CRYSTALLOGRAPHIC COMMUNICATIONS

ISSN 2056-9890

Received 21 February 2015
Accepted 10 March 2015

Edited by S. Parkin, University of Kentucky, USA

Keywords: crystal structure; iridium; cyclooctadiene; acetonitrile

CCDC reference: 1053035
Supporting information: this article has supporting information at journals.iucr.org/e

Serendipitous preparation of fac-(acetonitrile$\kappa N)$ trichlorido[(1,2,5,6- η)-cycloocta-1,5-diene]iridium(III)

David M. Morris and Joseph S. Merola*

Department of Chemistry, Virginia Tech, Blacksburg, VA 24061, USA. *Correspondence e-mail: jmerola@vt.edu

A reaction between $\left[(\mathrm{COD}) \mathrm{IrCl}_{2}\right.$ (COD is cycloocta-1,5-diene), HCl and indene failed to provide the hoped for chloridoindenyliridium dimer, but instead produced the title compound, $\left[\mathrm{IrCl}_{3}\left(\mathrm{CH}_{3} \mathrm{CN}\right)\left(\mathrm{C}_{8} \mathrm{H}_{12}\right)\right]$, which is an octahedral complex of iridium(III) with a chelating cycloocta-1,5-diene ligand, three chloride ligands in a fac arrangement, and one acetonitrile ligand. Attempts to devise a rational synthesis for the title compound were unsuccessful.

1. Chemical context

We have published recently on the synthesis of a series of tetramethylalkylcyclopentadienyliridium complexes by the direct reaction between tetramethylalkylcyclopentadiene and iridium chloride, giving the $\left[\mathrm{Cp}{ }^{* R} \mathrm{IrCl}_{2}\right]_{2}$ dimer (Morris et al., 2014). From the dimer, a variety of other compounds can be made, such as amino acid complexes, that have shown significant anti-mycobacterial activity (Karpin et al., 2013). Some of the reactions produced low yields of the chlorido-bridged dimer, thus limiting the number of products that could be made and tested.

An alternate route to Cp *-type chlorido iridium dimers was reported using $[(\mathrm{COD}) \mathrm{IrCl}]_{2}$ as the starting material (El Amouri et al., 1994) and, in our hands, this route does have promise for providing higher yields for many of the compounds. However, in the case of indene, there was no indication that an indenyl iridium complex had been prepared. Instead, a yellow-brown intractable solid was formed. Several attempts to dissolve the solid and to separate products through fractional crystallization all failed. During the course of this work-up, one of the solvents used was acetonitrile. At some point, the product mixture was allowed to stand in solution, and after about 24 hours several very nicely shaped

Figure 1
The asymmetric unit of the title compound. Displacement ellipsoids are shown at the 50% probability level.
rectangular prisms had formed in the sample. These crystals were examined by X-ray crystallography and the results of that structure determination are reported here.

2. Structural commentary

While the total number of cycloocta-1,5-diene complexes structurally characterized is quite large, the number that are directly comparable to the title compound is small. The title compound is a pseudo-octahedral complex of iridium with three chloride ligands occupying one face of the octahedron and the alkenes of the COD and the acetonitrile ligand occupying the opposite face (Fig. 1). Considering the varying ligands about the central iridium, there is very little distortion from ideal octahedral angles, with the most significant distortion being the $\mathrm{N} 1-\mathrm{Ir} 1-\mathrm{Cl} 2$ distorted away from the COD group with an angle of $164.05(11)^{\circ}$. All other angles, including those involving the alkene centroids, deviate by no more than 5° from the ideal. All three $\mathrm{Ir}-\mathrm{Cl}$ bond lengths are similar [range 2.3603 (11) to 2.3670 (11) A], which is in keeping with both types of trans ligands, alkene and acetonitrile, being expected to be strong trans-influence ligands and would have a similar magnitude of effect on the chloride trans to either ligand.

The facial $\mathrm{Ir}-\mathrm{Cl}$ distances may be contrasted with the average distance of 2.441 (2) \AA for $f a c-\left[\left(\mathrm{Me}_{3} \mathrm{P}\right)_{3} \mathrm{IrCl}_{3}\right](\mathrm{CCDC}$: 896073) and related compounds (Merola et al., 2013) that have somewhat longer $\mathrm{Ir}-\mathrm{Cl}$ distances due to the effect of the trans PMe_{3} groups.

Choudhury et al. (2005) reported on a COD complex of iridium with three chlorides and a SnCl_{3} ligand completing the octahedral coordination about the central Ir atom (CCDC: 273475). In that case, though, the compound is a dinuclear one with $\mathrm{Ir}-\mathrm{Cl}-\mathrm{Ir}$ bridges. So, there are long $\mathrm{Ir}-\mathrm{Cl}$ bonds (those involved in bridging) of 2.544 (4) \AA and a shorter terminal $\mathrm{Ir}-\mathrm{Cl}$ bond of 2.385 (6) \AA. $\mathrm{C}=\mathrm{C}$ bond lengths for the COD

Table 1
Experimental details.
Crystal data
Chemical formula
M_{r}
Crystal system, space group
Temperature (K)
$a, b, c(\AA)$
$V\left(\AA^{3}\right)$
Z
Radiation type
$\mu\left(\mathrm{mm}^{-1}\right)$
Crystal size (mm)
Data collection
Diffractometer
Absorption correction
$T_{\text {min }}, T_{\text {max }}$
No. of measured, independent and observed $[I>2 \sigma(I)]$ reflections
$R_{\text {int }}$
$\begin{array}{ll}R_{\text {int }} \\ (\sin \theta / \lambda)_{\text {max }}\left(\AA^{-1}\right) & 0.040 \\ 0.755\end{array}$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$
No. of reflections
No. of parameters
H -atom treatment
$\Delta \rho_{\text {max }}, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA^{-3}\right)$
Absolute structure
$0.019,0.038,1.08$

137
H -atom parameters constrained
1.07, -0.74

Flack x determined using 1715 quotients $\left[\left(I^{+}\right)-\left(I^{-}\right)\right] /\left[\left(I^{+}\right)+\left(I^{-}\right)\right]$
(Parsons et al., 2013)
-0.011 (4)

```
[ [rCl}(\mp@subsup{\textrm{C}}{2}{}\mp@subsup{\textrm{H}}{3}{}\textrm{N})(\mp@subsup{\textrm{C}}{8}{}\mp@subsup{\textrm{H}}{12}{})
447.78
Orthorhombic, P2 2 2 2 21
100
8.25131 (10), 11.85605 (14),
    12.94150 (15)
1266.04 (3)
4
Mo K\alpha
11.15
0.22\times0.15 \times 0.11
\(\left[\operatorname{IrCl}_{3}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{~N}\right)\left(\mathrm{C}_{8} \mathrm{H}_{12}\right)\right]\)
447.78
Orthorhombic, \(P 2_{1} 2_{1} 2_{1}\)
100
8.25131 (10), 11.85605 (14),
12.94150 (15)
1266.04 (3)
4
11.15
\(0.22 \times 0.15 \times 0.11\)
```

Agilent Xcalibur Eos Gemini ultra Analytical (SCALE3 ABSPACK;
Clark \& Reid, 1995)
0.204, 0.396
27207, 4333, 4173
0.040
0.755
$0.019,0.038,1.08$
4333
.755

Clark \& Reid, 1995)
0.204, 0.396

27207, 4333, 4173
$0.019,0.038,1.08$
4333
137
H-atom parameters constrained
$1.07,-0.74$
Flack x determined using 1715
\quad quotients $\left[\left(I^{+}\right)-\left(I^{-}\right)\right] /\left[\left(I^{+}\right)+\left(I^{-}\right)\right]$
\quad (Parsons et al., 2013)
-0.011 (4)

Absolute structure parameter

Computer programs: CrysAlis PRO (Agilent, 2014), SHELXS97 and SHELXL97 (Sheldrick, 2008) and OLEX2 (Dolomanov et al., 2009).
ring are similar to the title compound at 1.38 (1) and 1.41 (2) \AA.

3. Supramolecular features

Although there appear to be some close $\mathrm{C}-\mathrm{H} \cdots \mathrm{Cl}$ intermolecular interactions, there are no important supramolecular features to speak of in this structure.

4. Database survey

A substructure search of the CCDC (Groom \& Allen, 2014) for the 1,5 -COD-Ir fragment resulted in over 850 hits. This is not a surprising result since $[\mathrm{CODIrCl}]_{2}$ is a convenient, highyield organometallic starting material made in one step from $\mathrm{IrCl}_{3} \cdot \mathrm{H}_{2} \mathrm{O}$ and cycloocta-1,5-diene (Crabtree \& Morris, 1977). From $[\mathrm{CODIrCl}]_{2}$, a wide variety of ligand addition, chloride replacement or bridge-splitting reactions can be carried out, leading to a wide variety of compounds containing the COD chelate. Using Mercury (Macrae et al., 2008), an analysis of the COD-Ir search of the database for structures with an octahedral coordination around the metal showed that the $\mathrm{C}=\mathrm{C}$ bonds of the COD ligands ranged from 1.184 to $1.508 \AA$ with a mean of $1.394 \AA$. For the title compound, the values of 1.392 (7) and 1.389 (6) A are pretty much right at the mean for COD $\mathrm{C}=\mathrm{C}$ bonds.

An analysis of the CCDC database (Groom \& Allen, 2014) for octahedral iridium complexes with acetonitrile ligands uncovered 99 hits with $\mathrm{Ir}-\mathrm{N}$ distances measuring from a minimum of $1.897 \AA$ to a maximum of $2.246 \AA$ with a mean of $2.068 \AA$. For the title compound, the $\operatorname{Ir}-\mathrm{N}$ distance of 2.023 (4) A places it just below the mean.

5. Synthesis and crystallization

The title complex was formed as a few isolated crystals from an attempted reaction between $[(\mathrm{COD}) \mathrm{IrCl}]_{2}$ and indene with HCl in an attempt to synthesize the $\left.[\text { indeny } 1 \mathrm{IrCl}]_{2}\right]_{2}$ dimer, which would have been a useful starting material for our studies. Unfortunately, this did not provide the desired product. The reaction produced some very intractable solids. After multiple attempts to dissolve the solid in many different solvents, including acetonitrile, some well-shaped prisms formed on the side of the flask and these crystals were used in this investigation and were shown to be that of the title complex. Attempts to make this material in a rational fashion were not successful.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1. H atoms were positioned geometrically and refined as riding with $\mathrm{C}-\mathrm{H}=0.96-0.98 \AA$, and with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$ or $1.5 U_{\text {eq }}\left(\mathrm{C}_{\text {methyl }}\right)$.

Acknowledgements

The open-access fee was provided by the Virginia Tech Open Access Subvention Fund.

References

Agilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, England.
Choudhury, J., Podder, S. \& Roy, S. (2005). J. Am. Chem. Soc. 127, 6162-6163.
Clark, R. C. \& Reid, J. S. (1995). Acta Cryst. A51, 887-897.
Crabtree, R. H. \& Morris, G. E. (1977). J. Organomet. Chem. 135, 395-403.
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. \& Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.
El Amouri, H., Gruselle, M. \& Jaouén, G. (1994). Synth. React. Inorg. Met.-Org. Chem. 24, 395-400.
Groom, C. R. \& Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662671.

Karpin, G., Merola, J. S. \& Falkinham, J. O. (2013). Antimicrob. Agents Chemother. 57, 3434-3436.
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. \& Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.
Merola, J. S., Franks, M. A. \& Frazier, J. F. (2013). Polyhedron, 54, 6773.

Morris, D. M., McGeagh, M., De Peña, D. \& Merola, J. S. (2014). Polyhedron, 84, 120-135.
Parsons, S., Flack, H. D. \& Wagner, T. (2013). Acta Cryst. B69, 249259.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Serendipitous preparation of fac-(acetonitrile- $\kappa \boldsymbol{N}$)trichlorido[(1,2,5,6- $\boldsymbol{\eta}$)-cyclo-octa-1,5-diene]iridium(III)

David M. Morris and Joseph S. Merola

Computing details

Data collection: CrysAlis PRO (Agilent, 2014); cell refinement: CrysAlis PRO (Agilent, 2014); data reduction: CrysAlis PRO (Agilent, 2014); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

fac-(Acetonitrile- κN)trichlorido[(1,2,5,6- $\boldsymbol{\eta})$-cycloocta-1,5-diene]iridium(III)

Crystal data

$\left[\mathrm{IrCl}_{3}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{~N}\right)\left(\mathrm{C}_{8} \mathrm{H}_{12}\right)\right]$
$M_{r}=447.78$
Orthorhombic, $P 2_{1} 2_{1} 2_{1}$
$a=8.25131$ (10) \AA
$b=11.85605$ (14) \AA
$c=12.94150(15) \AA$
$V=1266.04(3) \AA^{3}$
$Z=4$
$F(000)=840$

Data collection

Agilent Xcalibur Eos Gemini ultra diffractometer
Radiation source: Enhance (Mo) X-ray Source, Agilent Gemini System
Graphite monochromator
Detector resolution: 16.0122 pixels mm^{-1}
ω scans
Absorption correction: analytical
(SCALE3 ABSPACK; Clark \& Reid, 1995)

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.019$
$w R\left(F^{2}\right)=0.038$
$S=1.08$
4333 reflections
137 parameters
0 restraints
Primary atom site location: structure-invariant direct methods
$D_{\mathrm{x}}=2.349 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 12030 reflections
$\theta=4.0-32.2^{\circ}$
$\mu=11.15 \mathrm{~mm}^{-1}$
$T=100 \mathrm{~K}$
Prism, clear light orange
$0.22 \times 0.15 \times 0.11 \mathrm{~mm}$
$T_{\text {min }}=0.204, T_{\text {max }}=0.396$
27207 measured reflections
4333 independent reflections
4173 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.040$
$\theta_{\text {max }}=32.4^{\circ}, \theta_{\text {min }}=3.4^{\circ}$
$h=-11 \rightarrow 12$
$k=-17 \rightarrow 17$
$l=-19 \rightarrow 19$

Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+(0.0124 P)^{2}+1.2315 P\right]$ where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.002$
$\Delta \rho_{\max }=1.07 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.74 \mathrm{e} \AA^{-3}$

Absolute structure: Flack x determined using 1715 quotients $\left[\left(I^{+}\right)-\left(I^{\prime}\right)\right] /\left[\left(I^{+}\right)+\left(I^{\prime}\right)\right]$ (Parsons et al., 2013)
Absolute structure parameter: -0.011 (4)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
Ir1	0.70199 (2)	0.47821 (2)	0.68347 (2)	0.01178 (4)
Cl 1	0.68059 (17)	0.64680 (9)	0.78048 (9)	0.0238 (2)
Cl 2	0.85370 (14)	0.58778 (9)	0.56587 (9)	0.0202 (2)
Cl 3	0.47576 (13)	0.52459 (13)	0.57940 (9)	0.0275 (2)
N1	0.5308 (5)	0.4220 (3)	0.7828 (3)	0.0153 (7)
C1	0.7775 (6)	0.3484 (4)	0.5677 (3)	0.0210 (9)
H1	0.7227	0.3540	0.5008	0.025*
C2	0.6888 (7)	0.2940 (4)	0.6442 (3)	0.0210 (9)
H2	0.5813	0.2686	0.6219	0.025*
C3	0.7669 (7)	0.2197 (4)	0.7247 (4)	0.0268 (12)
H3A	0.8639	0.1863	0.6953	0.032*
H3B	0.6930	0.1587	0.7413	0.032*
C4	0.8132 (6)	0.2806 (4)	0.8253 (4)	0.0245 (9)
H4A	0.7241	0.2736	0.8737	0.029*
H4B	0.9063	0.2430	0.8553	0.029*
C5	0.8528 (5)	0.4040 (4)	0.8121 (4)	0.0202 (9)
H5	0.8518	0.4477	0.8764	0.024*
C6	0.9554 (6)	0.4463 (4)	0.7360 (4)	0.0229 (10)
H6	1.0132	0.5148	0.7568	0.028*
C7	1.0494 (6)	0.3734 (5)	0.6606 (4)	0.0289 (12)
H7A	1.0816	0.3048	0.6959	0.035*
H7B	1.1476	0.4132	0.6414	0.035*
C8	0.9592 (6)	0.3407 (4)	0.5616 (4)	0.0254 (11)
H8A	0.9963	0.3892	0.5061	0.030*
H8B	0.9885	0.2640	0.5437	0.030*
C9	0.4307 (5)	0.3980 (4)	0.8376 (3)	0.0174 (9)
C10	0.3017 (7)	0.3700 (4)	0.9097 (3)	0.0246 (9)
H10A	0.2025	0.4047	0.8874	0.037*
H10B	0.3294	0.3972	0.9773	0.037*
H10C	0.2879	0.2896	0.9120	0.037*

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ir1	$0.01257(6)$	$0.01427(6)$	$0.00849(6)$	$0.00042(6)$	$0.00024(6)$	$0.00067(6)$

C11	$0.0356(7)$	$0.0166(5)$	$0.0193(5)$	$-0.0010(5)$	$0.0073(5)$	$-0.0029(4)$
C12	$0.0229(5)$	$0.0206(5)$	$0.0170(5)$	$-0.0021(4)$	$0.0046(4)$	$0.0034(4)$
C13	$0.0177(5)$	$0.0456(7)$	$0.0191(5)$	$0.0062(5)$	$-0.0037(4)$	$0.0099(6)$
N1	$0.0216(19)$	$0.0134(17)$	$0.0110(16)$	$-0.0012(14)$	$-0.0036(14)$	$0.0013(13)$
C1	$0.027(3)$	$0.022(2)$	$0.014(2)$	$-0.002(2)$	$0.0019(19)$	$-0.0038(16)$
C2	$0.031(2)$	$0.0162(19)$	$0.0162(19)$	$-0.006(2)$	$0.002(2)$	$-0.0054(15)$
C3	$0.041(3)$	$0.016(2)$	$0.024(2)$	$0.007(2)$	$0.012(2)$	$0.0051(18)$
C4	$0.026(2)$	$0.027(2)$	$0.020(2)$	$0.0060(19)$	$-0.001(2)$	$0.0097(19)$
C5	$0.0196(19)$	$0.028(2)$	$0.0133(19)$	$0.0018(16)$	$-0.0060(19)$	$0.006(2)$
C6	$0.015(2)$	$0.036(3)$	$0.018(2)$	$0.0004(18)$	$-0.0079(17)$	$0.0053(19)$
C7	$0.016(2)$	$0.040(3)$	$0.030(3)$	$0.010(2)$	$0.0045(19)$	$0.009(2)$
C8	$0.030(3)$	$0.024(2)$	$0.022(2)$	$0.008(2)$	$0.011(2)$	$-0.002(2)$
C9	$0.0157(19)$	$0.021(2)$	$0.015(2)$	$-0.0023(16)$	$-0.0014(15)$	$-0.0035(16)$
C10	$0.020(2)$	$0.037(3)$	$0.017(2)$	$-0.007(2)$	$0.003(2)$	$-0.0031(18)$

Geometric parameters ($\hat{A},{ }^{\circ}$)

Ir1-Cl1	2.3670 (11)	C4-H4A	0.9700
Ir1-Cl2	2.3603 (11)	C4-H4B	0.9700
$\mathrm{Ir} 1-\mathrm{Cl} 3$	2.3666 (10)	C4-C5	1.509 (6)
Ir1-N1	2.023 (4)	C5-H5	0.9800
Ir1-C1	2.236 (4)	C5-C6	1.392 (7)
Ir1-C2	2.245 (4)	C6-H6	0.9800
Ir1-C5	2.257 (5)	C6-C7	1.517 (7)
Ir1-C6	2.231 (4)	C7-H7A	0.9700
N1-C9	1.125 (6)	C7-H7B	0.9700
C1-H1	0.9800	C7-C8	1.531 (8)
$\mathrm{C} 1-\mathrm{C} 2$	1.389 (6)	C8-H8A	0.9700
$\mathrm{C} 1-\mathrm{C} 8$	1.504 (7)	C8-H8B	0.9700
C2-H2	0.9800	C9-C10	1.454 (6)
$\mathrm{C} 2-\mathrm{C} 3$	1.510 (7)	C10-H10A	0.9600
$\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	0.9700	C10-H10B	0.9600
C3-H3B	0.9700	C10-H10C	0.9600
C3-C4	1.537 (7)		
Cl2-Ir1-Cl1	85.23 (4)	C2-C3-H3B	108.6
Cl2--Ir1-Cl3	85.61 (4)	$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	114.6 (4)
Cl3-Ir1-Cl1	92.68 (5)	H3A-C3-H3B	107.6
N1-Ir1-Cl1	83.63 (11)	$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	108.6
N1-Ir1-Cl2	164.05 (11)	C4-C3-H3B	108.6
N1-Ir1-Cl3	83.55 (11)	$\mathrm{C} 3-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~A}$	108.6
N1-Ir1-C1	113.18 (16)	C3-C4-H4B	108.6
N1-Ir1-C2	77.86 (16)	H4A-C4-H4B	107.6
N1-Ir1-C5	77.73 (16)	C5-C4-C3	114.5 (4)
N1-Ir1-C6	113.88 (16)	C5-C4-H4A	108.6
C1-Ir1-Cl1	163.18 (12)	C5-C4-H4B	108.6
C1-Ir1-Cl2	78.41 (12)	Ir1-C5-H5	114.5
C1-Ir1-Cl3	89.92 (14)	C4-C5-Ir1	110.0 (3)

C1-Ir1-C2	36.12 (16)
C1-Ir1-C5	94.14 (18)
C2-Ir1-Cl1	159.73 (12)
C2-Ir1-Cl2	114.52 (12)
C2-Ir1-Cl3	93.37 (14)
C2-Ir1-C5	79.33 (18)
C5-Ir1-Cl1	88.79 (13)
C5-Ir1-Cl2	113.44 (12)
C5-Ir1-Cl3	160.95 (12)
C6-Ir1-Cl1	92.97 (14)
C6-Ir1- Cl 2	78.03 (13)
C6-Ir1-Cl3	162.18 (12)
C6--Ir1-C1	79.97 (19)
C6-Ir1-C2	87.1 (2)
C6--Ir1-C5	36.15 (17)
C9-N1-Ir1	175.1 (4)
$\mathrm{Ir} 1-\mathrm{C} 1-\mathrm{H} 1$	114.7
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{Ir} 1$	72.3 (3)
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1$	114.7
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 8$	122.3 (5)
C8-C1-Ir1	110.8 (3)
$\mathrm{C} 8-\mathrm{C} 1-\mathrm{H} 1$	114.7
Ir1-C2-H2	114.2
C1-C2-Ir1	71.6 (3)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2$	114.2
C1-C2-C3	122.5 (5)
C3-C2-Ir1	113.0 (3)
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2$	114.2
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	108.6
Ir $1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	-106.1 (4)
Ir $1-\mathrm{C} 1-\mathrm{C} 8-\mathrm{C} 7$	27.6 (5)
Ir $1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	10.1 (6)
Ir1-C5-C6-C7	-105.8 (4)
Ir1-C6-C7-C8	3.1 (6)
C1-C2-C3-C4	92.3 (5)
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 8-\mathrm{C} 7$	-54.0 (6)
C2-C3-C4-C5	-29.0 (6)

C4-C5-H5	114.5
C6-C5-Ir1	70.9 (3)
C6-C5-C4	124.1 (5)
C6-C5-H5	114.5
Ir1-C6-H6	113.6
C5-C6-Ir1	73.0 (3)
C5-C6-H6	113.6
C5-C6-C7	124.2 (5)
C7-C6-Ir1	112.4 (3)
C7-C6-H6	113.6
C6-C7-H7A	108.4
C6-C7-H7B	108.4
C6-C7-C8	115.7 (4)
H7A-C7-H7B	107.4
C8-C7-H7A	108.4
C8-C7-H7B	108.4
C1-C8-C7	115.2 (4)
C1-C8-H8A	108.5
C1-C8-H8B	108.5
C7-C8-H8A	108.5
C7-C8-H8B	108.5
H8A-C8-H8B	107.5
N1-C9-C10	178.4 (5)
C9-C10-H10A	109.5
C9-C10-H10B	109.5
C9-C10-H10C	109.5
H10A-C10-H10B	109.5
H10A- $\mathrm{C} 10-\mathrm{H} 10 \mathrm{C}$	109.5
H10B-C10-H10C	109.5
C3-C4-C5-Ir1	32.7 (5)
C3-C4-C5-C6	-47.3 (6)
C4-C5-C6-Ir1	101.7 (4)
C4-C5-C6-C7	-4.2 (7)
C5-C6-C7-C8	87.1 (6)
C6-C7-C8-C1	-20.8 (7)
C8- $\mathrm{C} 1-\mathrm{C} 2-\mathrm{Ir} 1$	103.8 (4)
C8- $\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	-2.3 (7)

