implementation of B-Trees Using Dynamic
Address Computation

By H. Rex Hartson and Raymond T. West, Jr.

TR 90-37

IMPLEMENTATION OF B-TREES USING DYNAMIC
ADDRESS COMPUTATION

Raymond T. West, Jr. and H. Rex Hartson”
Virginia Polytechnic Institute and State University

The B-tree is probably the most popular method in use today for
indexes and inverted files in database management systems. The
traditional implementation of a B-tree uses many pointers (more
than one per key), which can directly affect the performance of the
B-tree. A general method of file organization and access (called
Dynamic Address Computation) has been described by Cook that can
be used to implement B-trees using no pointers, A minimal amount
of storage (in addition to the keys) is required. This paper gives a
detailed description of Direct Address Computation and the resulting
B-Tree implementation. The performance of the resulting system is
analyzed, leading to the conclusion that, while the approach results in
a simple implementation of B-trees, more work 1is required to
achieve competitive performance for large B-trees.

Categories and Subject Descriptors: H.2.0 [Database Management]:
General; H.2.2 [Database Management]: Physical design—Access
methods: H.2.4 [Database Management]: Systems; E.5 [Files]:
Organization/structure

General Terms: algorithms, performance
Additional Key Words and Phrases: B-trees, ragged arrays, storage

structures, dynamic addressing, pointer-free addressing, secondary
indexing, file organization

* Authors' addresses: Raymond T. West, Jr., Computer Science Department, John Brown
University, Siloam Springs, Arkansas 72761. H. Rex Hartson, Department of Computer

Science, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061.

1. INTRODUCTION

The B-tree is an m-way search tree which has been proposed and
used for indexes and inverted files in database management systems
[1, 3, 5]. The traditional implementation of a B-tree uses many
pointers (more than one per key), which can directly affect the
performance of the B-tree. This happens because the space required
for the pointers reduces the number of keys that can be stored in a
node. This reduces m, the order of the tree, and thus increases the
number of levels in the tree. Since the number of disk accesses
required to search a B-tree is the same as the number of levels, the
performance cost is obvious. Cook has proposed a general method of
file organization and address computation [4] and has suggested that
it can be used to implement B-trees using no pointers. A minimal
amount of storage (in addition to the keys) is required by this
method, which he calls Dynamic Address Computation. Cook's
dissertation contains a detailed discussion of the principles of
Dynamic Address Computation and briefly introduces the concept of
"pointer-free" B-trees with an algorithm to search a B-tree. This
paper describes a complete implementation of the Dynamic Address
Computation algorithms. Using the DAC procedures, it describes an
implementation of a "pointer-free” B-tree management package,
including searching of the tree and insertion and deletion of keys.
Analytical performance measures are derived in an attempt to
understand the performance characteristics of a B-tree in an
implementation using Dynamic Address Computation.

Definition: An order m B-tree, T, is an m-way search tree that is
either empty or has the following properties [6]:

1) The root node has a least two children.

2) All nodes other than the root node and the leaf nodes have at
least [m/2] children.

3) All leaf nodes are at the same level.

2

There are a number of variations on this theme (B+-trees, B*-trees,
Prefix B-trees, special handling of root nodes, key compression, etc.
See [3]). The algorithms here build a basic B-tree. The extension to B-
tree variations is obvious, and is not precluded in the
implementation.

The data associated with a key value can be stored in the node with
the key, but, in order to keep the degree of the tree high (and thus
the depth low), the data is usually stored separately. This can be
accomplished by storing a pointer to the data in the node with the
key, since the pointer is usually smaller than the data itself.
Alternatively, nothing at all might be stored with the key. In this
case, when the key is found, the traversal of the tree continues until
a leaf node is reached. This node, instead of a null pointer, would
contain a pointer to the data associated with the key. If the entire
tree is traversed without the key being found, the position in the leaf
node defines the correct place to insert the key, if desired. The data
is now stored in data nodes, which can be considered special nodes
which are not subtrees (This results in what Horowitz and Sahni [6]
call a B'-tree, and Comer [3] calls a B+-tree, but, for simplicity, the
generic term B-tree will continue to be used).

When all of the data nodes in a B-tree of order m are at level x+1, N,

the number of key values (and data .nodes) can be shown to be
within the following bounds [6]:

2m/21% 1 -1< N< m¥-1

Conversely, for a B-tree of order m with N data nodes and key
values, the maximum level of a non-data node is: -

X < log[m/Z] {(N+1D)2}+1

A search of the B-tree requires only x disk accesses (plus the access
to the data). Since larger values of m produce exponentially smaller
values of x, maximizing m is very important in the implementation of
B-trees. At the same time, because of physical storage limits, nodes
cannot grow arbitrarily large. Also, the transmission time of a block
from disk to primary memory increases with the block size, and it is
desirable to keep that small. In summary, the more keys that can be
stored in a given amount of space, the better the performance of the
B-tree.

2. ANOTHER MODEL FOR B-TREES

The previous definition of a B-tree strongly suggests an
implementation, i.e., nodes containing keys and associated pointers to
the child nodes. However, pointers have several disadvantages. The
relative amount of space they occupy can be significant, especially if
the keys are short. They force the designer either to reduce the
"degree of the B-tree or to increase the node size. Both are
undesirable. In this section, a different model of a B-tree will be
presented, It will suggest a different implementation, one which 18
compatible with Dynamic Address Computation.

2.1 The Ragged Array

The underlying structure for this model is a 2-dimensional "ragged
array." This is an array in which the number of columns in a row can
vary from row to row. For example, in Figure 1 array A is a ragged
array with four rows and from one to six columns in each row.

1 2 3 4 5 6 7
Row
1 A(1,1y A(l1,2)
2 A(2,1)
3 A(3,1) A(3,2) A(3,3) A(3,4) A(3,5) A(3,6)
4 A(4,1y A(4,2) A(4,3)

Figure 1: A Ragged Array

Of course, this can be stored in a regular rectangular array where the
column dimension is the largest required by any row, but that will
- waste a large amount of space when the rows are not full.

A better implementation of a ragged array would eliminate the
wasted space; for example, consider this linear storage of A:

A(1,1),A(1,2),A(2,1),A(3,1),A(3,2),A(3,3),A(3.4)...,A(4,3).

This requires the storage of auxiliary information {row and column)
and there is an increased cost for accessing the data. To find an
existing data element requires some sort of search, and inserting a
new element (e.g., A(2,2)) requires the movement of data.,

A linked organization' commonly used for sparse arrays can also be
used. This uses a set of row pointers to point to the first element of
each row, with links to subsequent elements in the row [7]. Again,
pointers must be stored and links followed to find a given element.

This section will show a way that ragged arrays can be wused to
represent B-trees, but will not discuss their implementation, as that
is the subject of later sections. .

2,2 The B-tree as a Ragged Array

A B-tree can be represented with a ragged array by storing only the
keys of each node as a row in the array (no pointers). Each node of
the B-tree is denoted by an integer value which represents its row
position in the array. That integer is called the node index. The term
node i will be used to denote the node whose node index is i.

The keys within a node are denoted by the column index in the
array, called the key index. Thus, for a ragged array named B_tree,
B_tree(i,j) is the j-th key in the i-th node of the tree.

The nodes of the B-tree are not ordered in one of the common
traversal orders (pre-order, post-order or in-order). Instead, they
.are ordered and numbered as follows: '

1) The root node is node one, i.e. the first row in the ragged array.

2) All of the nodes in the second level follow in order from left to
right. That is, in left to right order as defined by the keys in the
root which are associated with these nodes.

3) The level three nodes follow in order, again from left to right as
defined by the order of the keys in the level two nodes.

4}y And so on, for all levels of the tree.

Also, the data which is being indexed by the B-tree is assumed to be -
stored in a separate array, DATA(data_index). An element of DATA
may be a complex structure, divided into fields, a list of pointers, etc.
The important point is that a datum is identified by an integer index
which will be determined by the B-tree algorithms (this index is not
physically stored anywhere in the system described here, but rather,
is computed dynamically).

Some other information will also be needed;

N_keys(i):
the number of keys in node i.

N_nodes:
the number of nodes in the B-tree.

N_tree_levels:
the number of levels in the B-tree.
the maximum number of subtrees of any node (the order of the

B-tree).

Putting a B-tree into a ragged array in this way gives the
configuration shown in Figure 2, where each line is one node.

B_tree(1,1) ... B_tree(1,N_keys(1})) Root
B_tree(2,1) ...B_tree(2,N_keys(2)) -
[

Level 2
. !
B_tree(N2+1,1) ' © ... B_tree(N2+1,N_keys(N2+1) -
B_tree(N2+2,1) : ... B_tree(N2+2,N_keys(N2+2)) -
J

Level 3
. !
B_tree(N3+N2+1,1) - ... B_tree(N3+N2+1,N_keys(N3+N2+1)) -

etc.

Where N2 = N_keys(1)+1 is the number of level 2 nodes.
N3 = N_keys(2)+1 + N_kcys(3)+1 o+ N_keys(N2+1)+1
is the number of level 3 nodes.

etc.

Figure 2: Abstract B-tree to Ragged Array Mapping

The way that this structure can be used to represent a B-tree is
suggested by the observation that the number of nodes at level two
is one greater than the number of keys in the root. The number of
nodes at level three is the sum of the number of keys at level two
plus the number of level two nodes. In general, the number of nodes
at a level (i) is recursively defined as:

1) There is one node at level 1.
2} For 2 <=1 <= N_tree_levels:

(number of level i-1 nodes)
number of level i nodes = Z 1 + N_keys (First_prev+k-1)

k=1

where Firét__prev is the node index of the first node at level i-1. That
is, First_prev is one greater than the sum of the number of nodes at
all levels before i-1. There are more nodes than keys because a node
with n keys has n+1 children.

To search a B-tree, is is necessary to be able to locate the child node
for a given key, say, key j in node i (i.e., B_tree(i,j)). In the previous
definition of a B-tree, the child node is pointed to by the pointer Aj.
In this model, with no pointers, the child node's node index will be
computed dynamically.

Assuming that the current node i (containing B_tree(i,j)) is at level y
in the tree, the node index of the desired node (the jth child of node
i) is the sum of the number of nodes at all leveis through y plus the
number of children of all nodes at level y before node 1 plus the
children of the first j keys in node i. That 1is:

N1 for the root (1).
+ N2 for the level 2 nodes
+ N3 for the level 3 nodes
+ ...
+ Ny for the level y nodes

+ N_keys(N1+..,+N(y-1)+1)+1

+ ...
+ N_keys(i-1)+1

+

But:

NI =1

N1
N2 =Z (N_keys(k) + 1)
k=1

NI+N2

N3 = Z (N_keys(k) + 1)
k=N1 + 1 -

for the children of the
first level y node

for the children of the
last level y node before
node i

to get to the j-th child
node of node i.

N1 + N2 + N3
N4 = Z (N_keys(k) + 1)
k=N1 +N2+1

etc.
So N1 + N2 + N3 + ... + Ny is actally:

(N1 + N2 + N3 ... + N(y-1))
1+ > (N_keys(k) + 1)
k=1

or, .one plus the sum of N_keys(k)+1 for all nodes in levels 1 through
y-1.

Since the level y nodes immediately follow the last level y-1 node in
the array, the sum of the number of children of nodes at level y
before node i extends the summation to k=i-1. Then, the term j for
the children of the j keys up to B_tree(i,j) makes the total become, in
the Child Node Index Equation:

i-1
child_node_index = 1 + j + Z - (1 + N_keys(k))
k=1
or
i-1
child_node_index =i +j + > (N_keys(k))
k=

The Child Node Index Equation gives the row index in the ragged
array that represents the node associated with the key in B_tree(i,j). .

10

In an implementation using pointers, this is the node that would be
pointed to by the pointer associated with that key. Since the node
index corresponds exactly to the row index in the ragged array,
B _tree(child_node_index,1) through
B_tree(child_node_index,N_keys(child_node_index)) 1s the desired
node.

To reference the last child node of node i, which contains keys
greater than B_tree(i,N_keys(i)), N_keys(i}+1 is used for j in the
above equation. The B-tree search algorithm uses the Child Node
Index Equation to traverse a B-tree stored in a ragged array.

3. B-TREE ALGORITHMS

There are four basic B-tree operations that will be considered:
searching, inserting, deleting, and scanning.

The implementation described in this paper was done in PL/l on a
Data General C350 Eclipse computer. All of the algorithm
descriptions that follow are simply those procedures, with variable
declarations removed in order to concentrate on the procedural
aspects.

There .are several procedures used by the B-tree algorithms to
perform ragged array manipulation. These procedures will be left
unspecified as their form is a function of the ragged array
implementation, which is the subject of a later section. For now, the
following procedures are assumed to be available:

1) CHILD_NODE_INDEX(NODE_INDEX,KEY_INDEX): returns the result
of evaluating the Child Node Index Equation.

2) INSERT_DATA(DATA_INDEX,NEW_DATA): inserts new data into
the DATA array as a new record number DATA_INDEX.

11

3) INSERT_KEY(NODE_INDEX,KEY_INDEXNEW_KEY): inserts
NEW_KEY into the B-tree as B_TREE(NODE_INDEX KEY_INDEX}.

4) DELETE_DATA(DATA_INDEX): deletes the element at
DATA(DATA_INDEX)

5) DELETE_KEY(NODE_INDEX KEY_INDEX): deletes the key at
B_TREE(NODE_INDEX,KEY_INDEX), If the last key is deleted from
the root node, then the node is deleted and N_tree_levels is
decremented.

6) REPLACE_DATA(DATA_INDEX,NEW_DATA): replaces the data in
record number DATA_INDEX with NEW_DATA.

7) NEW_ROOT(NEW_KEY): creates a new root creates a new root
node (node 1) with one key (NEW_KEY). N_tree_levels is
decremented.

8) SPLIT_NODEMNODE_INDEX,KEY_INDEX): splits a node into two
nodes by making keys KEY_INDEX+1 thru N_KEYS(NODE_INDEX)
into a new node NODE_INDEX+1 and node NODE_INDEX to contain
keys 1 thru KEY_INDEX-1. Key KEY_INDEX is deleted. Notice that
the two new nodes are adjacent rows in the ragged array.

9) CONCAT_NODES(NODE_INDEX,NEW_KEY): concatenates node
NODE_INDEX and node NODE_INDEX+1 together into a new node
NODE_INDEX and inserts NEW_KEY between them. The old node
NODE_INDEX+1 no longer exists. Notice that the two nodes that
are to be concatenated are adjacent in the ragged array.

3.1 Searching

The search algorithm shown in Figure 3 is a modification of the B-
tree search algorithm given in [4]. It returns an indication of

12

whether the search key was found, the index of the data associated
with the search key, arrays tracing the progress of the search giving
the node and key indices of the path through the tree, and the level
where the key was found. This last information will be used by the
insertion and deletion algorithms. If the search key is not found, the

arrays show where the key should be inserted.

SEARCH_B_TREE:PROC(START_NODE,START_KEY) RECURSIVE;
/* Search a B-tree from node START_NODE, key START_KEY
DATA_INDEX = START_NODE;
NODE_INDEX = START_NODE;
KEY_INDEX =START_KEY;
LEVEL=LEVEL+1;

IF LEVEL > N_TREE_LEVELS THEN RETURN; /* Bottom of tree */

IF FOUND /* If already found */
THEN DO; /* AH keys in this node are < SEARCH_KEY,
/* so skip to the last key,
KEY_COUNT = N_KEYS(START_NODE},
KEY = B_TREE(START NODEKEY_COUNT);
KEY_INDEX = KEY_COUNT; /* Last key
END;

ELSE DO; /* Start with the passed in parameters */
KEY = B_TREE(START_NODE.START_KEY)
KEY_COUNT = N_KEYS(START_NODE);

END;
DO WHILE (TRUE)Y; /* DO Forever */
IFKEY > SEARCH_KEY -
THEN DQ; /* Found the correct sub-tree */
NODE_TRACE(LEVEL) = NODE_INDEX; -
KEY_TRACE(LEVEL) = KEY_INDEX;
IF KEY = SEARCH_KEY _
THEN DQ; /* Also found the key */
FOUND = TRUE;
LEVEL_FOUND =LEVEL;

13

*/

END;
/* Move to the child of this key (EQN 1) */
NODE_INDEX CHILD_NODE_INDEX(NODE_INDEX,KEY_INDEX);
KEY_INDEX =1;
CALL SEARCH_B_TREE(NODE_INDEX,KEY_INDEX);
RETURN,;
END;
IF KEY_INDEX > KEY_COUNT /* No more keys in node? */
THEN DO; /* Take the right most sub-tree #/
NODE_TRACE(LEVEL) = NODE_INDEX; /* Save the path ¥/
KEY_TRACE(LEVEL) = KEY_INDEX + 1;
/* Move to the last sub-tree (1 + EQN (1)) */
NODE_INDEX = CHEDﬁNODE;INDEX(NODEJNDEXH,KEY_}NDEX);

KEY_INDEX = 1;
CALL SEARCH_B_TREE(NODE_INDEX,KEY_INDEX);
RETURN; -
END,;

KEY_INDEX = KEY_INDEX + 1; /* Move to next key in node*/
KEY = B_TREE(NCDE_INDEX,KEY_INDEX};

END;

END;

Figure 3: B-tree Search Algorithm

There are two parameters and seven global values used by the
search algorithm. The parameters are:

1) START_NODE;
the node index for first key to be compared. The initial call will
be with START_NODE set to 1.

2) START_KEY:

the key index for first key to be compared. The initial call will
be with START_KEY set to 1.

14

The globals are:

1) LEVEL:
the level of the current B-tree node (always set to zero by the
- caller before the search starts). Used to detect the end of the
search.

2) SEARCH_KEY:
the key to be used in the search.

3) FOUND:
a boolean variable, set to FALSE before the search begins. It
will be set to TRUE if the key is found.

4) LEVEL_FOUND:
the level of the tree where the key was found, if it is in the
tree.

5) DATA_INDEX:
the node index of the object node which contains the data
associated with the key (if it is found in the tree). If the object
nodes are considered a part of the tree, this value can be used
unchanged. Since the objects are stored in a separate array, the
correct value for the data index is DATA_INDEX-N_NODES.

6) NODE_TRACE(®):
the node indexes on a path from the root to the lowest level B-
tree node (i = 1 to N_TREE_LEVELS). If the key is not found,
NODE_TRACE(N_tree_levels) is the row index where the key
would be inserted,

TYKEY_TRACE(®):
the indexes of the keys in the nodes in NODE_TRACE on the
- path from the root to the lowest level of the tree. If the key
was not found, it would be inserted as key number
KEY_TRACE(N_tree_levels).

15

The two global arrays are used to remember the path through the
tree. These are for the use of the insertion and deletion algorithms,
described later.

The caller initiates the search by setting SEARCH_KEY to the desired
key value, LEVEL to 0, START_NODE and START KEY to 1, FOUND to
FALSE and then by the reference:

CALL SEARCH_B_TREE (START_NODE,START_KEY);

The input arguments to the procedure specify that the search is to
start with the first key in the root node (B_TREE(1,1)). If the key was
found, then FOUND=TRUE and the data index required is
DATA_INDEX-N_NODES. The arrays NODE_TRACE and KEY_TRACE
contain the trace, and LEVEL_FOUND is the level in the B-tree where
the key was found (if it was found). Notice that the procedure is
recursive. This is not required, but it simplifies the algorithm,

3.2 Insertion

The insertion algorithm (Figure 4) uses the search procedure to find
the place where the key and data should be inserted. The algorithm
is an adaptation of the algorithm found in [6].

INSERT_B_TREE:PROC(NEW_KEY,NEW_DATA);
SEARCH_KEY = NEW_KEY;
FOUND = FALSE;
LEVEL =(;
CALL SEARCH_B_TREE(1,1);
DATA_INDEX = DATA_INDEX - N_NODES:;
IF FOUND /* If the key was found */
THEN DO; /* just replace the data */
CALL REPLACE_DATA(DATA_INDEX NEW_DATA):

16

RETURN;

END;
/* The key was not found, so insert the new data */
/* and the new key. */

CALL INSERT_DATA(DATA_INDEX,NEW_DATA):
LEVEL =N_TREE LEVELS;
DO WHILE (LEVEL > 0);
I=NODE_TRACE(LEVEL);
J=KEY_TRACE(LEVEL);
/* Insert the new key as B_TREE(I,]) */
CALL INSERT_KEY(I,J ,SEARCH_KEY),
N = N_KEYS(I); /* Number of keys in node I */
IF N < M THEN RETURN; /* Not full, so done */
/* Save the center key */
SEARCH_KEY = B_TREE(LCEIL(N/2));
/* Split the node at the center key */
CALL SPLIT_NODE(I,CEIL(N/2)):
LEVEL =LEVEL - 1;
END;
/* If we get here, a new root node is needed */
CALL NEW_ROOT(SEARCH_KEY);

END;

Figure 4: B-tree Insertion Algorithm

3.3 Deletion
The deletion algorithm (Figure 5) is also an adaptation of an

algorithm found in [6]. The search procedure is used to find the key
and its data,

17

DELETE_B_TREE:FROC(KEY);
/¥ First, find the key*/
FOUND = FALSE;
LEVEL =0
SEARCH_KEY = KEY;
CALL SEARCH_B_TREE(1,1);
IF ~FOUND THEN RETURN; /* No key to delete. */

/* Delete the data associated with the key */
DATA_INDEX = DATA_INDEX - N_NODES:
CALL DELETE_DATA(DATA_INDEX);

/* And delete the key */

/* If the key is not in a leaf node */

IFLEVEL_FOUND < N_TREE_LEVELS

THEN DO; o /* Replace it with a leaf node key */

/* and delete that key in the leaf */
I=NODE_TRACE(N_TREE_LEVELS);
J=KEY_TRACE(N_TREE_LEVELS) - 1;

CALL REPLACE_KEY(NODE_TRACE(LEVEL_FOUND),
KEY_TRACE(LEVEL_FOUND),B_TREE(L]));
END;

ELSE DO; /* The key is a leaf node */
I=NODE_TRACE(N_TREE_LEVELS);
J=KEY_TRACE(N_TREE_LEVELS);

END;
/* Delete the key at B_TREE(LJ) (Always a leaf) */
CALL DELETE_KEY(LJ);

/* If there are too few keys in nede I (less than - ®
/* [m/2], we will combine some sibling nodes */
/* to create bigger nodes : */

LEVEL = N_TREE LEVELS:; _ :
DO WHILE (N_KEYS(I) < CEIL(M/2) - 1 AND I > 1);
/¥ There are less than [m/2] keys in node L #/

18

O = NODE_TRACE(LEVEL-I); /* Parent node of node 1 */
P = KEY_TRACE(LEVEL-1): /* Parent key of node I */
IFP < N_KEYS(O)
THEN DO; /* There is a right sibling */
K=1+1; /* Node K is the right sibling */
IF N_KEYS(K) > CEIL(M/2) /* If more than half full *f
THEN DO; /* A key can be deleted from this sibling. */
/* Move B_TREE(Q,P) 0 the end of node I */
/* and move up the first sibling key. */
CALL INSERT_KEY(I,N_KEYS(I)+1,B_TREE(O,P));.
CALL REPLACE_KEY(OQ,P,B_TREE(K,1));
CALL DELETE_KEY(K, D;
RETURN,;
END;
/* Let node I be NODE 1 i B_TREE(QO,P) Il NODE K */
/* and delete node K. */
CALL CONCAT_NODES(®,B_TREE(O,P));
CALL DELETE_KEY(O,P): /* KEY(O,P} is now in node 1 */
I=0;
END;
ELSE DO; /* Must use the Left sibling = #/
K=1-1; /* NodeK is the left sibling */
P=P-1, /*Pis the Parent Key of node K */
IF N_KEYS(K) > CEIL(M/2) /* If more than half full */
THEN DO; /* A key can be deleted from this sibling */
/* Move B_TREE(O,P) to the beginning of node I */
/* and move up the last sibling key *f
CALL INSERT_KEY(L,1;B_TREE(Q,P));
CALL REPLACE_KEY(O,P,B_TREE(K',N_KEYS(K)));
CALL DELETE_KEY(K,N_KEYS(K));

RETURN;

END;
/* Let node K be NODE K 1! B_TREE(C,P) Il NODE I */
/* and delete node I = *f

CALL CON CAT_NODES(K.B_TREE(O,P));
CALL DELETE_KEY(O,P);

19

[=0;
END;
LEVEL = LEVEL - 1; /* Move up a level in the tree */
 END;
END;

Figure 5: B-tree Deletion Algorithm

3.4 Key Order Data Scan

Using the preceding algorithms and B-tree representation, one can
see that the DATA array contains the data in key order. That is:

Key for DATA (i) < Key for DATA (j) if and only if i<j.
So a key order scan of the data is simply an index order scan of
DATA.
4. DYNAMIC ADDRESS COMPUTATION
The previous section presented algorithms for manipulating a B-tree
represented as a ragged array with a small amount of auxiliary
information. Several operations are required that are not easily

performed on a conventional array:

1) Split node i into two nodes; 1 and i+1. This means every old
node j, j>i is now node j+1.

2) Insert a new node i. Now every node j» j>1 becomes node j+1.
3) Delete node i. Now every node j, j>i becomes node j-1.

4) Delete and insert data in the DATA array, with index changes
similar to those for nodes, above.

20

5) Delete and insert keys in nodes, again with key index changes
as above,

6) Concatenate two nodes (i and i+1) into one node. This results in
every node k>i+1 becoming node k-1.

Using conventional ragged array organization to perform these
operations requires either movement of data above the insertion or
deletion point, or storage and manipulation of pointers. Cook's
Dynamic Address Computation mechanism allows the representation
of arbitrarily ragged arrays using no pointers [4], and it performs the
above operations with only a small amount of data movement. All of
the auxiliary structural information (number of keys in a node and
number of nodes) is stored and used by the Dynamic Address
Computation algorithms. Finally, some of the information needed by
SEARCH_B_TREE, specifically, the sum of the number of keys in nodes
before the current node, is generated by the addressing mechanism
and can be used by the B-tree algorithms without additional
computation.

4.1 The Dynamic Address Computation Storage Structure

Dynamic Address Computation (DAC) uses separately stored
descriptive data to manage arbitrary structures. Here, structure is
being used in the PL/1 sense of a hierarchically ordered set of data.
(Cook wuses the term "tree", but in keeping with a PL/1-like
description of the algorithms and to-avoid confusion with the earlier
definitions of a tree, "structure" will be used here.) The example in
Figure 6, taken from [4], shows the definition of such a structure.’

01w repeats (max A),
mx length -(max B),
02Y repeats (max C),

03Z length (max D).
Figure 6: DAC Definition of the Structure W

21

This is the definition of a structure W. Figure 7 illustrates an
instance of the structure. In it, X and Z are the data holding
components (called LEAF components), with maximum lengths of B
and D bits, respectively. W and Y are structural components (called
repeating, or REP components) that serve to group the components
below them into substructures (Y is called a substructure)., There is
one occurrence of the structure W, composed of up to A occurrences
of the data item X and the substructure Y. Each Y is a (sub)structure
composed of up to C occurrences of Z.

—WI{1)X —W(1) Y(1) Z
W(1).Y(2) Z

W)LY

L W(1) ¥(e) 2

W(2) X —W(2) Y(1) Z
W(2) Y(2) Z

W W) ¥

L W) Y(e2) 7

L W) X)
W(a) Y-

W(a) Y(1) 7
W) Y(2) Z

L W@) Yica) 7

where2a< A and ¢i < C.

Figure 7: Populated Occurrence of W

22

In this example, the sizes of each of the components are described
using the syntactic construct "repeats(maxP)" or "length(maxQ)." This
means that the components are variable sized, i.e., from O to P
occurrences of a REP (sub)structure or 0 to Q bits in a LEAF
component occurrence. These are called unfactored (UNF)
components, since the size of each occurrence (because it is variable)
cannot be "factored out" into a single value that describes all such
occurrences. A description of the form "repeats(P)" or "length(Q)"
would describe a factored (FACT), or fixed size component. In this
case, every (sub)structure occurrence would be composed of exactly
P occurrences of its descendant REP and LEAF components and every
LEAF occurrence would be exactly Q bits long. Now the lengths of
each occurrence can be factored out into a single value, thus the
name “factored."

In a typical programming language, space would be allocated for
exactly A occurrences of X and exactly A*¥C occurrences of Z, with
each occurrence being given the maximum number (B or D) bits. DAC
allows the allocation of only as much space as 1s needed for the
actual number of occurrences of X and Y. In addition, each occurrence
of Y may have a different number of occurrences of Z, and all X's and
Z's may be of different lengths. The case of fixed allocation of space
for fixed size data is actually a special case in which all components
are factored.

In the a populated occurrence of W shown in Figure 7, notice that
there are a < A occurrences of X and Y and:

Y(1) consists of ¢1 < C occurrences of Z
Y(2) consists of ¢2 < C occurrences of Z

Y(a) consists of ca < C occurrences of Z

23

Not shown is the fact that W(i).X is bi bits long for all i and that
W(@i).Y(j).Z is d(i,j) bits long for all 1,j.

- The a, bi, ci, and d(i,j) are all tags which represent the number of
(sub)structure occurrences and the length of each of the data items.
Figure 8 shows the collection of tags for the population shown in
Figure 7.

Structure

Components Tags

01 W a
02X b1,h2, ... ,ha
02y cle2,ca

032 d(1,1), ... ,d(1,cl), .. ,d(a,1), ... ,d(a,ca)
Figure 8: Tags for Instance of W

The information describing the structure W should require much less
space that W itself. This information is all stored in DAC control
structures. These structures. contain several different groups of
information: ‘

1) Descriptors that describe the static organization - of the structure
(the Schema). Contained here is such information as the
number of components and the type of structure (DAC data or
user data). The following information is stored for each
component:

a) TYPE:
The type of component (REP or LEAF)..

b) FORMAT: :
The format of the component (FACT or UNF).

24

c) TAG_SIZE:
For unfactored components, the size (in bits) of the tags (The
ai, bi, ci, and d(i,})). The tags for one component are all the
same size, but different components can have different sized
tags.

d) TAG_VALUE:
For factored components, the value of the (single, factored
out) tag.

e) TAG_UNITS:
The "units" for a tag. The tag actually stored is reduced by
this factor. This reduces the space requirement. The units
are used when the data described by the tag 1s always a
multiple of some number of bits long. For example, character
data is always a multiple of 8 bits long.

f) PARENT:
An identification of the parent (REP) component of the
component being described.

g) EXTENT:
The identifier of the last descendant of a REP component,

2) Page tables, describing where the tags are located.
3) Page tables, describing where the data is located.

The last two tables make up a data structure called the directory,
and will be discussed in detail later in this section.

The tags, descriptors and page tables together completely describe
the populated structure. Notice that the number of tags for a given

(UNF) component (REP or LEAF) is described by the tags in its parent

25

(REP) component. For example, there are exactly "a" tags for the
LEAF component X and the REP component Y. The number of tags for
the LEAF component Z is ¢l + ¢2 + ... + ca. Also, the number of
occurrences of Z in the i-th occurrence of Y is ci.

The data itself is stored separately. It is stored in a linear fashion, in
the same order as it would be encountered in a "pre-order” traversal
of the structure. Figure 9 shows the order of the data for the
populated structure.

W(1).X

W(1).Y(1).Z
W(1).Y(2).Z

W().Y(c1).Z
W(2).X
| W(2).Y(1).Z
W(2).Y(2).Z

W(2).Y(c2).Z

W(a).X
W(a).Y(1).Z

W(a).Y(ca).Z

Figure 9: Data Storage

26

4.2 Locating Data Stored in a DAC Structure.

A 'reference” to a data item (read, write, insert, delete) consists of
one or more component names and associated indices. Thus, W(i).X
references the i-th X, W(i).Y references the i-th "substructure” Y, and
W(i).Y(j).Z references the j-th Z in the i-th Y. The "address” of a
datum is the distance (in bits) from the beginning of the structure to
the beginning of the datum.

Notice that, in Figure 7, W(3).X refers to a single leaf occurrence (the
third X). Determining the location of W(3).X is a matter of
determining the sizes of W(1).X, W(1).Y, W(2).X and W(2)Y. W(3).X
follows immediately after the end of W(2).Y. In general, flndmo :
W(I).X requires that I-1 occurrences of X and Y be skipped.

The reference W(3).Y is the same, with the important difference that
the length of W(3).X must also be considered. That is, to find the
third Y, two occurrences of Y and three occurrences of X must be
considered. In effect, the structure W has been split between its X
and Y components. Finding the referenced component (W(I).Y)
requires that I occurrences of the components before the split (X)
and I-1 occurrences of components after the split (Y) be skipped.

Notice that the substructure split occurs at the last component
mentioned in the reference. Thus W(3).Y requires the split between
W(3).X and W(3).Y.

Another example is W(3).Y(4).Z. In this case, the third occurrence of
Y is split into W(3).Y(1) through W(3).Y(3) and W(3).Y(4) through
W(3).Y(C3). This type of split is not signalled by the position of the
component in the structure -definition compared to the referenced
component, as was the structure split above. Rather, it is simply the
presence of an index value for a component. Thus, for W(3).Y(4).Z, W
is indexed, so 3 is considered to be an index into the first occurrence

27

of W, and the Y index (4) is considered to be an index into the third
occurrence of Y. Thus, two complete occurrences of Y plus three
occurrences of X plus 3 additional occurrences of Z are considered.

4.3 The Address of Data

The address of a datum is the sum of the lengths of all data before it
in the structure. Referring to figures 8 and 9, the address of
W(2).Y(3).Z is:

bl +d(L,1) + ... + d(I,cl) + b2 + d(2,1) + d(2,2)

The bi terms represent the contribution of the X value occurrences to
the total distance from the beginning of the structure to the datum,
and the d(i,j) terms represent the contribution of the Z value
occurrences '

In general, the address of Z(LY) is:

I -1 ¢ J-1
2. b+ 3 (Y diph) + T d(L,j)
i=1 i=1 =1 i=1

Notice that only the tags for the LEAF components are added. The
tags for -the REP components are used only as limits for the .
summation. This reflects the fact that only the LEAF components
actually hold data.

Computing the address of a particular datum becomes a matter of
adding up the lengths of all LEAF substructure occurrences before
the desired datum. The REP components are used to determine how
many LEAF component tags must be summed. '

28

Cook calls the contribution of a particular component (REP or LEAF)
to the address of a datum the DATASPAN for that component. The
DATASPAN for a component is the sum of the tags for all occurrences
of that component before the referenced datum. For a REP
component, the DATASPAN is the sum of the number of occurrences
of the substructures that make up that component, or the total
number of complete substructure occurrences before the referenced
datum. For a LEAF component, the DATASPAN represents the sum of
the lengths of all occurrences of that component before the
referenced datum, or the total contribution of that component to the
address of the datum.

The number of tags that are summed for a given component is called
the TAGSPAN for that component. The TAGSPAN for a component can
be determined from the DATASPAN of the parent (REP) component
or from the DATASPAN of the same component. The DATASPAN for a
component can be determined by adding up the first TAGSPAN tags
for that component or from the TAGSPAN of a descendent
component,

The relationship between the TAGSPAN and the DATASPAN for a
component is formally represented in the "Instance Equation™.

4.4 The Instance Egquation.

For notational simplicity, each component can be referred to by its
component number in the structure definition, with the first being 1,
the second 2, and so on (For example, in Figure 6, W is component 1
and Z is component 4). Now, the [nstance Equation for component k
is:

29

TAGSPAN(k)
DATASPAN(k) = Z TAG(ki)

i=1

Referring to Figure 8, assume that DATASPAN(3) (the DATASPAN for
Y) has been computed. This DATASPAN value is the sum of some
number of ci. Since ci represents the number of occurrences of Z in
the i-th occurrence of Y, this DATASPAN value for Y is the number of
Z tags (d(i,j)) that must be summed to get the actual 'Iength of
DATASPAN(3) occurrences of Z. That is, the DATASPAN for Y becomes
the TAGSPAN for Z. Then, the DATASPAN for Z can be computed by
adding up the first DATASPAN(4) tags for the Z component.

The inverse is also true. If the TAGSPAN for component Z is known, it
can be used as the DATASPAN for its parent, Y. Then, the Instance
Equation can be solved for TAGSPAN(3) by counting the number of ci
tags that must be subtracted from DATASPAN(3) to reduce it to zero,
or below,

The DAC process uses an "address table”, contained in the schema
and illustrated 'in Figure 10 for the example structure. Two columns
have been added, in addition to TAGSPAN and DATASPAN. INDEX is
the index values associated with the data request. For example, the 2
and 3 in W(2).Y(3).Z. The DONE column is used by the address
computation algorithm to help control the process.

TAGSPAN DATASPAN INDEX DONE

Figure 10: Example Address Table

30

The address table is initialized to reflect the form and content of the
reference. For the request W(2), Y(3), Z, the address table and two
control variables (TOP and BOTTOM) are set as follows:

1} TOP is set to the component number of W,

2) BOTTOM is set to the component number of Z.

3) Only the last component in the reference may be of type LEAF.

4) For each component in the reference that has an associated
index value, the INDEX for that component number is set to the
index value. The INDEX for all other components is set to 0, If
the last component is a LEAF, and has an index value, that
value is assigned to its parent.

5) DONE is set to "not done" for all components.

Thus, a reference to W(2).Y(3).Z results in the address table in Figure
11.

The address computation process consists of filling in the empty
spaces in the address table. The algorithm is shown in Figure 12.

TAGSPAN DATASPAN INDEX DONE
W 2 ~done
X | 0 ~done
Y 3 ~done
Z | 0 ~done

TOP=1 and BOTTOM=4.

Figure 11: Initialized Address Table

31

AC:PROC(COMP_NR,DIR,VALUE) RECURSIVE;
IF COMP_NR = 0 THEN RETURN; /* Above top */
IF DONE(COMP_NR) = NOT_DONE
THEN RETURN; /*Already done, so can just return */
IF DIR = UP
THEN DOC;
DATASPAN(COMP_NR) = VALUE;
TAGSPAN(COMP_NR). = GEN_DIV(COMP_NR,DATASPAN(COMP_NR));

DONE(COMP_NR) = GOING_UP;
CALL AC(PARENT(COMP_NR),UP,TAGSPAN(COMP_NR));
END;

ELSE DO; /* Going Down - VALUE is a new TAGSPAN *f
IF ((COMP_NR > BOTTOM) | ((COMP_NR = BOTTOM) &
(TYPE(COMP_NR)=LEAF)))
THEN DO; /* Possible substructure split */
IF DONE(PARENT(COMP_NR)) = DEC_DOWN
THEN TAGSPAN(COMP_NR) = VALUE - 1;/* Split here */
ELSE TAGSPAN(COMR_NR) = VALUE; /* Already split*/
DONE(COMP_NR) = DEC_DOWN; /* Split here or above */
END;
ELSE DO; /* Above substructure split */
TAGSPAN(COMP_NR) = VALUE;
DONE(COMP_NR) = GOING_DOWN;
END; _
IF INDEX(COMP_NR) = 0 /* If there is an index *f
/* for this component ¥/
THEN DATASPAN(COMP_NR) =
GEN_MULT(COMP_NR,TAGSPAN(COMP_NR) -1 .
' ' + INDEX(COMP_NR);
ELSE DATASPAN(COMP_NR) =
GEN“_MULT(COMP_NR,TAGSPAN(COMP“_NR)); o
END; :
IF TYPE(CQMP_NR) = REP /* If COMP. has descendants *{
THENDOQ; o
DO CMP = 1 TO NR_COMPS:/* Then pass the DATASPAN down */

32

IF PARENT(CMP) = COMP_NR /* If this COMP's parent %/
THEN CALL AC(CMP,DOWN,DATASPAN(COMP_NR)):
END;
END;
END;
Figure 12: The AC algorithm

The algorithm moves either "up” the structure, passing a TAGSPAN
value up to be used as a DATASPAN, or "down" the structure, passing
a DATASPAN value down to be used as a TAGSPAN. An input
parameter (VALUE) represents the TAGSPAN or DATASPAN being
passed. The direction (DIR) and the number of the component to be
processed (COMP_NR) are also parameters to the algorithm. The
address table and the control values TOP and BOTTOM are assumed
to be globally available. The algorithm is started by initializing the
address table, as previously discussed, and the reference
CALLAC(TOP,UP,INDEX(TOPY)).

Returning to the sample reference of W(2).Y(3).Z, the address table,
TOP and BOTTOM are set as previously described. Then, the AC
algorithm starts at component W with VALUE=2. Since the direction
of computation is UP, the DATASPAN for component 1 is set to
VALUE (2) and TAGSPAN is computed to be 1. The DATASPAN for W
is the TAGSPAN for X and Y, and is passed down in VALUE. For X,
with no input, this will result in 2 DATASPAN of bl+b2. For Y, with
an input value of 3, the TAGSPAN becomes c1+3. Since Y is the parent
of Z, cI+3 is passed down to Z. Here, the (sub)structure split occurs
(COMP_NR=BOTTOM and TYPE=LEAF). The TAGSPAN for Z becomes
(c1+3)-1=c1+2. The DATASPAN is the sum of ¢l+2 tags, or
d(1,1)+...+d(1,c1)+d(2,1)+d(2,2). The final address table for this
computation is shown in Figure 13.

33

TAGSPAN DATASPAN INDEX DONE

w 1 2 2 go.up

X 2 b1+b2 0 go.down
Y 2 c1+3 3 go.down
Z | ¢c1+3 f(cf('gr)é’)"' 0 dec down

TOP=1 and BOTTOM=4.

Figure 13: Completed Address Table

The distance to Z(2,3) is the sum of the DATASPANs for the LEAF
components, or:

bl + b2 + d(1,1) + ... + d(2,2)

which is the result previously obtained.

4.5 Solving the Instance Equation

The Instance Equation can be solved for either DATASPAN or
TAGSPAN, given the other. This process is divided into two functions,
GEN_MULT, which solves for DATASPAN, and GEN_DIV, which solves
for TAGSPAN. Solving for DATASPAN, given a TAGSPAN, involves
simply summing TAGSPAN tag values, which is a generalization of
the multiplication process.

Solving for TAGSPAN, given DATASPAN is a generalization of the
‘division process. Again, using a factored component as an example:

DATASPAN(k) = TAGSPAN() * C -

SO
TAGSPAN() = DATASPAN(k) / C.

34

For unfactored components, TAGSPAN is the number of tags that
must be subtracted from DATASPAN to reduce it to zero (or just
below zero, if the tag value(s) do not "divide" DATASPAN exactly)
The remainder is defined as the (positive) amount by which the sum
of the tags exceeded DATASPAN (This is slightly different than the
usual definition of remainder, but it is more useful for DAC).

4.6 Storing the Data and Tags

For large databases, both the tags and the data described by the tags
must be stored on disk. In order to avoid mass movement of data
when inserting or deleting, the disk space is divided into a number of
(fixed size) blocks. The data is then stored in the blocks in pages,
which may be from zero to BLOCK_SIZE bits long. If a page grows
larger than the block, the page is split and divided between the old
block and a second, newly allocated block, The pages, while not
necessarily physically contiguous or sequential, are kept logically
contiguous and sequential through the operation of the algorithms
and data structures described below.

The tags and the data are stored using the same structures. Since the
data storage problem is a special case of the more general problem of
tag storage, the discussion will be in terms of the storage of tags.

Referring to Figure 8, all of the tags for a single component are
shown together on a line. The collection of tags for an unfactored
component is called a tag clique (or just cligue). In this example, all
of the components are unfactored, so there are four cligues. Except
for the first component, there is always more than one tag for a
given component.

In general, some tags will be factored. For example, if all X's were
exactly B bits long (02 W length (B)), the tags for W would be as in
Figure 14,

35

This structure has three cligues (The first component is considered to
be unfactored in this example since the value (a) is not fixed).

The storage technique used allows a clique to be independently
divided between more than one page and, at the same time, for each
page to contain fragments of more than one clique. A page is divided
into several (in this case 3) independently varying fragments of data.
An example is shown in Figure 15.

Structure

Components Tags

01 w a
02 X B
02 Y ¢le2, ... ,ca _
03 Z d(L1), ... 4(lcl), .., d(@a), .. .d(a,ca)

Figure 14: Tags for W with Factored X Component

Page 1 Page 2 Page 3
a | d4,2) ...
——— 6 ... ca (-)vd(a.ca) .
' _ d(3,9) ... '
d(t,1) d(4,1)
d(3,8)

Figure 15: Fragmented Page Storage

36

Notice that no clique is allocated or stored for X. The tag value (B) is
fixed, and is stored in the schema in the descriptor for X.

A method is needed to manage the pages. This involves a new data
structure, called a page table. The page table records the amount of
data for each clique in each page. There are also algorithms to
manipulate the pages and page tables. The page table for the tags
(called the tag pages) is shown in Figure 16. It is shown as a DAC
structure, as that is how it is implemented.

01 TAG_PAGES repeats (max max_pages),
02 BLOCK_NR length (LEN_NR),
02 PGE_LENGTH length (LEN_LEN),
02 CLIQUES repeats (NR_CLIQUES),

03 CLIQUE_LENG length (LEN_LEN);
Figure 16: Tag Page Table Structure

BLOCK_NR is the block number on disk where the page 1s stored.
PGE_LENGTH is the total amount of data stored in this page and
CLIQUE_LENG is the amount of data for each clique. Thus, if the
length of the tags for the components W, Y and Z are w, y, and z,
respectively, the pages in Figure 15 would be described by the page
table in Figure 17, where the actual values for a, ¢i, w, y and z must
be inserted and the expressions evaluated, since only one number is
stored in each position in the table.

37

PGE PGE PGE

1 2 3
1D. ID] ID2 D3
LENG W+ 5%y + (a-5)*y + (c4-1+c5+
(cl + c2 + 8)*z (€3 -8 + 1)*z e + ca)¥*z
CL_LENG(1) w 0 _)
CL_LENG(2) 5%y @a-5*y 0
CL_LENG() {cl + ¢2 + 8)y*z (3-8 + 1)¥z (cd -1 +¢5
+ ...+ ca)¥z

Figure 17: Tag Page Table

To reference the N-th tag for component Z (for example) requires
first determining the distance, in the third clique, to the tag. This
distance is (N-1)*z. A form of generalized divide is now used to
determine the correct page. The CLIQUE_LENG()s for the the third
clique are added until the sum exceeds (N-1)*z. The number of
CLIQUE_LENG entries that must be added determine the page
number of the page that contains the tag. BLOCK_NR for this page
gives the block number where the page will be found.

For data pages, the concept is identical. The 'pages are treated as if
they were tag pages with only one clique. The page table does not
require an array of clique lengths, so the structure in Figure 18
results.

01 DATA_PAGES repeats (max MAX_PAGES), -
02 BLOCK_NR length (LEN_NR), -
02 PGE_LENGTH length (LEN_LEN), :

02 CLIQUE_LENGTH length (LEN_LEN);

Figure 18: Data Page Table Structure

38

4.7 The SITE

A detailed algorithm for mapping a data distance to a page will be
presented shortly. First, one last data structure must be discussed,
called the SITE.

A SITE is an address, and is the only absolute machine address
maintained by the DAC system. It contains the address of a piece of
data until the operation on the data is complete, and is discarded
when it is no longer valid. The SITE is shown in Figure 19.

01 SITE,
02 BLOCK
02 PGE_OFESET .
02 PGE_RESIDUE
02 PGE_REV_RESIDUE .-,
02 PGE_INDEX -
02 MAP_INDEX

Figure 19: The SITE

The SITE is a PL/1 structure, and the type declarations for the data
components are left wunspecified, as they are somewhat
implementation dependent. They will all contain integer values, and
must be large enough to hold the largest value possible for the
implementation.

The SITE holds the address of a piece of data. "Referring to. Figure 20,
PGE_OFFSET is the distance from the ‘beginning of the page to the
beginning of the data. PGE_REV_RESIDUE is the distance from the -
beginning of the clique (in the page) to the data. PGE_RESIDUE is the
amount of data in the page following the beginning of the data (in

39

the clique). MAP_INDEX is the page number, and BLOCK is the block
number for the page (BLOCK_NR(MAP_INDEX)).

PGE_RESIDUE

PGE_REV_RESIDUE

e

CLIQUE 1 CLIQUE 2+ CLIQUE 3 i
———— PGE_OFFSET —b-f*rb—
A
current location of the SITE —J
beginning of desired data
PGE_INDEX

Figure 20: Clique Layout

Thus, MAP_INDEX represents the quotient of the generalized divide
operation on the data distance, and PGE_RESIDUE is the remainder.
PGE_INDEX is used to indicate a data distance relative to the current
location of the site. In the above example, the desired data starts at
offset PGE_OFFSET + PGE_INDEX in page number MAP_INDEX which is
stored in block number BLOCK_NR on disk. :

PGE_INDEX can also be used to refer to data in a different page. In
Figure 21, PGE_INDEX is greater than PGE_RESIDUE, so the SITE must
be mapped (using the generalized divide) from the current page to a
new page. Notice that, while there is still more data in the
MAP_INDEX-th page (in the third clique), there is not enough data in
that page in the second clique, as the cliques beyond the second one
are ignored. This emphasizes the fact that the mapping is done
within a single clique, using only PGE_RESIDUE, PGE_REV_RESIDUE,
PGE_INDEX, MAP_INDEX and the CLIQUE_LENG entries for that cligue.

40

The CLIQUE_LENG entries for other (lower numbered) cliques enter
only into the calculation of PGE_OFFSET.

PGE_INDEX

I_L + I + _]_[

— becomes (after Mapping)

(PGE_INDEX = 0)

PGE_OFFSET

Figure 21: Relationship Between PGE_INDEX and PGE_OFFSET

It is a simple extension to the above concepts to allow the PGE_INDEX
to refer to a data distance before the current location of SITE (a
backward reference). The site mapping algorithm is called
MAP_PAGE and is described in detail in [10].

4.8 Using the SITE and MAP PAGE to .Access Data

Once a SITE has been determined, it can be used to reference the
data. This procedure (called GDATA) simple uses MAP_PAGE to re-
map the SITE, if necessary, then reads the data from the disk. -
Similar algorithms are used to insert, replace, and delete data. The
details of these procedures are contained in [10]. ;

41

4.9 The SCHEMA

Several times in the preceding discussion, reference has been made
to the schema and directory structures, and pieces have been
described. In this and the following section they are presented in
detail.

The SCHEMA is a PL/l data structure that describes a DAC data
structure. It has been seen in the previous algorithms as a
parameter (STRUC) to the procedures. It contains both the
DESCRIPTORS, that describe the components and structure of the DAC
data structure, and the ADDRESS_TABLE, used by AC for Dynamic
Address computation. There is actually a separate SCHEMA for each
DAC structure. The schema is defined in Figure 22 (the actual data
types are not specified, as they are implementation dependent).

4.10 The DIRECTORY

The directory is implemented as another DAC structure. This is
helpful since the management of the page tables requires that new
entries be inserted between existing entries. and existing entries may
be deleted. The complete definition of the directory is shown in

Figure 23.
01 SCHEMA, _

02 TYPE_STRUC -, /* USER or SYSTEM */

02 DIR_INDEX ---, /* DIRECTORY Occurrence Number */

02 NR_COMPONENTS . ===, /¥ Number of Components * f

02 NR_CLIQUES ===, /* Number of UNFACT Component */

02 DESCRIPTORS (NR_COMPONENTS), /* One per Component * /

03 TYPE -=, /* REP or LEAF */

03 FORMAT e, FFACTor UNF */

03 TAG_SIZE —, /* In Bits o */

03 TAG_VALUE -, [* TAG = TAG_VALUE for FACT Comp. */

03 TAG_UNITS ---, /¥ TAG = stored value*TAG_UNITS */

03 PARENT -, /* Component number, 0 for first */

42

03 CLIQUE_ID -, /* CLIQUE no for UNF Comp only */
02 ADDRESS_TABLE (NR_COMPONENTS), /* One per component * /

03 TAGSPAN ===,

03 DATASPAN ---,

03 INDEX ---,

03 DONE -3

Figure 22: The SCHEMA Structure

01 DIRECTORY repeats (max MAX_STRUCTURES),

02 TAG_PAGES _ repeats (max max_pages),

03 BLOCK_NR length (LEN_NR},

03 PGE_LENGTH length (LEN_LEN),

03 CLIQUES repeats (NR_CLIQUES),

04 CLIQUE_LENG length (LEN_LEN),

02 DATA_PAGES repeats (max MAX_PAGES),
03 BLOCK_NR length (LEN_NR),
03 PGE_LENGTH fength (LEN_LEN),

03 CLIQUE_LENGTH length (LEN_LEN);

Figure 23:. The DIRECTORY Structure

Each structure described by the directory is given a numeric
identifier (DIR_INDEX, contained in the SCHEMA) which is just an
index into the DIRECTORY component. Thus, DIRECTORY(N), referring
to the entire Nth occurrence of the substructures that make up the
directory, describes the ‘Nth structure.

The directory is a DAC structure, and its page tables must be
contained in the directory. These tables are contained in
DIRECTORY(1) (The first occurrence of TAG_PAGES and
DATA_PAGES). Other structures are described by DIRECTORY(2) and
higher. This means that the directory's page tables for itself always ..
starts at absolute location O in the directory structure. The (known)

43

address of the directory's page tables is contained in a SITE known as
the MASTER_SITE.

4.11 Putting it All Together

All of the building blocks required to locate a piece of data have now
been described. All that is required is a controlling algorithm to tie
them together.

This algorithm is shown in Figure 24. It accepts a user request as a
structure identifier and a series of structure components and
corresponding indices. It returns a SITE initialized to all zeroes
except for PGE_INDEX, which contains the distance from the
beginning of the structure to the data.

AC_LOC:PROC(STRUC,INPUTS,SITE,DIR_C_SITE,DIR_D_SITE):

r* */
IF TYPE_STRUC = DIREC_STRUC /+* If a USER structure */
THEN DQ; /* Need to locate the directory data */
/* Set the DIRECTORY inputs (DIR_INPUTS) to refer . CE
/* 1o the first Tag Page Table for the */
/* DIR_INDEXth occurrence of the DIRECTORY ' */

CALL AC_LOC(DIRECTORY,DIR_INPUTS,DIR_C._SITE,
MAST_C_SITE,MAST_D_SITE);
CALL MAP_PAGE(DIRECTORY,DIR_C_SITE,FWD,MAST_D_SITE, 1);

/* Set DIR_INPUTS to refer to the Data Page Tables */

CALL AC_LOC(DIRECT ORY,DIR_INPUTS,DIR_D_SITE,

' ' MAST_C § ITE,MAST_D_S ITE);
CALL MAP_PAGE(DIRECT ORY,DIR_D_S ITE,FWD,MAST_D_SITE,1);
END; '

44

ELSE DO; /* DIRECTORY access; use the MASTER SITES */
DIR_C_SITE = MAST_C_SITE; /* The tag (CLIQUES) MASTER*/
DIR_D_SITE = MAST_D_SITE; /* The DATA MASTER */
END;

END;

/* Now locate the requested data */

CALL AC_INIT(STRUC,INPUTS,TOP,BOTTOM);

CALL AC(STRUC,TOP,UP,INDEX(TOP));/* ADDRESS COMPUTATION #*/

BLOCK_NR = 0; /* and set up the SITE */

PGE_OFFSET =0);

PGE_RESIDUE = 0;

PGE_REV_RESIDUE = (;

PGE_INDEX =0,

MAP_INDEX = 0;

DOLEV =1TO NR_COMPS;

IF TYPE(LEV) = LEAF
THEN PGE_INDEX = PGE_INDEX + DATASPAN (LEV);
END;
END;,

Figure 24: Locating the Data

Satisfaction of a request for a data location requires that the location
of the directory data for that structure be known (this is the
DIR_SITE). This is just a request for the location of some data with
structure identifier DIRECTORY and with the first directory
component being indexed by the numeric identifier for the structure
being referenced (DIRECTORY(DIR_INDEX)). This results in a recursive
application of the algorithm. Now, the location of the directory's
directory data must be determined. This would result in another
recursive application of the algorithm, etc. The algorithm will
terminate, because the directory's data has been assigned to a known
location (first in the directory), and this location is returned (this is
the MASTER_SITE).

45

There are two sets of page tables, one for the tags (the tag page
tables) and one for the data (the data page tables). Thus, there are
two MASTER_SITEs and there will be two DIR_SITE's set. Since
MAP_PAGE €xXpects to be able to do relative addressing using an
already mapped DIR_SITE, the PGE_INDEX in this site must be zero.
MAP_PAGE is therefore used to "pre-map" the directory sites,

After the directory data is [ocated (for either the directory or the
USeT structure), an address table is initialized using the inputs, and
AC is used to perform address computation. The SITE is set to all
zeroes, then PGE_INDEX is set to the sum of the DATASPAN values for
all LEAF components.

Once the data is located, the SITE is passed to the appropriate routine
to read, delete, insert, or replace the data.

5. IMPLEMENTING B-TREES USING DYNAMIC ADDRESS
COMPUTATION

In the previous discussion of algorithms for manipulating B-trees,
several procedures for performing operations on the underlying
ragged array were mentioned, but their details were left unspecified.
Also, B_TREE, N_KEYS and DATA were treated as arrays, and
N_NODES as a simple variable, They are all implemented as
procedures which perform address computation and retrieve or store
keys, data or tags. All of these procedures are presented in detail in
[10].

These procedures collectively act as an interface between the B-tree
algorithms and the dynamic address computation algorithms,
Conceptually, they provide the Tépresentation of the B-tree as a
ragged array. '

Using the notation in the previous sections, the array B_TREE for a B-
tree of degree m with varying length keys is defined in Figure 25.

46

Similarly, Figure 26 defines the DATA array for varying length data
records.

01 NODE repeats {max MAXN ODES}),
02 KEYS_PER_NODE repeats (max m-1),
03 KEY _ length (max KEY_LENGTH):

Figure 25: DAC Definition of the B-TREE Array

(1 DATA_NODE repeats (max MAXDATA),
02 DATA length (max DATA_LENGTH):

Figure 26: DAC Definition of the DATA Array

Now, to reference keys or data requires only that AC_WC and GDATA
be used to locate and read the data. Other calls are used to insert,
replace or delete data, or to manipulate the tags, which Tepresent the
length of data or the number of keys in a node. '

6. PAGE MANAGEMENT AND PERFORMANCE IMPROVEMENT

The preceding sections described the "high level" DAC algorithms.
These discussions ignored the low: level problem of actually writing
and reading blocks to and from a file. It is possible to improve the
performance of these algorithms (and, incidentally, to simplify their
analysis) by making several modifications, This section briefly
describes the method used to manage the transfer of data from disk
to memory and the methods for improving the system performance.
The two subjects are discussed together because, in some cases, they
are related.

47

6.1 Page Management

The data accessing algorithms previously described (GDATA, and the
corresponding algorithms for inserting and deleting data) all assume
the ability to reference (read and write) bits in a block on disk given
the block identifier (Block number), a page offset (bit position) and a
length (in bits). The simplest way to implement this is to simply read
the block, extract or replace the correct bits and then (for insertion,
deletion and replacement) to write the block back to its previous
position on disk.

Normally, there are several references to a block. A small scale
version of the classical demand paging concept used in operating
Systems for virtual storage [2] was used to take advantage of this
fact. The buffer to be used is chosen using a simple Least Recently
Used (LRU) replacement algorithm.

6.2 Pinning Blocks

There are several modifications to the basic DAC and page
management algorithms that improve the overall performance of the
system. Some of these were described by Cook in his papers and
~others are introduced here. Not all of the ideas discussed here were
actually implemented, but those that were implemented resulted in
- notable performance improvements (discussed later). We begin with
the concept of pinning blocks.

In the basic LRU replacement scheme, all blocks in memory are
subject to being replaced when a new block must be read. In the DAC
directory, there are three blocks that are very heavily used. These
are the pages that hold the page tables that describe the directory
itself, and the page with the tags for the directory. - The DAC
algorithms require by assumption that the page tables for the
directory never exceed one page for the tag page tables and one for

48

the data page table. The tags for the directory do not require very
much space. In fact, the next section describes a modified tag
organization that will reduce the directory tag space requirement to
a very small, fixed amount.

These blocks are needed by virtually every data reference. The tags
are required to locate the directory data for the other structures, and
the page tables are needed to map the directory sites used to
reference the directory data for the user data and tags (the
MASTER_SITES). Because the blocks are so often used, it is likely that
the LRU mechanism would always keep them in memory. In order to
be certain, however, these blocks are "pinned" into memory. That is,
they are read once, when the file is opened, into buffers that do not
participate in the LRU replacement process. This insures that these
blocks are only read once (and written once at closing time, if they
are modified).

6.3 Locally Factored Components
An earlier discussion described two component formats, Factored and

Unfactored. A third type was also identified by Cook, and can be used
to some advantage in this implementation. Thig new format is called

"Locally Factored" (LFACT). A locally factored component is one in

which the value of the components tags are not fixed for all
occurrences of the substructure or datum it owns (as it is for a
factored component), but the values do not change for every
occurrence of the substructure (as they do for unfactored
components). Instead, the tags for a locally factored component are
fixed for all occurrences of the substructure or datum within a single
occurrence of the substructure that contains the substructure or
datum.

A rel_evant example is the TAG_PAGES substructure in the DIRECTORY
structure [10). Here, the tags for the - CLIQUES component represent
the number of CLIQUE_LENG (LEAF) entries in a single tag page table

49

entry (one occurrence of the substructures making up the

page described by thag entry. Notice that the number of cliques
varies between the various data structures described by the
DIRECTORY, but that for a single data structure, all of its tag page
table entries have the ‘Same number of cliques. Thisg means that the
CLIQUES tags for all page table entries for g single data structure wili
be the same. Stated differently, within one occurrence of the

Now, notice that the number of CLIQUES tags for a given occurrence
of TAG_PAGES is given exactly by the TAG_PAGES tag for that
occurrence. A locally factored tag is only stored once, and the DAC
algorithms that depend on the tags (GEN_MULT and GEN_DIV) use
the value of the parent tag corresponding to the substructure
occurrence to determine the number of substructures to which the

This results ip savings two ways. First, the amount of Storage
required for the tags is decreased, since these tags are only stored
Once per occurrence of the containing (sub)structure, instead of once
Per occurrence of the described substructure, The second savings ig
in processing time, since fewer tags need to be read whep executing -
the AC algorithms of GEN_MULT and GEN_D1V.

With locally factored tags, the single tag and the parent tag are each
read, and the locally factored tag applied as many times as the valpe
of the parent tag.. With unfactored tags, the parent tag is not read,
but at the component of interest, many tags must be read. In fact,
the break-even point in terms of number of tags read occurs when
the number of (sub)structure occurrences (and the valye of the
parent tag) is two,

50

There is also a savings in update costs since a locally factored tag
need only be inserted when 4 new occurrence of the containing
substructure is created. After that, all new occurrences of the
described substructure only result in the parent tag being
incremented, an update that is also required for unfactored tags in
addition to the insertion if the new tag.

structure. Thus, for the B_TREE structure, its associated DATA
structure and the DIRECTORY structure, the total number of CLIQUE

the results of the first address computation can be used as 3 "starting
point" for the second. This is accomplished using what Cook calls
‘restart points”. A restart point stores enough information to restore

Now, GEN_MULT uses only the difference between an incoming
TAGSPAN value (the DATASPAN of the parent) and the TAGSPAN -
found in the restart point to do the multiplication in computing a
new DATASPAN. The REMAINDER is added in to the DATASPAN in
addition to any tags that are read. GEN_DIV also uses the difference
between the restart point values and the incoming values ip its
computation., Here, the REMAINDER indicates how much further in

51

another tag. The result is that fewer tags need to be read. Of course,
this results in performance improvements: only for data structures
with unfactored components, since factored components can use the
hardware multiply or divide with tags directly from memory (in the

There are several possible ways to use Testart points. One is to have
many distributed throughout the data Structure. Those would be
updated by the DAC algorithms whenever updates occurred. Another
possibility is to keep multiple restart points, but to invalidate any
that are beyond the location of an update. This requires much less
maintenance and is the method used here.

Another issue is the choice ‘of a restart point, and when it should be
updated to refer to 1 different datum. The Iestart point can be
chosen automatically or specified by the user, and it can be Ieft
pointing where it was before its use or moved to point to the fatest
reference. In the implementation described here, the user can
decide whether to let the system chose the restart point, to specify a
particular restart point or to not use Iestart points at all. The uger
also can specify that the restart point is to be updated to refer to the
new location, that a different restart point is to be updated or that no
point is to be updated. All restart point usage can also be disabled,
for performance comparisons. '

6.5 First Component Tag

A simple, but usefu] modification involves the tag for the first
component of a data structure, This component ig usually thought of
as unfactored, since ijts value can vary, depending on the number of
substructure occurrences. However, there ig only one tag for this
component, 50 it meets a]] requirements for being factored except
that its value is not fixed. Simple modifications to the tag
referencing_ algorithms allow this tag to be maintained in the

52

DESCRIPTOR, just as is done for factored components, but to be
updated as the data structure evolves, as is done for unfactored
components.

This results in advantages for all references to this tag, since it is
0w permanently in memory, instead of being on disk. It is
especially useful for a data structure that is completely unfactored
except for the first component (for example, the DATA Structure in
the B-tree system, when the indexed data is fixed length).

If the tag were kept on disk, as are most unfactored tags, it would
reside in some block on disk, References to the data could require
reading and writing the block, along with the page table required to
map directory sites to the tag. Putting the tag in memory eliminates
all of the direct 1/0 overhead just described, plus any extra 1/0O
caused by the LRU replacement algorithm.

This modification was made to in the implemented system.

6.6 Restart Sites

Later, it will be seen that a significant portion of the disk accesses
required to reference gz datum are involved in mapping of sites,
especially the directory sites uwsed to reference the page tables to
map the user data sites. The same reasoning that led to the concept
of restart points for . address computation leads to the concept of
"restart sites”. A restart site could be associated with a restart point,
or could be independent.

A restart site is g -normal site, but with the addition of a
TOTAL_OFFSET field that contains the total offset represented by the
site (remember that a SITE contains only the offset within a given.
page). The mapping already done in the site does not have to be
redone each time a datum near the restart site is referenced. Instead,
the SITE is set to the contents of the restart site, and the PGE_INDEX

53

field set to the difference between the total offset to the datum and
the total offset in the restart site. Then, the SITE need only be
mapped from its current location to the offset required, instead of
being mapped the entire distance from the beginning of the data
structure,

Restart sites have to be maintained just like restart points, and any
modifications to the data would again invalidate restart siteg beyond
the point of the modification. This modification was not made in the
implemented system.

7. PERFORMANCE ANALYSIS

The analytical evaluation of the performance of the B-tree algorithms
when implemented using DAC turns out to be a fairly difficult
project. The performance measure chosen (number of blocks
transferred to and from disk) is affected by everything from the B-
tree -algorithms themselves at the highest level to the LRU
replacement algorithm at the lowest level. Fortunately, some of the
performance improving modifications described in the previous
section also make the analysis somewhat more tractable,

Following Wiederhold (9], we consider one of the performance
measures to be the (disk) Storage required to hold the tree. This
analysis is presented in [10]. This section will present an analysis of
one other aspect of performance—the cost (in disk blocks transferred)
to search the B-tree (and read the indexed data). .

The real cost (in time) to read a block can vary widely, even for the
same device. It depends on such factors as seek time and. rotational
latency. It is common to assign- "average" values for seek time and
latency (see [9]), but, algorithm design and analysis should account
for successive reads to blocks that are on the same track or cylinder,
thus * requiring no seek. In modern multi-programmed computers,

54

requests from many different programs may be made to the same
disk drive. This means that there may be little opportunity for an
individual program to take advantage of adjacent blocks, or even to
control placement of data at all on a disk. For this reason, the cost for
a block will be considered to be a constant. If these algorithms were
implemented for a dedicated disk, page placement would become 3
consideration,

Other measures (cost to insert, delete or replace keys and data) will
not be derived. This course has been chosen since every reference to
data in the tree first requires that a search be performed. This meang
that all of these other costs will have been partially defined in the
search analysis. The cost to actually insert or delete a key has been
left for future research.

7.1 Notation

The following notation will be used throughout this section for the
basic parameters.

m - Order of the B-tree.

X - Number of levels in the tree.

a- (Average) number of keys in a node.

K - (Average) length of the Keys. .
D - (Average) length of the Indexed Data.
Nn - The number of B-tree nodes,

Nk - Number of keys.

Nd - Number of Indexed Data entries (Nd = Nk).
Tkpn - Length of a single KEYS_PER_NODE tag.
Tkey - Length of a single KEY tag, -

Tdata - Length of a single DATA tag.

Tip - Length of a single TAG_PAGES tag.

Tel - Length of a single CLIQUES tag..

Tdp - Length of a single DATA_PAGES tag.

Bk - Block size.

35

Ld - Loading Factor (Bk * Ld = Average data on a page).
LEN_LEN - The length of a length entry in a Page Table (ex.

CLIQUE_LENG).
LEN_NR - The length of a BLOCK_NR entry in a Page Table.
LASTn - The Node index of the last node read.
LASTk - The Key index of the last key read.
LASTo - The ordinal number of the last key read, in linear

order from B_TREE(1,1) => 1, B_TREE(1,2) => 2, etc.

The last 3 values depend very much on the distribution of the keys
in the B-tree. For this analysis, we assume that the keys are
uniformly distributed across the possible range of key values, and
that they. are uniformly distributed through the nodes in the B-tree.

7.2 Locating Keys and Tags

The root node containg between 1 and m-1 keys, for an average of
m/2 keys. The other nodes contain between (m-1)/2 and m-1 keys,
for an average of 3/4(m-1) keys (a).

For an "average" search of the B-tree, we assume that the middle key
is read and that this requires reading to the middle key of the:
middle node at each level. Then, LASTn would be the middle node of
the last level. This means that;

x-1 ' # of level x nodes
LASTn = > (# of level i nodes)+
1=1 = 2

1. The number of level 1 nodes is 1.

2. The number of level i nodes for 2 < i < xis: |

56

number of level i-1 nodes

Z (1+N_keys(First_prev + j - 1))
j=1

There is no closed form solution for these equations, so the algorithm
in Figure 27 is used.

FIRST_PREV =1;
NR_AT PREV =1;
LAST N=0;
LEVEL =2;
DO WHILE (LEVEL <= X)
LAST N=LAST N+ NR_AT _PREV;
NR_AT_LEVEL = (;
DOI=1TO NR_AT PREV:
NR_AT_LEVEL = NR_AT_LEVEL-I—N_KEYS(FIRST_PREV+I-I);
END; '
FIRST_PREV = FIRST PREV + NR_AT_PREV:
NR_AT _PREV = NR_AT LEVEL;
LEVEL =LEVEL + 1;
END;
LAST_N = LAST N + CEIL(NR_AT_PREV/2):

Figure 27: Computation of LASTn

37

LASTk is simply the middle key of node ILASTn, so:

N_keys (LASTn)
LASTk =

the lowest plus the number of keys in all nodes before the last
(LASTn) plus the key index of the key in the last node:

(LASTn - 1)
LASTo =LASTk + N_KEYS(j)
j=1

= the Child Node Index Equation - LASTR

The analysis is for unfactored keys and data since this is the most
complex form and the analysis for factored keys and data is a special
case. The cost to search the tree can be divided into two parts:

1} The cost to locate and read the B-tree data (Tags and Keys).

2) The cost to locate and read the directory data for the B-tree
and its tags. ‘

Recalling the ragged array model of the B-tree, observe that the
brocess of searching the B-tree moves “forward" through the array,
That is, the first node read is always node 1. The next node is chosen
using the Child Node index Equation, and always has a node index
greater than the node just read. The same IS true within a node. The

58

first key in the node is read, then the second, etc. Thus, the
displacement to a given key (computed by AC) will always be greater
than the displacement to the previously read key, and less than the
displacement to the next key to be read.

7.3 Reading Tags

Now, consider only the problem of reading the tags in the AC
algorithm. For the purposes of this analysis, we will assume that one
restart point is being used to start each Address Computation, and is
being reset to the just located datum when the AC algorithm finishes.
To read the first key (B_TREE(1,1)), the restart point is not used, but
is set when the data has been located. There are only two tags read
by AC for this key; the first KEYS_PER_NODE tag and the length tag
for the first key. The length tag will be read again to determine the
length of the key; but since the block containing this tag was the last
one read by AC, the LRU replacement algorithm will result in a "free”
reference to the page the second time.

The next key read will use the Testart point as its starting place. This
means that the tags read by AC when the restart point was set need
not be read again, as their contents are alréady reflected in the
values in the address table. In fact, if the second key read is
B_TREE(1,2), only a single additional KEY tag must be read. It will be
read twice, but neither read will result in a disk access, since the
page was read for the previous key (assuming that the two tags are

on the same page).

Now, consider reading the tags for the Jlast key to be read
(B_TREE(LASTn,LASTk). With the restart point, none of the tags used
to locate the previous key are re-read. Only the tags beyond those
read for the previous key need be read,

Thus, since the keys are being read in a forward direction, each tag is
read only once. The second reading of those tags corresponding to

59

the lengths of the keys read will never result in a page fault, as
previously discussed.

Thus, each tag page for the B-tree from the first through the one
containing the KEY tag corresponding to the last key read must be
read exactly once. With LASTo being the ordinal KEY number of the
last key read, the number of pages read is the number of tag pages
required to store the first LASTo KEY tags and the first LASTn
KEYS_PER_NODE tags:

LASTo * Tkey LASTn * Tkpn
Tag pages read = +
Ld * Bk Ld * Bk

Once AC has computed the offset to the key and its length, the key
itself must be read. The Directory data is used to determine which
page holds the key, and only the block for this page is read from
disk. This is the last block referenced before control is returned to
the caller. If the next key in the same node is read, the only blocks
read to locate the key will be (at most) one tag Block (because of the
restart point) and a very few Page Table blocks. If this key is on the
Same page as the previous key, since that block was the last one read
before DAC began locating the new key, there must be (Number of
buffers) new blocks read if the key data page is to be replaced. For
this analysis, we will assume that there are enough buffers available
so that the key data page is not replaced.

Thus, the blocks holding only the keys actually referenced must be
read exactly once. The expected number of B-tree data pages read to
find the last key read is the number of blocks required to store an
average of a/2 keys of length K at each of x levels:

X *(af2) *K
B-tree Data Pages Read =

Ld * Bk

60

The second cost (locating and reading the Directory data) is
somewhat more difficult to predict. Recall that in order to locate the
Directory data for the B-tree, the Directory data for DIRECTORY is
first located. But, this is free, since this data is stored in the MASTER
SITEs, whose locations are always known.

Now, to locate the directory data for the B-tree involves the use of
AC on the DIRECTORY data structure. But, the Directories page tables
and tags are all in the first three blocks, which have been pinned' in
memory. So, no matter how many times these pages are referenced,
no page faults occur. The only cost left is the cost of mapping sites for
tags and data in the B-tree.

For mapping sites for tags, careful consideration of the amount of
data that can be stored in a page can simplify the analysis. First, a
single block can hold

Ld * Bk
Nipt =

LEN_NR + 3 * LEN_NR

Tag Page Table entries for B-tree Tag Pages. Also, a block can hold

Ld * Bk
Nt =

Tkpn * Nn + Tkey * Nk

tags.

This means that one Tag Page Table page is sufficient Ntpt * Nt tag
pages for the B-tree. Both Ntpt and Nt tend to be large, since the tag
page table entries and the tags themselves are small. Careful tuning

61

of Block size based on the number of keys can easily result in only
one block being required for mapping B-tree tags (in the
implemented system, a single page can map approximately 30,000
keys). Thus, to map the tags for the B-tree:

Tag Page Table Pages read = 1

For mapping the data, the cost is much higher since the keys take up
much more space than the tags. To locate the page indexed by a site
requires reading the PGE_LENGTH entry for every page from the first
through the page that contains the offset of interest. Then, the
CLIQUE_LENG and BLOCK_NR entries for the page must be read. This
mapping is done from scratch for each Key read, since SITE level
restart points were not implemented. The largest possible cost is the
cost of mapping to the last page (e.g., for the largest key in the tree).
This would require that all of the Page Table blocks for the data be
read exactly once. A block can hold

_ Ld * Bk
Ndpt =

LEN_NR + 2 * LEN_NR

Data Page Table entries for B-tree Data pages. As for the tags, this
number is fairly large, so the number of Page Table pages is a small
fraction of the number of Data pages.

Since site relative addressing is used in MAP_PAGE, no Page Table
block will ever be read more than once per key. Also, since the page
tables are fairly heavily used, as long as data mapped by the entries
on the first Data Page Table Page are being used exclusively, the page
will probably always be in mc:mory. Conversely, since each page
table can describe so many data pages, it is likely that once the
reference has moved from one page table page to the next, the first

62

page of the page table will not survive in memory. Thus, as long as
keys are being read that can be mapped to the first Page Table page,
the single initial read of the page will suffice, but when the later
keys are being read, all of the Page Table pages required will
probably be read for each. key (up to the page containing the Page
Table entry for the correct data page).

We are assuming that a node is about the same size as a block. The
average length of a key should be less than the size of a B-tree Data
Page Table entry (for the implemented system this was 39 bits, or
about 5 bytes). So the first Page Table page will generally be able to
hold more page table entries than the root node holds keys. The
number of keys in the root node is two less than the number of
nodes in the first two levels, so we can safely assume that the first
page of the Page table maps all of the first two levels. In general, the
swapping of page tables will not begin until the tree has grown to
more than Ndpt nodes, and will occur only when the search has
moved beyond the second level. The worst case would occur when
the third level node was at a displacement great enough to require
entries from the Page Table pages beyond the first. Then, the
number of pages read for a 1 or 2 level B-tree would be 1. For a
larger B-tree, the cost is the cost to read an average of 1/2 of the
keys in one node at each level after the second. The "average" access
to the middle of the data structure requires reading 1/2 of the Data
Page Table pages for each key read.

The number of Data Page Tables for the B-Tree is:

Number of B-tree Data Pages

Ndpt

63

So:
For x = 1 or 2, the number of pages read is 1.
For x > 2, the number of pages read is:

Number of Data Pages for B-tree

wn- () (i)

Ndpt

where a = average number of keys in a node.

8. CONCLUSIONS

In this paper, a complete implementation of Dynamic Address
Computation (DAC) as described by Cook [4] was presented in detail.
The paper describes a working implementation in PL/1 on a 16 bit
minicomputer (Data General Eclipse (C350). The working
implementation was used to measure elapsed time performance of
the system on a dedicated computer. Analytical performance
measures of disk access cost were derived that can be used to
compare this implementation with other, standard implementations.
- These comparisons are made later in this section, and it is shown
that, in terms of performance, more work is required to make the
DAC based implementation competitive with the traditional
implementations. The DAC mechanisms require hardware support to
be viable. '

In addition, this section contains some comments about the
implementation, lessons learned, and possible future directions.

64

8.1 Hardware Considerations Make a Difference

The system was implemented on a 16 bit Data General C350 Eclipse
processor, using PL/1. No assembly language was used. The first
implementation used a data type (Packed Decimal) for the DAC
computations and a PL/l runtime library that caused the data type
to be simulated using software. The result was VEery poor
performance. The next version used a hardware supported data type
(Double Precision Floating Point) and the performance increased by
about a factor of 2. Even then, the program is CPU-bound on the 16
bit mini; approximately 75% of the elapsed time to build a large B-
tree is spent in the CPU. This suggests that, for a general purpose
computer and an implementation in a high level language, the
limiting factor on performance may not be the disk, as originally
assumed. Instead, the volume of computation required to do the
address computation makes the CPU performance more important.

Cook has suggested that special hardware with (for example)
instructions to add up tags could be used to advantage in DAC. Given
the current trends in hardware, with CPU costs and speeds improving
faster than corresponding factors for mass storage, this is an
interesting area to explore. There are also some opportunities for
parallel processing in DAC, particularly when adding up tags.

8.2 The Performance Improvements Made a Difference

Some preliminary measurements of - CPU and elapsed - time on a
dedicated system ‘indicated that restart points improved the
performance of a B-tree with unfactored keys by a factor of 3. For
factored keys, the performance improvement is only about 10%. This
is not unexpected, since restart points are not effective for factored
components. '

The same data indicated that the performance of a B-tree with
factored keys was about 4 times that of unfactored keys when

65

restart points were not used. With restart points, the difference
between factored and unfactored keys was only a factor of 1.5. This
emphasizes the point of the preceding section, that the major portion
of the time spent searching the B-tree is consumed in address
computation (adding up tags).

8.3 Mbre Work is Needed

Coincidentally, a "standard" B-tree implementation was in progress
on the same machine used for the work described here. This
implementation was in ALGOL and assembler, and used algorithms
as described in [8]. Its performance on a dedicated machine (in terms
of keys stored per unit of elapsed time) was an order of magnitude
better that the system described here (10 to 20 times for the best
DAC cases). Much of the time saving could be accounted for by the
low level language and a more careful fit to the operating system
parameters. Conversely, it did not seem to suffer too much from lack
of node space due to pointers (in fairness, a key compression
algorithm was used to reduce the space required to store the keys).
The standard implementation also exhibited more robustness in
terms of constant performance as the number of keys grew. The DAC
based system described here would need a lot of careful work to
- produce a B-tree manager with performance better than a carefully
done standard implementation. Again, this emphasizes the need for
hardware and operating system support of DAC to obtain good
performance.

The analytical measures lead to a similar conclusion. Applying the
analytical performance measures for disk access derived in section
10 to a B-tree with 20 character (average) unfactored keys and 1024
byte blocks gives an order 41 B-tree for the standard
implementation and an order 52 B-tree for the DAC implementation.
Using the same assumptions for average loading of the blocks used in
the analysis, 1000 keys gives a 3 level standard B-tree and a 2 level

66

DAC B-tree. The expected cost is then 3 access for the standard B-
tree and 4 for the DAC B-tree,

Increasing the size of the B-tree to 30,000 keys gives cost of 4
accesses for a 4 level standard B-tree and 54 for the 3 level DAC B-
tree,

Obviously, the DAC B-tree will exhibit poorer performance, especially
when the number of keys is large. This can be understood by
recognizing that adding an additional level to a B-tree of order m
results in a factor of m more keys with only one additional disk
access for the standard implementation. For the DAC implementation,
the access cost goes up linearly with the number of keys. The
majority of this increased cost is mapping sites and reading tags.
Additional work on the algorithms in this area (e.g, the SITE restart
points described earlier) should result in sizeable gains.

8.4 More Performance Analysis is Possible

There are at least two interesting areas where more work could be
done: 1) design and implement modifications to the algorithms to
improve performance, and 2) experimental measurements of the
performance could be made by instrumenting the implementation,
Analytical measures of performance for update (insertion and
deletion) could be derived. This might supply additional insight -into
the operation of the DAC algorithms, leading to better algorithms.

67

REFERENCES

10,

Bayer, R., and McCreight, E. Organization and maintenance of
large, ordered indexes. Acta Informatica. 1 (1972), 173-1889.

Brinch Hansen, P. Operating System Principles. Prentice-Hall,
Inc., Englewood Cliffs, NI, 1973.

Comer, D. The ubiquitous b-tree. ACM Comp. Surveys. 11,2
(June 1979), 121-137.

Cook, T. I. An application of dynamic address computation in
data management. (Ph. D. Thesis) University of Utah, 1977.

Haerder, T. Implementation of a generalized access path
structure for a relational database. ACM Trans. on Database Sys.
2, 3 (September 1978), 285-298.

Horowitz, E., and Sahni, S. Fundamentals -of data Structures.
Computer Science Press, Inc., Rockville, MD, 1976.

Knuth, D. E. The Art of Computer Programming. Addison-Wesley
Publishing Co., Reading, MA, 1968. |

Knuth, D. E. The Art of computer Programming. Addison-Wesley
Publishing Co., Reading, MA, 1973.

Wiederhold, G. Database Design. McGraw-Hill, New York, NY,
1977.

West, R. On the performance of b-trees using dynamic address
computation. (Masters Thesis) Vlrgmla Polytechnic Institute and
State University, 1985.

68

	TR-90-37a.pdf
	TR-90-37b.pdf

