmetry of the wavefunction.

Rearranging the Slater determinant to a different order with a different first position can

change the sign. For example:

|χiχj〉 = − |χjχi〉 (1.9)

As a result of the Pauli exclusion principle, a creation operator cannot create two electrons

in the same orbital. Additionally, an annihilation operator cannot destroy an electron which
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is not present in a Slater determinant. These requirements are manifested in the useful rules:

â†j â
†
j = 0 (1.10)

âj âj = 0 (1.11)

Due to the antisymmetric nature of the wavefunction, the operators also obey the canonical

anticommutation relations:

âj âk = −âkâj (1.12)

â†j â
†
k = −â†kâ

†
j (1.13)

âj â
†
k = δjk − â†kâj (1.14)

â†j âk = δjk − âkâ
†
j (1.15)

These rules will be important later in the discussion of implementing operators on quantum

computers.

For now, it is sufficient to understand the notation and meaning of excitation operators. For

example:

|φab
ij 〉 = âabij |0〉 = â†aâ

†
bâj âi |0〉 . (1.16)

We have used the traditional convention that i, j, . . . refer to occupied orbitals and a, b, . . .

refer to virtual orbitals. Note that in this case, the operators are acting on |0〉, not the

vacuum state. (The vacuum state can be trivially transformed into the reference state by a

series of creation operators.) An exact wavefunction can be expressed as a linear combination



1.3. Electron Correlation 7

of all of these determinants:

|Ψ〉 = c0 |0〉+
∑
ia

cai |φa
i 〉+

∑
i<j
a<b

cabij |φab
ij 〉+ . . . (1.17)

One can obtain the molecular ground state by diagonalizing the Hamiltonian in the basis of

all determinants. The lowest eigenvalue is the ground state energy, while the corresponding

eigenvector is the ground state wavefunction. Excited states correspond to higher eigenvalues

of the Hamiltonian and their eigenvectors. This diagonalization approach is referred to as

full configuration interaction, or FCI, and represents the exact energy within the chemistry

model of the problem. Unfortunately, there are combinatorially many determinants for a

molecule as a function of system size. This limits the systems that can be treated to very

small active spaces of molecules. The largest FCI calculation ever performed was on 22

spatial orbitals with 22 electrons. [3] . Larger systems can be treated approximately in

polynomial time by truncating the Hamiltonian to some subset of the determinants based

on excitation rank and then diagonalizing. This is referred to as truncated CI. While the

resulting energy in truncated CI is bounded below by the FCI energy, i.e., it is a variational

method, truncated CI is not size-extensive. That is, the energy error of a system does

not scale linearly as a function of system size. This means that as the system of interest

becomes larger, we expect increasingly poor results. There are other methods which are size-

extensive but non-variational, i.e., not bounded below by the exact energy, including density

functional theory (DFT), perturbation theory, and coupled cluster theory. Size-extensivity

is widely regarded as more important than a variational bound on the energy, so these

methods are used much more commonly than truncated CI. Unfortunately, non-variational

methods tend to break down in the presence of significant multi-configurational character

of the wavefunction. When | 〈0|Ψ〉 |2 is small, i.e., the reference is a poor approximation to

the true wavefunction, we say that the system exhibits strong or static correlation. This
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is in contrast to weak or dynamical correlation which is generally well-described by the

non-variational methods. Small systems can be addressed by FCI, and weakly correlated

systems can be treated by the polynomially scaling methods. Large, strongly correlated

systems, however, remain an unsolved problem.

Classic, real-world examples of strong correlation include transition metals, excited states,

and bond-breaking. [4] A specific example of an open strong correlation problem is iden-

tifying the mechanism used by the iron-molybdenum cofactor (FeMoco) in nitrogenase. It

is a strongly correlated system which has a conservative active space of 54 electrons in 54

spatial orbitals. However, a recent estimate suggests that an active space of 113 electrons

in 76 orbitals is likely needed to obtain a reasonable ground-state energy. [5] Characterizing

this molecule is of immense chemical interest, as nitrogenase uses it to catalyze ambient

nitrogen fixation (That is, the high temperatures and pressures of the Haber-Bosch process

are not required). Such molecules, as well as the earlier examples, are enough to motivate

the development of novel methods that can treat large systems in the presence of strong

correlation.

1.4 Quantum Information Basics

1.4.1 Qubits and Gates

The core difference between classical and quantum computing lies in the elementary unit of

computation. Classical computers store information as bits, binary units of information that

can be viewed as either |0〉 or |1〉. Quantum computers, on the other hand, store information

as quantum bits, or qubits. These can exist as superpositions of the form |Ψ〉 = c0 |0〉+c1 |1〉

where c0 and c1 are complex numbers which give a normalized one-qubit state (We will
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ignore the possibility of many-level qudits in this work). By normalized, we mean that

〈Ψ|Ψ〉 = 1. One qubit can theoretically store far more information than a classical bit, with

the caveat that it must be prepared and measured multiple times to extract that information.

However, the real power of quantum computing comes from the ability to entangle qubits.

For two bits, the allowed states are |00〉, |11〉, |01〉, and |10〉. However, two quantum bits

can exist as a linear combination of all four of these states. This capacity for quantum

entanglement mirrors the multi-configurational correlation observed in electrons, making

quantum computers an attractive approach for modeling electronic systems.

1.4.2 Efficient Qubit Representation of States

Let us imagine a half-filled, closed shell active space with N electrons. There are
(

N
N/2

)2
configurations which obey Sz symmetry and have the correct particle number. Each of these

configurations will need eight bytes to store a double precision floating point number. This

implies an exponential scaling of memory with respect to system size. The Jordan-Wigner

transformation offers a scheme to map a set of electrons and spin orbitals to a set of spins

which can be modeled by qubits. The appeal of this approach is that one can represent

the state of M spin orbitals with only M qubits, since the M qubits can exist as a linear

combination of several different configurations. [6] This implies a linear scaling of memory

with respect to system size.

The realization of this linear scaling is, on paper, quite simple. Qubits in state |0〉 corre-

spond to unoccupied molecular spin orbitals, while qubits in state |1〉 correspond to occupied

molecular spin orbitals. Let us index our qubits from left to right to correspond to orbitals as

|χ1χ2 . . . χN〉. For example, the HF state of H2 in a minimal basis would be |1100〉. The two

bonding spin orbitals are occupied, and the two antibonding spin orbitals are unoccupied.
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Linear combinations like c1 |1100〉 + c2 |0011〉 can be used to express multi-configurational

electronic states, without introducing more qubits than spin orbitals.

We still need to be able to express operators in the qubit basis, but the rules for convert-

ing the fermionic creation operators to qubit operators are straightforward. Creation and

annihilation operators obey the transformation equations 1.18 and 1.19: [7]

a†k =
1

2
(Xk − iYk)⊗j<k Zj (1.18)

ak =
1

2
(Xk + iYk)⊗j<k Zj (1.19)

Here, we use the elementary Pauli gates, which are defined as:

X = |1〉 〈0|+ |0〉 〈1| (1.20)

Y = i (|1〉 〈0| − |0〉 〈1|) (1.21)

Z = |0〉 〈0| − |1〉 〈1| (1.22)

To motivate equations 1.18 and 1.19, let us consider an arbitrary qubit product state where

each qubit has bj equal to 0 or 1:

|b1〉 |b2〉 . . . |bn〉 ≡
n∏

j=1

(
bj â

†
j + (1− bj)1

)
|〉 (1.23)

The left-hand side of equation 1.23 is the qubit representation of a single configuration. The

right-hand side is the Fermionic representation, expressed as a string of creation operators

acting on the vacuum state.

Now let us consider a creation operator, â†k and its action on this configuration, |φ〉. Assuming
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that j 6= k, we have

a†k |φ〉 = a†k

n∏
j=1

(
bj â

†
j + (1− bj)1

)
|〉 (1.24)

=
(
−b1â

†
1 + (1− b1)1

)
â†k

n∏
j=2

(
bj â

†
j + (1− bj)1

)
|〉 . (1.25)

Let us consider what has happened when we moved â†k to the right of
(
b1â

†
1 + (1− b1)1

)
.

If b1 was 0, i.e., if qubit 1 was in state |0〉, then this rearrangement is described as

â†kâ
†
1 = −â†1â

†
k. (1.26)

If b1 was 1, i.e., if qubit 1 was in state |1〉, then the rearrangement would be described as

â†k1 = 1â†k. (1.27)

In a slight abuse of notation, we will now use Fermionic representations of the operators and

qubit representations of the spin orbitals:

â†k |0〉1 = |0〉1 â
†
k (1.28)

â†k |1〉1 = − |1〉1 â
†
k (1.29)

The implication here is that until â†k “reaches” qubit k, it will do nothing to qubits in state

|0〉, and will introduce a sign change to qubits in state |1〉. This is precisely the action of

the Pauli Z operator. Consequently, we know that

â†k |φ〉 =
(
⊗k−1

j=1Zj |bj〉
)
â†k

(
⊗n

j=k |bj〉
)

(1.30)
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Until this point, all manipulations would have worked exactly the same way if we had used

âk instead of â†k. It is now important to distinguish between the two. We first consider the

action of â†k on |bk〉k. The operator âk will have action defined by:

â†k |0〉k = |1〉k (1.31)

â†k |1〉k = 0 (1.32)

The operator âk can be described with respect to qubit k as |1〉k 〈0|k, which can be expressed

with the Pauli operators as 1
2
(X − iY ). Note that in both cases, the operator âk disappears,

so that we will not need a “Z-string” on the remaining qubits. Substitution into equation

1.30 yields equation 1.18. If we instead consider the action of âk on |bk〉k, we have:

âk |0〉k = 0 (1.33)

âk |1〉k = |0〉k (1.34)

The operator âk is described with respect to qubit k as |0〉k 〈1|k, which can be expressed

with the Pauli operators as 1
2
(X + iY ). Again, the operator disappears so that there will

be no Z-strings on the remaining qubits, yielding equation 1.19. Our states and operators

can all be described in terms of excitation operators, so we can now prepare arbitrary states,

measure expectation values of the Hamiltonian, and apply our own operators through these

basic rules.

1.5 The Variational Quantum Eigensolver

A quantum algorithm known as quantum phase estimation (QPE) has been designed which

can obtain the exact eigenvalues of a Hamiltonian on a quantum computer. [8, 9] Unfor-
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tunately, the algorithm requires deep circuits and therefore long coherence times of qubits.

The qubits available today are not particularly robust, making the deep circuits of QPE

impossible to realize on existing hardware. An alternative was proposed and demonstrated

in 2013 in the form of the variational quantum eigensolver, or VQE. [10, 11]

The essential idea of a VQE is to introduce a classical set of parameters θ which will

parametrize a unitary operator U (θ). These parameters will be classically optimized, while

the parameterized unitary is executed on a quantum processor, acting on some normalized

reference |0〉. The expectation value of the problem Hamiltonian Ĥ will be measured on

the ansatz U (θ) |0〉 on the quantum device to yield its energy. This energy is fed back to a

classical optimizer, which will update the parameters so that a new unitary can be enacted

on the reference. This process is illustrated diagramatically in Fig. 1.1.

The variational aspect of a VQE comes from the fact that one is minimizing a Rayleigh

quotient, given as:

E (θ) =
〈0|U † (θ) ĤU (θ) |0〉
〈0| U † (θ)U (θ) |0〉

(1.35)

The denominator in equation 1.35 is unity regardless of θ, so one simply optimizes 〈0|U † (θ) ĤU (θ) |0〉.

Aside from enforcing the variational principle, unitary operations are used because quantum

operations correspond to physical evolutions of the quantum register, and therefore must be

unitary processes.

At this point, one might ask what form U (θ) takes. Proposed answers are extremely diverse

[12], but we will group them into three broad categories, neglecting adaptive methods for

now:

1. Chemically-inspired unitaries. [10, 13–15]

2. Hardware-efficient unitaries. [16, 17]
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Figure 1.1: A diagram showing the VQE paradigm.
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3. Gate-free unitaries. [18]

We will focus on the chemically inspired ansätze in this work. Most chemically inspired

ansätze are motivated by unitary coupled cluster (UCC) theory, an approach proposed in

the 1970s by Werner Kutzelnigg. [19] The unitary coupled cluster ansatz, as originally

proposed, takes the form:

U (θ) |0〉 = eT̂−T̂ † |0〉 (1.36)

The T̂ operator is borrowed from coupled cluster theory. Typically, T̂ is truncated to the

single and double excitations, i.e. T̂ = T̂1 + T̂2. Using the notation of θ parameters rather

than t-amplitudes, this operator takes the form:

T̂ =
∑
ia

θai â
a
i +

∑
i<j
a<b

θabij â
ab
ij (1.37)

Unfortunately, the expectation value of the Hamiltonian on the ansatz in equation 1.36

cannot be efficiently evaluated on a classical computer. This is because the Baker-Campbell-

Hausdorff (BCH) expansion, which truncates in traditional coupled cluster theory, does

not truncate in UCC. On quantum hardware, however, such an ansatz could be efficiently

prepared, with a caveat: It is not obvious how to implement the complex operator eT̂−T̂ †

in an efficient way. Decomposition of this many-body operator into elementary one- and

two-qubit gates yields an extremely large gate count and circuit depth. [20, 21] Typically,

implementations of UCCSD will use a first-order Trotter approximation [22] of the form:

e
∑

ia θai
(
âai −âia

)
+
∑

ijab θ
ab
ij

(
âabij −âijab

)
≈

∏
ia

eθ
a
i

(
âai −âia

)∏
i<j
a<b

e
θabij

(
âabij −âijab

)
(1.38)

Note that the ordering of the right-hand side of equation 1.38 is not well-defined. The singles

are placed in front of the doubles for notational simplicity, but there is no reason in particular
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to choose such an ordering. The singles and doubles could be placed in any order. In chapter

2, we will discuss the importance of the choice of operator ordering, but will note in passing

that the ambiguity of ordering is a significant problem, a solution of which will be addressed

in chapter 3.

As a final note on VQEs in general, there are significant problems with classical optimization.

Both local minima [23] and so-called barren plateaus [24] tend to appear in the parameter

landscapes of VQEs. Local minima should be familiar to the reader. The basic idea of a bar-

ren plateau is that the gradient variance of the parameter landscape vanishes exponentially

as a function of problem size, i.e. the number of qubits. This is equivalent to the appearance

of a “narrow gorge” in the cost function (energy, in our case) landscape. [25] Inside of a

very small region of the landscape, the energy gradient is large and a good minimum exists.

Outside of that region, however, the energy gradient is very small. As the narrow gorge

becomes more and more narrow, the odds of a given initialization having a good search

direction become vanishingly small, making classical optimization impossible without some

way of specifically targeting the gorge. Both barren plateaus and local minima are significant

problems for the classical optimization of VQEs. We will address our approach to dealing

with them in chapter 4.

1.6 Attribution
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ABSTRACT: The variational quantum eigensolver (VQE) has
emerged as one of the most promising near-term quantum
algorithms that can be used to simulate many-body systems
such as molecular electronic structures. Serving as an attractive
ansatz in the VQE algorithm, unitary coupled cluster (UCC)
theory has seen a renewed interest in recent literature.
However, unlike the original classical UCC theory, implemen-
tation on a quantum computer requires a finite-order Suzuki-
Trotter decomposition to separate the exponentials of the large
sum of Pauli operators. While previous literature has recognized
the nonuniqueness of different orderings of the operators in the
Trotterized form of UCC methods, the question of whether or
not different orderings matter at the chemical scale has not been
addressed. In this Letter, we explore the effect of operator ordering on the Trotterized UCCSD ansatz, as well as the much more
compact k-UpCCGSD ansatz recently proposed by Lee et al. [J. Chem. Theory Comput., 2019, 15, 311. arXiv, 2019, quant-
ph:1909.09114. https://arxiv.org/abs/1909.09114]. We observe a significant, system-dependent variation in the energies of
Trotterizations with different operator orderings. The energy variations occur on a chemical scale, sometimes on the order of
hundreds of kcal/mol. This Letter establishes the need to define not only the operators present in the ansatz but also the order
in which they appear. This is necessary for adhering to the quantum chemical notion of a “model chemistry”, in addition to the
general importance of scientific reproducibility. As a final note, we suggest a useful strategy to select out of the combinatorial
number of possibilities, a single well-defined and effective ordering of the operators.

The ability to accurately simulate chemistry at the subatomic
level can provide deeper scientific insights and further

reaching predictions than through experiment alone. Although
exact simulation requires computational resources which
increase exponentially with system size, many stable molecules
can be accurately modeled using polynomially scaling
techniques, providing accurate and interpretable results.
Examples of such approximations include density-functional
theory, perturbation theory, or coupled-cluster theory. To study
more complicated systems with many strongly correlated
electrons such as those involved in numerous catalytic systems
or materials applications, more general modeling solutions are
needed.
Quantum simulation, which has recently seen a dramatic

increase in activity due to rapid developments in both hardware
and algorithms, provides an exciting possibility for performing
approximation-free simulations without the exponential compu-
tational cost plaguing classical simulations. Because the Hilbert
space of a single spin−orbital can be mapped to the Hilbert
space of a single qubit, the exponential growth of the molecular
Hamiltonian is matched by the exponential growth of a quantum
computer’s Hilbert space. Consequently, a quantum computer
with only tens of logical qubits could potentially demonstrate a
quantum advantage.1−3 While full error-correction is not

expected to be realized in the near future, so-called Noisy
Intermediate ScaledQuantum (NISQ) devices4 have interesting
properties that might still offer important computational
advantages.
While the first quantum algorithm proposed for simulating

many-body systems, the Phase Estimation Algorithm (PEA),1,5,6

provides a path for achieving arbitrarily accurate simulations, it
does so at the cost of incredibly deep circuits. Because device
noise and errors limit the number of gates that can be applied in
sequence, PEA is not viable on NISQ devices. In 2014, Peruzzo
and co-workers proposed and demonstrated an alternative
algorithm termed the Variational Quantum Eigensolver (VQE)7

which offers unique advantages for NISQ devices. Unlike PEA,
VQE limits the depth of the circuit, which makes it possible to
implement on current and near-term devices. However, this
comes at the cost of an increased number of measurements and
the introduction of a wave function ansatz that can limit the
accuracy of the simulation (although our recent approach,
ADAPT-VQE, can remove the ansatz error).8 The initial
demonstration of VQE7 was followed by several theoretical
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studies9−15 and demonstrations on other hardware such as
superconducting qubits10,14,16 and trapped ions.17,18

A key ingredient in VQE is the ansatz, which is implemented
as a quantum circuit which constructs trial wave functions that
are measured and then updated in a classical optimization loop.
The quality of the ansatz ultimately determines the accuracy of
the simulated ground state energy and properties. In the original
proposal, the unitary variant of coupled-cluster theory was
chosen as an ansatz due to several attractive features:

• Accurate: Coupled-cluster theory is among the most
accurate classical methods for many-body simulation.

• Well studied: The unitary variant of coupled-cluster
singles and doubles (UCCSD) has been analyzed in detail
in the context of classical simulations.19−22

• Unitary: Because a quantum circuit implements unitary
operations, the unitary nature of UCCSD makes the
approach natural in a VQE context.

The UCCSD ansatz is obtained by replacing the traditional
Hermitian cluster operator terms in coupled cluster theory with
anti-Hermitian operators

e

a a a a

a a a a a a a a

0

( )

( )

ia
ia a i i a

ijab
ijab a b i j j i b a

UCCSD

1

2

1 2

∑

∑

θ

θ

|Ψ ⟩ = | ⟩

̂ = −

̂ = −

̂ + ̂

† †

† † † †

(1)

where |0⟩ is the uncorrelated reference state, usually Hartree−
Fock, ap

† (ap) is a creation (annihilation) operator for the orbital
indexed by p, and {θia,θijab} are the parameters to be variationally
optimized.
Although the unitarity of UCCSD implies an ease of

implementation on quantum hardware, gate-based quantum
computing requires a decomposition of operations into one- and
two-qubit gates, such as single-qubit rotations and CNOT gates.
In contrast, complicating direct implementation, the n̂
operators simultaneously act on N qubits. In principle, any
unitary operation can be decomposed into one- and two-qubit
gates.23 However, the number of gates produced from such a
decomposition grows rapidly with the number of qubits acted on
by the unitary, making it desirable to use an approximation
scheme such as Suzuki-Trotter24 when implementing N-qubit
unitary operators.
The first-order Suzuki-Trotter approximation is given by eq 2.

e e eA B A B≈̂+ ̂ ̂ ̂ (2)

This becomes exact in infinite order:

e e elimA B

n

A
n

B
n

n

=̂+ ̂

→∞

̂ ̂i
k
jjj

y
{
zzz

(3)

To approximate UCCSD accurately using a product form,
large Trotter numbers, n, could in principle be used. This would,
of course, create extremely deep circuits, making quantum
simulation intractable. Alternatively, one could choose an
aggressive truncation such as that in eq 2. In general, this
would provide a very poor approximation to the UCCSD wave
function but would provide a relatively shallow circuit that is
better for NISQ realization. Note the stark difference between
the effect of “Trotterizing” the ansatz in VQE and Trotterizing
the time-evolution operator for algorithms like PEA. In

Trotterizing the evolution operator, the goal is to reproduce
the dynamics of the original Hamiltonian. Any Trotter error
destroys the dynamics, and thus convergence with respect to
Trotter error is sought.25−27 In contrast, when Trotterizing the
ansatz in VQE it is generally accepted that the variational
optimization can, in practice, absorb most of the energy
difference between the conventional UCCSD and the
Trotterized form.12,13,28

At this point we want to clarify some of the language used
above. Despite having used the Suzuki-Trotter approximation as
a motivation for separating out the ansatz into a product form, it
is no longer appropriate to call this a Trotter approximation. The
reason is that the Trotterization occurs before parameter
optimization. Thus, one is actually variationally optimizing the
parameters of the product form, and it no longer relates to the
conventional UCCSD (in ref 29 Evangelista et al. refer to this as
the disentangled form of UCCSD, opting to avoid the
Trotterization language altogether). In fact, if one were to use
the optimized parameters from the product form and insert
them into the conventional UCCSD ansatz, the result would
necessarily be higher in energy. Therefore, it is important to note
that the term “Trotterized form” referred to throughout this
Letter is not an approximation to the conventional UCCSD
ansatz. It is instead a different ansatz altogether, a point easily
made by recognizing that the Trotterized form can sometimes
yield a lower energy than the conventional, yet variational,
UCCSD.
Unfortunately, a problem of definition arises during

Trotterization. Reordering the product approximation in eq 2
does not generally give the same result, except in the trivial case
where the operators commute. With the number of operator
orderings being a path enumeration problem, the number of
possible ansatzes produced during Trotterization (and poten-
tially reported in the literature) is exponentially large. This, of
course, is not an issue in UCCSD, as a sum of operators has no
dependence on the order in which they are summed.
The objective of this Letter is to determine if the term

“Trotterized UCCSD” is sufficiently well-defined, such that the
range of energies coming from different operator orderings falls
within some notion of chemical accuracy (e.g., 1 kcal/mol), a
term referred to in the title as chemically well-def ined. If that were
the case, then the term “Trotterized UCCSD” would be well-
defined, as an arbitrary operator ordering would produce
practically similar results. However, if changing the operator
ordering significantly changes the accuracy on a chemical scale,
then it proves necessary to provide more information to fully
define an ansatz and to provide reproducible results. To answer
this question, we perform classical simulations with randomly
shuffled operators using a custom code built with Open-
Fermion30 and Psi4,31 which uses the gradient algorithm we
developed, which is outlined in the Appendix of ref 8. The results
using various operator orderings are compared to both UCCSD
and Full CI (FCI).

■ NUMERICAL EXAMPLES
We consider four molecules in the context of the UCCSD
ansatz, LiH, H6, BeH2, and N2 with its 1s and 2s orbitals frozen.
All molecules are arranged in uniform, linear geometries with
varying interatomic distances. For each system, we classically
simulate the calculation of a potential energy curve using a large
number of random operator orderings.
For each system, the minimal STO-3G basis is used to

minimize computational cost (the implementations use the full
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Hilbert space of the orbitals), and the restricted Hartree−Fock
(RHF) singlet state is chosen as the reference state. The one-
and two-electron integrals are computed with the Psi4 quantum
chemical package.31 The Hamiltonian, anti-Hermitian operators
in the UCCSD ansatz, and reference state are formed in the
qubit basis using the Jordan-Wigner transform in Open-
Fermion.30 At this point, the various orderings of ansatzes are
constructed, and their parameters {θia,θijab} are optimized by the
SciPy implementation of BFGS.32 The potential energy curves
are displayed in Figure 1 along with standard deviation plots and
range plots. We additionally compare the random Trotter
orderings to a “sequential gradient ordering” (SGO), a quasi-
deterministic method where one operator with the largest
gradient is added at a time, according to the prescription
followed by the ADAPT-VQE ansatz construction. However, in
contrast to the ADAPT-VQE, the SGO approach refrains from
allowing inclusion of more than one instance of the same
operator so that a direct comparison to the original UCCSD
results can be made.
A cursory evaluation of the data suggests that the variance

among different ansatzes increases with static correlation of the
chemical system. Because these tend to be the systems of
greatest chemical interest for VQE since they represent
classically hard problems, the ability to choose good Trotter
orderings is critical.
The UCCSD results for the first molecular PES, H6, are

characterized by an accurate description near the equilibrium
region, a quick increase in error upon bond breaking, and then a
similarly rapid decrease in error as the bond is further stretched
to dissociation. With five “bonds” being broken simultaneously,
it is expected that UCCSD should fail to accurately describe this
system. One interesting observation from this plot is that the
ordering variance (the statistical variance of the energies
computed with randomly shuffled operators) increases as the
UCCSD error increases. In contrast to H6, LiH is a relatively
simple system, and we observe negligible ordering variance.

Regardless of Trotter ordering, the curves are all extremely good
approximations.
Similar to H6, BeH2 exhibits a simultaneous quick rise in the

ordering variance and UCCSD energy error. However, unlike
H6, the ordering variance decreases again after bond breaking,
along with the UCCSD energy error. The range of values
obtained from different orderings is of the same order of
magnitude as the actual absolute error of the UCCSD energy.
Unlike both H6 and BeH2, the UCCSD curve for N2 does not

decrease in error after bond breaking but rather flattens out to a
nearly constant error of around 10 kcal/mol. The ordering
variance increases alongside the UCCSD error and also levels
out, despite a significant jump occurring around 3.5 Å in the
range of energy values obtained from the Trotterized ansatzes.
This is due to at least one of the operator orderings getting stuck
in a local minimum (the variational parameters are initialized to
0), which is a consequence of the highly nonlinear nature of the
optimization.
Overall, we find that when static correlation appears, the

energy differences between orderings increase. This can be
understood from the fact that the differences between operator
orderings depend on the commutators of the operators, and
these in turn depend on the optimal parameter values, which
tend to be larger when the electron correlation is stronger. (A
system with no electron correlation would have an optimal
solution with all parameters equal to zero.) As such it makes
sense that for more strongly correlated systems, the differences
between operator orderings increase. While uniquely well-
defined (up to orderings of operators with degenerate
gradients), the sequential gradient ordering scheme does not
appear to be reliably better or worse than other orderings.

Alternative Ways To Reorder Operators. In Figure 1, a
comparison is made between the un-Trotterized ansatz and a
series of randomly shuffled Trotterizations. However, one could
group the operators by excitation rank before Trotterization.
This would result in a significantly reduced sampling space and

Figure 1. Potential energy curves relative to the FCI dissociation limit of each system for, from left to right, H6, LiH, BeH2, and N2 (top) and errors
from FCI (bottom) for the UCCSD ansatz.
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potentially provide more consistently accurate results. To
address this possibility, we have computed the performance of
multiple different orderings, such as grouping singles first and
doubles second or doubles first and singles second. From these
results, we find that it is generally favorable to apply double
excitations to the reference first, followed by singles. This data is
provided in the Supporting Information.
k-UpCCGSD. From the results in Figure 1, we notice that the

ordering variance increases with error in the associated un-
Trotterized ansatz. It seems then that when UCCSD is accurate,
there may be an excess of operators, such that the extra operators
(while not necessary for accurate energy estimates) are useful in
minimizing the differences between different Trotterization
orderings. To test this hypothesis, we have additionally
considered the more compact k-UpCCGSD ansatz by Lee et
al.,15 which has far fewer parameters (for small k) than UCCSD,
where k controls the number of variational parameters by
considering k products of the ansatz with all generalized paired
doubles and orbital rotations:

e( ) 0k
i

k
T T

UpCCGSD
1

i i( ) ( )

∏|Ψ ⟩ = | ⟩‐
=

̂ − ̂ †

(4)

The k-UpCCGSD ansatz is a more economical para-
metrization where only the operators which are expected to be
most important are included. This translates into having fewer
excess parameters, such that higher accuracy can be reached with
a comparable circuit depth by increasing k. Based on our results
above, we would anticipate a higher ordering variance for small
values of k (larger than UCCSD), but that by increasing k, one
can make the energy error (and thus the ordering variance)
arbitrarily small. On the other hand, it is worth mentioning that
the improvement attained by increasing k is accompanied by
placing a heavier burden on the classical optimizer, as it tends to
exacerbate the highly nonlinear character of the underlying
optimization, making it difficult to locate the global minimum.
Moreover, the minima found by the optimizer show strong
dependence on the initialization of the variational parameters.
One way this can be circumvented in the cases involving the un-
Trotterized version of the k-UpCCGSD, as presented in eq 4, is
to perform many simulations with the variational parameters θ⃗
initialized at random, as suggested in ref 15 and carried out here
by repeating the simulations at each bond length 100 times and
taking the lowest energy value as the global minimum for each
geometry. This leads to potential energy curves for k = 1, 2 that
are smooth in the energy scale relevant in the current context.
The variational parameters are initialized at 0 for all Trotterized
ansatzes constructed based on eq 4, in line with what is detailed
for the UCCSD ansatz and whose results are displayed in Figure
1.
Figure 2 shows simulation results for H6 with k = 1, 2 for 100

randomly sampled operator groupings. Several features of the
performance of the different Trotterized versions of 1- and 2-
UpCCGSD agree with the results for the Trotterized versions of
the UCCSD ansatz. For short bond distances (<1.1 Å), there is
an evident insensitivity of the energy with respect to a specific
sampling of the operators. Despite being already fairly small in
this regime with k = 1, this distinction is largely quenched when k
= 2, rendering the results with differently sampled ansatzes
visually identical on the scale of the plots.
The most remarkable divergences among the operator

groupings and the size of the generator, that is, k = 1 vs k = 2,
are observed when moving toward the limit of H6 dissociating

into six noninteracting hydrogen atoms. These results are
consistent with the observations found in ref 33, which noticed
that for k = 1 there were large differences in energy depending on
whether one grouped or split the singles and doubles excitations.
Ansatzes with different operator groupings start to deviate in the
vicinity of the Coulson-Fischer point. In this region, none of the
orderings that were sampled for the 1-UpCCGSD operators
approach the corresponding un-Trotterized and FCI energies.
Some of the ansatzes are able to get back on track in closely
approaching the FCI dissociation limit, along with the un-
Trotterized 1-UpCCGSD energies. These ansatzes happen to be
largely comprised of double excitation operators flocked closer
to the reference determinant, which is in line with the findings
from the simulations with the SD orderings, provided in the
Supporting Information. The 1-UpCCGSD ansatz tracks well
the FCI results, being able to provide the correct qualitative
behavior along the PES. However, this ansatz is quite compact,
and its limited number of parameters impairs its ability to
variationally achieve results that are quantitatively comparable
to FCI. The operator ordering originated from the SGO
construction closely follows the lowest energies from random
operator samplings. It is worth pointing out that it is able to
overcome the deficiencies around the Coulson-Fischer point
and asymptotically recover the exact (FCI) dissociation limit,
whereas the corresponding un-Trotterized ansatz cannot
account for all the missing correlation as the H−H bonds are
stretched. Because in the SGO ansatz the operators are added
according to the magnitude of their gradient component, an
ansatz with identical operators, such as k-UpCCGSD with k > 1
cannot be unambiguously defined and that is why we do not
report such results in Figure 2.
The disparities among operator groupings are largely removed

all throughout the potential energy curves by doubling the
number of variational parameters, accomplished by setting k = 2.
We preserve the same orderings studied for k = 1, that is, we have
a product of two Trotterized exponential generators wherein

operators are not shuffled across the two instances of eT T
i i( ) ( )̂ − ̂ †

.
Except for a slight spread surrounding the Coulson-Fischer
point which is the region most strongly correlated in the

Figure 2. Potential energy curves relative to the FCI dissociation limit
of H6 into six hydrogen atoms (top) and errors from FCI (bottom) for
the 1-UpCCGSD (left) and 2-UpCCGSD (right) ansatzes.
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potential energy curve, all of the different ansatzes behave in a
strikingly similar fashion. The errors are largest in this region,
and keeping in mind the different scales in the plots when
changing k, they are significantly mitigated in comparison with k
= 1, with all orderings approaching the FCI energy in the
dissociation limit. The advantage due to a larger set of variational
parameters is also reflected in the un-Trotterized version of the
ansatz, 2-UpCCGSD, whose dissociation curve practically
overlays with the FCI results. The significant improvement in
the results with k = 2, accompanied by a virtually absent spread
in the computed energies, is in agreement with the findings of
Lee et al.,15 which implies that these ansatzes are relatively
insensitive to the ordering of the operators.

■ CONCLUSIONS

In this Letter, we sought to determine if the operator ordering in
Trotterized UCCSD impacts the results in a “chemically
meaningful” way, such that the differences between unique
operator orderings produce results which differ on a chemical
scale, i.e., greater than 1 kcal/mol. Our numerical simulations
clearly demonstrate that the operator ordering has a significant
effect (large energy differences between orderings) only when
there is a significant amount of electron correlation. However,
the renewed interest in UCCSD (and the relevance of the
Trotterized form) is due to the use of the UCCSD ansatz in
VQE simulations on quantum computers. Strongly correlated
molecules are the primary target of quantum simulations, and so
this makes the issue of operator ordering even more important.
Consequently, the results in this paper emphasize that to ensure
scientific reproducibility, it is necessary for authors to report the
specific orderings used in simulations involving Trotterized
ansatzes. These results strongly advocate for the use of a
dynamic ansatz which uniquely determines the operator
ordering, such as ADAPT-VQE,8 or adopting an ansatz which
does not require trotterization (such as the Jastrow-based
approach in ref 33). Our findings also suggest that there are
systematic patterns to which Trotter orderings will give the
lowest energy, offering a useful route to defining useful and
unique operator orderings.
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I. OPERATOR GROUPINGS

The single and double excitation operators {a†aai} and {a†aa
†
baiaj} (or {a†paq} and {a†pa†qaras} in the case of gen-

eralized excitations) are labeled from looping over the last index, which is nested in a loop over the previous index,
and so on, starting with singles and then indexing double excitations. For example, the first operator, with index 0,

is {a†nocc+1a0}, where nocc is the number of occupied orbitals.

Here we provide a brief description of the different ways to group operators in the Trotterized ansatz:

1. Fully Shuffled (FS) Operators - All operators in the Trotter product are mixed at random. We sample 100
random orderings for each point.

2. Singles-Doubles (SD) Shuffled Operators - The single and double excitations are mixed separately. The double
excitations are applied to the reference state first. We sample 100 random orderings for each point.

3. Doubles-Singles (DS) Shuffled Operators - The double and single excitations are mixed separately. The single
excitations are applied to the reference state first. We sample 100 random orderings for each point.

4. Gradient Order (GO) - The gradient of the reference energy with respect to each operator parameter is computed
and used to sort the operators. Those with the largest gradients are applied first to the reference. This ordering
is nearly deterministic, with the ordering of operators with equivalent gradients being chosen by lexical ordering.

5. Sequential Gradient Order (SGO) - The gradient of each operator not yet applied is evaluated at the current
ansatz, similarly to our ADAPT method.1 The operator of largest gradient at each step is applied to the current
ansatz, before reoptimizing all parameters. This ordering is also deterministic up to degeneracies in the gradient.

6. Unitary Coupled Cluster with Singles and Doubles (UCCSD) - The un-Trotterized UCCSD energy is computed
as a reference. This method is deterministic.

7. k products of Unitary pair Coupled Cluster with Generalized Singles and Doubles (k-UpCCGSD) - The un-
Trotterized k-UpCCGSD energy is computed as a reference. This method is deterministic.

We illustrate the effect of these distinct operator arrangements in comparison with UCCSD along with the data in
Figure 1 in the main text in Figure 1.

Similar results follow from the ansatzes investigated in Figure 2 of the main text, which are portrayed in Figure 2.

In general, Figures 1 and 2 suggest that placing double excitations closest to the reference gives lower energies than
random operator arrangements, with tighter variance. The opposite effects are observed when the single excitations
are all placed closest to the reference. This is fairly intuitive, given that double excitations tend to be more important
than single excitations in methods like CCSD and CISD.

II. DATA AND IMPLEMENTATION

The data in the UCC plots were obtained using two in-house codes available at:

https://github.com/hrgrimsl/MG VQE Tools/tree/SI

and

https://github.com/hrgrimsl/spock

The SI File folder found there contains a variety of scripts which were used to write input files, and “seeding”
scripts which can be used to manage calling and executing the “writing” scripts with different seeds for the random
ordering of the operators. The workflow is outlined in the table below:
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FIG. 2. Results for the different ansatzes derived from 1-UpCCGSD (top) and 2-UpCCGSD (bottom) for H6, where PEC refers
to potential energy curve.

Seeding Script Writing Script(s) Purpose

h6inter.py Write H6.py FS H6 Data

h6intra.py Write H6B.py SD H6 Data

h6intra2.py Write H6C.py DS H6 Data

H6 misc.py h6ucc.py UCC H6 Data

h6sGO.py sGO H6 Data

h6GO.py GO H6 Data

lihinter.py Write LiH.py FS LiH Data

lihintra.py Write LiHB.py SD LiH Data

lihintra2.py Write LiHC.py DS LiH Data

LiH misc.py lihucc.py UCC LiH Data

lihsGO.py sGO LiH Data

lihGO.py GO LiH Data

beh2inter.py Write BeH2.py FS BeH2 Data

beh2intra.py Write BeH2B.py SD BeH2 Data

beh2intra2.py Write BeH2C.py DS BeH2 Data

BeH2 misc.py beh2ucc.py UCC BeH2 Data

beh2sGO.py sGO BeH2 Data

beh2GO.py GO BeH2 Data

n2inter.py Write N2.py FS N2 Data

n2intra.py Write N2.py SD N2 Data

n2intra2.py Write N2.py DS N2 Data

N2 misc.py n2ucc.py UCC N2 Data

n2sGO.py sGO N2 Data

n2GO.py GO N2 Data

Much of the data was assembled piecemeal, so the settings in a given template script may not replicate the whole
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dissociation curve. Reselecting the radii in the writing scripts should enable exact replication of any arbitrary point
on the curve, as the 0-99 random seeds are the correct ones. The code will require some additional minor work to
function on a setup other than the cluster we used.

For the data used in Figure 2, specific operator orderings, along with the corresponding energy values, can be found
in the .xlsx file also included in the Supporting Information.

∗ nmayhall@vt.edu
1 Grimsley, H. R.; Economou, S. E.; Barnes, E.; Mayhall, N. J. An adaptive variational algorithm for exact molecular simulations

on a quantum computer. Nature Communications 2019, 10, 3007.
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Anticipation that a useful quantum computer will be rea-
lized in the near future has motivated intense research
into developing quantum algorithms which can poten-

tially make progress on classically intractable computational
problems. While many research areas expect to see transformative
change with the development of such quantum devices, compu-
tational chemistry is poised to be among the first domains to
significantly benefit from such new technologies. Due to the
exponential growth in the size of the Hilbert space with increasing
orbitals, a quantum computer with tens of qubits could poten-
tially surpass classical algorithms1–3. Achieving such a capability
depends not only on the quality of the qubits, but also critically
on the efficiency of the algorithms.

The phase estimation algorithm (PEA)4 was the first algorithm
proposed for simulating electronic structure problems on a
quantum computer1,5. PEA provides a path for obtaining the
exact ground state electronic energy for a molecule by evolving in
time a quantum state with significant overlap with the ground
state using the molecular Hamiltonian of interest. Due to the very
long circuit depths and complex quantum gates required by PEA,
the coherence times needed to simulate interesting electronic
states would exceed the coherence times available on any existing
or near-term quantum device. Improvements to PEA still require
significant resources and experimental demonstrations to date
only involve a few qubits6–8.

In order to reduce the significant hardware demands required by
PEA and exploit the capabilities of noisy intermediate-scale quan-
tum (NISQ) devices9, the variational quantum eigensolver (VQE)
algorithm was proposed and demonstrated using photonic qubits
by Peruzzo et al.10. This was followed by several theoretical studies
on VQE7,11–17 and demonstrations on other hardware such as
superconducting qubits7,16,18 and trapped ions19,20. Other approa-
ches have been pursued as well, including methods for adiabatic
quantum computation21 and quantum machine learning22.

VQE is a hybrid quantum-classical algorithm, because the
computational work is shared between classical and quantum
hardware. VQE starts with an assumption about the form of the
target wavefunction. Based on this form, an ansatz with several
tunable parameters is constructed, and a quantum circuit capable
of producing this ansatz is designed. The ansatz parameters are
variationally adjusted until they minimize the expectation value
of the molecular Hamiltonian. Classical hardware is used to
precompute all the Hamiltonian terms and to update the para-
meters during the circuit optimization. The quantum hardware is
only used to prepare a state (defined by its current set of ansatz
parameter values) and to perform measurements of the various
interaction terms in the molecular Hamiltonian, Ĥ ¼ P

i giôi.
Because the individual operator terms, ôi, generally do not
commute, the state preparation has to be repeated multiple times,
until all the individual operators have been measured enough
times to get sufficient statistics on their mean value. Details on all
these steps can be found in ref. 12.

Compared to PEA, VQE is much more suitable for NISQ
devices, trading in the long circuit depths for shorter state pre-
paration circuits, at the expense of a much higher number of
measurements. Although VQE has been demonstrated to be more
efficient and error-tolerant7,12,16, this comes with the compro-
mise that the ansatz generally only allows one to obtain
approximations to the ground state. Because the choice of ansatz
determines the variational flexibility of the trial state, the quality
of a VQE simulation is only as good as the ansatz.

Several approaches have been explored with the goal of
creating a compact ansatz which provides high accuracy with few
parameters and shallow circuits. The first ansatz explored10 was
based on the unitary variant of coupled cluster theory truncated

at single and double excitations (UCCSD), inspired by early
efforts in computational chemistry to improve coupled cluster
theory23–26. In UCCSD, trial states are generated by applying to a
reference state a unitary operator in the form of an exponential of
a sum of single and double fermion operators with their coeffi-
cients taken as free parameters. More recent proposals based on
UCCSD include the unitary Bogoliubov coupled cluster theory
which takes a generalized Hartree–Fock (HF) state as the refer-
ence27 and the k-UpCCGSD approach of Lee et al.17 which uses k
products of unitary paired generalized doubles excitations, along
with the full set of generalized single excitations. The k-
UpCCGSD approach builds on early work by Nakatsuji28–31 and
Nooijen32 studying the use of generalized excitation terms in
classical quantum chemistry algorithms, but prunes the expansive
operator list by restricting the two-particle terms to only paired
interactions, which provides a systematic way to converge to FCI
without introducing higher excitation rank operators. Ryabinkin
et al.33 recently proposed a coupled cluster-like ansatz which is
constructed directly in the qubit representation with the goal of
achieving shallower circuits. While not directly a variation of the
UCCSD ansatz itself, ref. 16 developed an approach (termed the
quantum subspace expansion) to extract not just the expectation
value of Ĥ but all the matrix elements hIjĤjJi in a small subspace
consisting of single excitations from the trial state. This Hamil-
tonian matrix is then diagonalized on a classical computer, which
reduces the impact of decoherence and gives access to excited
states. Even further from the original UCC ansatz, Kandala
et al.18 have used an alternative ansatz for their VQE experiments
based on the native entangling gate in their superconducting
qubit device, referred to as a “hardware-efficient ansatz”. This
allows entanglement to be created directly from a device-wide
unitary instead of through a more traditional gate decomposition
of a fermionic operator.

Despite these considerable improvements to the UCCSD ansatz
for VQE, this remains an approximate approach that works best
for systems that are not strongly correlated. However, strongly
correlated systems are the hardest to simulate classically, and this
is precisely the motivation for performing simulations using
quantum computers. While an exact VQE simulation could in
principle be performed by adding higher rank excitations to the
ansatz, this would be prohibitively expensive for both the classical
subroutines and NISQ devices. To overcome these challenges, we
need to avoid imposing an ad hoc ansatz and instead allow the
system to determine its own compact, quasi-optimal ansatz.

In this paper, we achieve this by introducing a simple algo-
rithm termed Adaptive Derivative-Assembled Pseudo-Trotter
ansatz Variational Quantum Eigensolver (ADAPT-VQE).
ADAPT-VQE determines a quasi-optimal ansatz with the mini-
mal number of operators for a desired level of accuracy. The key
idea is to systematically grow the ansatz by adding fermionic
operators one-at-a-time, such that the maximal amount of cor-
relation energy is recovered at each step. This results in a wave-
function ansatz that is discovered by the algorithm, and which
cannot be predicted a priori from a traditional excitation-based
scheme like UCCSD. While intuitive, this approach can also be
derived more rigorously as a particular optimization procedure
for Full Configuration Interaction (FCI) VQE and is more thor-
oughly discussed in Section 1 of the Supplement. We demonstrate
the power of ADAPT-VQE through numerical simulations of
three molecules of increasing complexity: LiH, BeH2, and H6. In
each case, we find vastly improved performance compared to
UCCSD, both in terms of the number of operators needed to
form the trial states and in terms of chemical accuracy. Therefore,
we believe that ADAPT-VQE is an ideal hybrid algorithm for
NISQ devices.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-10988-2
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Results
Specification of the adopted notation. In order to define the
approach, several definitions and notations need to be established.
First, molecular orbital indices i and j denote occupied orbitals, a
and b denote virtual orbitals, and p, q, r, and s denote arbitrary
molecular orbitals. In coupled cluster theory, in particular CCSD,
an expansion based on the HF state |ψHF〉 is created by using an
exponential ansatz involving single and double excitation opera-
tors:

ψCCSD
� � ¼ eT̂1þT̂2 ψHF

�� �
; ð1Þ

where the excitation operators are defined as:

T̂1 ¼
X
ia

t̂ai ¼
X
ia

tai â
y
aâi ð2Þ

T̂2 ¼
X
i<j;a;b

t̂abij ¼
X
i<j;a<b

tabij â
y
aâ

y
bâiâj: ð3Þ

For closed shell molecules near equilibrium, CCSD provides a
robust ansatz for molecular simulations. Early efforts to combine
size extensivity and variationality were pioneered by Bartlett,
Kutzelnigg, and coworkers23–25. In this context, a unitary variant
of coupled cluster theory (UCCSD) was defined by replacing the
excitation operators with an anti-Hermitian sum of excitation
and de-excitation operators:

t̂abij ! t̂abij � t̂ijab ¼ τ̂abij : ð4Þ
Because UCCSD is based on a unitary operator, the adjoint is

the inverse, and the expectation value of the UCCSD wavefunc-
tion can be expanded using the Baker–Campbell–Hausdorff
(BCH) formula to obtain a normalized Hamiltonian expectation
value (Rayleigh quotient) for variational optimization. Unfortu-
nately, the BCH expansion does not truncate at finite order,
making UCCSD computationally intractable on classical hard-
ware. However, the unitary nature of UCCSD is actually a benefit
for quantum algorithms as it corresponds to a coherent time
evolution, and this was the original motivation for using UCCSD
in VQE10.

In addition to a unitary form, CCSD can also be generalized by
including excitation operators which immediately annihilate the
HF state. These would include excitations from occupied to
occupied, virtual to virtual, etc. Generalized excitations or
interactions of this form have been considered previously, and
have been used in the context of VQE recently by Lee and
coworkers17. In this case the cluster operators are further
generalized to remove the HF-based subspace restriction:
τ̂abij ! τ̂rspq, where p, q, r, and s refer to any arbitrary orbital.

Although UCCSD is perhaps a natural ansatz for VQE, it
cannot be implemented directly as written or as explored
previously in the quantum chemistry context. Because the gate
model of quantum computation is realistically bound to using
gates acting on only a few qubits at a time, the UCCSD operator
must be broken up into a time-ordered sequence of few (one or
two) particle operators. This is achieved by using a Trotter
expansion of a matrix exponential34,

eAþB ¼ lim
n!1 eðA=nÞeðB=nÞ

� �n
: ð5Þ

Because the generalized single and double excitation operators
do not commute, the use of a truncated Trotter expansion
represents an approximation to the underlying UCCSD ansatz,
and recent work has shown clearly that this does not strongly
affect the results because the variational flexibility is sufficient to
absorb this error7, and that even a single Trotter number (n= 1)
is sufficient to reproduce the results of UCCSD. As a result, a

unitary, generalized, Trotterized ansatz becomes:

ψtUCC
�� � ¼ Y

s2fpqg
et̂s

Y
d2fpqrsg

et̂d ψHF
�� �

; ð6Þ

where notation is introduced such that the generalized singles
index, s, runs over all unique pairs of p, q and the doubles index,
d, over unique combinations of p, q, r, s.

ADAPT-VQE algorithm. The above discussion described the
Trotter expansion as an approximation to UCCGSD. However,
as recognized previously7,35, if the parameters are optimized
after the Trotterization, this is not so much an approximation to
UCC as it is a wholly unique ansatz. In fact, the exact FCI
solution could be obtained by simply going to an nth order
Trotterized form of UCCSD and allowing the different para-
meter replicas to vary independently. This is due to the fact that
n-body interactions can be described as products of one- and
two-body interactions. The exact (FCI) quantum state can thus
be represented as an arbitrarily long product of one- and two-
body operators,

ψFCI
�� � ¼ Y1

k

Y
pq

eτ̂
q
p ðkÞ

Y
pqrs

eτ̂
rs
pqðkÞ ψHF

�� �
ð7Þ

where τ̂rspqðkÞ is the kth instance, or “replica”, of the operators in

t̂rspq � t̂pqrs . It is important to note that this is not a Trotter
approximation to any simple two-body ansatz, as each replica
can assume different parameter values, e.g., τrspqðkÞ≠ τrspqðjÞ.

The main goal in this paper is to approximate FCI with
arbitrary accuracy using a maximally compact sequence of
unitary operators. The basic outline of the algorithm is drawn
schematically in Fig. 1 and is as follows:

(1) On classical hardware, compute one- and two-electron
integrals, and transform the fermionic Hamiltonian into a
qubit representation using an appropriate transformation:
Jordan–Wigner, Bravyi–Kitaev, etc. This is a standard step
in regular VQE.

(2) Define an “Operator Pool”. This is simply a collection of
operator definitions which will be used to construct the
ansatz. For the examples presented in the next section, we
consider the set of all unique spin-complemented one- and
two-body operators, but one might imagine adding a few
three-body or four-body terms as well.

(3) Initialize qubits to an appropriate reference state, ideally one
with the correct number of electrons. The HF state would be
a sensible choice here. Initialize the ansatz to the identity
operator.

(4) On a quantum computer, prepare a trial state with the
current ansatz. If multiple quantum computers are available,
perform this step on all devices simultaneously.

(5) Measure the commutator of the Hamiltonian with each
operator in the pool to get the gradient. Repeating this
multiple times and averaging gives the gradient of the
expectation value of the Hamiltonian with respect to the
coefficient of each operator. This can be done in parallel.

(6) If the norm of the gradient vector is smaller than some
threshold, ε, exit.

(7) Identify the operator with the largest gradient and add this
single operator to the left end of the ansatz, with a new
variational parameter. Note that this does not “drain” the
pool in the sense that choosing an operator does not remove
it from the pool so it can be used again later.

(8) Perform a VQE experiment to re-optimize all parameters in
the ansatz.

(9) Go to step 4.
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As described above and illustrated in Fig. 1, each iteration
starts as a series of uncoupled experiments to obtain the
parameter gradients via measurements of operator commutators
(the gradient expression in step 5 is derived in section IB of the
Supplemental Information). The purpose of these gradient
measurements is to determine the best operator with which to
grow the ansatz, as the operator with the largest gradient is likely
to recover the most correlation energy in the subsequent VQE
minimization. This process is continued iteratively, until a
convergence threshold is met. In the classical numerical examples
presented below, we chose to consider the L2 norm of the
gradient vector to determine convergence. This is just one
possibility, and alternative convergence indicators could be used
instead in step 6. At convergence, the ADAPT-VQE algorithm
obtains the following ansatz:

ψADAPTðεÞ�� E
¼ eτ̂N

� �
eτ̂N�1
� � � � � eτ̂2

� �
eτ̂1
� �

ψHF
�� � ð8Þ

where the identity of each τ̂i is determined by the algorithm.
The re-optimization subroutine in step 8 can be implemented

on either a classical or quantum processor using any of the
gradient- or non-gradient-based optimization routines that have
been proposed or demonstrated for VQE12,15,16,18. Note that this
subroutine is distinct from the gradient computed in step 5 of the
algorithm. Additional possible modifications to the algorithm are
mentioned in the “Discussion” section.

The evaluation of all the gradient terms could in principle be
achieved in a NISQ-friendly, highly parallel manner with a large
number of uncoupled quantum computers all tasked with
preparing the same state and measuring a different operator.
This is the same potential for parallelization that the underlying
VQE subroutine has. Just as with the original motivation for
VQE, ADAPT-VQE decreases the circuit depth at the expense of
a larger number of measurements. In our case a sequence of VQE
experiments is performed, with the most resource-demanding
experimental steps happening at the end. This constitutes a rather
large prefactor which would scale with the size of the system, but
the crucial advantage is controllability over the ansatz accuracy

(in principle approaching FCI). Because the number of non-zero
parameters equals the number of iterations, in order to discover
an ansatz for a large system, an equal number of VQE re-
optimizations will need to be performed. One strategy to
minimize this prefactor could simply be to add a few operators
at a time.

Determining resource requirements for adaptive procedures is
rather difficult. The classical resources are not expected to be
significant in the foreseeable future. However, as quantum
technology progresses toward deeper circuits, the parameter
manipulation and updating on a classical computer could become
costly. However, we expect the dependence between parameters
at the beginning and end of the ADAPT-VQE circuit to decay
with circuit depth, such that one could imagine freezing the early
parameters after a certain number of iterations. This would
possibly establish an approach for FCI with only a polynomial
number of variables, completely avoiding any exponential cost for
the classical hardware.

Molecular dissociation simulation results. In this section, we
explore the convergence properties of the ADAPT-VQE algo-
rithm with a few small molecular systems, LiH, BeH2, and linear
H6. The former two molecules have been simulated using quan-
tum hardware18,20. H6 is included as a prototypical strongly
correlated molecule, which allows us to test the ADAPT-VQE
approach for systems which are not well described with unitary
coupled cluster.

In order to perform the simulations, an in-house code was
written, using Psi436,37 for the integral calculation (via the
OpenFermion-Psi438 interface) and OpenFermion was used for
the Jordan–Wigner operator transformation. All calculations used
the Broyden–Fletcher–Goldfarb–Shannon (BFGS) minimization
implemented within Scipy39. To classically simulate the re-
optimization subroutine in step 8 of ADAPT-VQE, we could use
a standard numerical gradient method. However, in order to
improve the efficiency and allow precise gradients for tight
convergence, we derived and implemented an efficient analytic
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Fig. 1 Schematic depiction of the ADAPT-VQE algorithm described presented. Since step 1 occurs on classical hardware, it is not included in the illustration.
~θðnÞ is the list of ansatz parameters at the nth iteration. The number of parameters, lenð~θðnÞÞ, is equal to the number of operators in the ansatz. “Operator
Pool” refers to the collection of operators which are used to grow the ansatz one-at-a-time. Each τqp represents a generalized single or double excitation,
and these operators are then spin-complemented. The orbital indices refer to spatial orbitals, and the overbar indicates β spin. Orbital indices without
overbars have α spin. Note that growing the ansatz does not drain the pool, and so operators can show up multiple times if selected by the algorithm
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gradient function, which is detailed in Section D of the
Supplement. By reusing intermediates between individual para-
meter gradients, this algorithm obtains the full gradient vector for
all parameters at a cost which is only roughly 2× that of the base
energy evaluation. A table with timing data is included in Table 1
of the Supplement.

As discussed in the previous section, the ADAPT ansatz uses a
convergence threshold to determine when the calculation should
terminate (step 6). Here we use the norm of the gradient vector
and compare it to threshold εm, which we define as

εm ¼ 10�m: ð9Þ
For example, an ADAPT-VQE calculation where the norm of

the operator pool gradient is converged to less than 0.001 would
be denoted as ADAPT(ε3). In what follows we present numerical
results for bond-dissociation curves for LiH, BeH2, and H6 for
three different choices of the threshold (m= 1, 2, 3). We also
investigate alternate protocols for the ansatz growth and
demonstrate the superiority of the ADAPT ansatz.

Here, we study the LiH bond dissociation computed using
several methods, including FCI, UCCSD (un-Trotterized), HF,
ADAPT(ε1), ADAPT(ε2), and ADAPT(ε3), all with the STO-3G
basis set. In this basis set, LiH has 6 spatial orbitals and a Hilbert
space of dimension 4096. By starting with the HF state with two α
(spin-up) and two β (spin-down) electrons and using only
number conserving operators, the relevant subspace to explore

has a dimension of
6
2

	 

� 6

2

	 

¼ 225. In this basis, the

occupied orbitals are {1, 2}, and the virtual orbitals are {3, 4, 5, 6}.
The bond dissociation curves are shown in Fig. 2a, where all

the curves, with the exception of HF, cannot really be
distinguished on this scale. However, as shown in Fig. 2b, when
the FCI energy is subtracted and the scale is adjusted, significant
differences become evident. Shading is used to indicate chemical
accuracy, which is achieved in all cases other than HF. LiH has
only a single pair of electrons (a σ bond) breaking along the
dissociation coordinate, and UCCSD exhibits chemical accuracy
throughout the curve. While ADAPT(ε1) is not as accurate as
UCCSD, ADAPT(ε2) is comparable to UCCSD at short bond
distances and comfortably outperforms it at longer distances.
This is also evident in Table 1, where the average error across the
potential energy surface (PES) is shown. Remarkably, ADAPT(ε3)
outperforms UCCSD throughout the whole curve by at least an
order of magnitude and in some cases up to four orders of
magnitude.

Even more impressive is how few parameters are needed to
achieve this level of accuracy. As shown in Fig. 2c, in all three
cases and for all bond distances, ADAPT is much more compact
than UCCSD. UCCSD has 92 parameters, which can be reduced
to 64 by combining spin-complements. In all three ADAPT
calculations, fewer than half of the parameters are needed
compared to UCCSD. Although UCCSD is noticeably more
accurate than the simplest ADAPT calculation with a gradient
norm threshold of 0.1, the ADAPT(ε1) ansatz is incredibly
compact, consisting of fewer than 10 parameters across the curve.
For example, the ADAPT(ε1) ansatz for LiH at bond distance
2.39 Å is

ψADAPTðε1Þ
�� E

¼ eτ̂
16
12 eτ̂

5�5
2�2 eτ̂

4�4
2�2 eτ̂

13
12 eτ̂

3�3
1�1 eτ̂

3�3
2�2 eτ̂

3�6
2�2 eτ̂

6�6
2�2 ψHF
�� �

; ð10Þ
which includes a mixture of both double excitations and

correlated single excitations n̂jâ
y
aâi

� �
. The indices denote spatial

orbitals, overbar on an index denotes β spin, and spin-
complemented interactions are implied. For example τ̂0601 is really
τ̂0601 þ τ̂�0�6�0�1 . An interesting feature of the ansatz returned by

ADAPT-VQE, Eq. (10), is that the HOMO–LUMO double

excitation eτ̂
3�3
2�2

� �
is not the first operator, but instead the third.

This is different from what one might expect if classical MP2 or
CCSD amplitudes were used to order the ansatz. The reason is
that in choosing the next operator no state energy information is
used, for instance in the form of a denominator penalizing high
energy terms. Interestingly, at convergence it is not the
HOMO–LUMO term or the first operator with the largest

amplitude, but rather the second operator, eτ̂
3�6
2�2 .

In Fig. 2d–f, the dissociation curves for BeH2 are shown. In the
STO-3G basis, BeH2 has 7 spatial orbitals, for a total Hilbert space
dimension of 16,384, and a neutral molecule subspace of

dimension
7
3

	 

� 7

3

	 

¼ 1225. Unlike with LiH, UCCSD does

not provide chemically accurate results across the full PES.
UCCSD and ADAPT(ε1) are comparable at smaller bond
distances. Beyond ~3 Å, they both go above 1 kcal/mol in
absolute error. However, still with a small fraction of the number
of parameters in UCCSD, both ADAPT(ε2) and ADAPT(ε3)
provide nearly exact results, with average deviations from FCI
listed in Table 1.

Now we move our focus to the H6 data. At bond-breaking, the
previous two molecules involved strong correlation between only
two and four electrons, respectively. In order to evaluate the
ability of ADAPT-VQE to converge to FCI in the presence of
much stronger correlations, we have computed the simultaneous
stretching of H6, with the results presented in Fig. 2g–i.

The complexity of this strongly correlated system is reflected in
two obvious ways: (1) the failure of UCCSD to achieve chemical
accuracy across the curve in Fig. 2h, and (2) the increased number
of parameters selected in the ADAPT calculations in Fig. 2i.
Despite being strongly correlated, such that higher excitation rank
operators should be needed, both ADAPT(ε2) and ADAPT(ε3)
provide accurate results with only one- and two-body operators.
Moreover, in the case of ADAPT(ε2) this is achieved with fewer
operators than UCCSD for most bond distances. ADAPT(ε3) also
uses fewer parameters than UCCSD up to the distance where
UCCSD fails to reach chemical accuracy.

Because the algorithm is adaptive, during the course of a
chemical event (bond breaking, isomerization, etc.) the number of
parameters can change abruptly, leading to discontinuous
potential energy curves. Two notable examples of this can be
seen in Fig. 2h, first at R(H-H)= 1.8 Å where ADAPT(ε1)
experiences a large jump in energy, and second at 2.5 Å where
ADAPT(ε2) increases in energy. Figure 2i shows that these energy
jumps correspond to sudden drops in parameter counts.

The cause of the discontinuities in the H6 data can be explained
from the convergence data provided in the Supplement (see
Supplement Fig. 1). For larger bond lengths, as additional
operators are added to the ansatz, the energy flattens out before
dropping substantially again. If the convergence criterion is too
lenient, then the ADAPT-VQE optimization will abort at such
“false gradient troughs”. In the ADAPT(ε2) data of Fig. 2h, i, the
jump in energy error and drop in parameter number, respectively,
are caused by the 2.5 Å optimization aborting at a false gradient
trough, while the optimizations at other bond lengths do not. Of
course, if a tighter threshold is used (such as 0.001), the ADAPT-
VQE algorithm does not prematurely abort, and ultimately yields
high-accuracy results, even for this strongly correlated system.
More sophisticated convergence checks in step 6 might avoid
these situations and will be one focus of future work.

Dependence of convergence on operator ordering. To
demonstrate the importance of the gradient-based operator
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ordering chosen by ADAPT-VQE, we compare it to a few
alternate procedures for growing the ansatz: (a) Random (ijab):
Randomly select from a pool of τabij , where the indices are
restricted to those which do not annihilate the HF reference
state. (b) Random (pqrs): Randomly select from a pool of τrspq,
where the indices are not restricted. (c) Lexical (ijab): Select
from an ordered pool of τabij , where the indices are restricted to
those which do not annihilate the HF reference state. (d) Lex-
ical (pqrs): Select from an ordered pool of τrspq, where the indices
are not restricted.

In Fig. 3, we show the convergence of each of these orderings
and compare them to ADAPT using BeH2 as a typical example.
What stands out is that the ADAPT ansatz converges
dramatically faster than the other four cases considered. While
the two random-growth ansätze converge relatively similar to
each other regardless of whether restricted indices are used or not,
the lexically ordered ansatz shows a clear distinction between the
restricted index (singles and doubles) and un-restricted index
(generalized singles and doubles) ordering. This is due to the fact
that the first operators in the ansatz involve creation operators on
the occupied orbitals, and these do not contribute until the
wavefunction has become entangled. The un-Trotterized UCCSD
result is also marked for reference. Overall, the data in Fig. 3
demonstrate that an iterative gradient minimization algorithm
yields a highly compact ansatz for a given state.

Discussion
An obvious metric for evaluating the performance of any simu-
lation algorithm can be simply described as some accuracy
measure vs. some cost measure. While the accuracy measure in a
simulation is often easy to define, the cost measure is more
nuanced. For variational quantum simulations, there are two
factors which largely determine the overall cost: circuit depth and

number of measurements (or shot count). Shot count is impor-
tant as it determines the time to solution. It is possible that due to
the sheer number of measurements, a particular quantum simu-
lation becomes intractable. However, for NISQ devices in which
coherence times (and thus number of gates) are limited, circuit
depth is usually the most critical cost metric, as it determines
whether or not a simulation can occur at all. By taking circuit
depth as the most important cost metric to address, the original
VQE has been successful by minimizing circuit depth at the cost
of increased number of measurements. Similar to the original
VQE, our new ADAPT-VQE algorithm seeks to further minimize
the circuit depth with an increased number of measurements.

In this direction, the data clearly demonstrates that ADAPT-
VQE succeeds in creating a more compact and accurate wave-
function ansatz than UCCSD. The algorithm achieves this by
systematically identifying the optimal set and ordering of
operators to use in the wavefunction ansatz for a given problem.
The efficiency of ADAPT-VQE makes it very promising for
quantum chemistry simulations on NISQ devices, where circuit
depth limitations remain a significant challenge.

In terms of shot-count, ADAPT-VQE will likely have an
increased number of measurements compared to UCCSD-based
VQE due to the necessary gradient measurements. However, this
is perhaps an easier problem to address (compared to circuit
depth) as the individual runs can in principle occur simulta-
neously if several devices exist. Further, the shot count also
depends on the number of iterations required for the classical
optimization of the ansatz parameters. For strongly correlated
systems where perturbation theory fails, the existing approach of
using classical MP2 amplitudes to initialize the UCCSD para-
meters12 is not likely to provide much improvement in the
UCCSD-based VQE. Alternatively, each iteration of ADAPT-
VQE only adds a single new parameter, with the previously
optimized parameters already being initialized to rather sensible
values. This might ultimately decrease the number of iterations
needed for the VQE subroutine in ADAPT-VQE, thus
decreasing the shot count (although this is not likely to fully
compensate for the large number of measurements for the gra-
dient). As hardware capabilities continue to increase, in terms of
both the size and number of quantum processors available,
ADAPT-VQE will offer an ideal quantum-parallel approach to
performing nontrivial quantum chemistry simulations. We
therefore expect this algorithm to have a strong impact on these
efforts in the near term.

As the name suggests, ADAPT-VQE could be classified as one
member of a family of adaptive-basis strategies that has seen
success in constructing compact many-electron wavefunctions40–46

and single-electron wavefunctions47–53, or as a relative of meth-
ods using sequential transformations which have been explored in
the context of multireference coupled-cluster theory54,55. Of
these, the ADAPT ansatz is perhaps most closely related to the
@-CC method of Lyakh and Bartlett47, in which a compact set of
cluster operators is iteratively determined to describe the state of
interest on a classical computer. Our approach is distinct in that it
is not only designed for a quantum computer implementation,
but also defined for a different wavefunction form (product of
unitary operators vs. coupled cluster) and a different importance
metric (operator gradient of the many-electron state vs. a single
electron-defined importance function, see ref. 47) for determining
new parameters.

An important aspect of ADAPT-VQE is that several steps of
the algorithm can be implemented in multiple ways, lending it
still greater versatility across a wide landscape of problems and
suggesting that it should perhaps be thought of as a class of
algorithms rather than a specific one. In the “Results” section, we
already discussed a few algorithmic options, including different

Table 1 Average errors across the PES scan for the different
methods assessed. Units in kcal/mol

UCCSD ADAPT(ε1) ADAPT(ε2) ADAPT(ε3)

LiH 0.0480 0.3000 0.0058 0.0002
BeH2 2.2384 0.8023 0.0907 0.0041
H6 3.7387 4.5297 0.3023 0.0047
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ways to perform the gradient-based parameter update and to
determine convergence. We also mentioned the possibility of
freezing early parameters at later stages of the algorithm in order
to speed up the re-optimization steps. Below, we discuss a few
more modifications to explore.

Although the ADAPT-VQE algorithm is notably not a per-
turbative approach, it still has a perturbative flavor in that the
suitability of the next iteration’s best operator only involves the
interaction of that operator with the Hamiltonian. As such, the
algorithm may not be able to recognize the best quadruple
excitation (for example) during one update. That being said, the
physics described by quadruple excitations is ultimately captured
after multiple iterations through the product of at least two two-
body interactions. The consequence of this is that convergence
will likely not be as fast for strongly correlated systems because
the algorithm can only “see” two body operators at a time.
Because only local knowledge of the FCI energy landscape is
used to update the ADAPT-VQE ansatz construction, the “true
optimally compact ansatz” is not guaranteed. As a result, flat
energy landscapes (associated with “false gradient troughs”) are
possible. Further classical simulations and device implementa-
tions are needed to provide better insight into the numerical
behavior.

Fortunately, however, multiple strategies can be pursued to
address any possible slow convergence issues. One possible
approach would be to add a selection of three- or four-body
interactions into the operator pool, such that these could be
inserted when needed. Alternatively, one might imagine trying to
update the ansatz with two (or more) operators in each iteration,
such that the best set of operators is added. The operator pool
would still consist of only one- and two-body interactions, but
higher-body interactions could be incorporated through products
of operators. Even further, one might imagine computing the
second derivative and using Hessian matrix elements to identify
cooperative effects between operators in the pool. We will explore
each of these approaches in future work, with the aim of deter-
mining the fastest converging algorithm in different chemical
scenarios.

In this paper, we presented ADAPT-VQE, a novel variational
hybrid quantum-classical algorithm designed to achieve exact
results at convergence. Unlike typical ansätze, which tends to be
ad hoc, our approach is based on an ansatz that is determined by
the system being simulated, and it features a well-defined, built-in
convergence criterion. Moreover, the parameter count, and thus
the gate depth, is kept to a minimum. A detailed description of
the algorithm is given, and numerical examples are provided to
demonstrate the performance of the ADAPT method with both
weakly and strongly correlated systems. Based on these results, we
find the ADAPT-VQE algorithm to be an operator- and
parameter-efficient method capable of high accuracy, with con-
trollable errors, that routinely outperforms UCCSD. Its compat-
ibility with classical routines for compiling state preparation
circuits and quantum-parallelism should make ADAPT-VQE
extremely useful for simulations of molecules on both currently
available and future quantum computers.

Data availability
The data for the numerical simulations is available upon reasonable request.

Code availability
The code for the numerical simulations is available upon reasonable request.
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I. SUPPLEMENTARY DISCUSSION

A. Derivation of ADAPT-VQE as a sparse-update FCI ansatz

In addition to the intuitive definition of the algorithm presented above, one can also view it as a version of full CI
(FCI) VQE (using the ansatz definition in Eq. (7) of the main text), but with a sparsity constraint on the gradient-
based update step, such that only single parameter updates are allowed per iteration. We will adopt a slightly more
generic notation at this point to simplify the discussion:

∣∣ψFCI
〉

=
∞∏
k

N4∏
n

eθ
k
nÂn

∣∣ψHF
〉
, (1)

where Ân ∈
{
â†pâq − â†qâp, â†pâ†qârâs − â†sâ†râqâp

}
. The goal is to find parameters θkm such that the energy functional

is minimized to a value that is as close as possible to the FCI energy:

∂

∂θkm

〈
ψHF

∣∣ e−θ11Â1e−θ
1
2Â2 · · · Ĥ · · · eθ

1
2Â2eθ

1
1Â1

∣∣ψHF
〉

= 0. (2)

B. First iteration

If we initialize all of the parameters, θkm, to zero, then the expectation value of the 0th iteration state,
∣∣ψ(0)

〉
, would

simply return the uncorrelated HF energy: ∣∣ψ(0)
〉

=
∣∣ψHF

〉
. (3)

A gradient descent step from the HF state could then provide an improved set of parameters, lowering the expected
energy. The gradient at the 0th iteration is quite simple due to the fact that all the θkm vanish:

∂E(0)

∂θkm
=

∂

∂θkm

〈
ψHF

∣∣ e−θ11Â1e−θ
1
2Â2 · · · Ĥ · · · eθ

1
2Â2eθ

1
1Â1

∣∣ψHF
〉 ∣∣∣∣
θkm=0

=
〈
ψHF

∣∣ [H, Âm]
∣∣ψHF

〉
. (4)

Using the gradient to update all the parameters in the wavefunction would immediately lead to an exponentially
complicated wavefunction which could no longer be simulated either classically or quantum mechanically, because
each of the terms that were initially set to zero become non-zero, meaning that each term now has to appear in the
circuit. The reason is that all k replicas have identical gradients:

∂E(0)

∂θkm
=
∂E(0)

∂θjm
for all k, j. (5)

This would mean that the ansatz would have an exponentially large number of terms after the first iteration, and
also the circuit depth would be exponentially large. Alternatively, we choose to impose a sparsity constraint on the
parameter update, such that only a single parameter may be updated at a time. This has the consequence that after

∗Electronic address: nmayhall@vt.edu
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Iteration Finite Differences, s Analytical, s x Speedup

1 379.0 2.6 145.7

2 405.2 3.1 130.5

3 375.7 2.7 140.4

4 377.6 2.8 134.1

5 369.7 2.6 144.7

6 383.2 2.5 150.6

7 374.6 3.0 126.9

8 369.0 2.6 141.3

9 378.0 3.1 122.7

10 397.4 3.4 118.5

Average 380.9 2.8 134.6

Supplementary Table I: Timing comparison between finite difference and analytical gradients for several VQE
iterations. System being studied is H2O with STO-3G basis set. Ansatz has 140 parameters.

updating the single chosen parameter, the ansatz has only increased in complexity by a single non-zero parameter,
and the resulting circuit has only grown in depth to accommodate the single extra one- or two-body operator:∣∣ψ(1)

〉
= eθpÂp

∣∣ψHF
〉
. (6)

To recover the greatest amount of electron correlation with the maximally compact wavefunction, we choose to update
only the operator with the largest gradient. As a result of this update, the ansatz has grown from HF to a simple
UCC-type ansatz with only a single excitation operator.

To determine the stepsize for this iteration (essentially a line-search), we perform a variational minimization via
VQE:

E(1) = min
θ1p

〈
ψHF

∣∣ e−θ1pÂpĤeθ
1
pÂp

∣∣ψHF
〉
. (7)

The result of this relatively simple VQE experiment then provides the first iteration energy and wavefunction.

C. Second iteration

In the second iteration, the computation of the gradient of all the one- and two-body operators is required once
again, and can be performed in a NISQ-friendly parallel execution on uncoupled quantum computers:

∂E(1)

∂θkm
=
〈
ψ(1)

∣∣[H, Âm]
∣∣ψ(1)

〉
. (8)

However, because θ1p has already converged in the previous VQE step, its gradient is zero. Just as in the previous
iteration, a sparse update is performed to identify and insert only the operator with the largest magnitude gradient.
This grows the ansatz by one parameter, θ1q . The second iteration energy is then obtained by a new VQE simulation
for a UCC ansatz containing two excitation operators:

E(2) = min
θ1p,θ

1
q

〈
ψHF

∣∣ e−θ1pÂpe−θ
1
qÂqĤeθ

1
qÂqeθ

1
pÂp

∣∣ψHF
〉
. (9)

We emphasize that it is not only the new parameter which is optimized, but all previously added parameters are
updated as well. Future iterations follow similarly.

D. Analytic Gradients

This section presents a derivation of the analytic gradient method used to improve both the computational efficiency
and the numerical precision of the classical simulation of the parameter re-optimization that occurs in step 6 of the
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ADAPT-VQE algorithm, as described in the main text. It should be noted, however, that the gradient algorithm we
present here is in fact completely general and could be used for an arbitrary Trotterized ansatz, not just ADAPT.

Consider a general Trotterized ansatz, |φ〉, obtained by applying N excitation operators on a given a reference state
|ψ0〉:

|φ〉 =

N∏
i=1

eθiTi |ψ0〉 , (10)

where the Ti = ti − t†i are a set of anti-Hermitian operators, the θi are free parameters, and the product is defined

such that the terms with smaller values of the index i appear on the right, i.e.,
∏3
i=1 ôi = ô3ô2ô1. Assuming |ψ0〉 is

normalized, the functional to be minimized is then

Eφ = 〈φ| Ĥ |φ〉 . (11)

The state |φ〉 can be obtained without direct matrix exponentiation,[1, 2] and in this work we use the Scipy
expm multiply function to compute the action of a matrix exponential on a [3] vector, which is relatively efficient
since the operator in each exponent in Supp. Eq. 10 is incredibly sparse.

In order to perform a gradient-based minimization, the derivative of the energy with respect to each parameter in
the ansatz is needed. The analytical derivatives[4] then follow directly as

∂Eφ
∂θi

= 〈φ| Ĥ
N∏

j=i+1

(
eθjTj

)
Ti

i∏
k=1

(
eθkTk

)
|ψ0〉

− 〈ψ0|
1∏
k=i

(
e−θkTk

)
Ti

i+1∏
j=N

(
e−θjTj

)
Ĥ |φ〉 , (12)

where in the second line, we use the convention where products with indices starting at higher values correspond to
a reverse-order product in which higher-index terms are on the right, i.e.,

∏1
j=3 ôj = ô1ô2ô3. Recognizing that the

second line is just the adjoint of the first, Supp. Eq. 12 can be simplified to

∂Eφ
∂θi

=2<

〈φ| Ĥ N∏
j=i+1

(
eθjTj

)
Ti

i∏
k=1

(
eθkTk

)
|ψ0〉

 . (13)

In order to obtain a more compact expression for the ith parameter derivative, we partially expand the wavefunction
expression in Supp. Eq. 10, grouping the unitaries up to and after i to define the notation for a state partially rotated
with unitaries from 1 to i as |ψ1,i〉:

|φ〉 =

 N∏
j=i+1

eθjTj

[ i∏
k=1

eθkTk

]
|ψ0〉 (14)

=

 N∏
j=i+1

eθjTj

 |ψ1,i〉 (15)

= |ψ1,N 〉 . (16)

Using this notation and defining |σi〉 =
∏i+1
j=N

(
e−θjTj

)
Ĥ |φ〉 where |σN 〉 = Ĥ |φ〉, Supp. Eq. 13 becomes

∂Eφ
∂θi

=2< 〈σi|Ti |ψ1,i〉 . (17)

While this analytical gradient formula implemented N times (one for each parameter) is already an improvement over
its numerical counterpart in terms of precision, it can be defined recursively to provide a significant improvement for
computational efficiency. The gradient algorithm proceeds by computing one parameter gradient using precomputed
quantities from the previous parameter’s gradient evaluation, significantly reducing CPU cost. We start the algorithm,
the base case, at the left-most operator, i = N , where we need to calculate

∂Eφ
∂θN

= 2< 〈σN |TN |ψ1,N 〉 . (18)
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At the second step, we need to compute

∂Eφ
∂θN−1

= 2< 〈σN−1|TN−1 |ψ1,N−1〉 , (19)

but this can be facilitated by using the fact that the new states |σN−1〉 and |ψ1,N−1〉 needed at this stage can be
obtained simply by applying a single matrix exponential to the states from the first step:

|σN−1〉 =e−θNTN |σN 〉 , (20)

|ψ1,N−1〉 =e−θNTN |ψ1,N 〉 . (21)

This continues to be the case at all later steps, where the states needed at each step can be similarly obtained from
those at the previous step:

|σi〉 =e−θi+1Ti+1 |σi+1〉 , (22)

|ψ1,i〉 =e−θi+1Ti+1 |ψ1,i+1〉 . (23)

The benefit of this is that instead of applying all the Trotter operators in the ansatz for each single parameter, each
parameter gradient only requires two expm multiply calls and one sparse matrix vector multiplication. Stacking the
|σi〉 and |ψ1,i〉 into a two column matrix and computing the exponential action on that offers a numerical speedup
in practice. As a consequence, obtaining the gradient with respect to all parameters is only roughly twice the cost
of a single energy evaluation. Assuming the computational cost of other operations to be negligible, this recursive
algorithm reduces the cost of computing a gradient from N2 to 3N . In the case of water in the STO-3G basis (140
operators) this represents a nearly 47-fold improvement. For a comparison, Table I lists the times required for a few
VQE iterations of H2O with the STO-3G basis set using both numerical and analytical gradients.

E. Energy discontinuities

As an adaptive algorithm, ADAPT-VQE self-consistently determines a quasi-optimal ansatz to describe the ground
state of a particular Hamiltonian. However, as the nuclei move a new Hamiltonian is obtained. This means that
any two distinct points on a potential energy surface will generally be treated with different ansatze. Not only will
the two points generally have a different number of operators, but the order and composition of the ansatz will also
generally differ. This means that the common shortcut in classical electronic structure theory which allows one to
cancel systematic errors is not expected to work, and therefore, one must converge the ansatz growth tightly enough
for the desired application.

As discussed in the text, two notable examples of this discontinuous behaviour occur for H6. In order to better
illustrate how these discontinuities are created, we plot the norm of the gradient vector as a function of the iteration
(i.e., number of parameters). A separate convergence plot is shown for each of the molecules, LiH, BeH2, and H6 in
Fig. 1.

While LiH and BeH2 both exhibit rapid convergence, the strongly correlated H6 has a distinctly different behavior.
For short bond lengths (lighter colored lines) similar convergence behavior as the previous molecules is observed. In
contrast, for longer bond lengths, a local minimum in the gradient norm begins to appear, requiring an increase in the
number of parameters for tight convergence. This does not necessarily mean that the ansatz grown by ADAPT-VQE
is not compact. H6 is intrinsically more complicated, especially starting from a HF reference, and so it is expected
to require more operators (and parameters). However, the consequence of this local minimum is that sometimes the
algorithm may signal convergence prematurely, thus ignoring the extra operators that might be needed to make the
ansatz sufficiently accurate. In Fig. 1(c), the difference between R = 2.4 and 2.5 Å involves a significant reduction in
the number of parameters for ADAPT(ε2), due to the fact that the 2.5 curve has a local minimum which crosses the
convergence threshold before actual convergence is achieved. The 2.4 Å local minimum is less deep, and doesn’t cross
the threshold. As such, the algorithm needs to climb out of the local minimum to find the “true” convergence point
where the gradient finally drops below the threshold with a larger number of parameters. The consequence of this
is the significant drop in the number of parameters (and accuracy) going from 2.4 to 2.5 Å. Future work will focus
on analyzing difficult cases such as these to determine better convergence criteria that are less susceptible to local
minimum convergence.
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Supplementary Figure 1: Convergence of the gradient max (top), gradient norm (middle), and energy error
(bottom) at different bond lengths for (a) LiH, (b) BeH2, and (c) H6. Each line corresponds to a distinct bond
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Variational quantum eigensolvers (VQEs) represent a powerful class of hybrid quantum-classical
algorithms for computing molecular energies. Various numerical issues exist for these methods,
however, including barren plateaus and large numbers of local minima. In this work, we con-
sider Adaptive, Problem-Tailored (ADAPT)-VQE ansätze, and examine how they are impacted by
these local minima. We find that while ADAPT-VQE does not remove local minima, the gradient-
informed, one-operator-at-a-time circuit construction accomplishes two things: First, it provides
an initialization strategy that can yield solutions with over an order of magnitude smaller error
compared to random initialization, and which is applicable in situations where chemical intuition
cannot help with initialization, i.e., when Hartree-Fock is a poor approximation to the ground state.
Second, even if an ADAPT-VQE iteration converges to a local trap at one step, it can still “burrow”
toward the exact solution by adding more operators, which preferentially deepens the occupied trap.
This same mechanism helps highlight a surprising feature of ADAPT-VQE: It should not suffer op-
timization problems due to barren plateaus and random initialization. Even if such barren plateaus
appear in the parameter landscape, our analysis suggests that ADAPT-VQE avoids such regions by
design.

I. INTRODUCTION

Quantum computers have long been viewed as a
promising technology for quantum simulation.1 How-
ever, the limited capabilities of Noisy, Intermediate-Scale
Quantum (NISQ) devices restrict the types of algorithms
that can be implemented at present.2 While quantum
phase estimation (QPE) provides a route to efficient
molecular simulation,3 the presence of both noise and
errors on NISQ devices make near-term implementation
of large-scale phase estimation intractable.

In response to the intractability of QPE, the varia-
tional quantum eigensolver (VQE) was introduced by Pe-
ruzzo et. al.4 as a hybrid quantum-classical approach to
finding approximate eigenvalues of a Hamiltonian, H. In
VQE, a quantum processor is used to apply a parame-
terized unitary transformation expressed as a quantum
circuit (or even a direct pulse5–7), U (θ), to some easily
prepared reference state, |0⟩.4,8–11 The target Hamilto-
nian is then measured with the prepared state to obtain
the energy as a function of circuit parameters:

E (θ) = ⟨0| U† (θ)HU (θ) |0⟩ . (1)

Using such quantum resources to prepare states and mea-
sure observables, a VQE will classically optimize θ in or-
der to minimize E (θ). The quality of the optimal energy
for a given VQE is naturally dependent on the quality of
the parameterization U (θ), but because unitary opera-
tors are norm-preserving, the energy in Eq. (1) is varia-
tionally bounded from below by the ground-state energy
of H. The main advantage of VQEs is relatively low
circuit depth,4 avoiding the long, coherent evolutions of
QPE.12 This makes VQEs more appealing in the absence
of fault-tolerant quantum computers. The circuit depth

of a VQE is defined by the choice of U , so that there is
generally a trade-off between accuracy and circuit depth.

An outstanding challenge with many VQE ansätze is
that the cost function, Eq. (1), creates a rough parameter
landscape full of local minima, complicating the parame-
ter optimization. Bittel and Kliesch have identified situa-
tions where there are so many far-from-optimal local min-
ima that VQEs must be NP-hard in general.13 The prob-
lem of local minima can be ameliorated through over-
parametrization in both quantum optimal control5,14 and
classical neural network settings.15,16 This idea of over-
parametrization avoiding local minima has since been
applied to VQEs: Rivera-Dean et. al. used this phi-
losophy by employing a neural network to distort their
cost function landscape mid-VQE.17 This enabled them,
in some cases, to escape from local minima.18 Alternative
strategies for avoiding local minima include collectively
optimizing an ansatz for several Hamiltonians at the
same time with a “snake” algorithm19 and a “sweeping”
approach to energy minimization called Unitary Block
Optimization.20

A recent theoretical analysis by Larocca et. al. sug-
gests that quantum neural networks (of which VQEs are
a special case) undergo a sort of phase transition where
local minima cease to be a problem.21 This transition
tends to occur when the number of parameters surpasses
the dimension of the associated ansatz’s dynamical Lie
algebra, or DLA. The DLA for an ansatz of the form
|Ψ⟩ = eθ1A1eθ2A2 . . . eθMAM |ϕ0⟩ is defined as the span of

the set of repeated commutators of {Âi}. As the authors
point out, their results imply that this desirable over-
parametrization is likely to be unachievable for ansätze
due to the exponential scaling of the DLA dimension with
ansatz length. Perhaps even more alarmingly, Wierichs
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et. al. were able to identify situations where adding
additional parameters actually hurts the performance of
gradient descent methods.22

In addition to the problems with local traps, it has re-
cently been recognized that VQEs might also become im-
possible to optimize (even to a local mininum) as the sys-
tem size increases. For sufficiently flexible or expressive
VQE ansätze23, it has been found that the energy land-
scape flattens (as quantified by the variance in the pa-
rameter gradients) exponentially fast as the system size
increases.24 The exponential growth of these flat land-
scapes (so-called “barren plateaus”), means that only a
vanishingly small region of parameter space exists which
has gradients large enough to measure with high enough
precision to perform gradient descent. This region of
concentrated cost has been termed a “narrow gorge.”25

As a result, initializing the optimization from a random
point in parameter space is bound to land in a barren
plateau, meaning that the number of circuit executions
(shots) needed to resolve the search direction increases
exponentially with the number of qubits, preventing any
opportunity for quantum advantage. While intelligent
heuristics for parameter initializations might help protect
an optimization from getting stuck in a barren plateau
(e.g., starting from a Hartree-Fock solution in molecular
VQEs), the success is largely determined on a case-by-
case basis.24

In this work, we present arguments and numerical sim-
ulations that indicate that our recently introduced adap-
tive variational algorithm, ADAPT-VQE,26 is expected
to be effectively immune to local minima and barren
plateaus in the parameter landscape, at least in the noise-
free case. Both issues are avoided because the algorithm
systematically “burrows” a deep well in the landscape
until the global minimum is reached. In other words,
ADAPT-VQE dynamically modifies its parameter land-
scape in such a way that problematic regions are never
explored. This phenomenon can be understood directly
from the gradient criterion used to iteratively update the
wavefunction ansatz. We illustrate this behavior with
simulations of several different molecules. In Appendix
B, we also show that the smoothness of the landscape
can be controlled by intentionally overparameterizing the
ansatz. In Appendix F, we show how the fidelity (overlap
with the target state) is affected by number of parame-
ters.

II. ADAPT-VQE ALGORITHM AND
NUMERICAL SIMULATIONS

A. ADAPT-VQE

In recent work, we developed a dynamic framework for
constructing ansätze that have much faster energy con-
vergence with respect to circuit depth. This approach,
referred to as ADAPT-VQE,26,27 uses measurements of
the molecular energy gradient to dynamically grow an

ansatz, operator by operator, creating a highly com-
pact ansatz that quickly converges to the exact solution.
Defining a pool of anti-Hermitian operators, A = {Ai},
we outline the steps in Algorithm 1.

Algorithm 1: ADAPT-VQE Algorithm

k ← 0;
U0 (θ)← 1;
while Converged = False do

for Ai ∈ A do
gi ←∣∣∣ ∂

∂θi
⟨0| U†

k (θ) e−θiAiHeθiAiUk (θ) |0⟩
∣∣∣
θi=0,θ

;

end
i← index of largest element of g;
k ← k + 1;

Uk (θ)← eθiAiUk (θ);
θ ← argmin

θ
⟨0| U†

k (θ)HUk (θ) |0⟩;

Ek ← ⟨0| U†
k (θ)HUk (θ) |0⟩;

end
Return Ek, θ;

At each ADAPT-VQE iteration, the gradient, ∂E
∂θi

, is
measured with respect to all operators in the pool. The
operator with the largest gradient magnitude is then
added to the ansatz with the associated parameter ini-
tialized to zero. The other parameters in the ansatz are
initialized using the optimal values from the previous step
(we refer to this as parameter “recycling”). At this point,
an ordinary VQE is performed using some classical opti-
mization algorithm. In this work, we exclusively use the
Broyden–Fletcher–Goldfarb–Shanno (BFGS) method,28

a quasi-Newton strategy, because we are explicitly seek-
ing information about local minima, and because we are
not including any noise models in our simulations. In
all cases, a gradient norm of 1 × 10−8 was pursued, but
not necessarily achieved, by the solver. In cases where
the solver could not achieve this accuracy, its output was
still used. Because we initialize the new parameter added
during each ADAPT-VQE iteration to zero, the new trial
circuit is equivalent to the previous one during the first
VQE iteration. Consequently, the energy can only im-
prove during this VQE, i.e., the energy decreases mono-
tonically. Parameters are added one-by-one in this fash-
ion until some convergence criteria are achieved. Rea-
sonable choices include the norm (either l2 or l∞) of the
vector of gradients, g, or the number of operators in the
ansatz.
All simulations were conducted using a locally devel-

oped code which can be found on GitHub at https:
//github.com/hrgrimsl/adapt. OpenFermion29 was
used to construct matrix representations of operators un-
der the Jordan-Wigner transformation and PySCF30 was
used to obtain molecular integrals. Because our focus
in this work is to first understand the noise-free param-
eter landscapes associated with ADAPT-VQE, all sim-
ulations are performed without any noise models. Fu-
ture work will explore how the presence of noise affects
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the landscapes. For all the ADAPT-VQE calculations in
this work, the unitary coupled cluster with singles and
doubles (UCCSD) operator pool is used,26 without spin-
complemented or spin-adapted operators. While many
different pools can be used for ADAPT-VQE calcula-
tions, in this paper we focus primarily on the original
fermionic pool due to its robustness in that it seems to
consistently converge to an exact eigenstate and has a
connection with the stationary conditions of the Anti-
Hermitian Contracted Schrödinger equation.31 Details of
this pool are provided in Appendix A.

B. Prevalence and Distribution of Local Minima

In this section, we numerically explore the parameter
landscapes of several example systems using ADAPT-
VQE. Our aim is to characterize the way in which
the number and distribution of local minima change
as ADAPT-VQE gradually increases the length of the
ansatz (and thus the depth of the circuit). For each
molecule and bond distance considered, we first run
ADAPT-VQE normally, where the initial parameter val-
ues used in the VQE at each iteration of the algorithm
are chosen to be the “recycled” parameters, i.e., the op-
timal values obtained from the previous iteration. This
yields an ansatz that reproduces the target ground state
with high accuracy.

After using ADAPT-VQE to define the ansatz, we then
use this ansatz to search for local minima by repeatedly
reinitializing each VQE with randomly chosen parame-
ters, and reoptimizing.32 In this work, we performed 1000
such random initializations for each ansatz considered
unless otherwise specified. The numbers of samples were
chosen due to computational considerations, and tests
were performed to verify that increasing the number of
random initializations does not change the results quali-
tatively. For each layer of the ansatz and each random
initialization, we record the minimum energy obtained
by the VQE subroutine. These values correspond to the
energies of local minima in the landscape associated with
each ansatz.

In addition to these random initializations, we also in-
clude both the “recycled” parameters from the previous
VQE (the default initialization in ADAPT-VQE26) and
the 0 parameter vector associated with the Hartree-Fock
(HF) reference. All 1002 initializations of a given ansatz
are then optimized with BFGS, and the resulting energy
errors are shown with rainbow-colored bars in each fig-
ure. The colors indicate relative energy ordering at a
given ansatz, such that red corresponds to the highest
energy and violet to the lowest energy. The recycled ini-
tialization’s outcome is of particular interest since this
is the default, deterministic initialization for ADAPT-
VQE, and the approach used when growing the ansätze
used in the data. These conventions will be used through-
out this work.

We consider linear H4 (8 qubits) at 1 and 3 Å and

FIG. 1. ADAPT-VQE results for H4 at 1 Å. The x-axis
corresponds to the number of ADAPT-VQE iterations, i.e.
the number of operators in the ansatz at a given step. The
y-axis corresponds to the error from the exact FCI energy.
The red curve corresponds to the energy obtained through
BFGS minimization using an HF guess, i.e. one where all
parameters are zero. The green curve corresponds to the en-
ergy obtained through BFGS minimization using the standard
ADAPT-VQE in which optimal parameter values in one it-
eration are recycled as initial guesses in the next iteration,
and with the new parameter initialized to zero. The colored
dots correspond to all the energies obtained through BFGS
optimizations, with red being the highest energy and violet
the lowest.

linear H6 (12 qubits) at 1, 2, and 3 Å as toy models
exhibiting varying degrees of electron correlation (and
entanglement in the target wavefunction). While not in-
teresting as chemistry agents, the fictitious molecules H4

and H6 provide an excellent testbed for quantifying the
effect of strong correlation. Such “molecules” are often
used as surrogates for real strongly correlated systems
such as ones involving transition metals, which are too
large to simulate classically. In addition, we study LiH
(12 qubits) at 1.62 Å and BeH2 (14 qubits) at 1.33 Å
as examples of real molecules at equilibrium geometries.
These geometries were obtained through optimization at
the B3LYP33/6-31G∗34–37 level of theory in PySCF,30

and are given in the Supplementary Information. All
ADAPT-VQE calculations were performed in the STO-
3G38,39 basis. No symmetries were used to reduce the
number of qubits. In cases where the exact solution was
not obtained, the number of ADAPT-VQE iterations was
determined by computational considerations.

H4 molecule In Fig. 1 we show the energies (rela-
tive to the global minimum obtained from a full con-
figuration interaction (FCI) calculation) of the various
local minima as a function of ansatz length (as defined
by the ADAPT-VQE algorithm). After a short period
without local minima, the random initializations begin
to diverge to an increasing number of distinct local min-
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FIG. 2. ADAPT-VQE Results for H4 at 3 Å. The axes and
colors are as in Fig. 1.

ima as the number of parameters increases. In contrast
to the random initializations, both the HF and the re-
cycled initializations converge to the same minimum for
H4 at 1 Å, which is consistently better than the average
random initialization. This is our first indication that
good initializations can reliably avoid high-energy traps.
Interestingly, even though ADAPT-VQE doesn’t always
find the lowest energy trap, it does eventually converge.
Additionally, we observe that there are still many local
minima even after these “chemically informed” guesses
are able to reach the exact ground state. In Appendix
B, we consider the prospect of removing local minima
through systematic overparameterization for H4 at 1 Å.
While we are successful in removing local minima using
a novel “ADAPTN” approach, deeper circuits are actu-
ally required to achieve the overparameterization than
to simply add operators until ADAPT-VQE reaches the
ground state in spite of local minima.

In Fig. 2, we see that for the more strongly correlated 3
Å bond distance, the HF and recycled initializations dif-
fer. The recycled initialization is able to reach the ground
state with fewer parameters than the HF initialization,
though this behavior is not consistently observed in other
systems. Again, we see ADAPT-VQE converging to the
exact solution far faster than a typical (yellow-green) ran-
dom initialization.

H6 molecule In Fig. 3, we begin to see the true
power of an intelligent guess by simulating H6 at 1Å.
As the ansatz grows longer, a massive gap opens up be-
tween the random guesses and the HF/recycled ones.
This gap implies that in practice, it is very difficult to
do better than simply recycling the previous parame-
ters in ADAPT. This gap is further numerical evidence
of a “narrow gorge”, in which the exact solution is hy-
pothesized to exist.25 Although such a landscape is of-
ten associated with optimization difficulties, here we see
that ADAPT-VQE is able to stay very close to the nar-

row gorge, avoiding such issues. We emphasize that this
feature is not only a result of good initialization,40 but
rather a cooperative effect between initialization and the
gradient-guided ansatz construction. In Appendix D, we
demonstrate this explicitly by performing simulations us-
ing the recycled initialization, but on randomized (not
gradient-guided) ansätze. We finally notice a sharp in-
crease in the median around 140 parameters. This indi-
cates that as the number of parameters increases, so too
does the number of local traps. Furthermore, these new
traps are preferentially high in energy, thus moving the
median solution to higher energies. This further implies
that as the system grows in size, the overwhelming num-
ber of solutions will be high in energy, making random
sampling of VQE initializations intractable.

In Fig. 3, the same gap appears for H6 at 2 Å that ap-
peared at 1 Å. As the ansatz grows in depth (i.e., around
50 parameters), we notice an earlier rise in the median
energy of the traps found.

In Fig. 3, for H6 at 3Å, the energy distribution of the
local traps significantly increases at the beginning, but
chokes up around 100 parameters where the large gap is
seen again. The HF and recycled initializations are still
far better than random ones. We see the sharp increase
in the median again here.

LiH molecule In Fig. 4 we see similar behavior for
LiH to that of H6 at 1 Å. While the solution gap is less
pronounced, both HF and the recycled initialization are
always significantly better than nearly every random ini-
tialization.

BeH2 molecule We observe similar behavior once
again in Fig. 5 for BeH2, with the exception that a large
gap is observed.

In all cases, we observe that for more than a few pa-
rameters, local minima emerge, and for large numbers
of parameters, these minima often dominate the energy
landscape. In many cases initializing all parameters to
0 (HF) is a reasonable choice that leads to low energy
minima.

Trap “Burrowing” The problem of local minima
seems to be partially mitigated by ADAPT-VQE it-
self. Even in cases where the recycled initialization con-
verges to a high-energy trap, ADAPT-VQE progresses
by adding an operator which is chosen to preferentially
deepen the current trap (via the gradient criterion). As
such, over a sequence of ADAPT-VQE iterations, the
current trap becomes increasingly deep relative to the
other parameter traps, such that a gap can open up be-
tween the current minimum (which approaches the global
minimum) and all other local minima. Thus ADAPT-
VQE appears to “burrow” into the parameter landscape,
creating a single deep well as opposed to stabilizing all
local minima (i.e., reaching overparameterization). This
burrowing effect is depicted graphically in Fig. 6.
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FIG. 3. ADAPT-VQE Results for H6 at 1 Å. The axes and colors are as in Fig. 1.

FIG. 4. ADAPT-VQE Results for LiH at 1.62 Å. The axes
and colors are as in Fig. 1.

FIG. 5. ADAPT-VQE Results for BeH2 at 1.33Å. The axes
and colors are as in Fig. 1.

ADAPT: Burrowing Overparameterized: Trap-free

Er
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0

FIG. 6. Schematic cartoon of how the parameter landscapes
change as parameters are added using a) ADAPT-VQE, and
b) a “controllable” or overparameterized ansatz which has a
greater number of parameters than the rank of the DLA. Here
the y-axis is meant to convey error, and the x-axis is meant
to convey a generalized coordinate in parameter space.

C. Sensitivity to Parameter Landscape Gradients

1. Insensitivity to Barren Plateaus

In the previous section, we demonstrated that while
the parameter landscapes exhibit a large number of local
traps that are high in energy, ADAPT-VQE is robust due
to the fact that any local minimum in early stages of the
algorithm can often be deepened into a global minimum
at later stages. This same mechanism implies a similar
robustness to the presence of barren plateaus. As men-
tioned above, the barren plateau phenomenon has been
recently recognized as a serious obstacle to the use of
VQEs in practical settings. The problem arises from the
observation that highly expressive ansätze (more specifi-
cally, circuits which form a 2-design), which are attractive
from an accuracy perspective, exhibit an exponentially
decreasing gradient variance with increasing system size.
This means that the vast majority of parameter space be-
comes essentially flat. In the course of optimizing the pa-
rameters of such an expressive ansatz, a randomly chosen
initialization will (with overwhelming probability) corre-
spond to a point in parameter space where the gradi-
ent of the cost function is so small that an exponentially
large number of measurements are needed to resolve a



6

meaningful search direction in the presence of noise. As
a result, the ability to optimize or train such expressive
circuits is suspect at best. While a physically inspired
parameter initialization can be effective (e.g., HF ini-
tialization), difficult cases (like those exhibiting strong
correlation) may prevent efficient initialization.

Unlike the non-adaptive situation in which a static
ansatz is first defined and then optimized, ADAPT-VQE
slowly brings a given stationary point (initially the ref-
erence state) to the exact solution, via this burrowing
mechanism. As such, each VQE subroutine performed
along the way is “warm-started”, in that one already
has a decent initialization coming from the previous op-
timization. Using this recycled initialization, we have a
clear characterization of the parameter landscape about
the initial point: all previous parameters are optimized,
and thus have zero gradients, and the newly added op-
erator has a large gradient by design, since we specifi-
cally add the operator with the largest gradient. This
means that each VQE subroutine in the ADAPT-VQE
algorithm is initialized with a single parameter which is
guaranteed to be greater than ϵ (the ADAPT-VQE con-
vergence threshold). Based on this argument, we do not
expect difficulty due to barren plateaus when training
ADAPT-VQE ansätze as system sizes are scaled up. We
emphasize that this argument does not suggest that the
ansätze constructed by ADAPT-VQE are free from bar-
ren plateaus, only that our algorithm remains localized
to a region in parameter space with significant gradients.

We note that our analysis focuses exclusively on bar-
ren plateaus that arise from highly expressive circuits.
ADAPT-VQE may still suffer from noise-induced bar-
ren plateaus (NIBP’s),41 which present problems for any
VQE ansatz that scales polynomially in depth with sys-
tem size, since they are a direct consequence of decoher-
ence. Due to the problem-tailored nature of ADAPT-
VQE and the computational difficulty of simulating in-
creasingly large system sizes classically, we do not yet
know how ADAPT-VQE ansätze scale with system size.
Extrapolations from small system simulations will likely
provide an overly pessimistic estimation due to the fact
that correlation length will not simultaneously increase
(at least for gapped systems). For a constant accuracy
threshold, we expect the ansatz length to scale at least
linearly (and thus ultimately suffer from NIBP’s), though
a detailed study of this is not yet available. However,
even if we assume that ADAPT-VQE might have an ex-
ponential scaling asymptotically, the problems of interest
to chemistry are far from the asymptotic limit (around
100 logical qubits), and it is possible that a quantum
advantage could still be demonstrated on finite problem
instances. As such, further investigation into ADAPT-
VQE’s performance in the presence of noise in general is
indeed warranted.

FIG. 7. ADAPT-VQE with recycled parameters for H4 at 3 Å.
The x-axis corresponds to the ADAPT-VQE iteration. The
green curve depicts the gradient associated with the operator
to be added at each step, while the red curve depicts the
energy at each ADAPT-VQE step. The blue lines depict the
excited FCI eigenstates which are lower than the HF energy.

2. “Gradient Troughs”

Although barren plateaus seem to pose no threat to
the ability to scale up ADAPT-VQE based on the argu-
ments in the previous section, there is still a related issue
that might prevent ADAPT-VQE from converging to ac-
curate solutions. As described above, at each ADAPT-
VQE step, the ansatz is extended using the operator with
the largest gradient:

∂E

∂θi
= ⟨ψ(θ)| [Ĥ, Âi] |ψ(θ)⟩ . (2)

The ansatz is then repeatedly extended until the largest
gradient in the operator pool42 is smaller than some
threshold, ϵ. Noise on a NISQ device, however, defines
some lowest possible threshold, ϵmin, that can be resolved
using a given shot allowance. In our earlier work,26 we
sometimes observed non-monotonic convergence of the
gradients as a function of ansatz length (although the
energy convergence is guaranteed to be monotonic), such
that as the ansatz is extended, the pool gradients might
first decrease, then increase again before finally converg-
ing. This “gradient trough”, therefore presents a chal-
lenge in the presence of noise. If a gradient trough ap-
pears and drops below the NISQ resolvable threshold,
ϵmin, then the ADAPT-VQE algorithm may halt prema-
turely.
How do these gradient troughs grow with system size?

If we were to find that they grow exponentially fast,
meaning that the largest gradient in the operator pool
is exponentially suppressed as the number of qubits in-
creases, then this would suggest concern for the scalabil-
ity of ADAPT-VQE. However, this does not need to be
the case. Choosing a local orbital basis43 one can imag-
ine trivial situations where the gradients not only avoid
exponential suppression, but any suppression at all. Con-
sider the nth iteration of an ADAPT-VQE calculation of
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FIG. 8. Gradient troughs at eigenstates. Overlay of the ADAPT-VQE error vs. iteration (red line, right axis) with the FCI
excited states (blue horizontal lines, right axis) for H6 at 2, 3, 4, and 5 Å. x-axis corresponds to the ADAPT-VQE iteration.
The largest pool gradient associated with the operator to be added at each step is shown in green (left axis).

a molecular wavefunction, |ψn⟩. If one were to double
the number of qubits by adding another molecule (at in-
finite distance so as to remove interactions between the
systems), the total wavefunction at iteration 2n would
have a product form,

∣∣ψAB
2n

〉
=

∣∣ψA
n

〉 ∣∣ψB
n

〉
. Any pool op-

erator Ôi that is local to either subsystem has the exact
same gradient in the supersystem,

∣∣ψAB
2n

〉
, as it does in

the subsystem,
∣∣ψA

n

〉
. For example, consider an operator,

ÔA
i , local to subsystem A:

∂EAB

∂θi
=
〈
ψAB
2n

∣∣[Ĥ, ÔA
i ]
∣∣ψAB

2n

〉
=
〈
ψAB
2n

∣∣[ĤA + ĤB , ÔA
i ]
∣∣ψAB

2n

〉
=
〈
ψA
n

∣∣[ĤA, ÔA
i ]
∣∣ψA

n

〉 〈
ψB
n

∣∣ψB
n

〉
=
∂EA

∂θi
. (3)

The additive separability of non-interacting subsystems
is referred to as “size-consistency” in the chemistry lit-
erature. However, in addition to additive separability of
the energy, size-extensive wavefunctions (like UCCSD)
also demonstrate “size-intensivity” for intensive proper-
ties (e.g., density, optical gaps, etc). As shown in Eq.
3, the gradient with respect to a local rotation is not af-
fected by the presence of an additional non-interacting
system, thus demonstrating size-intensivity.

In the limit of a large system, any further additions to
the system size will necessarily be too far away from a
given subsystem to interact. Based on this argument, we
don’t expect gradient troughs to deepen asymptotically
with system size. However, more work is needed to char-
acterize the behavior of gradient troughs as the system
size increases in the presence of interactions.

3. Effect of Low-Lying FCI Eigenstates

In order to understand the nature of the “gradient
troughs” discussed in Sec. II C 2, and shown in Figures 7
and 8, we superimposed the low-lying FCI energies with
the ADAPT-VQE energies computed. The FCI spectrum
is plotted as a set of blue horizontal lines. We only plot
H4 and H6, as the other systems studied have no nearby
excited states, nor do they exhibit any gradient troughs.
In the region of the gradient trough, the energy also be-
comes very flat, (i.e., consider operators 9-16 in Fig. 7
and operators 50-100 in Fig. 8).

By plotting the exact eigenstates on top of these
curves, one readily sees that the gradient troughs oc-
cur when ADAPT-VQE falls inside of a nearly degener-
ate manifold of FCI excited states. Should the ADAPT-
VQE threshold be chosen loose enough (or if there is too
much device noise to measure the gradient below this
value) that the algorithm is aborted in this region, then
ADAPT-VQE will be unable to advance further toward
the ground state, remaining stuck as an approximation to
an excited state (or in general some arbitrary superposi-
tion of the nearly degenerate eigenstates). This appear-
ance of gradient troughs was first noticed in the paper
that introduced ADAPT-VQE,26 however the origin of
the onset and the interpretation was not clear at that
time.

As a consequence, although ADAPT-VQE isn’t ex-
pected to suffer from the more general problem of bar-
ren plateaus, more work is needed to understand how
to escape any gradient troughs to ensure smooth conver-
gence to the exact solution, particularly when noise is
included. This remains an outstanding problem associ-
ated with ADAPT-VQE, warranting more research.
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III. CONCLUSIONS

Underparameterized ansätze are difficult to optimize
due to large numbers of local minima, while highly ex-
pressive ansätze are difficult to optimize due to barren
plateaus. In this paper, we find that ADAPT-VQE does
not necessarily suffer from these challenges. We have
studied the parameter landscapes arising from various
ADAPT-VQE generated ansätze and have arrived at the
following conclusions:

1. Chemically informed initialization helps
avoid traps: ADAPT-VQE’s process of re-using
parameters at each step focuses the search space on
a local region, keeping the algorithm relatively easy
to train despite the rough overall landscape. The
parameter vector from the previous iteration tends
to be a relatively good initial guess for the following
ADAPT-VQE iteration. This means that by sim-
ply “recycling” the parameters from one ADAPT-
VQE iteration to the next, the vast majority of
parameter traps are entirely avoided. Similarly, it
seems that the chemical intuition granted by the
HF state avoids most traps.

2. Trap burrowing corrects local minima: Even
if the early iterations get stuck in a trap, the adap-
tive construction iteratively extends the ansatz in
a direction that is guaranteed to improve the cost
function near the current stationary point. By con-
tinuously focusing on a local point in parameter
space, ADAPT-VQE can “burrow” into a given lo-
cal minimum, even if the vast majority of traps
remain high in energy.

3. Barren plateau avoidance: The nature of
the ADAPT-VQE algorithm suggests that barren
plateaus should not prove problematic in the pa-
rameter optimization step. This originates from
the fact that ADAPT-VQE specifically adds a large
gradient operator, generating a steep landscape,
such that a search direction is resolvable without
an exponential number of shots.

4. Gradient troughs: ADAPT-VQE can still ex-
hibit numerical challenges. An exponentially van-
ishing pool operator gradient could potentially
arise, resulting in ADAPT-VQE becoming stuck
during the operator addition step (in contrast to
the parameter optimization step). Numerical evi-
dence suggests that these gradient troughs appear
when the ADAPT-VQE energy starts to converge
near one or more excited states. Heuristics for diag-

nosing and addressing such issues will be the focus
of future work.

Despite the presence of local minima and the pos-
sibility of barren plateaus in standard ADAPT-VQE
ansatze, we conclude that ADAPT-VQE can be opti-
mized reasonably well through parameter recycling. Con-
sequently, in addition to being parameter- and gate- effi-
cient, ADAPT-VQE appears to be relatively immune to
the problems of both local minima and barren plateaus
in VQEs.
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Appendix A: Operator Pool

In this work, with the exception of Appendix E, all
experiments were performed with a pool of particle-hole
(i.e., not generalized) Fermionic operators. These op-
erators were restricted to single excitations of the form
âai −âia and double excitations of the form âabij −â

ij
ab, where

i and j are occupied spin orbitals and a and b are vir-
tual spin orbitals. While these operators are not required
to respect Ŝ2 symmetry, the pool does not include “spin
flips,” operators which change the total numbers of al-
pha and beta electrons. This pool grows quartically with
system size. If these operators are used as generators for
an ansatz of the form |Ψ⟩ = eθ1A1eθ2A2 . . . eθMAM |ϕ0⟩
with infinite repetition of the operators and correct or-
dering, the FCI solution should be reachable.44 However,
we have not yet proven that the ADAPT-VQE conver-
gence criterion goes to zero only when converged to an
exact eigenstate.

Appendix B: ADAPTN

In this section we turn our attention to the fol-
lowing question: can we remove all local traps from
ADAPT-VQE without necessarily reaching “controllabil-
ity” where all local minima are exact? It follows from
Ref. 21 that one can systematically overparametrize a
given ansatz of the form |Ψ⟩ = eθ1A1eθ2A2 . . . eθMAM |ϕ0⟩
by simply repeating all the operators N times such that
the number of parameters approaches or exceeds the di-
mension of the associated DLA. This ansatz repetition
can be defined as:

|Ψ⟩ =
N∏
i=1

 M∏
j=1

eθ
i
jAj

 |ϕ0⟩ . (B1)

We use the superscript on θij to indicate the ith inde-
pendent parameter associated with the same operator
Aj . Because the same generators are being used, the
DLA remains the same, but the number of parameters
has now been multiplied by N . We apply this idea to
ADAPT-VQE in what we call ADAPTN . As with nor-
mal ADAPT, we begin with a reference |ϕ0⟩. We choose
the first operator A1 to add as before, but apply it to the
reference N times with N distinct parameters: B2.

|Ψ1⟩ = eθ
1
1A1eθ

2
1A1 . . . eθ

N
1 A1 |ϕ0⟩ . (B2)

The energy of |Ψ1⟩ is variationally minimized with re-
spect to θ, beginning from θ = 0. For each operator Ai

FIG. 9. ADAPTN for N = 1, 2, 3, 4 on H4 at 1 Å separation.
The axes and colors are as in Fig. 1. 300 Random initializa-
tions are performed for each ansatz.

in the operator pool, we now measure the energy gradient
associated with adding it to the front of the ansatz with
a parameter of 0. As with the original ADAPT-VQE,
we choose the next operator in our ansatz, A2, to be the
operator with largest gradient magnitude. We then add
the operator in a collated fashion:

|Ψ2⟩ =
(
eθ

1
2A2eθ

1
1A1

)(
eθ

2
2A2eθ

2
1A1

)
. . .

(
eθ

N
2 A2eθ

N
1 A1

)
|ϕ0⟩ .

(B3)
This procedure of adding a new operator to the “core”
ansatz, and replicating N times, is then repeated until
convergence. The intuitive way to understand ADAPTN

is that ADAPT-VQE is adding N parameters at a time,
rather than the usual 1. However, unlike the “batched”
approach of Ref. 45, our method does not add N different
operators, a choice made to ensure that the DLA dimen-
sion does not increase with N . Because the ratio of the
number of parameters to DLA dimension increases with
N , we hypothesize that ADAPTN should exhibit fewer
local minima with increased N .
To test this hypothesis, we consider first the numer-

ically challenging linear H4 at 1Å bond distance in the
STO-3G basis. In Figure 9, we show the convergence
of ADAPTN for N ≤ 4 as a function of the number
of parameters. We consider 300 random initializations
at each ansatz length in addition to the recycled initial-
ization from the previous VQE subroutine, and the HF
initialization. We then plot the optimized results of all
302 initializations.
For ADAPT1 (i.e. standard ADAPT) and ADAPT2,

we see similar behavior. Random guesses are frequently
better than recycled ones, with random initializations of
θ landing in numerous local minima. For ADAPT1 and
ADAPT2, the landscape is dominated by local minima
except when there are very few operators or when FCI
has almost been reached. For ADAPT3, most of the lo-
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cal minima seem to be gone, and local minima never
outperform the recycled initialization. For ADAPT4, ev-
ery VQE subroutine appears to be free of local minima.
This gives us a simple way to make ADAPT-VQE (or
similar VQEs) trap-free. The downside is that more pa-
rameters and deeper circuits are required to introduce
the same number of distinct operators. Based on these
simulations, the lower values ofN seem to be more depth-
efficient at achieving any given accuracy at any given cir-
cuit depth, even if only the recycled initialization is tried.
Furthermore, based on Ref. 21, the necessary N to keep
ADAPT-VQE trap-free will increase with the number of
operators needed to describe a system, which will gen-
erally grow with system size. We therefore expect this
overparametrization strategy to scale poorly. Contrary
to the prediction of Ref. 22, however, we have shown
that an ADAPT-like method can avoid local traps via
overparametrization.

Appendix C: Difficulty of Exhaustive Sampling

While sampling over parameter initializations provides
a path for enumerating different local traps in the land-
scape, the computational cost of such sampling is high,
and any such study will necessarily exhibit artifacts aris-
ing from insufficient sampling. While our best efforts
were made to avoid such artifacts, we have noticed a
few. Take for example, the 3 Å plot in Figure 3, where
the best solution at 60 parameters is very slightly worse
than the best solution at 59 parameters. We compared
using 300 and 1000 random initializations at 60 parame-
ters (Fig. 10) for an ADAPT-VQE calculation on H6 at
3 Å and found little reason to believe that 1000 initializa-
tions are enough to exhaustively find all minima. While
these small artifacts persist, the general trends seem con-
verged. For instance, in Fig. 10, increasing the number
of initializations increases the number of solutions found.
The distribution of the solutions is essentially unchanged,
with the median values (yellow-green) staying in roughly
the same place.

Appendix D: Importance of Gradient-Guided Ansatz

In Figs. 1-5, we demonstrated that the recycled (and
HF) initialization performed far better than the average
local minimum. In order to ascertain the role that the
ADAPT-VQE ansatz construction has on the ability of
the ansatz to burrow, we carry out similar simulations to
those presented in Fig. 3, except that before performing
the VQE optimizations, we shuffle the operators in the
ansatz. As a result, the ansatz is no longer constructed by
ADAPT-VQE. The results are shown in Fig. 11. In each

of the 3 random reorderings, we find that the large gap
that appeared in Fig. 3 between the recycled (and HF)
minimum and the local traps, largely disappears when
considering a randomly shuffled ansatz. This is clear ev-

FIG. 10. Results of various initializations for the 60-
parameter ADAPT-VQE ansatz for H6 at 3Å. 300 random
initializations are shown on the left. 1000 random initializa-
tions are depicted on the right.

idence that it is not sufficient to only slowly optimize the
parameters one-at-a-time via recycled initialization, but
that the ansatz must be grown in an efficient manner as
well if one is to observe the full burrowing effect.

Appendix E: Generalized Singles and Doubles Pool
Simulations

When the generalized singles and doubles (i.e., those
that destroy the reference state) were included in the
pool, the results were basically the same for H6 at 1-3Å.
We include them here for completeness in Fig. 12.

Appendix F: Infidelity Versus Number of
Parameters

Throughout the manuscript, we have included plots
of energy error vs the number of ansatz parameters (or
ADAPT-VQE iteration). While this is generally the tar-
get metric used for chemistry purposes, one might also
be interested in understanding the convergence of the the
fidelity, or overlap with the ground state, as a function of
ansatz parameters, when being used as a input state gen-
erator for quantum phase estimation. In Fig. 13, we plot

the infidelity, defined as 1 −
∣∣〈ψExact

∣∣ψADAPT
〉∣∣2. Here

we more directly see that the ADAPT-VQE convergence
becomes more difficult as the gap decreases.
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FIG. 11. 3 Random reorderings of the first 71 operators identified in an ADAPT-VQE simulation on H6 at 1 Å. (Computer
time was exhausted before all 71 operators were added in this case.) The x-axis corresponds to the number of operators in the
ansatz at a given step. The y-axis corresponds to the error from the exact FCI energy. The red curve (HF) corresponds to
the energy obtained through BFGS minimization using an all-zero initialization. The green curve corresponds to the energy
obtained through BFGS minimization using the standard ADAPT-VQE recycled initialization. The colored dashes correspond
to all the energies obtained through BFGS optimizations, with red being the highest energy and violet the lowest. 300 random
initializations were performed for each ansatz.

FIG. 12. GSD Pool. ADAPT-VQE results for H6 at 1, 2, and 3 Å with the generalized singles and doubles (GSD) pool. The
x-axis corresponds to the number of ADAPT-VQE iterations, i.e. the number of operators in the ansatz at a given step. The
y-axis corresponds to the error from the exact FCI energy. The red curve corresponds to the energy obtained through BFGS
minimization using an HF guess, i.e. one where all parameters are zero. The green curve corresponds to the energy obtained
through BFGS minimization using the standard ADAPT-VQE in which optimal parameter values in one iteration are recycled
as initial guesses in the next iteration, and with the new parameter initialized to zero. The colored dots correspond to all the
energies obtained through BFGS optimizations, with red being the highest energy and violet the lowest.
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FIG. 13. Infidelity vs parameter count. ADAPT-VQE results for H6 at 1, 2, and 3 Å with the singles and doubles (SD) pool.
The x-axis corresponds to the number of ADAPT-VQE iterations, i.e. the number of operators in the ansatz at a given step.
The y-axis corresponds to the infidelity. The red curve corresponds to the infidelity obtained through BFGS minimization
using an HF guess, i.e. one where all parameters are zero. The green curve corresponds to the infidelity obtained through
BFGS minimization using the standard ADAPT-VQE in which optimal parameter values in one iteration are recycled as initial
guesses in the next iteration, and with the new parameter initialized to zero. The colored dots correspond to all the fidelities
obtained through BFGS optimizations of the energy, with red being the highest energy and violet the lowest. Note that the
colored dots are not generally in chromatic order, as a wavefunction with a better energy can have a lower fidelity.



Chapter 5

Introduction to Classically Tractable

Approximations

5.1 Classical Approximations to UCC

As discussed in the previous section, unitary coupled cluster (UCC) is intractable on a

quantum computer when T̂ is truncated to any excitation rank higher than singles. [17]

UCC with singles only, UCCS, is equivalent to the SCF procedure when performed on any

Slater determinant reference. One can expand the UCC energy as an infinite BCH series, as

in equation 5.1.

〈0|eT̂ †−T̂ ĤeT̂−T̂ †|0〉 = 〈0|Ĥ|0〉+ 〈0|
[
Ĥ, T̂ − T̂ †

]
|0〉+ 1

2!
〈0|

[[
Ĥ, T̂ − T̂ †

]
, T̂ − T̂ †

]
|0〉+ . . .

(5.1)

This expansion can be truncated to yield an energy functional which is tractable to evaluate

on a classical computer. Unfortunately, truncating the method will destroy the variational

character (in the sense that the energy functional is no longer bounded below by the ground-

state energy) of the functional, and can destroy the size-consistency of UCC depending on

the truncation scheme.

The two main truncation schemes are as follows:

62
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1. Perturbative truncation of the BCH series based on the full T̂ , which is not truncated

by rank [29]

2. Truncation of the BCH series based on power of T̂ for a fixed excitation rank of T̂ [30]

We restrict our focus to the latter strategy, and will only concern ourselves with the case

where T̂ is restricted to the singles and doubles, i.e. truncated UCCSD. As Kutzelnigg has

computed [30], the terms introduced by the first three orders of the expansion are given as:

E(0) = 〈0|Ĥ|0〉 (5.2)

E(1) = 2Re 〈0|ĤT̂ |0〉 (5.3)

E(2) = Re 〈0|ĤT̂ 2 + T̂ †ĤT̂ − T̂ †T̂ Ĥ|0〉 (5.4)

Summing E(0), E(1), and E(2) gives an energy functional which is quadratic in T̂ . We call the

procedure of minimizing this functional the Order-2 (O2-) UCCSD algorithm. The choice of

notation will be explained in chapter 6, where we expand on our contributions to this type of

method. When one differentiates these equations, they obtain a set of stationary conditions

[28], given as:

0 = 〈φa
i |Ĥ|0〉++ 〈φa

i |ĤN T̂1|0〉+ 〈φa
i |T̂

†
1 V̂N |0〉+

1

2
〈φa

i |F̂N T̂2|0〉 (5.5)

0 = 〈φab
ij |Ĥ|0〉+ 〈φab

ij |ĤT̂2|0〉+
1

2
〈φab

ij |F̂N T̂1|0〉 (5.6)

We have assumed that the wavefunction is real, and use the standard definitions of F̂N and

V̂N as components of the Hamiltonian. [31] When these stationary conditions are met, the

O2-UCCSD energy (the sum of E(0), E(1), and E(2)) becomes

E = E0 + 〈0|ĤN T̂ |0〉 (5.7)
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We will see in the next section that these equations are very similar to those of another

approach. As a final note, one can compute the second-order truncation of a Trotterized

UCCSD energy functional. [32] In chapter 6 we consider the energy functionals that result

from certain Trotter orderings and how they lead to new properties in O2-UCCSD and in

our extensions of the approach.

5.2 Linearized Coupled Cluster Theory

In the previous section, we introduced the O2-UCCSD method. In this section we will

introduce an older method: linearized coupled cluster theory. When truncated to the doubles,

the method is interchangably referred to as linearized coupled cluster with doubles, LCCD,

and doubly-excited many-body perturbation theory to infinite order. (D-MBPT(∞)). When

truncated to the singles and doubles, the method is referred to as LCCSD. The coupled

electron pair approximation, CEPA, is sometimes used to denote both LCCD and LCCSD,

so we will refrain from using the term to avoid ambiguity. The different names for the

same method come from various approaches to obtaining the same equations. This type of

formalism was originally proposed by Wilfried Meyer in 1972. [33]

To understand linearized coupled cluster theory, let us first consider traditional (projective)

coupled cluster theory. The Schrödinger equation tells us that

Ĥ |Ψ〉 = E |Ψ〉 , (5.8)

where |Ψ〉 is the exact wavefunction of the system, and E is the ground state energy. We
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can introduce an approximate wavefunction defined as

|Ψ〉 = eT̂ |0〉 . (5.9)

If T̂ includes N -electron excitations for an N -electron problem, this is actually an exact

parametrization of the wavefunction. For our purposes, we will truncate T̂ to T̂1 + T̂2, the

single and double excitation operators, giving coupled cluster with singles and doubles, or

CCSD. Substituting equation 5.9 into equation 5.8 gives us an approximation to the true

Schrödinger equation:

ĤeT̂ |0〉 = EeT̂ |0〉 (5.10)

We can multiply each side of equation 5.10 by e−T̂ and project onto the reference determinant

and each singly or doubly excited determinant:

E = 〈0|e−T̂ ĤeT̂ |0〉 (5.11)

0 = 〈φa
i |e−T̂ ĤeT̂ |0〉 (5.12)

0 = 〈φab
ij |e−T̂ ĤeT̂ |0〉 (5.13)

In CCSD, equations 5.12 and 5.13 are solved to determine the t-amplitudes that inform the

energy in equation 5.11. In LCCSD, we introduce the approximation that e−T̂ ĤeT̂ can be

approximated by ignoring terms which are quadratic in T̂ or higher, i.e., we assume that

e−T̂ ĤeT̂ ≈ Ĥ +
[
Ĥ, T̂

]
. (5.14)
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Using this approximation in equations 5.11-5.13 gives the LCCSD equations [34], given as:

E = 〈0|Ĥ|0〉+ 〈0|ĤT̂ |0〉 (5.15)

0 = 〈φa
i |Ĥ|0〉+ 〈φa

i |ĤT̂ |0〉 (5.16)

0 = 〈φab
ij |Ĥ|0〉+ 〈φab

ij |
[
Ĥ, T̂

]
|0〉 (5.17)

These equations are very similar, but not identical, to those of O2-UCCSD. Most notably,

the LCCSD equations contain only connected terms where Ĥ contracts with T̂ . This is

sufficient to make LCCSD size-extensive, while O2-UCCSD is not. [31] The similarities and

differences of these methods are interesting, and are discussed further in chapter 6.
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ABSTRACT: The recent quantum information boom has effected a resurgence of
interest in the unitary coupled cluster (UCC) theory. Our group’s interest in local
energy landscapes of unitary ansaẗze prompted us to investigate the classical approach of
truncating the Taylor series expansion (instead of a perturbative expansion) of the UCC
with singles and doubles (UCCSD) energy at the second order. This amounts to an
approach where the electron correlation energy is estimated by taking a single
Newton−Raphson step from Hartree−Fock toward UCCSD. Such an approach has
been explored previously, but the accuracy was not extensively studied. In this paper, we
investigate the performance and observe similar pathologies to the linearized coupled
cluster with singles and doubles. We introduce the use of derivatives of order three or
greater to help partially recover the variational lower bound of true UCCSD, restricting
these derivatives to those of the “unmixed” category in order to simplify the model. By
testing the approach on several potential energy surfaces and reaction energies, we find
this “diagonal” approximation to higher order terms to be effective at reducing sensitivity near singularities for strongly correlated
regimes, while not significantly diminishing the accuracy of weakly correlated systems.

■ INTRODUCTION
The unitary coupled cluster (UCC) has intrigued chemists for
the past 4 decades as a variational form of the already powerful
coupled cluster theory.1−6 It has garnered significant attention
in recent years due to its use in variational quantum
eigensolvers (VQEs) and hybrid quantum-classical algo-
rithms.7−9 Quantum gates must correspond to physical
evolutions, making the unitary parameterization of the
wavefunction a natural choice. Various approximations and
modifications of UCC have seen use, including more general
ansaẗze based on UCC-like generators.10−16 A comprehensive
review of this topic has recently been prepared by Anand et
al.17 Dynamical ansaẗze such as the adaptive, derivative-
assembled, pseudo-Trotterized VQE (ADAPT-VQE) meth-
od18,19 build a sequential, UCC-like ansatz one anti-Hermitian
operator at a time, the order of which is determined by the
energy gradient associated with that operator’s introduction to
the ansatz. ADAPT-VQE gives a quasi-optimal operator
ordering that is informed by the problem Hamiltonian but
only includes information about the first energy derivative with
respect to the energy parameters.

While the UCC has provided a useful framework for
defining state preparation circuits in the VQE, as a classical
approach, it also has several desirable attributes:

1. Variationality
2. Size extensivity20

3. Satisfaction of the generalized Hellmann−Feynman
theorem2

Regardless of its various attractive features, computing the
UCC energy requires evaluating an infinite series of
commutators, even if the excitation rank of T̂ is restricted to
singles and doubles (UCCSD). The UCCSD energy land-
scape, while complicated, is a smooth functional of the
UCCSD wavefunction t-amplitudes. If we assume that we are
sufficiently close to the energy minimum that the landscape is
locally convex and that a finite solution exists which satisfies
the stationary conditions, we can make a reasonable guess at
the optimal values of the amplitudes by using a quadratic
Taylor approximation to the energy functional in the t-
amplitudes. In general, we would need a higher order Taylor
expansion to fully understand the landscape and recover the
nice properties of the UCC. One way we can go beyond the
quadratic approximation without much difficulty is to partially
explore the cubic and higher characters of the landscape.
Rather than including all higher order derivative tensor terms,

we consider only diagonal partial derivatives, for example,
t( )

k

ij
ab k

beyond the second order. Such an approximation is based on
the assumption that high order mixed derivatives are not
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important, a purely geometric idea, rather than one based on,
for example, perturbation theory. We will explore this idea
more concretely in the Theory section.

■ THEORY
We will begin this section by introducing the full UCCSD
functional and proceed to its Taylor series truncation at the
second order in the t-amplitudes. From there, we will
introduce our “diagonal” correction strategy and give explicit
equations for the third- and infinite-order situations. We will
finally compare the third-order case to existing coupled
electron pair approximation (CEPA) methods.

The UCC ansatz is given by eq 1.1

e T T
UCC

( )
0| = |

†

(1)

where T̂ is defined in the usual way, as in eq 2.

T T T t a t a... ...
ia

a
i

i
a

i j
a b

ab
ij

ij
ab

1 2= + + = + +
<
< (2)

We will define |ϕ0⟩ to be a normalized, single-determinant
reference. We do not initially assume a Brillouin condition and
will explore the consequences of the orbital choice later in the
text. Because T T

†
is anti-Hermitian, its exponential is

unitary, and the quantity ϵUCC[t] in eq 3 is bounded below by
the lowest eigenvalue of Ĥ for any value of t

HtUCC UCC UCC[ ] = | | (3)

where t is the vector of t amplitudes. While ϵUCC is variational,
symmetric, and size-extensive and satisfies the generalized
Hellmann−Feynman theorem, it is classically intractable to
evaluate. Unlike the traditional (non-unitary) coupled cluster
energy, the Baker−Campbell−Hausdorff (BCH) expansion of
ϵUCC will never terminate, regardless of the truncation of T̂.
Various artificial truncation schemes for ϵUCC exist, including
truncation based on the perturbation order2 and truncation
based on the commutator order.1 We will restrict our focus to
the latter, which has a geometric interpretation and has been
examined in far less detail. To denote the order (n) of Taylor
series trunctation, we prepend an “On-” to the typical UCCSD.
For example, restricting T̂ to singles and doubles and
terminating the Taylor series after the second order, we obtain
eq 4, which in this notation is given as O2-UCCSD.

E
t

t
t

t

t t
t t

t t
t t

t t
t t

E H T T H T

H T H T T

1
2

1
2

2

ia a
i a

i

i j
a b

ab
ij ab

ij

ijab a
i

b
j a

i
b
j

i j k l
a b c d

ab
ij

cd
kl ab

ij
cd
kl

i j
a b

kc
ab
ij

c
k ab

ij
c
k

0 0

0 0

0

O2 UCCSD 0
UCCSD UCCSD

2
UCCSD

,
,

2
UCCSD

2
UCCSD

0 0 N 0 0 N 0

0 N 1
2

0 0 N 1 2 0

= + +

+ +

+

= + | | + | |

+ | | | |

<
<

< <
< <

<
<

†

†
(4)

(We use the standard definitions of FN, VN, and HN, as used
in the coupled cluster review of Crawford and Schaefer21.)
Apart from the last two terms, ϵO2−UCCSD is simply the

linearized coupled cluster with singles and doubles (LCCSD)
Lagrangian.22 Similarly, ϵO2−UCCD is precisely the LCCD
Lagrangian. Minimizing ϵO2−UCCSD amounts to solving a linear
set of stationary equations, given by eqs 5 and 6.

H T T V F T f1
2i

a
N i

a
N 1 1 N 2 0+ + =†

(5)

H T F T ij ab1
2ij

ab
N 2 N 1 0+ =

(6)

For non-Hartree−Fock orbitals, the lack of a Brillouin
condition leads to a breakdown of size extensivity when
differentiating the tijabtiaf jb term with respect to the doubles
amplitudes, resulting in a disconnected contribution.23 This
term ultimately persists due to an incomplete cancellation

between diagrams in the T H TN0 0| |†
and H T TN0 1 2 0| |†

terms. While this might not be expected to deteriorate
performance too significantly, as the magnitude of the size
inextensivity is determined only by the occupied-virtual block
of the Fock matrix (i.e., the distance from an optimal set of
orbitals), it is, in fact, possible to reformulate the problem
slightly to recover the exact size extensivity, for both HF and
non-HF orbitals. If we, instead, begin from the partially
Trotterized (excitation rank-separated) energy in eq 7

e e He eK K K K
tUCCSD 0 0

2 1 1 2= | | (7)

where K T Ti i i= †
, we will obtain the following second-order

Taylor series approximation

E H T T H T

H T H T T

2

2

tO2 UCCSD 0 0 N 0 0 N 0

0 N 1
2

0 0 N 1 2 0

= + | | + | |

+ | | | |

†

†
(8)

This additional factor of 2 provides full cancellation of the
disconnected terms in the gradient expression.

This is interesting from three perspectives: (i) any single-
determinant reference state leads to a size-extensive method
that becomes equivalent to the first approach when HF orbitals
are used, (ii) the disentangled form suggests the opportunity to
develop a proper exact singles approach since the unitary
formalism allows implementation by a simple orbital rotation,
which will be considered in follow-up work, and (iii) a
doubles-then-singles ordering of excitations is consistent with
what we find to be accurate both in our ADAPT-VQE
algorithm and with our previous direct study on Trotter
ordering.16 The resulting stationary conditions are given as

H T T V fi
a

i
a

N 1 1 N 0| + | =†
(9)

H T ij abij
ab

N 2 0| | = (10)

At the time of writing, another group pointed out that one can
perform a Newton step toward tUCCSD instead of UCCSD.24

However, they do not make any argument for a specific Trotter
ordering or take interest in the size extensivity of the solution.

One key advantage of the Taylor-truncated UCCSD
approaches compared to CEPA approaches is that Taylor-
truncated approaches are systematically improvable. Inclusion
of triple or higher excitations is obvious, if expensive, and we
can work toward recovering the variational character of
UCCSD by including higher ordered terms in the Taylor
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series. We note that an analogous systematic improvability also
exists within the perturbation-trunctated UCC schemes.

O2-UCCSD has another issue, unrelated to size extensivity.
Linearized CC approximations have long been known to blow
up due to singularities stemming from quasi-degeneracies.25

This behavior is observed even in multireference formulations,
though inclusion of non-linear terms avoids this issue.26 As we
will report, the same problem plagues O2-UCCSD. One of the
most successful strategies for avoiding singularities historically
has been the split-amplitude “almost linear CC” family of
approaches, where some of the t-amplitudes are described by a
large fixed part and a small variable component.27,28 The
aforementioned singularity problem can alternatively be
addressed by expanding ϵUCCSD to the third order in the t-
amplitudes, but such an expansion would significantly increase
the complexity of the resulting expressions (albeit with no net
increase in the asymptotic scaling). However, if we assume that
the third derivative tensor is diagonally dominant, we can
instead approximate these higher order terms with essentially
no additional cost by including only the diagonal (or unmixed)
third derivatives in the Taylor series, as in eq 11.

t
t

t
t

f t ij ab t

1
6 ( )

( )
1
6 ( )

( )

4
3

( )
4
3

( )

ia a
i a

i

i j
a b

ab
ij ab

ij

ia
i
a

a
i

i j
a b

ab
ij

0 0

O2D3 UCCSD

O2 UCCSD

3
UCCSD

3
3

3
UCCSD

3
3

O2 UCCSD
3 3

=

+ +

=

<
<

<
< (11)

Differentiating eq 11 introduces non-linear but diagonal
terms. In practice, we minimize ϵ O2D3−UCCSD directly to find
the O2D3-UCCSD energy, but this could also be achieved by
solving a series of “shifted” linear equations if desired. In
general, including diagonal derivatives of higher order will only
introduce new four-index contractions, which are negligible in
an O(N6) algorithm.

We will advocate, as an improved approach, the inclusion of
diagonal derivatives to inf inite order, O2D∞-UCCSD. This
energy is given in eq 12. The Einstein notation is used for the
orbital indices to improve readability.

i
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jjjjjjjj
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= + |[[ ] ]| + +

+ | | + | |

=

(12)

A derivation of eq 12 is given in Appendix A. Our diagonal
energies bear a natural resemblance to the third- and infinite-
order two-electron UCC energies computed by Kutzelnigg.3

We note in passing that the diagonal corrections to the O2-
UCCSD energy functional give a method that is no longer
invariant to occupied−occupied and virtual−virtual orbital
rotations.

To recapitulate, the O2(D2)-UCCSD method was pre-
viously described by Kutzelnigg1 and has already been
implemented for multiple reference determinants by Simons
and Hoffmann.29 This method corresponds to truncating the
UCCSD functional at the second order in the t-amplitudes and
then minimizing the truncated functional. Our O2D3- and
O2D∞-UCCSD variants include the unmixed or “diagonal”
derivatives to the third and infinite order, respectively (e.g.,
O2D3-UCCSD approximates the third derivative “jerk” tensor
matrix by its diagonal). The deletion of extensivity-violating
terms is not new, but our rationalization based on ansatz
Trotterization is, and we denote the use of these deletions as
O2DX-tUCCSD.

As a final note on the theory involved in these methods, we
point out that the O2D3-UCCSD functional gives similar
amplitude equations to performing a conventional CEPA
derivation and treating only the exclusion principle-violating
(EPV) terms in which every index, occupied and virtual, is
exclusion principle-violating. (The authors recommend the
review30 by Wennmohs and Neese of the EPV-based CEPA
derivations. See also Appendix B. which follows in their
footsteps.) Our methods might be viewed as maximally simple
approaches that still give unique, determinant-tailored shifts to
individual excitations. This characterization is consistent with

Figure 1. Dissociation of HF in the 6-31G**37−39 basis.
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their improved capacity to break single bonds relative to
LCCSD.31 Our method might be compared to a minor
complication of LCCSD,32 a minor simplification of
CEPA(2)/CEPA(3),33 or a dramatic simplification of
SC2CISD.34

■ RESULTS AND DISCUSSION
We consider three potential energy surfaces used by Malrieu et
al.31 to demonstrate the single bond-breaking ability of
CEPA(3):

1. Dissociation of hydrogen fluoride
2. Dissociation of a single C−H bond in methane
3. Torsion of ethylene

We used optimized geometries from B3LYP35/6-31G*36−39

calculations to determine the positions of atoms that were held

static in each curve. All O2-UCCSD energies, as well as
LCCSD energies, were computed using a custom software
package developed in-house, available at https://github.com/
hrgrimsl/taylor_ucc. SCF, CCSD, CCSD(T), density func-
tional theory (DFT), and FCI calculations were performed
using PySCF.40 CCSDT energies were obtained using the
MRCC code of Kaĺlay et al.41−43 via a Psi4 interface.44

The divergence of LCCSD and O2D2-UCCSD in Figures
1−3 demonstrates the failure of the linear methods to break
single bonds. In general, some excitation-specific correction of
a higher order in t is required to treat this type of problem. For
example, ACPF also fails to dissociate these molecules, despite
having diagonal corrections of its own, since it still corrects
every excitation uniformly.31

Figure 2. Dissociation of a single C−H bond in methane in the 6-31G* basis.

Figure 3. Rotation of one CH2 group about the C−C bonding axis in ethylene in the CC-pVDZ45 basis. The LCCSD and O2D2-UCCSD curves
are essentially overlapping. CCSDT apparently converged to an excited state at 90°, so the point was omitted.
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For HF dissociation (Figure 1), the O2D3-UCCSD
approach gives a similar qualitative behavior to CCSD(T) if
canonical orbitals are used. Canonical orbital O2D∞-UCCSD
diverges for HF. We explain the worse performance of the
infinite-order correction here by the strong orbital dependence
of diagonal methods. When Kohn−Sham orbitals are used, the
unphysical “hump” is eliminated from O2D3, and O2D∞
becomes quite accurate for this dissociation.

The CH4 dissociation is largely similar to that of HF, with
two notable exceptions. First, O2D∞ does not completely
diverge with canonical orbitals. Second, the KS orbitals fail to
eliminate the unphysical “hump” at 2.5 Å entirely, with O2D3-
UCCSD giving quantitatively better energies at dissociation.
We suspect that this would not be the case with better orbitals.

In the case of ethylene torsion (Figure 3), LCCSD and
O2D2-UCCSD’s unphysical divergences are never fully
corrected, though the O2D3- and O2D∞-UCCSD methods
give a clear improvement. The KS orbitals appear considerably
less helpful for this system, introducing very little difference to
the diagonally corrected methods beyond easier numerical
convergence of the algorithm. The difference between
Trotterized and un-Trotterized methods is small for all three
systems, as expected based on the full-order size extensivity of
UCCSD.

The inconsistent utility of DFT orbitals motivates
investigation into an optimal orbital choice for the O2D3-
and O2D∞-UCCSD methods. The matter of orbital
“optimization” is complicated by the fact that divergence to
− ∞ is possible for some orbital choices, as seen in Figures 1
and 3. Minimizing the norm of t or some similar scheme might
be appropriate, but we defer such questions to future work.
This idea that using orbital rotations to avoid large t-
amplitudes is a viable strategy is somewhat corroborated by
the relative performance of canonical and Kohn−Sham
orbitals. For example, in the case of hydrogen fluoride
dissociation, O2D∞-UCCSD diverges with canonical orbitals
but not with Kohn−Sham orbitals. This implies that for the
Kohn−Sham orbitals, the optimal amplitudes are finite, which
is not the case with canonical orbitals.

The failure of our methods to fully deal with ethylene
torsion suggests that we do lose some of the applicability of
CEPA(3) as a single-reference method.31 The primary
difference between ethylene torsion and our single bond-
breaking tests is that in ethylene, both the 2 − HOMO and 2
− LUMO begin to become degenerate as well as the highest
occupied molecular orbital (HOMO) and lowest unoccupied
molecular orbital (LUMO). (As Malrieu et al. point out,31 this
is because it is a π/π* orbital pair becoming degenerate.)
While our methods include high order interactions between
individual excited states and the reference, they neglect high
order coupling between different excited states. Consequently,
we expect our method to break down in situations where there
are multiple coupled, excited determinants that are important.

The O2-UCCSD and O2-tUCCSD methods are extremely
similar in their performance. This can be explained by the fact
that UCCSD is fully connected at the full order23 so that the
affected terms occur at the third order or higher in the Taylor
series expansion. A similar argument has been used previously
to justify the manual deletion of similar types of “internally
disconnected” terms from perturbatively truncated CC func-
tional approaches.23 Furthermore, in most situations, O2-
UCCSD and O2-tUCCSD differ very little from LCCSD. All
three methods involve solving similar sets of linear systems of

equations and have similar pathologies involving singularities
in those equations.4

As a broader test of applicability, we considered the CRE-31
reaction energy test set of Soydas ̧ and Bozkaya,46 motivated by
its use for characterizing orbital-optimized LCCD (this test set
is enumerated in Table 1). We elected to use the CC-
pVTZ45,47 basis for all systems, with geometries obtained from
B3LYP/6-31G** optimization in PySCF.

We begin our analysis of Figures 4 and 5 by noting that for
some molecules, one or more of our approaches failed to find a
local minimum on which to converge. This is a weakness of
using an unconstrained optimizer (L-BFGS-B)48 to minimize a
functional that is not actually bounded below. One could
imagine a different starting guess, allowing O2D3- or O2D∞-
UCCSD to converge in these cases or settling for a minimized
gradient as an approximate solution condition. These three
molecules had three of the four highest CCSD T1 diagnostics in
the test set. (CH3NO2, CH3ONO, and HNO2 had diagnostics
0.016, 0.018, and 0.018, respectively.) For context, Lee and
Taylor consider a T1 diagnostic of 0.02 indicative of an
important multireference character.49 We exclude the two
associated reactions from the main text. We note in passing
that one can compute a T1 diagnostic based on the amplitudes
from the O2D2-UCCSD functional and that this O2D2-
UCCSD T1 diagnostic is able to predict the multireference
character that causes the method to catastrophically over-

Table 1. Reaction Key for CRE-31

1) F2O + H2 → F2 + H2O
2) H2O2 + H2 → 2H2O
3) CO + H2 → CH2O
4) CO + 3H2 → CH4 + H2O
5) N2 + 3H2 → 2NH3

6) N2O + H2 → N2 + H2O
7) HNO2 + 3H2 → 2H2O + NH3

8) C2H2 + H2 → C2H4

9) CH2CO + 2H2 → CH2O + CH4

10) BH3 + 3HF → BF3 + 3H2

11) HCOOH → CO2 + H2

12) CO + H2O → CO2 + H2

13) C2H2 + HF → CH2CHF
14) HCN + H2O → CO + NH3

15) HCN + H2O → HCONH2

16) HCONH2 + H2O → HCOOH + NH3

17) HCN + NH3 → N2 + CH4

18) CO + CH4 → CH3CHO
19) N2 + F2 → trans − N2F2

20) N2 + F2 → cis − N2F2

21) 2BH3 → B2H6

22) CH3ONO → CH3NO2

23) CH2C → C2H2

24) allene → propyne
25) cyclopropene → propyne
26) oxirane → CH3CHO
27) vinyl alcohol → CH3CHO
28) cyclobutene → 1, 3 − butadiene

29) 2NH (NH )3 3 2

30) 2H O (H O)2 2 2

31) 2HF → (HF)2
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estimate the correlation energy. Individual reaction energies for
each method are available in the Supporting Information, along
with individual molecule error as a function of the O2D2-
UCCSD T1 diagnostic.

In general, our methods do not appear to be particularly
helpful for the CRE-31 test set. Regardless of the orbital
choice, Trotterization, or diagonal correction, we achieve a
performance comparable to that of LCCSD and better than
that of CCSD. We consider this middling performance useful
overall�the truncated UCC framework overcomes one of the
primary issues of LCCSD, its lack of systematic improv-
ability.30 Additionally, the amenability of these methods to
multireference implementation should offer a route to avoiding
problems with multiple quasi-degeneracies.

■ CONCLUSIONS
We have outlined a pedagogically simple way to correct
Taylor-truncated UCC functionals without worsening their
formal scaling, using only unmixed derivatives. While these
corrections seem to be of minimal help for computing reaction
energies, they dramatically improve the behavior of single-
reference O2-UCCSD for single bond-breaking events,
repairing one of the most prominent pathologies of LCCSD
in an extremely simple, physically motivated way. We believe
that further investigation into orbital optimization can only
improve our method, given its strong orbital dependence, and
plan to explore this in future work.

Additionally, we offer an alternative, Trotterized ansatz that
eliminates the extensivity-violating diagrams from second-
order UCCSD, noting that tUCC possesses all the qualities
that made UCCSD attractive to begin with. Furthermore, the
exactness of certain Trotter orderings of tUCCSD...N has been
rigorously proven by Evangelista et al., while UCCSD...N may
not be exact in certain pathological situations.50 It is worth
noting that a “doubles-then-singles” operator ordering roughly
corresponding to that used in our tUCCSD approaches was
shown by Evangelista et al. to not be generally capable of
representing arbitrary states, even in the case of only two
electrons. A potentially exact (for two electrons) “singles-then-
doubles” ordering would not give a size-extensive second-order
approximation.

■ APPENDIX A

Derivation of eq 12
Computing the infinite-order correction to O2-UCCSD is
somewhat involved. We will derive a more general form of eq
12 where one has t-amplitudes tμ associated with operator O

O a a= †
(A1)

We assume only that

a 0| = |†
(A2)

Figure 4. Reaction energy errors of the CRE-31 test set in the cc-pVTZ basis, with reactions 7 and 22 excluded due to non-convergence for some
methods.

Figure 5. Gaussian fittings of the CRE-31 test set in the cc-pVTZ
basis, with reactions 7 and 22 excluded due to non-convergence for
some methods.
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a 0| =†
(A3)

a 00| = (A4)

a 0| = | (A5)

To find the infinite-order, unmixed part of the energy, we need
to find (in the Einstein notation with respect to μ)
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Using the BCH definition, we know that
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where the subscript k denotes the kth nested commutator.
Consequently
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(The factor of 1/k! is cancelled by the k! terms that arise when
differentiating). eq A8 can be simplified into two cases, where
we are taking an even or odd derivative. We first consider the
case where it is even. For k ∈ N
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For terms in this summand where j is even, we will get some
multiple of H 0N0 0| | = , so we can simplify eq A9 to
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using the binomial coefficient for expanding the nested
commutator. We now consider the situation where we are
taking an odd derivative. For k ≥ 0:
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The terms where j is odd are the complex conjugates of those
where j is even. We will assume real-valued operators and
molecular orbitals, so we can simplify eq A14 to
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Summing over all even terms in eq A6 gives
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Summing over all odd terms in eq A6 gives
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Combining E0 with lines A22 and A25 gives us ϵD∞. However,
we still want to include the mixed second derivatives in
O2D∞-UCC. Consequently, we add in the term

H K K t H
1
2

, ,0 N 0
2

N|[[ ] ]| | |
(A26)

for a total O2D∞ energy of
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Restricting μ to the singles and doubles yields eq 12.

■ APPENDIX B

Minimal EPV CEPA
We ignore the singles and triples for simplicity in making our
point. Consider the doubles equations from CIDQ...N, where
we use T̂ for consistency with our earlier definitions

E t H T T(1 )ab
ij

ij
ab

c N 2 4 0= | + + | (B1)

E ij ab t
i j

a b

ab
ij

c =
<
< (B2)

Equations B1 and B2 are simply a statement of the CIDQ...N
eigenvalue problem with intermediate normalization. We can
simplify eq B1 by using a CC-type approximation

T T
1
24 2
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This leaves us with the quadratic CI term
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Further approximating the quadruples in this equation by
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lets us simplify term B4 to
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The ∪ summation is over the EPV terms where c, d, k, or l is
equivalent to a, b, i, or j. Neglecting these terms entirely gives
the LCCD equations
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Something similar to our method emerges if one instead makes
the approximation that

kl cd t t ij ab t( )
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ab
ij
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that is, we only care about one EPV term, where every single
index is EPV. This gives the amplitude equation

ij ab H T ij ab t( )ij
ab

N ab
ij

2 0
2= | | (B10)

Including a factor of 2 in front of ij ab t( )ab
ij 2 would give the

stationary condition of the O2D3-UCCD method. This
suggests that our diagonal corrections are similar in spirit to
a simplified CEPA(3), where all EPV terms with k or l equal to
i or j are considered.
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www.mrcc.hu (accessed 2022-09-22).
(44) Parrish, R. M.; et al. Psi4 1.1: An Open-Source Electronic

Structure Program Emphasizing Automation, Advanced Libraries, and
Interoperability. J. Chem. Theory Comput. 2017, 13, 3185−3197.
(45) Dunning, T. H. Gaussian basis sets for use in correlated

molecular calculations. I. The atoms boron through neon and
hydrogen. Chem. Phys. 1989, 90, 1007−1023.
(46) Soydas,̧ E.; Bozkaya, U. Assessment of the orbital-optimized

coupled-electron pair theory for thermochemistry and kinetics:
Improving on CCSD and CEPA(1). J. Comput. Chem. 2014, 35,
1073−1081.
(47) Woon, D. E.; Dunning, T. H. Gaussian basis sets for use in

correlated molecular calculations. IV. Calculation of static electrical
response properties. Chem. Phys. 1994, 100, 2975−2988.
(48) Liu, D. C.; Nocedal, J. On the limited memory BFGS method

for large scale optimization. Math. Program. 1989, 45, 503−528.
(49) Lee, T. J.; Taylor, P. R. A diagnostic for determining the quality

of single-reference electron correlation methods. Int. J. Quantum
Chem. 1989, 36, 199−207.
(50) Evangelista, F. A.; Chan, G. K.-L.; Scuseria, G. E. Exact

parameterization of fermionic wave functions via unitary coupled
cluster theory. Chem. Phys. 2019, 151, 244112.

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.2c00751
J. Chem. Theory Comput. XXXX, XXX, XXX−XXX

I



Supplementary Information

Harper R. Grimsley and Nicholas J. Mayhall
Chemistry Department, Virginia Polytechnic Institute and State University

(Dated: November 1, 2022)

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16
O2D2-UCCSD T1 Diagnostic

0.025

0.020

0.015

0.010

0.005

0.000

0.005

0.010

O2
D2

-U
CC

SD
 E

rro
r F

ro
m

 C
CS

D(
T)

 (a
.u

.)

Predictive Capacity of the T1 Diagnostic for O2D2-UCCSD
CCSD(T)
±1 kcal/mol

FIG. 1: Plot of individual reaction energy errors as a function of the O2D2-UCCSD T̂1 diagnostic, |t1|√
Ne/2

.



Chapter 7

Conclusions

In chapter 2, the importance of operator ordering in a Trotterized VQE is established,

and the need for an unambiguous choice of operator ordering is emphasized. The impact of

operator ordering on the energy may be small for weakly correlated systems where the ansatz

parameters are small, but it is extremely large for strongly correlated systems, which are

the systems where classical methods break down and quantum algorithms are likely to help.

Within the scope of this dissertation, this work helps to explain the success of ADAPT-VQE.

In the broader scope of the field of VQE research at large, this work introduced the idea

that researchers need to define their Trotterized ansätze more rigorously. It is also worth

noting that this work is the first to suggest that higher-order Trotterization of the ansatz

can yield an inferior energy. The conclusions of this paper are crucial to fully understanding

gate-efficient Trotterized implementations of the impractical UCC ansatz.

In chapter 3, the ADAPT-VQE algorithm is introduced. ADAPT-VQE solves the ordering

problem by using one-at-a-time operator addition based on energy gradients with respect to

the VQE parameters. More importantly, it offers a dramatically more parameter-efficient

approach to defining a VQE ansatz than the standard UCCSD ansatz or a randomly-defined

ansatz using the same operators. ADAPT-VQE represents a massive improvement over

traditional VQEs in terms of circuit depth and parameter counts. Numerous follow-up

works to ADAPT-VQE have taken the form of modifications of the original algorithm and

entirely new adaptive algorithms, both by its original developers and other groups. [35–

78
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39] ADAPT-VQE was the first VQE to use a dynamically constructed ansatz, and remains

popular in the QIS community.

In chapter 4, problems with the classical optimization in VQEs are addressed as they apply to

ADAPT-VQE. The problem of local minima in the energy landscape seems to be largely cir-

cumvented by ADAPT-VQE, and a theoretical argument is made for ADAPT-VQE avoiding

the problem of barren plateaus. As mentioned in the introduction, these classical optimiza-

tion issues are considered major obstacles to the practical utility of VQEs. The fact that

ADAPT-VQE seems to at least partially address them makes the highly parameter- and gate-

efficient algorithm even more attractive, and suggest that it will be one of the most practical

VQEs going forward. At the same time, this work revealed a new problem with ADAPT-

VQE in the form of premature convergence due to “gradient troughs” where ADAPT-VQE

gets stuck in manifolds of excited states. It remains unclear whether ADAPT-VQE would

have these problem cases if a greater degree of numerical precision was used in floating point

operations, or if it is truly possible to have a zero operator gradient vector and still not have

reached an eigenstate. Both the advantages and problems of ADAPT-VQE revealed in this

paper motivate further research on the method.

In chapter 6, a family of VQE-inspired, classical chemistry methods is explored. Despite

minimal additional complexity, superior results to the established O2D2 and LCCSD meth-

ods are obtained. In particular, these new approaches are far better at single bond-breaking.

Interesting connections are made with existing classical methods in the CEPA family, de-

spite totally different motivations behind the derivations. The fact that truncating certain

Trotterized UCCSD ansätze yields a size-extensive method is fascinating and could poten-

tially have implications in the Trotter ordering problem. These new methods are primarily

interesting from the perspective that they are motivated by an energy functional that is

only tractable in quantum algorithms. Future work on this project includes choosing bet-
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ter orbitals and (hopefully) developing useful insights about the parameter landscapes of

UCCSD-based VQEs.

This work has revolutionized the implementations and refined the study of VQEs. Both

quantum and classical algorithms have been designed here based on VQEs and their con-

stituent parts. Despite pessimism about their practicality in the community, especially with

respect to classical optimization, the research here is cause for optimism regarding VQEs.

It is the hope of the author that this work motivates some interest by the reader in VQEs

and, in particular, the UCC formalism.
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