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(ABSTRACT) 

Parallel computing has recently appeared has an alternative approach to increase 

computing performance. In the world of engineering and scientific computing the 

efficient use of parallel computers is dependent on the availability of methodologies 

capable of exploiting the new computing environment. The research presented here 

focused on a modeling approach, known as cellular automata (CA), which is 

characterized by a high degree of parallelism and is thus well suited to implementation on 

parallel processors. The inherent degree of parallelism also exhibited by the random-walk 

particle method provided a suitable basis for the development of a CA water quality 

model. The random-walk particle method was successfully represented using an approach 

based on CA. The CA approach requires the definition of transition rules, with each rule 

representing a water quality process. The basic water quality processes of interest in this 

research were advection, dispersion, and first-order decay. Due to the discrete nature of 

CA, the rule for advection introduces considerable numerical dispersion. However, the 

magnitude of this numerical dispersion can be minimized by proper selection of model 

parameters, namely the size of the cells and the time step. Similarly, the rule for



dispersion is also affected by numerical dispersion. But, contrary to advection, a 

procedure was developed that eliminates significant numerical dispersion associated with 

the dispersion rule. For first-order decay a rule was derived which describes the decay 

process without the limitations of a similar approach previously reported in the literature. 

The rules developed for advection, dispersion, and decay, due to their independence, are 

well suited to implementation using a time-splitting approach. Through validation of the 

CA methodology as an integrated water quality model, the methodology was shown to 

adequately simulate one and two-dimensional, single and multiple constituent, steady - 

state and transient, and spatially invariant and variant systems. The CA results show a 

good agreement with corresponding results for differential equation based models. The 

CA model was found to be simpler to understand and implement than the traditional 

numerical models. The CA model was easily implemented on a MIMD distributed 

memory parallel computer (Intel Paragon). However, poor performance was obtained.
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1 INTRODUCTION 

Since the advent of the electronic computer in the 1950's a typical ten-fold 

improvement in speed performance has occurred every five years, mainly as a result of 

considerable advances in electronic integrate circuitry. However, such technological 

progress has not been sufficient to satisfy the increasing computational demand from 

engineering and scientific applications. Thus, parallel computation appeared as an 

alternative approach to increase computer performance. This involves incorporating 

multiple computational units in a single computer and operating them concurrently, 

thereby substantially increasing system performance (Green, 1991; Messina, 1991). 

Parallel computers have evolved substantially during the last decade and that 

trend is expected to continue (Messina, 1991; Fox et al., 1994). The possibility of 

successfully scaling to large number of processors is shown by the testimony of high 

performance machines now operational (Messina, 1991; Fox et al., 1994). Many parallel 

computer architectures have proved reliable, and successful in engineering and scientific 

applications involving large-scale computations (Fox et al., 1988; Fox, 1991; Messina, 

1991; Camp et al., 1994; Dabdub and Seinfeld, 1994; Fox et al., 1994). 

In the world of engineering and scientific computing, the efficient use of parallel 

computers is dependent on the availability of methodologies capable of exploiting the 

new computing environment. Modeling methodologies successfully implemented on 

sequential (single processor) machines are efficient in exploiting the computational power 

of a single processor. However, the most efficient use of parallel processors comes from 

methodologies that are inherently parallel (Camp ef al., 1994). 

Some modeling approaches characterized by a high degree of parallelism may 

already have been developed in the past and possibly neglected due to their poor 

performance when implemented on sequential machines. However, the emerging parallel 
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computing field opens a door of opportunity to new and old modeling techniques able to 

exploit the newer computing environment. 

The research presented here focuses on a modeling approach, known as cellular 

automata (CA), which is characterized by a high degree of parallelism, and is therefore 

well suited to implementation on parallel processors (Toffoli and Margolus, 1987; 

Amato, 1991; Fox et al., 1994). Cellular automata were first introduced in the late 1940's 

by John von Neumann (von Neumann, 1966). Cellular automata gained popularity three 

decades later through John Conway's work in the game of Life (Fogelman et al., 1987; 

Toffoli and Margolus, 1987). However, the potential of CA as a modeling tool only 

recently has been realized with the advent of parallel computing (Toffoli and Margolus, 

1987; Fox et al., 1994). 

Other potential benefits of CA as a water quality modeling tool include: (1) a 

better representation of the real physical system by bridging the differences between 

macroscopic and microscopic representations; (2) no power series truncation and, in 

certain implementations, no round-off error; (3) easy extension from a one-dimensional to 

a higher dimensional representation; and (4) since CA models can be based on simple, 

microscopic behavior, the focus of water quality modeling can be placed on the water 

quality mechanisms and not on the numerical solution technique. 

The overall goal of this research is to evaluate the potential of the cellular 

automata methodology as a simulation tool for water quality modeling. The criteria for 

this evaluation include characterization of numerical dispersion, and model validation 

through comparison of simulation results with established water quality models. 

The specific objectives of this research are to: 

e develop CA representations of the more common water quality modeling 

processes; 
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* evaluate the numerical accuracy of CA representations, in particular the 

evaluation of numerical dispersion introduced through the discrete nature of the 

model; 

* integrate individual process rules into typical water quality models; 

¢ compare cellular automata model results with existing analytical and numerical 

solutions for typical modeling scenarios; 

e evaluate the feasibility and performance gains associated with the 

implementation of the cellular automata water quality model on parallel 

processors. 
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2 DYNAMIC WATER QUALITY MODELING 
USING CELLULAR AUTOMATA: MODEL 
DEVELOPMENT 

2.1 INTRODUCTION 

Modeling the fate and transport of environmental contaminants in general, and 

water quality modeling in particular, frequently requires mathematical formulations 

involving differential equations for which analytical solutions do not exist unless 

simplifying assumptions are made. Thus numerical methods are used to provide solutions 

for those complex mathematical representations. 

One important category of numerical methods is the Lagrangian particle models. 

Various types of particle models have been considered in the past, and applied to the 

simulation of a range of physical problems (Hockney and Eastwood, 1988). In some 

cases the computational particles represent actual physical particles such as molecules 

(Hockney and Eastwood, 1988). More often, the computational (or fictitious) particles are 

used to represent a discrete parcel of the parameter to be simulated: fluid elements of a 

fluid flow application, or mass parcels in a simulation of an environmental contaminant 

(Hockney and Eastwood, 1988; Zannetti, 1990). The dynamics of computational 

particles, such as their motion, can be considered to be either deterministic or stochastic 

(through Monte-Carlo techniques) (Zannetti, 1990). 

2.1.1 Random-Walk Particle Method 

The random-walk particle method (RWPM), which is a stochastic Lagrangian 

particle model, has been applied to the fate and transport modeling of environmental 

constituents in both groundwater (Ahlstrom ef al., 1977; Prickett et al., 1981; Bear and 

Verruijt, 1987; Ackerer, 1988; Kinzelbach, 1988; Uffink, 1988; Valocchi and Quinodoz, 
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1989, Tompson and Gelhar, 1990; Dougherty, 1991; Tompson and Dougherty, 1992; 

Mahinthakumar and Valocchi, 1993) and surface water (Williams and Hinwood, 1976; 

Allen, 1982; Shen er al., 1987; Shen and Yapa, 1988; J6zsa, 1989; Kleinschmidt and 

Pearce, 1992; Bogle et al., 1993; Dimou and Adams, 1993). When nonlinearities (such as 

source/sink terms) are absent, computational particles are completely independent of each 

other, thus allowing particle behavior to be computed in parallel (Ahlstrom et al., 1977). 

In fact, several implementations of the RWPM using parallel computers have been 

reported (Dougherty and Tompson, 1990; Dougherty, 1991; Mahinthakumar and 

Valocchi, 1993). 

The original motivation for this research was to develop a water quality model 

based on the cellular automata (CA) approach to be implemented using parallel 

processors. Cellular automata are characterized by a high degree of parallelism (Toffoli 

and Margolus, 1987). The inherent degree of parallelism also exhibited by the RWPM 

was assumed to provide a suitable basis for the development of a CA water quality 

model. In fact, Brieger and Bonomi (1991) while using a different approach than in the 

current work have shown that a random-walk methodology can be adapted to CA. 

The derivation of the RWPM is based upon analogies established between the 

transport equations and probability distributions (Jézsa, 1989; Tompson and Gelhar, 

1990). The RWPM in its basic form comprises a deterministic component representing 

the advective particle transport due to an average velocity, and a stochastic component 

which represents the randomness associated with particle movement due to dispersion 

(Ahlstrom et al., 1977; Bear and Verruijt, 1987; Ackerer, 1988; Uffink, 1988; Valocchi 

and Quinodoz, 1989; Dougherty, 1991; Tompson and Dougherty, 1992; Dimou and 

Adams, 1993; Mahinthakumar and Valocchi, 1993). In addition, the method often 

incorporates reactive terms that have been considered deterministic (e.g., Ahlstrom et al., 

1977; Dougherty, 1991) where the mass associated with the particles is allowed to change 
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with time, and stochastic (e.g., Kinzelbach, 1988; Valocchi and Quinodoz, 1989) where 

the number of particles, not their mass, changes with time. 

Reported advantages of the RWPM include (Ahlstrom er al., 1977; Ackerer, 

1988; Kinzelbach, 1988; Jézsa, 1989; Tompson and Gelhar, 1990; Dimou and Adams, 

1993): (1) inherent stability; (2) absence of cumulative numerical dispersion; (3) easy 

extension to higher dimensional problems; (4) easy handling of complex geometry; (5) 

high degree of parallelism; and (6) more realistic (natural) representation of the occurring 

processes. Disadvantages of the RWPM are (Ahlstrom et al., 1977; Allen, 1982; 

Kinzelbach, 1988): (1) greater computational resources compared to traditional numerical 

methods with the possible exception of some three-dimensional problems; (2) random 

noise associated with model results; and (3) model accuracy dependency on the number 

of particles while a general criterion defining their optimum number is still to be 

developed. 

2.1.2 Cellular Automata 

Computational resources have suggested new approaches to the modeling of 

systems. Digital computing devices are finite and discrete in nature, and their potential 

can be best realized when applied to discrete dynamic systems (Fogelman ef al., 1987). 

Moreover, many physical phenomena can be better viewed as discrete dynamic systems, 

in contrast to their traditional continuous representation using differential equations. 

Various discrete dynamic modeling approaches have been used with some success 

(Fogelman et al., 1987). Cellular automata appear to be one of those methodologies with 

an increasingly important role for conceptual and practical modeling of discrete dynamic 

systems (Toffoli and Margolus, 1987). 
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The theory of CA was first introduced by John von Neumann in the late 1940's 

(von Neumann, 1966). This concept gained popularity three decades later through John 

Conway's work in the game of Life (Fogelman ef al., 1987; Toffoli and Margolus, 1987). 

Cellular automata can be defined as dynamic systems in which space, time, and 

the dependent variable are all discrete quantities. In addition, the dependent variable is 

typically represented as a finite discretization, i.e., through a small set of possible values 

or cell states (Boghosian, 1990). Cellular automata are therefore based on a discrete 

lattice of cells. Each cell state evolves in discrete time steps according to deterministic or 

stochastic transition rules that depend only on the cell states of a local neighborhood of 

cells (Wolfram, 1984; Zeigler, 1984; Toffoli and Margolus, 1987; Boghosian, 1990). The 

CA configuration at the next time step (t+ Ar) is the result of simultaneously applying 

the transition rule to all cell neighborhoods, using the cell states corresponding to the 

present time step (7). Thus the update of the cell states uses an explicit scheme. Since the 

transition rules are based on local or microscopic behavior, they are generally quite 

simple. However, the resulting overall behavior of the system can appear to be quite 

complex. 

Examples of one and two-dimensional CA are shown in Figure 2.1. Each cell has 

two possible states (black and white), and the local neighborhood of a cell is defined by 

two adjacent neighbor cells. The transition rule simply specifies that the state of a cell at 

time 1+ Af is equal to the state of its two neighbors at time f if these have the same state; 

otherwise the state of a cell will remain unchanged. 

Cellular automata as a modeling tool have been viewed as both (1) an alternative 

to floating-point based numerical methods for the solution of partial differential 

equations, and (2) as a complete modeling tool and an alternative to partial differential 

equations (Boghosian, 1990). 
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A special type of CA known as lattice gases are formed by a lattice on which 

particles are allowed to move, with resulting collisions occurring between particles 

(Boghosian, 1990). Lattice gases are known for their ability to simulate dynamic systems 

characterized by conserved quantities (Boghosian, 1990). They have been used for the 

solution of several problems including the Navier-Stokes and the diffusion equations (Eli, 

1987; Doolen et al., 1990; Rothman, 1990; Bernardin eft al., 1991; Boon, 1991; Chen et 

al., 1991; Cliffe et al., 1991; Kong and Cohen, 1991; Kougias et al., 1991; Fox et al., 

1994). 

The CA modeling approach appears to have the following potential benefits: (1) it 

can provide a better representation of the real physical system by bridging the differences 

between macroscopic and microscopic representations; (2) it does not involve any power 

series truncation; (3) in certain implementations it is not subject to round-off; (4) it is 

easily extended from a one-dimensional to a higher dimensional representation; (5) it is 

easily implemented using parallel processors to decrease execution time; and (6) since 

CA models can be based on simple, microscopic behavior, the focus of water quality 

modeling can be placed on the water quality mechanisms and not on the numerical 

solution technique. In addition, while comparing finite elements and CA methods for the 

computation of drag coefficients, Duarte and Brosa (1990) point out the superiority of the 

CA approach in terms of numerical stability and easy incorporation of boundary 

conditions. 

In this research the development of the CA methodology was driven by a 

problem-specific approach. The rules were constructed based on a macroscopic view of 

the system, to solve specific water quality modeling issues. This allowed the development 

of CA rules based on the RWPM and, ultimately, on a differential equation representation 

of the phenomena. Therefore, the resulting CA model incorporates the same model 

coefficients typical of water quality models derived from differential equations. This 
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approach brings the CA model presented here close to traditional modeling techniques. 

This approach, however, does not constitute the only way CA can be used as a modeling 

tool. A more fundamental approach can be pursued based on a microscopic representation 

of the system. The CA rules can be defined at a microscopic level, possibly as very 

simple rules leading to complex macroscopic behavior. These simple rules should 

translate the fundamental physico-chemical laws governing the system. The microscopic 

approach may be more useful for improving fundamental understanding of water quality 

processes, but would likely be difficult to apply to site specific problems. 

The remainder of this chapter deals with the methodology used to develop and test 

the CA representation for the RWPM, in particular for the advection, dispersion, and 

decay processes. Some other aspects of the development of a water quality model based 

on the CA approach are also discussed. 

2.2 ADVECTION 

In this section an approach is developed which represents the advection 

component of the RWPM using CA. The approach was tested for its ability to accurately 

represent the advection process. 

2.2.1 Methodology 

2.2.1.1 Rute Definition 

The following discussion assumes advection along the longitudinal direction of 

flow. The CA is then defined as a line of cells in the longitudinal direction. In this 

section, as well as in the dispersion and decay sections, each cell is considered to have a 

finite (zero or more) number of particles, with each particle representing a fixed mass of a 

water quality constituent. The advection process is represented through a probability of a 
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particle to move to the next cell in the direction of flow during a simulation time step. 

The advection probability, P_,,, is defined as: ady? 

UAT oa, 

Ax 

  

Poa = adv O< P4,<1 (2.1) 

where u is the advective velocity (LT~'), At,,, is the time step for the advection process 

(T), and Ax is the cell size in the longitudinal direction (L). A careful choice of values 

for At,,, and Ax can assure that P,,,<I. 

For each particle in each cell, a uniformly distributed random number, r, between 

QO and | is generated and compared with the value of advection probability. If r does not 

exceed P_,, then the particle moves to the adjacent cell along the flow direction; 

otherwise the particle stays in the original cell. 

2.2.1.2 Advection Induced Numerical Dispersion 

As indicated above the choice of values for At,,, and Ax can be used to 

guarantee that the advection probability does not exceed one. When the advective 

velocity is invariant in time and space, a single set of values for At,,, and Ax can be used 

which guarantee that P,,, is exactly one. When the advective velocity is invariant in time, 

although varying in space along different reaches (assuming each reach has a uniform 

velocity), P,,, can still be made equal to one. This implies selecting a single global value 

for At,,,, and several values for Ax , each being a function of the velocity in a particular 

reach. 

However, in many situations the advective velocity is expected to vary in time. In 

this case it is no longer possible to guarantee that P_,, stays equal to one without varying 

the value(s) of Ax over time as well. Updating the value(s) of Ax as the simulation 

progresses leads to a constant redefinition of the simulation grid. Although a simple task 
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for the one-dimensional case, it could be an untractable and computational intensive task 

for a large three-dimensional grid. 

The motivation for restricting the value of P_,, to be equal to one is due to the 

relation between P_,, and numerical dispersion. When P,,, is exactly one, all the particles 

in a cell are advected to a neighbor cell, thus moving by a distance Ax=u At,,,. 

Therefore, every particle moves exactly the distance it is supposed to move. As soon as 

P.4, 1S smaller than one, although on average the particles in a cell move by a distance 

u At,,,, only a fraction of them (given by P,,,,) is actually displaced. This fraction of the 

particles moves a distance Ax>u At,,,, while the remaining fraction (represented by 1- 

P_,,) remains in the original cell. The overall result is that some particles move faster 

while others move slower than the real velocity, thus leading to numerical dispersion. 

To evaluate the magnitude of this numerical dispersion a surrogate method based 

on an exact probabilistic approach was used to simulate the behavior of the CA advection 

rule. The reason for using this surrogate method was that it represents the basic CA 

behavior without the random variability associated with the use of random numbers 

which makes it more difficult to determine trends in model behavior. 

In this approach, an initial amount of mass ( M°) of a conservative constituent is 

introduced into the first cell of a one-dimensional system at the beginning of the 

simulation to represent an instantaneous discharge. Then a fraction (given by P,,,) of the 

mass present in each cell is moved to the adjacent downstream cell while the remaining 

fraction (1- P,,,) stays in the original cell. This process is repeated for each simulation 

time step. The evolution of the mass distribution among the different cells as the 

simulation progresses was used to evaluate the magnitude of numerical dispersion. 

The simulation was performed for several values of P_,,. At each simulation step, 

the mean (m’ ) and standard deviation (s’ ) of the mass distribution were calculated as: 
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m' = Sy i f(i) (2.2a) 
im] 

s'= S ((i- m'y F (0) (2.2b) 

where f(i ) is the mass present in cell i as a fraction of the total mass ( M’), and N is the 

total number of cells in the system. Note that / is inside the summation terms in these 

expressions since i represents the x-coordinate in terms of cells. 

The values of m’ and s’ are thus expressed in terms of cells and were then 

converted to a mean (m7) and standard deviation (5) in units of distance (L), using the 

expressions: 

m=m'Ax (2.3a) 

s=s'Ax. (2.3b) 

Several values for Ax and u were selected. From equation (2.1), and using a set 

of values for Ax and u, a value for At,,, was obtained for each value of advection 

probability. Knowing the value of Az,,,, the evolution of the mean m and standard 

deviation s as a function of the number of simulation steps n can then be expressed as a 

function of time. The objective was to use those relations between s and time to quantify 

numerical dispersion and then evaluate any dependency of numerical dispersion on P,,,. 

2.2.2 Results and Discussion 

Figure 2.2 shows these relations for several values of P,,,, and for the case of 
a 

Ax =10 and u=5. The results of Figure 2.2(a) indicate that the mean is a function of uf, 

with the term Ax/2 being the result of the spatial discretization of the model. The results 

of Figure 2.2(b) clearly show a power-law relationship between the standard deviation 
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and time of the form s = yr"° for any of the values of P,,,. These results suggest the 

assumption (see also Appendix A) that the mass distribution follows a normal probability 

density function similar to the solution of the advection-dispersion differential equation 

for an instantaneous input (Thomann and Mueller, 1987). This implies s = VE wm t , 

where E,,, is a coefficient representing the advection induced numerical dispersion. This 

equation is a power-law identical to s=yr°” with y = V2 Ewin - The values for E,,,, 

corresponding to the results in Figure 2.2(b) can then be obtained from E,,, = 7° /2. 

Figure 2.3 shows an inverse linear relation between EF and P_,, for different 

values of u Ax. The data points for u Ax = 50 were derived from Figure 2.2(b), and a 

similar approach was used for the other values of u Ax. Thus the relation between E,_,, 

and P_,, is dependent not on the single values for u and Ax, but on the product u Ax. 

Furthermore, as shown in Figure 2.4, a unique linear relation exists between the 

dimensionless quantity E,,,,/(uAx) and P,,, given as: 

cum _ _ ti 0.5 (1 Pras) 24)   

Substituting equation (2.1) for P,,, in equation (2.4) and rearranging leads to: 

Enum = 0.5 (uAx = u"At,,,)- (2.5) 
num 

Given that P,,,<1, and assuming that At,,, and Ax are constants, equation (2.1) 
adv— 

implies that a maximum value for the advective velocity (u,,,,) exists for which P_,,=l 

and equation (2.1) reduces to: 

max dy (2.6) 

Equation (2.6) can be rewritten as: 
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Ata, =—- (2.7) 

Substituting equation (2.7) for At,,,. in equation (2.5) and rearranging one obtains: 

E., = 0.5uAr{ I 4 . (2.8) 
u 
max 

As u varies from zero to u,,, E,,,, increases from zero to a maximum value and then 

decreases back to zero. In the present discussion of advection it has been assumed from 

the beginning that u is a non-negative quantity since the flow follows the positive 

direction. In a more general case in which u can be negative or positive, equation (2.8) 

still holds although u must then be replaced by |u|. The value of u for which E, reaches 

  its maximum is obtained from the solution to the equation ty =Q. That value is 
u 

u=0.5u,,,- The expression for the maximum value of E,, is then obtained by 

substituting u = 0.5u,,, in equation (2.8), and is given by: 

E = max (2.9) 
num max 8 

  

Equation (2.9) shows that the maximum value for the numerical dispersion is a 

direct function of both u,,, and Ax . This equation can then be used to define a guideline 

for the selection of a maximum value for Ax given a particular maximum value to 

eventually be reached by the advective velocity (u,,,,), and a numerical dispersion value 

). This value of E can be defined in relative terms as a 
num max 

not to be exceeded ( E 
num max 

certain percentage of the minimum expected value for the longitudinal dispersion 

coefficient. The same considerations can be extended to the At,,, by combining 

equations (2.7) and (2.9). 
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Figure 2.5 illustrates the suggested guideline showing values of Ax,,,, (maximum 

value to be selected for Ax ) for typical values of u,, and E expected for rivers and num max 

estuaries. Figure 2.6 illustrates the same approach for the selection of the maximum 

advection time step. Recall that the derivations leading to equation (2.9) and thus to the 

relationships shown in Figures 2.5 and 2.6 required the assumption that equation (2.6) is 

always true. This means that the final values for Ax and Af,,, obtained from equation 

(2.9) or Figures 2.5 and 2.6 have to obey the relationship imposed by equation (2.6). 

The previous discussion indicates that although numerical dispersion cannot be 

neglected, it can be made insignificant in relation to the physical dispersion of the system. 

However, such an approach may require excessive spatial and temporal model resolutions 

in some cases, and thus substantially increase the required model computations. The 

situation is most severe in systems with a large maximum value for the advective 

velocity, and a small longitudinal dispersion. 

2.3 DISPERSION 

This section presents an approach based on CA for the representation of the 

dispersion component of the RWPM. The approach was tested for its ability to accurately 

represent the dispersion phenomena. 

2.3.1 Methodology 

2.3.1.1 Rule Definition 

The following discussion assumes dispersion in the longitudinal direction of flow, 

although the same approach can be used to describe dispersion in other directions. In the 

RWPM a particle moves by a random amount of a maximum magnitude as a result of 

dispersion (Bear and Verruijt, 1987). Assuming a uniform distribution of the random 
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movement of a particle, the probability distribution of the particle movement for a large 

number of independent steps should follow a normal distribution. This probability 

distribution can be shown to be identical to the analytical solution of the one-dimensional 

dispersion differential equation for an instantaneous contaminant spill (Bear and Verruijt, 

1987). As a result, the maximum magnitude (amplitude) of the random movement of a 

particle is a function of both the dispersion coefficient, FE, and the simulation time step for 

the dispersion process, Af,,,, and is given by J6EAtr,,.. Based on this conclusion, an 

expression for the dispersion probability needed for CA can be derived (see Appendix B 

for details). 

The dispersion process is based on the probability of a particle to move from its 

present cell to the adjacent upstream or downstream cell during a simulation time step. 

The dispersion probability, P,,,, is defined as: 

Pris = (2g 7 1) Paisamp ~ PriisampS PuisS Praisamp (2.10a) 

EAt,., 
Pisamp = aA OS PrisampS! (2.10b) 

where Py.amp 1S the amplitude of the dispersion probability, E is the longitudinal 

dispersion coefficient (L* T~'), and q is a uniformly distributed random number between 

O and 1. A careful choice of values for At,,, and Ax assures that Priisamp)- 

For each particle in a cell, a uniformly distributed random number, q, between 0 

and | is generated and used to compute the dispersion probability. Then, a uniformly 

distributed random number, r, between O and | is generated and compared with the value 

of dispersion probability. If r does not exceed the absolute value of P,,, then the particle 

moves to the adjacent upstream cell (when P,, is negative) or to the adjacent 

downstream cell (when P,,,, is positive); otherwise the particle stays in the original cell. 
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2.3.1.2  Effectof P on Dispersion disamp 

varies from 0 to 1. When P is zero there 1s As previously mentioned P, disamp 
isamp 

no dispersion. When dispersion occurs then a value is selected for P, in the range 
isamp 

O< P <1. However, in order to evaluate in what extent such selection affects disamp 

simulation results an in depth analysis of the problem was pursued. 

Due to the relative higher complexity of the dispersion rule, in comparison to 

advection and decay, it was not practical to develop a surrogate method using a non- 

random probabilistic approach capable of simulating the basic behavior of the CA rule. 

However, to reduce the effect of randomness associated with the CA dispersion rule on 

the simulation results, each simulation was performed several times and corresponding 

results averaged. 

The simulated system consists of a line of cells. An amount of particles ( N’) was 

introduced into one of the cells at the beginning of the simulation to represent an 

instantaneous discharge. Then the particles were allowed to disperse upstream and 

downstream accordingly to the rule for dispersion, and using a particular value for Psisamp 

in the range O< Paisamp=!- This process was repeated for each simulation time step. The 

overall simulation was repeated one-hundred times to counteract the randomness 

associated with the dispersion rule. 

The evolution of the distribution of the number of particles among the cells during 

the course of a simulation was used to characterize the respective dispersion. At each 

simulation step, the mean (m’ ) and standard deviation (s’ ) of the particle distribution was 

calculated as: 

m' = Si f(i) (2.1 1a) 
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S(l -m'y f(i)) (2.11b) 
i=l 

where f(i) is the number of particles present in cell i as a fraction of the total number of 

particles ( No). and N is the total number of cells in the system. 

For each simulation step, a total of 100 values for s’ was obtained due to 

repetition of the simulation. The corresponding mean (s’,) and standard deviation (5s, ) of 

s' were calculated as: 

l 100 

5, =— 2.12 m= 100 & i (2-12a) 

] 100 2 

si = Sob (7 &) . (2.12b) 

The values of m’ and s’, and therefore of s’, and s', are thus expressed in terms 

of cells. A value for s’/ was converted to a value, s, in units of distance (L), using the 

expression: 

s=s' Ax. (2.13) 
m 

A similar conversion was used for s’. 

For a particular set of values for Ax and E, equation (2.10b) was used to evaluate 

different Ar,,, corresponding to different values for P,.2m)- Based on a value for Af,,,, 

the evolution of the standard deviation s as a function of the number of simulation steps n 

can then be expressed as a function of time. The idea was to use these relations between s 

and time as a measure of the impact of the values for P, on the dispersion produced 
isamp 

by the CA rule. 
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2.3.2 Results and Discussion 

Figure 2.7 shows these relations for several values of Pyi.amp» and for the 

particular case of N=1000, Ax =10, and E =1. The vertical bars represent the standard 

deviation associated with s, i.e., sts Ax. The results clearly show a power-law 

relationship between the standard deviation and time of the form s._.=a,,f°° for any 

In fact, the slope of any P line varies from 0.5 by just 0.002 at the value of P Jisamp disamp’ 

most. These results strongly suggest the validity of the assumption that the particle 

distribution follows a normal probability density function similar to the solution of the 

dispersion differential equation for an instantaneous input (Thomann and Mueller, 1987). 

In this analytical solution, the standard deviation of the distribution has the form 

5, = V2Et . This expression is a power-law of the form s,=a, °° with a, = V2E . This 

power-law is also plotted in Figure 2.7. The relation between the various Priisamp lines and 

the analytical solution suggests that the CA rule for dispersion overestimates the 

dispersion process and the overestimation increases as P,;. 4) decreases. 

These results indicate that some numerical dispersion is associated with the CA 

rule for dispersion. In contrast to the RWPM in which particles move in a continuous 

path by exact increments thus precluding numerical dispersion, in CA particles move by 

finite increments therefore introducing numerical dispersion. Such numerical dispersion 

occurs since some particles tend to spread faster than it would be expected from the 

dispersion coefficient alone. Since P,,, allows values in the full range O< IP..(< Paisamp? 

faster spreading of particles will occur, even when P,,,,,,.=1 (as seen in Figure 2.7). 

To quantify the numerical dispersion, a ratio (a,,/a,) was evaluated as a 

function of P using several plots similar to Figure 2.7. In those plots several 
disamp 

combinations of values for E, Ax , and Ne were considered. A summary of these results 

is depicted in Figure 2.8. This figure shows the existence of a power-law relationship 
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Figure 2.7. Time evolution of the standard deviation of the distribution of number of 

particles as a function of P,,,.,, using the CA dispersion rule, and comparison with the 

analytical solution for the dispersion differential equation for an instantaneous input. 

(N,=1000, Ax =10, E=1.) 
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between the ratio (a. Ja.) and P. Furthermore, this relation appears to be 
disamp* 

completely independent of E, Ax , and Ni and is given as: 

1.493 
P 

disamp 

(2.14)   (a,,/a,) = 

In relation to Figure 2.7 it was previously indicated that a, = V2E. This 

expression can be rewritten as a, = V2E, to emphasize that the analytical solution 

represents the dispersion associated with a coefficient E,. Since the CA rule also 

represents a dispersion process but of larger magnitude, it can be assumed that 

Q.4= VE. , where E_.>E,. From this it follows that 

(Ss — Pca (2.15)   

The numerical dispersion associated with the dispersion rule is by definition 

E., —-£,, and is always larger than zero. Also, equation (2.15) implies that 

Qa E.,-E, = eS] “1 . (2.16) 
a 

a 

Substitution of equation (2.14) in equation (2.16) leads to: 

  (2.17) 
49 

£- B= B 3 ~-1) 
disamp 

This expression shows that for the best case ( P,,,4,=1) numerical dispersion still leads to 
isamp 

an overestimation of dispersion by 49.3%. When P. is 0.5 and 0.1, the numerical 
disamp 

dispersion is about 2 and 14 times the actual dispersion, respectively. 

An important finding from the previous result is that the CA rule for dispersion 

simulates the dispersion process corresponding to a dispersion coefficient somewhat 
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larger than the one intended to be represented. Based on this conclusion a procedure can 

be developed to counteract this problem. 

Consider that the dispersion coefficient EF represents the actual dispersion to be 

simulated by the CA rule. Then, and based on equation (2.15), the dispersion coefficient 

to be used in the dispersion rule should be a corrected value, E*, given as: 

  ES -( a E. (2.18) 
a 

ca 

This relation implies that E°<E . Substituting equation (2.14) into equation (2.18), one 

obtains: 

P.. 

ge a Saisame) pe (2.19) 
\ 1.493 | 

Substitution of P from equation (2.10b) into equation (2.19) leads to: disamp 

EJ6E‘At ; 
E = —*“—_* . (2.20) 

1.493 Ax 

Solving equation (2.20) for E* yields: 

« GE AL,,, 
ole. 2.21 

(1.493 Ax) (2.21) 

Then, substituting E° in equation (2.21) by equation (2.19) and canceling terms 

one obtains: 

6EAt,,, 
gg 2.22 

disamP 1. 493(Ax) (2.22) 

This equation can then be used in place of equation (2.10b) to calculate P,i.amp- 
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Assuming that in a typical situation both a maximum value for E , represented as 

E,ax» and Ax are known quantities, the largest possible value for At,,,, denoted At,;, nax> 

is obtained from equation (2.22) with P,..4_)=1 (the upper limit for P,:.4m))- The value 

for At,,,max 1S therefore given as: 

1.493( Ax)” Micon. = 1.493 Ax) (2.23) 
: 6E ax 

The derivation followed in this section seems to point out that any value At,,, < Alj;.nax 

can be chosen without affecting the accuracy of the simulation. In other words, the 

dispersion rule is now expected to be identically accurate regardless of the value for 

P disamp <I. in the range O< P, 
isamp 

To verify this claim, the results of some of the previous simulations were re- 

as given by equation (2.22), which analyzed to reflect the new definition for Priisamp 

corrects for numerical dispersion. The results are presented in Figure 2.9, for N=1000, 

Ax =10, and E=5. Comparison of these results with previous ones (see Figure 2.7) 

strongly suggests that numerical dispersion is no longer associated with the dispersion 

rule. It also suggests that an equally good representation of the analytical solution is 

obtained regardless of the value for Pj,.4m)- (The standard deviation associated with the 

standard deviation of the distributions is at approximately the same magnitude as the plot 

symbols.) 

So far, the analysis of the results has been based solely on the standard deviation 

of the particle distributions. Thus, to provide a more complete discussion the particle 

distributions (which can be easily viewed as mass distributions, since particles of uniform 

mass are assumed) were analyzed and compared with the corresponding distributions 

associated with the analytical solution of the dispersion differential equation for an 

MODEL DEVELOPMENT 31



  100 9 rey a 

    
  

~” 

c 
2 
@ 
> 
® 
Q 10 F ; 

Tb J 

5 } 
S Cc 
x 
) r ° Puis.amp = 0.1 1 

L 
O Pais, amp = 0.5 

r 0 Puis.amp = 0.9 

——— Analytical Solution 

1 __ es met a _i al — Pe ae er ae 

0.1 1 10 100 1000 

Time, t 

Figure 2.9 Time evolution of the standard deviation of the distribution of number of 

particles as a function of P, using the CA dispersion rule corrected for numerical 
1S. anp 

dispersion and comparison with the analytical solution. ( N= 1000, Ax =10, FE =5.) 

MODEL DEVELOPMENT 32



instantaneous input (Thomann and Mueller, 1987). The mass present in each cell, as a 

fraction of the total mass, is: 

  

  

M. l 2 x 
aan se 2.24 
Wide Soe (2.24a) 

alee (204 40) of 2 Ar) | 
3 (aye) \ aye | (2.240) 

where M,/M° represents the fraction of the total mass present in cell i, with i being any 

integer (..., -2,-1,0, 1,2,...). The total mass M° is considered to be instantaneously 

introduced in cell i= 0, at time t= 0. The x-coordinate of each cell i is defined as the 

mid-point of the cell and is given by x,=i Ax. The above equation is then typically 

evaluated for particular values of ¢ corresponding to the product n Af,,.. 

Figure 2.10 compares CA simulation results using both definitions for Pyicamp> 

given by equations (2.22) and (2.10b), with the analytical solution (equation (2.24b)). 

Natural cubic spline interpolation is used to draw the line for the analytical solution based 

on the discrete values of the cells. This results refer to the particular case of N’=1000, 

Ax =10, E=5, and ¢=50. Each CA distribution is the mean distribution for the 100 

simulation repetitions. The vertical bars show the magnitude of the corresponding 

standard deviation. 

Figure 2.10 supports previous results suggesting a very good agreement between 

the behavior of the dispersion rule, when corrected for numerical dispersion, and the 

analytical solution for different values of P,,..,)- This figure also confirms previous 

findings of an overestimation of the dispersion process (which becomes more pronounced 

as P disamp decreases) by the CA dispersion rule without a correction for numerical 
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dispersion. Furthermore, it supports an earlier assumption that the particle distributions 

resulting from the CA dispersion rule follow a normal distribution. 

Another way to compare the CA results with the analytical solution is provided by 

the time evolution of the distribution peaks. From equation (2.24a), the peak predicted by 

the analytical solution is simply the fraction of total mass for the cell i=0, thus x,=.x, =0, 

which is given as: 

(2.25)   

Figure 2.11 shows the comparative time evolution of the peak fraction of total 

mass for the CA and analytical solution, for N,=1000, Ax =10, and E =5. These results 

indicate again a significant improvement on the performance of the CA dispersion rule 

when correction for numerical dispersion is included. After an initial short time (Figure 

2.11(b)) the CA results agree very well with the analytical solution. 

2.4 DECAY 

In this section an approach is introduced to represent the decay component of the 

RWPM under the CA framework. The approach was tested for its ability to accurately 

represent the decay process. 

2.4.1 Methodology 

2.4.1.1 Rule Definition 

Decay processes usually follow first-order kinetics or negative exponential 

functions. Toffoli and Margolus (1987) present an illustrative example on how to model 

exponential decay phenomena using CA. The decay process is considered through a 
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probability of a particle to be removed from a cell during a simulation time step. The 

first-order decay probability, P, 
é 

iS given as: 

Prrec= Kaeo At dec dec dec O< P,..<1 (2.26) 

where k,,. is the first-order decay rate constant (T~'), and Ar,,, is the time step for the 
dec 

decay process. The value of P,,.<1. dec 

For each particle in a cell, a uniformly distributed random number, r, between 0 

and | is generated and compared with the decay probability. If r does not exceed P,,. 

then the particle is removed from its cell (and from the system); otherwise the particle 

stays in its cell. 

In the context of random-walk, Kinzelbach (1988) presents an identical decay 

probability in which the time step should be made small enough to always keep the 

probability value less than one. Valocchi and Quinodoz (1989) using a similarly defined 

probability but in the context of first-order adsorption within random-walk, further 

suggest that the probability should be substantially less than one. The question then arises 

as to how much to constrain the value of At,,., and therefore the resulting value of P,,,.. 

2.4.1.2 Effect of P,.. on Decay 

Since the CA decay rule uses random numbers to simulate the behavior of the 

particles, such an approach introduces some random variability in the results making it 

more difficult to determine trends in model behavior. To overcome this difficulty, a CA 

surrogate method based on an exact probabilistic approach was used. 

Given an initial mass of a nonconservative constituent, this approach simply 

keeps track of the mass remaining at successive simulation time steps. At each simulation 

step, a fraction of the mass remaining from the previous step is removed. The remaining 
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mass is then available for loss at the next simulation step. The fraction of mass removed 

at each step is represented by the decay probability. 

The mass remaining after a certain number of simulation steps is given as: 

n_ ply Si, p VV M =m" P,,{ U4 S( Paw) )) (2.27) 
tml] 

where M” is the remaining mass after n simulation time steps and M’ is the initial mass. 

Expression (2.27) was evaluated as a function of the number of simulation steps 

for different values of P,,.. The mass remaining was expressed as a fraction of the initial 

mass, i. e., as M"/M°. The fraction of mass remaining as a function of the number of 

simulation steps was then expressed as a function of time given a particular value of first- 

order k,,.. Due to the relation imposed by equation (2.26) this implies using different 

At,,. values, each associated with a particular probability P,,.. These relations between 

fraction of mass remaining and time were then used to quantify the decay and its 

dependency on P,,.. 

2.4.2 Results and Discussion 

Figure 2.12 shows remaining mass versus time for k,,.=0.5. The results for dec 

different decay probability values are compared with the analytical solution for first-order 

decay given by: 

M' = M? eM!) (2.28) 

where M' is the remaining mass at time ¢. 

The relation between the slopes of the lines plotted in Figure 2.12 seems to 

suggest that the CA surrogate method consistently overestimates the true (analytical) 

ca 

dec > K sec 
decay rate, k,,.. This means that a decay rate k is being represented by the CA 

dec 
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surrogate method, with k;”. being a function of P,,.. Larger values of P,,. lead to larger dec 

values of k;;.. To emphasize this behavior Figure 2.13 is presented in which the ratio dec* 

aa 

dec /k,.., named B, is plotted as a function of P,,.. It was found that this relationship 

B= f(P,,.) holds for any value of k,,.. For the CA decay rule to be accurate, very small 

values of the decay probability (<0.01) for which B~=1, and thus ki) ~k,,,, are required. 

However, the previous results also suggest a procedure to relax this constraint. 

From the definition of B, then ki) = Bk,,,.. Since the CA approach will result in a decay 

rate k* larger than the original k,,., this suggests that for k*°. to be equal to k,,., a dec dec 

smaller k,,. (with notation k),.) should be substituted for the original value of k,,.. This dec 

conversion has the form k‘ = k dec” ‘dec /B. Given that B= f(P,,,) and also P,,.= f(kj,,) an 

iterative procedure must be used to calculate k},. 

For a particular value of At,,., an initial guess for P,,. is obtained using equation 

(2.26). This value of P,,. is used to estimate B using the relationship from Figure 2.13. 

An estimate for k),. is then obtained from k,,, and B. A new value for P,,. is obtained 
dec dec 

from equation (2.26) using the previously calculated value for k{,,. This allows for a new 

estimate of B and therefore kj,.. This process is repeated until P,,., B, and k),. converge 
dec’ 

within a specified convergence error. 

This procedure was implemented and tested for several values of At,,. and K,,,.. 

Figure 2.14 summarizes convergence values obtained for B and P,,., with a 

convergence error of 10°. A polynomial equation was fitted to B of the form: 

B = -0.003282(k,,.At,,,) + 0.065914(k,,,At jee) + 
dec dec ‘~ "dec (2.29) 

+ 0,563833(k,,.At,,. ) + 0.973541 

Since P,,.=Kj,. Atie.s and k‘,.=k,../ B, it follows that 
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k, At 
dec" dec 

P = 5 . 

“© 0.003 282( kjoAl ger y + 0.065914(k,,.At,.) + 0.563833( k,,.Atj.. ) + 0.973541 

(2.30) 

This equation should be used instead of equation (2.26) to define P,,,.. 

Assuming that in a typical situation the maximum value for k,,., denoted kj... max» 

is known, the largest possible value for Ar,,., represented by At,,. 2,» 18 obtained from 

equation (2.30) with P,,.=1 (the upper limit for P,,.). Figure 2.15 shows Atj.. na, aS a 

function of k The relation obtained is given as: dec.max* 

  

8876 
Abie max ~ . (2.3 1) 

K tec max 

The validity of equation (2.30) was tested with simulations of the CA decay rule 

for different values of P,,.. Each simulation was repeated one-hundred times, and the dec’ 

mean and standard deviation were calculated. The total number of particles, with an 

arbitrary uniform mass, at the beginning of each simulation was No=l 0000 and the value 

of k,,.=0.05. 

The results are presented in Figure 2.16, where the mean of the fraction of mass 

remaining is plotted as a function of time. The magnitude of the standard deviations is 

less than the size of the plot symbols. The analytical solution is given by equation (2.28). 

It is clear that equation (2.30) provides a much better representation of the decay process 

than equation (2.26). Equally satisfactory results are obtained despite wide variation in 

the values of P,,.. This implies that specific constraints on the value of P,,. are not 
dec’ 

necessary to obtain satisfactory results. 

MODEL DEVELOPMENT 43



  

1000 

100 

A
 
be
c 

ma
x 

10 |       
  

0.01 0.1 1 

Figure 2.15 Relation between Ar,,..,, and K4.. max Lor first-order decay. 

MODEL DEVELOPMENT 44



  

t o ma ' T . I . J 

  

    
  

1+ — Analytical Solution J 

o } Q Piec= 91 

£ 
5 0.8 - ° Pict 0.5 7 

5 oP, = 0.9 

n 0.6 + 7 
wn 
oO 
= 

SO 044 J 
Cc 
2 

oO 
= o2t 4 

L 

OF} 7 

t l | 4 | 1 _ 

0 50 100 150 200 

Figure 2.16 Time evolution of the fraction of mass remaining as a function of the 
decay probability for the CA decay rule using equation (2.30) and comparison with the 

=0.05.) dec analytical solution for first-order decay. ( Neal 0000, k 

MODEL DEVELOPMENT 45



2.5 WATER QUALITY MODEL DEVELOPMENT 

Given the CA representation of several water quality processes as described 

above, those different representations can be combined to form a full water quality 

model. In such a CA model, each rule (representing a process) is considered independent 

of other rules (representing other processes). Cellular automata evolve as a result of 

applying a sequence of independent rules. However, a particular rule can be applied more 

than once in the sequence before the rule for a different process is used. In this way, each 

rule can be designed to best represent the respective process by removing unnecessary 

constraints imposed by other rules. This is particularly true since all the rules depend on 

the time step. 

A time-splitting approach, similar to the one used in other modeling 

methodologies (Wheeler and Dawson, 1988), allows one to consider different values of 

time step for different rules. One advantage of this approach is that it allows the selection 

of time step values that optimize the performance of the different rules. Synchronization 

of the various rules in the sequence is obtained by applying proportionally more often 

those rules using smaller time steps. 

To simplify synchronization of the different rules, a main time step, Ar, is defined 

by the user corresponding to the time interval at which the values of input variables are to 

be updated. Therefore, at every main time step, a sequence of different rules is applied 

with each rule being repeated a number of times, m. The value of typically will vary 

among different processes, although is obviously always a function of the main time step. 

Additionally, and depending on the processes, it is also a function of specific coefficients 

| a) ), Ax, and E num max* ( Unax > dec.max 

The advection rule is characterized by numerical dispersion. As shown previously 

the control of numerical dispersion is accomplished by constraining both Ax and Az,,. 
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Since other rules are potentially dependent on Ax, the procedure to calculate @ is first 

done for advection. From previous results (Figures 2.5 and 2.6) Ax, and At,,, ,., can be 

obtained. A value Az, is then derived as the highest submultiple of Art not exceeding 
Vv 

At . Finally the value of @,,, is given by the integer defined by the ratio At/ At,,,. ady,max 

In addition Ax is calculated as u,,, At,,,, therefore satisfying Ax<Ax,,. When these 

calculations lead to At,,,<At (therefore Ax<Ax,,,) this obviously implies (see adv,max 

Figures 2.5 and 2.6) a corresponding decrease in the value for E,,,.max- Lhe new value is 

obtained from equation (2.9). 

Given the value of Ax above, the procedure can be applied to rules depending on 

Ax as is the case for dispersion. From equation (2.23) the value of At,,,,.,, can be 

obtained. A value At,,, is next derived as the highest submultiple of Art not exceeding 

At dis,max . The value of ,,, is given by the integer defined by the ratio At/ Ar,,.. 

For decay, equation (2.31) gives the value for Az,,. ,,,,- AS before, a value At,,. is 

then derived as the highest submultiple of At not exceeding At,,.. ..,- The value of @,,, is 

similarly given by the integer defined by the ratio Ar/ Ar,,.. 

As mentioned previously the rules are applied in a sequence. For simplicity that 

sequence is fixed, which means that at each main time step advection is applied first 

(repeated q,,, times), followed by dispersion (repeated q,,, times), and finally decay 

(repeated g,,. times). Although effects arising from the order in which the rules are 

applied have not been investigated, if such effects are important then the order of the 

rules can be manipulated to improve results. 

2.6 CONCLUSIONS 

The RWPM can be successfully represented using a CA approach. Due to the 

discrete nature of CA, the rule for advection introduces considerable numerical 

dispersion. However, the magnitude of this numerical dispersion can be minimized by 
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proper selection of the cell size and the time step. Similarly, the rule for dispersion is also 

affected by some numerical dispersion. But, in contrast to advection, a procedure was 

developed that eliminates numerical dispersion associated with the dispersion rule. For 

first-order decay a rule was derived that describes the decay process without the 

limitations of a similar approach reported in the literature. The rules developed for 

advection, dispersion, and decay, due to their independence, are well suited to 

implementation using a time-splitting approach. 

APPENDIX A: CHARACTERIZATION OF THE MASS DISTRIBUTION 

RESULTING FROM THE ADVECTION INDUCED 

NUMERICAL DISPERSION 

The assumption suggested in section 2.2.2, that the mass distribution resulting 

from the numerical dispersion associated with the advection process follows a normal 

distribution, is investigated in more detail in this appendix. 

This involves comparing the mass distribution from the CA advection surrogate 

method (as described in section 2.2.1.2) with the analytical solution for the advection- 

dispersion differential equation for an instantaneous input (Thomann and Mueller, 1987). 

The mass present in each cell as a fraction of the total mass is: 

M, 1 | 7 4E, at — -<— runt dx Ala 
M 2JnrE,,,, t Se (Ala) 

= (es < - et —— = =) (Alb) 
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where M, is the mass present in cell i, and M° is the total mass (which was 

instantaneously introduced in cell x, = 0.5Ax, at time t= 0). The x-coordinate of a cell i 

is defined at the mid-point of the cell, and is given as x, = (i-0.5)Ax. 

The value of E,,, in equation (Alb) is provided by equation (2.4). In addition, ris 

given by the product nAt,,,, with At,,, being provided by equation (2.1). After 

substitutions are made in equation (A1b) one obtains: 

[ ((-05)-np..\ _{ (-1.5)-nP.,. \ M1 . (i-0.5)-nP.,, e (i-1.5)—nP,,4, 

M2 Pal Pag)Pan)  (YRrC= Pag)Pan) PO 

The value of 7 is any integer (...,-2,-1,0,1,2,...), with i=1 representing the cell into 

which a mass M”° is instantaneously introduced at the beginning of the simulation, i.e., 

when n =0. 

The mass distribution from equation (A2) is then compared with the mass 

distribution obtained for the CA surrogate method. The results are summarized in Figure 

Al, in which the distribution curves result from interpolation, using the natural cubic 

spline method, of the respective discrete values associated with the cells. 

Figure Al shows that the mass distribution from the CA approach follows a 

normal probability density function similar to the analytical solution for the advection- 

dispersion differential equation. However, a few simulation steps are required for the 

mass distribution to develop a shape identical to the analytical solution. A minimal 

number of steps is required when P_,,=0.5, while a larger number is required for other 

values of P.,,. This is related to the initial skewness developed by the mass distribution, 

which obviously tends to be more pronounced as P_,,, diverges from 0.5. 

This good level of agreement between the two distributions strongly supports the 

previous assumption that the mass distribution from the CA approach follows a normal 
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Figure Al Comparison between the mass distributions obtained for the CA advection 
surrogate method (solid line) and the analytical solution for the advection-dispersion 
differential equation for an instantaneous input (dotted line). The distributions are shown 
for different advection probability values and at the end of various simulation steps. 
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probability density function similar to the solution of the advection-dispersion differential 

equation for an instantaneous input. 

APPENDIX B: DERIVATION OF THE EXPRESSION FOR THE DISPERSION 

PROBABILITY 

The following derivation is based on the concepts of random-walk discussed by 

Bear and Verruijt (1987). Using a particle tracking formulation, a particle can be 

considered to travel by discrete steps in a direction x. This particle movement has two 

components: an advection component in which a particle moves by a deterministic 

amount A; and a dispersion component in which a particle moves by a random amount of 

maximum magnitude (amplitude) B. It is assumed that the deterministic and random 

components of the movement are independent. Furthermore, in the following discussion 

only the random component of the movement, i.e., the dispersion component is 

considered. 

Assuming that the distribution of the random component of the movement is 

uniform, the distribution function characterizing a step movement of the particle is given 

as; 

P(x) =0 if x <-B (Bla) 

Pix) = 543 if -B<x<B (B1b) 
P(x) =0 if x >B (Blc) 

It can be shown that the mean, m, of this distribution is equal to zero. This is the average 

distance traveled by a particle in each step. Also, the standard deviation, s, of the 

distribution is given by B/Y3. 

The probability distribution of the particle movement for a large number of 

independent steps (7) is expected to follow a normal distribution of the form: 
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  1 (x-M)y 
Px) = ==> exp [(- a (B2) 

2 aS P ( 28 

where 

M=nm=0 (B3) 

  (B4) 

This probability distribution representing the random-walk can be compared with 

the one-dimensional dispersion differential equation 

— x B5 

E Ox” (BS) 
  aC ac 

or 

which has the following solution for an instantaneous spill of a unit mass of material in a 

channel of unit cross sectional area: 

  C= TE exp (- iF } (B6) 

Expressions (B2) and (B6) are similar and they become identical if 

S° =2E. (B7) 

Also, combining equations (B4) with (B7) leads to: 

n e = 2Ft. (B8) 

Rearranging equation (B8), one obtains: 
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B=.|6E~. (B9) 

it follows that 

xs 
i~
 

Since At, = 

B = J6EAr,,, . (B10) 

Equation (B10) thus provides a useful relation between the amplitude of particle 

movement during a dispersion time step and the dispersion coefficient. This amplitude 

can be expressed in a dimensionless form B/ Ax, which can be viewed as the amplitude 

of the dispersion probability required by the CA: 

P B_ NOEN us (B11) disamp —_ Ax ~ Ax 

where P,:.amp 18 the dispersion probability amplitude, i.e., the maximum value allowed 

for the absolute value of the dispersion probability P,,,. All values for P,,, are therefore 

+P disamp in the interval |-P |: Given the previous assumption of a uniform dis.amp’ 

distribution for the random component of particle movement, an expression for the 

dispersion probability is: 

Pais = (2q - 1) Paisamp (B12) 

where g is a uniformly distributed random number between 0 and 1. 
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3 DYNAMIC WATER QUALITY MODELING 
USING CELLULAR AUTOMATA: MODEL 
APPLICATION USING PARALLEL 
PROCESSORS 

3.1 INTRODUCTION 

In chapter 2 a new methodology based on cellular automata (CA) was developed 

which successfully represents fundamental water quality process, namely advection, 

dispersion, and first-order decay. This chapter tests the validity of the CA methodology as 

an integrated water quality model. Due to inherent parallelism, CA models are well suited 

to implementation on parallel processors (Toffoli and Margolus, 1987; Amato, 1991; Fox 

et al., 1994). This characteristic of CA opens the possibility of a more detailed and 

efficient dynamic modeling of water resources systems. Consequently the CA water 

quality model presented here was implemented on parallel processors. 

3.1.1 Parallel Computing 

Since the advent of the electronic computer in the 1950's a typical ten-fold 

improvement in computational speed has occurred every five years, mainly as a result of 

considerably advances in electronic integrate circuitry. However, such technological 

progress has not been sufficient to satisfy the increasing computational demand from 

scientific and engineering applications. Thus, parallel computation appeared as an 

alternative approach to increase computer performance. This approach involves 

incorporating multiple computational units in a single computer and operating them 

concurrently, thereby substantially increasing system performance (Green, 1991; 

Messina, 1991). 
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There are several classification schemes for parallel computer architectures based 

on design and functional characteristics. Existing parallel computer architectures can be 

distinguished in two categories based on the relation between the sequence of instructions 

executed, and the sequence of data operated on (Ortega, 1988; Duncan, 1990; Fox, 1991; 

Green, 1991): single instruction stream, multiple data stream (SIMD), and multiple 

instruction stream, multiple data stream (MIMD). 

In a SIMD machine, a controller processor broadcasts a single instruction to all 

the individual processors which synchronously execute the instruction on different data 

(Ortega, 1988; Duncan, 1990; Green, 1991). Typical examples of SIMD computers are 

provided by the array processors, and the Connection Machine (Ortega, 1988; Green, 

1991). Pipelined vector processors (e.g. the Cray supercomputers) can also be viewed as 

SIMD machines (Ortega, 1988). 

Computers of the MIMD category consist of multiple autonomous processors, 

each executing asynchronously a particular set of instructions on a particular set of data 

(Ortega, 1988; Duncan, 1990; Green, 1991). Most existing parallel computers are MIMD 

(Ortega, 1988; Green, 1991). Examples of MIMD machines include the Sequent, Ncube, 

and Intel iPSC (Green, 1991; Messina, 1991). The autonomy associated with the 

individual processors in MIMD machines provides them with greater flexibility than the 

SIMD systems (Ortega, 1988; Messina, 1991). 

Parallel computers are also classified, based on how memory is available to the 

different processors, as shared versus distributed memory (Ortega, 1988; Duncan, 1990; 

Green, 1991; Messina, 1991). While in a shared memory system all processors have 

access to acommon memory, in a distributed memory system each processor has only its 

own (local) memory (Ortega, 1988; Green, 1991). Thus communication between different 

processors is done through the common memory for shared memory systems, and 

through message passing for distributed memory systems (Ortega, 1988; Green, 1991). 
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Another important aspect of parallel computers is the type of interconnection 

scheme providing communication between the different processors, and between 

processors and memory (Ortega, 1988). Several successful interconnection schemes are 

currently in use, such as meshes, switches, hypercubes, and hybrid schemes (Ortega, 

1988; Duncan, 1990; Fox, 1991). 

Parallel computers have evolved substantially during the last decade and that 

trend is expected to continue (Messina, 1991; Fox et al., 1994). The possibility of 

successful scaling to a large number of processors is shown by the testimony of high 

performance machines now operational (Messina, 1991; Fox et al., 1994). Many parallel 

computer architectures have proved to be reliable for engineering and scientific 

applications involving large-scale computations (Fox et al., 1988; Fox, 1991; Messina, 

1991; Camp et al., 1994; Dabdub and Seinfeld, 1994; Fox et al., 1994). In particular, 

models based on CA have been successfully implemented in parallel processors (Toffoli 

and Margolus, 1987; Fox et al., 1994). 

However, current use of parallel computers is still limited to some extent by the 

availability of software (Fox, 1991; Fox ef al., 1994). Substantial software development 

is needed in several areas such as standardized programming languages and compilers 

with support for parallelism, debuggers, libraries, performance evaluation, data 

visualization, and multi-user system management (Fox, 1991; Messina, 1991; Fox ef al., 

1994), 

In relation to the performance of today's parallel computers, their limitations 

typically are not in the internal computational speed of their microprocessors but in the 

performance of input and output (I/O) systems and slow communication between 

processors in distributed memory systems (Fox et al., 1994). 
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3.2 METHODOLOGY 

3.2.1 General Model 

The basic equation describing the concentration distribution in time and space of a 

water quality constituent subject to decay in a one-dimensional river or estuary is 

(Thomann and Mueller, 1987): 

— =-u— + E—>-k,C (3.1) 
Ox” 

where C (M/L?) is the constituent concentration, t (T) is the time, x (L) is the distance 

in the longitudinal direction, u (L/T) is the advective velocity, E (L°/T) is the 

longitudinal dispersion coefficient, and k, (T™') is the first-order decay rate constant. 

This equation takes into account three essential processes affecting the constituent 

distribution: advection (represented by the velocity term), longitudinal dispersion, and 

decay. It is typically solved using finite difference or finite element schemes. The use of 

CA principles is an alternative method to represent and solve the same problem. 

The development of a CA water quality model for a one-dimensional river or 

estuary has been presented in the previous chapter. It used a representation consisting of a 

line of cells. The amount of constituent is represented by the number of particles, with a 

defined mass, present in each cell. In the computer implementation of the CA algorithm, 

the number of particles present in each cell is stored in computer memory. Constituent 

concentration at a given cell is derived by dividing the product of the respective number 

of particles and the particle mass by the volume of that cell. This volume is defined by 

the cell length and cross-sectional area. Since the physical entity represented by a particle 

(a finite amount of constituent mass) is typically orders of magnitude smaller than the cell 
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volume, it is convenient to allow a cell to have more than a single particle. Each cell has 

no defined limit on the number of particles it can contain. This does not mean, however, 

that an unlimited number of states per cell are considered. The transition rules are 

iteratively applied to each particle, and they result in particles either moving to adjacent 

cells or disappearing from the system. This process corresponds to a two-state (particle or 

1, and no particle or 0) cellular automaton. 

These rules are defined in such a way that the local neighborhood of a cell is 

defined by just that specific cell. The rules account for the advection, dispersion, and 

decay processes. Each rule (representing a process) is considered independent of other 

rules (representing other processes). Cellular automata evolve as a result of applying a 

sequence of independent rules. However, in this methodology a particular rule can be 

applied more than once before the rule for the next process is called in. Synchronization 

of the various rules in the sequence is obtained by applying proportionally more often 

those rules using smaller time steps. 

Each cell in the CA model can be individually assigned any specific set of 

coefficient values (such as velocity, dispersion, and decay coefficients), which may or 

may not be time dependent. This translates into the possibility of having varying 

probability values for the same transition rule among different cells at a given time and/or 

among different times for a given cell. Values for velocity, dispersion, and decay 

coefficients, for instance, must be specified at user selected locations and times as part of 

the model input data. The model then assigns coefficient values at each time step for 

every cell, based on temporal and then spatial interpolation, typically using a linear 

interpolation algorithm. To satisfy the continuity equation, spatial interpolation of 

velocity involves converting velocity values to flow rates, based on cross-sectional areas, 

followed by flow rate interpolation, and finally conversion of flow rates back to 

velocities. 
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The transition rules are not necessarily applied to individual particles present in a 

cell, as suggested for simplicity above, but to groups or packets of particles which then 

become the units for computation. The rational underlying this approach is given next. 

It has been shown for the Random-Walk Particle Method (RWPM) that the 

random noise associated with model results, measured as standard concentration error, is 

a function of the inverse of the square root of the number of particles used in the 

simulation (Ahlstrom et al., 1977; Bagtzoglou ef al., 1992). However, computation time 

is a linear function of the number of particles (Ahlstrom et al., 1977). Finally, the noise to 

signal ratio, measured as standard error of concentration over concentration, is inversely 

related to the square root of concentration (Bagtzoglou et al., 1992). Assuming these 

results can be extended to the present CA model, they suggest an approach in which 

smaller mass particles are considered for cells having lower concentration, and larger 

mass particles are considered for cells with higher concentration. Model resolution can 

then be improved where most needed (where concentrations are lower) without a 

significant increase in computing time. 

To simplify the implementation of this approach, all particles are assumed to have 

the same mass. Preceding the application of a rule, particles in a cell are grouped in 

packets and each packet is then treated as a single particle. The number of particles 

included in a packet is the total number of particles in a cell multiplied by the packet 

fraction f, the relative size of the packets or groups of particles to which the CA rules are 

applied. 

When the number of particles included in a packet is a non integer, a procedure is 

used to guarantee conservation of particles. This involves allowing an additional packet, 

having more or less particles than the others. For instance, if f=0.1 and a cell contains 

1027 particles then there will be 10 packets (i.e., 1/ f ) of 102 particles each (1.e., the 

integer component of 1027: f=102.7) plus an additional packet which includes 7 particles 
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(i.e., 1027-10-102=7). Although this approach was used throughout this chapter, a better 

approach is to assign the extra particles to the regular packets by adding one additional 

particle to each packet until all extra particles have been assigned. This approach has the 

advantage of guaranteeing that the number of packets in cells is fixed (1/ f ) and that no 

large differences in the number of particles among the packets in a cell will result 

(packets differ by a single particle at the most). 

The particle mass selected should be small enough to allow the higher 

concentration cells to have each a number of particles several orders of magnitude higher 

than 1/ f. This will assure that only a few lower concentration cells will have a number 

of particles on the order of 1/ f. When the number of particles in a cell is 1/f, the limit 

of maximum packet resolution is reached. The setting up of the packets in each cell ts an 

efficient procedure since as mentioned earlier what is stored in computer memory is the 

number of particles in every cell. 

So far the CA model was described as one-dimensional. However, the model 

concept easily extends to higher dimensions. In the two-dimensional case the CA are 

represented by a grid of cells and the geometry of the modeled system dictates the shape 

of the grid. 

In the current two-dimensional implementation of the model, advection is still 

considered as a one-dimensional process, which is a common assumption in many 

models. This implies that the cell length in any spatial direction perpendicular to the 

direction in which advection occurs, does not affect the advection induced numerical 

dispersion. Therefore, this cell length can be chosen by the model user and is constrained 

only by spatial resolution requirements. 

Dispersion and decay, however, are two-dimensional. This involves having two 

independent rules for dispersion, each one defined along one of the two perpendicular 

directions of the cell grid. Therefore, particles are initially dispersed in one direction then 
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dispersed in a second direction. The simplicity of this approach arises from the fact that 

the dispersion rule in any direction is defined exactly the same way as described 

previously for the one-dimensional case. The decay rule is applied to every cell as in the 

one-dimensional case. The fact that the cells are organized as a two-dimensional grid 

naturally leads to a two-dimensional representation of decay. 

Independently of the number of dimensions incorporated in the model, initial 

conditions specifying the number of particles in each cell are required at the beginning of 

the simulation. This implies having in the model input data the constituent initial 

concentration at user specified locations. Based on spatial interpolation of these values, 

concentrations are obtained for every cell. Each concentration is then converted to a 

corresponding number of particles, based on the volume of the cell and the particle mass. 

When this conversion leads to a non integer number, the number of particles assigned to a 

cell is the integer component of the number, plus an extra particle if a generated 

uniformly distributed random number (between 0 and 1) does not exceed its fractional 

component. 

Dirichlet boundary conditions are handled in a similar way. Concentrations are 

specified for the upstream and downstream boundaries of the system, such as a river or 

estuary. Those concentrations can eventually be interpolated in time and/or space leading 

to concentration values at the boundary cells. Then these are converted to corresponding 

number of particles. At each time step the boundary conditions have to be specified, 1.e., 

the number of particles in boundary cells has to be reset, prior to each repetition of the 

advection and longitudinal dispersion rules. Dirichlet boundary conditions do not affect 

the outcome of the decay rule, since this rule does not involve any interaction between 

different cells. Given the way boundary conditions are implemented in the current model, 

only at upstream and downstream cells, the outcome of non longitudinal dispersion is not 

affected. 
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The implementation of gradient or Neumann boundary conditions in the CA 

model involves adjusting the number of particles in adjacent cells on the boundary to 

match a specified concentration gradient across those cells. To adjust the number of 

particles requires an algorithm that redistributes particles among the adjacent cells until 

the specified gradient is met. However, the existing particle movement at boundary cells 

makes the incorporation of gradient boundary conditions slightly more complicated than 

just described. First, the advection rule drains particles out of cells on the upstream 

boundary (this will occur at both upstream and downstream boundaries, although 

intermittently, when tidal conditions exist) simply because these particles are moved 

downstream while no particles enter these cells to replace them. Second, the dispersion 

rule produces localized particle deficits at the upstream and downstream boundaries as a 

result of particles leaking out of the system on both upstream and downstream cells. 

Contrary to Dirichlet boundary conditions which naturally counteract these effects, 

gradient boundary conditions do nothing to prevent it. Thus, the specification of gradient 

boundary conditions requires the simultaneous incorporation of particle fluxes on those 

boundary cells in such a way as to add new particles into the system. The purpose of 

these fluxes is to balance long-term particle deficits that would otherwise develop at those 

boundaries. 

The discussion above suggests that successful incorporation of gradient boundary 

conditions in the CA model is possible if additional measures are taken to counteract 

particle deficit problems. Although this research did not deal with the gradient boundary 

condition problem, particle deficits at boundary cells were observed during simple 

preliminary simulations testing the behavior of the CA methodology when using gradient 

boundary conditions. 

No-flow boundary conditions are included in the CA model to represent soil - 

water and air-water interfaces. These boundary conditions are incorporated in the rules 
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involving particle movement between cells, namely the advection and dispersion rules. 

This involves overriding the normal rule behavior when particles are selected to move to 

a neighbor cell which does not exist since it would lie past the system boundary. These 

particles are not allowed to move and stay in the original cell. 

Constituent discharges into the system are handled by adding particles to cells 

during a certain number of time steps depending on the duration of the discharge. Any 

nonpoint and point discharge can be considered. A rate of mass discharge is converted to 

number of particles based on the length of the simulation time step, the particle mass, and 

perhaps the size of the cell. When the number of particles to be added is found to be a non 

integer, the procedure described previously is used. 

3.2.2 BOD/DO Model 

A typical water quality model for biochemical oxygen demand (BOD) and 

dissolved oxygen (DO) follows a Streeter and Phelps formulation (Thomann and Mueller, 

1987), in which the BOD and DO behavior is represented by two different equations. Due 

to the dependence of the DO on the BOD, the two equations must be solved sequentially, 

with the BOD equation being solved first. 

Similarly, in the CA BOD/DO model, one cellular automaton is used for each of 

the two constituents. A stack of two one-dimensional (or two-dimensional) CA can then 

be visualized. Interaction between BOD and DO occurs only in the BOD decay process. 

A particle representing DO is removed from a cell in the DO cellular automaton each 

time a particle of BOD is removed from the corresponding cell of the BOD cellular 

automaton. In this way, BOD decay controls DO directly. 

A BOD/DO model also includes a source/sink term representing the change in 

DO due to exchange with the atmosphere (reaeration). In the CA model this process is 

MODEL APPLICATION USING PARALLEL PROCESSORS 68



conceptually similar to the first-order decay (as presented in chapter 2), in effect being a 

decay of deficit particles. This deficit is just the difference between the number of 

particles corresponding to oxygen saturation conditions and the actual number of particles 

present in a cell. A non-zero deficit can be either a positive (undersaturation) or negative 

quantity (supersaturation conditions). 

Therefore, the reaeration probability, P,,,, 1s defined as: 

K sor Mt 
P = aer —_— 

“T  0.003282(k,,,At ger y +0. 065914(k,,,At,.,) + 0.563833(k,,,At,., ) + 0.973541 

O< P.<l (3.2) 

where is the first-order reaeration rate constan ~ ), an is the time step for here k,,. is the first-ord t t tant(T™'), and Ar,,, is the t tep fi 

the reaeration process. The value of P,,.<1. As suggested above, the rule is designed to 

work for undersaturated and supersaturated DO conditions. When the DO deficit is 

positive, particles can be added to a cell; when negative, particles can be removed. 

As mentioned previously at each main time step the rules for the various 

processes are applied in sequence, and for simplicity that sequence is fixed. In the 

BOD/DO model, advection is applied to BOD and DO (and repeated q,,, times), 

followed by dispersion also applied to BOD and DO (and repeated @,,. times). Then, 

decay is applied to BOD (and repeated ,,. times). Finally, reaeration is applied to DO 

(and repeated q,,, times). 

3.2.3 Simulation Scenarios 

3.2.3.1. One-Dimensional Line Pulse Input 

This simulation is included solely to illustrate the impact of using the packet 

fraction approach on the model results and validation through comparison with other 
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models is not pursued. The simulation includes advection, dispersion, and decay in a one- 

dimensional river of uniform cross-section subject to a pulse discharge of a non- 

conservative constituent. The discharge occurs along a line in the longitudinal direction 

for a fixed distance. The longitudinal concentration profile just after the time of discharge 

follows a symmetric trapezoidal shape, with the concentration linearly increasing from 

zero to a constant value, staying at that value for most of the longitudinal distance, and 

then decreasing back to zero. This concentration profile includes a range of concentration 

values therefore allowing for observation of the effects on model noise-to-signal ratios as 

a function of concentration. The coefficients used in this simulation are space and time 

invariant. Table 3.1 summarizes parameter values for this simulation. 

3.2.3.2 Two-Dimensional Pulse Input 

The main objective of this simulation is to evaluate the behavior of a two- 

dimensional version of the CA model. A pulse input of a conservative constituent is 

considered in a river with a uniform rectangular cross-section. The model dimensions 

represent the longitudinal (x) and vertical (z) directions. The input discharge occurs at the 

top of the water column, i.e., at zero depth, and it is considered laterally well mixed. The 

simulation includes advection in the longitudinal direction, and dispersion in the 

longitudinal and vertical directions. Since decay is naturally extended from one to higher 

dimensions it is not considered here for simplicity reasons. Following advection, 
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Table 3.1 Parameter values used in the one-dimensional line pulse input simulation. 
  

CA Modeling Parameters 

  

General 
a 

A =50.0 m? 

M =4800¢ 

C,=0.0 mg/L * 

Cu = Cy, =0.0mg/L * 
At = 40.0 sec 

f =0; 0.0001; 0.001; 0.01; 0.1 

m, = 0.01; 0.1; 1.0; 10.0 g/part * 

  

Advection 

= 0.05 m/sec 

‘max = 9-1 m/sec 

=0.5 m’/sec 

adv max = 400.0 sec 

AX nar = 40.0 m 

At», = 40.0 sec 

Pia = | 

Ax =4.0m 

=
 

fy
 

Aw max 

e 

  

Dispersion 

E =45 m’/sec 
Ena = 4.5 m?/sec 

Alas max = 0-885 sec 

At, = 0.870 sec 

Pass = 46 

  

Decay 

ky. = 300.0 day" 

Kgec.max = 300.0 day"! 

AM jecmax = 2956.452 sec 

At... = 40.0 sec 

Paec =1 

  

Cross sectional area; 

Constituent mass instantaneously injected in each of 250 contiguous cells; the 100 

cells just upstream and downstream from those 250 cells are injected an amount of 
mass interpolated between 0 and 480 g and between 480 and 0 g, respectively; 

Constituent initial condition; 

Constituent upstream and downstream boundary conditions; 

A value f = 0 means packets were not used, i-e., particles were treated individually; 

Constituent particle mass; 

This is the user specified E,, ,, Value. Since Aft,,.< Ali, max (therefore Ax< Avx,,,.) 

the actual value for E,,, »., is only 0.05 m*/sec(from equation (2.9). 
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dispersion in the x direction is applied first (and repeated q,,, times) then followed by 

dispersion in the z direction (and repeated q;,, times). 

The results from the CA model are validated through comparison with the 

analytical solution for an instantaneous input of the two-dimensional advection- 

dispersion differential equation (Hemond and Fechner, 1994). The coefficient values used 

in this simulation are space and time invariant. Table 3.2 summarizes parameter values 

for this simulation. 

3.2.3.3 One-Dimensional Steady-State BOD/DO 

To illustrate the application of the CA model to a multiple constituent system, 

simple one-dimensional steady-state BOD and DO simulations are considered. First, a 

single BOD continuous discharge in a river with uniform cross-section is assumed. A 

second simulation incorporates multiple BOD and DO continuous discharges in a river 

with variable cross-section. In both cases longitudinal advection and dispersion, decay 

and reaeration are simulated as described previously. The results from the CA model are 

validated through comparison with the Streeter and Phelps model (Thomann and Mueller, 

1987). 

The coefficients used in the simulation for the uniform cross-section river are 

space and time invariant. Table 3.3 summarizes parameter values for this simulation. The 

coefficient values used in the simulation for the variable cross-section river are time 

invariant but vary with space. Table 3.4 summarizes parameter values for this simulation. 

Some of the parameter values are also depicted in the river system layout shown in Figure 

3.1. 
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Table 3.2 Parameter values used in the two-dimensional pulse input simulation. 
  

  

  

  

Modeling Parameters CA Only Parameters 

General 

W=100m ° At = 50.0 sec 

M=1.0kg ” f =0.1 

C, =0.0 mg/L “ m, = 0.002 g/part 

Cy. = Cp, =0.0mg/L * Az =0.5m ” 

Advection 

u = 1.0 m/sec Unar = 1.6 m/sec 

E yun mar = 0-5 m/sec 
Atay max = 1.562 sec 

Ax,,, = 2.499 m 
At, = 1.515 sec 

Pca = 33 

Ax =2.424m 

Longitudinal Dispersion 

E* = 4.955 m?/sec E*=4.5 m’*/sec 
E* , =4.5 m’/sec 

Atismax = 0-325 sec 

Ati,, = 0.325 sec 

Qi; = 154 

  

Vertical Dispersion 

E* = 0.005 m’/sec Ez, = 0.005 m’/sec 

Atismar = 12.442 sec 

Ati, = 10.0 sec 

Pas = 5 
  

Channel width; 

Constituent mass instantaneously injected at a longitudinal distance of 250 m and 

zero depth; 

Constituent initial condition: 

Constituent upstream and downstream boundary conditions; 

Constituent particle mass; 

Cell size in the vertical direction; 

This is the user specified EF, .,, Value. Since At,,<At (therefore Axv<Ax,,,,) adv max 

the actual value for E._,.,, is only 0.485 m?/sec (from equation (2.9)). 
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Table 3.3 Parameter values used in the one-dimensional steady-state BOD/DO 
simulation for a river with uniform cross-section and a single continuous discharge. 
  

  

  

  

  

  

Modeling Parameters CA Only Parameters 

General 

A =30.0 m’ Ar = 100.0 sec 

Wop = 750.0 g/sec ” f =0.1 
BOD, =0.0 mg/L ‘ m0? = m= 0.01 g/part 

DO, = 10.0 mg/L “ 

BOD, = BOD,, =0.0mg/L “ 

DO. = DOg, = 10.0 mg/L “ 

DO,,, = 10.0 mg/L * 

Advection 

u =0.5 m/sec Umax = 1.0 m/sec 

Evimmax = 2-5 m?/sec 

Alia. mar = 29.0 sec 

AXnar = 20.0 m 

At = 20.0 sec 

Par = 5 

Ax = 20.0m 

Dispersion * 

E =2.5 m’/sec 
Ena = 2-5 m/sec 

Migs max = 39-813 sec 

Ata, = 33.333 sec 

Pas = 3 

BOD Decay 

ky, =0.7 day” kaecmax = 0-7 day"! 

Mjecmax = 1095531.993 sec 

At, = 100.0 sec 

Patec =1 

DO Reaeration 

k,., = 4.0 day” Keermax = 4-0 day” 
Atoer max = 191706.265 sec 

At,,, = 100.0 sec 

Paer = | 
  

Cross sectional area; 

BOD loading rate, discharged at a distance of 20 km; 

BOD and DO initial conditions; 

BOD and DO upstream and downstream boundary conditions; 

DO saturation concentration, 

Particle mass for BOD and DO; 

Although the Streeter and Phelps model does not include a dispersion term, 

dispersion is still included in the CA model simulation. 
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Table 3.4 Parameter values used in the one-dimensional steady-state BOD/DO 
simulation for a river with variable cross-section and multiple continuous discharges. 
  

Modeling Parameters . CA Only Parameters ‘ 

  

General 

L, = 70.0 (1); 70.0 (II); 20.0 (II); 80.0 km (IV) ° 

O = 15.0 (1); 45.0 (I); 70.0 (II); 70.0 m’/sec (IV) * 

A = 30.0 (1); 45.0 (I); 87.5 (ID; 140.0 m? (Iv) “ 

Wop = 650.0 (1); 850.0 (II); 375.0 g/sec (I) * 

Wo = 240.0 (II); 125.0 g/sec (I) * 

BOD, =0.0 mg/L * 

DO, = 10.0 mg/L * 

BOD,,, = BOD,, = 0.0 mg/L * 

DO, = DO,, =10.0mg/L * 

DO,, =10.0 mg/L ' 

At = 100.0 sec 

f =01 
BOD __ . DO _ i m, =m, =0.01 g/part 

  

Advection 

u =0.5 ); 1.0 1); 0.8 CD); 0.5 m/sec (IV) U.., = 1.0 m/sec 

Exenme: = 2-5 m/sec 

Al 4, max = 20.0 sec 

AX, = 20.0 m 

At,. = 20.0 sec 

Pas = 5 

Ax = 20.0 m 

  

Dispersion * 

E =2.5 (1); 7.0 1); 7.4 (ID; 1.5 m?/sec (IV) 
Ena: = 7.4 m/sec 

Als, mar = 13.450 sec 

Als, = 12.5 sec 

Pa, =8 
  

BOD Decay 

k,. = 0.7 (1); 1.5 A); 1.0 day” (il and IV) Kusemaz = 1.0 day” 

Ab ise max = 511290.319 sec 

At,,, = 100.0 sec 

  

Pu. =1 

DO Reaeration 

k,,, = 3.5 (1); 3.0 (I); 4.0 (I); 2.0 day”! (IV) ke max = 4.0 day” 

Al... maz = 191706.265 sec 

At, = 100.0 sec 

,.,=1 

  

River section length; 

Flow rate; 

Cross sectional area; 

* BOD and DO initial conditions: 

BOD and DO upstream and downstream boundary conditions; 

DO saturation concentration; 

; Particle mass for BOD and DO; 

model simulation. 

The Roman numerals in parenthesis indicate the river section for which parameter values refer; 

BOD loading rates, discharged at a distance of 20.0 (1), 100.0 (II), and 140.0 km (III); 

DO loading rates, discharged at a distance of 70.0 (II) and 140.0 km (II); 

Although the Streeter and Phelps model does not include a dispersion term, dispersion is still included in the CA 
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3.2.3.4 One-Dimensional Tidal BOD/DO 

To test the validity of the CA model under dynamic conditions, BOD and DO 

profiles resulting from a single continuous discharge of BOD in a simple tidal nver 

system are simulated. The results are compared with a model solving the one-dimensional 

differential equations for the coupled BOD/DO system on an oscillating flow for a single 

continuous BOD discharge (Holley, 1969; Macdonald and Weisman, 1977; Giles, 1995). 

The cross-sectionally averaged longitudinal advective velocity, u, is time dependent and 

represented through an oscillating tidal velocity superimposed on a constant freshwater 

velocity (Holley, 1969): 

u=U, vusin( 2, (3.3) 

where positive velocity denotes flow towards the sea, Uy is the freshwater velocity 

associated with the river flow, u, is the amplitude of the tidal velocity, T,, is the tidal 

period, and ¢ is the time. Given this velocity function the CA model parameter u,,,, is 

given by 

Unax =U, + U,. (3.4) 

The coefficient values used in this simulation are space and time invariant with 

the exception of the time variant velocity. Sine interpolation is used in the CA model to 

calculate velocity at any time based on flood, ebb, and slack values of velocity for the 

entire simulation period. At each time step in the simulation, a time averaged velocity 

over the entire length of the time step is obtained through 3-point numerical integration 

using Simpson's rule. 
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The scenario values used in the CA simulation and differential equation model 

follow a combination of those reported by Holley (1969) and Giles (1995). Table 3.5 

summarizes parameter values for this simulation. Notice in Table 3.5 that the value for 

the dispersion coefficient in the CA model is 58.68 m*/sec, instead of 60.0 m*/sec, to 

account for numerical dispersion. However, the difference between these two values is 

less than the E value of 2.03 m*/sec because as shown below, the actual numerical 
num max 

dispersion is less than E (which just represents the maximum possible value for 
nam max 

numerical dispersion). These considerations also apply to Table 3.2. 

To get a measure of the actual numerical dispersion introduced by the model, an 

average value E,,, during a time period (t,-—t,) for the actual numerical dispersion is 

derived from equation (2.8) as: 

ff 0-Suse{ 1 HL) a 
u 
max E sn (3.5) 

t,-t, 
~ 

With the values from Table 3.5 and if equation (3.3) is substituted for u in 

equation (3.5) and the integral is evaluated over a tidal period, E... is 1.32 m’/sec. This 

means the average numerical dispersion introduced by the CA model during a tidal cycle 

is only about 65% of the maximum allowed numerical dispersion. 

This exercise leads to the conclusion that equation (3.5) can be incorporated in the 

CA model to quantify numerical dispersion introduced during a simulation time step. 

Then this amount would be subtracted from the original dispersion coefficient value 

(representing the real dispersion to be simulated at that time step) before applying the 

dispersion rule. As long as numerical dispersion does not exceed the real dispersion, this 

approach will mask numerical dispersion making it virtually absent. 
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Table 3.5 Parameter values used in the one-dimensional tidal BOD/DO simulation. 

  

  

  

  

  

Modeling Parameters CA Only Parameters 

General 

A =90.0 m? At = 20.0 sec 

Wrop = 1050.0 g/sec ” f =01 

T, = 12.4 hr m0? = m= 0.05 g/part ’ 
BOD, =0.0mg/L “ 

DO, = 10.0 mg/L * 

BOD,, = BOD, = 0.0 mg/L * 

DO, = DO, =10.0 mg/L * 

DO,,, =10.0mg/L * 

Advection 

u, = 0.1 m/sec Umax = 0.9 m/sec 

u, = 0.8 m/sec Exum mar = 5-0 m?/sec 

u=u, tu, an Att: max = 49-383 sec 

[equation (3.3)] AXnar = 44.4m 

At, ¢ = 20.0 sec 

Pac = | 

Ax = 18.0m 

Dispersion 

E = 60.0 m’/sec E = 58.68 m’/sec 
E. = 58.68 m*/sec 

Al gis max = 1.374 sec 

At, = 1.333 sec 

Pais = 15 

BOD Decay 

kg. =0.3 day” Ksecmax = 0-3 day 
Miecmax = 255645 1.694 sec 

At... = 20.0 sec 

Prec = | 

DO Reaeration 

ki, = 1.0 day" koermar = 1.0 day” 

Ayer max = 165172.407 sec 

At, = 20.0 sec 

Paer = | 
  

Cross sectional area; 

BOD loading rate, discharged at a distance of 15 km; 

BOD and DO initial conditions; 

BOD and DO upstream and downstream boundary conditions; 

DO saturation concentration; 

Particle mass for BOD and DO; 

This is the user specified E,,, .., Value. Since At,,< Af,» max (therefore Ax< Ax,,,,) 

the actual value for E,, ,, is only 2.03 m’/sec (from equation (2.9)). 
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3.2.4 Parallel Computer Implementation 

A CA model is computationally intensive. A large number of simple 

computations must be done to update the CA at each time step of the simulation. 

Computer architectures exploiting the high degree of parallelism associated with the CA 

structure are desired. 

During the development of the CA model as presented in chapter 2, the 

algorithms were implemented in a serial (von Neumann) computer. Although this 

architecture is satisfactory for initial testing of the behavior of the model, it becomes 

severely time limiting when trying to simulate real water quality problems. 

To improve performance, an implementation on a parallel (or concurrent) 

machine was pursued (Intel Paragon). This machine has MIMD architecture, distributed 

(local) memory, and a two-dimensional mesh topology (Fox et al., 1994). The Intel 

Paragon has a configuration of up to 4096 second generation Intel i860 processors 

(nodes) (Fox et al., 1994). Thus, each processor has its own memory and no direct 

knowledge of the work being done by other processors. This is well suited to the 

simulation of CA since the mechanism of updating a cell is typically local. To update its 

boundary cells, however, a processor may need to receive data from its adjacent 

processors, and this is accomplished by simple message passing. The use of a MIMD 

distributed memory implementation has also the added advantage of facilitating code 

portability to a network of workstations (Dabdub and Seinfeld, 1994). 

Therefore, the parallelism associated with the structure of the CA is exploited here 

by distributing the work load for the CA among different processors. Since the number of 

computations associated with each processor is large, the overall savings in computation 
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time are expected to typically offset the increase in overhead due to any necessary 

communication between processors. 

Based on the above considerations, a domain or geometric decomposition strategy 

is used to divide the computing load among the different processors (Wilson, 1993). 

Regardless of the number of dimensions involved in the simulation a one-dimensional 

(longitudinal) domain decomposition is here used. A two-dimensional decomposition was 

not pursued since it would lead to a greater message traffic (Dabdub and Seinfeld, 1994). 

Therefore, the domain is divided in a certain number of vertical slices, with all slices 

having about the same number of cells. The number of slices is given by the number of 

worker nodes available for the simulation. Each domain slice (subdomain) is then 

assigned to a particular worker node. The worker nodes are the processors responsible for 

executing the CA simulation in parallel. 

There is also an additional processor, the manager node, responsible for setting up 

the simulation, supplying the input data to the different worker nodes, and collecting their 

output. However, the existence of a manager node is not a requirement in the 

implementation of the CA model. The model can be implemented using only worker 

nodes. Then the tasks which otherwise would be the responsibility of a manager node are 

instead performed by the worker nodes themselves. This leads to larger code and memory 

requirements for the worker nodes while reducing communication overhead (by 

eliminating communication with a manager node). 

To be more specific, the manager node is initially responsible for: loading to 

memory the input datasets; setting up the grid domain; domain decomposition and 

assignment of the resulting subdomains to the available worker nodes; computing model 

parameters such as rule time steps and rule repetitions; and sending parameter values and 

initial conditions to the appropriate worker nodes. Then at each simulation time step, the 

manager node is responsible for: temporal interpolation of model coefficients, including 
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velocity, dispersion, decay, and source (discharge) coefficients, and of boundary 

conditions; sending those values to the worker nodes; waiting for completion of the 

simulation time step by all worker nodes; and receiving simulation results from all 

worker nodes at specific output times and writing them to disk. 

The worker nodes are responsible for receiving the initial data from the manager 

node, namely the subdomain, parameter values, and initial conditions. Then at each time 

step they are responsible for: receiving the updated model coefficients and boundary 

conditions from the manager node; spatial interpolation of those coefficients and of 

boundary conditions; applying the CA rules to their respective subdomains; notifying the 

manager node of the completion of the simulation time step; and sending simulation 

results to the manager node at specific output times. 

Communication between worker nodes is required during each execution of the 

advection and longitudinal dispersion rules. The larger the number of repetitions of these 

rules at each time step (i.e., the larger g,,, and qj,,), the greater the number of 

communications involved. A benefit of the domain decomposition being solely along the 

longitudinal direction is that the vertical dispersion rule does not entail any 

communication. Since decay and reaeration rules do not involve any interaction between 

adjacent cells they require no communication whatsoever. 

3.3. RESULTS AND DISCUSSION 

3.3.1 One-Dimensional Line Pulse Input 

The analysis of the results from this simulation concentrates on snapshots of 

model behavior obtained at the end of 10 time steps (i.e., at 400 sec simulation time). A 

total of eight snapshots are presented corresponding to different combinations of packet 

fraction values and particle mass. By varying the particle mass, one controls the number 
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of particles in the cells. Decreasing the particle mass increases the number of particles 

and vice-versa. 

The simulation snapshots are organized in four groups, with each group showing 

the results for two simulations. The first simulation in each group has a packet fraction of 

zero (which simply means particles are allowed to behave independently of each other 

and thus no packets are used) and an average number of particles per cell, Np, of 

approximately a power of ten. The average value, Np, is based solely on the cells for 

which the concentration is on the higher plateau portion of the concentration curve. This 

value of Np is intended to be approximately the same as the number of packets per cell 

(i.e., the inverse of the packet fraction) for the second simulation. In reality the Np for 

the first simulation ended up being slightly higher (by a factor of 1.17 to 1.20) than the 

inverse of the packet fraction for the second simulation. The second simulation in each 

group always has an average number of particles per cell of about 10° (in reality 1.15 to 

1.22 times that value). The purpose is to compare the quality of results obtained from 

identical simulations except for the use of the packet fraction approach. 

Figure 3.2 shows these results. Smoothed concentrations are obtained through 5 

passes of a 5-point moving average algorithm. Noise to signal ratios are obtained for the 

concentrations before smoothing using the smoothed concentration for the simulation 

with f=0 and N,p=10* as a measure of the true signal. The computation time refers to 

the model iteration corresponding to the 10th time step. It represents the summation of 

the individual computation times for the 12 worker nodes used in the simulation. 

Comparison of the results from three of the groups clearly shows that the packet 

fraction approach leads to a notable reduction in the noise to signal ratio at the lower 

concentration range. Moreover the noise to signal ratio increases, although only slightly, 

at the higher concentration range. This slight increase is likely an artifact resulting from 

Np for the first simulation being slightly higher than the inverse of the packet fraction for 
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Figure 3.2 Comparison of concentration profiles, noise to signal ratio, and 
computation time from CA model simulations for evaluation of the effects of the packet 
fraction approach. (Model input parameters from Table 3.1.) 
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the second simulation as noted previously. For the remaining group, the pair f=0, 

N,=10" and f=0.0001, N,p~10", a reduction in the noise to signal ratio at the lower 

concentration range is absent because Np~10* is about the same as 1/f . This represents 

the conditions in which the maximum packet resolution has been reached. 

The results from each group consistently show that the use of the packet fraction 

approach does not incur any significant penalty in terms of computation time. The data 

suggest that the packet fraction approach has the benefit of reducing the noise to signal 

ratio at lower concentrations without a significant tradeoff in computation time. 

One additional benefit from using the packet fraction approach is the resulting 

equalization of the work load of cells having different number of particles (as long as 

cells have at least 1/f particles). This is important when domain decomposition is used 

to split the work among various processors and thus the cell entity represents the limit on 

the decomposition procedure. In addition it provides some dynamic load balancing as the 

number of particles in the cells changes during the course of the simulation. 

Decreasing the value for the packet fraction clearly increases the computation 

time while significantly reducing the variability of the results. This suggests that criteria 

for the selection of desirable values of the packet fraction must consider a compromise 

between precision of model results and execution time. 

3.3.2 Two-Dimensional Pulse Input 

Figure 3.3 shows the conservative constituent concentration contour lines at three 

different times in the simulation. The CA results depicted correspond to an average of the 

results of two different simulations followed by smoothing with 3 passes of a two- 

dimensional 9-point moving average algorithm (Fortner, 1992). The CA results show 

good agreement with the results from the differential equation. 
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To complement these results Figure 3.4 is presented. It shows concentration 

profiles for a longitudinal and a vertical transect at a simulation time of 25 minutes. Both 

transects are through the point of maximum plume concentration. Overall, these results 

suggest that the process of simply averaging different simulations does not lead to a 

decrease in the scattering of the CA results. This finding is unexpected since in the 

previous chapter, averages of 100 different simulations did produce smooth CA results. 

Furthermore, it shows that a smoothing algorithm effectively smoothes the CA results. 

The combination of averaging different simulations followed by smoothing does not 

seem to lead to a substantial improvement in predictions compared to just smoothing the 

results for a single simulation. In addition, the results in Figure 3.4 confirm the good 

agreement between the CA model and the differential equation. 

3.3.3 One-Dimensional Steady-State BOD/DO 

Simulation results for the uniform cross-section river are shown in Figure 3.5 in 

which the BOD/DO CA model is compared with the Streeter and Phelps model. These 

CA model results are from a single simulation and correspond to a simulation time of 

5.79 days at which time steady-state conditions are assumed to exist. From these 

comparisons the CA model is clearly capable of describing the BOD behavior and the 

DO sag curve as accurately as the traditional approach based upon differential equations. 

These conclusions are also supported by the simulation results for the variable 

cross-section river shown in Figure 3.6. These CA model results are also from a single 

simulation and correspond to a simulation time of 5.78 days at which time steady-state 

conditions are assumed to exist. These results also show that the CA model can handle 

spatial changes in model coefficients very well. 

Although dispersion is included in these CA simulations it obviously has no 

significant influence in the results since during steady-state conditions the effect of the 
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25 minutes after the discharge. Comparison between the CA model and the two- 
dimensional advection-dispersion differential equation. 
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and Phelps model. The CA results are from a single model simulation. (Model input 
parameters from Table 3.3.) 
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Figure 3.6 Concentration profiles for BOD and DO at steady-state for a river with 
variable cross-section and multiple continuous discharges. Comparison between the CA 
model and the Streeter and Phelps model. The CA results are from a single model 
simulation. (Model input parameters from Table 3.4.) 
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dispersion process is typically minimal. The results above illustrate once again that a 

smoothing algorithm substantially reduces the variability associated with the CA results. 

Figure 3.7 shows, for the uniform cross-section river simulation, the number of 

BOD and DO particles contained in all subdomain cells of each worker node. Also shown 

is the computation time for each worker node corresponding to a single model iteration. 

All values refer to the iteration corresponding to a simulation time of 5.79 days. 

The results illustrate the load balancing associated with the packet fraction 

approach. Despite the fact that most worker nodes show substantial differences in the 

number of BOD and DO particles being processed, their computation times are similar. 

That is not the case for node | since its subdomain cells have no BOD particles. And for 

node 2 since only a minute fraction of its subdomain cells (the most downstream cells) 

actually contain BOD particles. As expected, the computation time for these two nodes is 

substantially smaller than for the other nodes despite the use of the packet fraction 

approach. 

Similar considerations can be drawn from Figure 3.8 which shows, for the 

variable cross-section river simulation, the number of BOD and DO particles contained in 

all subdomain cells of each worker node. Also shown as before is the computation time 

for each worker node corresponding to a single model iteration. All values refer to the 

iteration corresponding to a simulation time of 5.78 days. The load balancing property of 

the packet fraction approach can easily be viewed as dynamic load balancing since it 

keeps balancing the work load across nodes as the number of particles in the nodes 

changes through time. 

The close resemblance of the profiles of number of particles and the profiles of 

concentration for both BOD and DO which can be seen between Figures 3.5 and 3.7 is 

absent in Figures 3.6 and 3.8. This is because in the variable cross-section river the 

volume of the cells vary accordingly and therefore identical concentrations can be 
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Figure 3.7 = Distribution of the number of BOD and DO particles and the computation 
time among the worker nodes, corresponding to the CA simulation results of Figure 3.5. 
The worker nodes are numbered based on an upstream to downstream ordering of their 
subdomains. 

MODEL APPLICATION USING PARALLEL PROCESSORS 92



“SUIBWIOPQNS 
JI94) 

JO 
SULIAPsO 

Weas)suMOp 
0) 

W
e
o
N
s
d
n
 

ue 
UO 

paseg 
poJoquINU 

a1e 
SapOU 

JAYIOM 
JY] 

“O'S 
B
N
B
I
 

JO 
s}jnsal 

UONR[NWIS 
YD 

ay) 
0) 

SUIpUodsalOo 
‘sapou 

JoyJom 
oy) 

Suowe 
su) 

UONeIndWIOS 
ay) 

pue 
sajonied 

O
G
 

pue 
G
O
 

Jo 
Joquinu 

9y) 
Jo 

uONNqMISIq 
g’¢ 

aundry 

SPON 
J
O
Y
O
N
 

6v 
ZV 

SV 
CV 

IV 
G
E
L
E
S
E
 

SCE L
E
 
6
c
 
4
e
S
c
c
 

ic 
GE 

Z
L
E
G
L
E
L
 

LI 
6 

L
G
 

E€ 
FL 

e
w
,
 

u
o
y
e
i
n
d
w
o
g
 

s
a
j
o
e
d
 

O
d
 

S9IjIVed 
G
O
 

(98S) sui, UOITe]INdWOD 

5 

(SUOI|[Iq Ul) SAjNWed JO JaQUINN 

°-0..0-9°0--9..9 
0
:
9
-
0
-
0
-
-
9
:
-
0
-
O
.
9
-
0
 
8
-
0
 
o
O
 

oN 
8 

w
e
a
i
]
J
S
U
M
O
G
 

w
e
a
s
s
d
n
 

 
 
 
 

93 MODEL APPLICATION USING PARALLEL PROCESSORS



associated with a different number of particles. Thus, and depending on the relation 

between the volumetric size of the cells, the load balancing effect of the packet fraction 

approach can still be of real significance when constituent concentrations are identical 

across cells. 

Figure 3.9 shows execution times as a function of the number of worker nodes 

used in the uniform cross-section river simulation. The measured times are CPU times. 

Each node measures its own execution times using the built in function mclock() which 

returns relative time in milliseconds. Subtraction of the values returned by this function at 

two different points during code execution leads to an elapsed time. 

This procedure is used in each worker node to measure elapsed times 

corresponding to the computation portions of the code. By accumulating all these elapsed 

times a value for the computation time is obtained. The same procedure is also used to 

obtain a time representing the sum of the computation and worker-worker communication 

(communication between a worker node and other worker nodes) portions of the code. 

And similarly to obtain a time representing the sum of the computation, worker-worker 

communication, and manager-worker communication (communication between the 

manager node and the worker node) portions of the code. This time accounting 

methodology is performed for each model iteration, corresponding to each simulation 

time step. The manager node uses the same basic procedure to obtain an overall execution 

time for the 5.79 days of model simulation. This includes the time for computation in all 

nodes, communication among worker nodes and between worker nodes and the manager 

node, and I/O for all nodes. 

The execution times obtained from the worker nodes are shown in Figure 3.9, 

where each value is an average of the times for all worker nodes during 99 consecutive 

iterations obtained from a single simulation. These iterations are the 99 iterations 

immediately preceding the iteration corresponding to a simulation time of 5.79 days and 
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are expected to still represent steady-state conditions. Also shown is the standard 

deviation associated with those results which incorporates the variability in the execution 

times from different worker nodes as well as from iteration to iteration. (Due to the y-axis 

logarithmic scale some standard deviation values are too small to be visible in the plot.) 

On the other hand, each overall execution time from the manager node, shown in Figure 

3.9, is a single measurement of the simulation performance using a particular number of 

worker nodes. 

The results from Figure 3.9 show a decrease in the computation plus 

communication time as the number of worker nodes in the simulation increases. This 

represents the typical behavior observed during implementation of models on parallel 

processors (Crowl, 1994; Dabdub and Seinfeld, 1994). It also means that, although it is 

possible to significantly decrease the computation plus communication time by using 

more processors, this time tends to level off and will eventually increase if the number of 

processors further increases (Dabdub and Seinfeld, 1994). This is due to the 

communication overhead which offsets the decrease in computation time from using a 

larger number of processors. This typical behavior is also visible in the overall execution 

time from the manager node. 

The number of processors at which the computation plus communication time 

begins to level off is machine dependent (through the processor and communication 

speeds) but also related to the specific problem being solved. In other words, it depends 

upon the relation between the computation and communication times. Multidimensional, 

multiple constituent problems with more computations per processor are likely to lead to 

greater decreases in computation plus communication time as more processors are made 

available. 

The substantial variability associated with the computation plus communication 

time in Figure 3.9 is clearly due to variability associated with the communication, since 

MODEL APPLICATION USING PARALLEL PROCESSORS 96



the standard deviation of the computation time is relatively small. The variability in the 

computation time is expected to be affected by the randomness associated with the CA 

model and the degree of load balancing, as well as by random events occurring in the 

computing system (Crowl, 1994). The variability in the communication time is also likely 

affected by such random events. 

Based on these findings, the overall execution time from the manager node is 

expected to be characterized by substantial variability. However, the values presented in 

Figure 3.9 are a strong indication of the poor performance of the CA model. At an 

optimum number of processors the overall time for the execution of the 5.79 days of 

model simulation is still as high as 6.5 hours. 

It is instructive to note that of the average computation time reported in Figure 3.9 

about 70% represents time spent by the worker nodes tracking particles through the rules 

(which involves generating random numbers). The remaining 30% is time spent by a 

worker node on spatial interpolation of model coefficients and execution of the code 

loops to check to see if particles are present in every subdomain cell. Obviously, if a 

smaller packet fraction was used, the time spent on particle tracking would be a larger 

percentage of the computation time. 

3.3.4 One-Dimensional Tidal BOD/DO 

Figure 3.10 visualizes the temporal evolution of the advective velocity throughout 

the simulation, highlighting the points for which model results are presented. Results are 

only shown for slack water times to minimize the amount of plotted data while showing 

results over a complete tidal cycle. 

Figure 3.11 shows those results for a single simulation of the BOD/DO CA model 

and the differential equation (numerically integrated). During the tidal cycle for which 

results are shown, the mass of constituent starts by moving upstream (during flood tide, 
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Figure 3.10 Graphical representation of the time evolution of the advective velocity for 
the simulation scenario corresponding to Table 3.5. The circles indicate the time at which 
model results are shown in Figure 3.11. 
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Figure 3.11 Concentration profiles for BOD and DO at successive slack water times over an entire tidal cycle. The BOD is 

being continuously discharged at a distance of 15 km. Comparison between the CA model and a differential equation model as 

described in the text. The CA results are from a single model simulation. (Model input parameters from Table 3.5.)



i.e., while the advective velocity is negative), then halts and changes direction (at slack 

water, 1.e., when the advective velocity is zero), and moves back downstream (during ebb 

tide, i.e., while the advective velocity is positive). In comparison to flood tide, the 

amplitude of the advective velocity is largest and the tide duration is longest during ebb 

tide. Therefore, during a tidal cycle there is a net downstream movement of constituent 

mass. This is best seen for the BOD. 

The results show a very good agreement for the BOD and DO between the two 

models over an entire tidal cycle, despite the expected noise associated with the CA 

solution. The noise is once again substantially reduced through the application of a 

smoothing algorithm. Although here results are only shown for slack water times the 

same good fit was obtained for the flood and ebb times as well. 

These CA model results show that the model can handle temporal changes in the 

advective velocity very well, and suggests that a similar behavior could be expected from 

temporal changes in other model coefficients as well. 

3.4 CONCLUSIONS 

Cellular automata are a promising new approach for modeling water quality 

problems. The CA model represents fundamental water quality processes such as 

advection, dispersion, decay, and reaeration as reliably as the traditional approach of 

differential equations. It is capable of adequately simulating one and two-dimensional, 

single and multiple constituent, steady-state and transient, and spatially invariant and 

variant systems. Although the model is subject to advection induced numerical dispersion 

this dispersion can be minimized. In addition, it can easily be incorporated into real 

dispersion. 
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The use of the packet fraction approach leads to a significant reduction in the 

noise to signal ratio at lower constituent concentrations, and to an equalization of the 

work load among cells having different number of particles (as long as cells have at least 

1/f particles) and thus to some dynamic load balancing. The approach does not seem to 

involve any significant tradeoffs. Moreover, decreasing the value for the packet fraction 

clearly increases the computation time while significantly reducing the variability of the 

CA model results. Also the application of smoothing algorithms substantially reduces that 

variability. 

The CA model is easier to understand and implement than the traditional 

numerical models. Implementation of the CA model on parallel processors having a 

MIMD distributed memory configuration was feasible and posed no major difficulties. A 

large number of simple computations must be done to update the CA at each time step of 

the simulation making the CA model computationally intensive. Although model 

implementation was not optimized for performance, the model performed poorly even 

when using an optimum number of processors. Yet, it is possible that for more complex 

simulations, having higher computation-to-communication ratios, significant 

improvements in model performance could be attained with implementation on massively 

parallel computers. 
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4 EUTROPHICATION MODELING WITH 
CELLULAR AUTOMATA 

The purpose of this chapter is to illustrate how the concepts presented in the 

previous chapters can be used to develop a more complex CA model. Eutrophication 

modeling constitutes an appropriate example since it involves multiple water quality 

constituents interacting through numerous processes. The development of such a model 

using the methodology already described will be illustrated. The goal of this chapter is 

solely to demonstrate that more complex water quality models are possible with the CA 

methodology. It does not attempt to provide an exhaustive representation of all water 

quality constituents and processes pertaining to eutrophication, nor does it attempt to 

fully examine the applicability of the CA model. Therefore, no CA simulations or 

comparisons with other models are presented in this chapter. 

Figure 4.1 shows the constituents and processes included in a typical 

eutrophication model. Figure 4.2 illustrates external sources and sinks typically found in 

this kind of model. The remaining of this chapter shows how the CA methodology is used 

to represent each of the above processes in the context of the CA model discussed 

previously. As expected from the methodology presented in previous chapters the 

parameters required by the CA eutrophication model are also typical of parameters 

included in other water quality models. 

4.1 WATER QUALITY CONSTITUENTS 

As show in Figure 4.1 a total of eight water quality constituents are included in 

the CA eutrophication model. These are the CBOD (carbonaceous BOD), DO, 

phytoplankton as chlorophyll-a, organic nitrogen, ammonia, and nitrate all expressed as 

nitrogen, and organic and inorganic phosphorus both expressed as phosphorus. 
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External Sources and sinks typically included in a eutrophication model. Figure 4.2 
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Some constituents, such as CBOD, organic nitrogen, and organic and inorganic 

phosphorus, typically appear in particulate and dissolved forms. Although the present CA 

model does not attempt to simulate the particulate and dissolved forms of these 

constituents, it takes into account the particulate and dissolved fractions through model 

input parameters. 

Similarly to the CA BOD/DO model already discussed, one cellular automaton is 

used to represent each of the water quality constituents. A stack of eight CA is then 

obtained. Some processes (such as dispersion and reaeration) affect many constituents 

independently or just a single constituent; while others (such as respiration and 

nitrification) represent interactions between constituents, therefore simultaneously 

affecting multiple layers of the CA stack. 

The relation between the particle mass of the different constituents can be as 

diverse as one desires. The particle mass for the CBOD can be for instance twice as much 

as the one for the DO. In this case, when one particle of CBOD is removed by decay, two 

particles of DO are also removed. In another example the particle mass for the CBOD can 

be two and a half times the one for the DO. In this case when one particle of CBOD is 

removed by decay, two and a half particles of DO are also removed. This means 

removing two particles of DO, and then applying some criteria to decide if a third particle 

is or not removed. Obviously, a simpler approach is to define the particle mass of CBOD 

and DO as being the same. Thus, when one particle of CBOD is removed, one particle of 

DO is also removed. 

These considerations suggest that a one-to-one relationship between the particle 

mass of different constituents seems to provide the simplest approach. In a model such as 

eutrophication, involving many constituents and processes, a relationship between the 

particle mass values can be obtained based on the stoichiometry of the 

photosynthesis/respiration processes and the chemical composition of one central 
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constituent, the phytoplankton. As seen in Figure 4.1, phytoplankton occupies a central 

position in the diagram, t.e., there is always at least one process relating phytoplankton 

with any of the other constituents. 

First, the stoichiometry for the photosynthesis/respiration reactions allows one to 

relate the phytoplankton with the DO and CBOD. A typical chemical equation 

representing photosynthesis/respiration is given by Stumm and Morgan (1981): 

106CO,+16N H; + HPO; +108H,O2— {Colac Oy1NioP}+1070,414H". (4.1) 

This equation shows that for every mole of phytoplankton (which represents 1.272 kg of 

phytoplankton carbon, based on the formula C,,./,,;0, ,,V,.P) formed by photosynthesis, 

107 moles of molecular oxygen (or 3.424 kg of oxygen) are released; and for every mole 

of phytoplankton (or 1.272 kg of phytoplankton carbon) lost through respiration, 107 

moles of molecular oxygen (3.424 kg of oxygen) are consumed. This also means that 

when phytoplankton cells, representing 1.272 kg of phytoplankton carbon, become part 

of the CBOD as a result of death or zooplankton grazing then that amount of CBOD is 

3.424 kg. Therefore, equation (4.1) gives an oxygen-to-carbon ratio for 

Photos 
photosynthesis/respiration, denoted simply as a, , of 2.69 (1.e., 3.424/1.272). 

Second, the information provided by ratios between the important chemical 

constituents making up the phytoplankton, such as the ratios of carbon-to-chl-a (a2%"”), 

nitrogen-to-carbon (a°?’), and phosphorus-to-carbon (a’"”’), allows one to relate the 

phytoplankton chl-a with the remaining water quality constituents. Typical values for 

these ratios are 50 mg C/mg chl-a, 0.25 mg N/mg C, and 0.025 mg P/mg C, respectively 

(Thomann and Mueller, 1987; Ambrose ef al., 1988; Park et al., 1993). 
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The values of particle mass for the various water quality constituents can then be 

obtained, based on the above discussed ratios and the user specified particle mass for the 

CBOD and DO, as follows: 

CBOD DO : 
m, =m, = model input value (4.2a) 

m DO 

Chla 

m P = photos phyto (4.2b) 

OC CChla 

OrgN | Chia phyto_ phyto 

mM, =m, Aye Acchta (4.2c) 

NH; NO; | Orgn 
m, =m)? =m, (4.2d) 

OrgP Chia phyto_ phyto 

m, =, PC “CChla (4.2e) 

[ P OrgP m mes = m, rg 
(4.2f) 

InorgP CBOD D0 Chia, OrgN NIL py NO; 4 OrgP 
P 

where m, ,m,,m, ,m,",m,°,m,°,m, , and m are, respectively, the 

particle mass for CBOD, DO, phytoplankton chl-a, organic nitrogen, ammonia nitrogen, 

nitrate nitrogen, organic phosphorus, and inorganic phosphorus. 

4.2 WATER QUALITY PROCESSES 

4.2.1 Advection and Dispersion 

The advection and dispersion processes included in the CA eutrophication model 

follow the methodology for advection and dispersion already presented in previous 

chapters. 

4.2.2 Aerobic Biodegradation 

Aerobic biodegradation of CBOD is treated as a first-order decay process and thus 

follows the methodology for first-order decay for BOD presented earlier in the context of 

EUTROPHICATION MODELING WITH CELLULAR AUTOMATA 109



the BOD/DO model. However, to consider the inhibitory effect of lower DO 

concentrations on the CBOD aerobic biodegradation rate, an additional factor 

representing the Michaelis-Menten kinetics is included (Ambrose eft al., 1988). The 

expression for the biodegradation probability, P,,,, 1s then given as: 
€g° 

  

A 
P= ; deg O<P,,,<1  (4.3a) 

~U. +U.z +U, +U, *  0,0032824,,,’ +0.065914A,,,” +0.563833A,,,+0.973541 8 

Aun=Au Cro = Alu (4.3b) 
K geg+ Coo 

where k,,, is the first-order aerobic biodegradation rate constant (T"'), Cy, is the DO 

concentration (ML™~), K,,, is the Michaelis-Menten half-saturation constant for oxygen 
8 

limitation on aerobic biodegradation (ML™), and Ati. is the time step for the 

biodegradation process. 

At each simulation time step, the value of P,,, is updated prior to each repetition 

of the biodegradation rule. Its value thus reflects the amount of DO present just before the 

rule is (re)applied. If during the application of the biodegradation rule to a given cell the 

number of particles of DO becomes depleted before the rule is applied to all CBOD 

particles, then the remaining CBOD particles are not allowed to biodegrade. 

4.2.3. Reaeration/Deaeration 

The representation of the DO reaeration/deaeration process, usually known simply 

as reaeration, is identical to the reaeration methodology described earlier in the context of 

the BOD/DO model. In a multidimensional model the reaeration rule is only applied to 

the upper cells, i.e., the cells contacting the air-water interface. 
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4.2.4 Denitrification 

Denitrification is treated as a nitrate first-order decay process and thus follows the 

general CA methodology for first-order decay. An additional factor, similar to the 

Michaelis-Menten expression, is included to represent the inhibitory effect of higher DO 

concentrations on the denitrification rate (Ambrose ef al., 1988; Park and Kuo, 1993; 

Park et al., 1993). The denitrification probability, P,,,, iS given as: 

A 
  Prien 5 ar O<P,,,<1 (44a) 
-0,0032824A,,,° + 0.065914A,,,” + 0.563833A,,,+0.973541 

K 
be hel Ze} A ten (4.4b) 

K en + Coo 

where k,,, is the first-order denitrification rate constant (T"'), K,,, is the Michaelis- 
den 

Menten half-saturation constant for oxygen limitation on denitrification (ML~ ), and At,,, 

is the time step for the denitrification process. 

Since the DO concentration is not directly affected by denitrification, at each 

simulation time step, the denitrification probability is evaluated only once and 

independently of the number of repetitions for the rule. The denitrification rule involves 

applying the CA methodology for decay to all particles in each cell of the nitrate cellular 

automaton using the probability value from equation (4.4). In addition, each time a 

particle of nitrate is removed from a cell in the nitrate cellular automaton an equivalent 

number of particles of CBOD is also removed from the corresponding cell of the CBOD 

cellular automaton. If the number of particles of CBOD becomes less than the equivalent 

number of particles before the rule has been applied to all nitrate particles, then the 

remaining nitrate particles are not allowed to decay. 
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den 
The equivalent number of particles of CBOD, Negopvo,, is based on the 

stoichiometric ratio between CBOD and nitrate for the overall denitrification and 

respiration reaction, and is given by: 

photos. NO, 

den 0c p 

"gop No, = ~~denCBOD (4.5) 
NC" p 

where a<°" is the nitrogen-to-carbon ratio for the denitrification reaction. Equation (4.5) 

can be simplified by substituting equations 4.2(b) through 4.2(d). The resulting 

expression Is: 

q Phyto 

den NC 
Ncgop' No, = den * (4.6) 

NC 

To calculate the value of a<°", the chemical equation for the denitrification 

reaction is needed. This equation is given by Stumm and Morgan (1981) as: 

5CH,O+4NO, +4H* “““>5CO, +2N, +7H,O. (4.7) 

This equation shows that for every 4 moles of nitrate (or 56 g of nitrate nitrogen) 

denitrified, 5 moles of CH,O (or 60 g of carbon) are consumed. Therefore, this gives a 

nitrogen-to-carbon ratio for denitrification a<°” of 0.93 (i.e., 56/60). 

Since the equivalent number of particles Nenop:No is likely to be a non integer, a 

stochastic approach is used to determine how many particles of CBOD to actually 

: : : d 
remove. That number of particles is always the integer component of nZpopyo,» plus an 

extra particle when a randomly generated uniformly distributed number (between O and 

. d 
1) does not exceed the fractional component of Nep5p. x6, « 

EUTROPHICATION MODELING WITH CELLULAR AUTOMATA 112



4.2.5 Nitrification 

Nitrification is treated as an ammonia first-order decay process and thus follows 

the general CA methodology for first-order decay. Additional factors representing 

Michaelis-Menten kinetics are included to consider the inhibitory effects of lower 

ammonia and/or DO concentrations on the nitrification rate (Ambrose ef al., 1988; Park 

and Kuo, 1993; Park et al., 1993). The nitrification probability, P,,,, is given as: 

A 
  

  

Pit = 3 a O<P,,<1 (48a) 
-0.0032824,,,,’ + 0.065914, ,,” + 0.563833A,,, +0.973541 

C 
Avie = Kal SX f 00 Ja (4.8b) 

Kot "+ Cyn, Kain + Coo 

where k.. is the first-order nitrification rate constant (T”'), Cyy, 1S the ammonia nit 

concentration (ML™~), K*;’ and K~? are the Michaelis-Menten half-saturation constants, 

respectively, for ammonia and oxygen limitation on nitrification (ML™~), and Az,,, is the 

time step for the nitrification process. 

At each simulation time step, the value of P,,, is updated prior to each repetition nit 

of the nitrification rule. Its value thus reflects the amount of ammonia and DO present 

just before the rule is (re)applied. The nitrification rule involves applying the CA 

methodology for decay to all particles in each cell of the ammonia cellular automaton 

using the probability value from equation (4.8). In addition, each time a particle of 

ammonia is removed from a cell in the ammonia cellular automaton a particle of nitrate 1s 

added and an equivalent number of particles of DO is removed from the corresponding 

cell of their CA. If the number of particles of DO becomes less than the equivalent 

number of particles before the rule has been applied to all ammonia particles, then the 

remaining ammonia particles are not allowed to decay. 
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nit : 
The equivalent number of particles of DO, 155. y,,,, 1s based on the stoichiometric 

ratio between DO and ammonia for the nitrification reaction, and is given by: 

nit NH, 

nit Ap,m 
Noo vn, = DO 

mM, 

(4.9) 

where a)... is the oxygen-to-nitrogen ratio for the nitrification reaction. Equation (4.9) can 

be simplified by substituting equations 4.2(b) through 4.2(d). The resulting expression is: 

nit . phyto 
nit _ Aor aye (4 10) 

DO NH; photos ° . 
Goc 

To calculate the value of aj, the chemical equation for the nitrification reaction 

is needed. This equation is given by Stumm and Morgan (1981) as: 

NH, +20,—““> NO; + H,0+2H". (4.11) 

This equation shows that for every mole of ammonia (or 14 g of ammonia nitrogen) 

nitrified, 2 moles of molecular oxygen (or 64 g of oxygen) are consumed. Therefore, this 

gives an oxygen-to-nitrogen ratio for nitrification a>. of 4.57 (i.e., 64/14). Again, since 

the equivalent number of particles Noorwns is likely to be a non integer, the stochastic 

approach described previously is used to determine how many particles of DO are 

actually removed. 

4.2.6 Hydrolysis 

The model includes hydrolysis (mineralization) of the organic nitrogen and 

phosphorus. Hydrolysis is treated as a first-order decay process of organic nitrogen and 

phosphorus and thus follows the general CA methodology for first-order decay. An 

additional factor representing the Michaelis-Menten kinetics is included to consider the 
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inhibitory effect of lower concentrations of organic nitrogen (or phosphorus) on the 

hydrolysis rate (Park and Kuo, 1993; Park er al., 1993). The hydrolysis probability, P,,,. 

1S given as: 

  Pa ; Awa O<P,,<1 (4.12a) 
*4  -0,003282A,,;' +0.065914A,,, +0.563833A,, , + 0.973541 

C,, Ana Kiva KutC, Abia (4.12b) 

where k,,, is the first-order hydrolysis rate constant (T"'), C,,, is the organic nitrogen (or 

phosphorus) concentration (ML*), K,,4 is the Michaelis-Menten half-saturation constant 

for organic nitrogen (or phosphorus) limitation on hydrolysis (ML~), and At,,q is the 

time step for the hydrolysis process. 

At each simulation time step, the value of P,,, is updated prior to each repetition 

of the hydrolysis rule. Its value thus reflects the amount of organic nitrogen (or 

phosphorus) present just before the rule is (re)applied. The hydrolysis rule involves 

applying the CA methodology for decay to all particles in each cell of the organic 

nitrogen (or phosphorus) cellular automaton using the probability value from equation 

(4.12). In addition, each time a particle of organic nitrogen (or phosphorus) is removed 

from a cell in the organic nitrogen (or phosphorus) cellular automaton a particle of 

ammonia (or inorganic phosphorus) is added to the corresponding cell of the ammonia (or 

inorganic phosphorus) cellular automaton. 

4.2.7 Photosynthesis 

Photosynthesis is treated as a phytoplankton first-order growth process which is 

similar to the general CA methodology for first-order decay. Additional factors are 

included representing the effects of light intensity and nutrient limitation (through 
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Michaelis-Menten kinetics) on the photosynthetic rate (Thomann and Mueller, 1987; 

Ambrose et al., 1988; Park and Kuo, 1993; Park ef al., 1993). The photosynthesis 

probability, P,,,, 1S given as: 

A 
Poo : pee O< P,,,<1 (4.13a) 

pt -0.003282A,,,; +0.065914A,,.° +0.563833A,,,+0.973541 P 
  

  

7 Ca Woof Cntr )L Crnored tf") 
Asro =| | min } DIN *| p>DIP InorgP I Kons *Cxn,+Cvo,} | Koto + Cinored 1 F 5 [ pho . pho 

i 
LIAt,, (4.13b) 

My] 

where mu is the phytoplankton first-order growth rate constant (T”'), / is the light 

intensity, /, is the phytoplankton photosynthesis saturating light intensity, C,, is the 

nitrate concentration (ML~), C imorep 18 the inorganic phosphorus concentration (ML*), 

f er is the inorganic phosphorus particulate fraction, Kono and Kono are the Michaelis- 

Menten half-saturation constants, respectively, for dissolved inorganic nitrogen (ammonia 

plus nitrate) and dissolved inorganic phosphorus limitation on photosynthesis (ML ~), 

and Ar,,, is the time step for the photosynthesis process. 

At each simulation time step, the value of P,,, is updated prior to each repetition 

of the photosynthesis rule. Its value thus reflects the available light intensity (which 

changes as a function of the phytoplankton concentration due to the phytoplankton self- 

shading effect) and the amount of ammonia, nitrate, and inorganic phosphorus present 

just before the rule is (re)applied. 

The photosynthesis rule involves applying the CA methodology for decay to all 

particles in each cell of the phytoplankton chl-a cellular automaton using the probability 

value from equation (4.13). However, since photosynthesis is a growth (negative decay) 

process, the rule adds phytoplankton chl-a particles instead of removing them. In 

addition, each time a particle of phytoplankton chl-a is added to a cell in the 

phytoplankton chl-a cellular automaton a particle of DO is added, and a particle of 
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ammonia and a particle of inorganic phosphorus are removed from the corresponding cell 

of their CA. This corresponds to the situation in which phytoplankton uses ammonia as a 

source of nitrogen. 

However, phytoplankton can use nitrate, instead of ammonia, as the source of 

nitrogen (Ambrose ef al., 1988). In this case, the photosynthesis rule removes a particle 

of nitrate (instead of a particle of ammonia) and possibly adds more than just a single 

particle of DO. This larger amount of DO is the result of the different oxygen 

stoichiometries for the photosynthetic reactions using ammonia and nitrate. A typical 

chemical equation for photosynthesis using nitrate as a source of nitrogen is given by 

Stumm and Morgan (1981): 

106CO, + 16NQ; + HPO, +122H,0+18H 4, Ha, oN, oP} +1380;. (4.14) 

The ratio of the released oxygen given by equations (4.14) and (4.1) is 1.29 (i.e., 

138/107). This means that when nitrate is the source of nitrogen the photosynthesis rule 

adds 1.29 particles of DO. This means one particle is added plus an extra particle when a 

randomly generated uniformly distributed number (between 0 and 1) does not exceed 

0.29. 

The ammonia preference factor (Ambrose ef al., 1988), which is a function of the 

ammonia and nitrate concentrations and varies between O and 1, is included in the 

photosynthesis rule to help determine which source of nitrogen to use in the 

photosynthesis process. For each newly photosynthesized particle of phytoplankton chl-a, 

a uniformly distributed random number (between O and 1) is generated and compared 

with the ammonia preference factor. If this random number does not exceed the ammonia 

preference factor then ammonia is used; otherwise nitrate is used instead. 

When the number of particles of ammonia and nitrate, and/or inorganic 

phosphorus in a given cell become depleted before the photosynthesis rule has been 
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applied to all phytoplankton chl-a particles then the remaining phytoplankton chl-a 

particles are not allowed to 'grow’. 

4.2.8 Respiration 

Phytoplankton endogenous respiration is treated as a phytoplankton first-order 

decay process (Thomann and Mueller, 1987; Ambrose ef al., 1988; Park and Kuo, 1993; 

Park et al., 1993) and thus follows the general CA methodology for first-order decay. The 

expression for the respiration probability, P,., is then given as: 
res? 

A res O< P. <i (4.15a) P= 5; <P < 
5 _0,003282A,,, +0.065914.4,,.” +0.563833A,,, +0.973541 res 
  

A,.s = k,,sAt res (4. 15b) 

where k,,, is the first-order phytoplankton respiration rate constant (T~') and At, is the 

time step for the respiration process. 

Since the value of the respiration probability is not affected by the application of 

the rule itself, at each simulation time step the respiration probability is evaluated only 

once and independently of the number of repetitions for the rule. The respiration rule 

involves applying the CA methodology for decay to all particles in each cell of the 

phytoplankton chl-a cellular automaton using the probability value from equation (4.15). 

In addition, each time a particle of phytoplankton chl-a is removed from a cell in the 

phytoplankton chl-a cellular automaton a particle of ammonia and a particle of inorganic 

phosphorus are added to, and a particle of DO is removed from the corresponding cell of 

their CA. If the number of particles of DO in a given cell becomes depleted before the 

rule is applied to all phytoplankton chl-a particles then the remaining phytoplankton chl-a 

particles are not allowed to decay through respiration. 
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4.2.9 Death 

Phytoplankton death (due to various causes such as parasitation, infection, and 

toxicity) is treated as a phytoplankton first-order decay process (Thomann and Mueller, 

1987; Ambrose et al., 1988) and thus follows the general CA methodology for first-order 

decay. The expression for the death probability, P,,,, is then given as: 

  P= ; Aca O< P,,,<1 (4.16) 
~0,003282A,,,° + 0.065914,” +0.563833A,,,+ 0.973541 

Ajeq = K ted laea (4. 16b) 

where k,,, is the first-order phytoplankton death rate constant (T™') and Ar,,, is the time dea dea 

step for the death process. 

Since the value of the death probability is not affected by the application of the 

rule itself, at each simulation time step the death probability is evaluated only once and 

independently of the number of repetitions for the rule. The death rule involves applying 

the CA methodology for decay to all particles in each cell of the phytoplankton chl-a 

cellular automaton using the probability value from equation (4.16). In addition, each 

time a particle of phytoplankton chl-a is removed from a cell in the phytoplankton chl-a 

cellular automaton a particle of CBOD, a particle of organic nitrogen, and a particle of 

organic phosphorus are added to the corresponding cell of their CA. 

4.2.10 Grazing 

The effect of zooplankton grazing on the phytoplankton is treated as a 

phytoplankton first-order decay process (Thomann and Mueller, 1987; Ambrose ef al., 

1988; Park and Kuo, 1993; Park et al., 1993) and thus follows the general CA 
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methodology for first-order decay. The expression for the grazing probability, P,,,, is 

then given as: 

Aura O<P,,,1 (4.17) 4 P= 

*r#" _0.0032824,,,’ +0.065914A,,,” +0,563833A,,,+0.973541 
a a 

  

Avra keraMora (4.17b) 

where k,,, is the first-order grazing rate constant (T™') and At,,, iS the time step for the 

grazing process. 

Since the value of the grazing probability is not affected by the application of the 

rule itself, at each simulation time step the grazing probability is evaluated only once and 

independently of the number of repetitions for the rule. The grazing rule involves 

applying the CA methodology for decay to all particles in each cell of the phytoplankton 

chl-a cellular automaton using the probability value from equation (4.17). In addition, 

each time a particle of phytoplankton chl-a is removed from a cell in the phytoplankton 

chl-a cellular automaton, it implies the following: (1) not a single particle from other 

constituents is added or removed; or (2) a particle of CBOD, a particle of organic 

nitrogen or ammonia, and a particle of organic or inorganic phosphorus are added to the 

corresponding cell of their CA. 

The decision between options (1) and (2) above is made based on the parameter 

representing the efficiency of assimilation or conversion of phytoplankton biomass to 

zooplankton biomass (Thomann and Mueller, 1987). For each particle of grazed 

phytoplankton chl-a, a uniformly distributed random number (between O and 1) 1s 

generated and compared with the efficiency of assimilation. If this random number does 

not exceed the efficiency of assimilation then option (1) is selected; otherwise option (2) 

is used. Note that, since the model does not attempt to simulate the zooplankton biomass, 
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any phytoplankton assimilated or converted into zooplankton biomass is in fact 

phytoplankton that simply disappears from the system. 

When option (2) is selected, meaning the grazed phytoplankton is not assimilated 

by the zooplankton, then the nitrogen content of the former phytoplankton can still be in 

organic form or already converted to ammonia. Similarly, the phosphorus can be in a 

organic or inorganic form. The decision between organic and inorganic forms for the 

nitrogen and phosphorus is made based on the fractions of not assimilated grazed 

phytoplankton nitrogen and phosphorus recycled to the organic pool (Ambrose ef ai., 

1988). For each particle of grazed but not assimilated phytoplankton chl-a, two uniformly 

distributed random numbers (between O and 1) are generated and compared with the 

above fractions. If a random number does not exceed a fraction value then the respective 

constituent organic form is considered; otherwise the inorganic form of the constituent is 

used. 

4.2.11 Settling 

Settling is typically treated as a first-order decay process (Thomann and Mueller, 

1987; Ambrose et al., 1988; Park and Kuo, 1993; Park et al., 1993) and thus follows the 

general CA methodology for first-order decay. The expression for the settling probability, 

P.,,, 1s then given as: 

A 
set 

Pia= 5 O< P..<1 (4.18a) 
~0,003282A,.,’ +0.065914A,, set * +0,5638334A,,, ans)! P 

t 

Ager = Ker A bt (4. | 8b) 

Vv 
k= (4.18c) 

sé. Az 
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where, for a given water quality constituent, k,,, is the first-order settling rate constant 

(T”'), v, is the settling velocity (LT ~'), f , is the particulate fraction, and At,,, is the time 

step for the settling process. The Az represents, as mentioned in the previous chapter, the 

cell size in the vertical direction (L ). 

The parameter f,, is included in equation (4.18) since settling affects only the 

particulate component of a constituent (Ambrose et al., 1988). The settling process 

applies solely to some of the water quality constituents namely the CBOD, 

phytoplankton, organic nitrogen, and organic and inorganic phosphorus. The values for 

the particulate fraction f p are between O and | for those constituents, with the obvious 

exception of the phytoplankton for which f,, is equal to 1. 

Since the value of the settling probability is not affected by the application of the 

rule itself, at each simulation time step the settling probability is evaluated only once and 

independently of the number of repetitions for the rule. In a model without a vertical 

dimension, the settling rule involves applying the CA methodology for decay to all 

particles in each cell of the constituent cellular automaton using the probability value 

from equation (4.18). However, in a model including a vertical dimension each time a 

particle of constituent is removed from a cell of its cellular automaton (with the exception 

of the bottom cells) an identical particle is added to the cell located just below the cell 

from which the particle was removed. 

The modeling approach just described obviously does not attempt to include more 

complicated processes involved in sediment dynamics. 
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4.3. EXTERNAL SOURCES AND SINKS 

As mentioned earlier, typical external sources and sinks included in a 

eutrophication model are shown in Figure 4.2. The way these sources are handled in the 

CA model has been already discussed in the previous chapter. 

Sediment-water fluxes which are both a source and sink are handled in a similar 

way. During a simulation time step the constituent mass flux is converted to a number of 

particles to be added to or removed from a sediment-water boundary cell of the 

constituent cellular automaton based on the length of the simulation time step, the 

boundary area of the cell, and the constituent particle mass. 

4.4 IMPLEMENTATION ON PARALLEL PROCESSORS 

The methodology just presented shows that a more complex CA model, such as 

for eutrophication, follows the same general approach of the simpler CA water quality 

model discussed in the previous chapters. Therefore, its implementation on parallel 

processors 1s straightforward. 

The new rules included in the eutrophication model are all based on the first-order 

decay rule even though in some instances, when Michaelis-Menten kinetics is used, they 

require an additional step of evaluating one or more constituent concentrations. (If 

second-order decay rules were present it would also require evaluating constituent 

concentration(s) but nevertheless these rules would again be similar to first-order decay.) 

Since concentrations are readily available from the number of particles in cells this extra 

step does not add a considerable computation penalty. 

As a final note, the new rules included in the CA eutrophication model (with the 

possible exception of the settling rule) do not require communication between processors, 
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therefore increasing model computation-to-communication ratio. This will lead to larger 

performance gains from model implementation on parallel processors. 
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5 CONCLUSIONS 

Parallel computing has recently appeared has an alternative approach to increase 

computing performance. In the world of engineering and scientific computing the 

efficient use of parallel computers is dependent on the availability of methodologies 

capable of exploiting the new computing environment. The research presented here 

focused on a modeling approach, known as cellular automata (CA), which is 

characterized by a high degree of parallelism, and thus is well suited to implementation 

on parallel processors. The inherent degree of parallelism also exhibited by the random- 

walk particle method provided a suitable basis for the development of a CA water quality 

model. The random-walk particle method is shown to be successfully represented using a 

CA approach. 

The simulation results in this research prove that it is possible to replace 

traditional differential equations by CA formulations in water quality modeling. 

However, they are only simple illustrations of the potential of these new methods and 

resources to solve complex water quality management problems. 

One major advantage with the CA model is the level of mathematics required to 

teach and understand water quality modeling. The model was found to be simpler to 

understand and implement than the traditional numerical models. The CA focus can be on 

the physical and chemical mechanisms at a microscopic level. The resulting transition 

rules can be understood by anyone with a basic algebra and statistics background. An 

understanding of calculus and numerical methods is no longer required to fully 

understand the modeling process. 

In relation to the specific objectives of this research, the conclusions are: 
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¢ CA methodology can be used to develop model representations of the more 

common water quality processes, namely advection, dispersion, and first-order 

decay; 

¢ those CA representations were shown to be accurate in spite of the discrete 

nature of the model. Numerical dispersion was quantified and procedures 

incorporated to minimize or eliminate its effects; 

e due to the independence between CA rules for different processes, these rules 

were easily integrated into water quality models, even in the case of the 

relatively more complex eutrophication model; 

e the CA model results for typical water quality modeling scenarios were 

successfully validated through visual comparison with existing analytical and 

numerical solutions. The substantial noise associated with the results of the CA 

model did not pose a significant difficulty during model comparisons since 

simple smoothing algorithms were successful in removing most of that 

variability; 

¢ the CA model was easily implemented on parallel processors having a MIMD 

distributed memory configuration. A large number of simple computations 

must be done to update the CA at each time step of the simulation making the 

CA model computationally intensive. Although model implementation was not 

optimized for performance, the model performed poorly even when using an 

optimum number of processors. It is possible, however, that for more complex 

simulations, having higher computation-to-communication ratios, significant 

improvements in model performance could be attained with implementation on 

massively parallel computers; 

e the packet fraction approach leads to a significant reduction in the noise to 

signal ratio at lower constituent concentrations, and allows for an equalization 
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of the work load among cells having different number of particles thereby 

leading to some dynamic load balancing. Using this approach does not seem to 

involve any significant tradeoffs. Moreover, decreasing the value of the packet 

fraction parameter clearly increases the computation time while significantly 

reducing the variability in the results of the CA model. 
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APPENDIX: LISTING OF THE C SOURCE CODE FOR 
THE MAIN COMPONENTS OF THE CA 
WATER QUALITY MODEL 

Global variables used (alphabetically): 

advectiveVelocity[1..numCellsLongit][1..numCellsVert] = u {floating-point} (array 
containing the advective velocity; model input value) [m/sec] 

atmosphDeposition[1..numCellsLongit].cbod = {floating-point} (vector containing the 

atmospheric deposition rate of CBOD; model input value) [ g/m*-sec | 

biodegradationCoef|[1..numCellsLongit][{1..numCellsVert] = k,,, {floating-point} (array 

containing the aerobic biodegradation coefficient; model input value) [ sec ‘Y 
boundCondDownstream[1..numCellsVert].cbod = {floating-point} (vector containing the 

downstream concentration boundary condition for CBOD; model input value) 

[g/m*] 
boundCondDownstream[1..numCellsVert].chla = {floating-point} (vector containing the 

downstream concentration boundary condition for phytoplankton chl-a; model 

input value) [ o/m” ] 

boundCondDownstream[1..numCellsVert].inorgp = {floating-point} (vector containing 
the downstream concentration boundary condition for inorganic phosphorus; 

model input value) [ g/m *] 

boundCondDownstream[1..numCellsVert].nh3 = {floating-point} (vector containing the 
downstream concentration boundary condition for ammonia; model input value) 

[g/m*] 
boundCondDownstream[1..numCellsVert].no3 = {floating-point} (vector containing the 

downstream concentration boundary condition for nitrate; model input value) 

[ g/m" 
boundCondDownstream[1..numCellsVert].o2 = {floating-point} (vector containing the 

downstream concentration boundary condition for DO; model input value) [ g/m *] 

boundCondDownstream[1..numCellsVert].orgn = {floating-point} (vector containing the 
downstream concentration boundary condition for organic nitrogen; model input 

value) [ g/m* | 
boundCondDownstream[1..numCellsVert].orgp = {floating-point} (vector containing the 

downstream concentration boundary condition for organic phosphorus; model 

input value) [ g/m” | 
boundCondUpstream[1..numCellsVert].cbod = {floating-point} (vector containing the 

upstream concentration boundary condition for CBOD; model input value) 

[g/m*] 
boundCondUpstream[1..numCellsVert].chla = {floating-point} (vector containing the 

upstream concentration boundary condition for phytoplankton chl-a; model input 

value) [ g/m*] 
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boundCondUpstream|1..numCellsVert].inorgp = {floating-point} (vector containing the 
upstream concentration boundary condition for inorganic phosphorus; model 

input value) [ g/m*] 
boundCondUpstream|[1!..numCellsVert].nh3 = {floating-point} (vector containing the 

upstream concentration boundary condition for ammonia; model input value) 

[g/m*] 
boundCondUpstream[1..numCellsVert].no3 = {floating-point} (vector containing the 

upstream concentration boundary condition for nitrate; model input value) [ g/m* | 
boundCondUpstream[1..numCellsVert].o2 = {floating-point} (vector containing the 

upstream concentration boundary condition for DO; model input value) [g/m° ] 
boundCondUpstream[1..numCellsVert].orgn = {floating-point} (vector containing the 

upstream concentration boundary condition for organic nitrogen; model input 

value) [ g/m*] 
boundCondUpstream[1..numCellsVert].orgp = {floating-point} (vector containing the 

upstream concentration boundary condition for organic phosphorus; model input 

value) [ g/m? | 

cellSize.x = Ax {floating-point} (cell size in the longitudinal direction) [m] 
cellSize.z = Az {floating-point} (cell size in the vertical direction; model input value) 

[m] 
cellSizeY[1..numCellsLongit][1..numCellsVert] = {floating-point} (array containing the 

cell size in the lateral direction or cell width; model input value) [m| 

denitrificationCoef] 1..numCellsLongit][1..numCellsVert] = &,,, {floating-point} (array 

containing the dinitrification coefficient; model input value) [sec™ ] 

dispersionCoefX[1..numCellsLongit][1..numCellsVert] = E* {floating-point} (array 

containing the longitudinal dispersion coefficient; model input value) [ m*/sec | 

dispersionCoefZ[1..numCellsLongit][1..numCellsVert] = E° {floating-point} (array 

containing the vertical dispersion coefficient: model input value) [ m*/sec | 
dispersionProbAmp|[1..numCellsLongit][1..numCellsVert] = F%:, imp {floating-point} 

(array containing the dispersion rule probability amplitude) [unitless] 
downstreamBuffer[1..numCellsVert] = {integer} (vector containing the particles that are 

to be sent to the next worker node) 
edgeCellBotNextNode = {integer} (index of the lower cell for the upstream boundary of 

the subdomain of the next worker node) [unitless] 
edgeCellBotPrevNode = {integer} (index of the lower cell for the downstream boundary 

of the subdomain of the previous worker node) [unitless] 
edgeCellTopNextNode = {integer} (index of the upper cell for the upstream boundary of 

the subdomain of the next worker node) [unitless] 
edgeCellTopPrevNode = {integer} (index of the upper cell for the downstream boundary 

of the subdomain of the previous worker node) [unitless] 
edgeCell[1.. numCellsLongit].top = {integer} (array containing the index of the upper 

cells of the subdomain, i.e., the surface elevation in terms of cells; model input 
value) [unitless]| 

edgeCell[1..numCellsLongit].bot = {integer} (array containing the index of the lower 
cells of the subdomain, i.e., the bottom elevation in terms of cells; model input 
value) [unitless] 

firstNode = {integer} (ID number of the worker node dealing with the most upstream 
subdomain) [unitless] 
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fractionGrazing.orgn = {floating-point} (fraction of not assimilated grazed phytoplankton 
nitrogen recycled to the organic pool; model input value) [unitless] 

fractionGrazing.orgp = {floating-point} (fraction of not assimilated grazed phytoplankton 
phosphorus recycled to the organic pool; model input value) [unitless] 

fractionNotAssimilatedGrazing = {floating-point} (1 - efficiency of assimilation by the 
zooplankton; model input value) [unitless] 

general Prob[1..numCellsLongit][1..numCellsVert] = P {floating-point} (array 
containing the rule probability) [unitless] 

grazingCoef[1..numCellsLongit|[1..numCellsVert] = k,,, {floating-point} (array 

containing the grazing coefficient; model input value) [ sec” | 
halfSatConst.biodegradation = K,,, {floating-point} (Michaelis-Menten half-saturation 

constant for oxygen limitation on aerobic biodegradation; model input value) 

[g/m] 
halfSatConst.denitrification = K,,, {floating-point} (Michaelis-Menten half-saturation 

constant for oxygen limitation on denitrification; model input value) [ g/m” | 

halfSatConst.hydrolysisOrgN = Ke {floating-point} (Michaelis-Menten half- 

saturation constant for organic nitrogen limitation on hydrolysis; model input 

value) [ g/m 3 ] 

halfSatConst.hydrolysisOrgP = Kr {floating-point} (Michaelis-Menten half-saturation 

constant for organic phosphorus limitation on hydrolysis; model input value) 

[g/m*] 
halfSatConst.nitrificationNH3 = K,,, {floating-point} (Michaelis-Menten half-saturation 

constant for ammonia limitation on nitrification; model input value) [ g/m* ] 
halfSatConst.nitrificationO2 = K,,, {floating-point} (Michaelis-Menten half-saturation 

constant for oxygen limitation on nitrification; model input value) [ g/m” | 

halfSatConst.photosynDIN = Kono {floating-point} (Michaelis-Menten half-saturation 

constant for dissolved inorganic nitrogen (DIN) limitation on photosynthesis; 

model input value) [ g/m* ] 

halfSatConst.photosynDIP = Kono {floating-point} (Michaelis-Menten half-saturation 

constant for dissolved inorganic phosphorus (DIP) limitation on photosynthesis; 

model input value) [ g/m *] 

hydrolysisOrgNCoef[1..numCellsLongit][1..numCellsVert] = Ken {floating-point} 

(array containing the hydrolysis coefficient for organic nitrogen; model input 

value) [ sec” ] 

hydrolysisOrgPCoef[1..numCellsLongit][1..numCellsVert] = ke {floating-point} 

(array containing the hydrolysis coefficient for organic phosphorus) 
initialConcentration[1..numCellsLongit][1..numCellsVert].cbod = {floating-point} (array 

containing the CBOD concentration initial condition; model input value) [ g/m? | 

lastNode = {integer} (ID number of the worker node dealing with the most downstream 
subdomain) [unitless]| 

lightExtinctCoefNonAlgal[1..numCellsLongit] = {floating-point} (light extinction 

coefficient; model input value) [m™' ] 
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lightExtinctCoefSelfShade = {floating-point} (light extinction coefficient due to 

phytoplankton self-shading; model input value) [ m*/g ] 
mainTimeStep = {floating-point} (main time step) [sec] 
mainTimeStepInput = {floating-point} (user selected main time step; model input value) 

[sec] 

maxAdvecVelocity = u,,. {floating-point} (maximum absolute value for the advective 
velocity which will not be exceeded anywhere in the system during the entire 
model simulation; model input value) [m/sec] 

maxBiodegradationCoef = k,,, ,., {floating-point} (maximum value for the aerobic 

biodegradation coefficient which will not be exceeded anywhere in the system 

during the entire model simulation; model input value) [ sec” | 

maxDeathCoef = k,,, ma {floating-point} (maximum value for the phytoplankton death 

coefficient which will not be exceeded anywhere in the system during the entire 

model simulation; model input value) [ sec” ] 

maxDenitrificationCoef = k,,, ., {floating-point} (maximum value for the denitrification 

coefficient which will not be exceeded anywhere in the system during the entire 

model simulation; model input value) [ sec” ] 

maxDispersionCoefX = E,. {floating-point} (maximum value for the longitudinal 

dispersion coefficient which will not be exceeded anywhere in the system during 

the entire model simulation; model input value) [m7/sec ] 

maxDispersionCoefZ = E._ {floating-point} (maximum value for the vertical dispersion 
coefficient which will not be exceeded anywhere in the system during the entire 

model simulation; model input value) [ m7/sec ] 

maxGrazingCoef = k,,, . {floating-point} (maximum value for the grazing coefficient 

which will not be exceeded anywhere in the system during the entire model 

simulation; model input value) [ sec "] 

maxHydrolysisOrgNCoef = Kr mat {floating-point} (maximum value for the organic 

nitrogen hydrolysis coefficient which will not be exceeded anywhere in the 

system during the entire model simulation; model input value) [sec™ | 

maxHydrolysisOrgPCoef = K pod max {floating-point} (maximum value for the organic 

phosphorus hydrolysis coefficient which will not be exceeded anywhere in the 

system during the entire model simulation; model input value) [ sec” | 
maxNitrificationCoef = k,,,,., {floating-point} (maximum value for the nitrification 

coefficient which will not be exceeded anywhere in the system during the entire 

model simulation; model input value) [sec”] 

maxNumericalDisp = E,,,, max {floating-point} (maximum accepted value for the 

advection induced numerical dispersion; model input value) [ m*/sec ] 
maxPhotosynthesisCoef = k,,, ma {floating-point} (maximum value for the 

phytoplankton photosynthesis coefficient which will not be exceeded anywhere in 

the system during the entire model simulation; model input value) [ sec" ] 

maxReaerationCoef = k_ , {floating-point} (maximum value for the reaeration 
coefficient which will not be exceeded anywhere in the system during the entire 

model simulation; model input value) [ sec” ] 
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maxRespirationCoef = k,..__, {floating-point} (maximum value for the phytoplankton 

respiration coefficient which will not be exceeded anywhere in the system during 

the entire model simulation; model input value) [ sec’ | 

maxSettlingVelCBOD = ko?” {floating-point} (maximum value for the particulate 

CBOD settling velocity which will not be exceeded anywhere in the system 
during the entire model simulation; model input value) [m/sec] 

maxSettlingVelChla = koe {floating-point} (maximum value for the phytoplankton 

chl-a settling velocity which will not be exceeded anywhere in the system during 
the entire model simulation; model input value) [m/sec] 

maxSettlingVelInorgP = k.””®" {floating-point} (maximum value for the particulate 
set. max 

inorganic phosphorus settling velocity which will not be exceeded anywhere in 
the system during the entire model simulation; model input value) [m/sec] 

maxSettlingVelOrgN = k2*" {floating-point} (maximum value for the particulate 

organic nitrogen settling velocity which will not be exceeded anywhere in the 
system during the entire model simulation; model input value) [m/sec] 

maxSettlingVelOrgP = kot {floating-point} (maximum value for the particulate 

organic phosphorus settling velocity which will not be exceeded anywhere in the 
system during the entire model simulation; model input value) [m/sec] 

maxTimeStep.advec = Al, 4, ma, {floating-point} (maximum time step allowed for the 

advection rule) [sec] 

maxTimeStep.biodegradation = At,,,,,.. {floating-point} (maximum time step allowed 

for the aerobic biodegradation rule) [sec] 

maxTimeStep.death = At,,_ ,,, {floating-point} (maximum time step allowed for the 

phytoplankton death rule) [sec] 
maxTimeStep.denitrification = At 

den ax 

the denitrification rule) [sec] 

maxTimeStep.dispX = A¢,,,,,., {floating-point} (maximum time step allowed for the 

longitudinal dispersion rule) [sec] 

maxTimeStep.dispZ = Afi,, ma {floating-point} (maximum time step allowed for the 

vertical dispersion rule) [sec] 

maxTimeStep.grazing = Af, {floating-point} (maximum time step allowed for the 

grazing rule) [sec] 

maxTimeStep.hydrolysisOrgN = At’®’__ {floating-point} (maximum time step allowed 
hyd, max 

for the organic nitrogen hydrolysis rule) [sec] 

maxTimeStep.hydrolysisOrgP = Ath max {floating-point} (maximum time step allowed 

for the organic phosphorus hydrolysis rule) [sec] 
maxTimeStep.nitrification = At, ,,,, {floating-point} (maximum time step allowed for 

the nitrification rule) [sec] 
maxTimeStep.photosynthesis = At, ,, ma {floating-point} (maximum time step allowed 

for the phytoplankton photosynthesis rule) [sec] 
maxTimeStep.reaeration = At {floating-point} (maximum time step allowed for the 

ae max 

reaeration rule) [sec] 

{floating-point} (maximum time step allowed for 

ra max 
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maxTimeStep.respiration = At {floating-point} (maximum time step allowed for the 
res max 

phytoplankton respiration rule) [sec] 

maxTimeStep.settlingCBOD = Are’’? {floating-point} (maximum time step allowed for 
the CBOD settling rule) [sec] 

maxTimeStep.settlingChla = At, {floating-point} (maximum time step allowed for 
the phytoplankton chl-a settling rule) [sec] 

maxTimeStep.settlingInorgP = Ar””*" {floating-point} (maximum time step allowed for 
set max 

the inorganic phosphorus settling rule) [sec] 

maxTimeStep.settlingOrgN = Ae {floating-point} (maximum time step allowed for 

the organic nitrogen settling rule) [sec] 

maxTimeStep.settlingOrgP = Atl” {floating-point} (maximum time step allowed for 

the organic phosphorus settling rule) [sec] 
myNode = {integer} (ID number identifying a particular worker node) [unitless] 
newBuffer[1..numCellsLongit][1..numCellsVert] = {integer} (array that stores the new 

configuration of particles in cells as the rule is applied) [particles/cell] 
nextNode = {integer} (ID number of the worker node dealing with the adjacent 

subdomain in the downstream direction) [unitless] 

nitrificationCoef| 1..numCellsLongit][1..numCellsVert] = x, 

containing the nitrification coefficient; model input value) sec” ] 
nonpointLoad[1..numCellsLongit].cbod = {floating-point} (vector containing the 

nonpoint source load for CBOD; model input value) [ g/m:sec | 

numberOfPart_cbod[1..numCellsLongit][1..numCells Vert] = {floating-point} (array 
containing the number of particles of CBOD per cell) [particles/cell] 

numberOfPart_chla[1..numCellsLongit][1..numCellsVert] = {floating-point} (array 
containing the number of particles of phytoplankton chl-a per cell) [particles/cell] 

numberOfPart_inorgp[1..numCellsLongit][1..numCellsVert] = {floating-point} (array 
containing the number of particles of inorganic phosphorus per cell) 
[particles/cell] 

numberOfPart_nh3[1..numCellsLongit][1..numCellsVert] = {floating-point} (array 
containing the number of particles of ammonia per cell) [particles/cell] 

numberOfPart_no3[1..numCellsLongit][1..numCellsVert] = {floating-point} (array 
containing the number of particles of nitrate per cell) [particles/cell] 

numberOfPart_o2[1..numCellsLongit][1..numCellsVert] = {floating-point} (array 
containing the number of particles of DO per cell) [particles/cell] 

numberOfPart_orgn[1..numCellsLongit][1..numCellsVert] = {floating-point} (array 
containing the number of particles of organic nitrogen per cell) [particles/cell] 

numberOfPart_orgp[1..numCellsLongit}[1..numCellsVert] = {floating-point} (array 
containing the number of particles of organic phosphorus per cell) [particles/cell] 

numCellsLongit = {integer} (number of cells in the longitudinal direction of the 
subdomain) [unitless] 

numCellsVert = {integer} (number of cells in the vertical direction of the domain) 
{unitless] 

oldBuffer[1..numCellsLongit][1..numCellsVert] = {integer} (array that stores the old 
configuration of particles in cells just before a rule is applied) [particles/cell] 

packetFraction = f {floating-point} (packet fraction; model input value) [unitless] 

partCBODPerPartNO3 = n2,,p; vo, {floating-point} (number of particles of CBOD 
removed for each particle of NO3 removed during denitrification) [unitless | 

{floating-point} (array 
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CBOD 
partFraction.cbod = f, 

value) [unitless] 

partFraction.inorgp = fi" {floating-point} (particulate fraction for inorganic 

phosphorus; model input value) [unitless] 

partFraction.orgn = fi {floating-point} (particulate fraction for organic nitrogen; 

model input value) [unitless] 

partFraction.orgp = fi" {floating-point} (particulate fraction for organic phosphorus; 

model input value) [unitless] 

particleMassCBODO2 = more? = me? {floating-point} (particle mass for CBOD and 

DO; model input value) [g/particle] 

particleMassChla = moe {floating-point} (particle mass for phytoplankton chl-a) 

[g/particle] 

particleMassInorgP = m 

[g/particle] 

particleMassNH3 = my {floating-point} (particle mass for ammonia) [g/particle] 

{floating-point} (particulate fraction for CBOD; model input 

[norgP 
»  rfloating-point} (particle mass for inorganic phosphorus) 

particleMassNO3 = m,”! {floating-point} (particle mass for nitrate) [g/particle] 
. _ Oren . . . . . 

particleMassOrgN =m,” {floating-point} (particle mass for organic nitrogen) 

[g/particle] 

particleMassOrgP = mow {floating-point} (particle mass for organic phosphorus) 

g/particle] | 

partO2PerPartNH3 = 155 \;,, {floating-point} (number of particles of DO removed for 

each particle of ammonia removed during nitrification) [unitless]} 
phytoDeathCoef[1..numCellsLongit][1..numCellsVert] = k,,, {floating-point} (array 

containing the phytoplankton death coefficient; model input value) [ sec” | 
phytoGrowthCoef[1..numCellsLongit][1..numCellsVert] = u {floating-point} (array 

containing the phytoplankton growth coefficient; model input value) [ sec” ] 
phytoRespirationCoef][1..numCellsLongit][1..numCellsVert] = k,,. {floating-point} 

(array containing the phytoplankton respiration coefficient; model input value) 

[sec ] 
pointLoad[1..numCellsLongit].cbod = {floating-point} (vector containing the point 

source load for CBOD; model input value) [g/sec ] 
prevNode = {integer} (ID number of the worker node dealing with the adjacent 

subdomain in the upstream direction) [unitless] 

ratioOxygenToCarbon_photosynNH3 = af" {floating-point} (oxygen-to-carbon ratio 
for photosynthesis using ammonia as the source of nitrogen -- see equation (4.1); 
model input value) 

ratioOxygenT oCarbon_photosynNO3 = apr {floating-point} (oxygen-to-carbon ratio 

for photosynthesis using nitrate as the source of nitrogen -- see equation (4.14); 
model input value) 

reaerationCoef]1..numCellsLongit]= k,, {floating-point} (vector containing the 

reaeration coefficient; model input value) [sec a 
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ruleReps.advec = @,,, {integer} (number of repetitions of the advection rule during a 

main time step) [unitless]| 

ruleReps. biodegradation = @,,, {integer} (number of repetitions of the aerobic 

biodegradation rule during a main time step) [unitless] 

ruleReps.death = @,,, {integer} (number of repetitions of the phytoplankton death rule 

during a main time step) [unitless] 

ruleReps.denitrification = g,,, {integer} (number of repetitions of the denitrification rule 

during a main time step) [unitless] 

ruleReps.dispX = y,,, {integer} (number of repetitions of the longitudinal dispersion rule 
during a main time step) [unitless] 

ruleReps.dispZ = y;,, {integer} (number of repetitions of the vertical dispersion rule 

during a main time step) [unitless| 

ruleReps.grazing = @,,, {integer} (number of repetitions of the grazing rule during a 

main time step) [unitless] 

ruleReps.hydrolysisOrgN = 9," {integer} (number of repetitions of the organic 

nitrogen hydrolysis rule during a main time step) [unitless] 

ruleReps.hydrolysisOrgP = ,. {integer} (number of repetitions of the organic 

phosphorus hydrolysis rule during a main time step) [unitless| 
ruleReps.nitrification = @,,, {integer} (number of repetitions of the nitrification rule 

during a main time step) [unitless] 
ruleReps.photosynthesis = @,,, {integer} (number of repetitions of the phytoplankton 

photosynthesis rule during a main time step) [unitless] 

ruleReps.reaeration = @,,, {integer} (number of repetitions of the reaeration rule during 

a main time step) [unitless] 

ruleReps.respiration = @_,, {integer} (number of repetitions of the phytoplankton 

respiration rule during a main time step) [unitless] 

ruleReps.settlingCBOD = p%” {integer} (number of repetitions of the CBOD settling 

rule during a main time step) [unitless] 
ruleReps.settlingChla = gue {integer} (number of repetitions of the phytoplankton chl-a 

settling rule during a main time step) [unitless] 

ruleReps.settlingInorgP = y“”*" {integer} (number of repetitions of the inorganic 

phosphorus settling rule during a main time step) [unitless] 

ruleReps.settlingOrgN = p2Z*" {integer} (number of repetitions of the organic nitrogen 

settling rule during a main time step) [unitless] 

ruleReps.settlingOrgP = 2" {integer} (number of repetitions of the organic 

phosphorus settling rule during a main time step) [unitless] 
satConcDO = DO.,, {floating-point} (DO saturation concentration; model-input value) 

[g/m*] 
satLightIntensity = /, {floating-point} (phytoplankton photosynthesis saturating light 

intensity; model input value) [langley/day] 
sedimentWaterFlux[1..numCellsLongit].cbod = {floating-point} (vector containing the 

sediment-water flux for CBOD; model input value) [ g/m *:sec ] 

APPENDIX 135



settling Vel[1..numCellsLongit][1..numCellsVert].cbod = pone {floating-point} (array 

containing the settling velocity for particulate CBOD; model input value) [m/sec] 

settling Vel[1..numCellsLongit][1..numCellsVert].chla = yous {floating-point} (array 

containing the settling velocity for phytoplankton chl-a; model input value) 
[m/sec] 

settling Vel[ 1..numCellsLongit][1..numCellsVert].inorgp = v,"" {floating-point} (array 
containing the settling velocity for particulate inorganic phosphorus; model input 
value) [m/sec] 

settling Vel[1..numCellsLongit][1..numCellsVert].orgn = yor {floating-point} (array 

containing the settling velocity for particulate organic nitrogen; model input 
value) [m/sec] 

settlingVel[ 1..numCellsLongit][1..numCellsVert].orgp = vo” {floating-point} (array 

containing the settling velocity for particulate organic phosphorus; model input 
value) [m/sec] 

settloLowerCell[1..numCellsLongit][{1..numCellsVert] = {floating-point} (array 
containing the fraction of settling that effectively goes to the lower cell, to 
incorporate the effect of unequal cell widths) [unitless] 

simulationTime = {floating-point} (keeps track of the simulation time) [sec] 
solarRadiation[1..numCellsLongit] = {floating-point} (solar radiation just reaching the 

surface of the water column; model input value) [langley/day] 
timeSimulationBegin = {floating-point} (time simulation begins; model input value) 

[sec] 
timeSimulationEnd = {floating-point} (time simulation ends; model input value) [sec] 

timeStep.advec = Az,,, {floating-point} (time step for the advection rule) [sec] 

timeStep. biodegradation = At,,, {floating-point} (time step for the aerobic 

biodegradation rule) [sec] 

timeStep.death = At,,, {floating-point} (time step for the phytoplankton death rule) [sec] 

timeStep.denitrification = At,,, {floating-point} (time step for the denitrification rule) 

[sec] 

timeStep.dispX = Ar, {floating-point} (time step for the longitudinal dispersion rule) 
[sec] 

timeStep.dispZ = Atj,, {floating-point} (time step for the vertical dispersion rule) [sec] 

timeStep.grazing = Az,,, {floating-point} (time step for the grazing rule) [sec] 

timeStep.hydrolysisOrgN = Atha {floating-point} (time step for the organic nitrogen 

hydrolysis rule) [sec] 

timeStep.hydrolysisOrgP = Atha 
hydrolysis rule) [sec] 

timeStep.nitnfication = At, {floating-point} (time step for the nitrification rule) [sec] 

timeStep.photosynthesis = Az,,, {floating-point} (time step for the phytoplankton 

photosynthesis rule) [sec] 

timeStep.reaeration = At, {floating-point} (time step for the reaeration rule) [sec] 

timeStep.respiration = Az, {floating-point} (time step for the phytoplankton respiration 

rule) [sec] 

{floating-point} (time step for the organic phosphorus 
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timeStep.settlingCBOD = Arl’°? {floating-point} (time step for the CBOD settling rule) 
[sec] 

timeStep.settlingChla = Ar is {floating-point} (time step for the phytoplankton chl-a 

settling rule) [sec] 

timeStep.settlingInorgP = Ar””*’ {floating-point} (time step for the inorganic 

phosphorus settling rule) [sec] 

timeStep.settlingOrgN = Ar]”* {floating-point} (time step for the organic nitrogen 

settling rule) [sec] 

timeStep.settlingOrgP = Ar?” {floating-point} (time step for the organic phosphorus 
settling rule) [sec] 

upstreamBuffer[1..numCellsVert] = {integer} (vector containing the particles that are to 
be sent to the previous worker node) 
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VITA 

Paulo Castro entered this world at the very early hours of February 12, 1963, in 

the coastal town of Caldas da Rainha, Portugal. He found himself surrounded by caring 

parents, many brothers and sisters, and a great dog. He spent most of his school years 

with his family in Oeiras, a coastal town on the outskirts of Lisbon. After finishing high- 

school, he enrolled in a Bachelor's degree in Environmental Engineering at the New 

University of Lisbon, just across the Tagus estuary. Then he pursued the opportunity of 

studying in the US, and was fortunate to enroll in a Master's degree in Environmental 

Systems Engineering at Clemson University, South Carolina. From there he moved on to 

a Ph.D. in Civil/Environmental Engineering at Virginia Tech, which he just completed. 

“Rule ac Wo 
Paulo Castro 
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