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CEAPTER I INTRODUCTION

A, GENERAL DISCUSSION OF RESPONSE SURFACE METHODOLOGY

Response Surface Methodology is a relatively new
field of applied statistics which is essentially used in
finding the "best“ operating conditions for a physical or
chemical process and to explain or describe certain features
of the process system, EIZarly applications of response sur=-
face methods dealt with chemical processes and their opti-
mization and, as a result, the goal of the procedures is
usually given as that of maximizing a yield or minimizing a
cost or some other variable having a physical interpretation
in a'chemical process.,

& response surface study will have at least three
phases:

(1) Phase One consists of a definition of the problem,
This includes the delineation of all process variables and
initial limits on these variables.

(2) Phase Two is a search phase in which certain ex-
perimental designs on the process variables are used to ob=-
tain operating conditions in the vicinity of the true re-
sponse optimum,

(3) Phase Three is a more detailed examination of the
response surface in the near optimal region of operating

conditions., This phase utilizes other experimental designs



and mathematical and graphical techniques to present the re=-
sulting response surface to the experimenter for interpreta=-
tion., A general review article and literature survey for
response surface methodology is given in reference (22).
This thesis is a literature search into certain as=-

ects of Fhase Two. In addition one interpretative technique

useful in Fhase Three is also presented.

B. KOTATION AND BASIC RELATIONSHIPS

The response variable will be denoted by y and the

assumed controllable process variables will be denoted by

LRI pd

Xy5 g, ) . Many of the response surface methods are
kW

k

based on the assumption that a response y can be approximated
by a first order, second order, or higher order polynomial

in Xis Tyt XKoo For a first order polynomial the re-

lationship is of the form

y = BB R FB Ryt e K (1.1

The general second order model is of the form

y =8 ‘HB '1 82 2 «oeB 2‘:1'*'812‘ 4‘*2"5‘1313 lx Feoe

+B

4B Kok e tBy ks L (1.2)

+B X,
k=1,k ?~1 11 l 22 2

The coefficients in these models are estimated by least

i
squareg( ), usually with data from some desizned experiment.

o de

The fitted surfaces are of the form, for the first order
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a ¢
Y = b_+h Zs (1.3)

and for the second order model:

y = baégfg&gsﬁgg (1.4)

vheve b’ = (by, by, *o, By )y &' = (=5, %y, o0y X)

and
; p ees i
by Py, g Oy
}’b 1 0o e N
5= | 12 P2 o3 o |
3"’ :” [ - ]
Py Py Py P

The x values, in general, are coded values centered arcund
the origin (0, O, ¢, 0),

For the second order model a reccmmended form of
analysis, which is often performed to better interpret the
fitted response surface, reduces (L.4) to the Y“canonical
form".qls) This is done by translating the g variables to
the statiomary point (center), Z,9 Of the response system,
where Z, is given by the solution of the set of first order
partial derivatives of (1.4). It is easily shown(a) that

x = 587D (1.5)
The response system is then rotated to eliminate crosse

product terms. The resulting equation is of the form
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o a 2. .2 2
-y = U4l AL TRRY St .6
Y=y = BpZytu 2y Mg 2k (1.6)

where 90 is the estimated response at Ey» ¥ = (21,22,...,
Zk) are the transiormed axes, and j = (ul,uZ,...,pk) are the
eigenvalues of the matrix B. The transformation on the x

variables(4> is given by

z =T (z-5,) (1.7)

where T is a (kxk) orthogonal matrix whose columns are the
orthonormal vectors associated with (ul,pz,...,uk).
As an example, consider Figure 1l-1. For this surface

u. < Mo < 0, hence the response system has a maximum at 30.

I; general, if all of the eigenvalueé are negative, the re-
sponse surface has a maximum. If they are all positive, the
response surface has a minimum, When a mixture of positive
and negative eigenvalues are obtained, the response system
contains ridges or a k-variate saddle point. In the area of
experimental interest ridges may be encountered when z, is
far outside of this area, even though the eigenvalues are
all the same sign. Thus the location of x, and the sign

of the eigenvalues all determine the nature of the response
system,

When =, is far outside of the area of experimental

interest or when the eigenvalues have differing signs, the

resulting surface for k > 3 may become very complicated and
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be difficult to understand, These types of surfaces can be
subjected to another analysis to better understand the ree-
sulting fitted surface, This analysis is called "Ridge

Analysis®™ and is discussed in Chapter 1I.

FIGURE l-l, Contours of a fitted res nee surface ghowing
the original axes (x »X, ) and the canonical
form axes (4 2) 2

C. SCOPE _OF THESIS

The next chapter discusses the "Ridge Analysis®
technique for interpreting complicated response surfaces,

Chapters III and IV discuss several of the optimization
techniques one can use in Fhase Two of the response surface
problcm, Evolutionary Operation techniques for existing
production processes are discussed in Chapter 111, Chapter

1V discusses optimization techniques useful in the laboratory
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or pilot production stages of optimization and covers such
topics as the method of steepest ascent, a sequential one
factor at a time procedure, "Rotating Square" and "Random"
evolutionary operations, scme one~iactor optimizing teche-
niques, and also includes the results of a study made to

compare some of these techniques.
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CHAPTER II RIDGE ANALYSIS

A, INTRODUCTION

When a canonical analysis is performed on the ese
timated second order response surface of (1.4) and the re-
sulting canonical form

2 2 2
- = Al v e o
Yy yo ui 1*u222+ +uka (1.6)

has both positive and negative values for the u's, the re-
sponge surface contains ridges or saddle points, Because
of the complicated nature of such a system, it is difficult
to interpret graphically. WYRidge Analysis" is a method of
analysis which provides a graphical interpretation of such
a response system, It is a general technique which plots
the response on the ridges versus the distance R from the
center of the design used to estimate the coefficients of
(1.4). In this way one can find the maximum yield for any
selected distance R as well as any other intermediate
stationary points for that R, This can be done regardless
of k; hence, this method provides a means of graphically
interpreting the response surface on k variables in just two
dimensions.

"Ridge Analysis" was coined by Hoerl in a 1959
paper(zz). Hoerl's paper was expcsitory in contents and did

not attempt to mathematically derive the properties of this
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method, Draper {1963)(16) provided simple derivations of
this technique and gave proofs of the mathematical pro=-
perties of this method. The following mathematical develop=
ment and most of the theory discussion is taken from Draper.
For two variables, the complete ridge analysis is not
too involved computationally. However for k>3, the repeated
solution of the set of simultaneous-equations (2.2) is best
performed on a computer, For this reason this method of
analysis is not recommended unless such & computer and

associated computer programs are available,

B. DERIVATION OF THE METHOD OF RIDGE ANALYSIS

Ridge Analysis is a method used to investigate the
stationary points of ¥ as given in (1.6) on a sphere of

radius R, where Rz = x%+x +--'+x§ or equivalently

2
2
z'z-R% = 0, | (2.1)

For discussion purposes, assume that one is attempte
ing to maximize y. Then the problem is to maximize y sub-
ject to the restriction of (2.1). For a given R, one can
find the maximum y and then plot R on the abscissa against
the k+l ordinates (xl,xz,--o,xk) and y. This can be done
for varying values of R, In this way one can plot k+l curves
to indicate how the maximum ¥y varies with R and also have

the coordinates of the maximum response.
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This same method can be used to find other stationary
ridges such as intermediate maxima or minima or the absolute
mininum ridge. This may be helpful if another intermediate
maximum ridge provided a response similar to the absolute
maximum ridge but this intermediate ridge had other desirable
properties such as lower pressures or lower temperatures,etc,

To plot these points, we consider the function
PS 2 9
F = y-A(R"=-x %)
] U 2 %
= b_+x bix Bz=M(R-g ¥)

where A is a Lagrangian multiplier.  Taking partials of F
dividing by 2, equating to zero,

with respect to xl,x see X

2° k?
and rearranging of the resulting expressions, one obtains

the set of equations:

(b

1

l-l)x1 e %blzx2 g e %blkgk = -%bl

%blle +- (bzz-k)xz o oeee o %bZka = -!5b2 (2.2)

%blkxl + %bZsz oo & (bkk-x )xk = -%bk

or in matrix form

(B=Al)x = =%b (2.3)
Equations (2.1) and (2.3) can be solved simultaneously for
' = (xl,xz,---,xk) and A. However, an equivalent technique

which 1is easier computationally is the following:
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(L) Regard R as variable, but fix A instead,

(2) Insert the fixed value of A in equations (2.2) and
solve them for E9¥gp oKy
2 2% v \E
(3) Compute R = (x1+o--+xi) = (z z)*°.

(4) Evaluate § = b°+kR2+%§'g,

The above expression for § will be derived in the next section.
With this technique we have found a stationary value

of §, the coordinates of this staticnary wvalue, and the dise

tance R from the center of the design. A plot of R against

ordinates Xy 0¥ *s%ps and ¥ can now be made. It may tuzn

29
out that several different values of A may lead to the same
R with different stationary values of §. The next section
will derive some properties of this method of analysis which
will enable one to choose values of A to obtain the absolute
maximum ridge, intermediate ridges, or the absoclute minimum
ridge. Once this is known, different A's may be used to

obtain points on the k+l curves for each ridge of interest.
C. FPROPERTIES OF THE STATIONARY VALUES

It was noted in the introduction chapter that the
eigenvalues of B are denoted by My for L = 1,2,¢¢¢,k, Now
there exist eigenvectors Ei such that Bgi = “igi or
(B-uil)gi = 0, It will be shown that the type of stationary

point found by applying steps (L) = (4) in the previous
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section depends on the values of A and the By By comparing

A with the p, one can determine if ¥ is an absolute maximum,
local maximum or minimum, or an absolute minimum,

Before continuing, a result from calculus is needed(36)
A method of obtaining the stationary values of a function

f(xl,xz,--‘,xk) subject to restrictions of the form

8j(31:x2»"‘:xk) =0 J=1,2,c00,m, (2.4)
is to define
m
F= f(xl,x2,°'°,xk) - jzl kjgj(xl,xz,o--,xk). (2.5)
To obtain stationary values of F, one partially differentiates

(2.5) with respect to each x, and equates the resulting exe-

i
pressions to zero. This gives the k equations

ng(zs)

3F _2f(x) ’g \
ox, 3K, j=1 J ?%y

=0 i=1,2,°00,k. (2.6)

These k equations and the m equations of (2.4) can be solved
simultaneously for (xl,xz,'--,xk), and (kl,xz,---,km). The
usual method of solution is to express (Aj,e-<,A ) in terms
of (xl,xz,---,xk). Alternatively, specific values of kj
could be used. In either case Fl(g) given by Fl(g) = F(x,\)
is some function of (xl,xz,---,xk) or of (X],X9,...,%,) and

some known constants., Define the matrix
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’ ~ e
32p “w 32p
(o] &1 a ‘2. o &-1

‘9 ® 9 @
we ox OX. 0%
225, 227, azzsl
2‘{{&} = 5 .o oo ° (2.7)

a:{laxz axz oxzaxk
2 2. 2
3 FE. 3 7y 3 Fl

X a}:iaxk BX,@X}( BXR p

- ¢ ¢
fx = (xigxﬁﬁ'-°,xk} = (a?,a29'°',ak) = g 1is a solution

o

1=t

N

of (2.6) and (2.4), let M(g) be the matrix of second order
partial derivatives with the aias substituted for the
corresponding xigs in (2.7). Then for y' = (yl,y ,~-~,yk)
any (1xk) real vector, if y' M{a)y is positive definite, i.e.
v'M(a)y>0 for all y, F achieves a local minimum at x = a.
If y'M(a)y is negative definite, i.e. z'ﬁ(a)y<0 for all vy,
F has a local maximum at x = a,

t turns out that the converse of this result is not
true., One can have a local minimum without M(a) being posie

tive definite.

For our case we have

f(xlsx .‘.QXK) = 57 i3 bo'ﬁ"é‘;”?.'e';:‘Bzg (2.8)

2 k4
and

gl(}{igxz’...sxli) = Z‘ée:fnaz = O. (2.1)
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Hence
F= bo+§'§&§°B§rk(§f§rR2).

As shown before, the set of first derivatives reduced to

(B=AI1)z = =%b , (2.3
For a fixed A, M(xl’x7"."xk) is given by
M(x) = 2(B-r1) (2.9)

Now consider two solutions of (2.3),
8

pid
=1

= (al,az,'°',ak) for A = ), and

¢ . _
z, = (cl,cz,‘--,ck) for X = A, with two resulting

stationary values of §1 and §2 on spheres of radius <’z =

5 . 5 =171
Rl and gzx = 99 respectively.
Theozem 2.1 I R =R, end A; >, then &1 > &2.

Proof: We know that the following are true:

(B-xlz)z_g_1 = «%b , (2.1.1)
(B-Azl)gz = =%b (2.1.2)
e = ol = B2

nE = EE =R, (2.1.3)
Py ) ¢

yl 21321+§19+b° (2.1.4)

and
vy = ' By 4x bbb . (2.1.5)

2 272727 o

Premultiplying (2.1.7) by gi and (2,1.2) by gé gives
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’g ) Y o 82 wasl »."g

31{5 kli}mi 2.9
and

e - D v

w (B kzi)m = J&Zb R

ox

Now subtracting (2.1,5) from (2.1.4) gives

¢ g ¥
- = v = @ o oo { B2
1y zalﬁzsi %55, (z.:.l «sﬁ) b,

5 -'A = e L e g i ‘2
V. =y 'z(z.:.1 &2) br(hy kz):a .

Premultiplying (2.1.1) by gé, (2.1.2) by g;

gives

e r el (T = ke ew )P
§E<B lll>&1 31(3 le)&ﬁ 5(2,%%,) B

o

] ? ¢ ¢
= . v > b z o | 3" T -
% Bx IBE xlx 2 +k2y S 2(51 e

=172 1% T 5

which, since zéBgi = x Bx, and .8, = 2.8, glves

(k2-11>§;§2 = 5(x.-x. ) b .

Hence, from (2.1.7) and (2.1.8) we get

V. -y, = wh Y (RZwz"s

(2.1.6)

(2.1.7)

and subtracting

(2.1.8)

(2.1.9)
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. . ¢
Now comsider (RZ=x'x ).

=172
2t = (a2aleenesal YR reLin s sac )l
R E&‘Z (§l+a2v +a } (c 2+ ) (a c +a2 9

o0 e >
- +akck) >0

due to one form of the Cauchy-Schwarz inequality.
Hence

o=y 2 A=A

g 8in > A-A rﬂ>‘o
and since kl xz, Y47y >0o Yy 7Y,

Theorem 2.2 If Rl = Rzg M(gl) ig positive definite,

and M’z ) is indefinite, then ¥ < ¥ .
,_,2) 9 Y.i Yz

Proof: From (2.9), PKE&) = Z(B-kil), i= 1,2 for the statione-
ary point 3;. Let y be any kxl real vector. Since M(gz) is
indefinite,

z'(B-XZI)z < 0 for at least one y=q#0

S0

a'Bg-A,a'a <0 .

Since M(g;) is positive definite,

zA(B-kll)z > 0 for all y including y=q,
so

g'Bgrklg'g >0 .

Hence
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80 A, > A, since ggg > 0. Thus by theorem 2.1, §E < ?z.
Similarly, if Rl = RQ,
is indefinite, then ¥ > ¥,.

M(ggl} is negative definite, and M(z_gz)

" g v,
Theorem 2,3 IE hl > u, for all i, then Kl is a point

!«Jo

@ -« o 2 @ 2.
at which y attains a local maximum on the sphere of radius
<

e ﬁ kil hJ
p. for all i, then x. is a point at which y

L i 1
attains a local minimum on the sphere of radius R,

13

kg
o]
[&]
¥
L2 ]

Let y be any (kxl) rcael vector,

i
L]
by
!:;;
@

'
= Ty or y=1T¢z

izt

)

where T is a (kxk) orthogonal matrix whose columns are the
orthonormal eigenvectors of B. Consider

5y 'M(x, )y

I

x’(B-XEK}z

tH

2'T(8-1, 1)7'z

. $ ' v
Now z TBT 2z = 2 Az

s

where A is a diagonal matrix given by



Hence
p_? )\1 O XK 0
G ‘J' n)\. @ & @ 0
by Mz )y =z 21 =
ﬁ' ¢ v @
o 0 ® b ._k
A

For A_ greater than all the uig this expression is negative
definite and hence a local maximum is achieved at gl. I ll
is less than all ui, this expression is positive definite
and a local minimum is achieved at &1. Hence the theorem
is proved,

Suppose, as R increases, we trace a locus of stationary
points (the absolute maximum or minimum or a local maximum
or minimum) and examine the changing values of y. We then
have the following result.

Theorem 2.4 As R increases, y changes in one of the

following ways (when the response surface is quadratic):

(a) decreases monotonically,

(b) increases monotonically,

(c) passes through a maximum and then decreases monoton-
ically, or

{(d) passes through a minimum and then increases mono-
tonically.
If (¢) or (&) happens, it is because the locus has passed

through the center of the quadratic system.
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Proof: We know for every x that satisfies
(B=-2D)x = -%b , (2.3)

that y = x"Bx g'g&ba

x' (~hbRg)4z' brb_

[ ¢
= Ax xHsx bib
go

§ = aPad neb, (2.4.1)

Hence 3¥/3R = 2AR, which is zero when R = O or when A = 0,
When R = 0, we are at the origin (of the design, x' = (0,0,

vee,0)) and y = b, is the starting value for the locus of

absolute maximum and absolute minimum of ¥. When R = 0, ¥
is stationary with respect to R only when A = 0, When A = 0,

equation (2,3) reduces to

z = =3b ,
go

Z, = -8l
where .98 is the center of the quadratic response system for
which 3¥/ox; = 0, i=1,2,...,k. Since 3¥/3R has the same
sign as A, y is monotonic when A lies between eigenvalues of
the same sign., When eigenvalues ”j and uj+l have differing
gigns, & = 0 somewhere in the interval and (c¢) and (d)

conditions arise.
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9 P
Thearen 2.5 3°R/3A¢ > 0 for all R # O, BZR/BXZ is
zero when R = 0,

Proof: We know that solutlons g satisfy
and
¢
x'x = R?

(2.5.2)
Differentiating these equations with respect to A gives

R
(B-:-iz)g-i- -x=0
or
(B-AI)oZ = x (2.5.3)
SA '
and
33{ P
25'= = 2R22
oA OA
or
,é}_‘?—_ P33 Ra;%
PR 3\

(2.5.4)
Differentiating again with

respect to A gives, from (2.5.3)

2
9°® 99X ¥
X 3X 3
o
‘2'?,’ pd
(B-AI)—Z = 222

(2.5.5)
A 3
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and from (2.5.4)

2 32R_ 3R
N S SN

(2.5.6)
332 ar an  3nZ oA

If one premultiplies (2.5.3) by azg'/axz, one obtains

2.t 2.4
0°X oK %%

—e(Bed L) & —— (2.5.7)
aA2 daL A2

Premultiplying (2.5.5) by ag'/ax glves

! 2 .
3 axz 3% aA

Transposing (2,5.7) and subtracting it from (2.5.8) gives

2
oc® 9X dx%
¥ .2 =0
3M2 3N 3\
or
32 ax' oxX

=
' e
= 1 2__, - o
= a2 3N 3

Substituting the right hand side for the left hand side of
the above equation in (2.5.6) we obtain
ax' 3x az'3x _3%R 2
22— — 4 == - = R (---;_,-) (-—-)
A 3A A A oA
or
2 '
7R _ Qu 3 3R,

R 4 i oue

A2 3N 3h A

(2.5.9)
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Now from (2.5.4)

oo
>l =
4
AL
oo
=it

Hence (2.5.9) becomes

2
DR PR (=l

YRR YUEYY ax~ g2

Multiplying both sides by Rz we obtain

2
g3 &R 3°R = 3g2 2X_ ax' BX - (_,35)2

ar2 SUESY YN
80
32R 2z’ ax L2 3% ' ax RE . o
R} —5 = 282 = = { — = . (') } (2.5.10)
3 3% 3\ 3L dA 3\

The first term on the right hand side of (2,5.10) is always
positive and is zero only when R = 0 or 3x/oX = 0, The second
term is always positive, due to a result of Hardy, Little~
wood and Polya, 1952,(19) and is zero only when x = 0, (hence
R = 0) or when 3xfoA = 0.

When 3x/3A = 0, x = 0 from equation (2.5.3), and
again R = 0. Hence 32R/3A2 > 0 except when R = 0. When

= 0, 32R/3)2 = 0,

Now that this result has been established, we can

farther consider the relationship between A and R by plotting

the graph of A versus R. By such a plotting we shall be able
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to determine the requirements on A to obtain points on the

abzolute maximum end/or minimum ridges.

D, CGRAPH OF P VZRSUS A

As before, order the “‘1 sueh that “1 < ;,;2 < 400 < uk.
Since (B-).I)§= -%b, as A—uy, T—rE ® 20 R+ =, As
A—+»o, x— 0 so R— 0, Since 32r/302 > 0, the graph of R
on the ordinate plotted against A has the following shape:

My Mo 7

FIGURE 2-1, GCraph of R against A where u_ 's are ranked
eigenvalues of B, ' i

Considering this graph, there will be at most 2k
values of A for which stationary values of ¥ will exist,.
(Each eigenvallu'e”‘ provides two branches) For values of A> My
there will only be one stationary value of ¥ as R varies,

since as A—>®, x— 0 so R—> 0. There arc no eigenvalues
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larger than My to turn the graph up to R = + «, Hence the
absolute maximum ridge can be plotted by using values of
A > My o Similarly the absolute minimum ridge can be found
by using values of A < Hye

When wvalues of A are chosen between eigenvalues a
stationary value will occur which is on a local minimum ox
maximum ridge depending on whether it is on the right or

left of the u=-shaped curve,

E. SUMMARY OF RIDGE ANALYSIS

To perform a rxridge analysis, one follows these steps:

(1) Estimate the coefficients of ¥ = bo+z_g'p_+;g' BX

(2) Compute the eigenvalues of B.

(3) Plot the absolute maximum ridge by substituting values
of A greater than the largest eigenvalue in (B=Al)x = =%b
and solve for x. Values of A less than the smallest eigen-
value will provide the absolute minimum ridge. Intermediate
ridges will be found by using values between eigenvalues,

(4) For each solution x, compute R = (x'x)%

(5) PFor each solution, calculate y = b°+kR2+%§'Q

(6) Perform steps (3) = (5) until a sufficient number of
points on the graphs of R against Ky 9¥ppeeesXy, and ¥ have

been found to adequately graph the relationship,
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F. NUMERICAL EYAMPLE

Frankel(17) was investizating the yield of
mercaptobenzothiazole(MBT) as & function of time and tempera=-
 rure. A rotatable octagonal desigh with three center points
and an additional rcplication of one of the design poirnts

was run, A second order response surface was estimated to

be
Y = - b - 2- 2-
where
_ Time(hr)-12 Temp(°C)-250
1~ 3 and x2 = 30 .

The contours of this response surface is given in
Figure 2-2, As can be scen, the resulting surface is a saddle.

For this example, equation (2.3) becomes

(1.40=1) -3.60 .505
13.60°  (-8. 76-x)>(x1> =(4230 ) (2.11)
Solving for x1 and x2 one obtains
11.0742-0,505\
x, = >
A“+7,36M=25,224
and (2.12)
X, = .

2 )247.36M-25.224

The eigcenmvalues of
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_/ 1.40 -3.60
B=( 360 a5

are
by = =9.£0625
(2.13)
= 2.54625
)
X
2

Initial Experimental

/‘/ Region

‘\\~§\\‘*~' 75
\ /\ —

— " X

\ S e | '
—X

75

FIGURE 2-2., Vield of MBT as a furnction of time (x ) and
temperature (x2

Hence to find the locus of the absolute maximum ridge,
values of A > 2.54625 are substituted in (2.12) and solved

for xl and xz. 1=L2 is then computed by

2
R =xi+x§,
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and § is found by use of equation (2.4.1)
-~ 2 [
y = AR“+5x bb

= AR2-0.505%, =4.305x%_+82.17.

1 2

For example, let A = 4,0, then

11,0742-0.505(4.0)  _ 9.0542
(4.0)24+(7.36)(4.0)=25.226 20,216

%. = = 44787,

1

. o 7.845-(4.305)(4.0) _ -9.375
2 20.216 20.216

= -,46374,

82 = .44787%4(-.46374)° = .41564,
and A
(4)(.461564)=0,505(, 44787 )+(4.305) (. 46374)+82,17
= 85.60 .

<@
]

Various values of A > 2.54625 were used to obtain the
plot of R versus y. Figure 2-3 contains the graph of y
versus R for all four ridges. Ridges RAMAX and R are
the absolute maximum and minimum ridges and the intermediate
or secondary ridges are labeled RSMAX and RSMIN’
To obtain these graphs values of A were used as
follows:
For R A > 2,55,
R 0 < <2,5,
SMAX
R 9.9 <\ £0, and
SMIN

RAMIN A< =9,9,
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As would be expected, the secondary ridges do not
appear until R equals the distance from the center of the

design to x . In thls example
g, = (-.439,-.311)
with yield'§o = 83,73, so
R = ((-.439)2+(-.311)2)% = 538

is the minimum distance needed to obtain secondary ridges.

" Figure 2-4 contains the plots of x, and x, against R

1 2

for the absolute maximum ridge., Figure 2-5 plots X, and x2

against R for the secondary maximum ridge, Figures 2-6 and

2-7 plot x, and x, against R for the secondary and absolute

1 2
minimum ridges respectively.
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X1%2
2.0 -

*1(AMAX)

Limit of

.Experimental
Design

1.0 4

1.0 2.0 R

FIGURE 2-4., R versus x. and x for the absolute maximum
ridge. ,1 2
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"1"2‘1
1'0 §
{
*2(sMAX)
0
! Limits of
Experimental Desilgn
‘100 -
X
2.0 . 1(SMAX)
100 ' ' 2"0 ) R
FIGURE 2-5., R versus x_ and x2 for the secondary maximum

ridge.
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X, X,
1.0 T
0 -
I
|
Limit of X
4 Experimental 1(sMIN)
Design
1,0 -
-2.0
X
2 (SMIN)
1.0 2.0 R
FIGURE 2«6, R versus x_ and X, for the secondary minimum

ridge, 1 2
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*1*2
X
1 2 (AMIN)
2 . o -
1.0 -
Limit of
T Experimental
Design
p3
1(AMIN)
0

1.0 2.0 R

FIGURE 2=7. R versus x. and x_ for the absolute minimum
ridge. 1 “
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CHAPTER III OPTIMIZATION TECHNIQUES FOR FRODUCTION PROCESSES

The optimization of existing production processes must
be performed in such a manner that the output is not dra-
matically changed. To do this specific experimental proce=
dures have been developed in which only small changes to the
existing process are allowed. Two of these procedures are
discussed in this chapter. The next chapter considers other
techniques, some of which can be applied to production pro=-
cesses, but which are usually applied to initial experimenta=-

tion or pilot=-production experimentation,

A. EVOLUTIONARY COPERATION

1., Basic Philosophy

In 1957 George E. P. Box(B) proposed a method for im=-
proving the operation of a process., This method is called
Evolutionary Operation or EVOP, It is a method of process
operation which has a built-in procedure for increasing pro=-
ductivity of the process., Although it was developed for a
chemical type process it has more general application and
several other industries have used it profitably.

EVOP is a method of production which uses some simple
statistical concepts during the regular normal routine of
production, The method consists of running a simple experi-
ment, usually a factorial, by the production personnel them=-

selves, The basic philosophy of EVOP is that it is inefficient
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to run an industrial process for the product alone, The pro=-
cess should be run so as to generate product plus information
on how to improve the product.,.

Box makes the important point that EVOP is not a sub=-
stitute for more fundamental designed experiments aimed at a
better understanding of the process., These experiments (and
process theory) are always necessary to obtain basic infor-
mation about the actual operation of the process., On the con-
trary, EVOP may point out areas where more fundamental re=-
search is needed., EVOP was specifically designed to improve
upon the '"best' operating conditions found through designed
experiments and to make continued improvement on the process.

One example of the use of EVOP concerns the resulting
'scale-up® problems usually found when the process graduates
from the laboratory, to pilot production, and finally to full-
scale production. It is usually found that considerable
modification of the operating conditions is required to ob=~
tain yields near those obtained in the laboratory.

EVOP has been compared to the process of evolution in
biology. Living organisms advance by two methods:

1, DMutation

2, Natural Selection,
Chemical processes also advance by two similar methods. A
discovery of a new route to the final product is equivalent
to genetic mutation., Adjustment of the operating conditions

corresponds to natural selection, Adjustments that "work"
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are retained and adjustments that harm the product are avoided
in the future., Thus, the process is slowly optimized,
Zvolutionary operations employ a method of purposeful adjust-

ment to speed up this optimizing process,

2. Ovperation of EVOP

Routine production is normally run at rigidly defined
operating conditions for the process. This is called the
"'works process' and is the best set of operating conditions
found for the process., Any method of introducing variation
in the works process must provide safeguards which will en=-
sure that the risk of producing any appreciable unsatisfactory
product is small., For this reason EVOP is‘based on the premise
that only small changes are allowable in applying the method.
Since production must continue during the EVOP procedure, the
effects of small changes in operating conditions can be de-~

tected by continued replication of the basic experiment.

The application of EVOP first involves the selection
of the responses which are to be optimized, This may be yield,
cost/pound, tensile strength, etc. Generally several responses
are considered because the product is usually too complicated
to be represented by only one response, Optimization is
then simultaneously attempted. Some of the responses,
expecially properties of the product, are not optimized but
are observéd so that the effects of the variation in operat-

ing conditions may be seen.
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As an example consider the manufacture of a liquid
product. The main response to be optimized could be the cost
per gallon. In addition, suppose that the level of an im-
purity must not exceed .5% and the fluidity of the product
must lie between the limits of 55 and 80, These last two re-
sponses are not to be optimized but must be satisfied by the
product, Measurements of the level of impurity and the
fluidity would be made and analyzed as well as the cost/gallon
to make sure the product was acceptable.

Next, the particular operating conditions which will
be systematically varied must be chosen, To keep the ex-
perimental designs simple usually only two or three process
variables are chosen for study., The limits on the variables
are then specified, through considerations previously
mentioned,

The most common experimental design used for EVOP is
that of a 2X factorial plus a center point., For two variables,
the design points are given in Figure 3~-1., To start, the
center point is the works process for the two variables of
interest.

The routine of plant operation consists of repeatedly
running the production process at these five design points
in the order 1, 2, 3, 4 and 5. Each group of 5 runs is called
a cycle. Randomization of the order of running these design
points is rarely performed and would only tend to confuse the

production personnel, At the end of each cycle the results
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of the responses are posted to an Information Board which is
kept up~to~date on a cycle basis, The Plant Manager can in=~
spect the Information Board at any given stage and make one
of the following decisions:

1, Wait for further information.

2. Adopt one of the design points 2, 3, 4 or 5 as
the new '"works process" and start the cycle
around it as a center point,

3. Change the levels of the process variables by
increasing (or decreasing) their range.

4, Substitute new variables for one or more of the

variables under study or add variables,

%1
FIGURE 3~1. Design points for an EVOP study in two variables.

As an example of an Information Board, consider the
previous example of responses where the variables under study
are per cent concentration of one of the ingredients and tem=-
perature of the reaction. Figure 3-2 shows the Information
Board at the end of 16 cycles., In this example the effect of

concentration has clearly exceeded the approximate 95% con=-
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o 128 4 <> CQ
&
o @ Phase 1
S .
g 126 . .
Q Cycle 16,
&
S 124 (? CD
13.5 14.0 14.5
% Concentration
iCost (cents)/ecall Impuritv % Fluidity
Regquirement Minimize lLess than ,5% | Between 55 & 80
Running 32.6 33.9 0.29 0.35 (73.2 76.2
32.8 0,27 _ 71.3
Averages 32,4 33.4 | 0,17 0,19 50,2 67.6
95% error
limits on +0.7 +0.03 +1.1
averages
Effects
Concen- 1.2 +0.,7 0.04 +0,03 5.2 +1.1
tration
Temperature 0.4 +0.7 0.14 +0,03 10.8 +1.1
CXT 0.1 +0.7 0.02 +0,03 ~2.2 +1.1
Change in Mean 0,2 +0.6 -.02 +0,03 -1.6 +1.0
Standard
Deviation 1.44 0.059 2,12

FIGURE 3-2,

Zxample

of an Information Board after 16 cycles,
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fidence limits, called error Limits in EVOP, The calculation
of these error limits are discussed later. An examination of
the impurity and fluidity responses shows that a shifting of
the works process to point 2 would not harm the product, In
fact it would also tend to minimize the impurity level., In
such a case, the decision would usually be made to shift to
point 2 as a new works process, The EVOP study would then
enter a new phase (Fhase Two in this example).

The phase number on the Information Board indicates
the experiment number, Whenever any change in levels, sub=-
stitution or addition of variables is made, the phase number

is increased,

3. Calculation of Effects

The Veffects! are calculated from the running averages,
If ¥15 T95 V35 ¥, and ¥5 are the rumning averages for the rth
cycle, the effects of concentration, temperature, and interac-
tion are calculated as in a 22 factorial experiment (?l, the
center point is ignored). The main effects are interpreted
as the difference in average response in going from the low
level of the variable to the high level when averaged over
all the other wvariables. The interaction effect measures how
the levels of the variables interact with one another. If
the interaction effect is zero, the variables act independently
of each other,

The change in mean (CIM) is the difference between the
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center point and the average yield for all of the points‘?l,
?2, ?B, §4 and y¥5. The change in mean is used for assessing
non=-linearity and the cost of running the EVOP study. The
formulas for calculation of the effects used are (for two

variables):

Effect Formula Limits of error
Concentration %(§3+?4-§2-§5) + %%
Temperature %(?3+§5"?2‘?4) ol 3%
CXT 5 (7454, =5 5) £ 22

cn L(5,5 49,4554, ) x 2el58

The limits of error are approximately 95% confidence
limits on the estimated effects. They are +2 times the
estimated standard error of the effect.

The change in mean, CIM, as defined before is

V4V, T AT 4T
_ 7172737475 - B I
CIM = 2 vy = T4V 4y, 455471 ).

The variance of CIM is given by

var(CIM) = L2o2(l+l+1+1+16) = %02
25 ¥ 55
= 4 52

Scy
Hence + 2 times the standard error for the CIM limits is
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+2 é’._ 32 - &..7:8_.1?‘_ .
- 5r Jz

4, Discussion of Chanee in Mean

If the true response surface were quadratic, the CIM
is an estimate of a function of the pure quadratic terms,
To show this, consider a two=-variable EVOP where %y and %,
are coded so that the values of Xy and x, are given as in the

following table:

Point L3 X, Response
1 0 0 ¥y
2 -1 -1 y2
3 1 1 Y3
4 1 -1 Yy
5 -1 1 Vs

For the model
2

- 2
Y = MRy By B ¥ Ko tB 11X ¥P 0%y
the expected values of yl, y2, Y y4, and yS are

E(y,) = u

iz
~
<
-
|

9! = MTRBTByFB0¥8 11780

E(y3) = WB BB By vE,



E(y ) =
“(y5> = U=
Hence
E{CIM) = E

Substitution of ?i for

Hence, the CIM provides
3
2%/(2%+1),
As such the CIM

linearity of the local

49

Sty gty

-~

¥y =ty N

_..‘.1.(.'.' =é‘.’
5(‘611+4522> 5‘511+522)

y. would not change this result.
S

an estimate of ¢ where ¢ is

gives one some idea of the non=-

response surface, If the local re-

sponse surface is planar, the expected value of the CIM is

zero. Lf the response

surface were locally quadratic with

a maximum, say, at the works process, the CIM would be ne-

gative.
process (such as for a

positive.

curred by running the E

production at the works process,

cost of EVOP? was 0.2 +

In this latter case the CIM would be

If the response surface had a minimum at the works

response like cost), the CIM would be

the cost

(23

VOP production rather than all of th

h
s

[x3

For the above example,

0.6 cents per gallon,

a maximum, the CIM would estimate the loss in yield in-

curred by running the EVOP procedure,

Except when the pro=-

cess has been brought very close to the optimum, the cost

incurred by EVOP is very small compared to the cost saved

in=

In the case of
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in the operation of the process if any improvement has been
made at all by EVOEZ,

The Information Board also shows the standard de=-
viation of the response and may also show the previous esti-
mate obtained at the end of the previous cycle, EVOP uses
a sequential estimate for ¢ and this additional information

f this estimate of o,

Q

gives an indication of the stability
In some cases, however, it may be desirable to omit this

information from the board, as was done in the example.

For three variables in the EVOP study, the design
points are shown in Figure 3-3. [Note that the center point
of the design is replicated so that 10 observations are needed

-

to complete a cycle, If the runs need to be separated into

-

two blocks, one of the center points is run in each block,

or a 3=-variable EVO2 study,

Fh

FIGURE 3-3, Design points
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6. Estimation of s

In starting an EVOP study there may be no reliable
estimate of the response variance, However, after several
cycles there is no lack of data and the response error
variance can be estimated, for example, by the method of least-
squares.

However, this would involve the squaring of con-

siderable number of observations and would be fairly diffi-
cult computafionaly, especially for routine analysis by plant
personnel, Instead a method due to Box and J. S. Hunter(s)
utilizes a range method to calculateban estimate of the

error standard deviation. Since a multitﬁde of responses
are available after a few cycles, there seems little point

in not using this slighfly less efficient estimate,

Suppose N sets of conditions are run in an EVOP study.
(N=5 for the two variable case and N=10 for the three variable
EVOP., However, this technique is quite general.)

At the end of (r-1) cycles, there are N(r-1) observa-
tions and they can be classified in the following two=-way

table along with the data from the rth cycle:

Average for N conditions ?i fﬁ ?3 I

at end of (r-1) cycles

¥ th L)
New data from r cycle ylr y2r Y3r er

Differences 6i=(yi-yir) 51 52 53 coe 6N

3
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Now
r-1
Gi = E yij/r'l - yir’
j=1 -
. . th s th
where Yiy is the response of the i condition for the j
cycle,

Assume for a given cycle j, yij is normally distri-
buted with mean wto, and variance 02, i=1,2,...,N5 3=1,2,...,
r. Then
1 r-1

—_—— I var y.. + var y.
(r-1)2 3=1 13 lr

_ 2
var (éi)_ 06

2 2
=g + g
r-1
= _r_ g2
r-1
Hence,
0’2=r:10’2
r o
and
ozjg_Ic
r <)
Now O, can be estimated from the range R of the 61. An un-
biased estimate of 06 is(a)
A R
g =
) d2

where d2 depends on N, Values of d2 can be found in any

quality control textbook. Hence, 0 can be estimated by

= fE=l R = T
s.. / rI 3 f(N,r)R

2
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The quantity V=L o L 3is called £(k,n) in Box and Hunters'
r d
2

notation and values of £(N,r) are given below for selected

values of N and r,

Table 3=4, Values of £(N,r) for use in estimation of s for
EVOP.

N/T 2 3 2 5 g 7 ) g 10

5 .30 $35 .37 .38 .39 .40 .40 .40 41
10 $23 .26 «28 .29 .30 .30 .30 .31 .31

-~

For each cycle after

&

he second, an estimate of ¢ is

81

made, and the running average s_ = £ s./r-1 is used for
b j:2 J

the estimate of ¢ for the rth cycle in the calculation of

error limits on the variable effects and CIM,

Since the estimate of ¢ is not too reliable for the

[ o]

irst several cycles, the prior phase estimate can be used

th

or these first few cycles. By the time enough data have
been accumulated to make a decision on the process, usually
a sufficient number of cycles has been run to provide a re-
liable estimate from the data of this phase. For phase 1,
an estimate of ¢ can often be obtained from past process

history or quality control data.
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7. Advantages and Disadvantages of Rox's REVOP

One advantage of using the factorial plus center
point design is that, if the CIM indicates considerable non=-
linearity, only a few additional points need be added to ob-
tain a central composite design(z) for the estimation of a
quadratic response surface, This estimated quadratic re-
sponse surface can be used to locate the optimum response
conditions and provide an estimate of the optimum attainable,
Chapter 1 gives the required analysis for this procedure,

The basic EVOP design allows the addition of more
variables very easily and, for three or more variables,
blocking can be accomplished by confoundiﬁg higher=-order
interactions. In addition, for this design the levels of
the factors need not be quantitive,

There are several disadvantages to this design for
an EVOP procedure. The effect of the variables is clearly
dependent on the allowable range of the variable, If the
range is too short, a large number of cycles may be re=-
quired before a prudent plant manager will increase the
range of the variable,

If a large number of variables, k, are of interest,

a complete cycle would require at least 2K41 production
runs and this may be too many., However, fractional designs

can be used to help alleviate this problem,
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g .
8. EVOP Committee

Box recommended that an EVOP committee be formed con=-
sisting of production and technical personnel (including a
statistician, if possible)., This committee, along with the

lant manager or process foreman, can choose the variables

B

to be studied and set thelr levels, discuss and interpret the
results of the Information Board, and provide other technical
inputs to the plant manager to aid him in his decisions in
the EVOP? study. The EVOP procedure is rather conservative
since a decision to move the works process would not usually
be made unless some effect exceeded its error limits or un=-
less a large number of cycles showed no significant effect.
In the latter case, the plant manager must decide whether to
increase the variable ranges or else add or substitute new
variables in the EVOP study. The EVOP committee, with its
varied type of personnel, can be most helpful to the plant
manager in such situations by providing alternate recommenda=
tions to him,

It is very important to realiie that EVOP is a philo~
sophy of production and in almost all situations, EVOP
should be considered as a permanent method of production,
This is especially true for the type of process whose inputs
(raw material, operating personnel) change with time, If

EVOP is always in use, the production process will automati-
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cally have a chance to follow the optimum operating conditions
as the inputs vary slowly with time. A more automative EVOP

procedure to do this is presented in the next section,

B, SIMPLEX EVOLUTIONARY OPERATION

In the EVOP procedure of the preceding section there

were no precise rules regulating when or where to move the

works process in the EVOP experimentation., This section will
present an automatic EVOP procedure in which some simple
rules will be given to control adjustments of the operating

(33)

conditions.

1, Simplex Desien

The basic design in this EVOP is a simplex. A simplex
is an orthogonal first order design which requires only one
more experimental point than the number of variables under
consideration., Thus for k variables, N=k+l. The columns of
the design matrix are orthogonal and the design is formed by
using a regular sided figure with N=k+l1 vertices so situated
that the cosine of the angle formed by any two vertices
with the center of the design is constant and equal to -1/k.
For k=3, the design is an equilateral trianglej for k=4, the
design is a regular tetrahedron.

For this application a slight variation of the standard
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simplex design for k variables is used., Let the works pro-
cess be coded (0,0,++.,0); a2 regular simplex of unit edge is

then specified by the (k+l1) x k design matrix:

e
£
.
®
Kal

g 4 9 * * * b

where p

~§:(k-l+4i+l)
k2

i

and q = —L_(/k+1 - 1).
ky2

The rows of this matrix give the coordinates of the k+l de=~
sign points., Table 3=5 gives values of p and q for some

values of k.

Table 3-=5, Values of p and q for different values of k in
a Simplex Design.

k D g

2 . 966 .259
3 . 943 .236
4 .926 .219
5 .912 .205
6 .901 .194

2., "Simplex EVOPH

In "Simplex EVOP'" the operating conditions are

changed on everyv production run and the new operating con-
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ditions are chosen so as to make a new simplex design using
k of the previous (k+l) points and the new run. This new
point is chosen to maximize (or minimize) the response,

The direction of maximum response out of a simplex
would proceed in some direction from the center of the de=-
sign out of the side opposite to the lowest response, Hence
the point corresponding to the lowest response in the sim=-
plex should be discarded and the new run should be made so
as to make a simplex out of the remaining k experimental
points and the new run, For a response which is to be
minimized, the highest observation would be discarded., To
illustrate, consider Figure 3-6 for two variables (a
maximization problem)., In Figure 3-6 the numbers of the
production runs are circled and the response is given be=-
side each experimental point., In this figure trial 5 moved
away from the general direction of the maximum due to com=-
ponents of random error in trials 2 and 3 . DNote, however,
that only two trials were required to correct for this error,

Note that the direction of advance is determined
solely on a ranking scale, Hence absolute numbers for the
response are not required, Since this procedure is limited
to only one response, multiple observations on the product
must be handled by comparing the characteristics of the
product as a whole and the least favorable operating condi-

tions then chosen for the discarded point.
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FIGURE 3-6, Illustration of a two variable simplex EVOP.

Since this sequential procedure can move away from
the works process very quickly when the response at the
works process is quite low compared to the optimum, a "unit"
on each of the variables should be chosen quite small so as
to reduce the risk of a bad production run., This procedure
is not scale invariant., A unit on each of the variables
should be chosen in such a way that a unit change is of equal
interest to the experimenter,

To obtain the coordinates of the new experimental
point the following procedure is followed:

Let the rows of D, be denoted by the vector g;,
i=1l,***,k+1l. The coordinates, a vector, of the new run if
the lowest observation occurred at df is given by

dl

¥
d.y = -(d +Q2+ cer +d' _1+Q1+1+ . +gk+1) -d. .

In words, the coordinate of the new point is twice the
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average of the coordinates of the common points minus the
coordinate of the rejected point,

Once the design matrix has been obtained, the usual
procedure would involve uncoding the design points and pro=-
ceeding to new points in uncoded units, This can be easily

accomplished in tabular form.

3. Simnlex BEVOP Rules

The Simplex EVOP procedure for a maximation is given
by application of the following rules., For a minimization,
replace "lowest" with "highest" throughout these rules.

Rule 1., Ascertain the lowest reading Yy of yl,
Yos Y3s eees yk+1. Complete a new simplex by excluding Q;
and running at df*.

=i

Since the responses are subject to error, there is
a chance that the system of simplices may become anchored to
a spuriously high response. To reduce this possibility, |
Rule 2 is applied.

Rule 2, If a result has occurred in k+1 suc=
cessive simplices and not then eliminated by Rule 1, do not
form a new simplex but discard this result and replace it by
a new observation at that same point, Then apply Rule 1.

The philosophy behind this rule is that if the point

is at a true optimum the replication will also be high and

the system of simplices will again be clustered about it,
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If it were high due to error, the replication will probably
not be so high and would be eliminated in due course.,
A spuriously low response will generally be eliminated
quickly but may cause some oscillation from one simplex to
a previous one, Hence some benefit can be obtained by
applying:
Rule 3, If ys is the lowest reading in the simplex

and yi* is the lowest reading in the new simplex, S,, do

0?2 1°

not move back to So. Instead reject the second lowest read-
ing of Sl'

The application of these rules causes the system of
simplices to circle continuously about the optimum rather
than oscillate over a limited range. This is especially
helpful if the optimum changes in time or changes as a
function of raw materials since the system is always free
to follow the optimum. Rule 3 makes progress possible if
the system straddles a ridge in the variable space.

The three rules given above may be summarized by the
following:

Move by rejecting the lowest response unless (a)
another response is too "old", in which case we replicate
the '"old" response, or (b) such a move would cause us to re=-
turn to the previous simplex, in which case we try the next
favorable direction of movement.

A new variable may be added at any time by simply
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running one additional point and then proceeding as before.
Deletion of a variable however, requires one to initiate ex=-
perimentation with a new design matrix,.

If there are contraints on the levels of the variables
of the form a<x<b, whenever this Simplex EVOP leads to a
point that would violate the contraint, the second most

favorable direction would be used,

4, Discussion of Simplex FVOP

Spendley, Hext, and Himsworth(33) showed by computer
simulation that the rate of advance of Simplex EVOP is in=-
versely proportional to the error deviation, Now a replica=-
tion of n observations at a point reduces the error standard
deviation by a factor JH and the rate of advance gains by a
factor of «n. However, on a per observation basis, the ex=-
pected gain is reduced by this factor Jn. Hence replication
not only has no value but is positively detrimental.

Spendley, et al, also evaluated the efficiency of the
simplex procedure compared to a very simply defined evolu=-
tionary plane=-climbing procedure. This procedure was one in
which an observation at the current position is compared with
one at a unit distance in some randomly chosen direction.

If this new observation is higher, the system moves to this
point, If the new observation is lower, the system is moved

in the diametrically opposite direction, Since they were
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able to theoretically evaluate this method of advance (see
(33) for details) the efficiency of the simplex procedure (in
terms of expected advance per observation) was compared to
it, They found that the efficiency of Simplex EVOP in=-
creased in a direct proportion as k, the number of variables,
increased.,

Hence the best use of Simplex EVOP uses as many
variables as possible with no replication, As such, Simplex
EVOFP seems to be a very good alternative to EVOP., The only
disadvantage of Simplex EVOP compared to EVOP is that Sim=
plex EVOP requires quantitive process variables and EVOP
does not,

Simplex EVOP has been successfully utilized in in-

dustry in several different processes.(ls)



64

CHAPTER IV EXPERIMENTAL OPTIMIZATION TECHNIQUES

In an experimental situation the experimenter may
have a good idea of the levels of his experimental factors
which produce a near optimal response. In such cases FPhase
Two of the general response problem is not required and the
experimenter can proceed to Phase Three for further ex-
ploration, Often, however, the experimenter is not so
fortunate in having such detailed information about the re=-
sponse system, He must then utilize some search technique
to locate the levels of the factors to provide a near
optimal response, In this chapter several search techniques
are discussed, starting with the simplest case of only one

experimental factor.

A. ONE FACTOR TECHNIQUES

1, Hotelline's Procedure

In 1941, Hotelling(zs) considered the problem of find=-
ing the optimum response when a single factor is involved.
His method consists of the following steps:

(L) A study is made to indicate the general range on the
factor in which the optimum is most likely to lie.

(2) An intermediate experiment is run to provide gross
estimates of the parameters of the response equation

y = By * Byx 4+ Bzxz + B3x3 o+ ovee,
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For example, 6 equally spaced levels of x could be used and
a 50 degree polynomial could be estimated, The usual de=-
rivative procedure can then be used to find the optimum,

(3) A final experiment is run in the neighborhood of the
estimated optimum to further refine one's estimate, This
experiment assumes y can be approximated by a quadratic
equation

y =By + By (xem) + Bz(x-m)2

where m is the value of x at the maximum, Hotelling shows
how to allocate the N samples to make any cubic bias zero

and any quartic bias a minimum,

2., Stochastic Technigues

More recently Kiefer and Wolfowitzng) have provided
a method of finding the optimum (maximum for this discussion).
Let y(x) be the regression function of the response as a
function of x., The K=-W technique involves the determination
of the average slope of the function of y(x) by a very
specialized method. The average derivative 1is calculated
by observing the response at two points a distance c, on

either side of X, as

_ vGatey) = yxpmcy)

A
n 2cn

See figure 4~1 for an illustration of this method,
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Average
y () slope
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FIGURE 4-l1. Kiefer-Wolfowitz estimation of average slope.

The center of the next pair of trials is centered

around Xl where

=%y tagh = x +a Y(xn+°n)2; Y(Xn'cn)

n
where a, is one of a sequence of positive numbers which de=-
termine the step size, and 2cn is the distance between the
last pair of trials. An example of the sequences {ani and
{cni are:

an=

Bl

c = n-1/3
n

In general, the sequences {an; and {cng must have the
following properties:

i. lima_ =0
De=p ©

t
O

ii, lim Ch
=300

0
iii. 2 a_ =
n=1 o

1
8
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o 2
iv. £ &2 <o
n=1 cn
Properties 1 and ii are necessary to assure one that

the process will converge. Property iii gives sufficient
steps so that one will always straddle the peak. Property
iv is used to cancel out the cumulative error effect, With
some very mild restrictions on y(x), this sequence of trials
will converge to m with probability one. The proof of this

(29) and will not be shown

is given in Kiefer and Wolfowitz
here.

Because of the method of estimating the average slope,
the K-W procedure can sometimes be slow in convergence, Con=-
sider Figure &4~2, for example, in which the steps in approach=-
ing m from the left would be large. However when m was
"overshot!" on the right, the steps would be very slow in

converging back to m. Thus the K-W technique would spend

most of its time trying to climb the low slope on the right,

y(x)

= 2 A —

X

FIGURE 4-2, Example of a curve for which the K-W procedure
is slow to converge.
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(27)

Kesten modified the K-W procedure to converge
more swiftly in cases such as illustrated in Figure 4-2,
Kesten's procedure shortens the step size only when a change
in sign of the average slope is found. This procedure con=
verges with probability 1 with the additional restrictions
of a .18, for n=1,2,+++,and for c, a constant.

To illustrate these procedures, let a  be the har-
monic series 1, 1/2, 1/3, *++, 1/n,e++ ., The following
table provides the step sizes for both procedures for a hy-
pothetical search.

Note that after 8 pairs of trials, the K-W procedure
has a step size reduced to 1/8 and may still be fairly far
from m, The Kesten procedure has a step size of only 1/5
and will move back to m much quicker,

Table 4~3. Comparison of Kiefer-Wolfowitz and Kesten's
convergence procedures,

Trial 1 2 3 4 5 6 7 8 | Total movement
Sign of by |+ + + = = + - +
K=W 1 1 L .r_ L L.l L 149
5 555 577 8 1 230
Kesten 1 1 1-:2.1L 1.1 L 17
¢ 27 374 5 2 25

One large drawback to both of these procedures is

that there is no stopping rule for convergence on m, Kiefer
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and Wolfowitz mention this as an unsolved problem,
More details on these procedures and others may be

found in Wilde(34),

B. SEQUENTIAL ONE-FACTOR AT A TIME PROCEDURE

Friedman and Savage(lg) described a method of lo=-
cating an optimal response by the following steps:

(1) Order the factors in some manner. Presumably this
would be done according to the investigatorfs intuition or
prior knowledge regarding the effect of each factor on the
response, The most important factors would be ordered and
investigated first since less important factors may not show
a significant effect until the important ones are near their
optimal values,

(2) Use the best estimate of the optimal factor com=-
bination as an initial starting point.

(3) Vary the levels of the first factor until an
approximate optimal response was reached. (Hotelling's
methods could be used for this.)

(4) Using the factor combination for optimal response
in (3), vary the second most important factor as in (3).
Continue in this manner until all factors have been so in=-
vestigated.

(5) Repeat this procedure starting at the factor com=-

bination of step (4).
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(6) If the changes in the second cycle of this procedure
showed a significant improvement, it would be advisable to
proceed along the path defined by the two sets of local
optima,

As one gets closer to the optimal response, Friedman
and Savage suggest that the levels of the factors be made
closer in order to better map the region of optimal response,

An illustration of this procedure is given in Figure

4e4 for two variables. Point Pl is the original factor com=-

bination and Xy is investigated first. P3 is the factor

)

X1

FIGURE 4-4 Illustration of Friedman and Savage Sequential
One=-Factor at a Time Procedure.

combination found by the end of the first round. The point
PS is the optimal factor combination after the second round.
Application of step (6) would lead the investigation along
the path from P3 to PS and obtain the optimal response in
this manner if the points P, and P_. were, in fact, located

5
with sufficient accuracy.
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If this method were applied without the application
of step (6), the optimum would be approached very slowly
when some mild interaction among the factors was present,
Because of this feature, this procedure has fallen into dis=-

favor.

C. METHOD OF STEEPEST ASCENT

1. Introduction

Historically the method of steepest ascent as an
optimization technique seems to have been first suggested by
Cauchy(l4) in 1847. Box and Wilson<6) (1951) recommend this
procedure within the experimental framework of response sur-
face methodology. Another term for this procedure is the
"optimal gradient" method,

The method of steepest ascent assumes that the re=-
sponse surface in some small subregion of the whole experi=-
mental space can be adequately represented by a hyperplane
in the k factors. From a point Po on this hyperplane we will
proceed a distance R to a point Py Py will be located in
such a manner so as to maximize the response on this hyper=-
plane.

Let the response be estimated by the equation

k
Y(XI’XZ"'°’XR) =Db_ + z b.X. .
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Let the point Po be considered the origin of this k-dimensional

space., At point Pl’ R units from Po, R2 is given by

X
£ x% = R (4.1)

i=l L
We wish to maximize y subject to the restriction of (4.1).
Using a Lagrangian multipler %\, maximize

k

CP(K.,K) = bO + .2

k
b.x. = 5x( = xg-Rz)
i=1 -3 +

i=1
Taking partials of ¢ with respect to Xy and equating to zero

gives:

W -~ p.erx, = O i=1, 2, «es, k.

Hence

LA
x, = o= i=1, 2, ees, k. (4.2)

Thus, Pl is located along the path on which the coordinates
are directly proportional to the first derivatives of the
estimated plane.

The experimenter substitutes various values of A into
equations (4.2) and tries experimentally either to obtain a
maximum response on that line or he will experiment along
that line as far as he believes in the assumption of a local
planar relationship for y., At that point he again will per=-
form an experiment to estimate the response plane and will
determine the new steepest ascent path. This procedure will

be continued until the investigator feels he is 'mear' the
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optimum response, At that point, he should perform an ex=-
periment to estimate a higher order (at least 2) response
curve, periorm a canonical analysis, draw contours, etc, for
a more informative insight into the response relationship.
Figure 4~5 illustrates the steepest ascent method.
The path of steepest ascent is perpendicular to the assumed

local parallel contouxr lines.

%1

FIGURE 4~5, 1Illustration of Steepest Ascent Method.

2. Proverties of the Method of Steepest Ascent

This procedure is not scale-invariant., Only after

the relative scales for Xys Ko, *00y X have been predeter=

k
mined does the concept of "distance" have any meaning. To
illustrate, consider the following example due to Buehler,
Shah and Kempthorne.(9>

Suppose y(xl,xz) is a function that depends on
variables xy and xzbaccording to

y(x,,%,) = 190-(xl-cl)2-(x2-02)2. (4.3)
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Now y has a maximum of 190 at (Cl,Cz). If one makes
measurements without error in the immediate neighborhood of

P = (xl,xz) = (01-9,C2-1), y will be found to be:

2 2
y = 190 = (01-9-01) - 9(02-1-02) = 100
at P .
(o]

The linear approximation equation would be estimated by

y = (a_z )P[xl-(cl-sw)] - (g.;_:z )P[xz-(cz-l)] + 100

axl
o o
Now
(%%1) = -2(x1~01)l = 18
Po xl = 01-9
and
(%’%2) = -18(x2-02)‘ = 18
PO Xz = C2~1
hence _
o = 18(x1-Cl+9) + 18(x2-02+1) + 100, (46.4)

Equation (4.4) is the approximating plane the experimenter
would estimate in the neighborhood of Po = (Cl-9,02-1).

The method of steepest ascent would regard (01—9,
Cz-l) as the new origin and would call for experimentation
along the path whose coordinates were directly proportional
to the first order coefficients. In this case the path would

be the line:
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x, = (6;=9)  xy = (G,-1)
18 18

or

1 1

Now let us change the scale of measurement and see how
this effects the path of steepest ascent, If X, were de=-
grees centigrade, let 59C be a change of one unit of xi.

For Xy, a pressure in pounds per square inch, let a unit of
xé be equal to 10 pounds per square inch. The basic relation=

ship (4.3) now becomes

L RN T 1\2 T 1.2
y(xl,xz) = 190 = 25(x1-Cl) - 900(x2-02) R

¥ ' . _ _
where 5C, = C, and 10C, = C,. The point P = (01-9,02 1)
1 7 1
becomes P = (01-9/5,02-1/10).
The response at Pé is
v = 190 = 25(-9/5)% - 900(~1/10)% = 100

as before. The partials of y evaluated at P; are
w = - "'- ! = O
(ax{) ' 50(x,~C;) 9
1 ¥
o) xl = Cl - 9/5
and
= 180,

(QX,> - -1800(xé~C;)
Pl

L}
o ®, = G, = 1/10



76

The approximating plane at (ci~9/5,cé-1/10) is
- 1 - l- l.. l.-
9 = 90[x; - (¢ 9/5) + 180[x, (c, 1/10)] + 100 .

The path of steepest ascent is now given by

; - (c;-9/5> sy = (c;-l/lo)

20 180 :

X
(4.6)

¥ ¥

2 L = G/3
¥

C2 = 02/10 into (4.6), this expression is reduced to

Substituting xi = XI/S’ X, = xz/lO, C

(3,0, #9) = ¥(sx)=C,+1) | (4.7)

which differs from the first path (4.5) by the coefficient
%. Thus, by just changing the scale of the factors a con-
siderably different path was determined. For this reason
the choice of scale is very important,

Several writers<6’l6> suggest the following rule for
choice of scales: the best units are those for which a unit

change in one factor at_the optimum gives the same change

in response as a unit change in any other factor at the
optimum., The effect of such an advantageous choice of scale
is to make the response contours circles. From any point
in the factor space, the gradient direction will then pass
through the optimumn.

Unfortunately one does not usually know what choice

of units to use to obtain circular contours. Often some
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estimated b; may be small compared to experimental error.
This might arise because of one of the following situations:

(L) 1e average level chosen for that factor is near a
conditional maximum for the response as a function of that
factor.

(2) The choice of units is too small, or

(3) The response system is independent of the factor,

In this case, the next determination of the path
should use a slight variant in the design. For the factor
in question the average level should be moved somewhat off
the previous path of steepest ascent and the unit level in-
creased, Then if the system is independent of this factor,
the coefficient will again be small., If (1) or (2) above
were true, the coefficient should be larger since a real
effect should be discovered. This will be illustrated in
the numerical example which is given in the next section.
Brooks and Mickey<8) investigated the problem of the

number of trials needed to estimate the direction of steepest
ascent. Since there is experimental error, the gradient
direction is determined with some error. If one had more
trials than the minimum of k+1 (a Simplex Design) required
to estimate the first-order coefficients, the coefficients
would be estimated with greater precision and the error in
the gradient direction would thus be reduced.

If 6 is the error in the estimated gradient direction
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and a step of S units is to be taken, thenS.cos 0 is the
component of this step in the direction of the true gradient,
If cos & were near 1.0, the gradient was well estimated, if
cos 6 were near zero, the gradient direction was not well es-
timated. Brooks and Mickey regarded each trial as a unit of
effort. For N trials in a set, the improvement per unit of
effort is (S cos 6)/N. They tried to choose N to maximize
E((S cos 0)/N) which is equivalent to maximizing (1/N)E(cos 6)
regarded as a function of N. They considered designs which
yield normally distributed, uncorrelated estimates of the
first=~order coefficients with the same variance, They de=-
rived E(cos 6) under these conditions (see (8) for details)
and found that the maximum is achieved when N=k+1, the mini-
mum number of trials required to estimate the coefficients,
This result, it turns out, does not depend on 02, the error
variance, and, hence, is a convenient result for applications,
Hence, on a per observation basis, the maximum gain would be
achieved by using a Simplex design for estimation of the
gradient direction,

The method of steepest ascent is inherently self-
defeating as one gets closer and closer to the optimum. The
partial derivatives of y evaluated at points close to the
optimum are near zero. For this reason, this method should
be discontinued when the experimenter feels he has reached

a near optimum region in the factor space., At that point,
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he should utilize other designs to explore this region.(4)

3. Example of the Method of Steepest Ascent

To illustrate the method of steepest ascent consider
the following example from Box and Wilson(6>.

An investigation of a chemical process was made to
maximize the yield of D for a given amount of material A in
the chemical reaction of the type

A+B+C — D+other products
This reaction utilized a solvent E. The yield presently ob=-
tainable was about 45% and the experimental error was of the
order of 1%. Five factors were studied in a % fractional
replication of a 29 design. The factors and their coded

levels (=1 and +1) are as follows:

-1 +1 (Units)
X, = amount of solvent E 200 250 c.c.
X, = proportion of C to A 4.0 4,5 mol./mol.
Xy = concentration of C 90 93 %
X, - time of reaction 1 2 hours
Xg = proportion of B to A 3.0 3.5 mol./mol.

The analysis of the data provided the following esti=-
mating plane:

}? = 48.5‘]‘(7.9)}{1"(2.2>X2+<6oO)X3+(004>X4+(004>X5 .

The coordinates of the path are proportional to the
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coefficients in terms of units of the design., A convenient

method used to obtain the path coordinates is to define a
"step" in one of the factors. The investigator decided that

a step of 10 cc in x, would be a sufficient step. The unit

1
for x; is 25 cc so, in terms of the design units, this is

equivalent to a step of 10/25 or 0.4 units of x Hence

10
we set up the following equation to estimate A

1.9= 0.4 ,
A

so A = 19,75, This proportionality factor is now applied to
all of the coefficients of the other factors which is then
multiplied by the unit of the factor to obtain steps in

terms of the original units. This gives

Ax., = 10c.c.

L
= =2.2 O
Ax, = I§T7§<'25) = =0,028 mol./mol,

= .6.0 5
Axq = I§?7§(1.5) 0.456%

A%, = Igfég(‘5> = 0,011 hours

0,4 -
T§f7§(°25) = 0,005 mol./mol.

Ax5
The path is now obtained by successively adding the Axi's to
the center point of the design in original units., The path

is given by the following table,
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Table 4-6, Path of Steepest Ascent.

Xl X2 X3 X4 X5

origin 225 4,25 91,5 1,5 3.25
bx. 10 -0.028 0.456 0.011 0.005
Path 235 4,22 92.0 1.51 3.25
245 4,19 92,4 1.52 3.26

255 4,17 92.9 1.53 3.26

265 4,14 93.3 1.54 3.27

$=80,0% 275 4,11 03,8 1.56 3.27
X 285 4,08 94,2 1.57 3,28
y=79,4% 295 4,06 04,7 1.57 3.28
305 4,03 95,1 1.60 3.29

Additional experiments were performed at xl=275cc and

xl=295cc with yields of 80.0% and 79.4%. Since this was near
the expected optimum the investigator decided to run another

experiment in the neighborhood of the point whose Xy coordi-

nate was 295cc.

Since the coefficients of xy and xg were small compared
to their errors (error for all coefficients was +0.4) the
path coordinates for %, and X5 were not used and the unit for
these factors was also increased. The unit change was de-
creased for Xis Xy and Xq since the investigator felt he
might be in a region where the response function has some

large curvature. The next experiment was run at the follow=-

ing levels:
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-1 1 (Units)
X, 280 310 cc
%, 3.85 4,15 mol./mol.
x3 94 96 %
X, 2 4 hours
X, 3.5 5.5 mol./mol.

A similiar 8 point, % fractional factorial of a 27

design was used, The resulting plane was given by

9 = 70.7~(2.8)X1+(O.l)xz-(Z.3)x3-(1.7)x4-(0.4)x5 .

Note that all of the coefficients changed sign except that
of Xg compared to the previous estimating plane. The new

path of steepest ascent calculated as before is as follows:

Xy x2 x3 X4 x5 Yield
rigin 295 4,0 95.0 3.0 4.5
Path 285 4,0 94,5 2.6 4,4 80.8%
275 4,0 93.9 2.2 4,3
265 4,0 93,4 1.8 4,2 84,0%
255 4,0 2.8 1.4 4,1 81.5%

The point whose x1=265cc gave the highest yield and
can now be the center point for additional designs for
further exploration of the response surface.

Further examples of this method can be found in Homme

and Othmer(z4> and Remmers and Dunn(SI).
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D. RANDOM EVOLUTIONARY OPERATION (REVOP)

Random Evolutionary Operation is a procedure that uses
the Random Balance experimental methods developed by Satter-
thwaite<32>. The discussion that follows is from Lowe<30>
in which he references a personal communication from |
Satterthwaite for this development.

REVOP claims to be an effective method of optimization'
when the number of variables is large and when the functional
relationships among the variables is not known and antici-
pated to be complex., REVOP is essentially a non-parametric
method as it uses the results on a ranking scale., The number
of experiments required to find a set of thimum values
appears to be independent of the number of variables and of
the complexity of the functional relationship.

REVOP involves random choices of the levels of the
variables under consideration. As such the data are un-
balanced and are somewhat inefficient for evaluation of an
assumed functional relationship. REVOP requires a starting
point ~ the works process, a measurable response, measurable
variables for study and a feed=-back procedure for process
optimization.

The REVOP procedure is as follows:

(L) A list is made of all variables acting on the re-

sponse and the allowable range for each variable is set,.



(2) The lower limit of each variable is coded as zero

(0.0) and the upper limit as 10.0, Then if these limits are
symmetrical about the works process, the starting point for

each variable is coded as 5.0, The code 2.0, for example,
represents a level of the variable at 20% of the range from

its lower limit, The first experiment, EO, is run at values

1

5.0 for each variable. A worksheet is set up for this pro=-

cedure similar to Figure 4-~7,
(3) To choose the levels for the next experiment, digits
from O to 9 are selected at random for each variable. These
1 on the worksheet.
The stepn increment Dlzdi/c is then completed for each variable,

random digits are placed on the line d

where C is chosen so that the maximum Dl is about 2.0. This

Fh

limits the change in level for the variables to a maximum
change of 20% of its allowable range. The values Dl for each
variable are given a + or =~ sign at random,

(4) Step increments (D1) are added to the previous levels
and run so long as the response continues to improve, When
no improvement is made, another set of random digits, d2’
is selected, Dz=’§/c is calculated (C may change), + and =-'s

assigned to D2 and D, is added (algebraically) to the previous

2
best set of conditions. This procedure is continued until
an optimum is reached.

If the newly calculated variable levels show negative

values, they are changed in sign to show the positive value,
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Table 4-7,. AExample of a REVOP worksheet for a maximization.,
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If the level is greater than 10,0, and thereby outside the
original range of experimentation, a decision must be made
whether to permit the calculated value or to restrict it to
a value of 10,0, This extension of range could also be
allowed for negative values,

The advantages of REVOP are that any number of
variables may be handled and the calculations are extremely
simple,

REVOP!'s disadvantages lie in the unbalanced nature of

xperimentation in which no separation of the variable
effects is possible. In addition, the calculated step in=-
terval Di may not be measurable on the process control in-

strumentation.

E. ROTATING-SQUARE EVOLUTIONARY OPERATION (ROVOP)

Lowe(30> discusses the method of evolutionary opera-
tion entitled ROVOP (abbreviation for Rotating Square
EZvolutionary Operation). It is designed to eliminate un-
certainty because of the range of the variables involved in
the experimentation., Like EVOP the ROVOP design is simple
for two or three variables but gets very complicated for
situations with more variables.

ROVOP starts, for two variables, with the basic 22
plus center point design, where the design matrix is coded

by the usual O and +1 notation for the levels of the factors.
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After this cycle of 5 runs is completed, the coded design
matrix is multiplied by the factor of 42 and then the de-
sign matrix is rotated through an angle of 45°. This defines
the new treatment levels. Experimentation at the four new
treatment levels and the center point are then run for the
second cycle. For the next cycle and each succeeding cycle
of 5 runs, the previous cyclefs coded (0 and +1's) design
matrix is multiplied by Jf and then rotated through an angle
of 45°, TFigure 4-8 below illustrates this procedure for

two variables,

Cycle 1 Cycle 3
2 \ *2 2 o<
v N
% »
. N ° | ,’
N T
2 !—. :\. - - rd )
\‘,'
X1 xq xl

FTIGURE 4-8,., Illustration of first 3 cycles of ROVOP,

After each cycle (beyond the first) the response is
analysed by multiple regression techniques for the second
order model. The mean squares due to the regression is
calculated and compared to the residual mean squares. When
the regression is significant at some predetermined signifi-
cance level, the response surface can no longer be considered

to be constant over the experimental region. In such a case
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The stationary point of the quadratic system, X
would be found by solving the equations of first-order
partial derivatives set equal to zero; see equation (1.5).
A new phase of experimentation would be initiated by moving
in the direction of optimum response. Movement is not made
by going to the center of the quadratic system. Instead
ROVOP movement is made conservatively by requiring that the
new phase original design matrix have at least 2 of its de=-
sign points on or within the experimental region of the
cycles of the just completed phase. The range of the
variables should be reduced by at least a factor of J2 over
the last cycle of the previous phase, This would not be
necessary for variables which were not significant.) The
design matrix for this next phase would be recoded to the
0, +1 notation and the analysis would also start over again.

Examples of movement are shown in Figure 4-9,

%y . %,
oA "%, Phase II M’;w
if" 5| Design - LT
MRS ‘ POintS K ' )3
X “':",MR’\\\ :‘L-»S/;
€ e - I
Xy %,

FIGURE 4~9, Examples of design center movement in two
variable ROVOP,
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This method of optimization would gradually approach

[ d

and straddle the optimum, Aﬁ this point, the stationary
point of the fitted response system would be located well
within the experimental region and other designs should be
used to further explore the region. Continuation of ROVOP
beyond this point will provide adjustment for long~-term
change only, such as raw material changes, and may not be
worthwhile,

For a k variable ROVOP, the basic design is a ok
plus center point design and the same procedure is followed
as in the two variable (k=2) case. TFor k=3, successive
cycles are expanding cubes.

Since the analysis of ROVOP data is not straight-
forward, a computer would usually be required for fast feed-
back to production persounnel, Response contours could also
be plotted by the computer for better understanding of the
estimated response surface,

If several phases of ROVOP were required before
optimum conditions were reached, a wide area of the variables
would have been explored and an overall response surface
could be fitted to all of the data. However, care must be
used in so doing as the second-order model may not be too
good an approximation to the true underlying functional re=-
lationship if the area explored is too wide. In addition,

if the process in not stable in time, older data may no
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longer represent the current response surface and so older
data may have to be deleted.

In summary, the advantages oif ROVOP are:

(1) Too small an initial range of the variables is not
critical,

(2) The rotating pattern of experimentation provides
estimation of quadratic terms very quickly,

(3) ©Procedure provides a good exploration of the ex-
perimental region.

There are several disadvantages of ROVOP, They are:

(1) Analysis of data requires a computer.

(2) Only quantitive variables can be used.

(3) TFor more than three variables, the desigzns require
many points (2X+1) for each cycle before a new analysis is
made.

(&) ROVOP is not a technique for use on a permanent
basis.

This last disadvantage is of such importance that it
perhaps should not be included as an evolutionary operation
technique., However ROVOP certainly has its use in experi=-
mental situations or in some EVOP situations where too much
conservative action is evident on the EVOP committee with
regard to range of the variables under study. However, as
an EVOP technique it perhaps changes the levels of the factors

too drastically for a production process.



F., CCMPARISON OF SOME OPTIMIZATION TRCHNIQUES

1. Introduction

Brooks , in his doctoral dissertation, compared
several of these optimization techniques for the case of two
variables (k=2)., He used four types of response surfaces
each of which had an expected maximum yield of 1.0 at the
point (1.0, 1.0). Three contours, 0.25, 0,50, and 0.75, of
these four response surfaces, are shown in Figure 4-10,

On Surfiace 1, as one can see, the two factors are in-
dependent. Surface 2 is Surface 1 rotated through an angle
of about 37 degrees. Surface 3 contéins a sharp ridge and
has large areas of low flat response., Surface & contains a
curvilinear ridge.

For each response surface, the entire experimental
region of the 2 unit square was divided up into nine over=-.
lapping subregions. Zach of these subregions was a unit
square (1lxl) and was located independently and randomly within
the 2x2 square in a stratified pattern.

Experimentation was conducted in each subregion with
N=16 and N=30, The experimental error was assumed to be

normally distributed with a mean of zero and a standard de=-

The measure of effectiveness used to compare the

maximum seeking methods was the average maximum response



2.0 1 2.0
1.5 1 1.5
1.0 L 1.0
0.5 0.3
0.0 - ; e x1 0.0 : . - xl
0.5 1.0 1.5 2.0 0.5 1.0 1.5 2.0
2.22“ 2.g’
1.5
1.0 :
0.5
_ % 0.0 |

0.5 1.0 1.5 2.0
Surface 1 y-(/+%x1) X e?p{Q G %ﬁz e 22]
Surface 2 y=(0.3+O.4xi+0.ax2)4(0.o-0.6
+0, 4x1+0 3x2) )

\
Surface 3 y*xlexp[l %2220, 25(x1 5) T+e

Surface & yz(O.Sa%+0.7x§)Sexp{} -0,6(x

4
1v0.8x2) exp[?-(0.3+
#2(0.80.6x,+0, 8, )¥] +c
2 3
l-xz) -(0.3x1+0.7x2) T+e

FIGURE 4~10. Response surfaces used in comparison study.
Contours are 0.25, 0.50, and 0.75 responses.
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In each subregion for the N=16 case, a set of four

equally spaced observations was made at the middle of one of

-

5

uation was estimated to

% s %
the factors, x, say, and a cubic

o

fit the four responses, The value of Xoy Xy which maxie
- A @ L3 & o 4

mized ¥y was found in the usual fashion; i, e., by

differentiating this cubic equation with respect to ng

uating to zero, and solving., Four equally spaced cbservae-

\ﬂ« [ e 0

.
% &

tions were then made holdin %, = %, and another cublc

G @ - “, 4 A
equation was fitted and x X, was found which maximized y.
This complet ed the first roun The second round then started

with the step interval reduced., This procedure is illustrated
in Pigure 412,

X,
1.8 ;

3.6 T @
?..lzn“@\_\

1.2

0
! §§%2g> ji/ " -

1.4 1

g4

FIGURE 4-12. Illustration of Sequential One-factor at a
Time Procedure for Wﬁiﬁ.

For N=30, there were three rounds with two sets of 5

trials in each round.



In both cases, N=16 and N=30, the procedure was tried

both with x, and %, as the first variaeble., The results of

1 2
this procedure are given in Table 4-13, Note that the N=30

ts of the Sequential One-factor at a Time
-

First Veriate Surface N=16 N=30
1 0.98 0.98

< 2 . 9¢ 0.68%¢

1 3 .897% 0.92%50

4 .97 0.9799
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4. Method of Steespest Ascent Procedurs

)

Initially a 2x2 design about the midpoint of the sube

&

region is used to estimate the gradient direction. Trials
are then made in the gradient direction until the response
obtained is lower than the previous one oz the border of the
subregion is obtained, At that point, another 2x2 design is
usged and a new gradilent direction is found, Trials are
made in the new gradient direction (with a smaller step
size) and this procedure is continued until the number of

tirals (16 or 30) are all completed, Figure 4-14 illustrates

this procedure for N=16.
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FLoulE 4-14, Illustration of the method of steepest ascent
for N=16,

The highest observed response was taken as the maximum with

the results as given in the following table.

Table 4=-15., Results of Method of Steepest Ascent,

Surface N=16 N=30
1 0.9564 0.9781
2 0.9640 0.9758
3 0.9381 0.9622
4 0.9369 0.9763
Average C.9489 0.9731

5. Random Method

Each subregion was explored by a simple random sampe
ling method and by a stratified procedure. The stratified
procedure subdivided the region into 16 or 30 equal sections
and a trizl was made at random within this small plot. The

results of this procedure are given in Table 4-16., As can



97

be seen there was little difference between the simple rane-

dom and stratified random procedures for N=30.

Table 4-16, Results of the Random method of Sampling.

Surface Simple Random Stratified Random
- N=16 N=3 N=16 N=30
1 0.8952 0.9476 0.91.62 0.9708
Z 0.8662 0.9338 0,9151 0.9685
3 0.9002 0,9369 0.8910 0.9062
4 0.8788 0.9477 0.9749 0.9738
| Average 0.8851 0.9415 0.9243 0.9548

6. Simplex Design Procedure

For this procedure the size of the simplex design
(an equilateral triangle) was chosen so that any point in
the experimental subregion couié just be reached within the
allotted number of trials. The same response surfaces and
experimental subregions as previously discussed were used,
Spendly, Hext, and Himgworth(33>, however, do not give
their results broken down by surface type. The overall
average maximum for 16 trials was 0,9442 and for N=30, 0.9191
was achieved, Some of their zuns (about 5%) were subject to
the influence of random errors and were not able to free
themselves fi'om the effects of these errors within the
allotted number of trials., The average achievement of those
95% of the runs which did not get "bogged down" was 0.9711

and 0,9716 for N=16 and 30, respectively.
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7. Comparison Among Procedures

Taeble 4«17 summarizes these results,

Table 4-17. Summary of Results of Optimum Secking Methods.

Method v N=16 N=30

Factorial 0.9487 0.9622
Sequential One=-factor 0.9587 0.9726
Stcepest Ascent ‘ 0.9489 0.9731
Simple Random 0.8851 0.9415
Stratified Random 0.9243 0.9548
Simplex 0.9442 0.9191
Simplex (95% of runs) (0,9711) (0.9716)

Each of these tabulated averages is the average of the
highest obscrvation of 36 experiments. Since ecach experi-
ment was only run once, these results caanoct be considered
true Monte Carlo results but are perhaps indicative of the
performance of these methods.

Of the non-sequential methods, which were the Factorial
and Sampling procedures, the Factorial provides the better
estimate of the maximum, However it should be pointed out
that the factorial design was applied to an area in which
the experimenter knew the true maximum was located and he
also had well defined limits on his variables.

For the sequential methods with N=30 there seem to
be no practical differences among the methods unless the
simplex procedure had some domlnating random errors., For

N=16, the simplex procedure without deminating errors is
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SOME OPTIMIZATION PROCEDURES
USED IN RESPONSE SURFACE METHODOLOGY

by
Bruce R. Glenn
ABSTRACT

This thesis is a literature survey into selected
optimization topics of response surface methodology. 1In a
typical response surface problem one of the main problems
to be solved is to find those levels of the controllable
variables to provide an optimum response such as highest
yield or lowest cost. Several methods for attaining this
optimum response are discussed, such as: the method of
steepest ascent, sequential one-factor at a time procedure,
a random balance method also known as random evolutionary
operation (REVOP), rotating square evolutionary operation
(ROVOP), and some one-factor optimization techniques. In
addition two methods for optimizing an existing production
process are discussed: evolutionary operation (EVOP) and
simplex EVOP,

A technique useful in the interpretation of a complex
response surface is also discussed., This method is called
WRidge Analysis" and the development of this technique is

presented and a worked example is given,
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