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and mathematical and graphical techniques to present the re-

sulting response surface to the experimenter for interpreta­

tion. A general reviev7 article and literature survey for 

response surface methodology is given in reference (22). 

This thesis is a literature search into certain as-

pects of Phase ~vo. In addition one interpretative technique 

useful in Phase Three is also presented. 

B. NOTATION AND BASIC REL.~TIONSHIPS 

The response variable will be denoted by y and the 

assumed controllable process variables will be denoted by 

x1, x2 , •••, xk. Many of the response surface methods are 

based on the assumption that a response y can be approximated 

by a first order, second order, or higher order polynomial 

in x1, x2, •••, ~· For a first order polynomial there­

lationship is of the form 

(1.1) 

The general second order model is of the form 

Y = ~o+Slxl+S2x2+•••+Sk~+Sl2xlx2+~13xlx3+••• 

+Sk-l,k~c-l~+Sllxi+S22x~+·••+Skk~ • (1.2) 

The coefficients in these models are estimated by least 

squares(4), usually with data from some designed experiment. 

The fitted surfaces are of the form, for the first .order 

model: 
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and for the second order model: 

where ~· • (bl' b2' ••• , bk), ~· • (xl, za, ••• , ~) 
and 

••• 

B • • 
••• 

••• 

(1.3) 

(1.4) 

The x values, in general, are coded values centered around 

the origin (O, o, ·~·, O). 

For the second order model a recommended form of 

analysis, which is often performed to better interpret the 

fitted response surface, reduces (1.4) to the "canonical 

form".(l6) This is done by translating the & variables to 

the stationary point (center), Zo• of the response system, 

_where ~ is given by the solution of the set of first order 

partial derivatives of (1.4). It is easily shown(4) that 

(l.S) 

The response system is then rotated to eliminate cross• 

product terms. The resulting equation is of the form 
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(1.6) 

where y0 is the estimated response at !o• ~· = (z1,z2, ••• , 

Zk) are the transformed axes, and~= (~1 .~2 , ••• ,~k) are the 

eigenvalues of the matrix B~ The transformation on the ~ 

variables(4) is given by 

Z = T1 (&•2Sc,) (1. 7) 

where T is a (kxk) orthogonal matrix whose columns are the 

orthonormal vectors associated with (~1 .~2 , ••• ,~k). 

As an example, consider Figure 1-1. For this surface 

~l < ~2 < O, hence the response system has a maximum at ~0 • 

In general, if all of the eigenvalues are negative, the re­

sponse surface has a maximum. If they are all positive, the 

response surface has a mintmum. When a mixture of positive 

and negative eigenvalues are obtained, the response system 

contains ridges or a k•variate saddle point. In the area of 

experimental interest ridges may be encountered when !o is 

far outside of this area, even though the eigenvalues are 

all the same sign. Thus the location of ~ and the sign 

of the eigenvalues all determine the nature of the response 

system. 

When !o is far outside of the area of experimental 

interest or when the eigenvalues have differing signs, the 

resulting surface for k ~ 3 may become very complicated and 
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be difficult to understand. These types of surfaces can be 

subjected to another analysis to better understand the re• 

sulting fitted surface. This analysis is called "Ridge 

Analysis" and is discussed in Chapter II. 

FIGtn'tE 1•1. Contours of a fitted response surface showing 
the original axes (x1,x2) and the canonical 
for.m axes (z1,z2). 

C. SQOPI Ql THESIS 

'1'he next chapter discusses the 11Ridge Analysis" 

technique for interpreting complicated response surfaces. 

Chapters III and IV discuss several of the optimization 

techniques one can use in Phase Two of the response surface 

problem. Evolutionary Operation techniques for existing 

production processes are discussed in Chapter III. Chapter 

IV discusses optimization techniques useful in the laboratory 
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CHAPTER II RIOOE ANALYSIS 

A. INTRODUCTION 

When a canonical analysis is performed on the es• 

timated second order response surface of (1.4) and the re• 

sulting canonical form 

(1.6) 

has both positive and negative values for the ~•s, the re• 

· sponse surface contains ridges or saddle points. Because 

of the complicated nature of such a system, it is difficult 

to interpret graphically. "Ridge Analysis" is a method of 

analysis which provides a graphical interpretation of such 

. a response system. It is a general technique which plots 

the response on the ridges versus the distance R from the 

center of the design used to estimate the coefficients of 

( 1. 4). In this way one can find the maximum yield for any 

selected distance R as well as any other intermediate 

stationary points for that R. This can be done regardless 

of k; hence, this method provides a means of graphically 

interpreting the response surface on k variables in just two 

dimensions. 

"Ridge Analysis" was coined by Hoerl in a 1959 · 

paper<22 >. Hoerl's paper was expository in contents and did 

not attempt to mathematically derive the properties of this 
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used to find other stationary 

or the absolute 

to the 

but this itltermediate ridge bad other d(!lsirable 

properties such as lower pressures or 

To plot these points, we consider the function 

with respect to x 1,x2 , ...... ,x1 11 dividing by 2, equatir.g to zero, 
i.'t 

and rearranging of the resulting expressions, one obtains 

the set of equations: 

• It • 

(2.2) 
. .. . 

(2 .. 3) 

Equations (2 .. 1) and (2 .. .3) ean be solved siJ:mlltaneously for 

~~ = (x1 ,x2 , .... ,xk) and A.., However, an equivalent technique 

which is easier compu:tationally the following: 
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(1) 

) (2.2) 

) R = .. 
\ "' 
.I y 

in • 

... 

"' y Ct!li x:o'~ 

to 

c. 

the 

i ~ 1,211"""\ik .. 

or 

( o. type stationary 
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of A. 

l. with 

Before continuing, a result from calculus 

A method of obtaining the stationary 

(xl,x2t•••,~) = 0 

is to define 

F = f (x. x • • • x. ) -l' 2• t A. j=l 

of a function 

(2.4) 

(2 .. 5) 

(36) 

To obtain stationary of F, one partially differentiates 

(2.5) with respect to each x1 and equates resulting ex• 

pressions to zero. This gives the k equations 

oF o f(x) 
-= -
'!>X '!>.X 
<;J i Q i 

o"' (x) m <:::>j ... 
:E ). . 

j=l j 0 
(2.6) ... 

Tnese k equations m equations of (2.4) can be solved 

simultaneously for (x1,x2,•••,xk)' and (A1,42,···,l.m). 

usual method of solution to (l.1 , ••• ,).m} in terms 

could be used .. In either ease F (x) ~iven l- 0 

values of A.J: 
J 

by F1 (~) = F(~,A) 
is some function of (x1 ,x2 ,···,~) or of (x1,x2, ••• ,xk) and 

some knOW'l'1 constants. D.af ina thG matrix 
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o2F l o2F l o2F 1 
ax2 

••• 
ox ox ax1o~ 1 1 2 

a 2F a 2F o2F 
M(c_) 1 l 1 (2.7) = - ••• • 

ox1ax2 ox2 ax2axk 2 

• • • • • • 

o2F 
1 

a 2F 1 a 2F 
l 

• • • -
ax1o~ ox2a~ ax2 

k 

I I 
If~ = (xl,x2,···,~) = (al,a2,···,ak) =a is a solution 

of (2.6) and (2.4), let M(&) be the matrix of second order 

partial derivatives with the ai's substituted for the 

corresponding xi's in (2.7). Then for %1 = (y1,y2,•••,yk) 

any (Lxk) real vector, if ~· M(A)~ is positive definite, i.e. 

~1 M(&)~>O for all ~. F achieves a local mintmum at c. = A• 

If ~1M(A)~ is negative definite, i.e. %1M(a)~O for all %t 

F has a local maximum at x = a. - -
It turns out that the converse of this result is not 

true. One can have a local minimum without M(&) being posi• 

tive definite. 

For our case we have 

(2.8) 

and 

(2.1) 
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and from (2.5.4) 

(2.5.6) 

If one premultiplies (2.5.3) by ~2c'/~~2, one obtains 

• Prem.ultiplying (2.5.5) by ~c ~~~ gives 

(2.5.7) 

(2.5.8) 

Transposing (2.5. 7) and subtractin& it from (2.5.8) gives 

or 

Substituting the right hand side for the left hand aide of 

the above equation in (2.5.6) we obtain 

or 

(2.5.9) 



from (2.5,.4) 

Henee (2.5 .. 9) 

a 21t ~. 
ll a '':lo (x )21 R- u ..~~- - ... - ~ .. 

a>~2 ct.. oA. - (}:\ 

Y.ultiplyins; both s by a2 t.;e obtain 

a2a 0 ~ 0 ,c!;}f:)2 as "" - tilt .3R""' - - ... 
~--

a>..2 at.. oi.. 

so 

~ f l'+~ 
0 <., 
~~ .... + 

a t 
~ 

__ ... 
at.. e>t.. ()) .. a>.. a> .. 

The first term on s of (2.5.10) 

positive and is zero ) .. :::: o .. 

wood 

always positive, due to a result of 

Polya, 1952,(19) and is zero only when 

R = 0) or when 'd;yj;;J'al~ = 0 .. 

,, 

~ (2 .. 5 .. 10) 
.#' 

is a 

Little-

~nen a~a>.. = o, = Q from equation (2.5.3), and 

again R = o. a2R/at..2 > 0 exeept when R = 0. When 

R = o, a2RJa>..2 = o. 
that this 

the relationship 

a plotting we sr~ll be 
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to determ~t'le. the requirements on A. to obo;;ain points on the 

absolute ma:d.mum end/or minimu.."U ridges. 

D. GRAPH OF R VSRSUS l 

As before~ order the ~i s~eh that ~l < ~2 < ••• < ~k· 

Since (B•AI)!,= -~Q., as "--+J..Li' ~-t-±oo so R--'f+ oo. As 

A.~± o.?' 2S,-> Q. so R--) O. Since o2R/oA.2 > O, the graph of R 

on the ordinate plotted against A has the following shape: 

" , . 
I 

R I 
l 

·u 
0 

Graph of R against A where ~ 1 s are ranked 
eigenvalues of B. i 

Considering this graph, there will be at most 2k 

val~es-of A for which stationary values of y will exist. 

(Each eigenvalue· provides two b:z:oanches).. For values of A;) J.lk 

there will only be'"one stationary value of y as R varies, 

since as A -----7 oo, ~~ Q. so R__,.O. There are no eigenvalues 
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larger than '-'k to turn the graph up to R • + •. Hence the 

absolute max~ ridge can be plotted by using values of 

A > '-'k• Similarly the absolute minimum ridge can be found 

by using values of A < "'1• 

When values of >.. are chosen between eigenvalues a 

stationary value will occw: which is on a local minimum or 

maximum ridge depending on whether it is on the right or 

left of the u-shaped curve. 

E. StlMMARY-oF RIDGE ANALXSI§ 

To perfor.m a ridge analysis, one follows these steps: 

(1) Estimate the coefficients of y • b0~'2~'B~ 
(2) Compute the eigenvalues of B. 

(3) Plot the absolute max~ ridge by substituting values 

of A greater than the largest eigenvalue in (B•AI)~ 11 -~2 

and solve for &• Values of A less than the smallest eigen­

value will provide the absolute minimum ridge. Intermediate _ 

ridges will be found by using values between eigenvalues. 

(4) For each solution ~. compute R 11 (&'&)% 

(5) For each solution, calculate y 11 b0+>..R2~•a 
(6) Perfor.m steps (3) - (5) until a sufficient number of 

points on the graphs of R against x1,x2, ••• ,xk, andy have 

been found to adequately graph the relationship. 
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F. NtJHERICAL f;~\HPLE 

Franket<17 ) was investigating the yield of 

mercaptobeuzothiazole(MBT) as G function of time and tempera-

1 tura. A rotatable octagonal design with three center points 

and an additional replication of one of the design poi~ts 

was ru.~. A second order response surface was estimated to 

be 

where 

X = 1 
Time(hr)•12 

8 
and X = 2 • 

The contours of this response surface is given in 

!igure 2-2. As can be seen, the resulting surface is a saddle. 

For this example, equation (2.3) becomes 

Solvin3 

( (1.40-A.) 
-3.60 

for x1 and x2 

-3.60 )(xt) =( .505) 
(-8.76-A.) x2 4.305 • 

one obtains 

ll.0742-0.505A. 
xl == 2 A. +7.36A.·25.224 

and 

7.845-4.305A. 
X = 2 A.2+7.36A.-25.224 

• 

The eigenvalues of 

(2.11) 

(2.12) 
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( 1 40 -3.60) 
B = -3:60 -8.76 

1-1 = 2. 5[:.625 
2 

X 
2 

75 

(2.13) 

Initial Experimental 
~Region 

75 

X 
1 

FIGURE 2-2. Yield of MBT as a function of time (x1 ) and 
temperature CXz). 

Hence to find the locus of the absolute maximum ridge, 

value3 of A > 2.54625 are substituted in (2.12) and solved 

for x 1 and x2 • R2 is then computed by 

R2 = x2 + x2 
l 2' 
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" and y is found by use of equation (2.4.1) 

For example, let A = 4.0, then 

11.0742-0.505{4.0) 9.0542 
xl a----------------------- a = .44787, 

and 

(4.0)2+{7.36)(4.0)-25.224 20.216 

7.845-(4.305)(4.0) 
20.216 

-9.375 = = -.46374, 
20.216 

y = (4)(.41564)-0.505(.44787)+(4.305)(.46374)+82.17 

= 85.60'. 

Various values of A > 2.54625 were used to obtain the 

plot of R versus y. · Figure 2-3 contains the graph of y 
versus R for all four ridges. Ridges RAMAX and RAMIN are 

the absolute max~ and minimum ridges and the intermediate 

or secondary ridges are labeled RSMAX and RSMIN• 

To obtain these graphs values of A were used as 

follows: 

For ~ A > 2.55, 

R 0 < A < 2.5, 
SMAX -

R -9.9 < A < O, and 
SMIN -

RAl-iiN A < -9. 9. 
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As 1;·:-:>uld be expected, the secondary ridges do not 

appear until R equals the distance from the center of the 

desi~ to 2S.o• In this example 

~ = (-.439,-·.311) 

with yield y0 = 83.73, so 

is the min~ distance needed to obtain secondary ridges. 

· Figure 2-4 contains the plots of x1 and x2 against R 

for the absolute maximum ridge. Figure 2-5 plots x1 and x2 

against R for the secondary maximum ridge .. Figures 2-6 and 

2-7 plot x1 and x2 against R for the secondary and absolute 

minimum ridges respectively. 
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FIGURE 2-4. R versus x1 and x2 for the absolute maxtmum 
ridge. 



xlx2 \ 

1.0 + 

0 

-2.0 

1.0 

37 

Limits of 

Experimental Design 

2.0 R 

FIGURE 2·5. R.versus x~. and x2 for the secondary maximum 
r:a.dge. • 



0 

-1.0 

-2.0 

38 

Limit of 
Experimental 

Design 

x2(SMIN) 
~~--~~--~~~~--~--~-+--~--~--

1.0 2.0 R 

FIGURE 2·6. a versus x 1 and x 2 for the secondary minimum 
ridge. 



2.0 

1.0 

0 

1.0 

39 

Limit of 
Experimental 
Design 

2.0 R 

FIGURE 2•7. R versus x1 and x2 for the absolute min~ 
ridge. . 



d 

cesses~ 

40 

!II OPT!H!ZATlON 

'tiOl"l. st production processes must 

a manner that output not 

To do 

loped in 

process are allov;red. 

ific l proce-

only small changes to the 

Two of procedures are 

in chapter. The next chapter considers other 

s, some of vlhich can 

which are usua 

to production pro­

lied to initial experL~enta• 

or pilot-produc experimentation. 

1. 

ln 1957 George E. 
(3) 

proposed a for im-

proving the operation of a process. This method is cal 

Evolutionary Operation or is a method of process 

operation which has a built-in procedure for increasing pro .. 

ductivity of the process. Although it was developed for a 

chemical type process it has more general application and 

several other industries ~~ve used it profitably. 

is a method of production which uses some simple 

statistical concepts during the regular normal routine of 

production. The method consists of running a simple experi­

ment, usually a factorial, by the production personnel them ... 

selves. basic philosophy of EVOJ? is that is inefficient 
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1 s for alone. pro-. 

cess product p ormation 

on 

that: 

1 at a 

actual of the process. On the cor .... 

point out areas more 1 re-

is t:o improve 

upon tn operating found through designed 

to on the 

of EVO? concerns the resul 

usual the process graduates 

from boratory, to pi ion,. to full-

scale It usual found t considerable 

mod if of the required to ob-

tain yields near those obt:a in the laboratory. 

s been compared to the process of evolution in 

biology. organisms advance by t"""o methods: 

l. Nutation 

1 processes lar methods. A 

discovery of a new route to the 1 product: lent 

to 

to k>election., Adjustments that: 11work11 
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are retained and adjustments that har.m the product are avoided 

in the future. Thus, the process is slowly optimized. 

Evolutionary operations employ a method of purposeful adjust­

ment to speed up this optimizing process. 

2. Operation of EVOP 

Routine production is normally run at rigidly defined 

operating conditions for the process. This is called the 

"works process" and is the best set of operating conditions 

found for the process. Any method of introducing variation 

in the works process must provide safeguards which will en­

sure that the risk of producing any appreciable unsatisfactory 

product is small. For this reason EVOP is based on the premise 

that only small changes are allowable in applying the method. 

Since production must continue during the EVOP procedure, the 

effects of small changes in operating conditions can be de­

tected by continued replication 2t the basic experiment. 

The application of EVOP first involves the selection 

of the responses which are to be optimized. This may be yield, 

cost/pound, tensile strength, etc. Generally several responses 

are considered because the product is usually too complicated 

to be represented by only one response. Optimization is 

then simultaneously attempted. Some of the responses, 

expecially properties of the product, are not optimized but 

are observed so that the effects of the variation in operat­

ing conditions may be seen. 



43 

As an example consider the manufacture of a liquid 

product. The main response to be optimized could be the cost 

per g~llon. In addition, suppose that the level of an im­

purity must not exceed .5% and the fluidity of the product 

must lie between the limits of 55 and 80. These last two re­

sponses are not to be optimized but must be satisfied by the 

product. Measurements of the level of impurity and the 

fluidity would be made and analyzed as well as the cost/gallon 

to make sure the product was acceptable. 

Next, the particular operating conditions which will 

be systematically varied must be chosen. To keep the ex­

perimental designs simple usually only two or three process 

variables are chosen for study. The limits on the variables 

are then specified, through considerations previously 

mentioned. 

The most common experimental design used for EVOP is 

that of a zk factorial plus a center point. For two variables,, 

the design points are given in Figure 3-1. To start, the 

center point is the works process for the two variables of 

interest. 

The routine of plant operation consists of repeatedly 

running the production process at these five design points 

in the order 1, 2, 3, 4 and 5. Each group of 5 runs is called 

a cycle. Randomization of the order of running these design 

points is rarely performed and would only tend to confuse the 

production personnel. At the end of each cycle the results 
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fidence limits, called error limits in EVOP. The calculation 

of these error limits are discussed later. An examination of 

the impurity and fluidity responses shows that a shifting of 

the works process to point 2 would not harm the product. In 

fact it would also tend to minimize the impurity level. In 

such a case, the decision would usually be made to shift to 

point 2 as a new works process. The EVOP study would then 

enter a new phase (Phase Two in this example). 

The phase number on the Information Board indicates 

the experiment number. Whenever any change in levels, sub­

stitution or addition of variables is made, the phase number 

is increased. 

3. Calculation of Effects 

The "effects" are calculated from the running averages. 

If Y.1 , y-2 , y-3 , Y.4 and y-5 are the running averages for the rth 

cycle, the effects of concentration, temperature, and interac­

tion are calculated as in a 22 factorial experiment (y1 , the 

center point is ignored). The main effects are interpreted 

as the difference in average response in going from the low 

level of the variable to the high level when averaged over 

all the other variables. The interaction effect measures how 

the levels of the variables interact with one another. If 

the interaction effect is zero, the variables act independently 

of each other. 

The change in mean (CIM) is the difference between the 
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center· point and the average yield for all of the points y1, 

Y2' Y3' Y4 and Ys· The change in mean is used for assessing 

non-linearity and the cost of running the EVOP study. The 

formulas for calculation of the effects used are (for two 

variables): 

Effect 

Concentration 

Temperature 

C X T 

CIM 

Formula 

lz(y3+y4-y2-y5) 

l:a<Y.3+Y.s-y2-y4) 

~(y2+y3-y4-y5) 

k<Y2+y3+y4+Ys·4yl) 

Limits of error 

+£.! -Jr 
+ 2s 
- Jr 
+£.! -,.;r 
+ l.78s 
- Jr 

The limits of error are approximately 95% confidence 

limits on the estimated effects. They are ±2 times the 

estimated standard error of the effect. 

The change in mean, CIM, as defined before is 

The variance of CIM is given by 

var(CIM) = !...o-;(1+1+1+1+16) = ~2 
25 .1 5 y 

= ~2 
5r y 

Hence ± 2 times the standard error for the CIM limits is 
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E(y4) = ~+~1-~2-~12+~11+~22 

E(y5) = ~-~1+~2-~12+Sll+S22 

E{CIM) = Ef~(y2+y3+y4+y5-4yl)l 

= ~(4S11+4~22) = :(~11+~22) 
Substitution of y. for y. would not change this result. 

l. l. 

k 
Hence, the CIM provides an estimate of c 1::: ~ •• where c is 

i=l l.l. 

2k/(2k+l). 

As such the CIM gives one some idea of the non­

linearity of the local response surface. If the local re-

sponse surface is planar, the expected value of the CIM is 

zero. If the response surface were locally quadratic with 

a maximum, say, at the works process, the CIM would be ne­

gative. If the response surface had a minimum at the works 

process (such as for a response like cost), the CIM would be 

positive. In this latter case the CIM would be the cost in­

curred by running the EVOP production rather than all of the 

production at the works process. For the above example, the 

cost of EVOP was 0.2 ± 0.6 cents per gallon. In the case of 

a maximum, the CIM would estimate the loss in yield in­

curred by running the EVOP procedure. Except when the pro-

cess has been brought very close to the optimum, the cost 

incurred by EVOP is very small compared to the cost saved 
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in the operation of the process if any improvement has been 

made at all by EVOP. 

The Information Board also shows the standard de­

viation of the response and may also show the previous esti­

mate obtained at the end of the previous cycle. EVOP uses 

a sequential estL~ate for a and this additional information 

gives an indication of the stability of this estimate of cr. 

In some cases, however, it may be desirable to omit this 

information from the board, as was done in the example. 

5. Three-variable EVOP 

For three variables in the EVOP study, the design 

points are shovm in Figure 3-3. Note that the center point 

of the design is replicated so that 10 observations are needed. 

to complete a cycle. If the runs need to be separated into 

two blocks, one of the center points is run in each block. 

® 

FIGURE 3-~ Design points for a 3-variable EVOP stud~ 
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6. Estimation of s 

In starting an EVOP study there may be no reliable 

estimate of the response variance. However, after several 

cycles there is no lack of data and the response error 

variance can be estimated, for example,by the method of least-

squares. 

However, this would involve the squaring of con­

siderable number of observations and would be fairly diffi­

cult computationaly, especially for routine analysis by plant 

personnel·. Instead a method due to Box and J. s. lfunter(5 ) 

utilizes a range method to calculate an estimate of the 

error standard deviation. Since a multitude of responses 

are available after a few cycles; there seems little point 

in not using this slightly less efficient estimate. 

Suppose N sets of conditions are run in an EVOP study. 

(N=5 for the two variable case and N=10 for the three variable 

EVOP. However, this technique is quite general.) 

At the end of (r-1) cycles, there are N(r-1) observa­

tions and they can be classified in the following two-way 

table along with the data ·from the rth cycle: 

Average for N conditions 
at end of (r-1) cycles yl y2 y3 • • • YN 

New data from rth cycle Y1r Y2r Y3r • • • YNr 

Differences o1=(yi-yir) 61 02 03 • • • oN 
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r-1 
~ YiJ./r- 1 - Yir' 

j=1 

'tvhere yij is the response of the i th condition for the jth 

cycle. 

Assume for a given cycle j, y .. is normally distri­
l.J 

buted with mean u+n. and variance a2, i=1,2, ••• ,N; j=1,2, ••• , 
J. 

r. Then 

var (6. )= 
J. 

Hence, 

and 

a2 = 1 
6 (r-1)2 

= a2 + 
(r-1) 

= ..£___ a2 
r-1 

a2 = r-1 2 -a 
r 6 

a = J r-1 a 
r 6 

r-1 
I: var yij + var yir 

j=l 

a2 

Now a6 can be estimated from the range R of the 6i. An un­

biased estimate of a is(4 ) 
6 

where d2 depends on N. Values of d2 can be found in any 

quality control textbook. Hence, a can be estimated by 

s = Jr.-1 R = f(N,r)R 
r r d2 
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t'O l optimum 

as A more automa 

to in the next section. 

B. 

In preced section 

se ru or to move 

s in .. Th.is section will 

EVOP procedure in which some s 

11 to control trnents of the opera 

cond ions.<33 ) 

Tne ign EVOP is a simplex. A sL~plex 

an 1 first: des tvhich requires only one 

rr~ore 1 number of variables 

consideration¥ , N=k+l. The colurr~s 

are orthogonal and the design by 

1 vertices so situated 

formed by any t1..ro vertices 
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this ication a s variation of the s tar1dard 



57 

s for k is us • 

cess (O,O," • .. ,0)~ a 

., \ 
J.; X. k des 

;o 0 0 • .. .. 0 \ I p q q .. • • q 
\ 

-r q p q • .. • q -~ 
l 

\~ 
• 

q q ~ • p 

p :::: 

and q = ... 1). 

give s of 

s points., of p q for some 

values of k. 

Table 3-5 .. q different: va k in 

I 1( 
I 
t ..... f 

I 2 
'?! -· 

l 4 
I 5 

L 
.. 
0 

In u conditions ~u"e 

on run and new con ... 



58 

d aL~e c:;en so a.s t'() s us 

1-
t'>. ( ) s 

) the re e. 

of out of a s 

some d the center of 

s to st response. Hence 

t response in 

new run so 

as to a simple}~ out 1 

netr7 run. to be 

v70U 

trate, cons 

prob ). 3-6 of 

runs are eire the response is given be· 

s 1 In f trial 5 

general tion of maximu~ due to com-

random error ls 2 and 3 . te, 

that t;;w trials \vere required to correct s error. 

direction of advance is determined 

so on a ranking sea olute numbers for 

are not Since procedure is 

to one res e) mult:iple observations on the product 

rrrust led by comparing the characteristics of the 

product as a whole and st ble operating condi-
.. ... for discarded point. 



59 

FIGURE Illustration of a two variable simplex EVOP. 

Since this sequential procedure can move away from 

the ,,7orks process very quickly ~.rhe11 the response at: the 

\·7orks process is quite low compared to the optimum, a "unitn 

on each of the variables should be chosen quite small so as 

to reduce the risk of a bad production run,. This procedure 

not scale invariant:. A unit on each of the variables 

should be chosen in such a \•Yay that a unit: change is of equal 

interest: to the experimenter. 

To obtain the coordinates of the new experimental 

point the follmv-ing procedure is follmved: 
f 

Let: the ro\vs of D0 be de..'1ot:ed by the vector di' 

l~···,k+l .. The coordinates, a vector, of the new run if 

the lcrtvest: observation occurred at ~ is given by 

::::! 2(d'+~'+ +d 1 _,_..,• ••• +d 1 )--'!· ...;,. -1 g.,. • • • -• l"T"U • l+ U • k '- l.... -:1.+ -K+l -i 

In words, the coordinate of the ne't-7 point is twice t:he 
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average of the coordinates of the common points minus the 

coordinate of the rejected point. 

Once the design matrix has been obtained, the usual 

procedure would involve uncoding the design points and pro­

ceeding to new points in uncoded units. This can be easily 

accomplished in tabular form. 

3. Simplex EVOP Rules 

The Simplex EVOP procedure for a maximation is given 

by application of the following rules. For a minimization, 

replace "lowest" with "highest" throughout these rules. 

Rule 1. 

Y2' Y3' ••• , yk+l• 
I 

and running at ~ *. 

Ascertain the lowest reading yi of y1 , 

Complete a new simplex by excluding ~ 

Since the responses are subject to error, there is 

a chance that the system of simplices may become anchored to 

a spuriously high response. To reduce this possibility, 

Rule 2 is applied. 

Rule 2. If a result has occurred in k+l sue-

cessive simplices and not then eliminated by Rule 1, do not 

form a new simplex but discard this result and replace it by 

a new observation at that same point. Then apply Rule 1. 

The philosophy behind this rule is that if the point 

is at a true optimum the replication will also be high and 

the system of simplices will again be clustered about it. 
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If it were high due to error, the replication will probably 

not be so high and would be eliminated in due course. 

A spuriously low response will generally be eliminated 

quickly but may cause some oscillation from one simplex to 

a previous one. Hence some benefit can be obtained by 

applying: 

Rule 3. If yi is the lowest reading in the simplex 

S0 , and yi* is the lowest reading in the new simplex, s1 , do 

not move back to S0 • Instead reject the second lowest read• 

ing of s1• 

The application of these rules causes the system of 

simplices to circle continuously about the optimum rather 

than oscillate over a limited range. This is especially 

helpful if the optimum changes in time or changes as a 

function of raw materials since the system is always free 

to follow the optimum. Rule 3 makes progress possible if 

the system straddles a ridge in the variable space. 

The three rules given above may be summarized by the 

following: 

MOve by rejecting the lowest response unless (a) 

another response is too 11old11 , in which case we replicate 

the "old" response, or (b) such a move would cause us to re­

turn to the previous simplex, in which case we 'try the next 

favorable direction of movement. 

A new variable may be added at any time by simply 
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running one additional point and then proceeding as before. 

Deletion of a variable however, requires one to initiate ex• 

perimentation with a new design matrix. 

If there are contraints on the levels of the variables 

of the form a~SP, whenever this Simplex EVOP leads to a 

point that would violate the contraint, the second most 

favorable direction would be used. 

4. Discussion pf Simplex F.VOP 

Spendley, Hext, and Himsworth(33 ) showed by computer 

simulation that the rate of advance of Simplex EVOP is in­

versely proportional to the error deviation. Now a replica­

tion of n observations at a point reduces the error standard 

deviation·by a factor Jn and the rate of advance gains by a 

factor of Jn. However, on a per observation basis, the ex• 

pected gain is reduced by this factor Jn. Hence replication 

not only has no value but is positively detrimental. 

Spendley, et al, also evaluated the efficiency of the 

simplex procedure compared to a very simply defined evolu• 

tionary plane-climbing procedure. This procedure was one in 

which an observation at the current position is compared with 

one at a unit distance in some randomly chosen direction. 

If this new observation is higher, the system moves to this 

point. If the new observation is lower, the system is moved 

in the diametrically opposite direction. Since they were 
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able to theoretically evaluate this method of advance (see 

(33) for details) the efficiency of the simplex procedure (in 

terms of expected advance per observation) was compared to 

it. They found that the efficiency of Simplex EVOP in­

creased in a direct proportion as k, the number of variables, 

increased. 

Hence the best use of Simplex EVOP uses as many 

variables as possible with no replication. As such, Simplex 

EVOP seems to be a very good alternative to EVOP. The only 

disadvantage of Simplex EVOP compared to EVOP is that Sim­

plex EVOP requires quantitive process variables and EVOP 

does not. 

Simplex EVOP has been successfully utilized in in­

dustry in several different processes.(l5) 
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In an 1 situation the may 

a of thf~ leve experimental factors 

produce a near opt 1 response. In such cases se 

!'t¥0 1 res pons(~ prob is not ired the 

can p;'oceed to e Three for further ex-

ploration. Often, however, the experimenter is not so 

in having such detai orma tior1 about the re-

sponse system. must then utilize some search technique 

to levels the factors to provide·a near 

o l response., In this chapter several search techniques 

are d sad, s with the simplest case of only one 

experimental factor. 

l. 

In 1941, tell 
(25) cons the problem of find-

the optLuum response when a single factor is involved. 

His method consists of follm-1ing steps: 

(1) A study is made to indicate the general range on the 

tor in which the optimum most likely to lie. 

(2) A-'1 intermediate experiment is run to provide gross 

estirr~tes of the parameters of response equation 

••• .. 
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, 6 equa of x cou used 

a 5 po 1 estimated. usual de ... 

to find the 

(3) A f is run neighborhood of 

to 

assumes y can approximated by a quadratic 

Q 1. ,.., ( ) ' ,, ( )2 y = ~ 0 ~ ~l x-m T p 2 x-m 

m the value of x a.t maximum,. Hotelling shovJS 

hcn'll' to allocate the N to make any cubic bias zero 

quartic bias a minimum. 

2. 

recently Wolfov-:ritz <29 ) have provided 

a method of finding optimum (maximum for this discussion). 

Let y(x.) the sion function of res as a 

function of x. l< ... W technique involves the determinatio11. 

of e slope of the function of y(x) by a very 

lized method. The derivative is calculated 

observing the response at tv1o points a distance c on 
n 

either side of x as n 

See figure 4 ... 1 for an illustration of this method. 
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X •C X X +c X n n n n n 
FIGURE 4-l· Kiefer-Wolfowitz estimation of average slope. 

The center of the next pair of trials is centered 

around xn+l where 

y(xn+cn) - y(xn-cn) 

2cn 

where an is one of a sequence of positive numbers wh1ch de• 

termine the step size, and 2cn is the distance between the 

last pair of trials. An example of the sequences {an} and 

{en\ are: 
l 

an = n 

c = n·l/3 
n 

In general, the sequences {an l and fen~ must have the 

following properties: 

i. lim a = 0 
n-+oo n 

ii. lim en = 0 
n-+oo 

00 

iii. i: an = 00 

n=l 
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00 2 
• "'~ <oo l.V. L.o 

n=l Cn 

Properties i and ii are necessary to assure one that 

the process will converge. Property iii gives sufficient 

steps so that one will always straddle the peak. Property 

iv is used to cancel out the ctimulative error effect. With 

some very mild restrictions on y(x), this sequence of trials 

will converge to m with probability one. The proof of this 

is given in Kiefer and Wolfowitz< 29 ) and will not be shown 

here. 

Because of the method of estimating the average slope, 

the K-W procedure can sometimes be slow in convergence. Con­

sider Figw:-e 4-2, for example, in which the steps in approach­

ing m from the left would be large. However when m was 

novershot 11 on the right, the steps would be very slow in 

converging back to m. Thus the K-W technique would spend 

most of its time trying to climb the low slope on the right. 

y(x) 

m X 

FIGURE 4-2~ Example of a curve for which the K-W procedure 
is slow to converge. 



68 

Kesten<27 ) modified the K•W procedure to converge 

more swiftly in cases such as illustrated in Figure 4-2. 

Kesten's procedure shortens the step size only when a change 

in sign of the average slope is found. This procedure con­

verges with probability 1 with the additional restrictions 

of an+l<an for n=l,2,•••,and for en a constant. 

To illustrate these procedures, let an be the har­

monic series 1, 1/2, 1/3, •••, 1/n,••• • The following 

table provides the step sizes for both procedures for a hy­

pothetical search. 

Note that after·8 pairs of trials, the K-W procedure 

has a step size reduced to 1/8 and may still be fairly far 

from m. The Kesten procedure has a step size of only 1/5 

and will move back to m much quicker. 

Table 4-3. Comparison of Kiefer•Wolfowitz and Kesten's 
convergence procedures. 

Trial 1 2 3 4 5 6 7 8 To. ta 1 mo._vemen t 

Sign of An + + + - - + - + 

I<•W 1 1 1 ..;1 .1 1 .l l l ill 
2 3 4 5 6 7 8 280 

I<esten 1 1 1 .l .l l .l l 212 
2 2 3 4 5 60 

One large drawback to both of these procedures is 

that there is no stopping rule for convergence on m. Kiefer 
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(6) If the changes in the second cycle of this procedure 

showed a significant improvement, it would be advisable to 

proceed along the path defined by the two sets of local 

optima. 

As one gets closer to the optimal response, Friedman 

and Savage suggest that the levels of the factors be made 

closer in order to better map the region of optimal response. 

An illustration of this procedure is given in Figure 

4r4 for two variables. Point P1 is the original factor com­

binatio-n and x2 is investigated first. P3 is the factor 

x2 

xl 
FIGURE 4-4 Illustration of Friedman and Savage Sequential 

One-Factor at a Time Procedure. 

combination found by the end of the first round. The point 

P5 is the optimal factor combination after the second round. 

Application of step (6) would lead the investigation along 

the path from P3 to P5 and obtain the optimal response in 

this manner if the points P3 and P5 were, in fact, located 

with sufficient accuracy. 
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procedure \vi thin the 1 frarneworl{ response sur-

face methodology,. Another tenn for this procedure 

method of s t ascent assumes 

s surface some small subregion of the -v,rh.ole experi-

mental s can be adequa:tely represented by a hyperplane 

in k factors. From a point P on this hyperplane vle vvil1 
0 

proceed a distance B to a point P"' • 
.1. 

will be located 

such a marwer so as to maximize the response on this hyper-

plane. 

Let the response be estimated by· the tion 

1· ;:.. 

) = b + r: b. x .• 
0 1 l. l. 
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Let the noint P • 0 cons the origin of k-dimensional 

space. At point: ' R is given by 

i 

wish to maxL-nize y subject to the restriction of (4 .. 1), 

Using a Lagrangian multipler ~A, 

k 
E 

partials of q; respect to xi and equating to zero 

oq:~ 
-::::: b.-A.x. - 0 
0 l.. l. 

i::::: 1, 2, ••• , k. 

Hence 

l.. = l, 2, ••• , k. (4.2) 

TI~us, P1 is located along the path on which coordinates 

are directly proportional to the first derivatives of the 

estimated plane. 

The experimenter substitutes various values of A. into 

equations (li-. 2) and tries experimentally either to obtain a 

max~~~ response on tr~t line or he will experiment a 

that line as far as he believes in the ass~~ption of a local 

planar relationship for y. At that point he again will per-

form an experiment to estimate the response plane and will 

determine the new steepest: ascent path. This procedure 11 

be continued until the investigator feels he is 11near 11 the 
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optimum response. At that point, he should perform an ex­

periment to estimate a higher order (at least 2) response 

curve, perform a canonical analysis, draw·contours, etc. for 

a more informative insight into the response relationship. 

Figure 4-5 illustrates the steepest ascent method. 

The path of steepest ascent is perpendicular to the assumed 

local parallel contour lines. 

xl 
FIGURE 4-5. Illustration of Steepest Ascent Method. 

2. (roperties of the Method of Steepest Ascent 

This procedure is not scale-invariant. Only after 

the relative scales for x1, x2 , •••, xk have been predeter­

mined does the concept of "distance" have any meaning. To 

illustrate, consider the following example due to Buehler, 

Shah and Kempthorne.(9) 

Suppose y(x1 ,x2 ) is a function that depends on 

variables x1 and x2 according to 

y(x1 ,~) = 190-(x1-c1)2-(x2-c2)2. (4.3) 
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Now y has a maximum of 190 at (o1,o2 ). If one makes 

measurements without error in the tmmediate neighborhood of 

P0 = (x1,x2 ) = (01-9,02-l), y will be found to be: 

at P • . 0 

2 2 y = 190 - (01-9-01) - 9(02-l-02) = 100 

The linear approximation equation would be estimated by 

Now 

l~J = -2(x1-o1) = 18 

Po xl = o1-9 

and 

(~2) = -l8("2-c2 >I = 18 

Po x2 = 02-1 

hence 

~= 18(x1-o1+9) + 18(x2-o2+t) + 100. (4.4) 

Equation (4.4) is the approximating plane the experimenter 

would estimate in the neighborhood of P0 = (01-9,02-1). 

The method of steepest ascent would regard (01-9, 

02-1) as the new origin and would call for experimentation 

along the path whose coordinates were directly proportional 

to the first order coefficients. In this case the path would 

be the line: 



or 

J:"'o:r 

+ 9 -

" a pressure 

1 to 10 

(4.3) now becomes 

.5) 

of measurement; see 

of one unit 

, let a unit: of 

'-cf)2 -,...o l ... 9V • ... c' 
2 

ic relation-

; ~ = c, and 10c2 == c2• The point P0 = (c1-9,c2-l) 

becomes P~ = (C~-9/S,ci-1/10). 

as before. 

and 

..... '!::l v response a ...... 0 

y = 190 - (-9/5)2 - 900(-1/10)2 = 100 

The partials of y e\'~'aluat:ed at P 11 are 
0 

-50(~{~ ... c') 11· - 90 
1 1 

l "" ~ = c v ... 9/5 
~~1 1 

c ... l/10 
2 

= 180. 
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The approximating plane at (C~·9/5,C~-l/10) is 

9' = 90[x~ - (c~-9/5)] + 180[x~-(c~-l/10~ + 100 • 

The path of steepest ascent is now given by 

' (C~-9/5) ' cc;-1/lO) xl - x2 -
90 = 180 • (4.6) 

Substituting ' x1/5, ' = x2/l0, c' = c1/5, xl = x2 1 
c' 

2 = c2110 into (4.6), this expression is reduced to 

(4.7) 

which differs from the first path (4.5) by the coefficient 

~. Thus, by just changing the scale of the factors a con­

siderably different path was determined. For this reason 

the choice of scale is very important. 

Several writers (6' 16) suggest the follo~>Ting rule for 

choice of scales: the best units are those for which a unit 

change in one factor at the ontimum gives the same change 

in response as a unit change in any other factor at the 

optimum. The effect of such an advantageous choice of scale 

is to make the response contours circles. From any point 

in the factor space, the gradient direction will then pass 

through the optL~~. 

Unfortunately one does not usually know what choice 

of units to use to obtain circular contours. Often some 
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he should utilize other designs to explore this region.(4) 

3. Example of the Method of Steepest Ascent 

To illustrate the method of steepest ascent consider 

the following example from Box and Wilson(6 ). 

An investigation of a chemical process was made to 

maximize the yield of D for a given amount of material A in 

the chemical reaction of the type 

A+B+C -+ D+other products 

This reaction utilized a solvent E. The yield presently ob­

tainable was about 45% and the experimental error was of the 

order of 1%. Five factors were studied in a % fractional 

replication of a 25 design. The factors and their coded 

levels (-l and +l) are as follows: 

-l +l (Units) 

xl amount of solvent E 200 250 c.c. 

x2 proportion of C to A 4.0 4.5 mol./mol. 

x3 concentration of c 90 93 % 

x4 time of r~action l 2 hours 

x5 proportion of B to A 3.0 3.5 mol./mol. 

The analysis of the data provided the following esti­

mating plane: 

The coordinates of the path are proportional to the 
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Table 4-6. Path of Steepest Ascent. 

xl x2 x3 x4 x5 
origin 225 4 25 91.5 1 5 3 25 

Ax. 10 -0.028 0.456 0.011 0.005 
l. 

Path 235 4.22 92.0 1.51 3.25 
245 4.19 92.4 1.52 3.26 
255 4.17 92.9 1.53 3.26 
265 4.14 93.3 1.54 3.27 

Y=80.0% 275 l~.ll 93.8 1.56 3.27 
285 4.08 94.2 1.57 3.28 

P.=79.4% 295 4.06 94.7 1.57 3.28 
305 4.03 95.1 1.60 3.29 

Additional experiments were performed at x1=275cc and 

x1=295cc with yields of 80.0% and 79.4%. Since this was near 

the expected optimum the investigator decided to run another 

experiment in the neighborhood of the point whose x1 coordi~ 

nate was 295cc. 

Since the coefficients of x4 and x5 were small compared 

to their errors (error for all coefficients was ±0.4) the 

path coordinates for x4 and x5 were not used and the unit for 

these factors was also increased. The unit change was de-

creased for x1 , x2 , and x3 since the investigator felt he 

might be in a region where the response function has some 

large curvature. The next experiment was run at the follow­

ing levels: 
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P~ndom Evolutionary Operation is a procedure that uses 

the Random Bale..nce experimental methods developed by Sat'cer­

thvlaite<32). The discussion that follo't.;s is from Lov7e(30) 

in \vhich he references a personal corru'1lunication from 

Satterth'\\7aite for this development. 

REVOP claims to be an effective method of optimization' 

when the nu.."nber of variables is large and v:rhen t.h.e functional 

relationships among the variables is not knovm and antici-

pated to be complex. lZSVOP is essentially a non-parametric 

method as it uses the results on a ranking scale. The nu.r'nber 

of experiments required to find a set of optimum values 

appears to be independent of the number of variables and of 

the comple~dty of the functional relationship. 

P.J~VOP involves random choices of the levels of the 

variables under consider.:;_tion. As such the data are un-

balanced and are some\·7hat inefficient for evaluation of an 

assumed functional relationship. REVOP requires a startiP~ 

point .. the \>70rks process, a measurable response, measurable 

variables for study and a feed-back procedure for process 

opti:niza ti on. 

The REVO? procedure is as follm·:rs: 

(1) A list is made of all variables acting on the re-

sponse and the allowable range for each variable is set. 
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Table 4-7. Example of a REVOP worksheet for a maxim~zation. 

x I x. x, )C,. :x:. 5 x"J...3:1.! ~:r J- :lCo :x: ~ 
£_o_r-S· or ~~-s~f-s~_l _ .r.__o_ J· o_~~L.:t:.~l-s.o so 14 ·2. 

~--~-r-r....:<..:Jl-t-'4. __ _ct _t __ .s:_~t__t::-:5 _ ___!t_1_'L __ ,L_ q 

~ ~ d) [w.o !:._O..:.,~t_~:._-_o_ .'!.~~~[;:;:-fo.:J:>].=..o-Jt -=.L.:.&.t-=-o..:.k_~~O-I---1 
E : E. •.l:> '_,uf-~~~- ,_5.:_Q_._j>..:.~'_J_-r -~:~ _!l.:j,_ -~ '·.i--!t.J'_'_,J.:.g_k-6-tl 
Ea. -. E, •l> S·'fi I· 0 :S·O 3·1' ~·h 6·2. 4-·:1. f·T _.:t!_ 1•0 •/tt'O 

t-----.-~ci.;::.,-z.."-+-~__o._'-+-'L s ~o. s L s o ,._ :-, 
..1>.~.. :d..~L•2: -o.o +:..·• -;._., -1·3 -~·t.!l.i -:.:1 -o-o ... ,-:~ •o·'l 
E-.. -: £.. + .!11. _:):._1. S·l 2.:~ 3·1 . l·'t '1·'1 .2:~ 3·1,. 5·'1 3·'1 3J·i' 

A -. E ... • .1:11. 5·~>- "1·"- -~-l.:'f.. -o·lt- _q.or O_'lt_ J·z.. '1·0 4-•h-

£ ~ S:Jt_ li[_u-_ _L"ii' O·lt 'l;_'r _()·4 _3·4 "t·O ~.:!':. ~-

A~' A .. .b r;'·'+ <J·l -1·3 9~t-=-U ..Jt·'1 -1·_'1 3·t.. '6·-' 5·1 [ ___ -1 
Es = !J.,._ q.:!, 1·3 o·S 2:5 _lf·q /·'I 3·~> 1·3 S·l ! 31·3 

.!..1 .l r.. 'S" '1 I b o 3 5 o 
..]) :d..< I:Jo -O•o +O·S ... 2..·1 +l·'i +O•O -j·~ •O·O .. 0·3 •0·,.-•--.::0_::·0'+----4 i--==-...:....; ......... .:!c"'--+=-=-t-'-"-"---'--"'-'-t-'...1....:-t-..;:_;:1-'-h...l-'~--=--= t-·-·-

R ... A .. ·~ S·lf. '1·'1 l:'l 3·-"-~ltr-!:" O•lf. .. 3·'1 "t·'f' ~-~~-
E~ .. S·lo- "f . ., t,.q ?.· t. 0·1. 1:·{, O.:_lt_ _l'f 'f.'( t.-·11- 30·'6 

A..• fl.,- J>~ 5 If. {,·'f -I·?. 0•0 O·lt_ Jl· 0 _j)·llo ~·I lr2. !.•II-

£'! ~ S·~+ 6·'1 1·3 o-o o.~~o ll·o o-4- 3·1 l.·Z. r..-~ 31'·0 
ci..._ .3 ~ q "1 (. '7 ft. q S I 

E-.- , 5:__2,._ 'b·'f Z.·1 O·b I• 3 'i>· t. 0· o 5•4- [,.',. ~-11- 2.l·S 
--::---11·~ R .. -:o.. S·l.t 5·£ -r·2. 3-o o-s 11-o o-i , . ., "f.(, J+-·~t 

~~ : . S·lo S·b 1·2. 3·0 0·5 IJ·O O·'f 1·1> '1·1. 1!-·11- 3'·'f 
d.r; q "1 ~ I 2. (, I "1 I - -. 

R,.: fl .. •:l>r _.3~4- t,.o o·l> l·'f -o·s 'H o·&~- U.·h '1·0 6·0 
£;. ' 3·.. (,·0 O·b I·> O·S Cl-J O·lr ~ .[, 'r·O b·O 5S·I 
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En ' I· it- 11-•'f O·IJ. 1·'1" O•ft._ Y·t. 0·11- S·'l '1·0 '1-b _']I·(, 

A, .. fl .. •~& -o·t.. 3·b o·a ,.,. o.:o. -"~-~ o·" '1-o "f·o q.~ 
E'12. -:: O·h 3·" O·l l·f 0·~ '1·3 0•11- '1·0 .,.o <i·l "l'f·tS 
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After this cycle of 5 runs is completed, the coded design 

matrix is multiplied by the factor of J2 and then the de­

sign matrix is rotated through an angle of 45°. This defines 

the new treatment levels. Experimentation at the four ~ 

treatment levels and the center point are then run for the 

second cycle. For the next cycle and each succeeding cycle 

of 5 runs, the previous cycle's coded (0 and +l's) design 

matrix is multiplied by J2 and then rotated through an angle 

of 45°. Figure 4-8 below illustrates this procedure for 

two variables. 

Cycle 1 Cycle 2 Cycle 3 

D 
·FIGURE 4-8. 

xl xl xl 
Illustration of first 3 cycles of ROVOP. 

After each cycle (beyond the first) the response is 

analysed by multiple regression techniques for the second 

order model. The mean squares due to the regression is 

calculated and compared to the residual mean squares. tthen 

the regression is significant at some predetermined signifi-

cance level, the response surface can no longer be considered 

to be constant over the experimental region. In such a case 
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the decision is made to move experimentation in the direc­

tion of optimization. 

The stationary point of the quadratic system, ~' 

would be found by solving the equations of first-order 

partial derivatives set equal to zero; see equation {1.5). 

A new phase of experimentation would be initiated by moving 

in the direction of optimum response. MOvement is not made 

by going to the center of the quadratic system. Instead 

ROVOP movement is made conservatively by requiring that the 

new phase original design matrix have at least 2 of its de­

sign points on or within the experimental region of the 

cycles of the just completed phase. The range of the 

variables should be reduced by,at least a factor of ~2 over 

the last cycle of the previous phase. {This would not be 

necessary for var~ables which were not significant.) The 

design matrix for this next phase would be recoded to the 

O, ±l notation and the analysis would also start over again. 

Examples of movement are shown in Figure 4-9. 

x2 
;-;•,:--' Phase II . J(--m. . nesign <• )1. · ,~ , Points 
: :: I~ ... -~-- ... 

xl xl 
FIGURE 4-9. Examples of design center movement in two 

variable ROVOP. 
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This method of optimization would gradually approach 

and straddle the optimum. At this point, the stationary 

point of the fitted response system would be located well 

within the experimental region and other designs should be 

used to further explore the region. Continuation of ROVOP 

beyond this point will provide adjustment for long-term 

change only, such as raw material changes, and may not be 

worthwhile. 

For a k variable ROVOP, the basic design is a 2k 

plus center point design and the same procedure is followed 

as in the two variable (k=2) case. For k=3, successive 

cycles are expanding cubes. 

Since the analysis of RQVOP data is not straight­

forward, a computer would usually be required for fast feed• 

.back to production personnel. Response contours could also 

be plotted by the computer for better understanding of the 

estimated response surface. 

If several phases of ROVOP were required before 

optimum conditions were reached, a wide area of the variables 

would have been explored and an overall response surface 

could be fitted to all of the data. However, care must be 

used in so doing as the second-order model may not be too 

good an approximation to the true underlying functional re­

lationship if the area explored is too wide. In addition, 

if the process in not stable in time, older data may no 
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longer represent the current response surface and so older 

data may have to be deleted. 

In s~~ry, the advantages of ROVOP are: 

(1) Too small an initial range of the variables is not 

critical. 

(2) The rotating pattern of experimentation provides 

estimation of quadratic terms very quickly. 

(3) Procedure provides a good exploration of the ex­

perimental region. 

There are several disadvantages of ROVOP. They are: 

(1) Analysis of data requires a computer. 

(2) Only quantitive variables can be used. 

(3) For more than three var~ables, the designs require 

many points (2k+l) for each cycle before a new analysis is 

made. 

(4) ROVOP is not a technique for use on a permanent 

basis. 

This last disadvantage is of such importance that it 
-perhaps should not be included as an evolutionary operation 

technique. However ROVOP certainly has its use in experi­

mental situations or in some EVOP situations where too much 

conservative action is evident on the EVOP committee with 

regard to range of the variables under study. However, as 

an EVOP technique it perhaps changes the levels of the factors 

too drastically for a production process. 
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F. COMPARISON OF SOH!?: OPTIMIZATION TECHN'IOUES 

l. Introduction 

Brooks(7), in his doctoral dissertation, compared 

several of these optimization techniques for the case of tv:ro 

variables (k=2). He used four types of response surfaces 

each of which had an expected maxim~m yield of 1.0 at the 

point (1.0, l.O). Three contours, 0.25, 0.50, and 0.75, of 

these four response surfaces, are shown in Figure 4-10. 

On Surface 1, as one can see, the ~vo factors are in­

dependent. Surface 2 is Surface l rotated through an angle 

of about 37 degrees. Surface 3 contains a sharp ridge and 

l1.as large areas of lo~-1 flat res.ponse. Surface 4 contains a 

curvilinear ridge. 

For each response surface, the entire experimental 

region of the 2 unit square was divided up into nine over .... · 

lapping subregions. Each of these subregions was a Ul1it 

square (lxl) and was located independently and randomly within 

the 2x2 square in a stratified pattern. 

Experimentation was conducted in each subregion with 

N=l6 and N=30. The experimental error was assumed to be 

normally distributed loTith a mean of zero and a standard de­

viation of 0.03. 

The measure of effectiveness used to compare the 

maximum seeking methods v1as the average maximum response 
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FIGURE 4-10. Response surfaces used in comparison study. 
Contours are 0.25, 0.50, and 0.75 responses. 
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observed in the nine subregions for each response surface. 

Brookes considered the followins methods of maximation: 

factorial experiments, sequential-one-factor at a time pro-

cedure, method of steepest ascent, and a random method. 

Spendly, Hext, and Himswor.th <33 ) extended this procedure to 

the simplex design method of optimization. 

2. Factor;al Exneriments 

For the case of N=16, a 4x4 factorial design was used. 

~~en N=30, both a 5x6 and a 6x5 design were used to compare 

the effect of orientation of the design. The results are 

given in the following table. 

Table 4-11. Achievement averages for factorial experiments. 

Response I Factorial Desi~n 
Surface l~x4 5x6 6x5 

1 0.9355 0.9706 0.9585 
2 0.9705 0.9810 0.9705 
3 0.9196 o. 9542 0.9191 
4 0.9691 0.9727 0.9705 

Average 0.9487 0.9696 0.9547 

A local quadratic surface ,,Tas also fitted by using 

9 responses in the neighborhood of the highest observed re-

sponse. For N=16, this average estimated maximum ':.Jas O. 9541. 

For N=30, this maximum was 0.9602. 
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