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Hardy-space Function Theory on Finitely Connected Planar Domains

Moises Daniel Guerra Huaman

(ABSTRACT)

Hardy space scalar theory on the disk is now classical. Some extensions have been done,

one of them is the approach done by Donald Sarason using Laurent series. We present the

more complicated function theory, without the use of either power series or Laurent series,

for finitely-connected planar domains.
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Chapter 1

Introduction

The classical Hardy space over the unit disk, denoted as Hp(∆), consists of those analytic

functions f on the unit disk ∆ satisfying the growth condition

sup
r<1

{∫ π

−π

|f(reiθ)|pdθ
}

< ∞.

Hardy space scalar function theory on the disk is now classical, this goes back to Hardy,

Riesz (who introduced it with the name of G. H. Hardy in 1923) and Fejér. All this theory

was capped off by Beurling’s theorem. There resulted a nice setting for the study of the

interplay of function theory and operator theory. The shift operator S : l2 → l2, is defined

as follows

S(a0, a1, a2, . . . ) = (0, a0, a1, a2, . . . ),

has a function-theoretic representation f(z) 7→ zf(z). Beurling’s theorem describes the in-

variant subspaces for S (giving a explicit of them description, making use of no eigenvectors)
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with a concrete example radically different from the finite-dimensional case (which describes

the invariant subspaces determined by eigenvectors and generalized eigenvectors).

The study of Hardy spaces has been extended in many directions, one of them is the work

done by Donald Sarason in 1965, he worked with Hp(A) functions where A = {r0 < |z| < 1}.

He also introduces the concept of a modulus automorphic function, which is simply a function

F that is analytic on the slit disk {reiθ : r0 < r < 1, 0 < θ < 2π} and F (z + 2πi) = F (z),

such that

lim
θ↑2π

F (reiθ) = α lim
θ↓0

F (reiθ)

where |α| = 1 (so |F (eiθ)| is single valued subharmonic on the annulus r < |z| < 1). With

this he finds analogues of the canonical factorization of an Hp function into a Blaschke

product, singular inner function, and outer function.

For the case of a general domain one cannot make use of either power series or Laurent series.

The involved function theory is more complicated due to the presence of the space N , which

is described as follows. Take Ω a finitely-connected planar domain Γ = ∂Ω = Γ0∪Γ1∪· · ·∪Γm

and R(Ω) the set of rational functions whose poles are off Ω ∪ Γ, then there are m linear

independent measures ν1, . . . , νm on Γ orthogonal to ReR(Ω) and of the form

dνj = Qjdωq, 1 ≤ j ≤ m

where Qj is C∞ on Γ, Qj is nonnegative on Γj and nonpostive on Γk, k 6= j. Take N to be

the complex span of such Qj. When N = 0 we are in the disk case.

The main goal of this thesis is to develop all the preliminary results needed leading to a
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self-contained explanation of the Main Result: there is an isometric isomorphism between

the Hardy space Hp(Ω) and a closed subspace of Lp(Γ) (Γ = the boundary of Ω). This in turn

is one of the main prerequisites required for the understanding of the analog of Beurling’s

theorem for the multiply connected domain case. After a preliminary chapter reviewing

needed basic material concerning measure and integration and the theory of Banach spaces,

Chapter 3 introduces the notion of subharmonic functions that will help to give a proof of

the Dirichlet problem. The fourth chapter introduces the notion of harmonic measures and

presents the main results of Hardy spaces for the unit disk, namely Theorem 4.2.3. Finally

the last chapter presents the generalization of the results given in Chapter 4 for the case

of a finitely-connected planar domain providing us our Main Result. Solving the Dirichlet

problem is one of the tools for understanding this. This Main Result establishes a fertile

interplay between measure theory and complex analysis as in Rudin’s ”Real and Complex

Analysis”.



Chapter 2

Preliminaries

In this chapter we introduce the basic facts that will be taken for granted through the

development of this thesis.

2.1 Measure and Integration

If X is a set, then the collection of all subsets of X forms a ring, using the operations

A + B = (A ∪B)− (A ∩B).

AB = A ∩B.

A σ-ring of subsets of X is a subring of the ring of all subsets of X which is closed under

the formation of countable unions.

Suppose that X is a locally compact Hausdorff topological space. Take the smallest σ-ring
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of subsets of X which contains every compact Gδ, where a Gδ set is a set which is the

intersection of a countable number of open sets. The members of this σ-ring are called

Baire subsets. Also the Borel subsets of X are the members of the smallest σ-ring of

subsets of X which contains all compact subsets. It is important to note that in Euclidian

space, every compact (closed and bounded) set is a Gδ; hence, if X is a closed subset of

Euclidian space, the Baire and Borel subsets of X coincide. When X is the real line or a

closed interval in the real line, the ring of Baire (Borel) subsets of X may also be described

as the σ-ring generated by the half-open intervals [a,b).

Consider a locally compact Hausdorff space X. A positive Baire (Borel) measure on X

is a function µ whose domain consist of Baire (Borel) subsets of X and whose range is [0,∞]

and has the following property: if Ai is a disjoint countable collection of Baire (Borel) sets

in X, then

µ

(
∞⋃
i=0

Ai

)
=

∞∑
i=0

µ(Ai).

A positive Baire measure is called finite if µ(X) < ∞ is finite.

Now suppose X is the real line or a closed interval. Consider F a monotone increasing

function on X which is continuous from the left:

F (x) = sup
t<x

F (t).

Define a function µ on semi-closed intervals [a, b) by

µ([a, b)) = F (b)− F (a).

Then µ has a unique extension to a positive Baire measure on X. The measure is finite if
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and only if F is bounded. If X is the real line, then every positive Baire measure on X

arises in this way from a left-continuous increasing function F . If X is a closed interval, a

monotone function on X is necessarily bounded. Thus, every finite positive Baire measure

on X comes from such a increasing function. If X is the real line or an interval, the measure

induced by F (x) = x is called Lebesgue measure.

Given a locally compact Hausdorff space X, a Baire (Borel) function on X is a complex-

valued function f on X such that f−1(S) is a Baire set for each Baire (Borel) set S in the

plane. A simple Baire function for µ is a complex-valued function f on X of the form

f(x) =
n∑

i=1

αiχEi
(x)

where

1. α1, . . . , αn are complex numbers;

2. E1, . . . , En are disjoint Baire sets of finite µ-measure;

3. χE denotes the characteristic function of the set E.

The simple Baire functions form a vector space over the field of complex numbers. For a

simple Baire function f we define

∫
fdµ =

n∑
i=1

αiµ(Ei).

If f is a simple function, so is |f | and
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∣∣∣∣∫ fdµ

∣∣∣∣ ≤ ∫ |f |dµ

A Baire function f is called integrable with respect to µ if there exists a sequence of functions

fn such that

1. each function fn is a simple Baire function for µ;

2.

lim
m,n→∞

∫
|fm − fn|dµ = 0;

3. fn converges to f in measure; i.e., given ε > 0,

lim
n→∞

µ({x : |f(x)− fn(x)| ≥ ε}) = 0.

If f is integrable, then for any such sequence fn the sequence
∫

fndµ converges and the limit

of this sequence (which is independent of fn) is denoted by
∫

fdµ. Denote the class of µ

integrable functions by L1(dµ). Then L1(dµ) is a vector space and f 7→
∫

fdµ is a linear

functional on L1.

The Baire function f is in L1(dµ) if and only if its real part and imaginary part are in L1(dµ),

or equivalently if and only if |f | is in L1(dµ). When f is in L1(dµ),

∣∣∣∣∫ fdµ

∣∣∣∣ ≤ ∫ |f |dµ.
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A subset S of X has µ-measure zero if for each ε > 0 there is a Baire set containing S

with µ(A) < ε. Any phenomenon which occurs except on a set of µ-measure zero is said to

happen almost everywhere (relative to µ).

If fn is a sequence of integrable functions such that the limn→∞ fn(x) = f(x), and if there is

a fixed integrable function g such that |fn| ≤ |g| for each n, then f is integrable and

∫
fdµ = lim

n→∞

∫
fndµ

This is called the Lebesgue Dominated Convergence Theorem.

Another important result is the following. Suppose µ is finite and f is a non-negative Baire

function on the product space X ×X. If f(x, y) is integrable in x for each fixed y and in y

for each fixed x, then

∫ [∫
f(x, y)dµ(x)

]
dµ(y) =

∫ [∫
f(x, y)dµ(y)

]
dµ(x).

This is a weak version of Fubini’s Theorem.

If p is a positive number, the space Lp(dµ) consists of all Baire functions f such that |f |p is

in L1(dµ). If

f ∈ Lp(dµ), g ∈ Lq(dµ), and 1/p + 1/q = 1

then (fg) ∈ L1(dµ) and (Hölder’s inequality)
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∣∣∣∣∫ fgdµ

∣∣∣∣ ≤ (∫ |f |pdµ
)1/p(∫

|g|qdµ
)1/q

.

Let us note something about Lp(dµ) when X is compact and µ is a finite measure. In this

case, every continuous function on X is integrable and the space of continuous functions is

dense in L1(dµ); i.e., for all f ∈ L1(dµ) and ε > 0, there is a continuous function g such that

∫
|f − g|dµ < ε.

Also if p ≥ 1, then Lp(dµ) is contained in L1(dµ), and the continuous functions are a dense

subspace of Lp(dµ): ∫
|f − g|pdµ < ε

where f ∈ Lp(dµ) and g is a continuous function.

Let µ1 and µ2 be positive Baire measures on X. We say that µ1 is absolutely continuous

with respect µ2 if every set of measure zero for µ2 is a set of measure zero for µ1. The

Radon-Nikodym Theorem states the following about finite measures: if µ1 and µ2 are

finite, then µ1 is absolutely continuous with respect to µ2 if and only if

dµ1 = fdµ2

where f is some non-negative function in L1(dµ2). We say µ1 and µ2 are mutually singular

if there are disjoint Baire sets B1 and B2 such that

µj(A) = µj(A ∩Bj), j = 1, 2,
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for every Baire set A. The generalized Lebesgue Decomposition Theorem states the

following: if µ1 and µ2 are any two finite positive Baire measures, then µ1 is uniquely

expressible in the form

µ1 = µa + µs

where µa is absolutely continuous with respect to µ2, and µs and µ2 are mutually singular.

That is,

dµ1 = fdµ2 + dµs

where f ∈ L1(dµ2), and µs and µ2 are mutually singular. One usually calls f the derivative

of µ1 with respect to µ2.

Let X be a closed interval, and µ2 Lebesgue measure. Suppose µ is the positive measure

determined by the increasing function F . Then F is differentiable except on a set of Lebesgue

measure zero, and if f = dF/dx, then f is Lebesgue integrable and

dµ = fdx + dµs

where µs is mutually singular with Lebesgue measure. This means that µs is determined by

an increasing function Fs such that dFs/dx = 0 almost everywhere with respect to Lebesgue

measure.

A finite real Baire measure on X is a countably additive and real-valued function µ on the

class of Baire sets. One way to construct such a measure is by forming the difference of two

finite positive Baire measures

µ = µ1 − µ2.
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The Jordan decomposition theorem states that this is the only kind there is. In fact,

given such a real measure µ there are disjoint Baire sets B1 and B2 and finite positive

measures µ1 and µ2 carried on B1 and B2, respectively, such that µ = µ1−µ2. This splitting

(with B1 and B2) is unique up to sets of measure zero. The positive measure µ = µ1 + µ2

is called total variation of µ, denoted by |µ|. The notions of absolutely continuous and

singular can be extended for real measures as follows. We say that the real measure µ1 is

absolutely continuous with respect to µ2 if |µ1| is absolutely continuous with respect to |µ2|;

similarly we say that µ1 and µ2 are singular if |µ1| and |µ2| are singular. In the case where

X is a closed interval on the real line, the finite real Baire measures on X are the ones

induced by real-valued functions of bounded variation which are continuous from the left.

The Jordan decomposition for such a measure corresponds to the canonical expression for a

function of bounded variation as the difference of increasing functions.

Finite complex Baire measures are defined similarly. We can write such a measure µ as a

function of the form µ1 + µ2, where µ1 and µ2 are finite real Baire measures.

2.2 Banach Spaces

Let X be a real or complex vector space. A norm on X is a non-negative real valued function

‖ · ‖ on X such that:

1. ‖x‖ ≥ 0 if and only if x = 0;
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2. ‖x + y‖ ≤ ‖x‖+ ‖y‖;

3. ‖λx‖ = |λ|‖x‖.

A real (complex) normed linear space is a real (complex) vector space X together with a

specified norm on X. On such a space one has a metric ρ defined by:

ρ(x, y) = ‖x− y‖.

If X is complete in this metric we call X a Banach Space. Completeness, then, means that

if {xn} is a sequence of elements of X such that:

lim
m,n→∞

‖xm − xn‖ = 0

there exists an element x in X such that:

lim
n→∞

‖x− xn‖ = 0.

Now, consider a locally compact Hausdorff space S and let us fix a positive Baire measure

µ on S. Take a number p ≥ 1 and let X = Lp(dµ).

Define the Lp-norm of an f in Lp to be

‖f‖p = (

∫
|f |pdµ)1/p.

This is not a norm, since we may have ‖f‖p = 0 without f = 0. We will agree to identify two

functions in Lp(dµ) which agree almost everywhere with respect to µ. So strictly speaking

elements of Lp(dµ) will be equivalence classes but we will continue with the same notation.

Therefore with this convention Lp(dµ) is a Banach space using the Lp-norm (p ≥ 1).
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We write L∞(dµ) for the space of bounded Baire functions with µ-essential sup norm:

‖f‖∞ = µess sup
x
|f(x)|

which means the infimum of

sup
x
‖g(x)‖

as g ranges over all bounded Baire function which agree with f almost everywhere with

respect to µ.

Let X be a Banach space. Then X∗ stands for the set of all linear functionals F on X which

are continuous:

The set X∗ forms a vector space with the usual sum of function and product of a scalar and

a function. It is known that the linear functional F is continuous if and only if it is bounded,

i.e., if and only if there is a constant K ≥ 0 such that

|F (x)| ≤ K‖x‖

for every x in X. The smallest such K is called the norm of F , i.e.,

‖F‖ = sup
‖x‖≤1

|F (x)|.

The set X∗ together with this norm becomes a Banach space. and is called the dual space

of X.

If we take S to be a locally compact space, µ a positive Baire measure on S and 1 ≤ p < ∞,

then
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(Lp(dµ))∗ = Lq(dµ)

where 1/p + 1/q = 1, if p > 1, and q = ∞ if p = 1.

It is also true that for any continuous linear functional F on Lp there exists a g ∈ Lq such

that

F (f) =

∫
fg dµ, for f ∈ Lp

and in that case

‖F‖ = ‖g‖q.

Let us consider the special case when S is a compact Hausdorff space and X = C(S), the

space of all continuous real (or complex) valued functions on S. By defining the norm as

‖f‖∞ = sup
x∈S

|f(x)|,

C(S) is a Banach space and for F ∈ (C(S))∗ we have:

lim
n→∞

‖x− xn‖∞ = 0 implies |F (xn)− F (x)| → 0.

The dual space of C(S) can be identified (isomorphically and isometrically) with the space

of real (complex) Baire measures on S. This is the statement of the Riesz representation

theorem which can be formulated as follows. If S is a compact Hausdorff space, then every

bounded linear functional φ on C(S) is represented by a unique complex Borel measure µ,

in the sense that

φ(f) =

∫
fdµ for f ∈ C(S).
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The norm of ‖φ‖ equals to the total variation of µ on S. If µ is complex, the total variation

of µ on S is best thought of as the norm of the corresponding functional on C(S), since the

relation of this number to the total variations of the real and imaginary parts of µ is rather

involved. Of course in case µ is a positive measure, the norm of φ is µ(S). It is also true,

in the result above, that for such a measure µ there is a complex Borel function h such that

|h| = 1 and

dµ = hd|µ|.

Now, suppose X is a Banach space. The following result is very important. If F is a bounded

linear functional on a subspace Y of X, then F can be extended to a linear functional on

X which has the same norm as F . This result is called the Hahn-Banach extension

theorem.

Over the conjugate space X∗ we can consider the weak-star topology which is defined as

follows. For F0 ∈ X∗, let

x1, x2, . . . , xn ∈ X and ε > 0.

Define

U = {F ∈ X∗ : |F (xk)− F0(xk)| < ε, k = 1, . . . , n}.

Such a set U is a basic weak-star neighborhood of F0 and the union of such neighborhoods

U is an weak-star open set. Then we have a topology on X∗ such that for each x ∈ X the

function F 7→ F (x) is continuous on X∗. In this topology a sequence {Fn} converges to F
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in the weak-star topology if and only if

lim
n→∞

Fn(x) = F (x)

for each x in X.

The following result is also very important. If B is the closed unit ball in X∗

B = {F ∈ X∗; ‖F‖ ≤ 1},

then B is compact in the weak-star topology. This result is called Banach-Alaoglu theo-

rem. We will use this result as follows. If {Fn} is a sequence of linear functionals on X with

‖Fn‖ ≤ 1, then this sequence has a weak-star cluster point, i.e., there exists an F ∈ X∗ with

‖F‖ ≤ 1 such that F (x) is a cluster point of the sequence {Fn(x)} for every x ∈ X. As an

example, if we have {µn} is a sequence of positive Baire measures on the compact space V

and if µn(V ) ≤ 1 for each n, then there exists a finite measure µ such that
∫

fdµ is a cluster

point of {
∫

fdµn} for every f ∈ C(V ).



Chapter 3

The Dirichlet problem on a domain Ω

In this chapter our main purpose will be to solve the Dirichlet problem for a domain whose

boundary components are nontrivial. For such purpose I will follow the approach described

in [1], i.e., we will use a limiting procedure involving subharmonic functions to solve our

problem.

3.1 Some results about the Poisson Formula for the

disk case Ω = ∆

Given a domain Ω on the Riemann sphere, and given u a continuous real-valued function

on Γ = ∂Ω, the Dirichlet problem consists in finding a function f which is continuous on

CL(Ω) = Ω ∪ Γ such that f satisfies the following conditions:

17
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1. The function f is harmonic on Ω.

2. The function f equals u on Γ.

I will follow the approach described in [1] in order to give reasonable conditions that are

sufficient to solve the Dirichlet problem.

We consider first the case where Ω is the unit disk ∆.

Let us recall that the Poisson kernel P for the unit disk is the function given by

P (r, θ) =
1− r2

1− 2r cos(θ) + r2
(3.1)

where 0 < r < 1 and 0 ≤ θ ≤ 2π. The Poisson kernel has the following properties:

P (r, θ) = Re

(
1 + z

1− z

)
, z = reiθ. (3.2)

P (r, θ) > 0. (3.3)

1

2π

∫ π

−π

P (r, θ)dθ = 1, 0 < r < 1. (3.4)

for δ > 0, lim
r→1

max{P (r, θ) : δ ≤ |θ| ≤ π} = 0. (3.5)

If we consider u a real-valued continuous function on the unit circle T, where

T = {eiθ : −π ≤ θ ≤ π}
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and we set

Pu(re
it) =

1

2π

∫ π

−π

P (r, t− θ)u(eiθ)dθ

then the function Pu is a harmonic function of z = reit. In fact, because of (3.2) we have

Pu(re
it) = Re

[
1

2π

∫ π

−π

(
1 + z

1− z

)
u(eiθ)dθ

]

and so Pu is the real part of an analytic function which implies Pu is harmonic. What it is

important is to find out the behavior of Pu(z) as z tends to a point in T. For that purpose

we have the following theorem.

Theorem 3.1.1. Given λ ∈ T, then

lim
z→λ

Pu(z) = u(λ)

that is, Pu is continuous on ∆ ∪ T and agrees with u on T, where ∆ = {z : |z| < 1}.

Proof. Let λ = eis. By continuity of u, given ε > 0, choose 0 < δ < π such that if |θ− s| < δ

implies |u(eiθ) − u(eis)| < ε/2. Let t be such that |t − s| < δ/2. Because of (3.5), for this δ

there exists r1 such that, if r1 ≤ r < 1, then

A = max{P (r, θ) : δ/2 ≤ |s| ≤ π} <
ε

4m
(3.6)

where

m = max
|θ|≤π

{|u(θ)|}.
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Then, because of (3.3), (3.4) and (3.6)

|Pu(re
it)− u(eis)| =

∣∣∣∣ 1

2π

∫ π

−π

P (r, t− θ)u(eiθ)dθ − 1

2π

∫ π

−π

P (r, t− θ)u(eis)dθ

∣∣∣∣
=

∣∣∣∣ 1

2π

∫ π

−π

P (r, t− θ)
[
u(eiθ)− u(eis)

]
dθ

∣∣∣∣
≤ 1

2π

∫ π

−π

P (r, t− θ)|u(eiθ)− u(eis)|dθ

=

(
1

2π

∫
|θ−s|<δ

+
1

2π

∫
δ≤|θ−s|<π

)
P (r, t− θ)|u(eiθ)− u(eis)|dθ

≤ ε/2 + 2mA

< ε/2 + ε/2 = ε.

when |s− t| < δ/2 and r ≥ r1, which is what we wanted.

Definition 3.1.1. Let µ be a measure on T and set

Pµ(reit) =

∫
T
P (r, t− θ)dµ(θ). (3.7)

Note that because of (3.4) and Fubini’s Theorem we have

1

2π

∫ π

−π

Pµ(reit)dt =
1

2π

∫ π

−π

[∫
T
P (r, t− θ)dµ(θ)

]
dt

=

∫
T

[
1

2π

∫ π

−π

P (r, t− θ)dt

]
dµ(θ)

=

∫
T
dµ(θ) = Pµ(0).

Thus Pµ is continuous and satisfies the mean value property at 0, so Pµ is harmonic.

Theorem 3.1.2. Let dµ = vdθ + dα the Lebesgue decomposition of µ where v ∈ L1(T, dθ)

and dα is singular with respect to dθ. Then

lim
r→1

Pµ(reit) = 2πv(t) a.e.dt (3.8)
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Proof. This proof basically follows the same ideas as the proof of Theorem 3.1.1.

Theorem 3.1.3. A harmonic function u in ∆ can be written as

u(reiθ) =

∫
T
P (r, θ − t)dµ(t) (3.9)

for some measure µ on T, if and only if

sup
r<1

{∫ π

−π

|u(reiθ)|dθ
}

is finite. (3.10)

If (3.9) holds, then µ is uniquely determined. Moreover, if u is also positive then µ is a

non-negative measure.

Proof. Assume (3.9) holds, then because (3.3) and (3.4)

1

2π

∫ π

−π

|u(reiθ)|dθ ≤ 1

2π

∫
T
P (r, θ − t)dθd|µ(t)|

=

∫
T
d|µ(t)| = ‖µ‖, the total variation of µ.

Conversely, assume (3.10) is true. Define µρ on T given by

dµρ(t) =
1

2π
u(ρeit)dt, 0 < ρ < 1.

These µρ are measures on T and by (3.10) we have

‖µρ‖ ≤ c, 0 < ρ < 1

for some constant c that without loss of generality we can assume is 1. Then, by the

example given at the end of Chapter 2, there is a measure µ on T which is a weak-star
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cluster point of {µρ}. Also since u is harmonic (and the unicity of the harmonic extension)

then u(rρeiθ) = Pu(rρeiθ) = 1
2π

∫ π

−π
P (r, θ − t)u(ρeit)dt.

Thus, by the fact that u is continuous and the last observation and considering the definition

of µρ, we have

u(reiθ) = lim
ρ→1

u(ρreiθ)

= lim
ρ→1

1

2π

∫ π

−π

P (r, θ − t)u(ρeit)dt

= lim
ρ→1

∫
T
P (r, θ − t)dµρ(t)

=

∫
T
P (r, θ − t)dµ(t).

For the unicity of µ, if there is µ0 that satisfies (3.9), then∫
T
P (r, θ − t)(dµ− dµ0) = 0

if we write µ = Re(µ) + iIm(µ) and µ0 = Re(µ0) + iIm(µ0), then∫
T
P (r, θ − t)(dRe(µ)− dRe(µ0)) + i

∫
T
P (r, θ − t)(dIm(µ)− dIm(µ0)) = 0

implies∫
T
P (r, θ − t)(dRe(µ)− dRe(µ0)) = 0, and,

∫
T
P (r, θ − t)(dIm(µ)− dIm(µ0)) = 0. (3.11)

Let ν = Re(µ− µ0) and τ = Im(µ− µ0). By (3.11)

0 = Re

∫
T

eit + z

eit − z
dν(t), |z| < 1

and so is its harmonic conjugate (chosen to be zero at the origen). So the analytic function

h(z) =

∫
T

eit + z

eit − z
dν(t)
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is identically constant and therefore 0 since h(0) = 0. But we know

h(z) =

∫
T
dν + 2

∞∑
n=1

zn

{∫
T
e−intdν(t)

}
so, ∫

T
e−intdν(t), n = 0, 1, 2, . . .

since ν is real then ν is the zero measure. Similarly τ is the zero measure, therefore µ−µ0 = 0.

Finally we know that a measure µ is positive if and only if
∫

fdµ ≥ 0 for all nonnegative

continuous function f . Now if u is positive then, because of the way µρ is been defined, µρ

is non-negative measure for each ρ and so∫
T
fdµ = lim

ρ→1

∫
T
fdµρ ≥ 0

for any nonnegative continuous function f , therefore µ is a non-negative measure.

3.2 Subharmonic Functions

We now return to the case of a general domain Ω contained in the Riemann sphere.

Definition 3.2.1. Consider Ω a domain on the sphere. A function u(z) defined for z in Ω

is subharmonic on Ω if it satisfies the following conditions:

−∞ ≤ u(z) < ∞, z ∈ Ω (3.12)

(1) u is upper semicontinuous on Ω, i.e.,

u(a) ≥ lim sup{u(z) : z → a} for all a ∈ Ω, and (3.13)
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(2) if the closed disc {z : |z − p| ≤ r} lies in Ω, then

u(p) ≤ 1

2π

∫ π

−π

u(p + reit)dt. (3.14)

It is clear that every real-valued harmonic function on Ω is subharmonic and if u and −u

are subharmonic then u is harmonic. It is also clear that the sum as well as the maximum

of two subharmonic functions are also subharmonic. A positive multiple of a subharmonic

function will be a subharmonic function as well. I will list some facts about subharmonic

functions in the following propositions that will be needed later on. A detailed explanation

of them can be found in [1].

Proposition 3.2.1. Let u be a subharmonic on Ω an let φ be a monotonically increasing

convex function on R. Then φ(u(z)) is subharmonic on Ω.

As an application of the previous proposition we have: if f is an holomorphic function on

Ω, then both log |f | and |f |q, 0 < q < ∞, are subharmonic on Ω.

Lemma 3.2.2. Let K be a compact set and let u be a function on K with values on [−∞,∞).

Then u is upper semicontinuous if and only if there is a sequence {fn} of continuous function

on K with

f1 ≥ f2 ≥ . . . and lim
n→∞

fn(z) = u(z), z ∈ K.

Proposition 3.2.3. Suppose there is a number M < ∞ such that

lim sup{u(z) : z → ζ} ≤ M for all ζ ∈ ∂Ω.

Then u(z) ≤ M for all z ∈ Ω. If u(z0) = M for some z0 ∈ Ω, then u ≡ M in Ω.
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3.3 Solution of the Dirichlet Problem

In order to solve the Dirichlet problem we will need the following fundamental result.

Proposition 3.3.1. Let F be a family of subharmonic functions satisfying the following

conditions:

for u, v ∈ F, then max(u, v) ∈ F (3.15)

if {z : |z − p| ≤ r} ⊂ Ω and if u ∈ F, then the function

s(u, z) =


u(z) if |z − p| ≥ r

Pu(z) if |z − p| < r

(3.16)

is in F. Set

v(z) = sup
u∈F

u(z) (3.17)

Then either v ≡ ∞ in Ω or v is harmonic in Ω.

Proof. First case: there exists z0 ∈ Ω such that v(z0) = ∞. Then there is a sequence {ui}

in F such that {ui(z0)} increases to ∞ as i → ∞. Let vn = max{u1, u2, . . . , un}, then by

(3.15) vn ∈ F for all n = 1, 2, . . . . So v1 ≤ v2 ≤ . . . , on all Ω and vn(z0) → ∞ as n → ∞.

Considering the disc D = {|z − z0| ≤ r} ⊂ Ω we have s(vn, z) ∈ F by (3.16). We also know

Pvn(z) =
1

2π

∫ π

−π

r2 − s2

r2 − 2rs cos(θ − t) + s2
vn(z0 + reit)dt, z = z0 + seiθ, s < r

and

a =
r2 − s2

r2 − 2rs cos(θ − t) + s2
≥ r − s

r + s
= b
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then

1

2π

∫ π

−π

a(vn − v1)(z0 + reit)dt ≥ 1

2π

∫ π

−π

b(vn − v1)(z0 + reit)dt.

Let L = 1
2π

∫ π

−π
av1(z0 + reit)dt− 1

2π

∫ π

−π
bv1(z0 + reit)dt, then, by Theorem 19.4.11 of [5], L

is finite, hence

1

2π

∫ π

−π

avn(z0 + reit)dt ≥ 1

2π

∫ π

−π

bvn(z0 + reit)dt + L

using the fact that vn is subharmonic, for z = z0 + seiθ, with s < r, we have

s(vn, z) = Pvn(z) ≥ bvn(z0) + L

thus, since vn(z0) →∞ then s(vn, z) →∞, for all z = z0+seiθ, s < r; also, since s(vn, z) ∈ F,

then

v(z) ≥ s(vn, z), for all n, |z − z0| < r

which implies v(z) = ∞, if |z − z0| < r. Thus, this implies that the set

Ω1 = {z ∈ Ω: v(z) = ∞}

is open. Also if we take a sequence {zn} of elements in Ω1 such that zn → β as n →∞, then

v(β) ≥ lim sup{v(z) : z → β} ≥ lim sup{v(zn) : zn → β} = ∞

This implies that Ω1 is closed. Since z0 ∈ Ω1 and Ω is connected, then Ω1 = Ω and, therefore,

v = ∞ in Ω.

Second case: v is finite at all points of Ω. Let a be a point of Ω and let D be a disc centered

at a whose closure lies in Ω. As in the first case, we can get un ∈ F such that u1 ≤ u2 ≤ . . . ,

on Ω, and un(a) → v(a) as n →∞.
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Claim. Using the disc D, we may assume that each un is harmonic in D. In fact, for fixed

n, by Lemma 3.2.2, there is a sequence of continuous functions {fl} such that fl decreases

to un on ∂D. Because the Dirichlet problem in the disc D is solvable then for each l there

exists a harmonic extension Fl of fl such that Fl = fl on ∂D. By Harnack’s theorem there

is a harmonic function F such that Fl → F as l → ∞ on D and F = un on ∂D. Then in

the disk D, for z = a + seis, s < r:

s(un, z) = Pun(z) =
1

2π

∫ π

−π

r2 − s2

r2 − 2rs cos(θ − t) + s2
un(a + reit)dt

=
1

2π

∫ π

−π

r2 − s2

r2 − 2rs cos(θ − t) + s2
F (a + reit)dt = F (z)

so s(un, z) is harmonic in the disc D. This concludes the proof of our claim.

Then, by Harnack’s theorem, {un} converges to a function U which is harmonic in D and

U(a) = v(a). Taking any b ∈ D, b 6= a, we can do the same as before and get wn ∈ F with

w1 ≤ w2 ≤ . . . on Ω, wn harmonic, and wn(b) → v(b) as n →∞. Since the Dirichlet problem

is solvable in the disc, then there exists rn(z) such that rn(z) is harmonic in D and equal

max{un, wn} on ∂D. But, for z = a + seis, s < r

s(tn, z) = Ptn(z) =
1

2π

∫ π

−π

r2 − s2

r2 − 2rs cos(θ − t) + s2
tn(a + reit)dt

=
1

2π

∫ π

−π

r2 − s2

r2 − 2rs cos(θ − t) + s2
rn(a + reit)dt = rn(z)

where tn = max{un, wn}. So rn(z) = s(tn, z) in D and s(tn, z) ∈ F so we may assume rn ∈ F.

Now, using Theorem 19.4.5 in [5], we can conclude that rn(b) ≥ wn(b) and

v(a) ≥ rn(a) ≥ un(a).
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Again, by Harnack’s theorem, {rn} increases to a function R that is harmonic in D, and since

R ≥ rn ≥ un in ∂D then R ≥ U in ∂D and so R ≥ U in D, but U(a) = v(a) = R(a), U = R

in D. Since U(b) = v(b) ≤ R(b) then v = R in D with R harmonic, so v is harmonic.

Definition 3.3.1. Given x ∈ ∂Ω. We will say that there is a barrier at x if for given δ > 0

it is possible to find a function b(z) satisfying the following conditions:

−b is subharmonic in Ω (3.18)

b ≥ 0 (3.19)

b(z) ≥ 1 if z ∈ Ω and |z − x| ≥ δ (3.20)

b(z) → 0 if z ∈ Ω and z → x. (3.21)

Definition 3.3.2. We will say that the set V ⊂ C is a continuum if it is closed and

connected consisting of more than one point.

Theorem 3.3.2. Let Ω be a domain an let x ∈ ∂Ω. If there is a continuum V in the

complement of Ω which contains x, then there is a barrier at x.

Proof. Let x′ be another point in V , then there is a linear fractional transformation, which

sends x to ∞ and x′ to 0. So without loss of generality we will work the case when x = ∞

and the continuum V in the complement of Ω contains both 0 and ∞. Set D = C\V ,

then Ω ⊂ D; also because of C\D = V and V is connected then, by Theorem 8.2.2 of [4],

D is simply connected and there is a single-valued branch of log(z) in the domain D. Set

R = log(D), then R is a domain, since log(z) is an open mapping and continuous. We
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can assume that if R meets the imaginary axis, then this intersection in an open set in the

imaginary line and so is the disjoint union of open intervals; moreover the sum of the length

of such intervals is at most 2π since the log(z) is analytic in the branch we have chosen and

R is in the domain where the exp(z) (the inverse of log(z)) is single valued for such selection

of the branch. So we can write:

R ∩ {it : t ∈ R} =
∞⋃

j=1

(iαj, iβj)

where

α1 < β1 < α2 < β2 < . . . and
∞∑

j=1

(βj − αj) ≤ 2π

Define

hj(z) = arg

(
z − iαj

z − iβj

)
, Re z > 0, j = 1, 2, . . . .

These hj are well defined; in fact, if

z − iαj = τ(z − iβj), τ < 0

then

0 < Re(z − iαj) = Re(τ(z − iβj)) < 0

which is a contradiction. Then
z−iαj

z−iβj
never meets the negative real axis, so arg

(
z−iαj

z−iβj

)
makes

sense. Also, because of how each hj is defined then hj is positive and harmonic on Re z > 0

and

0 <
∞∑

j=1

hj(z) < π.

Now, define

h(z) = − 1

π

∞∑
j=1

hj(z), Re z > 0.
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Let us see why the function h(z) is well defined. Note that

∞∑
j=1

hj(z) =
∞∑

j=1

arg

(
z − iαj

z − iβj

)
= Im

(
∞∑

j=1

log

(
z − iαj

z − iβj

))
.

Take any compact K not meeting the imaginary axis. Since the imaginary axis is closed

then

c = min
z∈K, j≥1

{|z − iβj|} > 0

and so ∣∣∣∣∣
∞∑

j=1

[
1− z − iαj

z − iβj

]∣∣∣∣∣ =

∣∣∣∣∣
∞∑

j=1

[
iαj − iβj

z − iβj

]∣∣∣∣∣
≤

∞∑
j=1

∣∣∣∣αj − βj

z − iβj

∣∣∣∣ ≤ 2π/c.

So
∞∑

j=1

[
z − iαj

z − iβj

− 1

]
converges absolutely and uniformly then, so for j large enough | z−iαj

z−iβj
− 1| < 1, then by

Theorem 7.1.2 of [5],
∞∑

j=1

log

[
z − iαj

z − iβj

]
converges. Thus the definition of h makes sense. We also have −1 < h(z) < 0.

We also have to notice that h is harmonic on Re z > 0. In fact, h is increasing limit of the

partial sums of its series and each hj is harmonic, and∣∣∣∣∣− 1

π

N∑
j=1

hj(z)

∣∣∣∣∣ ≤ 1.
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Consider p ∈ C and Re p > 0 and{z : |z − p| < r} for Re z > 0. Then, by the Lebesgue

dominated convergence theorem,

1

2π

∫ π

−π

h(p + reiθ)dθ = − 1

π

∞∑
j=1

1

2π

∫ π

−π

hj(p + reiθ)dθ

= − 1

π

∞∑
j=1

hj(p) = h(p).

So h satisfies the mean value property, and therefore h is harmonic.

If x ∈ (αi, βj) for some j and if {zm} is a sequence in Re z > 0 such that zm → ix, then

ix−iαj

ix−iβj
=

x−αj

x−βj
< 0 which implies

lim
m→∞

hj(zm) = π

so h is continuous with h(ix) = −1. Finally, if Re z > 0 and |zm| → ∞ then h(zm) → 0.

Define

g(z) =


−1 if Re z ≤ 0 z ∈ R

h(z) if Re z > 0 z ∈ R

Then it is clear that g is continuous in R, subharmonic in R, −1 ≤ g(z) ≤ 0 and g(z) → 0

if Re z > 0 and |z| → ∞. Now set

G(z) = g(log(z)), z ∈ D.

Then G is subharmonic in D, −1 ≤ G ≤ 0, and G(z) → 0 as |z| → ∞. It can happen that

G → 0 at some finite boundary point. To compensate for this, take {sn} real numbers in-

creasing to ∞ such that all the lines Re z = tn meet R. Let gn be the function corresponding

to Re z = tn constructed as above, set

H(z) =
∞∑

n=1

1

2n
gn(log(z)), z ∈ D
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then we have ∣∣∣∣∣
∞∑

n=1

1

2n
gn(log(z))

∣∣∣∣∣ ≤
∞∑

n=1

∣∣∣∣ 1

2n
gn(log(z))

∣∣∣∣ ≤ ∞∑
n=1

1

2n
< ∞

so the series converges uniformly which implies that H is continuous on D, subharmonic on

D, −1 ≤ H ≤ 0 and H(z) → 0 if z ∈ D and |z| → ∞. Given y a finite point in ∂D, them

log(y) is a finite point in ∂R and so gn(log(y)) = −1, for all n ≥ 0. Thus

lim sup{H(z) : z ∈ D, z → y} < 0

hence for M large enough

ρ = sup
|y|≤M

{lim sup{H(z) : z ∈ D, z → y}} < 0.

Then b(z) = ρ−1H(z) is the desired function for the barrier at x = ∞.

Now, consider h a bounded function on ∂Ω. Let us consider the following family F(h) of

subharmonic functions satisfying

lim sup{u(z) : z ∈ Ω, z → ζ} ≤ h(ζ),∀ζ ∈ ∂Ω. (3.22)

Set

v(z) = vh(z) = sup{u(z) : u ∈ F(h)}. (3.23)

Then we have the following theorem.

Theorem 3.3.3. The function v given by (3.23) is harmonic on Ω. Moreover, if h is

continuous at x ∈ ∂Ω and if there is a barrier at x then

lim
z→x

v(z) = h(x) (3.24)
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Proof. We have

lim sup{u(z) : z ∈ Ω, z → ζ} ≤ h(ζ) ≤ M = sup
ζ∈∂Ω

{h(ζ)} < ∞

then by Proposition 3.2.3

u(z) ≤ M < ∞ , z ∈ Ω

and so, by Proposition 3.3.1, v given by (3.24) is harmonic on Ω. Notice that without loss

of generality we can assume M > 0.

Using the continuity of h, given ε > 0, choose δ > 0 so that if y ∈ ∂Ω and |x− y| < δ implies

|h(x)− h(y)| < ε/2. Since there is a barrier at x then, for this δ, there is a barrier b. Now,

set

s(z) = h(z)− ε− 2Mb(z), z ∈ Ω.

Suppose y ∈ ∂Ω and |y − x| < δ, then (3.22) and continuity of h implies

lim sup{s(z) : z → y} ≤ h(x)− ε < h(y)

And, if y ∈ ∂Ω and |y − x| ≥ δ then by (3.21)

s(z) ≤ h(x)− 2M − ε < h(x)− 2M

therefore

lim sup{s(z) : z → y} ≤ h(x)− 2M ≤ h(y).
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Thus, s ∈ F(h) and so (v(z) ≥ s(z) for all z ∈ Ω. We then have

lim inf{v(z) : z → x} ≥ lim inf{s(z) : z → x}

≥ h(x)− ε.

Because ε was chosen arbitrarily, we have

lim inf{v(z) : z → x} ≥ h(x).

Similarly, if we consider the family F(−h) and set

w(z) = − sup
u∈F(−h)

{u(z)}

then w is harmonic inΩ and

lim inf{−w(z) : z → x} ≥ −h(x)

in other words,

lim sup{w(z) : z → x} ≤ h(x).

Finally, if u1 ∈ F(h) and u2 ∈ F(−h), then u1 + u2 is subharmonic in Ω and

lim sup{u1(z) + u2(z) : z → ζ} ≤ lim sup u1 + lim sup u2

≤ h(ζ) + (−h(ζ) = 0

so, by Proposition 3.2.3, u1 + u2 ≤ 0 in Ω, and therefore v − w ≤ 0 in Ω. Thus

h(x) ≥ lim sup{w(z) : z → x}

≥ lim sup{v(z) : z → x}

≥ lim inf{v(z) : z → x}

≥ h(x)
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which implies

lim
z→x

v(z) = h(x).

Corollary 3.3.4. If there is a barrier at each point of ∂Ω, then the Dirichlet problem is

solvable for Ω.

Corollary 3.3.5. If each component of ∂Ω is nontrivial, then the Dirichlet problem is solv-

able in Ω.

Now let us talk a little bit about Green’s function and some of its principal properties.

Suppose that Ω is a domain on the extended plane and that p ∈ Ω. A function g(z; p) is a

Green’s function for Ω with pole (or singularity) at p, p 6= ∞, if

1. g(z; p) is harmonic on Ω− {p}

2. g(z; p) + log |z − p| is harmonic near p

3. lim{g(z; p) : z → ζ} = 0 for all ζ ∈ ∂Ω.

If p = ∞, then (2) is modified to

g(z,∞)− log |z|, is harmonic near ∞

Proposition 3.3.6. Let Ω be a domain for which the Dirichlet problem is solvable and let

p ∈ Ω. Then Ω has a Green’s function with pole at p.
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Proposition 3.3.7. Let g be the Green’s function for Ω. Then for all pairs of points p, q in

Ω with p 6= q in Ω, we have

g(p, q) = g(q, p).



Chapter 4

Harmonic measure and Hardy spaces

on a domain Ω

In this chapter we introduce some additional concepts we need in order to resolve our main

problem. We will solve our main problem in the case our domain Ω is ∆ the unit disc. This

will be the crucial result to solve our main problem for the more general case where Ω is a

finitely connected planar domains.

4.1 Harmonic Measure

Let Ω be a domain on the extended plane for which the Dirichlet problem is solvable and

let p be a point in Ω. Given u a real-valued continuous function on Γ = ∂Ω, let U be the

37
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harmonic extension to Ω of u. Then we can define

Λ : {u : u : Γ → R, continuous} → R

by

Λ(u) = U(p)

then Λ is linear and applying the maximum principal to U we have

|U(p)| ≤ ‖u‖Γ = sup{|u(z)| : z ∈ Γ}

so

‖Λ‖ ≤ 1

then by the Riesz representation theorem there is a unique Borel real measure ωp on Γ such

that

Λ(u) = U(p) =

∫
Γ

udωp, u ∈ C(Γ).

This measure will be called the harmonic measure on Γ for p. Let us remark that if u ≥ 0

then U ≥ 0 (in fact if U < 0 then, by continuity of U , u = 0 and so U = 0 on Ω ∪ Γ, giving

us a contradiction), thus U(p) ≥ 0 and so ωp is a non-negative Borel measure. Also

‖ωp‖ =

∫
Γ

1dωp = 1(p) = 1.

We notice that ωp depends of the point p, but it can be shown that for p and q in Ω, ωp and

ωq are boundedly mutually absolutely continuous. Further, if K is a compact set in Ω, then

there is a constant M such that

ωq(E) ≤ Mωp(E), for all q ∈ K and for all measurable set E in Γ.
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For a proof of this fact see Theorem 1.6.1 of [1].

Now, let us assume that Γ = ∂Ω consist of m + 1 disjoint analytic simple connected curves.

Let p ∈ Ω and g(z; p) its Green’s function for Ω at p, set h(z) = h(z; p) the harmonic

conjugate of g(z; p) (of course this h is multivalued). Then we have that locally Q = g + ih

is analytic and its derivative is single-valued on Ω. Then we have the following three results

(whose proofs can be seen in Chapter 1, Section 6 of [1]).

Theorem 4.1.1. Suppose Ω is bounded by a finite number of disjoint analytic simple closed

curves. Then for each p ∈ Ω we have

dωp = − 1

2π

∂

∂n
g(·; p)ds

where g(·; p) is the Green’s function for Ω with pole at p, ∂
∂n

is the derivative in the direction

of outwards normal at Γ, and ds is arc length.

Theorem 4.1.2.

dωp(ζ) =
i

2π
Q
′
(ζ)dζ.

Theorem 4.1.3. Let Γ = ∂Ω consist of m + 1 disjoint analytic simple closed curves, let

p ∈ Ω, and Q as before. Then

• Q
′
does not vanish on Γ.

• Q
′
has precisely m zeros in Ω, counting multiplicity.
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4.2 Some properties of Hp(Ω)

Definition 4.2.1. Let 0 < p < ∞; a holomorphic function f on a domain Ω is in Hp(Ω)

if the subharmonic function |f(z)|p has a harmonic majorant on Ω, i.e, there is a harmonic

function v(z) such that

|f(z)|p ≤ v(z), z ∈ Ω

The function f is in H∞(Ω) if it is both holomorphic and bounded on Ω.

It is easy to see that H∞(Ω) ⊂ Hp(Ω). It can be proved that there is a unique harmonic

function uf such that

|f(z)|p ≤ uf (z), z ∈ Ω

and

uf (z) ≤ v(z), z ∈ Ω

if v is any harmonic majorant of u = |f |p. This uf will be called the least harmonic

majorant of f . In fact, consider {Ωn} a regular exhaustion of Ω. Set vn = (|f |p)|
∂Ωn

, and

Vm the corresponding harmonic extension to Ωn, for n = 1, 2, . . . . Now is n > m, then

∂Ωm ⊂ Ωn and so on ∂Ωm it holds Vm = u ≤ Vn since Vn is also harmonic on Ωm and so

Vn = Vm, on Ωm. Hence, by Theorem 19.4.5 in [5],

Vm ≤ Vn on Ωm.

We have, therefore, {Vn} is an increasing sequence on Ω that tends to ∞ or to a harmonic

function W on Ω (by Harnack’s theorem). But since f ∈ Hp(Ω), for any g harmonic majorant
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of u, and therefore, if a ∈ Ωm, m ≥ 1:

Vm(a) =

∫
∂Ωn

vmdωm,a, by definition of dωm,a

=

∫
∂Ωn

udωm,a, by definition of vm

≤
∫

∂Ωn

gdωm,a, because u ≤ g

= g(a) < ∞, by definition of dωm,a

so {Vn} tends to a harmonic function W and W ≤ g on Ω. This W is the function that we

have denoted above by uf .

Remark 4.2.1. It is important to note the following: if Ω = ∆ = {z : |z| < 1},

∆r = {z : |z| < r} for r < 1,

and f ∈ Hp(∆), then the Green’s function for ∆r with pole at 0 is

g(z; 0) = log(r)− log |z|

and Q, in Theorem 4.1.2 above, is Q(z) = log(r)− log(z) and therefore:∫
∂∆r

|f(ζ)|pdω0(ζ) = − i

2π

∫ π

−π

|f(reit)|p
[
ireit

reit

]
dt =

1

2π

∫ π

−π

|f(reit)|pdt

and {
1

2π

∫ π

−π

|f(reit)|pdt
}

tends increasingly to uf (0) as r → 1.

Definition 4.2.2. Fixed z0 ∈ Ω, set

‖f‖ =


(uf (z0))

1/p, 0 < p < ∞

sup{|f(z)| : z ∈ Ω}, p = ∞
(4.1)
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It can be shown that the function in (4.1) is a norm on Hp(Ω), 1 ≤ p ≤ ∞, and the resulting

topology does not depend on the choice of z0 ∈ Ω. Furthermore Hp(Ω) together with this

norm is a Banach space for 1 ≤ p ≤ ∞, i.e., the norm defined (4.1) is complete. (For a

detailed proof of the independence of the choice of z0 and the completeness of Hp(Ω) see

Chapter 3, Section 2 of [1]).

Now we focus our attention to Hp(∆). We start with the following elementary facts con-

cerning this conformally invariant definition of Hp(Ω). A function f holomorphic in ∆ is in

Hp(∆), 0 < p < ∞ if and only if

sup
0<r<1

{(
1

2π

∫ π

−π

|f(reit)|pdt
)1/p

}
is bounded. This follows in a straightforward way from the Remark 4.2.1. We will set

Mp(f ; r) =
(

1
2π

∫ π

−π
|f(reit)|pdt

)1/p

. It is also important to note that if φ : Ω → Ω
′

is

conformal with φ(z0) = z
′
0, then

‖f‖Hp(Ω′ ,z
′
0) = ‖f ◦ φ‖Hp(Ω,z0).

We have the following theorem that will help us to analyze the zeros of an f ∈ Hp(∆).

Theorem 4.2.1. Let f ∈ Hp(∆), 0 < p ≤ ∞, f not identically zero. Let z1, z2, . . . be the

zeros of f in ∆ repeated according to their respective multiplicities. If f has infinitely many

zeros, then they satisfy
∞∑
1

(1− |zj|) < ∞. (4.2)

If the points z1, z2, . . . satisfy (4.2) then

B(z) =
∞∏

j=1

(
−z̄j

|zj|

)(
z − zj

1− z̄jz

)
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is holomorphic in ∆ bounded by 1 which vanishes precisely at the points {zj}. Furthermore

f = BF

where F ∈ Hp(∆), ‖F‖p = ‖f‖p, and F has no zeros in ∆.

The proof of this theorem can be seen in Chapter 3, Section 3 of [1].

Proposition 4.2.2. A holomorphic function

f(z) =
∞∑
i=0

anz
n

on ∆ is in H2(∆) if and only if
∞∑
i=0

|an|2 < ∞,

and ‖f‖H2(∆) = (
∑∞

n=0 |an|2)1/2

Proof. For r < 1 we have

1

2π

∫ π

−π

|f(reit)|2dt =
∞∑

n=0

|an|2r2n

which is just an straightforward calculation. Then the result follows immediately from this

equality and the remark above.

Theorem 4.2.3. Let f ∈ Hp(∆), f not identically zero, 0 < p < ∞. Then

1. limr→1 f(reit) = f ∗(eit) exists a.e. dt

2. f ∗ ∈ Lp(∂∆, dt)



44

3.
∫ π

−π
|f(reit)− f ∗(eit)|pdt → 0 as r → 1

4. log |f(reiθ)| ≤ 1
2π

∫ π

−π
P (r, θ − t) log |f ∗(eit)|dt.

Proof. First, let us take f ∈ H2(∆), and f(z) =
∑∞

i=0 anz
n. Set

g(eiθ) =
∞∑

n=0

ane
inθ ∈ L2(∂∆, dt)

and fr(e
iθ) =

∑∞
n=0 anr

neinθ, 0 < r < 1. After a calculation we get

‖fr − g‖2
2 =

∞∑
n=1

|an|2(1− r2n)

now making r → 1 implies fr → g in L2(∂∆, 1
2π
dt), and therefore a subsequence of fr

converges almost everywhere to g. We also know that Re(f) and Im(f) are harmonic

functions, and because f ∈ H2(∆), we can deduce:

sup
0<r<1

{
1

2π

∫ π

−π

|Re(f)(reit)|dt
}

< M

and

sup
0<r<1

{
1

2π

∫ π

−π

|Im(f)(reit)|dt
}

< M

for some fixed M > 0, then applying Theorem 3.1.3 we get

Re(f)(reiθ) =

∫
T
P (r, θ − t)dµ(t) and Im(f)(reiθ) =

∫
T
P (r, θ − t)dν(t)

for measures µ and ν on T respectively. Applying Theorem 3.1.2, gives

lim
r→1

Re(f)(reiθ) = m(θ) a.e. dθ
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and

lim
r→1

Im(f)(reiθ) = n(θ) a.e. dθ

and therefore

lim
r→1

f(reiθ) = m(θ) + in(θ) a.e. dθ

but fr(e
iθ) = f(reiθ), and because a subsequence converges to g, then g = m + in, so

lim
r→1

f(reiθ) = g(θ) a.e dθ.

Next, suppose that f ∈ Hp(∆) and let us write as f = BF where B and F are as in Theorem

4.2.1, then F p/2 ∈ H2(∆) and, because of what was done at the beginning of the proof for

f ∈ H2(∆), has radial limits a.e. dθ and this define a function in L2(∂∆, dt), denoted as

(F p/2)∗.

Claim: B has radial limits a.e. dθ. In fact, setting

BN =
N∏

j=1

(
−z̄j

|zj|

)(
z − zj

1− z̄jz

)
,

then for |z| = 1, ∣∣∣∣(−z̄j

|zj|

)(
z − zj

1− z̄jz

)∣∣∣∣ =

∣∣∣∣ z − zj

1− z̄jz

∣∣∣∣
=

∣∣∣∣1z̄
(

z̄z − z̄zj

1− z̄jz

)∣∣∣∣
=

∣∣∣∣1− z̄zj

1− z̄jz

∣∣∣∣ = 1

Thus |BN | = 1 on ∂∆, N ≥ 1. Also

1

2π

∫ π

−π

|BM −BN |2dθ =
1

2π

∫ π

−π

[|BM |2 + |BN |2 + 2Re(BN B̄M)dθ

= 2

[
1−Re

(
1

2π

∫ π

−π

BN

BM

)]
dθ
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and for N > M , BN

BM
is analytic, then it satisfies the mean value property, i.e.,

1

2π

∫ π

−π

BN

BM

dθ =

(
BN

BM

)
(0) =

∏N
j=1

(
−z̄j

|zj |

)(
0−zj

1−z̄j0

)
∏M

j=1

(
−z̄j

|zj |

)(
0−zj

1−z̄j0

) =
N∏

k=M+1

|zk|.

Thus

1

2π

∫ π

−π

|BM −BN |2dθ = 2

(
1−

N∏
k=M+1

|zk|

)
since

∏∞
k=1 |zk| converges then BN → B in L2(∂∆, dθ) and therefore a subsequence of the

BN converges a.e. dθ to B on the circle, and this implies |B| = 1 and so our claim is proven.

These radial limits of B define a function B∗ is in L∞(∂∆, dθ) and |B∗| = 1 a.e. dθ. Thus,

f ∈ Hp(∆) has radial limits a.e. dθ and the limits define a function f ∗ which is in Lp(∂∆, dθ).

This concludes the proof of items 1 and 2.

If we repeat what we did at beginning of the proof, we get F
p/2
r → (F ∗)p/2 in L2(∂∆, dθ),

with F ∗ the radial limit of F . Thus,

lim sup
r→1

{Mp(f ; r)} ≤ lim sup
r→1

{Mp(F ; r)}

= ‖F ∗‖p =

{
1

2π

∫ π

−π

|F ∗(eit)|pdt
}1/p

=

{
1

2π

∫ π

−π

(
|F ∗(eit)||B∗(eit)|

)p
dt

}1/p

=

{
1

2π

∫ π

−π

|f ∗(eit)|pdt
}1/p

= ‖f ∗‖p.

On the other hand, |fr|p → |f ∗|p a.e. dθ, so by Fatou’s lemma

1

2π

∫ π

−π

lim inf{|f(reit)|p : r → 1}dt = ‖f ∗‖p
p

≤
(

lim inf

{
1

2π

∫ π

−π

|f(reit)|pdt : r → 1

})p

= (lim inf {Mp(f ; r) : r → 1})p
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therefore

lim
r→1

Mp(fr; r) = ‖f ∗‖p.

Now, define gr = |fr − f ∗|p and hr = 2p (|f ∗|p + |fr|p) then we have

1

2π

∫ π

−π

hr(e
it)dt → 2p

(
2

2π

∫ π

−π

|f ∗(eit)|pdt
)

as r → 1

and gr → 0 as r → 1. Then, by Theorem 4.17 of [8],

1

2π

∫ π

−π

gr(e
it)dt =

1

2π

∫ π

−π

|fr(e
it)− f ∗(eit)|pdt

=
1

2π

∫ π

−π

|f(reit)− f ∗(eit)|pdt → 0 as r → 1.

This conclude the proof of item 3.

To prove item 4, we do the following. Assume f(reit) 6= 0, and take ρ < 1, using the fact

that log |F (ρz)| is harmonic on the closed disc we conclude

log |f(ρreiθ)| ≤ log |F (ρreiθ)|

=
1

2π

∫ π

−π

P (r, θ − t) log |F (ρeiθ)|dt

≤ 1

2π

∫ π

−π

P (r, θ − t) log
(
|F (ρeiθ)|+ ε

)
dt

Since log(|F (ρeiθ)|+ ε) is bounded below, Fatou’s lemma can be used to justify

lim sup
ρ→1

{
1

2π

∫ π

π

P (r, θ − t) log(|F (ρeiθ)|+ ε)dθ

}
≤ 1

2π

∫ π

π

P (r, θ − t) log(|F ∗(eiθ)|+ ε)dθ
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Therefore

log |f(reiθ)| = lim sup{log |f(ρreiθ)| : ρ → 1}

≤ lim sup

{
1

2π

∫ π

−π

P (r, θ − t) log
(
|F (ρeiθ)|+ ε

)
dt : ρ → 1

}
≤ 1

2π

∫ π

−π

lim sup{P (r, θ − t) log
(
|F (ρeiθ)|+ ε

)
: ρ → 1}dt

=
1

2π

∫ π

−π

P (r, θ − t) log
(
|F ∗(eiθ)|+ ε

)
dt

=
1

2π

∫ π

−π

P (r, θ − t) log
(
|f ∗(eiθ)|+ ε

)
dt, (since |f ∗| = |F ∗|).

Now making ε → 0, we get the desired inequality.



Chapter 5

Finitely Connected Planar Domains

In this chapter we will present the main results for a finitely connected planar domain

analogous to those presented at the end of chapter 4 for the disk case.

5.1 Preliminaries for the main result

Let us take Ω a domain on the sphere whose complement relative to the sphere consists of

exactly m + 1 (closed) components, each of which is non-trivial. Then m + 1 applications

of the Riemann mapping theorem produces a one-to-one holomorphic map of Ω onto a

bounded domain whose boundary consists of m + 1 disjoint analytic simple closed curves.

This holomorphic map induces an isometry of the corresponding Hp spaces. So we may

49
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assume that Ω is a bounded domain. Thus,

Γ = ∆Ω = Γ0 ∪ · · · ∪ Γm

where Γj is an analytic simple closed curve and Γj ∩ Γk = φ if j 6= k. Let us set Γ0 equal to

the boundary of the unbounded component of the complement of Ω. Let

U0 = bounded component of S2 \ Γ0 (5.1)

and

Uj = unbounded component of S2 \ Γj, j = 1, . . . ,m. (5.2)

We notice if m = 0 then we are in the case of the unit disc ∆; from now on, we focus on the

case m ≥ 1.

Let us denote the set of rational functions whose poles are off Ω∪ Γ by R(Ω), and A(Ω) the

set of functions which are continuous on Ω ∪ Γ and analytic in Ω.

Proposition 5.1.1. Let U0, . . . ,Um be the domains defined by (5.1) and (5.2). If f ∈ Hp(Ω),

then

f = f0 + · · ·+ fm on Ω (5.3)

where fj ∈ Hp(Uj) for 0 ≤ j ≤ m.

Proof. Following the same ideas of Lemma A9 in page 224 in [11], given ε > 0, and consid-

ering

ti : [−π, π] → C, parametrization of Γi, i = 0, . . . ,m,
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we can get

si : [−π, π] → C, i = 0, . . . ,m

a smooth map such that

‖ti − si‖∞ ≤ ε.

If we let Ci = ti([−π, π]), then Ci is a smooth simple closed curve, i = 0, . . . ,m. Now take

z ∈ Ω exterior to C1, . . . , Cm and interior to C0. Let

fk(z) =
1

2π

∫
Ck

f(w)

w − z
dw, k = 0, . . . ,m.

If we take any simple closed curve homotopic to Ck then fk takes the same value. Therefore

fk is independent of the choice of Ck, and fk is holomorphic in Uk for k = 0, . . . ,m, and

fk(∞) = 0 for k = 1, . . . ,m. Moreover an application of Cauchy’s formula shows that (5.3)

is satisfied. Now fix k and take j 6= k and O a neighborhood of Γk. For z ∈ O

inf
w∈Cj ,z∈O

{|z − w|} = a > 0

so

|fj(z)| ≤ 1

2π

1

a
l(Ck) max

w∈Ck

{|f(w)|} = Mj, z ∈ O

(where l(Ck) is the arc length of Ck), therefore fj is bounded in O. From (5.3) we deduce

|fk(z)| ≤ |f(z)|+
m∑

j=1,j 6=k

|fj(z)| ≤ |f(z)|+ mM

where

M = max
1≤j≤m; j 6=k

{Mj}.
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Thus

|f(z)|p ≤ (|f(z)|+ mM)p

≤ 2p [|f(z)|p + (mM)p]

≤ 2p [|uf (z)|+ (mM)p] = h(z), z ∈ O

where h is harmonic, therefore fk ∈ Hp(O).

Now, for z not in O, we have

inf
w∈Ck,z /∈O

{|z − w|} = b > 0

thus

|fk(z)| ≤ 1

2π

1

b
l(Ck) max

w∈ Ck

{|f(w)|} = N, z /∈ O

which implies

|fk(z)|p ≤ h(z)χO(z) + NpχUk\O
(z) = r(z)

with r is harmonic, so fk ∈ Hp(Uk).

Proposition 5.1.2. If 1 ≤ p < ∞, R(Ω) is dense in Hp(Ω) and boundedly pointwise dense

in H∞(Ω); R(Ω) is uniformly dense in A(Ω).

Proof. Fix j, then Ω ⊂ Uj, and if h ∈ Hp(Uj), we have

h(z) ≤ ûh(z), for z ∈ Uj

where ûh is the least harmonic majorant of h in Uj. This implies

h(z) ≤ ûh(z), for z ∈ Ω
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with ûh harmonic on Uj (and therefore on Ω), so h ∈ Hp(Ω) and

uh(z) ≤ ûh(z), for z ∈ Ω

which implies that the Hp(Uj) norm is larger than the Hp(Ω) norm.

Now by (5.3), we have

f = f0 + · · ·+ fm on Ω.

By the analysis at the beginning of the proof we see that it is sufficient to show that for

each j = 1, . . . ,m, fj is the limit in Hp(Uj) of a sequence of functions holomorphic in a

neighborhood of Uj ∪ Γj. For this purpose, let φ be the Riemann mapping of Uj onto ∆.

Since Γj is analytic, this mapping can be extended continuously to the boundary of Uj by

Theorem 14.19 in [9]. Also φ(z) → 1 as z tend to Γj, for z ∈ Uj. Therefore by Theorem in

page 286 of [10], we can extend φ analytically and one-to-one in a neighborhood of Uj ∪ Γj.

Moreover, gj = fj ◦ φ−1 is in Hp(∆) and therefore, by Runge’s theorem, there is a function

G analytic on a neighborhood of ∆ ∪ T, with ‖G− gj‖ < ε, in Hp(∆). Thus

‖fj −G ◦ φ‖ < ε, in Hp(Uj)

and G ◦ φ is analytic in a neighborhood of Uj ∪ Γj. Now applying one more time Runge’s

theorem we can approximate G ◦φ uniformly on Uj ∪Γj by elements of R(Ω) (and therefore

approximate fj).

For p = ∞, we follows the same ideas and we get gj ∈ H∞(∆), and, applying Runge’s

theorem, there are rational functions Gjn, n = 1, 2, . . . with no poles in ∆ ∪ T such that

|Gjn(z)− gj(z)| < 1/n, for z ∈ T
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which implies

‖Gjn‖T ≤ ‖gj‖T, and lim
n→∞

Gjn(z) = gj(z), z ∈ ∆

and so the functions Fjn = Gjn ◦ φ are holomorphic in a neighborhood of Uj ∪ Γj and

sup
w∈Γj

|(Gjn ◦ φ)(z)| = ‖Gjn ◦ φ‖T ≤ ‖fj‖T

which tell us

lim
n→∞

Fj(z) = lim
n→∞

(Gjn ◦ φ)(z) = fj(z), z ∈ Uj

then, applying Runge’s theorem, we can get a sequence of functions Rnj ∈ R(Ω) such that

lim
n→∞

Rnj(z) = fj(z), z ∈ Uj.

Finally, we notice that if f ∈ A(Ω) then fj ∈ A(Uj ∪ Γj), j = 0, . . . ,m. So, doing a

process like the one above we can get a sequence of polynomials {pjn} with pjn

(
1

z−aj

)
→ fj

uniformly on Γj and hence uniformly on Γ, where aj is in the bounded component of the

complement of Γj, j = 1, . . . ,m. Also we can get a sequence {p0n} of polynomial such that

p0n → f0 uniformly on Γ0

and therefore uniformly on Γ. Set

m∑
j=1

pjn

(
1

z − aj

)
+ p0n(z) = qn(z)

then qn ∈ R(Ω) and qn → f0 + · · ·+ fm = f uniformly on Γ.

Proposition 5.1.3. If u ∈ L1(Γ, ds) and∫
Γ

u(ζ)

ζ − z
dζ = 0, z /∈ Γ
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then u = 0 a.e. ds.

Proof. Fixed j, let

gj(z) =

∫
Γj

u(ζ)

ζ − z
dζ, z /∈ Γj, j = 0, . . . ,m (5.4)

Then gj is holomorphic off Γj and gj(∞) = 0. Also from (5.4) we have

g0 + · · ·+ gm = 0, off Γ.

Also

gj = g0 + · · ·+ gj−1 + gj+1 + · · ·+ gm

and each gk, with k 6= j, is holomorphic on Γj, therefore gj is holomorphic on Γj and so, by

Liouville’s theorem, it has to be constant. But gj(∞) = 0, and hence gj ≡ 0. Now that we

have

0 = gj(z) =

∫
Γj

u(ζ)

ζ − z
dζ

then

0 = g
(n)
j (z) =

∫
Γj

u(ζ)

(ζ − z)n
dζ.

Fixed z0 /∈ Γj, considering h analytic function in some neighborhood of Γj containing z0, we

can get a sequence of polynomial Pjn such that

Pjn

(
1

z − z0

)
→ h, uniformly on Γj

and

Pjn(z) = lim
q→∞

q∑
n=0

aqjnz
n.
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So ∫
Γj

u(ζ)Pjn

(
1

ζ − z0

)
dζ = lim

q→∞

q∑
n=0

aqjn

∫
Γj

u(ζ)

(ζ − z0)n
dζ = 0

and therefore ∫
Γj

u(ζ)h(ζ)dζ = 0.

This implies ∫
T
u(ϕ(eit))H(eit)dt = 0

where ϕ is holomorphic and one-to-one in some neighborhood of T, mapping T onto Γj, and

H is analytic in some neighborhood of T. Now taking H(eit) = eit for n = ±1,±2, . . . , we

get u ◦ ϕ a.e. dt on T and so u = 0 a.e. ds on Γj. Since we started the proof with any fixed

j then u = 0 a.e. ds on Γ.

5.2 Main Result

Let z ∈ Ω at which the Hp(Ω) norm is determined and let ω the harmonic measure on Γ for

z. Now we are ready for our main result.

Theorem 5.2.1. (Main Result)

Each f ∈ Hp(Ω) has boundary values f ∗ almost everywhere (dω) on Γ and f ∗ ∈ Lp(Γ, ω).

Moreover

f(z) =
1

2πi

∫
Γ

f ∗(w)

w − z
dw, z ∈ Ω, (5.5)∫

Γ

f ∗(w)

w − z
dw = 0, z /∈ Ω ∪ Γ, (5.6)
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f(z) =

∫
Γ

f ∗(ζ)dωz(ζ), z ∈ Ω, (5.7)

and the mapping f 7→ f ∗ is an isometry of Hp(Ω) on to a closed subspace of Lp(Γ, ω).

Proof. By the decomposition (5.3), we see that it is enough to prove that fj has boundary

values a.e. ds on Γ and that this boundary-value functions lies in Lp(Γ).

Fixed j, for k 6= j, fj is actually analytic on Γk because of the way fj was defined in

Proposition 5.1.1, so (5.5), (5.6) and (5.7) hold immediately. Let us focus on Γj. Let φ be

the Riemann mapping of Uj onto ∆. So, for the same reasons given in Proposition 5.1.2, φ

can be extended to be analytic on a neighborhood of Uj ∪ Γj and gj = fj ◦ φ−1 ∈ Hp(∆)

and so, by Theorem 4.2.3, gj has boundary values g∗j a.e. dθ on T, and g∗j ∈ Lp(T, dθ).

Therefore fj = gj ◦ φ has boundary values f ∗j = g∗j ◦ φ∗ = g∗j ◦ φ a.e. because φ = φ∗ on

Γj. So f ∗j ∈ Lp(Γj, ds), and, because of our observation at the beginning of the paragraph

f ∗j ∈ Lp(Γk, ds) for k 6= j. So f ∗j ∈ Lp(Γ, ω).

If z ∈ Ω, then

fj(z) = gj(φ(z)) =
1

2πi

∫
|ξ|=1

g∗j (ξ)

ξ − φ(z)
dξ.

Making ξ = φ(ζ) we have

fj(z) = gj(φ(z))

=
1

2πi

∫
Γj

g∗j (φ(ζ))

φ(ζ)− φ(z)
φ
′
(ζ)dζ

=
1

2πi

∫
Γj

f ∗j (ζ)

φ(ζ)− φ(z)
φ
′
(ζ)dζ
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we notice that

φ
′
(ζ)

φ(ζ)− φ(z)
=

1

ζ − z
+ S(ζ)

where S (depends on the choice of z) is analytic in a neighborhood of Ω∪Γ, since the function

in the left-hand side of the equality has a simple pole at z with residue equal to 1. Then

fj(z) =
1

2πi

∫
Γj

f ∗j (ζ)

(
1

ζ − z
+ S(ζ)

)
dζ.

Let fj,r(z) = gj(rφ(z)) for r < 1, then, by Cauchy’s theorem, we have

∫
Γj

fj,r(ζ)S(ζ)dζ = 0.

Because of Theorem 4.2.3, we also have

lim
r→1

gj(r·) → g∗j (·), in Lp(T, ds)

which implies

lim
r→1

fj,r = f ∗j in Lp(Γj, ds)

(and also in L1(Γj, ds), since p ≥ 1, and Γj is compact). Therefore

∫
Γj

f ∗j (ζ)S(ζ)dζ = lim
r→1

∫
Γj

fj,r(ζ)S(ζ)dζ = 0.

Hence

fj(z) =
1

2πi

∫
Γj

f ∗j (ζ)

ζ − z
dζ, z ∈ Ω.

Also ∫
Γk

f ∗j (ζ)

ζ − z
dζ =

∫
Γk

fj(ζ)

ζ − z
dζ = 0, k 6= j
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since fj is analytic on Γk. So for z /∈ Ω ∪ Γ∫
Γ

f ∗j (ζ)

ζ − z
dζ =

∫
Γj

f ∗j (ζ)

ζ − z
dζ +

m∑
k=0,k 6=j

∫
Γk

f ∗j (ζ)

ζ − z
dζ = 0.

To prove (5.7), remember from Theorem 4.1.2 that

dωz(ζ) =
i

2π
Q
′

z(ζ)dζ

where Qz(ζ) = g(ζ; z) + ih(ζ; z) (g(ζ; z) is the Green’s function for Ω with pole at z, and

h(ζ; z) is its harmonic conjugate). Then

Q
′

z(ζ) =
1

z − ζ
+ R(ζ) (5.8)

where R is holomorphic in a neighborhood of Ω∪ Γ (and, because of the same reasoning for

S above,
∫

Γ
f ∗j (ζ)R(ζ)dζ = 0). So∫

Γ

f ∗(ζ)dωz(ζ) =

∫
Γ

f ∗(ζ)
i

2π
Q
′

z(ζ)dζ

= − i

2π

∫
Γ

f ∗(ζ)

ζ − z
dζ +

i

2π

∫
Γ

f ∗(ζ)R(ζ)dζ

= f(z)

because (5.5) already holds.

Finally, for 1 ≤ p < ∞, in order to show that the mapping f 7→ f ∗ is an isometry, let

q ∈ R(Ω) and let u(z) the harmonic extension of the continuous function |q(z)|p in Ω. Then

u(z) =

∫
Γ

|q(ζ)|pdωz(ζ) (5.9)

then q satisfies (5.7), and, by Hölder’s inequality, we get

|q(z)|p ≤ u(z).
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Moreover if v is any harmonic majorant of |q|p we have

u(x) = |q(x)|p ≤ lim inf{v(z) : z → x}, x ∈ Γ

so the harmonic function v − u is non-negative on Γ and hence on all Ω, therefore u given

by (5.9) is the least harmonic majorant of |q|p if q ∈ R(Ω) and clearly in this case

‖q‖Lp(Γ,ω) = ‖q‖Hp(Ω).

Now take f ∈ Hp(Ω). Since R(Ω) is dense in Hp(Ω) by Proposition 5.1.2, we can take {qn}

to be a sequence in R(Ω) converging to f (in Hp(Ω)). Then {qn} converges to f uniformly

on compact subsets of Ω. Even more,

‖qn − qm‖Hp(Ω) = ‖qn − qm‖Lp(Γ,ω)

by the foregoing, thus {qn} is a Cauchy sequence in Lp(Γ, ω), and therefore convergent. Let

g = lim
n→∞

qn, in Lp(Γ, ω)

then, since all harmonic measures are boundedly mutually absolutely continuous, we may

take the limit as n →∞ in the formula

qn(z) =

∫
Γ

qn(ζ)dωz(ζ)

to set

f(z) =

∫
Γ

g(ζ)dωz(ζ)

from which we also have

f(z) =
1

2πi

∫
Γ

g(ζ)

ζ − z
dζ, z ∈ Ω
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and ∫
Γ

g(ζ)

ζ − z
dζ =

∫
Γ

f ∗(ζ)

ζ − z
dζ = 0, z /∈ Ω ∪ Γ

thus ∫
Γ

(
g(ζ)− f ∗(ζ)

ζ − z

)
dζ = 0, for z /∈ Γ, with g − f ∗ ∈ Lp(Γ, ω)

and Lp(Γ, ω) ⊂ L1(Γ, ω), since p ≥ 1 and Γ is compact, then by Proposition 5.1.3, g = f ∗

a.e. dω. Consequently fn → f ∗ in Lp(Γ, ω) and, therefore

‖f ∗‖Lp(Γ,ω) = lim
n→∞

‖fn‖Lp(Γ,ω) = lim
n→∞

‖fn‖Hp(Ω) = ‖f‖Hp(Ω).

For p = ∞, if f ∈ H∞(Ω), then, because of (5.7), |f(z)| ≤ ‖f ∗‖L∞(Γ,ω) which implies

‖f‖H∞(Ω) ≤ ‖f ∗‖L∞(Γ,ω).

Also

‖f‖H∞(Ω) ≥ lim sup
p→∞

‖f‖Hp(Ω) = lim sup
p→∞

‖f ∗‖Lp(Γ,ω) = ‖f ∗‖L∞(Γ,ω).

So

‖f‖H∞(Ω) = ‖f ∗‖L∞(Γ,ω).

An immediate consequence of this theorem is the following.

Corollary 5.2.2. If f ∈ Hp(Ω), 1 ≤ p < ∞, then

uf (z) =

∫
Γ

|f ∗(ζ)|pdωz(ζ), z ∈ Ω.
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Corollary 5.2.3. If f ∈ H1(Ω), f not identically zero, then log |f ∗(ζ)| is in L1(Γ, ω) and

log |f(z)| ≤
∫

Γ

log |f ∗(ζ)|dωz(ζ), z ∈ Ω.

Proof. The first part of theorem can be obtained by realizing that f ∗ ∈ L1(Γ, dω) (because

of Theorem 5.2.1), and therefore using Jensen Inequality we get what we want. The second

part can be obtained by getting the result for a function f ∈ R(Ω) and then use Theorem

5.1.2 to get the inequality when f ∈ H1(Ω).

Theorem 5.2.1 tells that Hp(Ω) is isometrically isomorphic to a closed subspace of Lp. The

next result will tell us which Lp functions are boundary values of Hp(Ω) functions.

Theorem 5.2.4. Let f ∈ Lp(Γ, ω), 1 ≤ p ≤ ∞. There is an F ∈ Hp(Ω) with F ∗ = f a.e.

ω if and only if

0 =

∫
Γ

f(ζ)

ζ − w
dζ, for all w /∈ Ω ∪ Γ. (5.10)

Proof. It can be proved that

F (z) =

∫
Γ

f(ζ)dωz(ζ), z ∈ Ω

is harmonic, since f can be approximated by continuous functions fn and the corresponding

function f ∗n. Also by Hölder’s inequality

|F (z)|p ≤
∫

Γ

|f(ζ)|pdωz(ζ), 1 ≤ p < ∞

and

|F (z)| ≤ ‖f‖∞, p = ∞
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thus F has a harmonic majorant. Moreover, by (5.8)

dωz(ζ) =
1

2πi

dζ

ζ − z
+ R(ζ)dζ

where R is holomorphic in a neighborhood of Ω ∪ Γ. This implies

F (z) =
1

2πi

∫
Γ

f(ζ)

ζ − z
dζ, z ∈ Ω

and therefore F is analytic in Ω and hence F ∈ Hp(Ω). By Theorem 5.2.1 F ∗ exists a.e.,

using (5.10) and Proposition 5.1.3, again implies F ∗ = f a.e. ds.

The converse is just (5.7).

Finally we can characterize F ∗ (for F ∈ Hp(Ω)) in terms of the measure ω. For this purpose

we start by fixing a point q ∈ Ω, then consider g(z; q) the Green’s function for q in Ω and

h(z; q) its corresponding harmonic conjugate, then Theorem 4.1.3 says that Q′ (Q = g + ih)

has precisely m zeros in Ω (counting multiplicity). Let z∗1 , . . . , z
∗
m be such zeros and set

P (z) =
m∏

j=1

(z − z∗j ).

Theorem 5.2.5. Let f ∈ Lp(Γ, ω). Then

∫
Γ

f(ζ)h∗(ζ)dω(ζ) = 0, all h ∈ H∞(Ω) with h(q) = 0 (5.11)

if and only if there is F ∈ Hp(Ω) such that

F ∗ = fP a.e. dω on Γ. (5.12)
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Proof. Suppose (5.12) is satisfied. Take h ∈ Hp(Ω) with h(q) = 0, then using Theorem 4.1.2.

we have

−2πi

∫
Γ

fh∗dω =

∫
Γ

F ∗(ζ)h∗(ζ)

P (ζ)
Q
′
(ζ)(ζ − q)

dζ

ζ − q
.

But

K(z) =
Q
′
(z)(z − q)

P (z)

is analytic and single-valued in a neighborhood of Ω∪ Γ since P and Q
′
has the same zeros.

Moreover, because (5.8), K is zero-free in Ω ∪ Γ. Thus

−
∫

Γ

fh∗dω =
1

2πi

∫
Γ

F ∗(ζ)h∗(ζ)K(ζ)
dζ

ζ − q
= F (q)K(q)h(q) = 0.

Conversely, if (5.11), take any ĥ ∈ H∞(Ω), with (̂h)(q) = 0, then we can write

ĥ(ζ) = (ζ − q)
ˆ̂
h(ζ),

ˆ̂
h ∈ H∞(Ω).

Using Theorem 4.1.2. one more time, we have

0 =

∫
Γ

f(ζ)(
ˆ̂
h)∗(ζ)(ζ − q)Q

′
(ζ)dζ =

∫
Γ

f(ζ)(
ˆ̂
h)∗(ζ)K(ζ)P (ζ)dζ

In particular taking
ˆ̂
h(ζ) = 1

ζ−w
, w /∈ Ω ∪ Γ, we have

0 =

∫
Γ

f(ζ)K(ζ)P (ζ)

ζ − w
dζ, w /∈ Ω ∪ Γ.

Because of Theorem 5.2.4, there is an V ∈ Hp(Ω) with V ∗(ζ) = f(ζ)K(ζ)P (ζ) a.e. ω. Then

take F = V
K

, we still have F ∈ Hp(Ω) since K is zero-free. With this selection of F we have

the desired conclusion.
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5.3 Final Comments

Let us remember how N was defined in the introduction. Take Ω a finitely-connected planar

domain Γ = ∂Ω = Γ0 ∪ Γ1 ∪ · · · ∪ Γm and R(Ω) the set of rational functions whose poles

are off Ω ∪ Γ, then there are m linear independent measures ν1, . . . , νm on Γ orthogonal to

ReR(Ω) and of the form

dνj = Qjdωq, 1 ≤ j ≤ m

where Qj is C∞ on Γ, Qj is nonnegative on Γj and nonpostive on Γk, k 6= j. It can be proven

that

Qjdωq =

(
∂hj

∂n

)
ds

(
∂

∂n
is the derivative in the direction of the outward normal at Γ

)
,

where hj is the solution of the Dirichlet problem with boundary value 1 on Γj and 0 on Γk,

k 6= j. If N = 0, there do not exist nonzero measures orthogonal to ReR(Ω), and therefore

ReR(Ω) is uniformly dense on A(Ω). Then A(Ω) is called a Dirichlet algebra. Also P , in

Theorem 5.2.5, equals 1, and so Theorem 5.2.5 can be restated in the following way. Let

f ∈ Lp(Γ, ω). Then∫
Γ

f(ζ)h∗(ζ)dω(ζ) = 0, all h ∈ H∞(Ω) with h(q) = 0

if and only if there is F ∈ Hp(Ω) such that

F ∗ = f a.e. dω on Γ.

For 1 ≤ p ≤ ∞. Let us denote by Hp(Γ) the closed subspace of Lp(Γ, ω) consisting of

boundary values of Hp(Ω) functions and let Hp
0 (Γ) be the space of functions f of Hp(Γ) with
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f(q) = 0 =
∫

Γ
fdω. Also let H̄p

0 (Γ) denote the complex conjugates of the elements of Hp
0 (Γ).

It can be proven

Hp(Γ) + H̄p
0 (Γ) + N is dense in Lp(Γ, ω), 1 ≤ p < ∞,

when p = 2 it can be proven more, namely

H2(Γ)
⊕

H̄2
0 (Γ)

⊕
N = L2(Γ, ω),

and for p = ∞

H∞(Γ) + H̄∞
0 (Γ) + N is weak-star dense in L∞(Γ, ω).

Finally P in Theorem 5.2.5 can be related to N in the following way:

P (N + H∞(Γ)) = H∞(Γ).
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