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Biomimetic Detection of Dynamic Signatures in Foliage Echoes

Ananya Bhardwaj

(ABSTRACT)

Horseshoe bats (family Rhinolophidae) are among the bat species that dynamically deform

their reception baffles (pinnae) and emission baffles (noseleaves) during signal reception and

emissions, respectively. These dynamics are a focus of prior studies that demonstrated that

these effects could introduce time-variance within emitted and received signals. Recent lab-

based experiments with biomimetic hardware have shown that these dynamics can also inject

time-variant signatures into echoes from simple targets. However, complex foliage echoes,

which comprise a large portion of the received echoes and contain useful information for

these bats, have not been studied in prior research. We used a biomimetic sonarhead which

replicated these dynamics, to collect a large dataset of foliage echoes (>55,000). To generate

a neuromorphic representation of echoes that was representative of the neural spikes in bat

brains, we developed an auditory processing model based on Horseshoe bat physiological

data. Then, machine learning classifiers were employed to classify these spike representa-

tions of echoes into distinct groups, based on the presence or absence of dynamics’ effects.

Our results showed that classification with up to 80% accuracy was possible, indicating the

presence of these effects in foliage echoes, and their persistence through the auditory process-

ing. These results suggest that these dynamics’ effects might be present in bat brains, and

therefore have the potential to inform behavioral decisions. Our results also indicated that

potential benefits from these effects might be location specific, as our classifier was more

effective in classifying echoes from the same physical location, compared to a dataset with

significant variation in recording locations. This result suggested that advantages of these

effects may be limited to the context of particular surroundings if the bat brain similarly



fails to generalize over variation in locations.



Biomimetic Detection of Dynamic Signatures in Foliage Echoes

Ananya Bhardwaj

(GENERAL AUDIENCE ABSTRACT)

Horseshoe bats (family Rhinolophidae) are an echolocating bat species, i.e., they emit sound

waves and use the corresponding echoes received from the environment to gather information

for navigation. This species of bats demonstrate the behavior of deforming their emitter

(noseleaf), and ears (pinna), while emitting or receiving echolocation signals. Horseshoe

bats are adept at navigating in the dark through dense foliage. Their impressive navigational

abilities are of interest to researchers, as their biology can inspire solutions for autonomous

drone navigation in foliage and underwater. Prior research, through numerical studies and

experimental reproductions, has found that these deformations can introduce time-dependent

changes in the emitted and received signals. Furthermore, recent research using a biomimetic

robot has found that echoes received from simple shapes, such as cube and sphere, also

contain time-dependent changes. However, prior studies have not used foliage echoes in

their analysis, which are more complex, since they include a large number of randomly

distributed targets (leaves). Foliage echoes also constitute a large share of echoes from the

bats’ habitats, hence an understanding of the effects of the dynamic deformations on these

foliage echoes is of interest. Since echolocation signals exist within bat brains as neural spikes,

it is also important to understand if these dynamic effects can be identified within such signal

representations, as that would indicate that these effects are available to the bats’ brains. In

this study, a biomimetic robot that mimicked the dynamic pinna and noseleaf deformation

was used to collect a large dataset (>55,000) of echoes from foliage. A signal processing model

that mimicked the auditory processing of these bats and generated simulated spike responses

was also developed. Supervised machine learning was used to classify these simulated spike



responses into two groups based on the presence or absence of these dynamics’ effects. The

success of the machine learning classifiers of up to 80% accuracy suggested that the dynamic

effects exist within foliage echoes and also spike-based representations. The machine learning

classifier was more accurate when classifying echoes from a small confined area, as compared

to echoes distributed over a larger area with varying foliage. This result suggests that any

potential benefits from these effects might be location-specific if the bat brain similarly fails

to generalize over the variation in echoes from different locations.
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Chapter 1

Introduction

1.1 Background

1.1.1 Bioinspiration

Engineering is the process of finding science-based solutions to real-world problems. Often

these solutions are not novel ideas, but instead adaptations of existing concepts. When

examples from the biological world serve as the inspiration for solutions to engineering prob-

lems, it is termed as Bioinspired Engineering. Bioinspiration is not a novel concept, rather,

bioinspiration has led to the development of technology throughout human history. One

of the foremost examples is how engineers sought inspiration from birds for the design of

airplanes [2], and more recently, insects have inspired flapping winged flight robots and

micro aerial vehicles (MAVs) [3, 4]. Biological organisms have developed natural materials

through millions of years of evolution possesses to tackle their unique challenges, and this so-

phistication of materials inspires engineering material and system design [5]. Several species

across the breadth of the biological world have served as inspiration to engineers, and this

inspiration can provide a more direct route to invention than more traditional branches of

science [6]. For example, the branching of trees has inspired the damping of architectural

and structural beams [7]. The hair flow sensors of aquatic organisms such as the Mexican

blind fish have inspired similar engineered solutions for thermal, piezoelectric, or optical flow

1
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measurements [8]. One of the most exciting and promising areas of bioinspired research is

in the study of chemical reactions in biology that lead to solar energy harvesting, given the

most consequential challenge to our civilization is the one posed by climate change [9].

1.1.2 Bats as a Model of Bioinspiration

Various species constitute sources of bioinspiration for engineers and physicists for a plethora

of different applications. Bats are one of these model organisms, and they form an impor-

tant and interesting case study. Bats are one of the most successful and diverse mammalian

orders, with there being over 1,400 identified bat species in the world [10]. Bats also ex-

hibit significant variation in their biology due to this diversity. Bats are found all over the

world and have successfully adapted to all different types of environments. It is due to this

biological success that bats are a major source of inspiration for engineers in many inter-

est areas. Engineers have mimicked bats’ flight dynamics to develop flapping-wing robots

for autonomous mission applications such as in the detection of chemicals [11]. Bats have

also inspired material scientists’ efforts towards developing materials that can replicate the

compliance of bat skin on their wings, which enables their flight by allowing for significant

deformation with little strain [12]. A special aspect of bat biology, and the most pertinent to

this work, is their ability to navigate using echolocation. Echolocation is the process of ac-

tively creating sound emissions and then processing the returning echoes to derive knowledge

about the environment. Although some other animal groups such as toothed whales [13, 14]

and certain birds (oilbirds, swiftlets) [15] have evolved echolocation systems, our focus here

is on bats due to some unique challenges they face and the abilities that they possess. Bats

employ echolocation to detect what is in their surroundings [16], localize objects [17] and

also classify targets [18]. As they operate with air as the medium for sound propagation,

bats face significant technical challenges to echolocation, such as spherical spreading loss and



1.1. BACKGROUND 3

atmospheric attenuation. Additionally, since the targets bats need to detect are small, such

as prey insects, they require small wavelengths to achieve significant target strength from

the echoes, hence leading to a high pulse frequency which leads to yet further attenuation.

Despite these challenges, bats can thrive in these different environments, and effectively nav-

igate, identify and hunt prey, find roosting locations, and evade predators. Bats have been

suggested to be capable of homing effectively after being released up to 160 km from their

roost [19]. For small distances, less than 8 mile, research has suggested that auditory cues

(echolocation) are the primary mechanism for homing in bats [20]. Another recent study has

shown that long-tailed bats (Chalinolobus tuberculatus) were successfully able to home to

their cave after being released at distances from 5 km up to 20 km [21]. Bats have also been

suggested to be capable of creating spatial maps in their memory of areas that are larger than

their limited operating range of individual echolocation calls [22]. They can also navigate

around obstacles in their surroundings, studies in flight rooms have shown bats can avoid

stationary as well as moving obstacles using echolocation [23, 24]. Bats adjust the length

and frequency of their echolocation calls with their flight speed during the approach to a

prey [25]. Bats are also remarkably adept at navigating through dense foliage environments

in the dark, such as tropical forests [26]. In this study, bats were also shown to be effective

at hunting for prey such as winged insects in cluttered forest environments [26]. Bats have

also been shown to successfully identify landmarks and use that information for navigation

through openings in nets in behavioral experiments [27]. Another feat of their echolocation

ability is their apparent solution to the cocktail party environment problem. When foraging

and echolocating in the presence of other bats, they are still able to navigate effectively

without confusion due to the echolocation calls of others [28, 29]. Research has also shown

the astonishing ability of bats in discriminating surface texture variations on the scale of

1 mm, which shows the sensitivity and sophistication of the biosonar system of bats [30].
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1.2 Autonomous Navigation and its Opportunities for

Bioinspiration

1.2.1 Autonomous Navigation and its Applications

Unmanned aerial vehicles (UAVs) or drones are a growing area of innovation and engineering

development. Drones have applications where the presence of human operators is dangerous

or impossible. One such use case is in the area of atmospheric research, where drones are ca-

pable of taking air quality measurements in wide-ranging topographies, as well as near pollu-

tion sources that are difficult to reach [31]. Drones are capable of taking other measurements

for meteorological purposes and atmospheric modeling, and by virtue of their portability,

they offer a high level of spatial and temporal resolution in the measured data [31]. Another

area of application for drones is in search and rescue missions [32], and these missions can

vary significantly depending on the geography of where they are conducted. The endurance

of drones in terms of operating life in one charge cycle, their ability to collect good quality

data, and avoid obstacles during navigation are determining factors for their effectiveness.

Hence the types of sensors they employ to operate are crucial. Another upcoming and critical

area of drone use is in environmental protection, in preventing poaching, unauthorized defor-

estation, and wildlife trafficking. Drones can also help in environmental protection through

monitoring and detection of environmental disasters, such as wildfires [33] which are becom-

ing an increasing issue with the recent spate of wildfires in California and Australia. Other

disasters, such as the failure of nuclear powerplants that require monitoring of the spread of

nuclear material and radiation is an application well suited for drone use. They can also be

used for surveying areas affected by floods or earthquake damage. Other than applications

where the advantage of drone use comes from precluding human presence in dangerous areas,
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applications where they lead to reduced manual labor are also important. One example is

in the increasing drone use by delivery companies to deliver mail and packages directly to

the houses of consumers [34]. Here, the efficacy of the drones is affected by the location

of the houses and the amount and density of foliage surrounding them. Some houses, with

dense foliage surrounding them, pose a challenge to these drones which are more suited to

the urban built environment. Some other potential uses of drones are at airports to clear

the runways of birds [35]. Researchers are working on developing algorithms that can help

herd a flock of birds towards certain areas.

1.2.2 Challenges in Autonomous Navigation

There are multiple challenges facing drone design, but a primary challenge lies in sensing

for navigation and path planning, especially in conditions where they require navigation

through complex environments such as foliage. Forests, particularly below canopy, are often

a GPS denied or a GPS challenged environment [36]. Even if GPS is available, its accuracy

is low given the poor precision achievable with the portable sensors which can be added to

lightweight drones. In addition, GPS is not an effective modality when it comes to flight

through foliage instead of flight over it. Traditionally, autonomous UAVs in GPS denied

environments have relied on vision-based sensors, i.e., cameras for sensing their surroundings

and using the visual information for executing their navigation strategy. However, there

are limitations to this approach. Being a passive sensing method, cameras require well-lit

conditions for proper operation. This poses an issue not only in nighttime navigation but also

when considering navigation through dense forests where light can be limited even during

the daytime. Recent studies have relied upon ocular sensors with learning techniques for

navigation through relatively sparse forest, but their failure rates have been very high [37].

Navigation algorithms relying on optical sensors also require significant computational power
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due to the high dimensionality of the optimization problem using path planning algorithms

designed for visual sensors [38]. Another vision-based sensing modality that can be used in

drones for navigation in cluttered environments is lidar. Lidar is sensitive to external weather

conditions, such as the presence of dust. In a significantly dense dust cloud, lidar scans the

edges of the dust cloud as a surface [39]. Sometimes lidar systems even fail to return a range

measurement in dusty conditions. Whereas there have been developments of new signal

processing algorithms to improve lidar sensing in dusty conditions, the fundamental physics

does still pose a challenge to the system [39]. Similar issues arise in vision-based sensing

systems when the environmental conditions of rain and fog occur. Another area of limitation

in drone flight is the payload weight, which applies to the sensors as well. Heavy sensing

systems can lead to decreased flight endurance, hence lighter systems are preferable [40].

This is an area where ultrasound sensors or acoustic approaches can be more beneficial than

optical sensors.

1.2.3 Bat Bioinspiration in Autonomous Navigation

The limitations of traditional sensing approaches lead to an interest in bioinspired tech-

niques, and bats due to their astonishing flying abilities are an ideal example to learn from.

Bats use acoustic signals for navigation and are able to navigate using just one emitter and

two acoustic receivers as their sensory system. Their approach is therefore physically lighter,

since it requires fewer sensors and potentially computationally inexpensive, especially con-

sidering their small brain sizes [41]. Research has shown that using template matching based

approaches, it is possible to use bat-like biosonar echoes to classify different locations [42].

In that study, researchers used averaged cochleagrams, inspired from the auditory process-

ing of bats to create templates corresponding to different locations, and were able to match

echoes from different cluttered environments to these templates and showed that biosonar
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signals can be implemented for scene classification [42]. Researchers have also argued that

due to the unique morphology of the bat biosonar system, they are able to encode significant

spatial and spectral information using echoes, much more than is possible with standard

sonar techniques. Therefore through mimicking their biosonar system it is possible to better

solve the autonomous navigational challenge [43]. In that study, a biomimetic approach to

create a 3D spatial mapping system was developed, akin to Simultaneous Localization And

Mapping (SLAM) used now ubiquitously in robotic navigational systems [43]. This system

could localize objects in 3D space using just a single emission. They combined biomimetic

hardware, which included microphones placed inside of baffles designed on the physiology of

bat pinna, and biomimetic software - which was the processing of acoustic signals akin to a

basilar membrane using a filterbank. These filterbank outputs were used to create cochlea-

grams, which were then fed to a bioinspired SLAM algorithm approach or BatSLAM. Their

results showed that they were successfully able to create consistent maps in their testing

environments of an indoor office. They also showed their calculations converged quickly to

enable navigation based on these generated metric maps to enable distance-based naviga-

tion. This approach shows the possibility of using bioinspired sonar approaches instead of

standard sonar approaches in conjunction with SLAM to enable much faster navigation with

fewer sonar emissions.

Beyond the development of bioinspired scene recognition and robot navigation algorithms,

more recently successful efforts have been made to develop robotic systems that use biomimetic

hardware and signal processing together to navigate in outdoor environments [44]. Re-

searchers developed an autonomous bat-inspired robot, called ‘Robat’ which included one ul-

trasonic emitter and two receivers, and could navigate terrestrially in complex conditions [44].

They employed a low pulse emission rate, 1 per 0.5 ms which showed the reduction in the

data and consequently the computations required compared to a technical sonar array-based
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approach. The study showed that not only could a bat-inspired approach achieve obstacle

avoidance, their implementation was also capable of object classification as well as mapping

the surroundings when encountering an environment for the first time. They also used an

artificial neural network to classify the surrounding objects, mainly in two categories ‘plant’

and ‘non-plant’ based on the echoes received from these objects with a high rate of accu-

racy. The algorithm implementation delineated a path based on the map created from the

obstacles identified during its run, such that it can use the map for navigation within that

environment in the future [44]. This study showed the promise of bat-inspired navigation

techniques, as well as highlighting the feasibility of such an approach. These studies and

their successes highlight that bats are a significant source for bioinspiration pertaining to

the development of autonomous navigation systems.

1.3 Objective

A review of current literature in the area of bat bioinspiration, as it pertains to autonomous

navigation, has shown that there is significant potential in such applications. However, the

understanding of the underlying physical phenomena which enable bats to achieve these

tasks is essential to developing capable solutions. The biosonar system of bats contains

a large number of unique adaptations and features that can and do contribute to their

abilities. The following subsections provide the background for our area of interest, which

lies within understanding the effects of the dynamics of the deformation of the external

auditory periphery of Horseshoe bats.
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1.3.1 Specialized Auditory System of Horseshoe Bats

Horseshoe bats have long been a focus of research on echolocation due to their ability to

navigate through densely cluttered environments, and their success in capturing prey in such

environments using echolocation [26, 45]. Horseshoe bats, through evolution, have developed

many specific adaptations, one of which is their use of Constant Frequency - Frequency

Modulated (CF-FM) biosonar pulses [46, 47]. Their emitted pulses contain a long constant

frequency (CF) or ‘pure tone’ section followed by a short downward frequency-modulated

(FM) section ‘chirp’. To supplement their unique pulse design, their hearing is tuned to

those frequencies which constitute their pulses and their hearing is increasingly sensitive for

the frequencies within the CF part of their signals [48].

These bats can detect the wingbeat of prey insects from small changes in the amplitude

and Doppler shifts in the echoes due to their highly sensitive hearing in a narrow frequency

range [49]. This increased sensitivity in this frequency range is enabled by their unique

auditory periphery physiology, namely the cochlea. The horseshoe bat cochlea is highly

sensitive around the frequency range where the CF portion of their calls lies. The cochlea

of these bats contains a very high concentration of inner hair cells at the locations that

respond to the CF frequencies of their calls. This region of increased sensitivity to the basilar

membrane in the cochlea is termed as acoustic fovea [48, 50]. In addition to this increased

sensitivity, Horseshoe bats also demonstrate tight control over their call frequencies to ensure

that the received echoes lie within this foveal frequency range. Bats lower the frequency of

the CF component of their emission pulses to adjust for the Doppler shifts that occur due

to their flight speed [51]. This behavior is called Doppler Shift Compensation (DSC) and

it keeps the frequency of the received echoes in the frequency range where their hearing

is most sensitive, and they are therefore able to extract maximum information about their

environment. The study also showed that bats use a control system where they compare the
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incoming frequency of the echoes with a reference value of the system and adjust outgoing

frequencies accordingly.

Dynamics of Auditory Periphery

One conspicuous feature of the biosonar systems of horseshoe bats is the dynamic deforma-

tions of the reception and emission interfaces during echolocation. Horseshoe bats vary the

orientation and shapes of their pinna [52, 53, 54] and noseleaf [55, 56] during receptions and

emissions of biosonar signals respectively. Horseshoe bats have been found to show multiple

different types of pinna movement during echo emission and reception, such as rapid alter-

nating pinna movements of the two sides when these bats were presented a target closeby in

a study [53]. It was also found that ear motions were strongly correlated in time with the

reception of the echoes from the target, indicating potential importance to echolocation [53].

Studies focusing on the dynamics of emissions in the biosonar systems of the horseshoe bats

found that different components of the noseleaf structures (the anterior leaf [55] and the

lancet [56]) moved during emission, and these movements were correlated in time, with the

emissions. These motions of the noseleaf were also found to be significant and on the scale

of the noseleaf itself and the wavelength of the emissions [55, 56].

Research has also investigated the effects of these dynamics of the external auditory pe-

riphery of horseshoe bats. Numerical models of the noseleaf dynamics have suggested that

such features of a biosonar system can introduce time-variant effects into the emitted beam-

patterns [56]. However, it was also found that the beam patterns corresponding to the

simulated dynamic deformations did not suggest any systematic behavior to the changes

with frequency. A numerical analysis of the changes in the beam patterns on the reception

side found that with the deformation, the sensitivity systematically changes between the

main lobe and the side lobe for different deformation stages of the pinna [54]. Lab-based
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characterizations of biomimetic sonarheads have also confirmed the predictions of numerical

experiments [57, 58]. A simplified biomimetic reproduction was developed to experimen-

tally replicate the effects of the anterior leaf dynamics of the noseleaf in horseshoe bats,

and it was found that the changes in shape introduced time-variant characteristics in the

output beampatters [57]. This study showed that the output beams showed a variation with

frequency, direction, and time [57]. Researchers have also sought to replicate experimen-

tally the dynamics of the reception at the pinna. A basic prototype of the pinna geometry

was developed, which was further augmented by small changes to add local features. They

simulated mechanically the deformations in discrete steps in the prototype and collected

received biosonar signals and then calculated the beampatterns for different deformation

stages. They found occurrences of frequency-dependent sidelobes with deformation which

matched the mathematical predictions from prior studies [58].

Building on these prior findings, more recent analyses have demonstrated that the time-

variant effects can enhance sensory-coding capacity and the ability to determine the direc-

tion of a sound source [59, 60]. Researchers experimentally replicated the fast ear motions of

the horseshoe bat pinna, and recorded CF signals emitted from different azimuth and eleva-

tion angles with respect to the receiver [60]. Their results demonstrated direction-dependent

Doppler shifts in the received signals, and this finding suggested that the Doppler shifts

due to this pinna motion can potentially aid in direction finding [60]. Most recently, ex-

perimental lab-based studies have sought to analyze the effects of these dynamics within

echoes, instead of direct emissions. Using a biomimetic sonarhead which included baffle

interfaces designed to mimic the pinna and noseleaf of horseshoe bats, researchers generated

emissions and recorded echoes from targets with simple as well as complex geometries, such

as spheres, cubes, and artificial plants [61]. The results from this study showed the presence

of these time-variant signatures which enabled them to identify echoes based on different
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conformation stages of the pinna deformation [61].

1.3.2 Foliage Echoes

A major proportion of research on the dynamics of the external auditory periphery have

focused on either numerical analyses, or studied system properties of the reception or emis-

sion systems in isolation [54, 55, 56, 57, 58]. These numerical or laboratory-based studies

did not incorporate the full complexity of natural environments. However, a majority of

the echoes forest-dwelling bats receive are from foliage [62, 63]. Due to the random nature

of foliage echoes [64], they are often considered as the “clutter” that masks useful target

echoes. This assumption, while sensible when it comes to specific applications in technical

sonar, or from the perspective of just object recognition in the presence of background, is

not accurate as it pertains to bat biosonar. Bats can potentially gather useful information

from these foliage echoes about their location in the forest, and their proximity to landmarks

such as their roosts. Other examples of critical navigation tasks that have to rely on foliage

clutter are finding passageways through foliage during flight. A number of bats hunt in the

forests and they require the ability to find moving targets in clutter, as well as maintaining

their distance from obstacles in their surroundings [26]. Hence, the current work focused on

assessing the potential effects of peripheral dynamics on echoes from the natural foliage.

1.3.3 Neuromorphic Representation of Echoes

Studies of the dynamics’ of biosonar have often used echo waveforms recorded at high sam-

pling rates [60] or their envelopes [59, 61] in their analyses. These signal representations are

inherently different from the neural codes that represent the biosonar signals in the bats’

brains. The accepted understanding of auditory processing in bats of biosonar signals sug-
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gests that the incoming pressure wave stimuli are converted into vibrations within the cochlea

which leads to the vibration of the basilar membrane [65, 66]. The cochlea operates akin

to a filterbank, where different locations along the basilar membrane respond to different

frequencies of the stimulus, and the outputs of these filterbanks form spectrogram-like repre-

sentations [67]. The vibrations at the basilar membrane are converted into electrical signals

at the hair cells which form the site of mechanical to electrical transduction of auditory sig-

nals [65]. These parallel electrical signals for different frequency channels get converted into

neural signals or spike trains at the auditory nerve, which forms the representation of these

biosonar signals within bat brains [65]. Due to the sparse nature of neural codes [68], neural

signals could be computationally inexpensive to process as compared to the densely sampled

acoustic recordings. Hence, the current work has included biomimetic spike representations

generated based on the unique auditory processing system of horseshoe bats [50, 69, 70] in

its analysis of the impact of the peripheral dynamics in horseshoe bats.

1.3.4 Research Approach

The objective of this research is to study the effects of the dynamics of the auditory periphery

in horseshoe bats in the context of foliage echoes. The second objective of the research is to

implement a bioinspired neuromorphic representation of the echoes, to determine whether

these effects persist in the sparse biological representation. Answering these questions would

enable us to know the potential relevance of these effects in horseshoe bats, based on scenarios

that closely represent their habitats, and signal representations similar to those within bats’

brains than what has been studied in previous work.

To facilitate this analysis, we collected a large echo dataset from natural foliages using

a recording system that mimicked the biosonar system of horseshoe bats in pulse design

and dynamics. These recorded echoes were then processed with a signal-processing model
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that replicates some specific features of the auditory processing in horseshoe bats including

the generation of neural spikes. Finally, we applied machine-learning based classification

techniques to these biomimetic spike responses to classify them based on dynamics’ effects.

If these effects can be accurately identified within the echoes, this indicates that natural

foliage echoes generated and received by a dynamic periphery have a distinct quality.



Chapter 2

Biomimetic Detection of Dynamic

Signatures in Foliage Echoes

2.1 Title

Biomimetic Detection of Dynamic Signatures in Foliage Echoes

2.2 Abstract

Certain bat species (family Rhinolophidae) dynamically deform their emission baffles (nose-

leaves) and reception baffles (pinnae) during echolocation. Prior research using numerical

models, laboratory characterizations and experiments with simple targets have suggested

that this dynamics may manifest itself in time-variant echo signatures. Since the pronounced

random nature of echoes from natural targets such as foliage has not been reflected in these

experiments, we have collected a large number (>55,000) of foliage echoes outdoors with a

sonarhead that mimics the dynamic periphery in bats. The echo data was processed with a

custom auditory processing model to create spike-based echo representations. Deep-learning

classifiers were able to estimate the dynamic state of the periphery, i.e., static or dynamic,

based on single echoes with accuracies of up to 80%. This suggests that effects of the periph-

15
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eral dynamics are present in the bat brains and could hence be used by the animals. The

best classification performances were obtained for data that was obtained within a spatially

confined area. Hence, if the bat brains suffer from the same generalization issues, they would

have to have a way to adapt their neural echo processing to such local fluctuations to exploit

the dynamic effects successfully.

2.3 Introduction

Developing autonomous systems, e.g., robots or drones, capable of navigating through com-

plex environments presents a multitude of application opportunities in agriculture, au-

tonomous deliveries, and surveillance [71]. Current autonomous navigation solutions pri-

marily make use of cameras, lidar, and infrared sensors to gain information about their en-

vironment [72, 73]. Processing the image data produced by these sensors in real-time leads

to high computational loads and power consumption. In addition, natural outdoor environ-

ments pose challenges for optical methods that include changes in ambient light conditions,

weather, and occlusions. These issues have led engineers to consider optical solutions as

sub-optimal for small drones [74]. Hence, different sensing solutions along with faster, com-

putationally inexpensive data processing techniques that are more suited to such application

environments remains of critical interest. Many echolocating bat species effectively navi-

gate through complex environments, such as dense forest vegetation, using biosonar [75].

In doing so, they capably execute complicated tasks that engineers aspire to accomplish

through autonomous robots, such as effectively navigating through small gaps between an

array of strings in a complex indoor obstacle course, and outdoors bats were able to suc-

cessfully forage for prey in cluttered forest environments [76]. Bats have also been shown to

successfully identify landmarks and leverage them for navigation through openings in nets
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in behavioral experiments [27]. These abilities exceed what is achievable with cutting-edge

autonomous navigation technology, where obstacle avoidance autonomously and developing

paths dynamically remains a challenge [77, 78, 79] and hence make learning from bat biosonar

an attractive proposition for meeting these challenges posed by autonomous navigation in

natural environments.

Bat species possess highly sophisticated biosonar systems that are presumed to contain evo-

lutionary adaptations to the animals’ respective environments. The biosonar systems of

horseshoe bats (family Rhinolophidae) have several conspicuous features that could be hy-

pothesized to be adaptations for navigating and hunting in very dense vegetation. Among

these features is the ability of the bats to modulate the shape of their noseleaves [56] and

pinnae [54] while emitting and receiving biosonar signals. Numerical models have suggested

that such dynamic features of a biosonar system can introduce time-variant effects into the

emitted and received signals [56, 80]. Lab-based characterizations of biomimetic sonarheads

have confirmed these predictions [57, 58] and further analysis based on these data has demon-

strated that the time-variant effects can enhance sensory-coding capacity and the ability to

determine the direction of a sound source [59, 60]. Most recently, experimental lab-based

studies with a biomimetic sonarhead have also found these time-variant effects in echoes

from targets with simple as well as complex geometries, such as spheres, cubes, and artificial

plants [61].

Whereas these prior studies have presented significant findings on the potential impact of

the peripheral dynamics, they have often relied on numerical models or device characteri-

zations performed in laboratory settings that did not capture the full complexity of natural

environments. In contrast, the predominant sensory inputs in forest-dwelling bats consists

of echoes from foliage [62, 63]. Because of their random nature [64], foliage echoes are fre-

quently regarded as “clutter” that masks useful target echoes, but these clutter echoes convey
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all information that bat biosonar can gather about the environment. Examples of critical

navigation tasks that have to rely on foliage clutter are identification of natural landmarks

and finding passageways in foliage. Nevertheless, few existing studies have focused on clutter

echoes [64, 81, 82, 83]. Hence, the current work is dedicated to assess the potential effects

of peripheral dynamics on echoes from the natural foliage.

Another limitation of previous studies results from the use of densely-sampled echo wave-

forms [60] or their envelopes [59, 61]. These signal representations are inherently different

from the neural codes that represent the biosonar signals in the bats’ brain. In the au-

ditory system of bats, the signals are first separated into frequency bands at the basilar

membrane [50, 69, 70] and then represented by a sparse code consisting of a few spikes for

each frequency band. Due to their sparse nature, neural signals could be computationally

inexpensive to process when compared to the dense sampling of acoustic recordings. Hence,

the current work has included biomimetic spike representations in its analysis of the impact

of the peripheral dynamics in horseshoe bats.

The specific goals of the current research have been to establish whether (i) the effects of the

peripheral biosonar dynamics are manifest in foliage echoes collected in natural environments

and (ii) whether these effects persist in sparse neuromorphic representations of the echoes.

Answering these two questions would allow assessing the potential relevance of the peripheral

biosonar dynamics in horseshoe bats based scenarios that are much closer to the nature of

the habitats and brains of bats than what has been studied in previous work.

To facilitate this analysis, we have collected a large echo dataset from natural foliages using

a recording system that mimicked the biosonar system of horseshoe bats in terms of pulse

design and peripheral dynamics. The echoes were then processed with a signal-processing

model that replicates some of the specific features of the auditory processing in horseshoe bats

including the generation of neural spikes. Finally, we have applied analytical and machine-
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learning based classification techniques to these biomimetic spike responses to classify them

on the basis of peripheral dynamics. If the dynamics state of the biomimetic sonar can be

accurately predicted from the echoes, this means that natural foliage echoes generated and

received by a dynamic periphery have a distinct quality.

2.4 Methodology

2.4.1 Biomimetic Recording Hardware

A sonarhead designed to mimic the biosonar system of horseshoe bats (figure 2.1) was used

for the data collection in the experiments. This system included an emitter and two re-

ceivers to generate and record ultrasonic signals respectively. The interface baffles for sound

emission and reception were modelled after the geometry of the noseleaves and pinnae in

greater horseshoe bats (Rhinolophus ferrumequinum). Noseleaves and pinnae were actuated

to replicate the dynamics in the biosonar periphery of horseshoe bats.

The emission baffle was designed to closely mimic the anatomy of the noseleaf of the greater

horseshoe bat and included two openings or “nostrils” (3 mm in diameter each) for sound

emission. The receiver baffles were designed based on µCT scans of the pinnae of horseshoe

bats. CT scans were used as reference to design 3d computer models of the baffles in mesh

software (Blender, Blender Foundation, Amsterdam, Netherlands). The designs were 3d-

printed with polylactic acid (PLA) to create a rigid model to serve as a template for making

a mould. The moulds were made in silicone, and were then used to cast a flexible model in a

silicone material for the baffles (Dragonskin 30, Smooth-on, Macungie, Pennsylvania, United

States). Two electrostatic ultrasonic transducers (600 series, diameter 38.4 mm, SensComp,

Livonia, Michigan) generated the ultrasonic pulses. The peak response for these transducers
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Figure 2.1: Biomimetic sonarhead that houses ultrasonic speakers for signal emission, micro-
phones for reception, and an actuation system to mimic the peripheral dynamics of horseshoe
bats.

occurred at a frequency of around 55 kHz and the -6 dB bandwidth ranged from 45 to 75 kHz

approximately. One transducer each was connected to the two “nostril” openings in the

noseleaf via a dedicated conical waveguide that was 7.6 cm in length. Two capacitive MEMS

microphones (Monomic, Dodotronic, Rome, Italy) served as receivers. Each microphone

was connected to the respective pinna via an artificial “ear canal” (diameter 4.5 mm, length

2 mm) that was inserted into the back surface of the receiver baffle near its base.

The peripheral baffle shapes were deformed by virtue of levers mounted on the shafts of

stepper motors (PKP Series, Oriental Motor, Tokyo, Japan). Rotation of the stepper motor

shaft causes the levers to push against the back surfaces of noseleaf and pinna baffles and
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deform these shapes into a bend state. The motors were controlled via a microcontroller

(Arduino MEGA, Arduino, Ivrea, Italy) with stepper-motor drivers (Easy Driver, Sparkfun,

Niwot, Colorado, United States). A total of five motors were used, three to actuate the

noseleaf (for the lancet and both sides of the anterior leaf parts of the noseleaf) and one

for each pinna. For controlling emission and reception, a second microcontroller (Arduino

DUE, Arduino, Ivrea, Italy) was used. This microcontroller included an onboard 14 bit

analog-to-digital converter (ADC) which was used to sample the analog input from the mi-

crophones at 400 kS/s, and a 12 bit digital-to-analog (DAC) converter to output analog signals

to the speakers. Through a serial (Universal Asynchronous Reception and Transmission –

UART) connection with a computer, these sample signals were transferred for storage on

the computer.

To generate echoes that closely resembled the natural input to the auditory system of horse-

shoe bats, the biomimetic sonarhead was set up to emit constant frequency - frequency

modulated pulses (CF-FM, figure 2.2) that were designed based on emissions recorded from

greater horseshoe bats [84]. Since the sonarhead’s noseleaf and pinnae were about twice the

size of the respective structures in the bats, the pulses were scaled down in frequency such

that the CF component was at 40 kHz (instead of about 83 kHz in the bats). Similarly, the

FM component was scaled to sweep down from 40 to 25 kHz (instead of from 83 to approx-

imately 67 kHz in the bats [84]). As a result of this frequency scaling, the emission band

came closer to the emitter’s peak response frequency. The flanks of the pulse were smoothed

by multiplying the entire pulse with a Hann window of the same length as the pulse.
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Figure 2.2: Spectrogram of a simulated constant frequency-frequency modulated (CF-FM)
horseshoe bat biosonar call. It consisted of a constant-frequency (CF) component at 40 kHz
with a duration of 12 ms, followed by a frequency-modulated (FM) component that swept
from 40 to 25 kHz over a duration of 3 ms. The spectrogram was computed with a 128-point
Hann window 128 and 25% overlap.

2.4.2 Dataset

Echoes from natural foliage were recorded along 10 tracks that were distributed over four

sites on the Virginia Tech campus (Stadium Woods, Grove Lane, Inventive Lane, and the

Corporate Research Center, figure 2.3). For data collection, the biomimetic sonarhead was

hand-carried and oriented to face nearby foliage. A minimum distance of approximately

1 m was maintained between the target foliage and the sonarhead. The operator swept the

sonarhead slowly vertically and horizontally within a range of approximately ±30°to scan

the surrounding foliage. This was repeated when the operator stepped to the next position.

During the recording sessions at any of the field sites, echoes with static and dynamic states
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of the sonarhead’s periphery were acquired in alternating blocks of 15 echoes each creating a

50/50 split between static and dynamic state echoes. Each acquired echo was automatically

labeled as “static” or “dynamic” based on the sonarhead’s state during data collection to

provide a basis for supervised learning of these echoes. Echoes were recorded at a rate of

three per second. Based on the recorded GPS data, this corresponded to about 21 echoes

per meter traversed on average.

Figure 2.3: Sites of foliage echo collection. The four locations are numbered, and sample
data collection tracks tracked with GPS are highlighted in black. The locations were: 1)
Grove Lane, 2) Stadium Woods, 3) Corporate Research Center, 4) Inventive Lane. Map
data ©OpenStreetMap contributors [1]

Correlation coefficients between the recorded echo waveforms were calculated to assess the
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similarity between recorded echoes in the dataset (figure 2.8). The correlations were calcu-

lated using 200 echoes consecutively recorded, spread over a distance of 20 m. To establish

a reference for the value of correlation coefficient between echo signals due to random tar-

get impulse responses, a separate numerical experiment was conducted: Artificial foliage

impulse responses representing a sequence of point reflectors with random target strength

and distance were created using amplitudes drawn from a Gaussian distribution and timing

based on a Poisson process. These impulse responses were convolved with the emitted pulse

and then Gaussian white noise was added (SNR 40 dB) to create simulated “echoes’’.

The complete dataset contained 55,400 foliage echoes across all four collection sites (fig-

ure 2.3) and a total of 10 “tracks” which contained echoes from one continuous data collec-

tion session within a site. Classification of echoes into “static” and “dynamic” was attempted

based on the entire dataset, all echoes recorded along an individual track containing between

2,520 and 9,660 echoes, and a subset of 420 echoes that were recorded within a 20 m seg-

ment of each track. The more restricted sub-data sets, i.e., for tracks and track segments,

were tested in order to reduce variations due to location or weather condition at the time

of recording. Regardless of their size, all datasets used in this study had a 50/50 split of

dynamic and static recording conditions.

For a more detailed analysis of the relationship between dataset size on classification accu-

racy, the three tracks with the largest number of echoes (Tracks 3, 5, and 7) were selected.

The echoes corresponding to each track were used to construct smaller datasets of varying

echo counts ranging from 420 to 7,980 in steps of 420 (figure 2.10). The datasets were split

without prior shuffling or reordering, so the recording order of the echoes was maintained.

The same three largest tracks were selected to create the datasets used to investigate the

relationship between physical recording location and classification accuracy. In this case,

the echo data collected along the three tracks was broken up into segments containing 320
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echoes that were consecutively recorded over a track distance of approximately 20 m. The

echoes in these segments were used to form a training dataset. A physical location along

the respective track was attached to each of these training data sets based on the echo in

the center the segment. Classifier networks were trained on a 320-echo dataset centered at a

given location were then tested with 10 different test datasets. The spatial centers of these

test datasets were spaced from -23 m to 22 m relative to the center of the training data sets

in increments of 5 m. The datasets were created such that there was no overlap between

the training and testing datasets, hence test sets did not contain any echoes which were

used in the training set. With the large number of echoes in each track, the training and

corresponding testing datasets were created for multiple positions (16 positions), which were

used for repeat classification experiments.

2.4.3 Signal Processing

Each recorded ultrasound signal can be divided into three portions based on its content (fig-

ure 2.4): (i) pure direct noseleaf-to-pinna transmission of the pulse, (ii) direct transmission

overlapping with returning echoes, (iii) returning echoes only. All analyses carried out here

were based on the third portion of the recorded signals to ensure that any effects found were

mediated by the echoes and not just directly passed between noseleaf and pinna.
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Figure 2.4: The recorded signal sections consist of a) direct recording of emitted signal, b)
overlap of emission and echo from foliage c) only echo.

The echo signals were filtered to attenuate out-of-band noise and interference (10th-order

Butterworth bandpass design, passband between 20 and 45 kHz). After filtering, the signals

were normalized by their respective root-mean-square (rms) values to eliminate any potential

overall differences in signal energy.

The auditory processing model (figure 2.5) consisted of three components to represent (i)

the basilar membrane, (ii) the inner hair cells, and (iii) the spiking neurons of the auditory

nerve. The basilar membrane model was designed to mimic the mammalian cochlea taking

into account the specifics found in greater horseshoe bats [69]: The quality of the auditory

filters and their density as a function of center frequency were modelled on results from prior
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physiological experiments [50, 69] and models [85]. The total number of frequency channels

simulated was chosen to be 100 in order to provide adequate sampling of filter properties

over frequency while limiting computational cost.

Figure 2.5: Auditory model simulates three steps basilar membrane, inner hair cell trans-
duction, auditory nerve spike response. Sample outputs at each level are represented.

Three different basilar membrane models were tested: (i) gammatone, (ii) gammachirp, and

(iii) Dual-Resonance-Non-Linear (DRNL) model. The gammatone filterbank [86] is a linear

model with symmetric bandpass transfer functions. The impulse response of a gammatone

filter is given by:

gGT (t) = at(n−1) · e−2πbt · cos (2πfct) , (2.1)

where n, b, fc, and a represent the filter order (here set to 4 [86]), bandwidth, center
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frequency, and normalization factor of the filter respectively.

The gammachirp filterbank is a modified version of the gammatone filterbank that mimics

the asymmetric transfer functions of the basilar membrane [87]. The impulse response of the

gammachirp is defined as:

gGC(t) = at(n−1) · e−2πbt · cos(2πfct+ c ln(t)). (2.2)

The term c ln(t) adds a frequency modulation to the gammatone carrier. Here, a value of

−3 was utilized for c.

The Dual-Resonance-Non-Linear (DRNL) basilar membrane model adds a nonlinear level-

dependent behavior to the auditory filter model [88, 89]. It models the effects of input

sound pressure level on the best frequency (BF) and bandwidth (BW) of the filters. The

DRNL model was developed to simulate human psychophysical data [89] and consists of two

parallel pathways, one linear and the other nonlinear, that are added to generate the final

model output. The linear pathway consists of a scalar gain factor, a cascade of two identical

gammatone filters followed by a cascade of four Butterworth lowpass filters [89]. All filters in

the linear path are controlled by two parameters, the center frequency (CFlin) and bandwidth

(BWlin), which were estimated from experimental bat neurophysiology data [50, 69, 85] in the

present work. The nonlinear pathway is a cascade of three identical first-order gammatone

filters with narrowly tuned bandwidths, a memoryless compressive function, another three

narrowly tuned identical first-order gammatone filters, and three first-order Butterworth

low-pass filters [89]. Like the linear path, the nonlinear path was also parameterized by

center frequency (CFnl) and bandwidth (BWnl), that were applied to all the filters in the

nonlinear pathway. These parameters, (CFnl) and bandwidth (BWnl) were defined by a

relationship with the corresponding parameters in the linear path, which was determined to
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fit the BM performance to the experimental psychoacoustic data in humans [89], and these

same values are used here in the absence of existing bat physiological data. The compression

in the nonlinear pathway can be described by:

y(t) = sign(x(t)) · min(a · | x(t) |, b · | x(t) |v), (2.3)

where a, b, and v are parameters specific to each particular basilar membrane location. Pa-

rameter a describes the “sensitivity’’ at the tip of the filter, and a value of 5 × 10−5 was

used, as described in [89]. The parameter b represents a gain determined by fitting the

model output to experimental data for different basilar membrane locations, and hence dif-

ferent channel frequencies utilized different values [89]. Similarly, the compression coefficient

v=0.25 was found by a fit to experimental human data [89] The outputs after each stage of

the auditory model were saved and visualized for validation of the model performance (fig-

ure 2.6). The FM channels of the filterbanks had filters with a higher bandwidth and showed

greater temporal detail compared to the high quality factor CF channels (figure 2.6a).
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Figure 2.6: Intermediate model outputs for sample foliage echo: a) basilar membrane re-
sponse, b) inner hair cell current c) membrane potential of an auditory nerve neuron. Each
line represents the response to a different frequency: low (35 kHz, dotted, medium (40 kHz,
solid black), and high (45 kHz, solid gray).

The signal transduction between the inner hair cells and the neurons of the auditory nerve

can be modelled as a half-wave rectifier followed by a lowpass filter [90]. Here, a 5th-order

Butterworth filter with a cutoff frequency of 1 kHz was used for this step.The inner hair

cell model outputs preserve the low frequency content of the basilar membrane outputs, are

visually similar to the signal envelopes and show the amplitude variation (figure 2.6b). The

inner hair cell outputs were converted to spike responses using two spike-generation models

that each represented a different level of complexity: (i) the simpler leaky integrate-and-

fire model (LIAF, [91]) and (ii) the more complex response kernel model [91] that includes
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refractory neural properties. The LIAF model describes the neuronal dynamics with the

following differential equation for the membrane potential:

τm
du

dt
= −[u(t)− urest] +RI(t), (2.4)

where u(t) is the membrane potential, urest is the resting potential, R is the membrane

resistance, I(t) is the input current, and τm the membrane time constant of the neuron. The

solution of equation (2.4) with the initial condition u(0) = urest, yields equation 2.5, which

describes the time history of the membrane potential in the LIAF model:

u(t) = urest +RI(t)

[
1− exp

(
− t

τm

)]
. (2.5)

Equation 2.5 is combined with a spiking mechanism, and subject to the condition that u(t)

is changed to the resting potential urest when it reaches the fixed threshold ϑ to complete

the LIAF model:

u(t) = urest +
∑
f

(ur − ϑ) exp
(
−t− tf

τm

)
+

R

τm

∫ ∞

0

exp
(
− s

τm

)
I(t− s) ds, (2.6)

where the firing times tf are defined by the threshold condition. The second term on the

right hand side of the equation represents the change in the membrane potential after the

spike, due to the decrease in voltage from ϑ to ur. The third term models the impulse

response of the membrane potential due to a time-varying input current.

The generalized Spike Response Model (SRM) [91] equation is a representation of Equa-

tion 2.6 in the kernel form, and is given by:

u(t) = η(t− t̂) +

∫ ∞

0

κ(t− t̂, s)I(t− s)ds, (2.7)



32 CHAPTER 2. BIOMIMETIC DETECTION OF DYNAMIC SIGNATURES IN FOLIAGE ECHOES

where t̂ denotes the firing time of the last spike of the neuron. The Response Kernel (RK)

model used here is a special case of the general SRM equation. It incorporates refractoriness

in a neuron in three ways. Firstly, through the reduction in the responsiveness after a spike

of the impulse response of the neuron. This is achieved by addition of a time dependence

on prior spike occurrence and a recovery time constant in the impulse response kernel, the

κ-kernel (Eq. 2.8), which describes the time course of the voltage response to a short current

pulse I(t)

κ(t − t̂, s) =
R

τm

[
1− exp

(
−t− t̂

τrec

)]
exp

(
− s

τm

)
Θ(s)Θ(t − t̂ − s), (2.8)

where Θ(s) denotes the Heaviside step function and τrec is the response recovery time con-

stant.

Secondly, refractoriness is included in the η-kernel (η(t− t̂), Eq. 2.9), in the form of the the

negative overshoot, ureset which typically follows a spike (the spike afterpotential).

η(t− t̂) = urest − η0 exp
(
−t− t̂

τref

)
Θ(t− t̂), (2.9)

where η0 = urest − ureset, Θ(x) denotes the Heaviside step function, and τref is the refractory

time constant. Finally, the third way to include refractoriness is changing the threshold from

a constant voltage as in the LIAF model to a function ϑ(t − t̂) that depends on the time t̂

since the previous spike. The threshold mimics the neuron’s refractoriness by increasing im-

mediately after a spike and decaying back to its resting value θ0 to restore the responsiveness

of the neuron. The dynamic threshold can be expressed as follows:

ϑ(t− t̂) = ϑ0 − η(t− t̂). (2.10)



2.4. METHODOLOGY 33

The spike responses generated from the integration of the input IHC current to the spike

were plotted for visual comparison of different spike models (figure 2.6c).

Since the input to the spike model was normalized and had arbitrary units, the initial

values of certain parameters of the spike model were determined by trial and error. These

parameters were: the spiking threshold ϑ and and the membrane time constant τm for both

spike models. And for the kernel model additionally the recovery τrec and refractory τref

time constants. The initial values were selected so the spike model resulted in a spike rate

(r) which fell within a desired range (1 > r > 0.5) per ms, consistent with established

physiological limits [92]. Lower and upper limits for ϑ and τm were first established by

changing one parameter while keeping the other constant till the lower and upper spike rate

was reached, respectively. For the kernel model, the two other time constants, τrec and τref

were limited within a range (0.8∗τm : 1.2∗τm). Once these limits were established, parameter

values were manually changed, and spike outputs were generated for different combinations.

The combinations which yielded the outputs with the highest classification accuracy (see the

Machine learning classification section later in this work) were selected as final parameter

values.

2.4.4 Machine Learning based Classification

For the classification of the sonarhead state based on echo waveforms, two echo representa-

tions were used: spectrograms and spike-timing plots (figure 2.7). The spectrogram represen-

tations of the echoes were computed from the final segments of the recordings that contained

only echoes and were each 9 ms (3,600 samples) in length. Each spectrogram representation

(256-point Hann window spaced without overlap) contained 64 samples along the frequency

dimension and 14 samples the temporal dimension. The spike-timing plot represented the
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spike-model output by a matrix with dimensions ( 100×3,600) corresponding to the number

of frequency channels and time samples respectively. Each entry in the matrix had a binary

(0 or 1) value to represent a spike or no spike.

Studies on the precision of spike timing in the mammalian auditory system have used phase

locking as a measure of temporal precision [93] and have found it to be limited to the upper

frequency of 4 kHz [94, 95, 96, 97, 98]. To mimic this biological precision and also reduce the

dimensions of these spike arrays, bin sizes of 0.25 ms corresponding with the 4 kHz frequency

limit were selected. The high sample rate spike-train representations were reduced from

3,600 to 36 samples along the temporal dimension using a simple binning process where any

number of spikes in a bin (100 samples or 0.25 ms) was represented by “1” while absence of

spikes was represented by “0”. The time of spike occurrences in this 100 × 36 vector were

used to create a 100 × 9 vector, since a maximum of nine spikes occurred in each given

frequency channel for the current echo data set.

Figure 2.7: Example inputs for the Machine Learning Classifier: a) Spectrogram of Echo.
b) Spike timing plot

To classify the echoes, a deep neural network that consisted of a simple linear stack of layers

was created with the Keras sequential model [99] that utilizes the Tensorflow [100] core. Our

network consisted of seven dense layers (including the input and output layers) and three
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dropout layers. The first six dense layers incorporated rectified linear unit (ReLu) activation

whereas the output layer used sigmoid activation to get predicted label values of 0 and 1

to represent “static” and “dynamic” respectively. Weight updates during network training

were calculated with the Adam optimizer algorithm [101].

The classifier’s input data, both spectrograms and spike-time representations, was randomly

split into a training set (72.25% of the samples), a validation set (12.75%), and a hold-

out testing set (15% of the samples). The classification accuracy on the validation set

(i.e., “validation loss”) was monitored after each training epoch and the model parameters

where saved whenever it reached a new minimum value. The number of training epochs

was limited to 300. However, if the validation loss increased for more than 50 successive

epochs, training was stopped early to prevent over-training. Classification performance was

quantified irrespective of the selected classification threshold by virtue of receiver operating

characteristic (ROC) curves. The area under the curve (AUC) of the ROC curve provided a

single scalar metric for the classification performance for all classification test conducted.

2.5 Results

The recorded foliage echoes showed little similarity as quantified by pairwise correlation

coefficients (figure 2.8). The average value of the correlation coefficient (0.53) was similar to

what was obtained in the numerical study that involved completely random and uncorrelated

impulse responses (0.51). Furthermore, the values of the correlation coefficient did not

depend on distance between the respective echoes in time or space. The mean value for

correlations between all echoes of a given track (0.53, standard deviation 0.11, N=19,900)

was not significantly different from that obtained between neighbouring echoes only (0.54,

standard deviation 0.12, N=199, t-test, p=0.08).
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Figure 2.8: Similarity between foliage echoes quantified by pairwise correlation coefficients
for track 8. Echoes with with consecutive numbers were recorded with a time gap of 300 ms.
A distance of approximately 20 m was traversed while the 200 echoes were recorded.

The dynamic state of the sonarhead could be classified with both input representations and

over the datasets from all tracks, however, there were differences in accuracy (figure 2.9).

The classification accuracy was found to depend on dataset size, with smaller data sets

yielding better results. Using the entire dataset of 55,400 echoes for classification, the AUC

for the ROC curve was 0.56. For datasets limited to individual tracks (sizes ranging from the

smallest containing 2920 echoes to the largest with 9660 ), the mean AUC across all datasets

was 0.59 (standard deviation 0.02). For the datasets containing 420 echoes each, the average

AUC was 0.79. The different echo representations had a minor impact on the accuracy for

the large datasets, it had a major impact on the smaller 420-echo datasets (table 2.1). The
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classification performance was found to differ significantly between the BM models for the

420-echo datasets. The mean AUC from the DRNL model (mean 0.8, standard deviation

0.15, N=132) compared to the GC model (mean 0.71, standard deviation 0.12, N=132) was

higher (t=4.89, p <0.001). The classification accuracy also varied with the location of data

collection (track, figure 2.9).

Table 2.1: Classification accuracy with different echo representations.

Echo representation AUC (mean)
Spectrogram 0.69

Gammachirp-Spike Timing 0.71
DRNL-Spike Timing 0.79

Figure 2.9: Classification accuracy for the dynamic state of the sonarhead on the basis of
foliage echoes as a function of location (track) and echo representation. Classification perfor-
mance was quantified by area under the curve (AUC) of the receiver operating characteristics
(ROC). The classifications were performed on multiple subsets which contained 420 foliage
echoes each with a track being represented by N subsets (N = 6 to 23, based on track size).
All subsets contained a 50/50-split between static and dynamic sonarhead states and were
collected over a distance of approximately 20 m. Mean values (bar height) and standard
deviations (error bars) were calculated across all such subsets of the respective track. The
bar group for each track contains spike-time representation with gammachirp BM model
(black), spectrogram (gray), and spike-time representation with DRNL BM model (striped).
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Classification accuracy decreased with dataset size and this behavior was observed across

different signal representations and datasets from different locations (figure 2.10). Overall,

classification performance decreased with dataset size from a maximum mean AUC of 0.85

for 420 echoes to a man AUC of 0.6 for a dataset size of 7,980 echoes. For the larger data

sets, the training accuracy was much higher (e.g., ∼90% for 7,980 echoes) than the validation

accuracy (∼60%) indicating the presence of overtraining.

Figure 2.10: Classification performance as a function of dataset size. Classification accuracy
was quantified by the area under the ROC curve (AUC) and the data for this experiment
came from three different tracks (Track 3 – black, Track 7 – gray, Track 5 – stripes). Mean
values (bar height) and standard deviations (error bars) were calculated from N repeat trials
with the same sample size (N = 10 for 420 echo subsets, and N = 2 for 7980 echo subsets).

The classification accuracy also decreased when the physical distance between the locations

of echo collection for the training and validation datasets was increased (figure 2.11). The

classification accuracy was maximum ∼0.81 AUC when the mean recordings position of the

testing dataset were closest to those of the training set. When the test set contained out of
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sample echoes from the same location as the training set (test set comprised of echoes which

were excluded from training set but from the same location), the accuracy was between

between 0.76 and 0.81 AUC; for distances of 17 m, it decreased to chance level (0.5 AUC).

Figure 2.11: Classification accuracy (AUC) as a function of physical distance between
testing and training dataset locations. Separate datasets, containing echoes recorded from
two different physical locations were used for training and testing the classification network.
The test sets were selected with a mean distance from the training set in steps of 5 m,
from -17 m to 17 m. The mean and error bars were generated from 16 repeat trials of
the experiment, with different training and test sets while maintaining the same distances
between the datasets. Example results are shown for three different combinations of tracks
and echo representations: track 5 and spectrogram (black dashed), track 7 and DRNL BM
model (gray), track 3 and gammachirp (black solid).
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2.6 Discussion

Our results demonstrate that foliage echoes can reflect the peripheral dynamics of a biomimetic

sonar system. This finding goes beyond prior art since foliage echoes have a random na-

ture [64] that is absent in numerical [54, 56] or physical device characterizations [57, 80] as

well as in echoes from targets with simple geometry [61]. The closest prior research result

so far [61] experimented with small, artificial plants that are also unlikely to capture the

full range of variability in echoes that originate in natural environments. The pair-wise echo

correlation analysis carried out here has demonstrated that the foliage echoes in our data

set did not contain any shared deterministic patterns beyond the common sonar pulse that

was also present in the random reference. Having demonstrated the detectability of effects

due to the peripheral dynamics in echoes that represent the full extent of natural variability

establishes that bats and biomimetic sensory systems modeled after them could exploit such

effects. It does not, however, answer the question of whether such time-variant effects convey

useful sensory information and how it may be exploited.

The second major finding of this work has been that the peripheral dynamics state can

be classified using spike-based echo representations. This implies that these time-variant

effects persist through all stages of auditory processing and especially the conversion to a

sparse spike representation. Prior numerical experiments have shown spike representations

preserve spectral cues to enable direction finding in bats [102], but these cues were strong

deterministic patterns that can be captured by a dense rate code, as the researchers did

not implement a binning process to maintain higher precision of spike timing. Whereas in

our analysis, the spike representation resulted in a data reduction of 25% down from the

original size and yet the effects of the peripheral dynamics were still detectable. Research on

neuromorphic signal processing based on spikes [103, 104] has a demonstrated potential for

applications in autonomous navigation with respect to representing sensor input and carry-
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ing out motor control of a robot [105]. Furthermore, neuromorphic signal representations

and processing have been used in conjunction with vision sensors to solve the challenges of

autonomous navigation and obstacle avoidance in robots in cluttered environments [106]. A

biomimetic sonar system combined with a sparse neuromorphic signal representation could

deliver navigation in complex, natural environments in a highly parsimonious fashion. Our

results are a step in this direction since the demonstrate that even non-obvious time-variant

effects can be preserved in a sparse spike code.

In the classification experiments conducted here, the accuracy decreased when the spatial

data-collection region was widened or the distance between the collection areas of the training

and test data sets was increased. We hypothesize that this is due to changes in the vegetation

characteristics with distance that our deep-learning classifier was not able to generalize for. It

may still be that other classifiers could handle these spatial effects better than the ones used

here. For example, a “space-invariant” classifier could be created by linking two classifiers,

one for the dynamic state of the sonarhead and the other for the vegetation type. Having

this adaptability could allow a bat or a biomimetic system to extract dynamics-related echo

properties despite the variability in the foliage echoes over distance.

The basilar membrane models were found to significantly affect classification accuracy, with

the nonlinear DRNL model performing better than the linear models. A simple explanation

for this could be that the DRNL model included a larger number of parameters, although

systematic optimization of the model parameters to improve classification performance would

be a task for future work. Guidance for further refinement of the model and good parameter

values could come from future neurophysiological experiments with horseshoe bats.

Changes in the parameters of the spike models affected the classification performance, but the

maximum classification performance across both spike models after adjusting the parameters

was similar. The LIAF model contained fewer parameters compared to the Kernel model and



42 CHAPTER 2. BIOMIMETIC DETECTION OF DYNAMIC SIGNATURES IN FOLIAGE ECHOES

therefore required fewer parameter changes. We observed that the spike timing plots from

both models were similar in terms of spike counts and interspike intervals after adjusting for

performance, which offers an explanation for the likeness in classification accuracy.

In the experiments reported here, the biomimetic sonarhead repeated the same noseleaf and

pinna motions patterns throughout all data acquisitions. In contrast to that, bats are known

to alternate between rigid and non rigid motions [107] and have been shown to possess a

large range of variability at least in the rigid motions [108]. Hence, it may be hypothesized

that this variability provides a substrate for adaptation that would allow the animals to

encode more useful sensory information. Future behavioral animal studies could shed light

on whether such relationships exist. Adaptation of peripheral dynamic patterns could also

be studied with biomimetic robots like the one used here. Together, such biological and

biomimetic experiments could eventually unravel how the bat biosonar systems are able to

deal with the full complexity of the animals’ environments.
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Conclusions

3.1 Research Accomplishments

• A large dataset of biosonar foliage echoes (55,000+) was recorded from different sites

around the Virginia Tech campus using a biomimetic sonarhead. The sonarhead mim-

icked the periphery dynamics and pulse design of horseshoe bats. The recorded dataset

included an equal split of echoes, 50% corresponding to a static periphery and the other

50% to moving or ‘dynamic’ periphery.

• To generate a neuromorphic spike based representation of the echoes, an auditory signal

processing model was developed. The model included three main blocks, i) Cochlear

Model, ii) Inner hair cell model, iii) Spike response model. Three cochlear models,

listed in an increasing order of complexity: Gammatone, Gammachirp and the DRNL

model, were adapted to replicate the physiology of horseshoe bats. A simplified model

of the inner hair cells (IHCs) was used to simulate the mechanical to electric signal

transduction, with half wave rectification followed by low pass filtering of signals. To

model the spiking activity, two spiking neuron models, Leaky integrate and fire (LIAF)

and Response kernel were used. The model converted input waveforms of the echoes

into a spike based representation.

• Machine learning models were built to classify the foliage echoes between the two

43
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conditions of the periphery state: ‘static’ or ‘dynamic’. Two separate machine learning

models were developed for the different input representations, spectrograms, and spike

timing plots.

• Classification based on periphery state, as ‘static’ vs ‘dynamic’ was successfully achieved

with both signal representations. The successful identification suggests that the effects

of the peripheral dynamics exist within the complex and stochastic foliage echoes, to

the extent that they can be identified. Furthermore, the classification based on the

neuromorphic signal representation suggests that these effects persist through the au-

ditory processing which yields a sparser signal representation (25% of original size).

3.2 Discussion of Findings

Our findings suggest that the effects of peripheral dynamics can be identified within foliage

echoes, despite their complex and stochastic nature [64]. It is not yet known whether these

effects encode any additional information within these foliage echoes, and hence our result

does not point to their usefulness. However, we can speculate that the presence of these

effects indicates the possibility that peripheral dynamics may have a functional role in bat

biosonar systems within the specific context of navigation or foraging in foliage environments.

We demonstrated that the effects of the peripheral dynamics persist within the sparse neu-

ral spike representation of foliage echoes. In our model the output spike responses were

binned, which reduced the size of the spike response arrays was reduced to 25% of its orig-

inal dimension. This binning process was implemented such that the temporal precision

in our spike model more accurately represented the biology of mammalian auditory sys-

tems [94, 95, 96, 97, 98]. The successful classification of these spike representations after

the binning process indicates that these effects may exist within the neural spikes in the
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bat brains. Therefore some information contained in echoes due to these effects may be

available to the bat for behavioural decisions. Our results add to prior findings which em-

ployed numerical experiments to show that spike representations can preserve spectral cues

in biosonar echoes to enable direction finding in bats [102]. However, this prior study did

not employ a binning process and the directional cues were strong deterministic patterns

that can be captured by a dense rate code.

These findings have potential applications in the development of autonomous robots which

can use biomimetic hardware in conjunction with neuromorphic software to achieve au-

tonomous mobility in complex cluttered environments. This combination of hardware and

software can build upon existing efforts which have implemented spike based signal pro-

cessing [103, 104] in autonomous navigation of robots. Research has demonstrated that

neuromorphic signal processing can be utilized in autonomous navigation applications to

represent sensor input and can that such sensory input can be used to control a robot [105].

Exciting recent research has been in the development of an autonomous robot which uses

neuromorphic hardware in the form of a dynamic vision sensor, and combined with a spiking

neural network based neuromorphic processor to effectively tackle some autonomous navi-

gation challenges such as obstacle avoidance in cluttered environments [106]. Our results

hold promise that a similar approach using biomimetic hardware and acoustic sensors may

be possible in the future.

The biomimetic sonarhead in our experiment used the same simplified pinna and noseleaf

motions for the entire dataset, however bats are known to be capable of different types of

movements, classified as rigid and non rigid [107]. It has also been shown that the rigid

motions show a large range of variability in the rigid motions [108]. Therefore the potential

exists for different motions to be adapted to specific tasks which could enable greater infor-

mation encoding within foliage echoes. Future behavioral studies of bats can shed further
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light on this aspect, and that can then be incorporated into biomimetic reproductions to

allow an even deeper analysis of their biosonar systems.

Our results indicated towards a “scene specificity”, as the classifier was more effective in

classifying echoes from the same location as compared to a larger data set with significant

variation in the locations where the echoes were recorded. This result suggested that any

potential advantages of these dynamics may be limited to the context of a particular sur-

rounding if the bat brain similarly fails to adapt to such changes. In this case, the bat would

need to readjust to different surroundings to exploit any benefits from these dynamics.

3.3 Suggestions for Future Work

• Whereas our results demonstrated that the presence of the effects of dynamics can be

identified within foliage echoes, they do not provide any insight into their potential

usefulness to a bat. Further study of these echoes, from an information theoretical

perspective can potentially demonstrate whether these effects encode additional infor-

mation within these signals.

• Basilar membrane models were found to have an effect on the classification accuracy

of the echoes. An analysis of how different basilar membrane models affect output

classification, and how model parameters can be optimized for improved classification

performance was not undertaken in this study. However, that remains a point of in-

terest for future research. Since the models in our analysis used values for certain

physiological parameters based on other mammalian cochlea in the absence of horse-

shoe bat data, updating those parameters to more closely represent horseshoe bats’

physiology could enable a better understanding of these effects.
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• The parameters of the spike models used to simulate the spiking activity of the auditory

were found to affect the output classification accuracy. In this study, parameters were

optimized roughly using a manual optimization process. An exhaustive parameter

search in conjunction with an optimization algorithm that uses classification accuracy

as feedback can potentially lead to improved performance and may be of interest in

the future.

• Bats are capable of executing a number of different and highly complex motions when

they deform their pinna and noseleaf, whereas in the experiments here, a simplified

movement was implemented. There exists a possibility that different ear motions are

suited in certain contexts, and the correct pairing may enable better understanding

of the effects of these motions in foliage echoes. Hence further behavioral research of

bats, and their incorporation into the biomimetic experiement remains of interest.

• Development of a machine learning classifier which can exceed the performance achieved

here can be another potential task for future work. Better classification accuracy may

enable an improved qualitative understanding of how the effects of these dynamics

appear in echoes, based on which aspects of the signals the classifier uses to identify

differences. We also found that our machine learning model failed to generalize with

larger datasets which contained echoes from different areas, however building a better

machine learning model which is robust to the variation within the echoes may be

possible.

• Our results showed that the effects of these dynamics exist in foliage echoes. Whereas

the usefulness of such effects, and the mechanisms through which they potentially

encode information is yet unknown. However, in the absence of that understanding,

studies into potential uses of the effects due to these dynamics are possible. An idea

would be a study on the impact of dynamics’ effects on detection and classification
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tasks.
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Appendix A

First Appendix

A.1 Location Data

Table A.1: Location data.

Track number Location Number of echoes
1 Stadium Woods 2,940
2 Stadium Woods 5,460
3 Stadium Woods 9,660
4 Grove Lane 5,460
5 Grove Lane 8,820
6 Corporate Research Center 4,200
7 Inventive Lane 9,660
8 Inventive Lane 4,200
9 Corporate Research Center 2,520
10 Inventive Lane 2,520

A.2 Classification Accuracy with Data Size

Table A.2: Classification accuracy with different dataset sizes.

Dataset Size AUC (mean)
54,600 0.56
2,920 0.59
420 0.79
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A.3 Correlation of Simulated Echoes
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Figure A.1: The similarity between simulated “echoes” was estimated through the calcu-
lation of the correlation between the recordings. The correlation coefficient was calculated
between 200 simulated echoes generated through a convolution of the emitted pulse with
artificial impulse responses

The baseline correlation was validated by a numerical experiment A.1, where we generated

artificial foliage impulse responses from point reflectors. The amplitudes of point reflectors

were drawn from a gaussian distribution and their timing was based on a poisson distribu-

tion. The correlation between these impulse responses was very low (0.17). The correlation

between these artificial impulse responses convolved with the emission pulse, to generate

simulated “echoes’’, and the average correlation was found to be 0.51, which matches our
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data.



Appendix B

Auditory Model Code (MATLAB)

B.1 Master file

%% Master

%% Loading Data Set

%load ( ' fu l l_data.mat ' ) %TODO f o r Fu l l data

data_range = 'Mix ' ;

BM_model = 1 ;

SR_model = 2 ;

f o r q = 1 :2 %Two Loops f o r S t a t i c and Dynamic s e t s

i f q == 1

f i l e = f u l l _ s t a ;

count = 1 ;

e l s e

f i l e = ful l_dyn ;

count = 2 ;

end

%% Center Frequenc ie s Se t t i ng

min_f = 20 e3 ; % Minimum Frequency

max_f = 45 e3 ; % Maximum Frequency
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nChan = 100 ; % Number o f channe l s

f s = 400 e3 ; % Sampling ra t e Fs in Hz

[ fc , ERB] = fc_ERB_hb( min_f , max_f , nChan) ;

subt = 1 ;

rg1 = [10802 + ( subt ∗210) : 10802+(( subt+1)∗210 -1) ] ; %s t a t i c range

rg2 = [10911 + ( subt ∗210) : 10911+(( subt+1)∗210 - 1) ] ;%dynamic range

i f q == 1

data_mat = double ( f i l e (6401 :10000 , rg1 ) ) ;

e l s e

data_mat = double ( f i l e (6401 :10000 , rg2 ) ) ;

end

nData = s i z e ( data_mat , 2 ) ;

N = 3600 ;

t = 1/ f s : 1/ f s :N/ f s ;

%% Models ' Parameters

% BM' s Parameters

leveldBSPL = 50 ;

coef_b = 1 .019 ; % I n c r e a s i n g or dec r ea s ing o f b means i n c r e a s i n g

or dec r ea s ing ERB

coef_c = -3 ; % Contro l s the degree o f asymmetry in gammachirp ,

when c=0, gammachirp=gammatone

coef_GTGC = [ coef_b , coef_c ] ;

coef_d = 3 . 1 ; %4 .2040 3 . 1 ; % Linear gain c o e f 1

coef_e = -0 . 6 ; %-0 .4791 ; % Linear gain c o e f 2

coe f_f = 1 .17274 ; % Non- Linear bandwidth broken s t i c k n o n l i n e a r i t y

c o e f 1

coef_g = 0 .0113 ; % Non- Linear bandwidth broken s t i c k n o n l i n e a r i t y

c o e f 2

coef_h = 1 .4030 ; % a1 Broken - s t i c k n o n l i n e r i t y c o f f i c i e n t s
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coe f_i = 0 .8192 ; % a2 Broken - s t i c k n o n l i n e r i t y c o f f i c i e n t s

coe f_j = 1 .6191 ; % b1 Broken - s t i c k n o n l i n e r i t y c o f f i c i e n t s

coef_k = -0 .8187 ; % b2 Broken - s t i c k n o n l i n e r i t y c o f f i c i e n t s

coe f_l = -0 .6021 ; % c1 Broken - s t i c k n o n l i n e r i t y c o f f i c i e n t s

coef_m = 0 ; % c2 Broken - s t i c k n o n l i n e r i t y c o f f i c i e n t s

coef_DRNL = [ coef_d , coef_e , coef_f , coef_g , coef_h , coef_i , coef_j ,

coef_k , coef_l , coef_m ] ;

BM_par = [N, f s , nChan , leveldBSPL , coef_GTGC , coef_DRNL ] ;

% SRM' s Parameters

V_rest = 0 ; % r e s t i n g membrane p o t e n t i a l [V]

V_reset = 0 ;%-1 e - 6 ; % a f t e r - p o t e n t i a l h y p e r p o l a r i z a t i o n [V]

VarTheta = 13 .5e - 6 ; % sp ike th r e sho ld [V] %GC 13 .5e - 6 ; %DR

G_m = 1 .67e +2; % membrane conductance [ S ] (MAP parameter human)

Tau_m = 0 .0065 ; % membrane time constant [ s ] (MAP parameter f o r

human) 0 .0065 f o r Kernel

SRM_par = [N, f s , nChan , V_rest , V_reset , VarTheta , G_m, Tau_m ] ;

% Entropy ' s Parameters

dt = 0 .5e - 3 ; % Time bin f o r sp ike t r a i n entropy c a l c %TODO

T = 9e - 3 ; % Word length f o r sp ike t r a i n entropy c a l c TODO i f

adding z e ro s 14

ENT_par = [N, f s , nData , dt , T ] ;

%% Model

pa r f o r i = 1 : nData

data_mat ( : , i ) = data_mat ( : , i ) - mean( data_mat ( : , i ) ) ; % Zero

mean c o r r e c t i o n

data = commonbandpass ( min_f , data_mat ( : , i ) , max_f , f s ) ; % Low

Pass F i l t e r

normal i ze r = sq r t (sum( data . ^2) ) ;
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data = data . / normal i ze r ;

% B a s i l a r Membrane Displacement Function

[BM_out ( : , : , i ) ] = BM_BOX(BM_model , data , BM_par, fc , ERB) ; % 1 : GT

, 2 : GC, 3 : DRNL

[ IHC_out ( : , : , i ) ] = IHC_BOX(BM_out ( : , : , i ) , f s , nChan) ;

temp = IHC_out ( : , : , i ) ;

f o r j = 1 : nChan

div = s q r t (sum( temp ( : , j ) . ^2) ) ;

temp ( : , j ) = temp ( : , j ) . / div ;

end

%% Zeroing IS I s t a r t to e l im ina t e low f r e q content at s t a r t i f s i g n a l

temp ( 1 : 9 0 0 , 1 : 3 5 ) = ze ro s (900 ,35) ;

IHC_out ( : , : , i ) = temp ;

% Spik ing Act i v i ty Function

[SRM_out ( : , : , i ) , Tspikes ( : , i ) , V1 ( : , : , i ) ] = SRM_BOX(SR_model ,

IHC_out ( : , : , i ) , SRM_par) ; % 1 : Leaky IAF , 2 : Kernel

end

f c = f c ;

i f count == 1

SRM1 = SRM_out ;

[ w1 , t ra in1 , ST1 ] = ISI_func_ST (SRM1) ;

V_st = V1 ;

e l s e

SRM2 = SRM_out ;

[ w2 , t ra in2 , ST2 ] = ISI_func_ST (SRM2) ;

V_dy = V1 ;
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end

end

s1 = sum(SRM1) ;

s1 = reshape ( s1 , nChan , nData ) ;

s1 = sum( s1 ' ) . /nData ;

s2 = sum(SRM2) ;

s2 = reshape ( s2 , nChan , nData ) ;

s2 = sum( s2 ' ) . /nData ;

i f s i z e (w1 , 2 ) - s i z e (w2 , 2 ) == 0

same = 1

e l s e i f s i z e (w1 , 2 ) - s i z e (w2 , 2 )>= 0

w2 = [ w2 ze ro s ( s i z e (w2 , 1 ) , s i z e (w1 , 2 ) - s i z e (w2 , 2 ) , s i z e (w2 , 3 ) ) ] ;

e l s e

w1 = [ w1 ze ro s ( s i z e (w1 , 1 ) , s i z e (w2 , 2 ) - s i z e (w1 , 2 ) , s i z e (w1 , 3 ) ) ] ;

end

%% F i l e Prep f o r CNN

nChan = 100 ;

nData = length (w1) ;

s l eng th = s i z e (w1 , 2 ) ;

s l eng th2 = s i z e (ST1 , 1 ) ;

s t = reshape (w1 , nData , nChan , s l eng th ) ;

s t_ labe l = ones ( nData , 1 ) ;

dy = reshape (w2 , nData , nChan , s l eng th ) ;

dy_label = ze ro s ( nData , 1 ) ;
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data = [ s t ; dy ] ;

l a b e l = [ s t_ labe l ; dy_label ] ;

%% Reshaped output - 2

f o r i = 1 : nData

b1 ( i , : ) = reshape (w1 ( : , : , i ) ' , 1 , nChan∗ s l eng th ) ;

b2 ( i , : ) = reshape (w2 ( : , : , i ) ' , 1 , nChan∗ s l eng th ) ;

end

f o r i = 1 : nData

g1 ( i , : ) = reshape (ST1 ( : , : , i ) , 1 , nChan∗ s l eng th2 ) ;

g2 ( i , : ) = reshape (ST2 ( : , : , i ) , 1 , nChan∗ s l eng th2 ) ;

end

B.2 Best Frequency Distribution

f unc t i on [ fc , ERB] = fc_ERB_hb( min_f , max_f , nChan)

% Generate the Q value p l o t as per [ Acoust ic f l o w . . . p a r a m e t e r s ]

% Constants :

f r = 4e4 ; % f o v e a l f r e q . [ Hz ] - Change to 40 l a t e r

q0 = 10 ; % ra t i o n o f maximum ( qr =400) to minimum ( q0=10) -10dB - f i l t e r

q u a l i t y

qr = 400 ;

% Q -10dB va lues and ERB

% Parameters :

m = [ 3 .850547786150128e+18 3 .051156234741211e +03] ; % ( f<=f r f>f r )

f 0 = [ min_f max_f ] ;

% f <= f r
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q10_low = @( f c ) ( qr - q0 ) . ∗(m(1) . ^(( f 0 (1 ) - f c ) . /( f 0 (1 ) - f r ) ) - 1) . /(m(1) -1) +

q0 ; %f o r f i g

% f > f r

q10_high = @( f c ) ( qr - q0 ) . ∗(m(2) . ^(( f 0 (2 ) - f c ) . /( f 0 (2 ) - f r ) ) - 1) . /(m(2) -1) +

q0 ; %f o r f i g

% Calcu la te Step Factor

% Formulas : Q=f c /BW=f c /ERB, now , i /ERB=1/ f c ∗Q. and step=( i n t e g r a t i o n o f i /ERB)

/no o f channel

% f a c t o r to ad jus t f o r 10dB bandwidth (0 . 5 ) -> 3 dB bandwidth -> ERB (0 .887 ) :

kappa = 2∗ .887 ;

% f <= f r

invERB_1 = @( f c ) ( kappa. / f c ) . ∗ ( ( qr - q0 ) . ∗(m(1) . ^(( f 0 (1 ) - f c ) . /( f 0 (1 ) - f r ) ) - 1)

. /(m(1) -1) + q0 ) ;

% f > f r

invERB_2 = @( f c ) ( kappa. / f c ) . ∗ ( ( qr - q0 ) . ∗(m(2) . ^(( f 0 (2 ) - f c ) . /( f 0 (2 ) - f r ) ) - 1)

. /(m(2) -1) + q0 ) ;

s t ep_fac tor = ( i n t e g r a l ( invERB_1 , f0 (1 ) , f r )+ i n t e g r a l ( invERB_2 , f r , f 0 (2 ) ) ) /nChan

;

% Calcu la te the ac tua l c en t r e Frequency f c

% Find cente r f requency f o r each channel index nummerical ly :

LMAX = 100 ; % max number o f i t e r a t i o n s :

i_ch = 0 : nChan - 1 ;

f c = ze ro s (nChan , 1 ) ; % p r e a l l o c a t e c ente r f r e q s

f o r i = 1 : nChan

f c ( i ) = f0 (1 ) ; % s t a r t b i s e c t i n g at f0_l

df = f0 (2 ) - f 0 (1 ) ;
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f o r l = 1 :LMAX

df = df /2 ; %h a l f o f df

lb_mid = f c ( i ) + df ;

i f lb_mid > f r

G_mid = i n t e g r a l ( invERB_2 , lb_mid , f 0 (2 ) ) . / s t ep_fac tor - i_ch ( i ) ;

end

i f lb_mid < f r

G_mid = ( ( i n t e g r a l ( invERB_2 , f r , f 0 (2 ) ) + i n t e g r a l ( invERB_1 , lb_mid ,

f r ) ) . / s t ep_fac tor ) - i_ch ( i ) ;

end

i f (G_mid>0)

f c ( i ) = lb_mid ;

end

i f abs ( df )<=eps

break

end

end

end

f c = f l i p u d ( f c ) ;

f c = fc ' ;

% s p l i t f c in f c <= f r & f c > f r :

idx_l = f i n d ( f c <= f r ) ;

idx_h = f i nd ( f c > f r ) ;

%f c <= f r

invERB_1 = ( kappa. / f c ( idx_l ) ) . ∗ ( ( qr - q0 ) . ∗(m(1) . ^(( f 0 (1 ) - f c ( idx_l ) ) . /( f 0 (1 ) -

f r ) ) - 1) . /(m(1) -1) + q0 ) ;

% f > f r

invERB_2 = ( kappa. / f c ( idx_h ) ) . ∗ ( ( qr - q0 ) . ∗(m(2) . ^(( f 0 (2 ) - f c ( idx_h ) ) . /( f 0 (2 ) -

f r ) ) - 1) . /(m(2) -1) + q0 ) ;
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%invERB2 placed f i r s t because the number o f channe l s are ass ingned from 3000

to 1 ( not 1 to 3000) in the paper

ERB = 1 . / [ invERB_1 invERB_2 ] ;

end

B.3 Basilar Membrane Model

f unc t i on [BM_out ] = BM_BOX( model , data , BM_par, fc , ERB)

% Parameters

N = BM_par(1 ) ;

f s = BM_par(2 ) ;

nChan = BM_par(3 ) ;

leveldBSPL = BM_par(4 ) ;

coef_b = BM_par(5 ) ;

coef_c = BM_par(6 ) ;

coef_d = BM_par(7 ) ;

coef_e = BM_par(8 ) ;

coe f_f = BM_par(9 ) ;

coef_g = BM_par(10) ;

coef_h = BM_par(11) ;

coe f_i = BM_par(12) ;

coe f_j = BM_par(13) ;

coef_k = BM_par(14) ;

coe f_l = BM_par(15) ;

coef_m = BM_par(16) ;

BM_out = ze ro s (N, nChan) ; % Empty BM Output Array

t = 1/ f s : 1/ f s :N/ f s ; % Time ax i s
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i f model == 1 | | model == 2

% Gammatone / Gammachirp

data = leveldBSPL∗ data ∗0 .00014 ∗20 ; %%20 has been m u l t i p l i e d

to make the amp same as DRBL

[GT_GC_out] = GT_GC_Func( model , t , f s , nChan , fc , ERB, coef_b , coef_c ,

data ) ;

BM_out = GT_GC_out;

e l s e i f model == 3

% DRNL

data = leveldBSPL∗ data ∗0 .00014 ;

[DRNL_out ] = DRNL_Func( f s , nChan , fc ' , ERB' , coef_d , coef_e , coef_f ,

coef_g , coef_h , coef_i , coef_j , coef_k , coef_l , coef_m , data ) ;

BM_out = DRNL_out ;

end

end

B.3.1 Linear Models

f unc t i on [GT_GC_out] = GT_GC_Func( model , t , f s , nChan , fc , ERB, coef_b , coef_c

, data )

imp = ze ro s ( l ength ( t ) ,nChan) ;

n = 4 ;

tpt = (2∗ p i ) / f s ;

ga in = ( ( ( coef_b ^2) . ∗ERB.∗ tpt ) . ^n) . /6 ; %%See f a s t gammatone ( )

f o r i = 1 : nChan

env = gain ( i ) ∗( f s ^3)∗ t . ^(n - 1 ) . ∗ exp ( -2∗ p i ∗ coef_b∗ERB( i ) ∗ t ) ;

i f model == 1

c a r r i e r = cos (2∗ p i ∗ f c ( i ) ∗ t ) ;
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e l s e i f model == 2

c a r r i e r = cos (2∗ p i ∗ f c ( i ) ∗ t+coef_c ∗ log ( t ) ) ;

end

imp ( : , i ) = env. ∗ c a r r i e r ;

end

GT_GC_out = f f t f i l t ( imp , repmat ( data , 1 , nChan) ) ;

B.3.2 Non Linear Model

f unc t i on [DRNL_out ] = DRNL_Func( f s , nChan , fc , ERB, coef_d , coef_e , coef_f ,

coef_g , coef_h , coef_i , coef_j , coef_k , coef_l , coef_m , data )

f o r i =1:nChan

l i n _ f c = f c ( i ) ;

lin_bw = ERB( i ) ;

l in_ga in = 10 . ^( coef_d+coef_e ∗ log10 ( f c ( i ) ) ) ;

l i n_ lp_cuto f f = l i n _ f c ;

n l in_fc_before = l i n _ f c . /1 ; % 0 .97%In Brian too lbox i t same as l i n _ f c

n l in_fc_a f t e r = nl in_fc_be fore ;

nlin_bw_before = lin_bw. /( c o e f _ f . ∗ f c ( i ) . ^coef_g ) ; %bandwidth o f non l in ea r

part be f o r e broken s t i c k n o n l i n e a r i t y . Note non l in ea r bandwidth i s

always lower than l i n e a r bandwidth. d e f a u l t s va lue i s [ 1 .17274 0 .0113

]

nlin_bw_after = nlin_bw_before ;

n l in_lp_cuto f f = nl in_fc_be fore ;

% Broken - s t i c k n o n l i n e a r i t y c o e f f i c i e n t s : a , b , c

nlin_a = 10 . ^( coef_h+coe f_i ∗ log10 ( f c ( i ) ) ) ;

nlin_b = 10 . ^( coe f_j+coef_k∗ log10 ( f c ( i ) ) ) ;

nl in_c = 10 . ^( coe f_l+coef_m∗ log10 ( f c ( i ) ) ) ; %the r e s u l t s i s 0 . 25 which
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s a t i s f y Brian ' s Toolbox and othe r s

% Compute gammatone c o e f f i c i e n t s f o r the l i n e a r s tage

[ GTlin_b , GTlin_a ] = FOD_GF( l in_fc , 2 , f s , lin_bw ) ;

% Compute c o e f f i c i e n t s f o r the l i n e a r s tage lowpass , use 2nd order

Butterworth.

[ LPlin_b , LPlin_a ] = butte r (2 , l i n_ lp_cuto f f /( f s /2) ) ;

% Compute gammatone c o e f f i c i e n t s f o r the non - l i n e a r s tage

[ GTnlin_b_before , GTnlin_a_before ] = FOD_GF( nl in_fc_before , 3 , f s ,

nlin_bw_before ) ;

[ GTnlin_b_after , GTnlin_a_after ] = FOD_GF( nl in_fc_af te r , 3 , f s ,

nlin_bw_after ) ;

% Compute c o e f f i c i e n t s f o r the non - l i n e a r s tage lowpass , use 2nd order

Butterworth.

[ LPnlin_b , LPnlin_a ] = butte r (2 , n l in_lp_cuto f f /( f s /2) ) ;

% - - - - - - - - - - - - - - l i n e a r part - - - - - - - - - - - - - - - -

y_lin = data . ∗ l in_ga in ;

% Gammatone f i l t e r i n g

y_lin = f i l t e r (GTlin_b , GTlin_a , y_lin ) ;

% Mult ip l e LP f i l t e r i n g

l in_nlp = 4 ;

f o r j = 1 : l in_nlp

y_lin = f i l t e r ( LPlin_b , LPlin_a , y_lin ) ;

end
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% - - - - - - - - - - - - non - l i n e a r part - - - - - - - - - - - - - -

y_nlin = f i l t e r ( GTnlin_b_before , GTnlin_a_before , data ) ;

% Broken s t i c k n o n l i n e a r i t y

y_nlin = s i gn ( y_nlin ) . ∗min ( nlin_a ∗abs ( y_nlin ) , nlin_b ∗( abs ( y_nlin ) ) . ^

nl in_c ) ;

y_nlin = f i l t e r ( GTnlin_b_after , GTnlin_a_after , y_nlin ) ;

% Then LP f i l t e r i n g

nl in_nlp = 3 ;

f o r j = 1 : nl in_nlp

y_nlin = f i l t e r ( LPnlin_b , LPnlin_a , y_nlin ) ;

end

DRNL_out ( : , i ) = y_lin + y_nlin ;

end

end

B.4 Spike Model

f unc t i on [SRM_out, Tspikes , V] = SRM_BOX( model , IHC_out , SRM_par)

% Parameters

N = SRM_par(1 ) ;

nChan = SRM_par(3 ) ;

SRM_out = ze ro s (N, nChan) ;

V = ze ro s (N, nChan) ;

Nspikes = ze ro s (nChan , 1 ) ;

Tspikes = ze ro s (nChan , 1 ) ;
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i f model == 1

% Leaky Integra te -And- F i re

f o r ch = 1 : nChan

[SRM_out ( : , ch ) , V( : , ch ) , Nspikes ( ch ) , Tspikes ( ch ) ] = SRM_L_func(

SRM_par, IHC_out ( : , ch ) ) ;

end

e l s e i f model == 2

% SRM response s Kernel

f o r ch = 1 : nChan

[SRM_out ( : , ch ) , V( : , ch ) , Nspikes ( ch ) , Tspikes ( ch ) ] = SRM_K_func(

SRM_par, IHC_out ( : , ch ) ) ;

end

end

%{

f o r ch = 1 : nChan

f i g u r e ( ch ) ;

subplot (211)

p l o t ( t ,V( : , ch ) )

s t r =[num2str ( Nspikes ( ch ) ) , ' sp ike ( s ) ' ] ;

t ex t ( t (end) /2 .5 , ( 7 / 8 ) ∗(max(V( : , ch ) )+min (V( ch , : ) ) ) , s t r ) ;

t i t l e ( [ ' Leaky Integra te -And- Fire , channel # ' , num2str ( ch ) , ' , ' , num2str ( f c (

ch ) /1000) , ' kHz ' ] )

x l a b e l ( ' Time [ s ] ' )

y l a b e l ({ ' Membrane ' , ' Potent ia l ' , ' [V] ' } )

subplot (212)

p l o t ( t , IHC_out ( : , ch ) )

t i t l e ( [ ' Calcium current form the IHC , channel # ' , num2str ( ch ) , ' , ' , num2str (

f c ( ch ) /1000) , ' kHz ' ] )

x l a b e l ( ' Time [ s ] ' )

y l a b e l ({ ' Current ' , ' [A] ' } )
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end

%}

end

B.4.1 LIAF Model

f unc t i on [ SpMat , V_plot , Nspikes , T] = SRM_L_func(SRM_par, I )

% Parameters

N = SRM_par(1 ) ;

f s = SRM_par(2 ) ;

dt = 1/ f s ; % time step [ s ]

t_end = N/ f s ; % s i g n a l time length [ s ]

V_rest = SRM_par(4 ) ;

V_reset = SRM_par(5 ) ;

VarTheta = SRM_par(6 ) ;

R_m = (1/SRM_par(7 ) ) ; % membrane r e s i s t a n c e (1/G_m) [Ohm] ;

Tau_m = SRM_par(8 ) ;

V_spike = VarTheta+abs ( VarTheta - V_reset ) ;

% I n i t i a l Condit ions

i = 1 ;

V = ze ro s (1 ,N) ;

V_plot = V;

SpMat = V;

V( i ) = V_rest ;

V_plot ( i ) = V_rest ;

% I n t e g r a t i o n : Tau∗dV/dt = V_rest - V( t ) + R∗ I ( t )

Nspikes = 0 ;
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f o r k = dt : dt : t_end - dt

V_inf = V_rest + R_m∗ I ( i ) ;

V( i +1) = V_inf+(V( i ) - V_inf ) ∗exp ( - dt/Tau_m) ;

i f V( i +1) > VarTheta

V( i +1) = V_reset ;

V_plot ( i +1) = V_spike ;

SpMat( i +1) = 1 ;

Nspikes = Nspikes +1;

e l s e

V_plot ( i +1) = V( i +1) ;

end

i = i +1;

end

i f Nspikes == 0

T = 0 ;

e l s e

T = Nspikes /t_end ;

end

end

B.4.2 Kernel Model

f unc t i on [ SpMat , V_plot , Nspikes , T] = SRM_K_func(SRM_par, I )

% Parameters

N = SRM_par(1 ) ;

f s = SRM_par(2 ) ;

dt = 1/ f s ; % time step [ s ]
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t_end = N/ f s ; % s i g n a l time length [ s ]

V_rest = SRM_par(4 ) ;

V_reset = SRM_par(5 ) ;

VarTheta = SRM_par(6 ) ;

R_m = (1/SRM_par(7 ) ) ; % membrane r e s i s t a n c e (1/G_m) [Ohm] ;

Tau_m = SRM_par(8 ) ;

Tau_refr = Tau_m∗1 ; % r e f r a c t o r y time constant [ s ]

Tau_rec = Tau_m∗1 ; % recovery time constant [ s ]

V_spike = VarTheta+abs ( VarTheta - V_reset ) ;

Eta_0 = V_rest - V_reset ;

% I n i t i a l Condit ions

i = 1 ;

V = ze ro s (1 ,N) ;

V_plot = V;

SpMat = V;

V( i ) = V_rest ;

V_plot ( i ) = V_rest ;

K_Eta = V' ;

K_Kap = ze ro s (N, 1 ) ;

Thres = VarTheta∗ ones (N, 1 ) ;

% I n t e g r a t i o n : V( t ) = Eta ( t - t i ) + i n t [ Kappa( s ) . I ( t - s ) ds ]

Nspikes = 0 ;

t i (1 , Nspikes +1) = 0 ;

f o r k = dt : dt : t_end - dt

t = k - t i (1 , Nspikes+1) ;

i f t >= 0 && t i (1 , Nspikes+1) �= 0

K_Eta( i ) = V_rest - Eta_0∗exp ( - t /Tau_refr ) ;

Thres ( i ) = VarTheta+(VarTheta - V_reset ) ∗exp ( - t /Tau_refr ) ;
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e l s e

K_Eta( i ) = V_rest ;

end

i f t > 0

K_Kap( i ) = (R_m/Tau_m) ∗(1 - exp ( - t /Tau_rec ) ) ∗ I ( i ) ∗Tau_m∗(1+exp ( - t /

Tau_m) ) ;

end

V( i ) = K_Eta( i ) + K_Kap( i ) ;

i f V( i ) > Thres ( i )

V( i ) = V_reset ;

V_plot ( i ) = V_spike ;

SpMat( i +1) = 1 ;

Nspikes = Nspikes +1;

t i (1 , Nspikes+1) = k ;

e l s e

V_plot ( i ) = V( i ) ;

end

i = i +1;

end

i f Nspikes == 0

T = 0 ;

e l s e

T = Nspikes /t_end ;

end

end
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Machine Learning Code (Python)

C.1 Classifier Model

#Dependencies

import keras

from ten so r f l ow . keras . models import Sequent i a l

from ten so r f l ow . keras . l a y e r s import Dense , Dropout , F lat ten

from ten so r f l ow . keras . c a l l b a c k s import EarlyStopping

from ten so r f l ow . keras . c a l l b a c k s import ModelCheckpoint

from ten so r f l ow . keras . models import load_model

import s c ipy . i o as sp i o

import numpy as np

from sk l e a rn . mode l_se lect ion import t r a i n _ t e s t _ s p l i t

import matp lo t l i b . pyplot as p l t

import t en so r f l ow as t f

from random import rand int

# Import Data

# load the data , s p l i t between t r a i n and t e s t s e t s

X = sp io . loadmat ( ' ISI_track4_subt18_GTK_data . mat ' , squeeze_me=True ) [ ' data_r2 ' ]

y = sp io . loadmat ( ' ISI_16_blockIHC_track7_subt10_GCK_label . mat ' , squeeze_me=

True ) [ ' l a b e l ' ]

85
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#shape be f o r e r e s i z i n g

p r in t (np . shape (X) )

p r i n t (np . shape ( y ) )

#pr in t (X[ 5 0 0 , : , : ] )

#X = X[ : , : , 0 : 2 0 ]

p r i n t (np . shape (X) )

p r i n t ( ' cut shape i s : ' , np . shape (X) )

## Reshape c o r r e c t l y

#X = X. reshape (X. shape [ 0 ] , X. shape [ 1 ] ∗ X. shape [ 2 ] )

p r i n t (np . shape (X) )

#pr in t (X[ 5 0 0 , : ] )

seedno = randint (1 , 30)

# s p l i t t i n g X and y in to t r a i n i n g and t e s t i n g s e t s

X_train , X_test , y_train , y_test = t r a i n _ t e s t _ s p l i t (X, y , t e s t _ s i z e= 0 .15 ,

random_state=seedno )

## Standard ize Data

from sk l e a rn . p r ep ro c e s s i ng import StandardSca ler

s c a l e r = StandardSca ler ( )

# Fit on t r a i n i n g s e t only .

s c a l e r . f i t ( X_train )

# Apply trans form to both the t r a i n i n g s e t and the t e s t s e t .

X_train = s c a l e r . t rans form ( X_train )



C.1. CLASSIFIER MODEL 87

X_test = s c a l e r . t rans form ( X_test )

#pr in t (X[ 5 0 0 , : ] )

# Neural network

model = Sequent i a l ( )

model . add ( Dense (512 , input_dim=1000 , a c t i v a t i o n= ' r e l u ' ) ) #16

model . add ( Dropout ( 0 . 4 0 ) ) # no drop

model . add ( Dense (256 , a c t i v a t i o n= ' r e l u ' ) )

model . add ( Dropout ( 0 . 4 0 ) ) # no drop

model . add ( Dense (256 , a c t i v a t i o n= ' r e l u ' ) ) #32

model . add ( Dropout ( 0 . 3 5 ) )

model . add ( Dense (64 , a c t i v a t i o n= ' r e l u ' ) ) # 32

model . add ( Dropout ( 0 . 3 5 ) )

model . add ( Dense (64 , a c t i v a t i o n=' r e l u ' ) )

model . add ( Dropout ( 0 . 3 0 ) )

model . add ( Dense (8 , a c t i v a t i o n=' r e l u ' ) )

model . add ( Dense (1 , a c t i v a t i o n= ' s igmoid ' ) )

model . compi le ( l o s s=' b inary_crossentropy ' , opt imize r='adam ' , met r i c s =[ ' accuracy

' ] )

# simple e a r l y stopping

es = EarlyStopping ( monitor=' va l_ lo s s ' , mode=' min ' , verbose =1, pat i ence =100)

mc = ModelCheckpoint ( ' best_ANN_model_ISI . h5 ' , monitor=' val_accuracy ' , mode='

max ' , verbose =1, save_best_only=True )

# Train the model

h i s t o r y = model . f i t ( X_train , y_train , batch_size =128 , s h u f f l e=True ,

v a l i d a t i o n _ s p l i t =0.15 , epochs =500 , verbose =0, c a l l b a c k s =[ es , mc ] )

p l t . p l o t ( h i s t o r y . h i s t o r y [ ' accuracy ' ] )
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p l t . p l o t ( h i s t o r y . h i s t o r y [ ' val_accuracy ' ] )

p l t . t i t l e ( ' Model accuracy ' )

p l t . y l a b e l ( ' Accuracy ' )

p l t . x l a b e l ( ' Epoch ' )

p l t . l egend ( [ 'DR Train ' , 'DR Test ' ] , l o c=' upper l e f t ' )

p l t . show ( )

p l t . p l o t ( h i s t o r y . h i s t o r y [ ' l o s s ' ] )

p l t . p l o t ( h i s t o r y . h i s t o r y [ ' va l_ lo s s ' ] )

p l t . t i t l e ( ' Model l o s s ' )

p l t . y l a b e l ( ' Loss ' )

p l t . x l a b e l ( ' Epoch ' )

p l t . l egend ( [ ' Train ' , ' Test ' ] , l o c=' upper l e f t ' )

p l t . show ( )

# load the saved model

saved_model = load_model ( ' best_ANN_model_ISI . h5 ' )

# eva luate the model

tra in_acc = saved_model . eva luate ( X_train , y_train , verbose =0)

test_acc = saved_model . eva luate ( X_test , y_test , verbose =0)

p r in t ( ' t ra in_acc ' , t ra in_acc )

p r i n t ( ' test_acc ' , test_acc )

from sk l e a rn . met r i c s import roc_curve

X_test = t f . c a s t ( X_test , t f . f l o a t 3 2 )

y_pred_keras = saved_model . p r e d i c t ( X_test ) . r a v e l ( )

fpr_keras , tpr_keras , thre sho lds_keras = roc_curve ( y_test , y_pred_keras )

from sk l e a rn . met r i c s import auc

auc_keras = auc ( fpr_keras , tpr_keras )

p r i n t ( auc_keras )
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# comparing ac tua l re sponse va lue s ( y_test ) with pred i c t ed response va lue s (

y_pred )

from sk l e a rn import metr i c s

#pr in t (” r f model accuracy ( in %) : ” , met r i c s . accuracy_score ( y_test , y_pred_keras

) ∗ 100)

#y_pred_test = bnb . p r e d i c t ( X_test )

#pr in t (” Naive_Bayes model accuracy ( in %) : ” , met r i c s . accuracy_score ( y_test ,

y_pred_test ) ∗ 100)

#j o b l i b . dump( cv . best_estimator_ , ' . . / . . / rf_cv . pkl ' )

p l t . f i g u r e (1 )

p l t . p l o t ( [ 0 , 1 ] , [ 0 , 1 ] , ' k - - ' )

p l t . p l o t ( fpr_keras , tpr_keras , l a b e l='AUC ( area = { : . 3 f }) ' . format ( auc_keras ) )

p l t . x l a b e l ( ' Fa l se Alarm ' )

p l t . y l a b e l ( ' Hit ' )

p l t . t i t l e ( 'ROC curve ' )

p l t . l egend ( l o c=' bes t ' )

p l t . show ( )
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