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(ABSTRACT)

Parallel computing has recently appeared has an alternative approach to increase
computing performance. In the world of engineering and scientific computing the
efficient use of parallel computers is dependent on the availability of methodologies
capable of exploiting the new computing environment. The research presented here
focused on a modeling approach, known as cellular automata (CA), which is
characterized by a high degree of parallelism and is thus well suited to implementation on
parallel processors. The inherent degree of parallelism also exhibited by the random-walk
particle method provided a suitable basis for the development of a CA water quality
model. The random-walk particle method was successfully represented using an approach
based on CA. The CA approach requires the definition of transition rules, with each rule
representing a water quality process. The basic water quality processes of interest in this
research were advection, dispersion, and first-order decay. Due to the discrete nature of
CA, the rule for advection introduces considerable numerical dispersion. However, the
magnitude of this numerical dispersion can be minimized by proper selection of model

parameters, namely the size of the cells and the time step. Similarly, the rule for



dispersion is also affected by numerical dispersion. But, contrary to advection, a
procedure was developed that eliminates significant numerical dispersion associated with
the dispersion rule. For first-order decay a rule was derived which describes the decay
process without the limitations of a similar approach previously reported in the literature.
The rules developed for advection, dispersion, and decay, due to their independence, are
well suited to implementation using a time-splitting approach. Through validation of the
CA methodology as an integrated water quality model, the methodology was shown to
adequately simulate one and two-dimensional, single and multiple constituent, steady-
state and transient, and spatially invariant and variant systems. The CA results show a
good agreement with corresponding results for differential equation based models. The
CA model was found to be simpler to understand and implement than the traditional
numerical models. The CA model was easily implemented on a MIMD distributed

memory parallel computer (Intel Paragon). However, poor performance was obtained.



ACKNOWLEDGMENTS

This research has been supported by the National Science Foundation, the
Virginia Tech Core Research Program, and grants from the Junta Nacional de
Investigagdo Cientifica e Tecnoldgica, Portugal (grants BD/1003/90-RN and
BD/3033/94). I would like to thank the Virginia Tech Computer Science Department and
the Oak Ridge National Laboratory for access to the Intel Paragon.

I am grateful to Dr. Daniel Gallagher, my major advisor, for his research
guidance, understanding, patience, kindness, support, and friendship during the many
years of this project.

I would like to thank Dr. Antonio Camara for his crucial contribution to the
launching of this project and for serving in the research committee.

I thank Dr. Calvin Ribbens of the Virginia Tech Computer Science Department
for his constant help and support regarding the use of Intel parallel computers and for
serving in the research committee.

I also thank Dr. Theo Dillaha and Dr. G. V. Loganathan for serving in the

research committee.

A special thanks to Madalena and Alvaro, my parents, for the eternal support and
friendship. And to Karin for being such a good friend.

And finally, thanks to the Wilderness of North America for being a constant

source of inspiration and well-being.

ACKNOWLEDGMENTS iv



TABLE OF CONTENTS

AB ST RACT e e
ACKNOWLEDGMENTS L. e e
TABLE OF CONTENTS ..o e e e
LIST OF TABLES ..o e e e
LIST OF FIGURES ... e et e
1T INTRODUCTION oo e e e
REFERENGCES ... e oo e

2 DYNAMIC WATER QUALITY MODELING USING CELLULAR AUTOMATA:
MODEL DEVELOPMENT ... oo e
2.1 INTRODUCTION .o e e e
2.1.1 Random-Walk Particle Method ................co i
2.1.2 Cellular AUTOMELA ..o et e
22 ADVECTION. ...t ettt e
2.2.1 MENOAOIOGY ... et e e
2211 RUl@ DefiNtiOn ..o e e
2.2.1.2 Advection Induced Numerical DiSPersion.............cccoccooviircis vt
2.2.2 ReSUItS and DiSCUSSION ........ccooiiiuiiiitiiieie sttt e
23 DISPERSION ..o e e
2831 Methodology ... e
2311 RuUle Definition ..o e
23.1.2 Effect of P,y ON DISPEISION ...........ooovvveoiieevieae coccesieerecccssenreces .
2.3.2 Results and DISCUSSION ........ooioiiiiie oo et e
24 DECAY o
241 MethodOlogy ... e
2411 Rule Definition . ... e
2412 Effectof Pdec ONDeCay...........cooiii
2.42 ResUlts and DiSCUSSION ..........coiiiiiiiiiiiiiit e e
25 WATER QUALITY MODEL DEVELOPMENT ......ooooiiiiiiiiiiiie e
26 CONCLUSIONS ..o e et e

APPENDIX A: Characterization of the mass distribution resulting from the

advection induced numerical diSPersion ..............coooeeeriiiriiee i

TABLE OF CONTENTS

= a4 N O 0 O;



APPENDIX B: Derivation of the expression for the dispersion probability ....................... 51

REFERENCES ... e e e 53
3 DYNAMIC WATER QUALITY MODELING USING CELLULAR AUTOMATA:
MODEL APPLICATION USING PARALLEL PROCESSORS ........ocooiiiiiiiiiie e, 59
3.1 INTRODUCTION ..o e e e e e 59
3.1.1 Parallel Computing ..........oooviii s e e 59
32 METHODOLOGY ..o e s e 62
3.21 General Model ... 62
3.22 BODMOMOAEL ......ocoiiiii e o e 68
3.2.3 SimUIation SCENANOS .......oooiiiiiiiiiiiiiii it e e 69
3.23.1 One-Dimensional Line Pulse INput ................oooiiiiiii i 69
3.2.3.2 Two-Dimensional Pulse INput.............cooooiiiiiiiiie e, 70
3.23.3 One-Dimensional Steady-State BOD/DO...........cccooiieiiiiiiiie i 72
3.23.4 One-Dimensional Tidal BOD/DO ..........ccoocioiiiiiiiiie ittt 77
3.2.4 Parallel Computer Implementation ... 80
38 RESULTS AND DISCUSSION ... oo e 82
3.3.1 One-Dimensional Line Pulse Input ... e 82
3.3.2 Two-Dimensional Pulse INpUt ... 85
3.3.3 One-Dimensional Steady-State BOD/DO .............ccccocoeiiiiiiiii e 87
3.3.4 One-Dimensional Tidal BOD/DO .........ccoooiiiiiiiiii et e e 97
3.4 CONCLUSIONS ... o e e e e 100
REFERENCES .. ..o i et et e 101
4 EUTROPHICATION MODELING WITH CELLULAR AUTOMATA ... 104
41 WATER QUALITY CONSTITUENTS ... et s 104
42 WATER QUALITY PROCESSES ..ot et e 109
421 Advection and DiSPersion ..o e 109
422 Aerobic Biodegradation ..............coociiiiiii e e 109
423 Reaeration/Deaeration ...............oociiiiiiiiiit e 110
424  DenitriflCatiOn ... e 111
425  NIAfICAHON ..o e 113
426 HYArOIYSIS .oooiiii e e e 114
427 PhOtOSYNtNESIS ... 115
428  RESPIFALION ......oooiiiii e e e 118
429  Death . e 119

TABLE OF CONTENTS vi



A210 GraZiNG ..o 119

4211 SeUlNG ..o 121

43 EXTERNAL SOURCES AND SINKS ... i e e 123

44 IMPLEMENTATION ON PARALLEL PROCESSORS .........ocoviiiiiiiiiiec e 123

REFERENCES ... . oo e e et 124

5 CONCLUSIONS ... e e et e 125
APPENDIX: LISTING OF THE C SOURCE CODE FOR THE MAIN

COMPONENTS OF THE CA WATER QUALITY MODEL ..o, . 128

VI A e e e e e 170

TABLE OF CONTENTS vii



LIST OF TABLES

Table 3.1  Parameter values used in the one-dimensional line pulse input
SIMUIALION. .eiiiiiiieiiceieecteeter ettt 71

Table 3.2  Parameter values used in the two-dimensional pulse input
SHMULALION. ...ttt ettt ene e 73

Table 3.3  Parameter values used in the one-dimensional steady-state BOD/DO
simulation for a river with uniform cross-section and a single

CONtINUOUS dISCHATZE. ...eeeueieiiiieeieeieecete et 74
Table 3.4 Parameter values used in the one-dimensional steady-state BOD/DO

simulation for a river with variable cross-section and multiple
continuous diSCharges. ........ccccvviiiiiiiiiiiiiiiiii e 75

Table 3.5 Parameter values used in the one-dimensional tidal BOD/DO
SITNULALIONE. cevvriirereeeiieetiieereeerettaaeeeeeereeeesssseesesssesasssssnnsessessesssnsesssessssnnnne 79

LIST OF TABLES viii



LIST OF FIGURES

Figure 2.1

Figure 2.2

Figure 2.3

Figure 2.4

Figure 2.5

Figure 2.6

Figure 2.7

Figure 2.8

Figure 2.9

Figure 2.10

Cellular automata evolving in a discrete time interval (At?). (a)
One-dimensional cellular automaton. (b) Two-dimensional cellular

AULOMIALON. eeuiiiiiriiinrieneetreernereenertssrersesernseennsrensessensssressssonessnssessnsseassens

Time evolution of the mean (a) and standard deviation (b) of the
mass distribution as a function of the advection probability using

the CA surrogate method. (Ax =10, # =5.) .cooceiiiiiivininincreeceee

Relation between the advection induced numerical dispersion
(E

num

Relation between E,, [(uAx) and the advection probability. ...............

Guideline for the selection of Ax,, . for typical values of «_, and

E fOr rIVErs and ESLUATIES. «ovcvvveeeeeeeieeeeerneeeeeeeereerenneeeeeseraessissesees

num max

Guideline for the selection of Az for typical values of u,,,,

adv.max

and E fOr rivers and ESTUATIES. ..uviivvveeereiiineeeeiiieerrrreerraeeeresraneens

num max

Time evolution of the standard deviation of the distribution of
number of particles as a function of P, using the CA

dispersion rule, and comparison with the analytical solution for the
dispersion differential equation for an instantaneous input.

(N;=1000, AXx =10, E=L1) cooorrrevorreririnnsressnesssisssssssssssssssssssssssnsanns

Relation between (a,, /Oza)2 and P,

disamp *

Time evolution of the standard deviation of the distribution of
number of particles as a function of P, using the CA
dispersion rule corrected for numerical dispersion and comparison

with the analytical solution. (N,=1000, Ax=10, E=5.) c.c..ccoeerrrrrrnnnee.

Comparison of mass distributions for the CA with dispersion rule
corrected and non-corrected for numerical dispersion and the

analytical solution as a function of P, .. .( Nﬁ:l 000, Ax =10,

E =5, 150.) oottt e et e e s e e e et raeeseeesrarannns

LIST OF FIGURES

) and the advection probability.......cc.ccccrvviiiiiiiiiniiiiniiiiiniinnnn,

...............................................

9

15

17

18

21

22

27

32

34

ix



Figure 2.11

Figure 2.12

Figure 2.13

Figure 2.14

Figure 2.15

Figure 2.16

Figure A1

Figure 3.1

Figure 3.2

Figure 3.3

Time evolution of the peak of mass distributions for the CA and
the analytical solution as a function of P, : (a) dispersion rule

without correction for numerical dispersion; (b) with correction.
(N7 =1000, Ax =10, E =5.) w..ccovormermnsecenvevevmmmnnsenssessesmmsssssssseesssmeesses 36

Time evolution of the fraction of mass remaining as a function of
the decay probability using the CA surrogate method and
comparison with the analytical solution for first-order decay.

(K 4o 0.5 ot 39
ca
Relation between the ratio B=—%< and the decay probability for
dec
first-order decay. .......ccooviiiiiiiiiiiiiiiiiii e 41
Convergence values for 8 and P,,. as a function of &, At,,. for
fIrst-0rder deCay. .....cocoviiciiiiienriiiiiiiierrcc ettt 42
Relation between Az, ... and k. for first-order decay. ................. 44

Time evolution of the fraction of mass remaining as a function of
the decay probability for the CA decay rule using equation (2.30)
and comparison with the analytical solution for first-order decay.

(N=10000, Ky, =0.05.) covvvevnirirniirrresinnesisseessssssssssssssessssssessssnas 45

Comparison between the mass distributions obtained for the CA

advection surrogate method (solid line) and the analytical solution

for the advection-dispersion differential equation for an

instantaneous input (dotted line). The distributions are shown for

different advection probability values and at the end of various

SIMUIALION SEEPS. ...eeviieeieiiiiieeeieieeeeeeieeeeeeeae e e e e e eraaeeeeneseeeeeenneeeaeeaneeaeenan 50

Layout of the variable cross-section river system corresponding to
the model input parameters of Table 3.4.............ccoccovinninnininnnnne. 76

Comparison of concentration profiles, noise to signal ratio, and
computation time from CA model simulations for evaluation of the

effects of the packet fraction approach. (Model input parameters

frOM TaADLE 3.1.) et ee e e e e ee e rraasaeaaee e e sennnes 84

Concentration plume of a conservative constituent at successive

times after a pulse discharge at a distance of 0.25 km and zero

depth. Comparison between the CA model and the two-

dimensional advection-dispersion differential equation. (Model

input parameters from Table 3.2.) .....ccccovvinniininiininniniii 86

LIST OF FIGURES X



Figure3.4  Concentration profiles corresponding to longitudinal and vertical
transects passing through the maximum concentration point of the
plume in Figure 3.3 at a time of 25 minutes after the discharge.
Comparison between the CA model and the two-dimensional
advection-dispersion differential equation. ............ccocevvrereneruerecirennene 88

Figure 3.5 Concentration profiles for BOD and DO at steady-state for a river
with uniform cross-section and a single continuous discharge. The
BOD is being continuously discharged at a distance of 20 km.
Comparison between the CA model and the Streeter and Phelps
model. The CA results are from a single model simulation. (Model
input parameters from Table 3.3.) .....ccccceoiiiiiiniinniiiiiince 89

Figure 3.6  Concentration profiles for BOD and DO at steady-state for a river
with variable cross-section and multiple continuous discharges.
Comparison between the CA model and the Streeter and Phelps
model. The CA results are from a single model simulation. (Model
input parameters from Table 3.4.) ..o, 90

Figure 3.7  Distribution of the number of BOD and DO particles and the
computation time among the worker nodes, corresponding to the
CA simulation results of Figure 3.5. The worker nodes are
numbered based on an upstream to downstream ordering of their
SUDOMAINS. ..cvveiniiiiiiiiiienitcie ettt et 92

Figure 3.8  Distribution of the number of BOD and DO particles and the
computation time among the worker nodes, corresponding to the
CA simulation results of Figure 3.6. The worker nodes are
numbered based on an upstream to downstream ordering of their
SUDAOMAINS. ..coiiiiiiiiiiiiiiiiiccte et 93

Figure 3.9  Execution times for the uniform cross-section steady-state
BOD/DO simulation as a function of the number of worker nodes
used in the simulation. (Model input parameters from Table 3.3.) ........ 95

Figure 3.10  Graphical representation of the time evolution of the advective
velocity for the simulation scenario corresponding to Table 3.5.
The circles indicate the time at which model results are shown in
FIGUIE 3.1 1. ettt et s 98

Figure 3.11 Concentration profiles for BOD and DO at successive slack water
times over an entire tidal cycle. The BOD is being continuously
discharged at a distance of 15 km. Comparison between the CA
model and a differential equation model as described in the text.
The CA results are from a single model simulation. (Model input
parameters from Table 3.5.) .....ccoooviiiiiiiiiiiniiiii 99

Figure4.1 = Water quality constituents and processes typically included in a
eutrophication MOdel..........ccccovueriiiieiiininniniinieienen e 105

LIST OF FIGURES Xi



Figure4.2  External Sources and sinks typically included in a eutrophication
MOEL. ceeiiiiiiii e 106

LIST OF FIGURES xii



1 INTRODUCTION

Since the advent of the electronic computer in the 1950's a typical ten-fold
improvement in speed performance has occurred every five years, mainly as a result of
considerable advances in electronic integrate circuitry. However, such technological
progress has not been sufficient to satisfy the increasing computational demand from
engineering and scientific applications. Thus, parallel computation appeared‘ as an
alternative approach to increase computer performance. This involves incorporating
multiple computational units in a single computer and operating them concurrently,
thereby substantially increasing system performance (Green, 1991; Messina, 1991).

Parallel computers have evolved substantially during the last decade and that
trend is expected to continue (Messina, 1991; Fox et al., 1994). The possibility of
successfully scaling to large number of processors is shown by the testimony of high
performance machines now operational (Messina, 1991; Fox et al., 1994). Many parallel
computer architectures have proved reliable, and successful in engineering and scientific
applications involving large-scale computations (Fox et al., 1988; Fox, 1991; Messina,
1991; Camp et al., 1994; Dabdub and Seinfeld, 1994; Fox et al., 1994).

In the world of engineering and scientific computing, the efficient use of parallel
computers is dependent on the availability of methodologies capable of exploiting the
new computing environment. Modeling methodologies successfully implemented on
sequential (single processor) machines are efficient in exploiting the computational power
of a single processor. However, the most efficient use of parallel processors comes from
methodologies that are inherently parallel (Camp er al., 1994).

Some modeling approaches characterized by a high degree of parallelism may
already have been developed in the past and possibly neglected due to their poor

performance when implemented on sequential machines. However, the emerging parallel
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computing field opens a door of opportunity to new and old modeling techniques able to
exploit the newer computing environment.

The research presented here focuses on a modeling approach, known as cellular
automata (CA), which is characterized by a high degree of parallelism, and is therefore
well suited to implementation on parallel processors (Toffoli and Margolus, 1987;
Amato, 1991; Fox et al., 1994). Cellular automata were first introduced in the late 1940's
by John von Neumann (von Neumann, 1966). Cellular automata gained popularity three
decades later through John Conway's work in the game of Life (Fogelman er al., 1987;
Toffoli and Margolus, 1987). However, the potential of CA as a modeling tool only
recently has been realized with the advent of parallel computing (Toffoli and Margolus,
1987; Fox et al., 1994).

Other potential benefits of CA as a water quality modeling tool include: (1) a
better representation of the real physical system by bridging the differences between
macroscopic and microscopic representations; (2) no power series truncation and, in
certain implementations, no round-off error; (3) easy extension from a one-dimensional to
a higher dimensional representation; and (4) since CA models can be based on simple,
microscopic behavior, the focus of water quality modeling can be placed on the water
quality mechanisms and not on the numerical solution technique.

The overall goal of this research is to evaluate the potential of the cellular
automata methodology as a simulation tool for water quality modeling. The criteria for
this evaluation include characterization of numerical dispersion, and model validation
through comparison of simulation results with established water quality models.

The specific objectives of this research are to:

» develop CA representations of the more common water quality modeling

processes;

INTRODUCTION 2



* evaluate the numerical accuracy of CA representations, in particular the
evaluation of numerical dispersion introduced through the discrete nature of the
model;

* integrate individual process rules into typical water quality models;

» compare cellular automata model results with existing analytical and numerical
solutions for typical modeling scenarios;

e evaluate the feasibility and performance gains associated with the
implementation of the cellular automata water quality model on parallel

processors.
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2 DYNAMIC WATER QUALITY MODELING
USING CELLULAR AUTOMATA: MODEL
DEVELOPMENT

2.1 INTRODUCTION

Modeling the fate and transport of environmental contaminants in general, and
water quality modeling in particular, frequently requires mathematical formulations
involving differential equations for which analytical solutions do not exist unless
simplifying assumptions are made. Thus numerical methods are used to provide solutions
for those complex mathematical representations.

One important category of numerical methods is the Lagrangian particle models.
Various types of particle models have been considered in the past, and applied to the
simulation of a range of physical problems (Hockney and Eastwood, 1988). In some
cases the computational particles represent actual physical particles such as molecules
(Hockney and Eastwood, 1988). More often, the computational (or fictitious) particles are
used to represent a discrete parcel of the parameter to be simulated: fluid elements of a
fluid flow application, or mass parcels in a simulation of an environmental contaminant
(Hockney and Eastwood, 1988; Zannetti, 1990). The dynamics of computational
particles, such as their motion, can be considered to be either deterministic or stochastic

(through Monte-Carlo techniques) (Zannetti, 1990).
2.1.1 Random-Walk Particle Method

The random-walk particle method (RWPM), which is a stochastic Lagrangian
particle model, has been applied to the fate and transport modeling of environmental
constituents in both groundwater (Ahlstrom et al., 1977; Prickett et al., 1981; Bear and

Verruijt, 1987; Ackerer, 1988; Kinzelbach, 1988; Uffink, 1988; Valocchi and Quinodoz,
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1989; Tompson and Gelhar, 1990; Dougherty, 1991; Tompson and Dougherty, 1992;
Mahinthakumar and Valocchi, 1993) and surface water (Williams and Hinwood, 1976;
Allen, 1982; Shen er al., 1987; Shen and Yapa, 1988; J6zsa, 1989; Kleinschmidt and
Pearce, 1992; Bogle et al., 1993; Dimou and Adams, 1993). When nonlinearities (such as
source/sink terms) are absent, computational particles are completely independent of each
other, thus allowing particle behavior to be computed in parallel (Ahlstrom et al., 1977).
In fact, several implementations of the RWPM using parallel computers have been
reported (Dougherty and Tompson, 1990; Dougherty, 1991; Mahinthakumar and
Valocchi, 1993).

The original motivation for this research was to develop a water quality model
based on the cellular automata (CA) approach to be implemented using parallel
processors. Cellular automata are characterized by a high degree of parallelism (Toffoli
and Margolus, 1987). The inherent degree of parallelism also exhibited by the RWPM
was assumed to provide a suitable basis for the development of a CA water quality
model. In fact, Brieger and Bonomi (1991) while using a different approach than in the
current work have shown that a random-walk methodology can be adapted to CA.

The derivation of the RWPM is based upon analogies established between the
transport equations and probability distributions (Jézsa, 1989; Tompson and Gelhar,
1990). The RWPM in its basic form comprises a deterministic component representing
the advective particle transport due to an average velocity, and a stochastic component
which represents the randomness associated with particle movement due to dispersion
(Ahlstrom et al., 1977; Bear and Verruijt, 1987; Ackerer, 1988; Uffink, 1988; Valocchi
and Quinodoz, 1989; Dougherty, 1991; Tompson and Dougherty, 1992; Dimou and
Adams, 1993; Mahinthakumar and Valocchi, 1993). In addition, the method often
incorporates reactive terms that have been considered deterministic (e.g., Ahlstrom et al.,

1977; Dougherty, 1991) where the mass associated with the particles is allowed to change
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with time, and stochastic (e.g., Kinzelbach, 1988; Valocchi and Quinodoz, 1989) where
the number of particles, not their mass, changes with time.

Reported advantages of the RWPM include (Ahlstrom et al., 1977; Ackerer,
1988; Kinzelbach, 1988; J6zsa, 1989; Tompson and Gelhar, 1990; Dimou and Adams,
1993): (1) inherent stability; (2) absence of cumulative numerical dispersion; (3) easy
extension to higher dimensional problems; (4) easy handling of complex geometry; (5)
high degree of parallelism; and (6) more realistic (natural) representation of the occurring
processes. Disadvantages of the RWPM are (Ahlstrom er al., 1977; Allen, 1982;
Kinzelbach, 1988): (1) greater computational resources compared to traditional numerical
methods with the possible exception of some three-dimensional problems; (2) random
noise associated with model results; and (3) model accuracy dependency on the number
of particles while a general criterion defining their optimum number is still to be

developed.

2.1.2 Cellular Automata

Computational resources have suggested new approaches to the modeling of
systems. Digital computing devices are finite and discrete in nature, and their potential
can be best realized when applied to discrete dynamic systems (Fogelman et al., 1987).
Moreover, many physical phenomena can be better viewed as discrete dynamic systems,
in contrast to their traditional continuous representation using differential equations.
Various discrete dynamic modeling approaches have been used with some success
(Fogelman et al., 1987). Cellular automata appear to be one of those methodologies with
an increasingly important role for conceptual and practical modeling of discrete dynamic

systems (Toffoli and Margolus, 1987).
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The theory of CA was first introduced by John von Neumann in the late 1940's
(von Neumann, 1966). This concept gained popularity three decades later through John
Conway's work in the game of Life (Fogelman ez al., 1987; Toffoli and Margolus, 1987).

Cellular automata can be defined as dynamic systems in which space, time, and
the dependent variable are all discrete quantities. In addition, the dependent vanable is
typically represented as a finite discretization, i.€., through a small set of possible values
or cell states (Boghosian, 1990). Cellular automata are therefore based on a discrete
lattice of cells. Each cell state evolves in discrete time steps according to deterministic or
stochastic transition rules that depend only on the cell states of a local neighborhood of
cells (Wolfram, 1984; Zeigler, 1984; Toffoli and Margolus, 1987; Boghosian, 1990). The
CA configuration at the next time step (¢ + Az ) is the result of simultaneously applying
the transition rule to all cell neighborhoods, using the cell states corresponding to the
present time step ( 7). Thus the update of the cell states uses an explicit scheme. Since the
transition rules are based on local or microscopic behavior, they are generally quite
simple. However, the resulting overall behavior of the system can appear to be quite
complex.

Examples of one and two-dimensional CA are shown in Figure 2.1. Each cell has
two possible states (black and white), and the local neighborhood of a cell is defined by
two adjacent neighbor cells. The transition rule simply specifies that the state of a cell at
time 7 + Ar is equal to the state of its two neighbors at time ¢ if these have the same state;
otherwise the state of a cell will remain unchanged.

Cellular automata as a modeling tool have been viewed as both (1) an alternative
to floating-point based numerical methods for the solution of partial differential
equations, and (2) as a complete modeling tool and an alternative to partial differential

equations (Boghosian, 1990).
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dimensional cellular automaton. (b) Two-dimensional cellular automaton.
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A special type of CA known as lattice gases are formed by a lattice on which
particles are allowed to move, with resulting collisions occurring between particles
(Boghosian, 1990). Lattice gases are known for their ability to simulate dynamic systems
characterized by conserved quantities (Boghosian, 1990). They have been used for the
solution of several problems including the Navier-Stokes and the diffusion equations (Eli,
1987; Doolen et al., 1990; Rothman, 1990; Bernardin er al., 1991: Boon, 1991; Chen et
al., 1991; Cliffe er al., 1991; Kong and Cohen, 1991; Kougias er al., 1991; Fox et al.,
1994).

The CA modeling approach appears to have the following potential benefits: (1) it
can provide a better representation of the real physical system by bridging the differences
between macroscopic and microscopic representations; (2) it does not involve any power
series truncation; (3) in certain implementations it is not subject to round-off; (4) it is
easily extended from a one-dimensional to a higher dimensional representation; (5) it is
easily implemented using parallel processors to decrease execution time; and (6) since
CA models can be based on simple, microscopic behavior, the focus of water quality
modeling can be placed on the water quality mechanisms and not on the numerical
solution technique. In addition, while comparing finite elements and CA methods for the
computation of drag coefficients, Duarte and Brosa (1990) point out the superiority of the
CA approach in terms of numerical stability and easy incorporation of boundary
conditions.

In this research the development of the CA methodology was driven by a
problem-specific approach. The rules were constructed based on a macroscopic view of
the system, to solve specific water quality modeling issues. This allowed the development
of CA rules based on the RWPM and, ultimately, on a differential equation representation
of the phenomena. Therefore, the resulting CA model incorporates the same model

coefficients typical of water quality models derived from differential equations. This
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approach brings the CA model presented here close to traditional modeling techniques.
This approach, however, does not constitute the only way CA can be used as a modeling
tool. A more fundamental approach can be pursued based on a microscopic representation
of the system. The CA rules can be defined at a microscopic level, possibly as very
simple rules leading to complex macroscopic behavior. These simple rules should
translate the fundamental physico-chemical laws governing the system. The microscopic
approach may be more useful for improving fundamental understanding of water quality
processes, but would likely be difficult to apply to site specific problems.

The remainder of this chapter deals with the methodology used to develop and test
the CA representation for the RWPM, in particular for the advection, dispersion, and
decay processes. Some other aspects of the development of a water quality model based

on the CA approach are also discussed.

22 ADVECTION

In this section an approach is developed which represents the advection
component of the RWPM using CA. The approach was tested for its ability to accurately

represent the advection process.

2.2.1 Methodology

2211 Rute Definition

The following discussion assumes advection along the longitudinal direction of
flow. The CA is then defined as a line of cells in the longitudinal direction. In this
section, as well as in the dispersion and decay sections, each cell is considered to have a
finite (zero or more) number of particles, with each particle representing a fixed mass of a

water quality constituent. The advection process is represented through a probability of a
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particle to move to the next cell in the direction of flow during a simulation time step.

The advection probability, P, , is defined as:

uat ,,
adv A,l‘

0<P,, <l @2.1)

where u is the advective velocity (LT '), At,,, is the time step for the advection process

(T), and Ax is the cell size in the longitudinal direction (L). A careful choice of values
for Ar,, and Ax can assure that P,, <1.

For each particle in each cell, a uniformly distributed random number, r, between
0 and 1 1s generated and compared with the value of advection probability. If r does not

exceed P, then the particle moves to the adjacent cell along the flow direction;

otherwise the particle stays in the original cell.
2.2.1.2 Advection Induced Numerical Dispersion

As indicated above the choice of values for Az, and Ax can be used to

v

guarantee that the advection probability does not exceed one. When the advective

velocity is invariant in time and space, a single set of values for Ar,,, and Ax can be used
which guarantee that P,,, is exactly one. When the advective velocity is invariant in time,
although varying in space along different reaches (assuming each reach has a uniform
velocity), P, can still be made equal to one. This implies selecting a single global value

for At,,,, and several values for Ax, each being a function of the velocity in a particular

adv?
reach.
However, in many situations the advective velocity is expected to vary in time. In
this case it is no longer possible to guarantee that P, stays equal to one without varying
the value(s) of Ax over time as well. Updating the value(s) of Ax as the simulation

progresses leads to a constant redefinition of the simulation grid. Although a simple task
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for the one-dimensional case, it could be an untractable and computational intensive task

for a large three-dimensional grid.

The motivation for restricting the value of P,, to be equal to one is due to the
relation between P,, and numerical dispersion. When P, is exactly one, all the particles
in a cell are advected to a neighbor cell, thus moving by a distance Ax=u Az, .
Therefore, every particle moves exactly the distance it is supposed to move. As soon as
P, is smaller than one, although on average the particles in a cell move by a distance
u At,, , only afraction of them (given by P, ) is actually displaced. This fraction of the
particles moves a distance Ax> u At,,, , while the remaining fraction (represented by 1-

P_,) remains in the original cell. The overall result is that some particles move faster

while others move slower than the real velocity, thus leading to numerical dispersion.

To evaluate the magnitude of this numerical dispersion a surrogate method based
on an exact probabilistic approach was used to simulate the behavior of the CA advection
rule. The reason for using this surrogate method was that it represents the basic CA
behavior without the random variability associated with the use of random numbers
which makes it more difficult to determine trends in model behavior.

In this approach, an initial amount of mass ( M°) of a conservative constituent is
introduced into the first cell of a one-dimensional system at the beginning of the

simulation to represent an instantaneous discharge. Then a fraction (given by P, ) of the

mass present in each cell is moved to the adjacent downstream cell while the remaining

fraction (1- P,,,) stays in the original cell. This process is repeated for each simulation

time step. The evolution of the mass distribution among the different cells as the

simulation progresses was used to evaluate the magnitude of numerical dispersion.

The simulation was performed for several values of P, . At each simulation step,

the mean ( m' ) and standard deviation (s’ ) of the mass distribution were calculated as:
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m' = iz F(i) (2.2a)

s’ = \/j (=) £(3) (2.2b)

where f(i) is the mass present in cell i as a fraction of the total mass ( M?), and N is the
total number of cells in the system. Note that / is inside the summation terms in these
expressions since i represents the x-coordinate in terms of cells.

The values of m' and s’ are thus expressed in terms of cells and were then

converted to a mean (m) and standard deviation (s) in units of distance (L), using the

expressions:

m=m'Ax (2.3a)

s =5'Ax. (2.3b)

Several values for Ax and u were selected. From equation (2.1), and using a set

of values for Ax and u, a value for Ar , was obtained for each value of advection

probability. Knowing the value of Az, , the evolution of the mean m and standard

deviation s as a function of the number of simulation steps n can then be expressed as a

function of time. The objective was to use those relations between s and time to quantify

numerical dispersion and then evaluate any dependency of numerical dispersion on P,_,,.

2.2.2 Results and Discussion

Figure 2.2 shows these relations for several values of P,,, and for the case of

Ax =10 and u =5. The results of Figure 2.2(a) indicate that the mean is a function of u¢,

with the term Ax/2 being the result of the spatial discretization of the model. The results

of Figure 2.2(b) clearly show a power-law relationship between the standard deviation
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and time of the form s = y7”° for any of the values of P,,. These results suggest the

assumption (see also Appendix A) that the mass distribution follows a normal probability

density function similar to the solution of the advection-dispersion differential equation

for an instantaneous input (Thomann and Mueller, 1987). This implies s = ‘[ZE,,T
where E, is a coefficient representing the advection induced numerical dispersion. This
equation is a power-law identical to s = y¢** with y = J2E . The values for E,,
corresponding to the results in Figure 2.2(b) can then be obtained from E,,, =y’ /2.
Figure 2.3 shows an inverse linear relation between E,,, and P, for different
values of u Ax . The data points for # Ax = 50 were derived from Figure 2.2(b), and a
similar approach was used for the other values of u Ax . Thus the relation between E
and P, is dependent not on the single values for u and Ax, but on the product u Ax.

Furthermore, as shown in Figure 2.4, a unique linear relation exists between the

dimensionless quantity E, [(uAx) and P,,, given as:

E
num _ (3§ (1 -
qu O ( Padv)' (24)

Substituting equation (2.1) for P,,, in equation (2.4) and rearranging leads to:

E,..=0.5 (uAx - u’Ar,,,). (2.5)

num

Given that P, <I1, and assuming that Az, and Ax are constants, equation (2.1)

adv—

implies that a maximum value for the advective velocity (u,,, ) exists for which P, =1

and equation (2.1) reduces to:

Zmax_adv _ | (2.6)

Equation (2.6) can be rewritten as:
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At = 2.7)

Substituting equation (2.7) for Az,,, in equation (2.5) and rearranging one obtains:

E, = o.5qu(1— L) . 2.8)
u

max

As u varies from zero to u,, , E, . increases from zero to a maximum value and then

decreases back to zero. In the present discussion of advection it has been assumed from
the beginning that u is a non-negative quantity since the flow follows the positive

direction. In a more general case in which u can be negative or positive, equation (2.8)

still holds although u must then be replaced by 4. The value of u for which E, , reaches

. . . . . . dE .
its maximum is obtained from the solution to the equation d"“"‘ =0. That value is
u

u=05u, . The expression for the maximum value of E,  is then obtained by
substituting u = 0.5, in equation (2.8), and is given by:

E o BT (2.9)

num max 8

Equation (2.9) shows that the maximum value for the numerical dispersion is a

direct function of both «, . and Ax. This equation can then be used to define a guideline

for the selection of a maximum value for Ax given a particular maximum value to

eventually be reached by the advective velocity (u,,. ), and a numerical dispersion value

). This value of E can be defined in relative terms as a

num max

not to be exceeded ( E

num max
certain percentage of the minimum expected value for the longitudinal dispersion

coefficient. The same considerations can be extended to the Az, by combining

equations (2.7) and (2.9).
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Figure 2.5 illustrates the suggested guideline showing values of Ax,,, (maximum
value to be selected for Ax ) for typical values of u,, and E, .. expected for rivers and
estuaries. Figure 2.6 illustrates the same approach for the selection of the maximum
advection time step. Recall that the derivations leading to equation (2.9) and thus to the
relationships shown in Figures 2.5 and 2.6 required the assumption that equation (2.6) is
always true. This means that the final values for Ax and Ar,,, obtained from equation
(2.9) or Figures 2.5 and 2.6 have to obey the relationship imposed by equation (2.6).

The previous discussion indicates that although numerical dispersion cannot be
neglected, it can be made insignificant in relation to the physical dispersion of the system.
However, such an approach may require excessive spatial and temporal model resolutions
in some cases, and thus substantially increase the required model computations. The

situation is most severe in systems with a large maximum value for the advective

velocity, and a small longitudinal dispersion.

2.3 DISPERSION

This section presents an approach based on CA for the representation of the
dispersion component of the RWPM. The approach was tested for its ability to accurately

represent the dispersion phenomena.

2.3.1 Methodology

2.3.1.1 Rule Definition

The following discussion assumes dispersion in the longitudinal direction of flow,
although the same approach can be used to describe dispersion in other directions. In the
RWPM a particle moves by a random amount of a maximum magnitude as a result of

dispersion (Bear and Verruijt, 1987). Assuming a uniform distribution of the random
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movement of a particle, the probability distribution of the particle movement for a large
number of independent steps should follow a normal distribution. This probability
distribution can be shown to be identical to the analytical solution of the one-dimensional
dispersion differential equation for an instantaneous contaminant spill (Bear and Verruijt,
1987). As a result, the maximum magnitude (amplitude) of the random movement of a
particle is a function of both the dispersion coefficient, E, and the simulation time step for
the dispersion process, Af, , and is given by 1EEAIM . Based on this conclusion, an
expression for the dispersion probability needed for CA can be derived (see Appendix B
for details).

The dispersion process is based on the probability of a particle to move from its

present cell to the adjacent upstream or downstream cell during a simulation time step.

The dispersion probability, P, , is defined as:

P =(29-1)Py 0, ~Pricoms= Pis< Pricamy (2.10a)
EAr,,
Pd:s.am = —du OS Pdis.am Sl (210b)
p Ax p

where P is the amplitude of the dispersion probability, E is the longitudinal

disamp
dispersion coefficient (L* T™'), and ¢ is a uniformly distributed random number between
O and 1. A careful choice of values for Az, and Ax assures that Pdi&ampsl.

For each particle in a cell, a uniformly distributed random number, g, between O
and 1 is generated and used to compute the dispersion probability. Then, a uniformly
distributed random number, r, between O and 1 is generated and compared with the value

of dispersion probability. If 7 does not exceed the absolute value of P, then the particle
moves to the adjacent upstream cell (when P, is negative) or to the adjacent

downstream cell (when P, is positive); otherwise the particle stays in the original cell.
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2312 Effectof P,,,,, on Dispersion

varies from O to 1. When P is zero there is

As previously mentioned P, disamp

isamp

no dispersion. When dispersion occurs then a value is selected for P, in the range

isamp
0< Py ump=<l1. However, in order to evaluate in what extent such selection affects
simulation results an in depth analysis of the problem was pursued.

Due to the relative higher complexity of the dispersion rule, in comparison to
advection and decay, it was not practical to develop a surrogate method using a non-
random probabilistic approach capable of simulating the basic behavior of the CA rule.
However, to reduce the effect of randomness associated with the CA dispersion rule on
the simulation results, each simulation was performed several times and corresponding
results averaged.

The simulated system consists of a line of cells. An amount of particles ( Nﬁ) was

introduced into one of the cells at the beginning of the simulation to represent an

instantaneous discharge. Then the particles were allowed to disperse upstream and

downstream accordingly to the rule for dispersion, and using a particular value for P,

in the range O< Pd,.mmpsl. This process was repeated for each simulation time step. The
overall simulation was repeated one-hundred times to counteract the randomness
associated with the dispersion rule.

The evolution of the distribution of the number of particles among the cells during
the course of a simulation was used to characterize the respective dispersion. At each

simulation step, the mean ( m’ ) and standard deviation (s’ ) of the particle distribution was

calculated as:

m' =i fli) (2.11a)
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y:Ji@nnAVM) (2.11b)

where f(i) is the number of particles present in cell / as a fraction of the total number of

particles ( Ng), and N is the total number of cells in the system.

For each simulation step, a total of 100 values for s’ was obtained due to

repetition of the simulation. The corresponding mean (s;,) and standard deviation (s ) of

s' were calculated as:

1
sl =——>» s (2.12a)

g=ﬁ%§@-%f. (2.12b)

The values of m' and s’, and therefore of s/, and s/, are thus expressed in terms

of cells. A value for s, was converted to a value, s, in units of distance (L), using the

expression:

s=3 Ax. (2.13)

m

A similar conversion was used for s .

For a particular set of values for Ax and E, equation (2.10b) was used to evaluate

different Az, corresponding to different values for P, Based on a value for Az,

isamp *
the evolution of the standard deviation s as a function of the number of simulation steps n

can then be expressed as a function of time. The idea was to use these relations between s

and time as a measure of the impact of the values for P, on the dispersion produced

isamp

by the CA rule.
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2.3.2 Results and Discussion

Figure 2.7 shows these relations for several values of P, and for the

isamp?
particular case of NZ:lOOO, Ax =10, and E =1. The vertical bars represent the standard
deviation associated with s, i.e., s+s, Ax. The results clearly show a power-law
relationship between the standard deviation and time of the form s_=a_ t*° for any
line varies from 0.5 by just 0.002 at the

value of P, ...

In fact, the slope of any P,

isamp
most. These results strongly suggest the validity of the assumption that the particle
distribution follows a normal probability density function similar to the solution of the
dispersion differential equation for an instantaneous input (Thomann and Mueller, 1987).
In this analytical solution, the standard deviation of the distribution has the form
s, =y2Er . This expression is a power-law of the form s,=a,1”° with a, = J2E . This
power-law is also plotted in Figure 2.7. The relation between the various P, lines and

the analytical solution suggests that the CA rule for dispersion overestimates the

dispersion process and the overestimation increases as P, decreases.

isamp

These results indicate that some numerical dispersion is associated with the CA
rule for dispersion. In contrast to the RWPM in which particles move in a continuous
path by exact increments thus precluding numerical dispersion, in CA particles move by

finite increments therefore introducing numerical dispersion. Such numerical dispersion

occurs since some particles tend to spread faster than it would be expected from the

dispersion coefficient alone. Since P, allows values in the full range O< leIS P yicamp>
faster spreading of particles will occur, even when P, =1 (as seen in Figure 2.7).
To quantify the numerical dispersion, a ratio (am/aa)h was evaluated as a

function of P using several plots similar to Figure 2.7. In those plots several

disamp

combinations of values for E, Ax, and Nz were considered. A summary of these results

is depicted in Figure 2.8. This figure shows the existence of a power-law relationship
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between the ratio (o, /a,) and P Furthermore, this relation appears to be

disamp*

completely independent of E, Ax, and NZ, and is given as:

1.493
I .

disamp

(a,fa,) = (2.14)

In relation to Figure 2.7 it was previously indicated that a, =J2E. This

expression can be rewritten as a, = J2E,  to emphasize that the analytical solution

represents the dispersion associated with a coefficient E,. Since the CA rule also

represents a dispersion process but of larger magnitude, it can be assumed that

a, = ‘ﬁEw , where E_> E,. From this it follows that

(a—) _Ea (2.15)

The numerical dispersion associated with the dispersion rule is by definition

E_, - E,, and is always larger than zero. Also, equation (2.15) implies that

E, -E = Ek(g—) - 1] : (2.16)
aﬂ
Substitution of equation (2.14) in equation (2.16) leads to:
1.493
E_-E, =Ea( —1). (2.17)
disamp

This expression shows that for the best case ( P, ,,,=1) numerical dispersion still leads to

isamp

an overestimation of dispersion by 49.3%. When P is 0.5 and 0.1, the numerical

disamp
dispersion is about 2 and 14 times the actual dispersion, respectively.
An important finding from the previous result is that the CA rule for dispersion

simulates the dispersion process corresponding to a dispersion coefficient somewhat
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larger than the one intended to be represented. Based on this conclusion a procedure can
be developed to counteract this problem.

Consider that the dispersion coefficient E represents the actual dispersion to be
simulated by the CA rule. Then, and based on equation (2.15), the dispersion coefficient

to be used in the dispersion rule should be a corrected value, E°, given as:

E° =( a“) E. (2.18)
a

ca

This relation implies that E°<E . Substituting equation (2.14) into equation (2.18), one
obtains:

P,
pe = Damem\ g (2.19)

\ 1.493 )

Substitution of P from equation (2.10b) into equation (2.19) leads to:

disamp
E‘/6ECAt .
E=N 4 (2.20)
1.493Ax

Solving equation (2.20) for E° yields:

ES = % 2.2

(1.493Ax)"

Then, substituting E° in equation (2.21) by equation (2.19) and canceling terms

one obtains:

6EA?,,

s 2.22
disamp —1.493(Ax) (222)

This equation can then be used in place of equation (2.10b) to calculate P, .
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Assuming that in a typical situation both a maximum value for E, represented as

E, ... and Ax are known quantities, the largest possible value for Az, , denoted At ...

is obtained from equation (2.22) with P, .. =1 (the upper limit for P, ). The value

for At ... is therefore given as:
1.493( Ax)*
Ar,, = LAB(AT) (2.23)
' 6F, ..

The derivation followed in this section seems to point out that any value Az, < Az, .

can be chosen without affecting the accuracy of the simulation. In other words, the

dispersion rule is now expected to be identically accurate regardless of the value for

P

disamp <L.

in the range O< P, ..

To verify this claim, the results of some of the previous simulations were re-
analyzed to reflect the new definition for P, as given by equation (2.22), which

isamp
corrects for numerical dispersion. The results are presented in Figure 2.9, for NgleOO,
Ax =10, and E =5. Comparison of these results with previous ones (see Figure 2.7)
strongly suggests that numerical dispersion is no longer associated with the dispersion

rule. It also suggests that an equally good representation of the analytical solution is
obtained regardless of the value for P, ... (The standard deviation associated with the
standard deviation of the distributions is at approximately the same magnitude as the plot
symbols.)

So far, the analysis of the results has been based solely on the standard deviation
of the particle distributions. Thus, to provide a more complete discussion the particle
distributions (which can be easily viewed as mass distributions, since particles of uniform

mass are assumed) were analyzed and compared with the corresponding distributions

associated with the analytical solution of the dispersion differential equation for an
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Figure 2.9  Time evolution of the standard deviation of the distribution of number of
particles as a function of P, using the CA dispersion rule corrected for numerical
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dispersion and comparison with the analytical solution. ( Ng:IOOO, Ax =10, E=5.)
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instantaneous input (Thomann and Mueller, 1987). The mass present in each cell, as a

fraction of the total mass, is:

-3
M, 1=
— = £ dx 2.24a
M 2drnE fme (2.242)

_l_[e {2xi+Ax\_e (2x, = Ax\]
2| B )T T

(2.24b)

where M, / M’ represents the fraction of the total mass present in cell i , with i being any
integer (..., -2,-1,0, 1,2, ...). The total mass M’ is considered to be instantaneously
introduced in cell i = 0, at time 7 = 0. The x-coordinate of each cell i is defined as the
mid-point of the cell and is given by x,=i Ax. The above equation is then typically
evaluated for particular values of ¢ corresponding to the product n Az, .

Figure 2.10 compares CA simulation results using both definitions for Picamps

given by equations (2.22) and (2.10b), with the analytical solution (equation (2.24b)).
Natural cubic spline interpolation is used to draw the line for the analytical solution based
on the discrete values of the cells. This results refer to the particular case of NZleOO,
Ax =10, E =5, and 1=50. Each CA distribution is the mean distribution for the 100
simulation repetitions. The vertical bars show the magnitude of the corresponding

standard deviation.
Figure 2.10 supports previous results suggesting a very good agreement between

the behavior of the dispersion rule, when corrected for numerical dispersion, and the

analytical solution for different values of P, This figure also confirms previous

isamp®
findings of an overestimation of the dispersion process (which becomes more pronounced

as P

sisamp decreases) by the CA dispersion rule without a correction for numerical
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dispersion. Furthermore, it supports an earlier assumption that the particle distributions
resulting from the CA dispersion rule follow a normal distribution.

Another way to compare the CA results with the analytical solution is provided by
the time evolution of the distribution peaks. From equation (2.24a), the peak predicted by

the analytical solution is simply the fraction of total mass for the cell i =0, thus x,=x, =0,

which is given as:

(2.25)

Figure 2.11 shows the comparative time evolution of the peak fraction of total

mass for the CA and analytical solution, for Nﬁ:lOOO, Ax =10, and E =5. These results

indicate again a significant improvement on the performance of the CA dispersion rule
when correction for numerical dispersion is included. After an initial short time (Figure

2.11(b)) the CA results agree very well with the analytical solution.

24 DECAY

In this section an approach is introduced to represent the decay component of the
RWPM under the CA framework. The approach was tested for its ability to accurately

represent the decay process.

2.4.1 Methodology

2411 Rule Definition

Decay processes usually follow first-order kinetics or negative exponential
functions. Toffoli and Margolus (1987) present an illustrative example on how to model

exponential decay phenomena using CA. The decay process is considered through a
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probability of a particle to be removed from a cell during a simulation time step. The

first-order decay probability, P,

{d

.» 1S given as:

P, .=k

dec™ "“dec

Aty 0<P, <l (2.26)

where k,,_ is the first-order decay rate constant (T '), and At,,, is the time step for the

dec

decay process. The value of P, <I.

dec=

For each particle in a cell, a uniformly distributed random number, r, between 0
and 1 is generated and compared with the decay probability. If r does not exceed P,
then the particle is removed from its cell (and from the system); otherwise the particle
stays in its cell.

In the context of random-walk, Kinzelbach (1988) presents an identical decay
probability in which the time step should be made small enough to always keep the
probability value less than one. Valocchi and Quinodoz (1989) using a similarly defined
probability but in the context of first-order adsorption within random-walk, further

suggest that the probability should be substantially less than one. The question then arises

as to how much to constrain the value of At,,, and therefore the resulting value of P,, .

2412 Effectof P, on Decay

Since the CA decay rule uses random numbers to simulate the behavior of the
particles, such an approach introduces some random variability in the results making it
more difficult to determine trends in model behavior. To overcome this difficulty, a CA
surrogate method based on an exact probabilistic approach was used.

Given an initial mass of a nonconservative constituent, this approach simply
keeps track of the mass remaining at successive simulation time steps. At each simulation

step, a fraction of the mass remaining from the previous step is removed. The remaining
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mass is then available for loss at the next simulation step. The fraction of mass removed
at each step is represented by the decay probability.
The mass remaining after a certain number of simulation steps is given as:

gl < p Y
M -M"[l PM(H ! PM)}J (2.27)

i=1

where M" is the remaining mass after » simulation time steps and M’ is the initial mass.
Expression (2.27) was evaluated as a function of the number of simulation steps
for different values of P,,.. The mass remaining was expressed as a fraction of the initial
mass, i. e., as M"/M’. The fraction of mass remaining as a function of the number of
simulation steps was then expressed as a function of time given a particular value of first-
order k, .. Due to the relation imposed by equation (2.26) this implies using different

At,,. values, each associated with a particular probability P, . These relations between

dec
fraction of mass remaining and time were then used to quantify the decay and its

dependency on P, .

2.4.2 Results and Discussion

Figure 2.12 shows remaining mass versus time for k, = 0.5. The results for

different decay probability values are compared with the analytical solution for first-order

decay given by:
M =M ) (2.28)

where M’ is the remaining mass at time ¢ .
The relation between the slopes of the lines plotted in Figure 2.12 seems to

suggest that the CA surrogate method consistently overestimates the true (analytical)

ca
dec> kdec

decay rate, k,_. This means that a decay rate k is being represented by the CA

dec
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Figure 2.12 Time evolution of the fraction of mass remaining as a function of the
decay probability using the CA surrogate method and comparison with the analytical

solution for first-order decay. (k,,.=0.5.)
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surrogate method, with k.. being a function of P, . Larger values of P, lead to larger

dec

values of kj, . To emphasize this behavior Figure 2.13 is presented in which the ratio

dec*

kca

dec

[k..., named B, is plotted as a function of P,_. It was found that this relationship
B=f(P,,) holds for any value of k,, . For the CA decay rule to be accurate, very small
values of the decay probability (<0.01) for which B=1, and thus &k, ~k,,, are required.

However, the previous results also suggest a procedure to relax this constraint.

From the definition of B, then k. = B k.. Since the CA approach will result in a decay

rate k., larger than the original k, , this suggests that for k. to be equal to &, , a

dec?® dec

smaller k,,. (with notation k) should be substituted for the original value of k,, . This

dec dec

conversion has the form &, = k,,./B. Given that 8= f(P,,.) and also P, = f(k,,.) an
iterative procedure must be used to calculate &,

For a particular value of Az, ., an initial guess for P,,_is obtained using equation
(2.26). This value of P, is used to estimate B using the relationship from Figure 2.13.

An estimate for k,,, is then obtained from k,, and B. A new value for P, _ is obtained

dec dec

from equation (2.26) using the previously calculated value for k. This allows for a new

estimate of B and therefore kg, . This process is repeated until P, , 8, and kj, converge

dec*

within a specified convergence error.

This procedure was implemented and tested for several values of Az, and k.
Figure 2.14 summarizes convergence values obtained for B and P, , with a

convergence error of 10_5. A polynomial equation was fitted to § of the form:

B = -0.003282(k,, A1) +0.065914(k, A1, ) +

dec

dec —‘dec (229)
+ 0.563833(k,, At,,. ) +0.973541
Since P, =k, At,, ., and k;, =k, /B, it follows that
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k, At

dec— "dec

e ) +0.065914(k , Ar,,.) +0.563833(k,, AL, ) +0.973541

) 003282( k,, At dec e
(2.30)

dec™ "dec

This equation should be used instead of equation (2.26) to define P, .

Assuming that in a typical situation the maximum value for &, , denoted &, ...,
is known, the largest possible value for At , represented by At .., is obtained from
equation (2.30) with P, =1 (the upper limit for P, ). Figure 2.15 shows Az, ... asa

function of & The relation obtained is given as:

dec.max*

8876
At

dec.max =
kdec. max

. (2.31)

The validity of equation (2.30) was tested with simulations of the CA decay rule

for different values of P, . Each simulation was repeated one-hundred times, and the
mean and standard deviation were calculated. The total number of particles, with an
arbitrary uniform mass, at the beginning of each simulation was NZ:I 0000 and the value
of k,.=0.05.

The results are presented in Figure 2.16, where the mean of the fraction of mass
remaining is plotted as a function of time. The magnitude of the standard deviations is
less than the size of the plot symbols. The analytical solution is given by equation (2.28).
It is clear that equation (2.30) provides a much better representation of the decay process

than equation (2.26). Equally satisfactory results are obtained despite wide variation in

the values of P, .

This implies that specific constraints on the value of P, are not

necessary to obtain satisfactory results.
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2.5 WATER QUALITY MODEL DEVELOPMENT

Given the CA representation of several water quality processes as described
above, those different representations can be combined to form a full water quality
model. In such a CA model, each rule (representing a process) is considered independent
of other rules (representing other processes). Cellular automata evolve as a result of
applying a sequence of independent rules. However, a particular rule can be applied more
than once in the sequence before the rule for a different process is used. In this way, each
rule can be designed to best represent the respective process by removing unnecessary
constraints imposed by other rules. This is particularly true since all the rules depend on
the time step.

A time-splitting approach, similar to the one used in other modeling
methodologies (Wheeler and Dawson, 1988), allows one to consider different values of
time step for different rules. One advantage of this approach is that it allows the selection
of time step values that optimize the performance of the different rules. Synchronization
of the various rules in the sequence is obtained by applying proportionally more often
those rules using smaller time steps.

To simplify synchronization of the different rules, a main time step, A7, is defined
by the user corresponding to the time interval at which the values of input variables are to
be updated. Therefore, at every main time step, a sequence of different rules is applied
with each rule being repeated a number of times, ¢@. The value of @ typically will vary
among different processes, although is obviously always a function of the main time step.
Additionally, and depending on the processes, it is also a function of specific coefficients

E_..ork ), Ax,and E

num max*

( uma.r ’ dec.max

The advection rule is characterized by numerical dispersion. As shown previously

the control of numerical dispersion is accomplished by constraining both Ax and At,,,.
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Since other rules are potentially dependent on Ax, the procedure to calculate ¢ is first
done for advection. From previous results (Figures 2.5 and 2.6) Ax, and At,,, ... can be

obtained. A value Az, is then derived as the highest submultiple of Ar not exceeding

At

adv.max *

Finally the value of ¢,,, is given by the integer defined by the ratio Az/ Az, .
In addition Ax is calculated as u,,, At , therefore satisfying Ax<Ax,, . When these

calculations lead to Ar,, <At (therefore Ax<Ax,, ) this obviously implies (see

adv.max

Figures 2.5 and 2.6) a corresponding decrease in the value for E, ... The new value is

obtained from equation (2.9).
Given the value of Ax above, the procedure can be applied to rules depending on

Ax as is the case for dispersion. From equation (2.23) the value of Atz, ... can be
obtained. A value Az, is next derived as the highest submultiple of At not exceeding

At

dis,max

. The value of ¢, is given by the integer defined by the ratio At/ Az, .

For decay, equation (2.31) gives the value for Az, ... As before, a value Az, is
then derived as the highest submultiple of Az not exceeding Az, ... The value of ¢, is
similarly given by the integer defined by the ratio Ar/ Az, .

As mentioned previously the rules are applied in a sequence. For simplicity that

sequence is fixed, which means that at each main time step advection is applied first

(repeated @,,, times), followed by dispersion (repeated @, times), and finally decay

(repeated @, times). Although effects arising from the order in which the rules are
applied have not been investigated, if such effects are important then the order of the

rules can be manipulated to improve results.

26 CONCLUSIONS

The RWPM can be successfully represented using a CA approach. Due to the
discrete nature of CA, the rule for advection introduces considerable numerical

dispersion. However, the magnitude of this numerical dispersion can be minimized by
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proper selection of the cell size and the time step. Similarly, the rule for dispersion is also
affected by some numerical dispersion. But, in contrast to advection, a procedure was
developed that eliminates numerical dispersion associated with the dispersion rule. For
first-order decay a rule was derived that describes the decay process without the
limitations of a similar approach reported in the literature. The rules developed for
advection, dispersion, and decay, due to their independence, are well suited to

implementation using a time-splitting approach.

APPENDIX A: CHARACTERIZATION OF THE MASS DISTRIBUTION
RESULTING FROM THE ADVECTION INDUCED
NUMERICAL DISPERSION

The assumption suggested in section 2.2.2, that the mass distribution resulting
from the numerical dispersion associated with the advection process follows a normal
distribution, is investigated in more detail in this appendix.

This involves comparing the mass distribution from the CA advection surrogate
method (as described in section 2.2.1.2) with the analytical solution for the advection-
dispersion differential equation for an instantaneous input (Thomann and Mueller, 1987).

The mass present in each cell as a fraction of the total mass is:

Ax

X+ !(,r—(lSAx}—ul!2

o e A
num _4x
=lfen, X, —ut erf X, —Ax —ut ] (Alb)
2| E,.1 2JE,mt )|
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where M, is the mass present in cell i, and M’ is the total mass (which was
instantaneously introduced in cell x, = 0.5Ax, at time ¢ = 0). The x-coordinate of a cell i
is defined at the mid-point of the cell, and is given as x, = (i ~0.5)Ax.

The value of E, , in equation (A1b) is provided by equation (2.4). In addition, tis

given by the product nAt,,, with Ar, being provided by equation (2.1). After

substitutions are made in equation (A 1b) one obtains:

ﬂ_i{ [ (i-0 ”, A2
M2 Lw/ J |

The value of i is any integer (...,-2,-1,0, 1, 2, ...), with i =1 representing the cell into
which a mass M’ is instantaneously introduced at the beginning of the simulation, i.e.,
when n =0.

The mass distribution from equation (A2) is then compared with the mass
distribution obtained for the CA surrogate method. The results are summarized in Figure
A1, in which the distribution curves result from interpolation, using the natural cubic
spline method, of the respective discrete values associated with the cells.

Figure A1l shows that the mass distribution from the CA approach follows a
normal probability density function similar to the analytical solution for the advection-
dispersion differential equation. However, a few simulation steps are required for the

mass distribution to develop a shape identical to the analytical solution. A minimal

number of steps is required when P, =0.5, while a larger number is required for other
values of P, . This is related to the initial skewness developed by the mass distribution,
which obviously tends to be more pronounced as P,,, diverges from 0.5.

This good level of agreement between the two distributions strongly supports the

previous assumption that the mass distribution from the CA approach follows a normal
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probability density function similar to the solution of the advection-dispersion differential

equation for an instantaneous input.

APPENDIX B: DERIVATION OF THE EXPRESSION FOR THE DISPERSION
PROBABILITY

The following derivation is based on the concepts of random-walk discussed by
Bear and Verruijt (1987). Using a particle tracking formulation, a particle can be
considered to travel by discrete steps in a direction x. This particle movement has two
components: an advection component in which a particle moves by a deterministic
amount A; and a dispersion component in which a particle moves by a random amount of
maximum magnitude (amplitude) B. It is assumed that the deterministic and random
components of the movement are independent. Furthermore, in the following discussion
only the random component of the movement, i.e., the dispersion component is
considered.

Assuming that the distribution of the random component of the movement is
uniform, the distribution function characterizing a step movement of the particle is given

as:

P(x) =0 if x <-B (Bla)
Px) =55 if -B<x<B (B1b)
P(x) =0 if x>B (Blc)

It can be shown that the mean, m, of this distribution is equal to zero. This is the average
distance traveled by a particle in each step. Also, the standard deviation, s, of the
distribution is given by B V3.

The probability distribution of the particle movement for a large number of

independent steps (n) is expected to follow a normal distribution of the form:
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P = —ITS < e - (x 2%@- ) (B2)
where

M=nm=0, (B3)

§*=ns" =n%—. (B4)

This probability distribution representing the random-walk can be compared with

the one-dimensional dispersion differential equation

oC _

I < (BS)

X

Q|

which has the following solution for an instantaneous spill of a unit mass of material in a

channel of unit cross sectional area:

C=—F——= exp(— * ) (B6)

Expressions (B2) and (B6) are similar and they become identical if
§*=2E. (B7)

Also, combining equations (B4) with (B7) leads to:

n—=2FEr. (B8)

Rearranging equation (B8), one obtains:
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!
B=_|6E—. (B9)

Since Ar,, =— itfollows that

S|~

B= J6EAr,, . (B10)

Equation (B10) thus provides a useful relation between the amplitude of particle
movement during a dispersion time step and the dispersion coefficient. This amplitude
can be expressed in a dimensionless form B/ Ax, which can be viewed as the amplitude

of the dispersion probability required by the CA:

GEAL,,
P = =X 97 (B1D)

B
disamp AX Ax

where P, is the dispersion probability amplitude, i.e., the maximum value allowed

disamp
for the absolute value of the dispersion probability P, . All values for P, are therefore

+P

disamp

in the interval [—P ] Given the previous assumption of a uniform

dis.amp’®

distribution for the random component of particle movement, an expression for the

dispersion probability is:

Py, =(29 = 1)Pyy o, (B12)
where g is a uniformly distributed random number between O and 1.
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3 DYNAMIC WATER QUALITY MODELING
USING CELLULAR AUTOMATA: MODEL
APPLICATION USING PARALLEL
PROCESSORS

3.1 INTRODUCTION

In chapter 2 a new methodology based on cellular automata (CA) was developed
which successfully represents fundamental water quality process, namely advection,
dispersion, and first-order decay. This chapter tests the validity of the CA methodology as
an integrated water quality model. Due to inherent parallelism, CA models are well suited
to implementation on parallel processors (Toffoli and Margolus, 1987; Amato, 1991; Fox
et al., 1994). This characteristic of CA opens the possibility of a more detailed and
efficient dynamic modeling of water resources systems. Consequently the CA water

quality model presented here was implemented on parallel processors.
3.1.1 Parallel Computing

Since the advent of the electronic computer in the 1950's a typical ten-fold
improvement in computational speed has occurred every five years, mainly as a result of
considerably advances in electronic integrate circuitry. However, such technological
progress has not been sufficient to satisfy the increasing computational demand from
scientific and engineering applications. Thus, parallel computation appeared as an
alternative approach to increase computer performance. This approach involves
incorporating multiple computational units in a single computer and operating them
concurrently, thereby substantially increasing system performance (Green, 1991;

Messina, 1991).
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There are several classification schemes for parallel computer architectures based
on design and functional characteristics. Existing parallel computer architectures can be
distinguished in two categories based on the relation between the sequence of instructions
executed, and the sequence of data operated on (Ortega, 1988; Duncan, 1990; Fox, 1991;
Green, 1991): single instruction stream, multiple data stream (SIMD), and multiple
instruction stream, multiple data stream (MIMD).

In a SIMD machine, a controller processor broadcasts a single instruction to all
the individual processors which synchronously execute the instruction on different data
(Ortega, 1988; Duncan, 1990; Green, 1991). Typical examples of SIMD computers are
provided by the array processors, and the Connection Machine (Ortega, 1988; Green,
1991). Pipelined vector processors (e.g. the Cray supercomputers) can also be viewed as
SIMD machines (Ortega, 1988).

Computers of the MIMD category consist of multiple autonomous processors,
each executing asynchronously a particular set of instructions on a particular set of data
(Ortega, 1988; Duncan, 1990; Green, 1991). Most existing parallel computers are MIMD
(Ortega, 1988; Green, 1991). Examples of MIMD machines include the Sequent, Ncube,
and Intel iPSC (Green, 1991; Messina, 1991). The autonomy associated with the
individual processors in MIMD machines provides them with greater flexibility than the
SIMD systems (Ortega, 1988; Messina, 1991).

Parallel computers are also classified, based on how memory is available to the
different processors, as shared versus distributed memory (Ortega, 1988; Duncan, 1990;
Green, 1991; Messina, 1991). While in a shared memory system all processors have
access to a common memory, in a distributed memory system each processor has only its
own (local) memory (Ortega, 1988; Green, 1991). Thus communication between different
processors is done through the common memory for shared memory systems, and

through message passing for distributed memory systems (Ortega, 1988; Green, 1991).
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Another important aspect of parallel computers is the type of interconnection
scheme providing communication between the different processors, and between
processors and memory (Ortega, 1988). Several successful interconnection schemes are
currently in use, such as meshes, switches, hypercubes, and hybrid schemes (Ortega,
1988; Duncan, 1990; Fox, 1991).

Parallel computers have evolved substantially during the last decade and that
trend is expected to continue (Messina, 1991; Fox et al., 1994). The possibility of
successful scaling to a large number of processors is shown by the testimony of high
performance machines now operational (Messina, 1991; Fox et al., 1994). Many parallel
computer architectures have proved to be reliable for engineering and scientific
applications involving large-scale computations (Fox er al., 1988; Fox, 1991; Messina,
1991; Camp et al., 1994; Dabdub and Seinfeld, 1994; Fox et al., 1994). In particular,
models based on CA have been successfully implemented in parallel processors (Toffoli
and Margolus, 1987; Fox et al., 1994).

However, current use of parallel computers is still limited to some extent by the
availability of software (Fox, 1991; Fox et al., 1994). Substantial software development
is needed in several areas such as standardized programming languages and compilers
with support for parallelism, debuggers, libraries, performance evaluation, data
visualization, and multi-user system management (Fox, 1991; Messina, 1991; Fox er al.,
1994).

In relation to the performance of today's parallel computers, their limitations
typically are not in the internal computational speed of their microprocessors but in the
performance of input and output (I/O) systems and slow communication between

processors in distributed memory systems (Fox ez al., 1994).
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3.2 METHODOLOGY
3.2.1 General Model

The basic equation describing the concentration distribution in time and space of a
water quality constituent subject to decay in a one-dimensional river or estuary is

(Thomann and Mueller, 1987):

-‘£=—u£+ Eig—de 3.
ot ox ox”

where C (M / L) is the constituent concentration, (T) is the time, x (L) is the distance
in the longitudinal direction, u (L/T) is the advective velocity, E (L’/T) is the
longitudinal dispersion coefficient, and k, (T™') is the first-order decay rate constant.

This equation takes into account three essential processes affecting the constituent
distribution: advection (represented by the velocity term), longitudinal dispersion, and
decay. It is typically solved using finite difference or finite element schemes. The use of
CA principles is an alternative method to represent and solve the same problem.

The development of a CA water quality model for a one-dimensional river or
estuary has been presented in the previous chapter. It used a representation consisting of a
line of cells. The amount of constituent is represented by the number of particles, with a
defined mass, présent in each cell. In the computer implementation of the CA algorithm,
the number of particles present in each cell is stored in computer memory. Constituent
concentration at a given cell is derived by dividing the product of the respective number
of particles and the particle mass by the volume of that cell. This volume is defined by
the cell length and cross-sectional area. Since the physical entity represented by a particle

(a finite amount of constituent mass) is typically orders of magnitude smaller than the cell
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volume, it is convenient to allow a cell to have more than a single particle. Each cell has
no defined limit on the number of particles it can contain. This does not mean, however,
that an unlimited number of states per cell are considered. The transition rules are
iteratively applied to each particle, and they result in particles either moving to adjacent
cells or disappearing from the system. This process corresponds to a two-state (particle or
1, and no particle or 0) cellular automaton.

These rules are defined in such a way that the local neighborhood of a cell is
defined by just that specific cell. The rules account for the advection, dispersion, and
decay processes. Each rule (representing a process) is considered independent of other
rules (representing other processes). Cellular automata evolve as a result of applying a
sequence of independent rules. However, in this methodology a particular rule can be
applied more than once before the rule for the next process is called in. Synchronization
of the various rules in the sequence is obtained by applying proportionally more often
those rules using smaller time steps.

Each cell in the CA model can be individually assigned any specific set of
coefficient values (such as velocity, dispersion, and decay coefficients), which may or
may not be time dependent. This translates into the possibility of having varying
probability values for the same transition rule among different cells at a given time and/or
among different times for a given cell. Values for velocity, dispersion, and decay
coefficients, for instance, must be specified at user selected locations and times as part of
the model input data. The model then assigns coefficient values at each time step for
every cell, based on temporal and then spatial interpolation, typically using a linear
interpolation algorithm. To satisfy the continuity equation, spatial interpolation of
velocity involves converting velocity values to flow rates, based on cross-sectional areas,
followed by flow rate interpolation, and finally conversion of flow rates back to

velocities.
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The transition rules are not necessarily applied to individual particles present in a
cell, as suggested for simplicity above, but to groups or packets of particles which then
become the units for computation. The rational underlying this approach is given next.

[t has been shown for the Random-Walk Particle Method (RWPM) that the
random noise associated with model results, measured as standard concentration error, is
a function of the inverse of the square root of the number of particles used in the
simulation (Ahlstrom et al., 1977; Bagtzoglou et al., 1992). However, computation time
is a linear function of the number of particles (Ahlstrom et al., 1977). Finally, the noise to
signal ratio, measured as standard error of concentration over concentration, is inversely
related to the square root of concentration (Bagtzoglou er al., 1992). Assuming these
results can be extended to the present CA model, they suggest an approach in which
smaller mass particles are considered for cells having lower concentration, and larger
mass particles are considered for cells with higher concentration. Model resolution can
then be improved where most needed (where concentrations are lower) without a
significant increase in computing time.

To simplify the implementation of this approach, all particles are assumed to have
the same mass. Preceding the application of a rule, particles in a cell are grouped in
packets and each packet is then treated as a single particle. The number of particles
included in a packet is the total number of particles in a cell multiplied by the packet
fraction f, the relative size of the packets or groups of particles to which the CA rules are
applied.

When the number of particles included in a packet is a non integer, a procedure is
used to guarantee conservation of particles. This involves allowing an additional packet,
having more or less particles than the others. For instance, if f=0.1 and a cell contains
1027 particles then there will be 10 packets (i.e., 1/ f) of 102 particles each (i.e., the

integer component of 1027- f=102.7) plus an additional packet which includes 7 particles
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(i.e., 1027-10-102=7). Although this approach was used throughout this chapter, a better
approach is to assign the extra particles to the regular packets by adding one additional
particle to each packet until all extra particles have been assigned. This approach has the
advantage of guaranteeing that the number of packets in cells is fixed (1/ f) and that no
large differences in the number of particles among the packets in a cell will result

(packets differ by a single particle at the most).

The particle mass selected should be small enough to allow the higher
concentration cells to have each a number of particles several orders of magnitude higher
than 1/ f. This will assure that only a few lower concentration cells will have a number
of particles on the order of 1/ f. When the number of particles in a cell is 1/ f, the limit
of maximum packet resolution is reached. The setting up of the packets in each cell is an
efficient procedure since as mentioned earlier what is stored in computer memory is the
number of particles in every cell.

So far the CA model was described as one-dimensional. However, the model
concept easily extends to higher dimensions. In the two-dimensional case the CA are
represented by a grid of cells and the geometry of the modeled system dictates the shape
of the gnd.

In the current two-dimensional implementation of the model, advection is still
considered as a one-dimensional process, which is a common assumption in many
models. This implies that the cell length in any spatial direction perpendicular to the
direction in which advection occurs, does not affect the advection induced numerical
dispersion. Therefore, this cell length can be chosen by the model user and is constrained
only by spatial resolution requirements.

Dispersion and decay, however, are two-dimensional. This involves having two
independent rules for dispersion, each one defined along one of the two perpendicular

directions of the cell grid. Therefore, particles are initially dispersed in one direction then
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dispersed in a second direction. The simplicity of this approach arises from the fact that
the dispersion rule in any direction is defined exactly the same way as described
previously for the one-dimensional case. The decay rule is applied to every cell as in the
one-dimensional case. The fact that the cells are organized as a two-dimensional grid
naturally leads to a two-dimensional representation of decay.

Independently of the number of dimensions incorporated in the model, initial
conditions specifying the number of particles in each cell are required at the beginning of
the simulation. This implies having in the model input data the constituent initial
concentration at user specified locations. Based on spatial interpolation of these values,
concehtrations are obtained for every cell. Each concentration is then converted to a
corresponding number of particles, based on the volume of the cell and the particle mass.
When this conversion leads to a non integer number, the number of particles assigned to a
cell is the integer component of the number, plus an extra particle if a generated
uniformly distributed random number (between O and 1) does not exceed its fractional
component.

Dirichlet boundary conditions are handled in a similar way. Concentrations are
specified for the upstream and downstream boundaries of the system, such as a river or
estuary. Those concentrations can eventually be interpolated in time and/or space leading
to concentration values at the boundary cells. Then these are converted to corresponding
number of particles. At each time step the boundary conditions have to be specified, i.e.,
the number of particles in boundary cells has to be reset, prior to each repetition of the
advection and longitudinal dispersion rules. Dirichlet boundary conditions do not affect
the outcome of the decay rule, since this rule does not involve any interaction between
different cells. Given the way boundary conditions are implemented in the current model,
only at upstream and downstream cells, the outcome of non longitudinal dispersion is not

affected.
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The implementation of gradient or Neumann boundary conditions in the CA
model involves adjusting the number of particles in adjacent cells on the boundary to
match a specified concentration gradient across those cells. To adjust the number of
particles requires an algorithm that redistributes particles among the adjacent cells until
the specified gradient is met. However, the existing particle movement at boundary cells
makes the incorporation of gradient boundary conditions slightly more complicated than
just described. First, the advection rule drains particles out of cells on the upstream
boundary (this will occur at both upstream and downstream boundaries, although
intermittently, when tidal conditions exist) simply because these particles are moved
downstream while no particles enter these cells to replace them. Second, the dispersion
rule produces localized particle deficits at the upstream and downstream boundaries as a
result of particles leaking out of the system on both upstream and downstream cells.
Contrary to Dirichlet boundary conditions which naturally counteract these effects,
gradient boundary conditions do nothing to prevent it. Thus, the specification of gradient
boundary conditions requires the simultaneous incorporation of particle fluxes on those
boundary cells in such a way as to add new particles into the system. The purpose of
these fluxes is to balance long-term particle deficits that would otherwise develop at those
boundaries.

The discussion above suggests that successful incorporation of gradient boundary
conditions in the CA model is possible if additional measures are taken to counteract
particle deficit problems. Although this research did not deal with the gradient boundary
condition problem, particle deficits at boundary cells were observed during simple
preliminary simulations testing the behavior of the CA methodology when using gradient
boundary conditions.

No-flow boundary conditions are included in the CA model to represent soil-

water and air-water interfaces. These boundary conditions are incorporated in the rules
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involving particle movement between cells, namely the advection and dispersion rules.
This involves overriding the normal rule behavior when particles are selected to move to
a neighbor cell which does not exist since it would lie past the system boundary. These
particles are not allowed to move and stay in the original cell.

Constituent discharges into the system are handled by adding particles to cells
during a certain number of time steps depending on the duration of the discharge. Any
nonpoint and point discharge can be considered. A rate of mass discharge is converted to
number of particles based on the length of the simulation time step, the particle mass, and
perhaps the size of the cell. When the number of particles to be added is found to be a non

integer, the procedure described previously is used.

3.2.2 BOD/DO Model

A typical water quality model for biochemical oxygen demand (BOD) and
dissolved oxygen (DO) follows a Streeter and Phelps formulation (Thomann and Mueller,
1987), in which the BOD and DO behavior is represented by two different equations. Due
to the dependence of the DO on the BOD, the two equations must be solved sequentially,
with the BOD equation being solved first.

Similarly, in the CA BOD/DO model, one celiular automaton is used for each of
the two constituents. A stack of two one-dimensional (or two-dimensional) CA can then
be visualized. Interaction between BOD and DO occurs only in the BOD decay process.
A particle representing DO is removed from a cell in the DO cellular automaton each
time a particle of BOD is removed from the corresponding cell of the BOD cellular
automaton. In this way, BOD decay controls DO directly.

A BOD/DO model also includes a source/sink term representing the change in

DO due to exchange with the atmosphere (reaeration). In the CA model this process is
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conceptually similar to the first-order decay (as presented in chapter 2), in effect being a
decay of deficit particles. This deficit is just the difference between the number of
particles corresponding to oxygen saturation conditions and the actual number of particles
present in a cell. A non-zero deficit can be either a positive (undersaturation) or negative

quantity (supersaturation conditions).

Therefore, the reaeration probability, P,,,, is defined as:

k,, At
P = aer aer =
-0.003282(/9‘@,%\,”)3 +0.065914(k,,At,,,) +0.563833(k,,,At,,, ) +0.973541

0<P, <1 (3.2)

where k_,, is the first-order reaeration rate constant (T™'), and Az, is the time step for

r

the reaeration process. The value of P, <I. As suggested above, the rule is designed to
work for undersaturated and supersaturated DO conditions. When the DO deficit is
positive, particles can be added to a cell; when negative, particles can be removed.

As mentioned previously at each main time step the rules for the various
processes are applied in sequence, and for simplicity that sequence is fixed. In the
BOD/DO model, advection is applied to BOD and DO (and repeated ¢,, times),
followed by dispersion also applied to BOD and DO (and repeated ¢, times). Then,
decay is applied to BOD (and repeated ¢, times). Finally, reaeration is applied to DO

(and repeated ¢,,, times).

3.2.3 Simulation Scenarios

3.2.3.1  One-Dimensional Line Pulse Input

This simulation is included solely to illustrate the impact of using the packet

fraction approach on the model results and validation through comparison with other
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models is not pursued. The simulation includes advection, dispersion, and decay in a one-
dimensional river of uniform cross-section subject to a pulse discharge of a non-
conservative constituent. The discharge occurs along a line in the longitudinal direction
for a fixed distance. The longitudinal concentration profile just after the time of discharge
follows a symmetric trapezoidal shape, with the concentration linearly increasing from
zero to a constant value, staying at that value for most of the longitudinal distance, and
then decreasing back to zero. This concentration profile includes a range of concentration
values therefore allowing for observation of the effects on model noise-to-signal ratios as
a function of concentration. The coefficients used in this simulation are space and time

invariant. Table 3.1 summarizes parameter values for this simulation.

3.23.2 Two-Dimensional Pulse Input

The main objective of this simulation is to evaluate the behavior of a two-
dimensional version of the CA model. A pulse input of a conservative constituent is
considered in a river with a uniform rectangular cross-section. The model dimensions
represent the longitudinal (x) and vertical (z) directions. The input discharge occurs at the
top of the water column, i.e., at zero depth, and it is considered laterally well mixed. The
simulation includes advection in the longitudinal direction, and dispersion in the
longitudinal and vertical directions. Since decay is naturally extended from one to higher

dimensions it is not considered here for simplicity reasons. Following advection,
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Table 3.1 Parameter values used in the one-dimensional line pulse input simulation.

CA Modeling Parameters

General

a

A =500 m?
M =4800¢g
C,=00mgL *

Cy=Cp =00mgL *

At =40.0 sec

f =0, 0.0001; 0.001; 0.01;0.1 °
m, =001;0.1; 1.0; 100 g/part

Advection
=0.05 m/sec
=0.1 m/sec

mar =0.5 m?/sec
ALy oy = 400.0 sec
Ax,, =40.0m

max

At =40.0 sec
Pone =1
Ax =40m

& =

‘max
4

vy

‘num

Dispersion
E =45 m*/sec
E,. =45 m’/sec
At =0.885 sec

dis.max

At =0.870 sec
Pys =46

Decay
k,. =300.0 day™
Ky mar = 300.0 day™!
Aty ar = 2556.452 sec
Ar,, =40.0 sec

dec

wde(=1

Cross sectional area;

Constituent mass instantaneously injected in each of 250 contiguous cells; the 100

cells just upstream and downstream from those 250 cells are injected an amount of
mass interpolated between 0 and 480 g and between 480 and O g, respectively;

Constituent initial condition;

Constituent upstream and downstream boundary conditions;

A value f =0 means packets were not used, i.e., particles were treated individually;
Constituent particle mass;

This is the user specified E,, .., value. Since Ar,, <At . (therefore Ax<Ax,, )

the actual value for E,,, .. is only 0.05 m’/sec(from equation (2.9)).
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dispersion in the x direction is applied first (and repeated @, times) then followed by
dispersion in the z direction (and repeated @}, times).

The results from the CA model are validated through comparison with the
analytical solution for an instantaneous input of the two-dimensional advection-
dispersion differential equation (Hemond and Fechner, 1994). The coefficient values used
in this simulation are space and time invariant. Table 3.2 summarizes parameter values

for this simulation.

3.2.3.3 One-Dimensional Steady-State BOD/DO

To illustrate the application of the CA model to a multiple constituent system,
simple one-dimensional steady-state BOD and DO simulations are considered. First, a
single BOD continuous discharge in a river with uniform cross-section is assumed. A
second simulation incorporates multiple BOD and DO continuous discharges in a river
with variable cross-section. In both cases longitudinal advection and dispersion, decay
and reaeration are simulated as described previously. The results from the CA model are
validated through comparison with the Streeter and Phelps model (Thomann and Mueller,
1987).

The coefficients used in the simulation for the uniform cross-section river are
space and time invariant. Table 3.3 summarizes parameter values for this simulation. The
coefficient values used in the simulation for the variable cross-section river are time
invariant but vary with space. Table 3.4 summarizes parameter values for this simulation.
Some of the parameter values are also depicted in the river system layout shown in Figure

3.1.

MODEL APPLICATION USING PARALLEL PROCESSORS 72



Table 3.2 Parameter values used in the two-dimensional pulse input simulation.

Modeling Parameters CA Only Parameters
General
W=100m * Ar = 50.0 sec
M=10kg * f=01
C,=00mgL m, =0.002 g/part *
Co = Cg =00mgL * Az=05m '
Advection
u =1.0 m/sec Uy, = 1.6 m/sec
Eppmas =0.5 m*/sec
Aty e = 1.562 seC
Ax,, =2.499 m
Ar,, =1515 sec
P =33
Ax =2.424m

Longitudinal Dispersion
E* =4.955 m®/sec

E*=4.5 m*/sec
EX, =45 m*/sec
Aty e = 0.325 sec

Aty =0.325 sec
¢;U = 154

Vertical Dispersion
E* =0.005 m’/sec

EZ, =0.005 m’/sec

Aty = 12,442 sec
At} =10.0 sec
Pu =5

Channel width;

Constituent mass instantaneously injected at a longitudinal distance of 250 m and

zero depth;
Constituent initial condition;

Constituent upstream and downstream boundary conditions;

Constituent particle mass;

Cell size in the vertical direction;

This is the user specified E, , .. value. Since Ar, <At

(therefore Ax<Ax,,, )

adv.max

the actual value for E_ . isonly 0.485 m?/sec(from equation (2.9)).
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Table 3.3 Parameter values used in the one-dimensional steady-state BOD/DO
simulation for a river with uniform cross-section and a single continuous discharge.

Modeling Parameters CA Only Parameters
General
A=300m* ° At =100.0 sec
Wyop = 750.0 g/sec f=01
BOD,=00mg/L ° mP = m® =0.01 g/part
DO, =100mgL °
BOD,, = BOD, =00mgL °
DO, = DO, =100mgL *
DO,, =100mg/L. °
Advection
u =0.5 m/sec u,.. =1.0m/sec
E, s =2.5 m?/sec
At o = 20.0 s€C
Ax,,, =20.0m
At =20.0sec
Oop =3
Ax=200m
Dispersion
E =25 m/sec
E,, =25 m’/sec
Aty e = 39.813 sec
Aty =33.333 sec
Pus =3
BOD Decay
kg =07 day™ Koo max = 0.7 day™
Aly, e = 1095531.993 sec
At,,. =100.0 sec
Ouee =1
DO Reaeration
k,, =40 day™ Kooy mar =4.0 day™’
Aty e = 191706.265 sec
At,,, =100.0 sec
Q=1

Cross sectional area;

BOD loading rate, discharged at a distance of 20 km;

BOD and DO initial conditions;

BOD and DO upstream and downstream boundary conditions;
DO saturation concentration;

Particle mass for BOD and DO;

Although the Streeter and Phelps model does not include a dispersion term,
dispersion is still included in the CA model simulation.
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Table 3.4 Parameter values used in the one-dimensional steady-state BOD/DO
simulation for a river with variable cross-section and multiple continuous discharges.

Modeling Parameters ‘ CA Only Parameters ‘
General

L, =70.0 (I); 70.0 (IT; 20.0 (1II); 80.0 km (IV) ° At = 100.0 sec

0 =15.0 (T); 45.0 (IT); 70.0 (I); 70.0 m*/sec V) ~ £ =0.1

A =30.0 (I; 45.0 (II); 87.5 (HII); 140.0 m* (IV) m? = m® =001 g/part ’

W,op = 650.0 (I); 850.0 (I); 375.0 g/sec ()
W, = 240.0 (IT); 125.0 g/sec (1II)
BOD,=0.0mg/lL *

DO,=100mgL *

BOD,,_ = BOD,, =00mg/L '

DO, = DO, =100mgL '

DO, =10.0mgL '

Advection

u =0.5 (T); 1.0 (I); 0.8 (TII); 0.5 m/sec (IV) u,.. = 1.0m/sec
Eppmee =2.5 m*/sec
Al e = 20.0 seC
Ax, . =200m
A1, =20.0 sec
Py = 5
Ax =200m

Dispersion '
E =2.5(1); 7.0 (I); 7.4 (IT); 1.5 m*/sec (IV)
E,. =74 m*/sec
Aty .. = 13450 sec
Aty =12.5 sec
Pu =8

BOD Decay
k.. =07 (T); 1.5 @); 1.0 day™ (I and IV) Ky me: = 1.0 day™
Al e, = 511290.319 sec
ar,, = 100.0 sec

Pu. =1
DO Reaeration
k., =3.51); 3.0 (T1); 4.0 (T); 2.0 day™ (V) ke =4.0 day™
Ar,,, .. = 191706.265 sec
Az, =100.0 sec
Q. =1

The Roman numerals in parenthesis indicate the river section for which parameter values refer;
River section length;

Flow rate;

Cross sectional area;

BOD loading rates, discharged at a distance of 20.0 (I), 100.0 (II), and 140.0 km (IIT);

DO loading rates, discharged at a distance of 70.0 (II) and 140.0 km (III);

BOD and DO initial conditions;

BOD and DO upstream and downstream boundary conditions;

DO saturation concentration;

Particle mass for BOD and DO;

Although the Streeter and Phelps model does not include a dispersion term, dispersion is still included in the CA
model simulation.
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3.2.3.4 One-Dimensional Tidal BOD/DO

To test the validity of the CA model under dynamic conditions, BOD and DO
profiles resulting from a single continuous discharge of BOD in a simple tidal river
system are simulated. The results are compared with a model solving the one-dimensional
differential equations for the coupled BOD/DO system on an oscillating flow for a single
continuous BOD discharge (Holley, 1969; Macdonald and Weisman, 1977; Giles, 1995).
The cross-sectionally averaged longitudinal advective velocity, u, is time dependent and
represented through an oscillating tidal velocity superimposed on a constant freshwater
velocity (Holley, 1969):

uU=u, +u,sin(%zt) (3.3)

P
where positive velocity denotes flow towards the sea, u, is the freshwater velocity
associated with the river flow, u, is the amplitude of the tidal velocity, T, is the tidal

period, and ¢ is the time. Given this velocity function the CA model parameter u,,, is

given by

34

u =uf+u.

The coefficient values used in this simulation are space and time invariant with
the exception of the time variant velocity. Sine interpolation is used in the CA model to
calculate velocity at any time based on flood, ebb, and slack values of velocity for the
entire simulation period. At each time step in the simulation, a time averaged velocity
over the entire length of the time step is obtained through 3-point numerical integration

using Simpson's rule.
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The scenario values used in the CA simulation and differential equation model
follow a combination of those reported by Holley (1969) and Giles (1995). Table 3.5
summarizes parameter values for this simulation. Notice in Table 3.5 that the value for

the dispersion coefficient in the CA model is 58.68 m®/sec, instead of 60.0 m*/sec, to
account for numerical dispersion. However, the difference between these two values is

less than the E, value of 2.03 m”/sec because as shown below, the actual numerical

num max

dispersion is less than E (which just represents the maximum possible value for

num max
numerical dispersion). These considerations also apply to Table 3.2.
To get a measure of the actual numerical dispersion introduced by the model, an

average value E.. during a time period (t, - t,) for the actual numerical dispersion is

derived from equation (2.8) as:

fO.S]ule(l——M—)dt

uma.x

E (3.5)

Aum

t, -t

2 1

With the values from Table 3.5 and if equation (3.3) is substituted for u in
equation (3.5) and the integral is evaluated over a tidal period, Em is 1.32 m’/sec . This
means the average numerical dispersion introduced by the CA model during a tidal cycle
is only about 65% of the maximum allowed numerical dispersion.

This exercise leads to the conclusion that equation (3.5) can be incorporated in the
CA model to quantify numerical dispersion introduced during a simulation time step.
Then this amount would be subtracted from the original dispersion coefficient value
(representing the real dispersion to be simulated at that time step) before applying the
dispersion rule. As long as numerical dispersion does not exceed the real dispersion, this

approach will mask numerical dispersion making it virtually absent.

MODEL APPLICATION USING PARALLEL PROCESSORS 78



Table 3.5 Parameter values used in the one-dimensional tidal BOD/DO simulation.

Modeling Parameters CA Only Parameters
General
A=900m® ° A1 =200 sec
Wyop = 1050.0 g/sec f =01
T,=124hr mPP = mP° =0.05 g/part '
BOD,=00mgL
DO, =100mgL °
BOD,, = BOD,, =00mgL °
DO, = DO, =100mglL *
DO, =100mgL °
Advection
u, =0.1 m/sec U,q = 0.9 m/sec
u, = 0.8 m/sec Epprmae =50 m?/sec *
u=u,+uy, sin[%t] Aty o = 49.383 sec
[equation (3.3)] Ax,,, =444 m
At =20.0 sec
Pos =1
Ax=180m
Dispersion
E =60.0 m*/sec E =58.68 m?/sec
E,, =58.68 m/sec
Aty e = 1.374 seC
Aty =1.333 sec
Op =15
BOD Decay
k,. =03 day™ Ky max =03 day™
Aty ar = 2556451.694 sec
At =20.0sec
Ouee =1
DO Reaeration
k,, =10 day™ Koy mae = 1.0 day™
AL,y oy = 765172.407 sec
Az, =20.0sec
Paer =1
* Cross sectional area;
* BOD loading rate, discharged at a distance of 15 km;
¢ BOD and DO initial conditions;
 BOD and DO upstream and downstream boundary conditions;
‘DO saturation concentration;
” Particle mass for BOD and DO;
* This is the user specified E, . ma Value. Since At , <At . (therefore Ax<Ax,,)

the actual value for £, ... is only 2.03 m?/sec(from equation (2.9)).
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3.2.4 Parallel Computer Implementation

A CA model is computationally intensive. A large number of simple
computations must be done to update the CA at each time step of the simulation.
Computer architectures exploiting the high degree of parallelism associated with the CA
structure are desired.

During the development of the CA model as presented in chapter 2, the
algorithms were implemented in a serial (von Neumann) computer. Although this
architecture is satisfactory for initial testing of the behavior of the model, it becomes
severely time limiting when trying to simulate real water quality problems.

To improve performance, an implementation on a parallel (or concurrent)
machine was pursued (Intel Paragon). This machine has MIMD architecture, distributed
(local) memory, and a two-dimensional mesh topology (Fox er al., 1994). The Intel
Paragon has a configuration of up to 4096 second generation Intel i860 processors
(nodes) (Fox et al., 1994). Thus, each processor has its own memory and no direct
knowledge of the work being done by other processors. This is well suited to the
simulation of CA since the mechanism of updating a cell is typically local. To update its
boundary cells, however, a processor may need to receive data from its adjacent
processors, and this is accomplished by simple message passing. The use of a MIMD
distributed memory implementation has also the added advantage of facilitating code
portability to a network of workstations (Dabdub and Seinfeld, 1994).

Therefore, the parallelism associated with the structure of the CA is exploited here
by distributing the work load for the CA among different processors. Since the number of

computations associated with each processor is large, the overall savings in computation
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time are expected to typically offset the increase in overhead due to any necessary
communication between processors.

Based on the above considerations, a domain or geometric decomposition strategy
is used to divide the computing load among the different processors (Wilson, 1993).
Regardless of the number of dimensions involved in the simulation a one-dimensional
(longitudinal) domain decomposition is here used. A two-dimensional decomposition was
not pursued since it would lead to a greater message traffic (Dabdub and Seinfeld, 1994).
Therefore, the domain is divided in a certain number of vertical slices, with all slices
having about the same number of cells. The number of slices is given by the number of
worker nodes available for the simulation. Each domain slice (subdomain) is then
assigned to a particular worker node. The worker nodes are the processors responsible for
executing the CA simulation in parallel.

There is also an additional processor, the manager node, responsible for setting up
the simulation, supplying the input data to the different worker nodes, and collecting their
output. However, the existence of a manager node is not a requirement in the
implementation of the CA model. The model can be implemented using only worker
nodes. Then the tasks which otherwise would be the responsibility of a manager node are
instead performed by the worker nodes themselves. This leads to larger code and memory
requirements for the worker nodes while reducing communication overhead (by
eliminating communication with a manager node).

To be more specific, the manager node is initially responsible for: loading to
memory the input datasets; setting up the grid domain; domain decomposition and
assignment of the resulting subdomains to the available worker nodes; computing model
parameters such as rule time steps and rule repetitions; and sending parameter values and
initial conditions to the appropriate worker nodes. Then at each simulation time step, the

manager node is responsible for: temporal interpolation of model coefficients, including
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velocity, dispersion, decay, and source (discharge) coefficients, and of boundary
conditions; sending those values to the worker nodes; waiting for completion of the
simulation time step by all worker nodes; and receiving simulation results from all
worker nodes at specific output times and writing them to disk.

The worker nodes are responsible for receiving the initial data from the manager
node, namely the subdomain, parameter values, and initial conditions. Then at each time
step they are responsible for: receiving the updated model coefficients and boundary
conditions from the manager node; spatial interpolation of those coefficients and of
boundary conditions; applying the CA rules to their respective subdomains; notifying the
manager node of the completion of the simulation time step; and sending simulation
results to the manager node at specific output times.

Communication between worker nodes is required during each execution of the
advection and longitudinal dispersion rules. The larger the number of repetitions of these
rules at each time step (i.e., the larger ¢,, and g, ), the greater the number of
communications involved. A benefit of the domain decomposition being solely along the
longitudinal direction is that the vertical dispersion rule does not entail any
communication. Since decay and reaeration rules do not involve any interaction between

adjacent cells they require no communication whatsoever.

3.3 RESULTS AND DISCUSSION

3.3.1 One-Dimensional Line Pulse Input
The analysis of the results from this simulation concentrates on snapshots of
model behavior obtained at the end of 10 time steps (i.e., at 400 sec simulation time). A

total of eight snapshots are presented corresponding to different combinations of packet

fraction values and particle mass. By varying the particle mass, one controls the number
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of particles in the cells. Decreasing the particle mass increases the number of particles
and vice-versa.

The simulation snapshots are organized in four groups, with each group showing
the results for two simulations. The first simulation in each group has a packet fraction of
zero (which simply means particles are allowed to behave independently of each other
and thus no packets are used) and an average number of particles per cell, Np, of
approximately a power of ten. The average value, N, is based solely on the cells for
which the concentration is on the higher plateau portion of the concentration curve. This
value of N, is intended to be approximately the same as the number of packets per cell
(i.e., the inverse of the packet fraction) for the second simulation. In reality the N, for
the first simulation ended up being slightly higher (by a factor of 1.17 to 1.20) than the
inverse of the packet fraction for the second simulation. The second simulation in each
group always has an average number of particles per cell of about 10* (in reality 1.15 to
1.22 times that value). The purpose is to compare the quality of results obtained from
identical simulations except for the use of the packet fraction approach.

Figure 3.2 shows these results. Smoothed concentrations are obtained through 5
passes of a 5-point moving average algorithm. Noise to signal ratios are obtained for the
concentrations before smoothing using the smoothed concentration for the simulation
with f=0 and N,=10" as a measure of the true signal. The computation time refers to
the model iteration corresponding to the 10th time step. It represents the summation of
the individual computation times for the 12 worker nodes used in the simulation.

Comparison of the results from three of the groups clearly shows that the packet
fraction approach leads to a notable reduction in the noise to signal ratio at the lower
concentration range. Moreover the noise to signal ratio increases, although only slightly,
at the higher concentration range. This slight increase is likely an artifact resulting from

N, for the first simulation being slightly higher than the inverse of the packet fraction for
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Figure 3.2 Comparison of concentration profiles, noise to signal ratio, and
computation time from CA model simulations for evaluation of the effects of the packet
fraction approach. (Model input parameters from Table 3.1.)
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the second simulation as noted previously. For the remaining group, the pair =0,
N,=10" and f=00001, N,=~10", a reduction in the noise to signal ratio at the lower
concentration range is absent because N,=~10" is about the same as 1/ f . This represents
the conditions in which the maximum packet resolution has been reached.

The results from each group consistently show that the use of the packet fraction
approach does not incur any significant penalty in terms of computation time. The data
suggest that the packet fraction approach has the benefit of reducing the noise to signal
ratio at lower concentrations without a significant tradeoff in computation time.

One additional benefit from using the packet fraction approach is the resulting
equalization of the work load of cells having different number of particles (as long as
cells have at least 1/f particles). This is important when domain decomposition is used
to split the work among various processors and thus the cell entity represents the limit on
the decomposition procedure. In addition it provides some dynamic load balancing as the
number of particles in the cells changes during the course of the simulation.

Decreasing the value for the packet fraction clearly increases the computation
time while significantly reducing the variability of the results. This suggests that criteria
for the selection of desirable values of the packet fraction must consider a compromise

between precision of model results and execution time.
3.3.2 Two-Dimensional Pulse Input

Figure 3.3 shows the conservative constituent concentration contour lines at three
different times in the simulation. The CA results depicted correspond to an average of the
results of two different simulations followed by smoothing with 3 passes of a two-
dimensional 9-point moving average algorithm (Fortner, 1992). The CA results show

good agreement with the results from the differential equation.
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To complement these results Figure 3.4 is presented. It shows concentration
profiles for a longitudinal and a vertical transect at a simulation time of 25 minutes. Both
transects are through the point of maximum plume concentration. Overall, these results
suggest that the process of simply averaging different simulations does not lead to a
decrease in the scattering of the CA results. This finding is unexpected since in the
previous chapter, averages of 100 different simulations did produce smooth CA results.
Furthermore, it shows that a smoothing algorithm effectively smoothes the CA results.
The combination of averaging different simulations followed by smoothing does not
seem to lead to a substantial improvement in predictions compared to just smoothing the
results for a single simulation. In addition, the results in Figure 3.4 confirm the good

agreement between the CA model and the differential equation.
3.3.3 One-Dimensional Steady-State BOD/DO

Simulation results for the uniform cross-section river are shown in Figure 3.5 in
which the BOD/DO CA model is compared with the Streeter and Phelps model. These
CA model results are from a single simulation and correspond to a simulation time of
5.79 days at which time steady-state conditions are assumed to exist. From these
comparisons the CA model is clearly capable of describing the BOD behavior and the
DO sag curve as accurately as the traditional approach based upon differential equations.

These conclusions are also supported by the simulation results for the variable
cross-section river shown in Figure 3.6. These CA model results are also from a single
simulation and correspond to a simulation time of 5.78 days at which time steady-state
conditions are assumed to exist. These results also show that the CA model can handle
spatial changes in model coefficients very well.

Although dispersion is included in these CA simulations it obviously has no

significant influence in the results since during steady-state conditions the effect of the
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Figure 3.4  Concentration profiles corresponding to longitudinal and vertical transects
passing through the maximum concentration point of the plume in Figure 3.3 at a time of
25 minutes after the discharge. Comparison between the CA model and the two-
dimensional advection-dispersion differential equation.
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Figure 3.5  Concentration profiles for BOD and DO at steady-state for a river with
uniform cross-section and a single continuous discharge. The BOD is being continuously
discharged at a distance of 20 km. Comparison between the CA model and the Streeter
and Phelps model. The CA results are from a single model simulation. (Model input

parameters from Table 3.3.)
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Figure 3.6  Concentration profiles for BOD and DO at steady-state for a river with
variable cross-section and multiple continuous discharges. Comparison between the CA
model and the Streeter and Phelps model. The CA results are from a single model
simulation. (Model input parameters from Table 3.4.)
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dispersion process is typically minimal. The results above illustrate once again that a
smoothing algorithm substantially reduces the variability associated with the CA results.

Figure 3.7 shows, for the uniform cross-section river simulation, the number of
BOD and DO particles contained in all subdomain cells of each worker node. Also shown
is the computation time for each worker node corresponding to a single model iteration.
All values refer to the iteration corresponding to a simulation time of 5.79 days.

The results illustrate the load balancing associated with the packet fraction
approach. Despite the fact that most worker nodes show substantial differences in the
number of BOD and DO particles being processed, their computation times are similar.
That is not the case for node 1 since its subdomain cells have no BOD particles. And for
node 2 since only a minute fraction of its subdomain cells (the most downstream cells)
actually contain BOD particles. As expected, the computation time for these two nodes is
substantially smaller than for the other nodes despite the use of the packet fraction
approach.

Similar considerations can be drawn from Figure 3.8 which shows, for the
variable cross-section river simulation, the number of BOD and DO particles contained in
all subdomain cells of each worker node. Also shown as before is the computation time
for each worker node corresponding to a single model iteration. All values refer to the
iteration corresponding to a simulation time of 5.78 days. The load balancing property of
the packet fraction approach can easily be viewed as dynamic load balancing since it
keeps balancing the work load across nodes as the number of particles in the nodes
changes through time.

The close resemblance of the profiles of number of particles and the profiles of
concentration for both BOD and DO which can be seen between Figures 3.5 and 3.7 is
absent in Figures 3.6 and 3.8. This is because in the variable cross-section river the

volume of the cells vary accordingly and therefore identical concentrations can be
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Figure 3.7  Distribution of the number of BOD and DO particles and the computation
time among the worker nodes, corresponding to the CA simulation results of Figure 3.5.
The worker nodes are numbered based on an upstream to downstream ordering of their

subdomains.
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associated with a different number of particles. Thus, and depending on the relation
between the volumetric size of the cells, the load balancing effect of the packet fraction
approach can still be of real significance when constituent concentrations are identical
across cells.

Figure 3.9 shows execution times as a function of the number of worker nodes
used in the uniform cross-section river simulation. The measured times are CPU times.
Each node measures its own execution times using the built in function mclock() which
returns relative time in milliseconds. Subtraction of the values returned by this function at
two different points during code execution leads to an elapsed time.

This procedure is used in each worker node to measure elapsed times
corresponding to the computation portions of the code. By accumulating all these elapsed
times a value for the computation time is obtained. The same procedure is also used to
obtain a time representing the sum of the computation and worker-worker communication
(communication between a worker node and other worker nodes) portions of the code.
And similarly to obtain a time representing the sum of the computation, worker-worker
communication, and manager-worker communication (communication between the
manager node and the worker node) portions of the code. This time accounting
methodology is performed for each model iteration, corresponding to each simulation
time step. The manager node uses the same basic procedure to obtain an overall execution
time for the 5.79 days of model simulation. This includes the time for computation in all
nodes, communication among worker nodes and between worker nodes and the manager
node, and I/O for all nodes.

The execution times obtained from the worker nodes are shown in Figure 3.9,
where each value is an average of the times for all worker nodes during 99 consecutive
iterations obtained from a single simulation. These iterations are the 99 iterations

immediately preceding the iteration corresponding to a simulation time of 5.79 days and
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are expected to still represent steady-state conditions. Also shown is the standard
deviation associated with those results which incorporates the variability in the execution
times from different worker nodes as well as from iteration to iteration. (Due to the y-axis
logarithmic scale some standard deviation values are too small to be visible in the plot.)
On the other hand, each overall execution time from the manager node, shown in Figure
3.9, is a single measurement of the simulation performance using a particular number of
worker nodes.

The results from Figure 3.9 show a decrease in the computation plus
communication time as the number of worker nodes in the simulation increases. This
represents the typical behavior observed during implementation of models on parallel
processors (Crowl, 1994; Dabdub and Seinfeld, 1994). It also means that, although it is
possible to significantly decrease the computation plus communication time by using
more processors, this time tends to level off and will eventually increase if the number of
processors further increases (Dabdub and Seinfeld, 1994). This is due to the
communication overhead which offsets the decrease in computation time from using a
larger number of processors. This typical behavior is also visible in the overall execution
time from the manager node.

The number of processors at which the computation plus communication time
begins to level off is machine dependent (through the processor and communication
speeds) but also related to the specific problem being solved. In other words, it depends
upon the relation between the computation and communication times. Multidimensional,
multiple constituent problems with more computations per processor are likely to lead to
greater decreases in computation plus communication time as more processors are made
available.

The substantial variability associated with the computation plus communication

time in Figure 3.9 is clearly due to variability associated with the communication, since
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the standard deviation of the computation time is relatively small. The variability in the
computation time is expected to be affected by the randomness associated with the CA
model and the degree of load balancing, as well as by random events occurring in the
computing system (Crowl, 1994). The variability in the communication time is also likely
affected by such random events.

Based on these findings, the overall execution time from the manager node is
expected to be characterized by substantial variability. However, the values presented in
Figure 3.9 are a strong indication of the poor performance of the CA model. At an
optimum number of processors the overall time for the execution of the 5.79 days of
model simulation is still as high as 6.5 hours.

It is instructive to note that of the average computation time reported in Figure 3.9
about 70% represents time spent by the worker nodes tracking particles through the rules
(which involves generating random numbers). The remaining 30% is time spent by a
worker node on spatial interpolation of model coefficients and execution of the code
loops to check to see if particles are present in every subdomain cell. Obviously, if a
smaller packet fraction was used, the time spent on particle tracking would be a larger

percentage of the computation time.
3.3.4 One-Dimensional Tidal BOD/DO

Figure 3.10 visualizes the temporal evolution of the advective velocity throughout
the simulation, highlighting the points for which model results are presented. Resuits are
only shown for slack water times to minimize the amount of plotted data while showing
results over a complete tidal cycle.

Figure 3.11 shows those results for a single simulation of the BOD/DO CA model
and the differential equation (numerically integrated). During the tidal cycle for which

results are shown, the mass of constituent starts by moving upstream (during flood tide,
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Figure 3.10  Graphical representation of the time evolution of the advective velocity for
the simulation scenario corresponding to Table 3.5. The circles indicate the time at which
model results are shown in Figure 3.11.
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i.e., while the advective velocity is negative), then halts and changes direction (at slack
water, i.e., when the advective velocity is zero), and moves back downstream (during ebb
tide, i.e., while the advective velocity is positive). In comparison to flood tide, the
amplitude of the advective velocity is largest and the tide duration is longest during ebb
tide. Therefore, during a tidal cycle there is a net downstream movement of constituent
mass. This is best seen for the BOD.

The results show a very good agreement for the BOD and DO between the two
models over an entire tidal cycle, despite the expected noise associated with the CA
solution. The noise is once again substantially reduced through the application of a
smoothing algorithm. Although here results are only shown for slack water times the
same good fit was obtained for the flood and ebb times as well.

These CA model results show that the model can handle temporal changes in the
advective velocity very well, and suggests that a similar behavior could be expected from

temporal changes in other model coefficients as well.

3.4 CONCLUSIONS

Cellular automata are a promising new approach for modeling water quality
problems. The CA model represents fundamental water quality processes such as
advection, dispersion, decay, and reaeration as reliably as the traditional approach of
differential equations. It is capable of adequately simulating one and two-dimensional,
single and multiple constituent, steady-state and transient, and spatially invariant and
variant systems. Although the model is subject to advection induced numerical dispersion
this dispersion can be minimized. In addition, it can easily be incorporated into real

dispersion.
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The use of the packet fraction approach leads to a significant reduction in the
noise to signal ratio at lower constituent concentrations, and to an equalization of the
work load among cells having different number of particles (as long as cells have at least
1/ f particles) and thus to some dynamic load balancing. The approach does not seem to
involve any significant tradeoffs. Moreover, decreasing the value for the packet fraction
clearly increases the computation time while significantly reducing the variability of the
CA model results. Also the application of smoothing algorithms substantially reduces that
variability.

The CA model is easier to understand and implement than the traditional
numerical models. Implementation of the CA model on parallel processors having a
MIMD distributed memory configuration was feasible and posed no major difficulties. A
large number of simple computations must be done to update the CA at each time step of
the simulation making the CA model computationally intensive. Although model
implementation was not optimized for performance, the model performed poorly even
when using an optimum number of processors. Yet, it is possible that for more complex
simulations, having higher computation-to-communication ratios, significant
improvements in model performance could be attained with implementation on massively

parallel computers.
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4 EUTROPHICATION MODELING WITH
CELLULAR AUTOMATA

The purpose of this chapter is to illustrate how the concepts presented in the
previous chapters can be used to develop a more complex CA model. Eutrophication
modeling constitutes an appropriate example since it involves multiple water quality
constituents interacting through numerous processes. The development of such a model
using the methodology already described will be illustrated. The goal of this chapter is
solely to demonstrate that more complex water quality models are possible with the CA
methodology. It does not attempt to provide an exhaustive representation of all water
quality constituents and processes pertaining to eutrophication, nor does it attempt to
fully examine the applicability of the CA model. Therefore, no CA simulations or
comparisons with other models are presented in this chapter.

Figure 4.1 shows the constituents and processes included in a typical
eutrophication model. Figure 4.2 illustrates external sources and sinks typically found in
this kind of model. The remaining of this chapter shows how the CA methodology is used
to represent each of the above processes in the context of the CA model discussed
previously. As expected from the methodology presented in previous chapters the
parameters required by the CA eutrophication model are also typical of parameters

included in other water quality models.
41 WATER QUALITY CONSTITUENTS

As show in Figure 4.1 a total of eight water quality constituents are included in
the CA eutrophication model. These are the CBOD (carbonaceous BOD), DO,
phytoplankton as chlorophyll-a, organic nitrogen, ammonia, and nitrate all expressed as

nitrogen, and organic and inorganic phosphorus both expressed as phosphorus.
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Figure 4.1 Water quality constituents and processes typically included in a
eutrophication model.
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Some constituents, such as CBOD, organic nitrogen, and organic and inorganic
phosphorus, typically appear in particulate and dissolved forms. Although the present CA
model does not attempt to simulate the particulate and dissolved forms of these
constituents, it takes into account the particulate and dissolved fractions through model
input parameters.

Similarly to the CA BOD/DO model already discussed, one cellular automaton is
used to represent each of the water quality constituents. A stack of eight CA is then
obtained. Some processes (such as dispersion and reaeration) affect many constituents
independently or just a single constituent; while others (such as respiration and
nitrification) represent interactions between constituents, therefore simultaneously
affecting multiple layers of the CA stack.

The relation between the particle mass of the different constituents can be as
diverse as one desires. The particle mass for the CBOD can be for instance twice as much
as the one for the DO. In this case, when one particle of CBOD is removed by decay, two
particles of DO are also removed. In another example the particle mass for the CBOD can
be two and a half times the one for the DO. In this case when one particle of CBOD is
removed by decay, two and a half particles of DO are also removed. This means
removing two particles of DO, and then applying some criteria to decide if a third particle
is or not removed. Obviously, a simpler approach is to define the particle mass of CBOD
and DO as being the same. Thus, when one particle of CBOD is removed, one particle of
DO is also removed.

These considerations suggest that a one-to-one relationship between the particle
mass of different constituents seems to provide the simplest approach. In a model such as
eutrophication, involving many constituents and processes, a relationship between the
particle mass values can be obtained based on the stoichiometry of the

photosynthesis/respiration processes and the chemical composition of one central
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constituent, the phytoplankton. As seen in Figure 4.1, phytoplankton occupies a central
position in the diagram, i.e., there is always at least one process relating phytoplankton
with any of the other constituents.

First, the stoichiometry for the photosynthesis/respiration reactions allows one to
relate the phytoplankton with the DO and CBOD. A typical chemical equation

representing photosynthesis/respiration is given by Stumm and Morgan (1981):

106CO, + 16N H, + HPO} +108H,0_ " {C,oHoo 0\ N P} #1070, +14H. (4.1

This equation shows that for every mole of phytoplankton (which represents 1.272 kg of
phytoplankton carbon, based on the formula C, H,,0, .V, (P ) formed by photosynthesis,
107 moles of molecular oxygen (or 3.424 kg of oxygen) are released; and for every mole
of phytoplankton (or 1.272 kg of phytoplankton carbon) lost through respiration, 107
moles of molecular oxygen (3.424 kg of oxygen) are consumed. This also means that
when phytoplankton cells, representing 1.272 kg of phytoplankton carbon, become part
of the CBOD as a result of death or zooplankton grazing then that amount of CBOD is

3.424 kg. Therefore, equation (4.1) gives an oxygen-to-carbon ratio for

photos

photosynthesis/respiration, denoted simply as a/. , of 2.69 (i.e., 3.424/1.272).
Second, the information provided by ratios between the important chemical

constituents making up the phytoplankton, such as the ratios of carbon-to-chl-a (afi),

nitrogen-to-carbon (af'g‘”), and phosphorus-to-carbon (a,fgy ), allows one to relate the
phytoplankton chl-a with the remaining water quality constituents. Typical values for
these ratios are 50 mg C/mg chl-a, 0.25 mg N/mg C, and 0.025 mg P/mg C, respectively

(Thomann and Mueller, 1987; Ambrose er al., 1988; Park et al., 1993).
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The values of particle mass for the various water quality constituents can then be
obtained, based on the above discussed ratios and the user specified particle mass for the

CBOD and DO, as follows:

CBOD DO .
m," " =m, = model input value (4.2a)
m DO
Chla
mp = photos_phyto (4.2b)
oC CChla
OrgN ___ Chla _phyto phyto
mp - mp Ave Acchia (4'2C)
NHy _ NO, _ OrgN
m, =m0 =m (4.2d)
OrgP _ _ Chla_phvio_phyto
mp - mp Apc Acchia (426)
P OrgP ,
m'"rs" =m0 (4.2

CBOD DO Chla OrgN AVFQ NG OrgP
w
here m p oM, my e m m m R my

InorgP

. are, respectively, the

,and m

particle mass for CBOD, DO, phytoplankton chl-a, organic nitrogen, ammonia nitrogen,

nitrate nitrogen, organic phosphorus, and inorganic phosphorus.
42 WATER QUALITY PROCESSES
4.2.1 Advection and Dispersion

The advection and dispersion processes included in the CA eutrophication model
follow the methodology for advection and dispersion already presented in previous

chapters.
4.2.2 Aerobic Biodegradation

Aerobic biodegradation of CBOD is treated as a first-order decay process and thus

follows the methodology for first-order decay for BOD presented earlier in the context of
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the BOD/DO model. However, to consider the inhibitory effect of lower DO
concentrations on the CBOD aerobic biodegradation rate, an additional factor
representing the Michaelis-Menten kinetics is included (Ambrose et al., 1988). The

expression for the biodegradation probability, P, , is then given as:

deg’

A

P, = - deg_ 0<P, <l (43a)
¢ _00032824,,, +0.0659144,, .’ +0.5638334,,,+0.973541 ¢
C
Adeg = kdeg(—L) Atdeg (4°3b)
K +Cro

where k,,, is the first-order aerobic biodegradation rate constant (T™'), C,, is the DO

deg
concentration (ML), K., is the Michaelis-Menten half-saturation constant for oxygen
limitation on aerobic biodegradation (ML™), and At,,, is the time step for the
biodegradation process.

At each simulation time step, the value of P, is updated prior to each repetition

of the biodegradation rule. Its value thus reflects the amount of DO present just before the
rule is (re)applied. If during the application of the biodegradation rule to a given cell the
number of particles of DO becomes depleted before the rule is applied to all CBOD

particles, then the remaining CBOD particles are not allowed to biodegrade.
4.2.3 Reaeration/Deaeration

The representation of the DO reaeration/deaeration process, usually known simply
as reaeration, is identical to the reaeration methodology described earlier in the context of
the BOD/DO model. In a multidimensional model the reaeration rule is only applied to

the upper cells, i.e., the cells contacting the air-water interface.
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4.2.4 Denitrification

Denitrification is treated as a nitrate first-order decay process and thus follows the
general CA methodology for first-order decay. An additional factor, similar to the
Michaelis-Menten expression, is included to represent the inhibitory effect of higher DO

concentrations on the denitrification rate (Ambrose et al., 1988; Park and Kuo, 1993;

Park et al., 1993). The denitrification probability, P,, , is given as:

A
Poen= 3 e O<P, <l (44a)
~0.003282A,,°+0.0659144, " +0.563833A,, +0.973541
K
Aden = kden( _¢_) AIden (44b)
Kden + CDO

where k,,, is the first-order denitrification rate constant (T™'), K,,, is the Michaelis-

den

Menten half-saturation constant for oxygen limitation on denitrification (ML), and At
yg den

is the time step for the denitrification process.

Since the DO concentration is not directly affected by denitrification, at each
simulation time step, the denitrification probability is evaluated only once and
independently of the number of repetitions for the rule. The denitrification rule involves
applying the CA methodology for decay to all particles in each cell of the nitrate cellular
automaton using the probability value from equation (4.4). In addition, each time a
particle of nitrate is removed from a cell in the nitrate cellular automaton an equivalent
number of particles of CBOD is also removed from the corresponding cell of the CBOD
cellular automaton. If the number of particles of CBOD becomes less than the equivalent
number of particles before the rule has been applied to all nitrate particles, then the

remaining nitrate particles are not allowed to decay.
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den

The equivalent number of particles of CBOD, nyopno, . 1S based on the

stoichiometric ratio between CBOD and nitrate for the overall denitrification and

respiration reaction, and is given by:

hotos N
den a(!),Co "Srn &
oo Tp 4.5)
Regop vo, Jen. CBOD 4
NCp

where al” is the nitrogen-to-carbon ratio for the denitrification reaction. Equation (4.5)
can be simplified by substituting equations 4.2(b) through 4.2(d). The resulting

expression is:

phyto

den a NC
Repopino, = den - (4.6)
NC

To calculate the value of ai,ec", the chemical equation for the denitrification

reaction is needed. This equation is given by Stumm and Morgan (1981) as:

5CH,0+4NO; +4H" —"£5C0, +2N, + 7TH,0. 4.7)

This equation shows that for every 4 moles of nitrate (or 56 g of nitrate nitrogen)
denitrified, 5 moles of CH,O (or 60 g of carbon) are consumed. Therefore, this gives a
nitrogen-to-carbon ratio for denitrification ay, of 0.93 (i.e., 56/60).

Since the equivalent number of particles ngg'(')D,‘\a is likely to be a non integer, a

stochastic approach is used to determine how many particles of CBOD to actually

. . . d.
remove. That number of particles is always the integer component of 1.y, v, » PlUs an

extra particle when a randomly generated uniformly distributed number (between O and

1) does not exceed the fractional component of ngg'('m,‘\,@ .
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4.2.5 Nitrification

Nitrification is treated as an ammonia first-order decay process and thus follows
the general CA methodology for first-order decay. Additional factors representing
Michaelis-Menten kinetics are included to consider the inhibitory effects of lower

ammonia and/or DO concentrations on the nitrification rate (Ambrose ef al., 1988; Park

and Kuo, 1993; Park et al., 1993). The nitrification probability, P, is given as:

A .
P.= 3 0<P,<l (4.8a)
-0.0032824,,, +0.0659144,,"+0.563833A,,, +0.973541
Cy C
Anir =km'l NH — ( DO 2o Atm-, (4.8b)
K, +Cu )\ K, +Cpp

where k,, is the first-order nitrification rate constant (T'), Cyy, is the ammonia

nit
concentration (ML ™), K" and K. are the Michaelis-Menten half-saturation constants,
respectively, for ammonia and oxygen limitation on nitrification (ML), and Az, is the

time step for the nitrification process.

At each simulation time step, the value of P, is updated prior to each repetition

nit
of the nitrification rule. Its value thus reflects the amount of ammonia and DO present
just before the rule is (re)applied. The nitrification rule involves applying the CA
methodology for decay to all particles in each cell of the ammonia cellular automaton
using the probability value from equation (4.8). In addition, each time a particle of
ammonia is removed from a cell in the ammonia cellular automaton a particle of nitrate is
added and an equivalent number of particles of DO is removed from the corresponding
cell of their CA. If the number of particles of DO becomes less than the equivalent

number of particles before the rule has been applied to all ammonia particles, then the

remaining ammonia particles are not allowed to decay.
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nit

The equivalent number of particles of DO, ny,, ,,, , is based on the stoichiometric

ratio between DO and ammonia for the nitrification reaction, and is given by:

nit NH,
nit aONm
Poo Nu, = DO

m,

(4.9)

where a,.. is the oxygen-to-nitrogen ratio for the nitrification reaction. Equation (4.9) can

be simplified by substituting equations 4.2(b) through 4.2(d). The resulting expression is:
o _dpeale”

DO'NH; = photos  *
a
ocC

(4.10)

To calculate the value of a,y, the chemical equation for the nitrification reaction

is needed. This equation is given by Stumm and Morgan (1981) as:

NH, +20,~>NO; + HO+2H". (4.11)

This equation shows that for every mole of ammonia (or 14 g of ammonia nitrogen)
nitrified, 2 moles of molecular oxygen (or 64 g of oxygen) are consumed. Therefore, this
gives an oxygen-to-nitrogen ratio for nitrification a(';j:, of 4.57 (i.e., 64/14). Again, since
the equivalent number of particles ngi',w,,, is likely to be a non integer, the stochastic
approach described previously is used to determine how many particles of DO are

actually removed.

4.2.6 Hydrolysis

The model includes hydrolysis (mineralization) of the organic nitrogen and
phosphorus. Hydrolysis is treated as a first-order decay process of organic nitrogen and
phosphorus and thus follows the general CA methodology for first-order decay. An

additional factor representing the Michaelis-Menten kinetics is included to consider the
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inhibitory effect of lower concentrations of organic nitrogen (or phosphorus) on the

hydrolysis rate (Park and Kuo, 1993; Park ez al., 1993). The hydrolysis probability, P, ,,

is given as:
P,= - A’””, 0<P,, <l (4.12a)
' -00032824,,,’ +0.0659144, ° +0.5638334, ,+0.973541 :
Cor
A=Ky _s_K,._m c.. Aty (4.12b)

where k,, is the first-order hydrolysis rate constant (T™), C,,, is the organic nitrogen (or
phosphorus) concentration (ML ™), K,,, is the Michaelis-Menten half-saturation constant
for organic nitrogen (or phosphorus) limitation on hydrolysis (ML), and Az, , is the
time step for the hydrolysis process.

At each simulation time step, the value of P, , is updated prior to each repetition
of the hydrolysis rule. Its value thus reflects the amount of organic nitrogen (or
phosphorus) present just before the rule is (re)applied. The hydrolysis rule involves
applying the CA methodology for decay to all particles in each cell of the organic
nitrogen (or phosphorus) cellular automaton using the probability value from equation
(4.12). In addition, each time a particle of organic nitrogen (or phosphorus) is removed
from a cell in the organic nitrogen (or phosphorus) cellular automaton a particle of
ammonia (or inorganic phosphorus) is added to the corresponding cell of the ammonia (or

inorganic phosphorus) cellular automaton.

4.2.7 Photosynthesis

Photosynthesis is treated as a phytoplankton first-order growth process which is
similar to the general CA methodology for first-order decay. Additional factors are

included representing the effects of light intensity and nutrient limitation (through
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Michaelis-Menten kinetics) on the photosynthetic rate (Thomann and Mueller, 1987;

Ambrose et al., 1988; Park and Kuo, 1993; Park e al., 1993). The photosynthesis

probability, P, , is given as:

A
P,,= 5 —Lte 0<P, <l (4.13a)
~0.0032824,, .’ +0.065914A,, ’ +0.563833A,,,+0.973541 p

(:A’\'H3 + C.\'(), ( Clnorgl’(l _f{:‘"gp)
KN, C\'H3 + Cxoj | KPP, Clnorg p(l_ f,l)norgP

pho h pho

N
AL,  (4.13b)
)|

where p is the phytoplankton first-order growth rate constant (T™'), / is the light
intensity, /; is the phytoplankton photosynthesis saturating light intensity, C,,, is the
nitrate concentration (ML™), C morgp 15 the inorganic phosphorus concentration (ML),

DIP

£5*" is the inorganic phosphorus particulate fraction, K7,, and K,  are the Michaelis-

p P
Menten half-saturation constants, respectively, for dissolved inorganic nitrogen (ammonia

plus nitrate) and dissolved inorganic phosphorus limitation on photosynthesis (ML ™),

and At,,, is the time step for the photosynthesis process.

At each simulation time step, the value of P, is updated prior to each repetition

of the photosynthesis rule. Its value thus reflects the available light intensity (which
changes as a function of the phytoplankton concentration due to the phytoplankton self-
shading effect) and the amount of ammonia, nitrate, and inorganic phosphorus present
Jjust before the rule is (re)applied.

The photosynthesis rule involves applying the CA methodology for decay to all
particles in each cell of the phytoplankton chl-a cellular automaton using the probability
value from equation (4.13). However, since photosynthesis is a growth (negative decay)
process, the rule adds phytoplankton chl-a particles instead of removing them. In
addition, each time a particle of phytoplankton chl-a is added to a cell in the

phytoplankton chl-a cellular automaton a particle of DO is added, and a particle of
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ammonia and a particle of inorganic phosphorus are removed from the corresponding cell
of their CA. This corresponds to the situation in which phytoplankton uses ammonia as a
source of nitrogen.

However, phytoplankton can use nitrate, instead of ammonia, as the source of
nitrogen (Ambrose ef al., 1988). In this case, the photosynthesis rule removes a particle
of nitrate (instead of a particle of ammonia) and possibly adds more than just a single
particle of DO. This larger amount of DO is the result of the different oxygen
stoichiometries for the photosynthetic reactions using ammonia and nitrate. A typical
chemical equation for photosynthesis using nitrate as a source of nitrogen is given by

Stumm and Morgan (1981):

106C0O,+16 NG, + HPO; +122H,0+18H"222IC, H, O, N, P} +1380,.  (4.14)

The ratio of the released oxygen given by equations (4.14) and (4.1) is 1.29 (i.e.,
138/107). This means that when nitrate is the source of nitrogen the photosynthesis rule
adds 1.29 particles of DO. This means one particle is added plus an extra particle when a
randomly generated uniformly distributed number (between O and 1) does not exceed
0.29.

The ammonia preference factor (Ambrose ez al., 1988), which is a function of the
ammonia and nitrate concentrations and varies between O and 1, is included in the
photosynthesis rule to help determine which source of nitrogen to use in the
photosynthesis process. For each newly photosynthesized particle of phytoplankton chl-a,
a uniformly distributed random number (between O and 1) is generated and compared
with the ammonia preference factor. If this random number does not exceed the ammonia
preference factor then ammonia is used; otherwise nitrate is used instead.

When the number of particles of ammonia and nitrate, and/or inorganic

phosphorus in a given cell become depleted before the photosynthesis rule has been
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applied to all phytoplankton chi-a particles then the remaining phytoplankton chl-a

particles are not allowed to 'grow".

4.2.8 Respiration

Phytoplankton endogenous respiration is treated as a phytoplankton first-order
decay process (Thomann and Mueller, 1987; Ambrose et al., 1988; Park and Kuo, 1993;

Park et al., 1993) and thus follows the general CA methodology for first-order decay. The

expression for the respiration probability, P, is then given as:

res?’

e 0<P, <1 (4.15a)

P, = a
00032824, +0.065914A _° +0.5638334,,,+0973541

A, =k, AL, (4.15b)

where &, is the first-order phytoplankton respiration rate constant (T™') and Az, is the

time step for the respiration process.

Since the value of the respiration probability is not affected by the application of
the rule itself, at each simulation time step the respiration probability is evaluated only
once and independently of the number of repetitions for the rule. The respiration rule
involves applying the CA methodology for decay to all particles in each cell of the
phytoplankton chl-a cellular automaton using the probability value from equation (4.15).
In addition, each time a particle of phytoplankton chi-a is removed from a cell in the
phytoplankton chl-a cellular automaton a particle of ammonia and a particle of inorganic
phosphorus are added to, and a particle of DO is removed from the corresponding cell of
their CA. If the number of particles of DO in a given cell becomes depleted before the
rule is applied to all phytoplankton chl-a particles then the remaining phytoplankton chl-a

particles are not allowed to decay through respiration.
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4.2.9 Death

Phytoplankton death (due to various causes such as parasitation, infection, and
toxicity) is treated as a phytoplankton first-order decay process (Thomann and Mueller,

1987; Ambrose et al., 1988) and thus follows the general CA methodology for first-order

decay. The expression for the death probability, P,,,, is then given as:

A
dea 0<P, <1 (4168)

P,.= 2
4 _0.0032824,,,° +0.0659144,, " +0.563833A,, +0.973541 dea

dea

Adea = kdedA tdea (4 16b)

where &, is the first-order phytoplankton death rate constant (T™') and At,,, is the time

dea
step for the death process.

Since the value of the death probability is not affected by the application of the
rule itself, at each simulation time step the death probability is evaluated only once and
independently of the number of repetitions for the rule. The death rule involves applying
the CA methodology for decay to all particles in each cell of the phytoplankton chl-a
cellular automaton using the probability value from equation (4.16). In addition, each
time a particle of phytoplankton chl-a is removed from a cell in the phytoplankton chi-a
cellular automaton a particle of CBOD, a particle of organic nitrogen, and a particle of

organic phosphorus are added to the corresponding cell of their CA.

4.2.10 Grazing

The effect of zooplankton grazing on the phytoplankton is treated as a
phytoplankton first-order decay process (Thomann and Mueller, 1987; Ambrose et al.,

1988; Park and Kuo, 1993; Park et al., 1993) and thus follows the general CA
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methodology for first-order decay. The expression for the grazing probability, P,,,, is
then given as:

Py .= ; 3 /1"‘2 0<P, <1 (4.17a)
¢ -0.0032824,,, +0.0659144,, ° +0.5638334,,,+0973541 $

A, o=k, A, (4.17b)

where &, is the first-order grazing rate constant (T™") and Az, , is the time step for the

grazing process.

Since the value of the grazing probability is not affected by the application of the
rule itself, at each simulation time step the grazing probability is evaluated only once and
independently of the number of repetitions for the rule. The grazing rule involves
applying the CA methodology for decay to all particles in each cell of the phytoplankton
chl-a cellular automaton using the probability value from equation (4.17). In addition,
each time a particle of phytoplankton chl-a is removed from a cell in the phytoplankton
chl-a cellular automaton, it implies the following: (1) not a single particle from other
constituents is added or removed; or (2) a particle of CBOD, a particle of organic
nitrogen or ammonia, and a particle of organic or inorganic phosphorus are added to the
corresponding cell of their CA.

The decision between options (1) and (2) above is made based on the parameter
representing the efficiency of assimilation or conversion of phytoplankton biomass to
zooplankton biomass (Thomann and Mueller, 1987). For each pérticle of grazed
phytoplankton chl-a, a uniformly distributed random number (between O and 1) is
generated and compared with the efficiency of assimilation. If this random number does
not exceed the efficiency of assimilation then option (1) is selected; otherwise option (2)

is used. Note that, since the model does not attempt to simulate the zooplankton biomass,
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any phytoplankton assimilated or converted into zooplankton biomass is in fact
phytoplankton that simply disappears from the system.

When option (2) is selected, meaning the grazed phytoplankton is not assimilated
by the zooplankton, then the nitrogen content of the former phytoplankton can still be in
organic form or already converted to ammonia. Similarly, the phosphorus can be in a
organic or inorganic form. The decision between organic and inorganic forms for the
nitrogen and phosphorus is made based on the fractions of not assimilated grazed
phytoplankton nitrogen and phosphorus recycled to the organic pool (Ambrose er al.,
1988). For each particle of grazed but not assimilated phytoplankton chl-a, two uniformly
distributed random numbers (between O and 1) are generated and compared with the
above fractions. If a random number does not exceed a fraction value then the respective
constituent organic form is considered; otherwise the inorganic form of the constituent is

used.

4.2.11 Settling

Settling is typically treated as a first-order decay process (Thomann and Mueller,
1987; Ambrose et al., 1988; Park and Kuo, 1993; Park er al., 1993) and thus follows the
general CA methodology for first-order decay. The expression for the settling probability,

P

set?

is then given as:

A

set

P,= 3 — f 0<P,<l (4.183)
~0.003282A,,° +0.065914A " +0.563833A,,+0.973541)"

set™

A, =k,Al, (4.18b)
k as (4.18¢)
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where, for a given water quality constituent, K, is the first-order settling rate constant
(T™"), v, is the settling velocity (LT '), f, is the particulate fraction, and Az, is the time
step for the settling process. The Az represents, as mentioned in the previous chapter, the
cell size in the vertical direction (L ).

The parameter f, is included in equation (4.18) since settling affects only the
particulate component of a constituent (Ambrose et al., 1988). The settling process
applies solely to some of the water quality constituents namely the CBOD,

phytoplankton, organic nitrogen, and organic and inorganic phosphorus. The values for

the particulate fraction f, are between O and 1 for those constituents, with the obvious

exception of the phytoplankton for which f, is equal to 1.

Since the value of the settling probability is not affected by the application of the
rule itself, at each simulation time step the settling probability is evaluated only once and
independently of the number of repetitions for the rule. In a model without a vertical
dimension, the settling rule involves applying the CA methodology for decay to all
particles in each cell of the constituent cellular automaton using the probability value
from equation (4.18). However, in a model including a vertical dimension each time a
particle of constituent is removed from a cell of its cellular automaton (with the exception
of the bottom cells) an identical particle is added to the cell located just below the cell
from which the particle was removed.

The modeling approach just described obviously does not attempt to include more

complicated processes involved in sediment dynamics.
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4.3 EXTERNAL SOURCES AND SINKS

As mentioned earlier, typical external sources and sinks included in a
eutrophication model are shown in Figure 4.2. The way these sources are handled in the
CA model has been already discussed in the previous chapter.

Sediment-water fluxes which are both a source and sink are handled in a similar
way. During a simulation time step the constituent mass flux is converted to a number of
particles to be added to or removed from a sediment-water boundary cell of the
constituent cellular automaton based on the length of the simulation time step, the

boundary area of the cell, and the constituent particle mass.
4.4 IMPLEMENTATION ON PARALLEL PROCESSORS

The methodology just presented shows that a more complex CA model, such as
for eutrophication, follows the same general approach of the simpler CA water quality
model discussed in the previous chapters. Therefore, its implementation on parallel
processors is straightforward.

The new rules included in the eutrophication model are all based on the first-order
decay rule even though in some instances, when Michaelis-Menten kinetics is used, they
require an additional step of evaluating one or more constituent concentrations. (If
second-order decay rules were present it would also require evaluating constituent
concentration(s) but nevertheless these rules would again be similar to first-order decay.)
Since concentrations are readily available from the number of particles in cells this extra
step does not add a considerable computation penalty.

As a final note, the new rules included in the CA eutrophication model (with the

possible exception of the settling rule) do not require communication between processors,
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therefore increasing model computation-to-communication ratio. This will lead to larger

performance gains from model implementation on parallel processors.
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5 CONCLUSIONS

Parallel computing has recently appeared has an alternative approach to increase
computing performance. In the world of engineering and scientific computing the
efficient use of parallel computers is dependent on the availability of methodologies
capable of exploiting the new computing environment. The research presented here
focused on a modeling approach, known as cellular automata (CA), which is
characterized by a high degree of parallelism, and thus is well suited to implementation
on parallel processors. The inherent degree of parallelism also exhibited by the random-
walk particle method provided a suitable basis for the development of a CA water quality
model. The random-walk particle method is shown to be successfully represented using a
CA approach.

The simulation results in this research prove that it is possible to replace
traditional differential equations by CA formulations in water quality modeling.
However, they are only simple illustrations of the potential of these new methods and
resources to solve complex water quality management problems.

One major advantage with the CA model is the level of mathematics required to
teach and understand water quality modeling. The model was found to be simpler to
understand and implement than the traditional numerical models. The CA focus can be on
the physical and chemical mechanisms at a microscopic level. The resulting transition
rules can be understood by anyone with a basic algebra and statistics background. An
understanding of calculus and numerical methods is no longer required to fully
understand the modeling process.

In relation to the specific objectives of this research, the conclusions are:
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* CA methodology can be used to develop model representations of the more
common water quality processes, namely advection, dispersion, and first-order
decay;

» those CA representations were shown to be accurate in spite of the discrete
nature of the model. Numerical dispersion was quantified and procedures
incorporated to minimize or eliminate its effects;

* due to the independence between CA rules for different processes, these rules
were easily integrated into water quality models, even in the case of the
relatively more complex eutrophication model;

* the CA model results for typical water quality modeling scenarios were
successfully validated through visual comparison with existing analytical and
numerical solutions. The substantial noise associated with the results of the CA
model did not pose a significant difficulty during model comparisons since
simple smoothing algorithms were successful in removing most of that
variability;

* the CA model was easily implemented on parallel processors having a MIMD
distributed memory configuration. A large number of simple computations
must be done to update the CA at each time step of the simulation making the
CA model computationally intensive. Although model implementation was not
optimized for performance, the model performed poorly even when using an
optimum number of processors. It is possible, however, that for more complex
simulations, having higher computation-to-communication ratios, significant
improvements in model performance could be attained with implementation on
massively parallel computers;

 the packet fraction approach leads to a significant reduction in the noise to

signal ratio at lower constituent concentrations, and allows for an equalization
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of the work load among cells having different number of particles thereby
leading to some dynamic load balancing. Using this approach does not seem to
involve any significant tradeoffs. Moreover, decreasing the value of the packet
fraction parameter clearly increases the computation time while significantly

reducing the variability in the results of the CA model.
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APPENDIX: LISTING OF THE C SOURCE CODE FOR
THE MAIN COMPONENTS OF THE CA
WATER QUALITY MODEL

Global variables used (alphabetically):

advectiveVelocity[l..numCellsLongit][1..numCellsVert] = 4 {floating-point} (array
containing the advective velocity; model input value) [m/sec]

atmosphDeposition[ 1..numCellsLongit].cbod = {floating-point} (vector containing the
atmospheric deposition rate of CBOD; model input value) [ g/m *-sec |

biodegradationCoef[1..numCellsLongit][1..numCellsVert] = £, {floating-point} (array

containing the aerobic biodegradation coefficient; model input value) [ sec™ ]
boundCondDownstream[1..numCellsVert].cbod = {floating-point} (vector containing the
downstream concentration boundary condition for CBOD; model input value)
[¢/m’]
boundCondDownstream|[ 1..numCellsVert].chla = {floating-point} (vector containing the
downstream concentration boundary condition for phytoplankton chl-a; model

input value) [ g/mS]
boundCondDownstream|[ 1..numCellsVert].inorgp = {floating-point} (vector containing
the downstream concentration boundary condition for inorganic phosphorus;

model input value) [ g/m 3 ]

boundCondDownstream[1..numCellsVert].nh3 = {floating-point} (vector containing the
downstream concentration boundary condition for ammonia; model input value)
[g/m’]

boundCondDownstream[ 1..numCellsVert].no3 = {floating-point} (vector containing the
downstream concentration boundary condition for nitrate; model input value)

[g/m’]

boundCondDownstream|[ 1..numCellsVert].02 = {floating-point} (vector containing the
downstream concentration boundary condition for DO; model input value) [ g/m ’]

boundCondDownstream[ 1..numCellsVert].orgn = {floating-point} (vector containing the
downstream concentration boundary condition for organic nitrogen; model input
value) [ g/m } ]

boundCondDownstream[ 1..numCellsVert].orgp = {floating-point} (vector containing the
downstream concentration boundary condition for organic phosphorus; model
input value) [ g/m’ |

boundCondUpstream[ 1..numCelisVert].cbod = {floating-point} (vector containing the
upstream concentration boundary condition for CBOD; model input value)
[g/m’]

boundCondUpstream[1..numCellsVert].chla = {floating-point} (vector containing the
upstream concentration boundary condition for phytoplankton chl-a; model input

value) [ g/m’]
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boundCondUpstream[1..numCellsVert].inorgp = {floating-point} (vector containing the
upstream concentration boundary condition for inorganic phosphorus; model
input value) [ ¢/m>]

boundCondUpstream[1..numCellsVert].nh3 = {floating-point} (vector containing the
upstream concentration boundary condition for ammonia; model input value)
[g/m”]

boundCondUpstream[ 1..numCellsVert].no3 = {floating-point} (vector containing the
upstream concentration boundary condition for nitrate; model input value) [ ¢/m’]

boundCondUpstream[ 1..numCelisVert].02 = {floating-point} (vector containing the

upstream concentration boundary condition for DO; model input value) [ gm3]
boundCondUpstream[1..numCellsVert].orgn = {floating-point} (vector containing the
upstream concentration boundary condition for organic nitrogen; model input

value) [ ¢/m" |
boundCondUpstream[1..numCellsVert].orgp = {floating-point} (vector containing the
upstream concentration boundary condition for organic phosphorus; model input

value) | gjm3|
cellSize.x = Ax {floating-point} (cell size in the longitudinal direction) [m]
cellSize.z = A: {floating-point} (cell size in the vertical direction; model input value)

m

cellSizeY[1..numCellsLongit][1..numCellsVert] = {floating-point} (array containing the
cell size in the lateral direction or cell width; model input value) [m]

denitrificationCoef] 1..numCellsLongit][1..numCellsVert] = k,,, {floating-point} (array

containing the dinitrification coefficient; model input value) [ sec” |

dispersionCoefX[1..numCellsLongit][1..numCellsVert] = E* {floating-point} (array
containing the longitudinal dispersion coefficient; model input value) [m’/sec]

dispersionCoefZ[1..numCellsLongit][1..numCellsVert] = E* {floating-point} (array
containing the vertical dispersion coefficient; model input value) [m’/sec |

dispersionProbAmp[1..numCellsLongit][1..numCellsVert] = F,  {floating-point}
(array containing the dispersion rule probability amplitude) [unitless]

downstreamBuffer[ 1..numCellsVert] = {integer} (vector containing the particles that are
to be sent to the next worker node)

edgeCellBotNextNode = {integer} (index of the lower cell for the upstream boundary of
the subdomain of the next worker node) [unitless]

edgeCellBotPrevNode = {integer} (index of the lower cell for the downstream boundary
of the subdomain of the previous worker node) [unitless]

edgeCellTopNextNode = {integer} (index of the upper cell for the upstream boundary of
the subdomain of the next worker node) [unitless]

edgeCellTopPrevNode = {integer} (index of the upper cell for the downstream boundary
of the subdomain of the previous worker node) [unitless]

edgeCell[1.. numCellsLongit].top = {integer} (array containing the index of the upper
cells of the subdomain, i.e., the surface elevation in terms of cells; model input
value) [unitless]

edgeCell[1..numCellsLongit].bot = {integer} (array containing the index of the lower
cells of the subdomain, i.e., the bottom elevation in terms of cells; model input
value) [unitless]

firstNode = {integer} (ID number of the worker node dealing with the most upstream
subdomain) [unitless]
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fractionGrazing.orgn = {floating-point} (fraction of not assimilated grazed phytoplankton
nitrogen recycled to the organic pool; model input value) [unitless]

fractionGrazing.orgp = {floating-point} (fraction of not assimilated grazed phytoplankton
phosphorus recycled to the organic pool; model input value) [unitless]

fractionNotAssimilatedGrazing = {floating-point} (1 - efficiency of assimilation by the
zooplankton; model input value) [unitless]

generalProb[1..numCellsLongit][1..numCellsVert] = P {floating-point} (array
containing the rule probability) [unitless]

grazingCoef[ 1..numCellsLongit|[1..numCellsVert] = k,,, {floating-point} (array

containing the grazing coefficient; model input value) [ sec” ]

halfSatConst.biodegradation = K, {floating-point} (Michaelis-Menten half-saturation
constant for oxygen limitation on aerobic biodegradation; model input value)
[gm’]

halfSatConst.denitrification = K, {floating-point} (Michaelis-Menten half-saturation
constant for oxygen limitation on denitrification; model input value) [ g/m’ |

halfSatConst.hydrolysisOrgN = K,Z’fN {floating-point} (Michaelis-Menten half-
saturation constant for orgahic nitrogen limitation on hydrolysis; model input
value) [ g/m ’]

halfSatConst.hydrolysisOrgP = K,,O‘;gp {floating-point} (Michaelis-Menten half-saturation
constant for organic phosphorus limitation on hydrolysis; model input value)
[¢/m’]

halfSatConst.nitrificationNH3 = K, , {floating-point} (Michaelis-Menten half-saturation
constant for ammonia limitation on nitrification; model input value) [ ¢/m’ ]|

halfSatConst.nitrificationO2 = K, {floating-point} (Michaelis-Menten half-saturation
constant for oxygen limitation on nitrification; model input value) [ g/m” ]

halfSatConst.photosynDIN = Kf,f:' {floating-point} (Michaelis-Menten half-saturation
constant for dissolved inorganic nitrogen (DIN) limitation on photosynthesis;
model input value) [ g/m3]

halfSatConst.photosynDIP = Kﬁ,{f {floating-point} (Michaelis-Menten half-saturation
constant for dissolved inorganic phosphorus (DIP) limitation on photosynthesis;
model input value) [ g/m*]

hydrolysisOrgNCoef[1..numCellsLongit][1..numCellsVert] = k,ng {floating-point}
(array containing the hydrolysis coefficient for organic nitrogen; model input
value) [sec” |

hydrolysisOrgPCoef[1..numCellsLongit][1..numCellsVert] = k,?y;gp {floating-point}

(array containing the hydrolysis coefficient for organic phosphorus)
initialConcentration[ 1..numCellsLongit]| 1..numCellsVert].cbod = {floating-point} (array
containing the CBOD concentration initial condition; model input value) [ g/m’]
lastNode = {integer} (ID number of the worker node dealing with the most downstream
subdomain) [unitless]
lightExtinctCoefNonAlgal[1..numCellsLongit] = {floating-point} (light extinction

coefficient; model input value) [m™']
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lightExtinctCoefSelfShade = {floating-point} (light extinction coefficient due to

phytoplankton self-shading; model input value) [ m’/g ]

mainTimeStep = {floating-point} (main time step) [sec]

mainTimeSteplnput = {floating-point} (user selected main time step; model input value)
[sec]

maxAdvecVelocity = u,,,. {floating-point} (maximum absolute value for the advective

velocity which will not be exceeded anywhere in the system during the entire
model simulation; model input value) [m/sec]

maxBiodegradationCoef = k,,, ,,, {floating-point} (maximum value for the aerobic
biodegradation coefficient which will not be exceeded anywhere in the system

during the entire model simulation; model input value) [sec'l |
maxDeathCoef = £, ... {floating-point} (maximum value for the phytoplankton death

coefficient which will not be exceeded anywhere in the system during the entire

model simulation; model input value) [sec” ]
maxDenitrificationCoef = £, ... {floating-point} (maximum value for the denitrification

coefficient which will not be exceeded anywhere in the system during the entire
model simulation; model input value) [sec |

maxDispersionCoefX = E,  {floating-point} (maximum value for the longitudinal
dispersion coefficient which will not be exceeded anywhere in the system during
the entire model simulation; model input value) [ m*/sec]

maxDispersionCoefZ = E._ {floating-point} (maximum value for the vertical dispersion
coefficient which will not be exceeded anywhere in the system during the entire

model simulation; model input value) [ m®/sec]

maxGrazingCoef = k,,, ... {floating-point} (maximum value for the grazing coefficient
which will not be exceeded anywhere in the system during the entire model
simulation; model input value) [ sec” |

maxHydrolysisOrgNCoef = k,g’j:m {floating-point} (maximum value for the organic
nitrogen hydrolysis coefficient which will not be exceeded anywhere in the
system during the entire model simulation; model input value) [sec™ ]

maxHydrolysisOrgPCoef = k,f;;"f:m {floating-point} (maximum value for the organic
phosphorus hydrolysis coefficient which will not be exceeded anywhere in the
system during the entire model simulation; model input value) [sec™ ]

maxNitrificationCoef = &, .. {floating-point} (maximum value for the nitrification
coefficient which will not be exceeded anywhere in the system during the entire
model simulation; model input value) [sec”]

maxNumericalDisp= E,_,, ... {floating-point} (maximum accepted value for the
advection induced numerical dispersion; model input value) [ m*/sec ]

maxPhotosynthesisCoef = &, ., {floating-point} (maximum value for the
phytoplankton photosynthesis coefficient which will not be exceeded anywhere in
the system during the entire model simulation; model input value) [sec‘l ]

maxReaerationCoef = &, {floating-point} (maximum value for the reaeration
coefficient which will not be exceeded anywhere in the system during the entire

model simulation; model input value) [sec” ]

APPENDIX 131



maxRespirationCoef = &k, {floating-point} (maximum value for the phytoplankton
respiration coefficient which will not be exceeded anywhere in the system during
the entire model simulation; model input value) [ sec ]

maxSettlingVelCBOD = k.°% {floating-point} (maximum value for the particulate

CBOD settling veloc'ity which will not be exceeded anywhere in the system
during the entire model simulation; model input value) [m/sec]

maxSettlingVelChla = k;"’:m {floating-point} (maximum value for the phytoplankton
chl-a settling velocity which will not be exceeded anywhere in the system during
the entire model simulation; model input value) [m/sec]

maxSettlingVellnorgP = & SIZ" ,f; {floating-point} (maximum value for the particulate
inorganic phosphorus settling velocity which will not be exceeded anywhere in
the system during the entire model simulation; model input value) [m/sec]

maxSettlingVelOrgN = k2®"  {floating-point} (maximum value for the particulate
organic nitrogen settling velocity which will not be exceeded anywhere in the
system during the entire model simulation; model input value) [m/sec]

maxSettlingVelOrgP = kz,'_g;x {floating-point} (maximum value for the particulate
organic phosphorus settling velocity which will not be exceeded anywhere in the
system during the entire model simulation; model input value) [m/sec]

maxTimeStep.advec = Az, . {floating-point} (maximum time step allowed for the

advection rule) [sec]

maxTimeStep.biodegradation = Az, ., {floating-point} (maximum time step allowed

for the aerobic biodegradation rule) [sec]
maxTimeStep.death = Az, . {floating-point} (maximum time step allowed for the

phytoplankton death rule) [sec]

maxTimeStep.denitrification = Az, ...

the denitrification rule) [sec]

maxTimeStep.dispX = Az}, ... {floating-point} (maximum time step allowed for the
longitudinal dispersion rule) [sec]

maxTimeStep.dispZ = Af;, ... {floating-point} (maximum time step allowed for the
vertical dispersion rule) [sec]

maxTimeStep.grazing = Az, .. {floating-point} (maximum time step allowed for the
grazing rule) [sec]

maxTimeStep.hydrolysisOrgN = At,fv?:;ﬂ {floating-point} (maximum time step allowed

for the organic nitrogen hydrolysis rule) [sec]

maxTimeStep.hydrolysisOrgP = At,iffm {floating-point} (maximum time step allowed

for the organic phosphorus hydrolysis rule) [sec]

maxTimeStep.nitrification = Az, {floating-point} (maximum time step allowed for
the nitrification rule) [sec]

maxTimeStep.photosynthesis = Az, .., {floating-point} (maximum time step allowed
for the phytoplankton photosynthesis rule) [sec]

maxTimeStep.reaeration = Az, . {floating-point} (maximum time step allowed for the

reaeration rule) [sec]

{floating-point} (maximum time step allowed for
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e mae Lil0Ating-point} (maximum time step allowed for the

phytoplankton respiration rule) [sec]
maxTimeStep.settlingCBOD = Ar_”” {floating-point} (maximum time step allowed for

the CBOD settling rule) [sec]

maxTimeStep.settlingChla = AI;M:W {floating-point} (maximum time step allowed for
the phytoplankton chl-a settling rule) [sec]

maxTimeStep.settlinglnorgP = At;:,“gp {floating-point} (maximum time step allowed for

max

the inorganic phosphorus settling rule) [sec]

maxTimeStep.settlingOrgN = A[:,",:ax {floating-point} (maximum time step allowed for
the organic nitrogen settling ruie) [sec]

maxTimeStep.settlingOrgP = A2 {floating-point} (maximum time step allowed for

set max
the organic phosphorus settling rule) [sec]

myNode = {integer} (ID number identifying a particular worker node) [unitless]

newBuffer[1..numCellsLongit][1..numCellsVert] = {integer} (array that stores the new
configuration of particles in cells as the rule is applied) [particles/cell]

nextNode = {integer} (ID number of the worker node dealing with the adjacent
subdomain in the downstream direction) [unitless]

nitrificationCoef[ 1..numCellsLongit|[I..numCellsVert] = &,

containing the nitrification coefficient; model input value) [sec™ |
nonpointLoad[ l..numCellsLongit].cbod = {floating-point} (vector containing the
nonpoint source load for CBOD; model input value) [ g/m-sec |
numberOfPart_cbod[1..numCellsLongit][1..numCellsVert] = {floating-point} (array
containing the number of particles of CBOD per cell) [particles/cell]
numberOfPart_chla[1..numCellsLongit][1..numCellsVert] = {floating-point} (array
containing the number of particles of phytoplankton chl-a per cell) [particles/cell]
numberOfPart_inorgp[ 1..numCellsLongit][1..numCellsVert] = {floating-point} (array
containing the number of particles of inorganic phosphorus per cell)
[particles/cell]
numberOfPart_nh3[1..numCellsLongit][1..numCellsVert] = {floating-point} (array
containing the number of particles of ammonia per cell) [particles/cell]
numberOfPart_no3[1..numCellsLongit][1..numCellsVert] = {floating-point} (array
containing the number of particles of nitrate per cell) [particles/cell]
numberOfPart_o2[1..numCellsLongit][1..numCellsVert] = {floating-point} (array
containing the number of particles of DO per cell) [particles/cell]
numberOfPart_orgn[ 1..numCellsLongit][1..numCellsVert] = {floating-point} (array
containing the number of particles of organic nitrogen per cell) [particles/cell]
numberOfPart_orgp[ 1..numCellsLongit][1..numCellsVert] = {floating-point} (array
containing the number of particles of organic phosphorus per cell) [particles/cell]
numCellsLongit = {integer} (number of cells in the longitudinal direction of the
subdomain) [unitless]
numCellsVert = {integer} (number of cells in the vertical direction of the domain)
[unitless]
oldBuffer[1..numCellsLongit][1..numCellsVert] = {integer} (array that stores the old
configuration of particles in cells just before a rule is applied) [particles/cell]
packetFraction = f {floating-point} (packet fraction; model input value) [unitless]

partCBODPerPartNO3 = n’ vo, {floating-point} (number of particles of CBOD
removed for each particle of NO3 removed during denitrification) [unitless]

maxTimeStep.respiration = At

{floating-point} (array
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CBOD

partFraction.cbod = f,
value) [unitless]

partFraction.inorgp = fp’""'gP {floating-point} (particulate fraction for inorganic
phosphorus; model input value) [unitless]

partFraction.orgn = fpo"“v {floating-point} (particulate fraction for organic nitrogen;
model input value) [unitless]

partFraction.orgp = fporgp {floating-point} (particulate fraction for organic phosphorus;
model input value) [unitless]

particleMassCBODO2 = m .**” = m ] {floating-point} (particle mass for CBOD and
DO; model input value) [g/particle]

particleMassChla = mﬁ"‘“ {floating-point} (particle mass for phytoplankton chl-a)
[g/particle]

particleMassInorgP = m
[g/particle]

particleMassNH3 = m:H3 {floating-point} (particle mass for ammonia) [g/particle]

{floating-point} (particulate fraction for CBOD; model input

InorgP

,  {floating-point} (particle mass for inorganic phosphorus)

particleMassNO3 = m;03 {floating-point} (particle mass for nitrate) [g/particle]

particleMassOrgN = mg'g'v {floating-point} (particle mass for organic nitrogen)
[g/particle]
particleMassOrgP = m
g/particle]
partO2PerPartNH3 = n;i(’) i, {floating-point} (number of particles of DO removed for
each particle of ammonia removed during nitrification) [unitless}]
phytoDeathCoef[ 1..numCellsLongit][1..numCellsVert] = k,,, {floating-point} (array

containing the phytoplankton death coefficient; model input value) [ sec™ |

phytoGrowthCoef[ l..numCellsLongit][1..numCellsVert] = u {floating-point} (array
containing the phytoplankton growth coefficient; model input value) [ sec™ ]

phytoRespirationCoef[ 1..numCellsLongit][1..numCellsVert] = &, {floating-point}
(array containing the phytoplankton respiration coefficient; model input value)
[sec™]

pointLoad[1..numCellsLongit].cbod = {floating-point} (vector containing the point
source load for CBOD; model input value) [ g/sec ]

prevNode = {integer} (ID number of the worker node dealing with the adjacent
subdomain in the upstream direction) [unitless]

ratioOxygenToCarbon_photosynNH3 = a2 {floating-point} (oxygen-to-carbon ratio
for photosynthesis using ammonia as the source of nitrogen -- see equation (4.1);
model input value)

ratioOxygenToCarbon_photosynNO3 = a2 {floating-point} (oxygen-to-carbon ratio
for photosynthesis using nitrate as the source of nitrogen -- see equation (4.14);
model input value)

reaerationCoef] 1..numCellsLongit]= &, {floating-point} (vector containing the

reaeration coefficient; model input value) [sec” ]

OrgP

, {floating-point} (particle mass for organic phosphorus)
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ruleReps.advec = @, {integer} (number of repetitions of the advection rule during a
main time step) [unitless]

ruleReps.biodegradation = ¢, {integer} (number of repetitions of the aerobic
biodegradation rule during a main time step) [unitless]

ruleReps.death = ¢, {integer} (number of repetitions of the phytoplankton death rule
during a main time step) [unitless]

ruleReps.denitrification = ¢, {integer} (number of repetitions of the denitrification rule
during a main time step) [unitless]

ruleReps.dispX = ¢, {integer} (number of repetitions of the longitudinal dispersion rule
during a main time step) [unitless]

ruleReps.dispZ = ¢, {integer} (number of repetitions of the vertical dispersion rule
during a main time step) [unitless]

ruleReps.grazing = ¢, {integer} (number of repetitions of the grazing rule during a
main time step) [unitless]

ruleReps.hydrolysisOrgN = qJ,z'fN {integer} (number of repetitions of the organic
nitrogen hydrolysis rule during a main time step) [unitless]

ruleReps.hydrolysisOrgP = (p,fi;g" {integer} (number of repetitions of the organic
phosphorus hydrolysis rule during a main time step) [unitless]

ruleReps.nitrification = ¢,, {integer} (number of repetitions of the nitrification rule
during a main time step) [unitless]

ruleReps.photosynthesis = ¢, {integer} (number of repetitions of the phytoplankton
photosynthesis rule during a main time step) [unitless]

ruleReps.reaeration = ¢ {integer} (number of repetitions of the reaeration rule during

a main time step) [unitless]

ruleReps.respiration = ¢, {integer} (number of repetitions of the phytoplankton
respiration rule during a main time step) [unitless]

ruleReps.settlingCBOD = @, °° {integer} (number of repetitions of the CBOD settling
rule during a main time step) [unitless]

ruleReps.settlingChla = (pfa““ {integer} (number of repetitions of the phytoplankton chl-a
settling rule during a main time step) [unitless]

ruleReps.settlinglnorgP = (pi:f'gp {integer} (number of repetitions of the inorganic
phosphorus settling rule during a main time step) [unitless]

ruleReps.settlingOrgN = (pz,,'gN {integer} (number of repetitions of the organic nitrogen
settling rule during a main time step) [unitless]

ruleReps.settlingOrgP = <p§,'g” {integer} (number of repetitions of the organic
phosphorus settling rule during a main time step) [unitless]

satConcDO = DO_, {floating-point} (DO saturation concentration; model-input value)

[¢/m”]
satLightIntensity = /. {floating-point} (phytoplankton photosynthesis saturating light

intensity; model input value) [langley/day]
sedimentWaterFlux[1..numCellsLongit].cbod = {floating-point} (vector containing the

sediment-water flux for CBOD; model input value) [ g/m *sec ]
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settlingVel[ 1..numCellsLongit][1..numCellsVert].cbod = v:**” {floating-point} (array

containing the settling velocity for particulate CBOD; model input value) [m/sec]

settlingVel[ 1..numCellsLongit][1..numCellsVert].chla = v."* {floating-point} (array
containing the settling velocity for phytoplankton chl-a; model input value)
[m/sec]

settlingVel[ 1..numCellsLongit][1..numCellsVert].inorgp = vi"”*" {floating-point} (array
containing the settling velocity for particulate inorganic phosphorus; model input
value) [m/sec]

settlingVel[1..numCellsLongit|[1..numCellsVert].orgn = vso'xN {floating-point} (array
containing the settling velocity for particulate organic nitrogen; model input
value) [m/sec]

settlingVel[ 1..numCellsLongit][1..numCellsVert].orgp = v"*" {floating-point} (array
containing the settling velocity for particulate organic phosphorus; model input
value) [m/sec]

settToLowerCell[1..numCellsLongit][1..numCellsVert] = {floating-point} (array
containing the fraction of settling that effectively goes to the lower cell, to
incorporate the effect of unequal cell widths) [unitless]

simulationTime = {floating-point} (keeps track of the simulation time) [sec]

solarRadiation[1..numCellsLongit] = {floating-point} (solar radiation just reaching the
surface of the water column; model input value) [langley/day]

timeSimulationBegin = {floating-point} (time simulation begins; model input value)
[sec]

timeSimulationEnd = {floating-point} (time simulation ends; model input value) [sec]

timeStep.advec = Az, {floating-point} (time step for the advection rule) [sec]

timeStep.biodegradation = Az,,, {floating-point} (time step for the aerobic
biodegradation rule) [sec]

timeStep.death = Az, {floating-point} (time step for the phytoplankton death rule) [sec]

timeStep.denitrification = At,,, {floating-point} (time step for the denitrification rule)
[sec]

timeStep.dispX = Az, {floating-point} (time step for the longitudinal dispersion rule)
[sec]

timeStep.dispZ = Ar,, {floating-point} (time step for the vertical dispersion rule) [sec]

timeStep.grazing = Az, {floating-point} (time step for the grazing rule) [sec]

timeStep.hydrolysisOrgN = At,g'fN {floating-point} (time step for the organic nitrogen
hydrolysis rule) [sec]

timeStep.hydrolysisOrgP = Atgfp
hydrolysis rule) [sec]

timeStep.nitrification = At,, {floating-point} (time step for the nitrification rule) [sec]

timeStep.photosynthesis = Az,,, {floating-point} (time step for the phytoplankton
photosynthesis rule) [sec]

timeStep.reaeration = Az {floating-point} (time step for the reaeration rule) [sec]

timeStep.respiration = At {floating-point} (time step for the phytoplankton respiration
rule) [sec]

{floating-point} (time step for the organic phosphorus
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timeStep.settlingCBOD = Ar, "’ {floating-point} (time step for the CBOD settling rule)
[sec]

timeStep.settlingChla = Atg‘l" {floating-point} (time step for the phytoplankton chl-a
settling rule) [sec]

timeStep.settlinglnorgP = Atst'f' " {floating-point} (time step for the inorganic
phosphorus settling rule) [sec]

timeStep.settlingOrgN = A7>®" {floating-point} (time step for the organic nitrogen
settling rule) [sec]

timeStep.settlingOrgP = Ar*" {floating-point} (time step for the organic phosphorus
settling rule) [sec]

upstreamBuffer[1..numCellsVert] = {integer} (vector containing the particles that are to
be sent to the previous worker node)
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VITA

Paulo Castro entered this world at the very early hours of February 12, 1963, in
the coastal town of Caldas da Rainha, Portugal. He found himself surrounded by caring
parents, many brothers and sisters, and a great dog. He spent most of his school years
with his family in Oeiras, a coastal town on the outskirts of Lisbon. After finishing high-
school, he enrolled in a Bachelor's degree in Environmental Engineering at the New
University of Lisbon, just across the Tagus estuary. Then he pursued the opportunity of
studying in the US, and was fortunate to enroll in a Master's degree in Environmental
Systems Engineering at Clemson University, South Carolina. From there he moved on to

a Ph.D. in Civil/Environmental Engineering at Virginia Tech, which he just completed.
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