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(ABSTRACT)

Motion estimation and motion compensation comprise one of the most important
compression methods for video communications. We propose a low-power design of a
motion estimation block for a low bit-rate video codec standard H.263. Since the motion
estimation is computationally intensive to result in large power consumption, a low-power
design is essential for portable or mobile systems. Our block employs the Four-Step
Search (4SS) method as its primary algorithm. The design and the algorithm have been
optimized to provide adequate results for low-quality video at low-power consumption.
The model is developed in VHDL and synthesized using a 0.35 um CMOS library. Power
consumption of both gate-level circuits and memory-accesses have been considered. Gate-
level simulation shows the proposed design offers a 38% power reduction over a “baseline”
implementation of a 4SS model and a 60% power reduction over a baseline Three-Step
Search (TSS) model. Power savings through reduction of memory access is 26% over the
TSS model and 32% over the 4SS model. The total power consumption of the proposed
motion estimation block ranges from 7 - 9 mW and is dependent on the type of video being

motion estimated.
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Chapter 1

Introduction

The transmission of video over portable devices has yet to penetrate the
mainstream technology markets. This is primarily due to the fact of the high bandwidth
required by video in its raw form. To reduce the bandwidth requirements, video
compression must be performed. Recent advances in video compression methods
recommended in MPEG-4 and H.261/263 have made feasible video transmission at low
bit-rates.

Applications of a low bit-rate video transmission system range from portable
videophones to wireless surveillance systems to mobile patrols. They have the similar
operating requirement of continuous operation for a long period of time without
recharging the battery. This is a critical necessity for mobile patrol and surveillance
equipment.  Since video compression is computationally intensive, low-power
implementations are critical for widespread acceptance and use of these devices.

The applications mentioned above do not require perfect picture quality, nor is it
feasible in current technology. Instead, the quality of video can be degraded to ease the
bandwidth requirements. As such, the H.263 recommendation is the target of our system
investigated in this thesis. The H.263 standard allows for degradation in video quality to
meet the low-bandwidth requirement.

One of the most important techniques used to reduce the bandwidth requirements
of the data stream is Motion Estimation and Motion Compensation. Motion Estimation is
defined as the encoder searching a previous block of pixels to determine where a block of
pixels in the current frame has moved. If successful, the encoder via Motion
Compensation can then transmit only the difference information between the two frames
across the transmission channel. This saves a significant amount of channel bandwidth.

The problem with Motion Estimation lies in the size of the problem. Even modest
areas to search increase in computational complexity rapidly, which leads to large
increases in power consumption. A variety of algorithms and techniques have been
developed to find the optimal motion vector given the large throughput demands of the

operation [2] [6] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26]. Other



research has focused on computing relatively accurate motion vectors as efficiently as
possible, in terms of the number of computations or circuit complexity. New algorithms
that avoid searching large areas of the previous frame pixel-by-pixel accomplish these
goals [8] [9] [10] [11] [12] [13] [14]. Some of these algorithms are applicable to low-
power computing as they reduce significantly the number of computations needed and
therefore the power consumption [10] [11] [12]. Other techniques have been proposed to
reduce the size of arithmetic circuits required, eliminate unnecessary computation, and
optimize the algorithm for the types of video being encoded [5] [10] [11] [12] [44] [45]
[46] [47] [48] [49] [50] [51].

This thesis investigates development of a Motion Estimation block suitable for
low bit-rate video encoding. The algorithm selection, model development, and power
consumption results are explored as well as techniques for reducing the power
consumption of the block. This research is built upon the wealth of work previously done
in low-throughput motion estimation blocks.

The thesis is organized as follows. Chapter 2 describes video encoding motion
estimation in detail. This includes motion estimation algorithms, implementations, and
power-saving enhancements found in the literature.  Chapter 3 describes the
implementation of basic models. Chapter 4 presents the power-savings techniques
utilized. Chapter 5 presents experimental results of the proposed system. The chapter
includes a description of the design flow and the techniques to measure power
consumption. Measured power consumption and resulting video quality are also
presented in this chapter. Finally, Chapter 6 concludes the thesis and suggests a future

research area.



Chapter 2
Low Bit-Rate Video Encoding and Motion Estimation

In this chapter, we review some basic concepts of the H.263 recommendation
necessary to understand the terms and ideas presented in this thesis. We also review
basic concepts of video compression, with an emphasis on Motion Estimation and
Motion Compensation. Then, we present some popular Motion Estimation algorithms
with some examples and analysis of their usage and applications. Previous research into
implementations of these algorithms and some low-power techniques are included in the
discussion. Finally, we present an analysis of the test videos targeted by this research is

presented to justify low-power enhancements presented later.

2.1 H.263 Overview

The H.263 recommendation does not define the structure of a video encoding
system, but only the format the compressed bitstream should follow. The specification
also defines how a video frame should be partitioned for transmission, bitrate maximums,
and other details (such as allowed quantization factors).

2.1.1 H.263 Basics

The H.263 recommendation allows certain sizes of video to be transmitted. For
the purposes of this research, the QCIF size of 176 pixels x 144 pixels was selected for
the video size. This size was determined to be an adequate physical size for videophones,
mobile surveillance systems, and mobile patrol units to both fit physically in small
devices and deliver adequate resolutions for the intended applications. The maximum
bitrate allowed for QCIF is 64K bits per second [1].

The recommendation also specifies that the actual video information be converted
from typical RGB (Red, Green, and Blue) color information to the YCbCr color space
[1]. Y stands for the luminance portion of the color space, and Cb and Cr represent blue
and red chrominance of the pixel, respectively. The following equations define the

transformations from RGB to YCbCr [2].
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In the actual video representation used by H.263, the luminance samples are one-for-one
based upon the RGB pixels. Therefore, for QCIF video at 176x144 pixels, there are
176x144 luminance samples. However, the red and blue chrominance values are
subsampled by 2 in both the x and y directions. This means that there are 88x72 red and
blue chrominance samples for a frame of video. This achieves some compression in the
video by reducing the number of 8-bit samples required to store one frame of video from
176x144x3, or 76,032, 8-bit samples to 176x144+88x72x2, or 38,016 8-bit samples.
Figure 2.1 illustrates the subsampled chrominance images and how they fit with the

luminance samples, which lie “on” the pixels of the original RGB image.

X XIX XX X
0

X XX XX X

X Luminance Sample
O Chrominance Sample
- —- Block Edge

Figure 2.1 - Luminance and Chrominance Sampling [1]

As mentioned above, the H.263 recommendation also specifies how pictures
should be divided for compatibility with the bitstream formats. The divisions are
hierarchical for each frame. The top-level division is the Group of Blocks (GOBs). A
GOB consists of k*16 lines, where k is dependent on the video size and is 1 for the QCIF

size frame. The GOB is divided into macroblocks. Each macroblock is 16x16 pixels and



there are 11 macroblocks per GOB in a QCIF frame. Figure 2.2 illustrates this division

for a QCIF sized video.
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Figure 2.2 - H.263 Division of QCIF Video [1]

A macroblock consists of 16x16 pixels of luminance (Y) and 8x8 samples of blue
and of red chrominance (Cb and Cr) corresponding to those luminance samples [1]. The
dotted line in Figure 2.1 refers to a macroblock edge, which will not cross a chrominance
sample. Blocks are 8x8 pixels of data. Thus, there are four blocks of luminance to a
macroblock and 1 block of red and blue chrominance each to a macroblock. For the
general case of video transmission without prediction and Motion Compensation, a
macroblock of picture data is transmitted via 6 blocks in the order according to Figure
2.3. From these 6 blocks of data, a 16x16 pixel block of RGB data can be reconstructed
at the decoder. Most compression of the actual video takes place at the block level, as

will be seen later.
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Figure 2.3 - Macroblock Transmission Order with Luminance and Chrominance

Blocks [1]

2.1.2 H.263 Coder Overview

A typical low bitrate video encoding system employing the H.263 format takes

the following form. This is a generalized block diagram taken directly from the H.263

recommendation (Figure 2.4).
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Figure 2.4 - Video Coder Overview from H.263 Recommendation [1]



From the figure, the most important elements of the video coder are the
Transform block, the Quantizer block, and the Prediction block. Each block reduces the
amount of information that must be transmitted across the channel. The Coding Control
block controls the system to maintain the channel bitrate. The Quantizer is adjusted by
the Coding Control to adjust picture quality according to the amount of information being
sent across the channel.

The Transform block uses some type of transformation to typically take a block of
pixel data and transform it to a set of coefficients in the frequency domain. With the aid
of quantization, this reduces the number of coefficients necessary to transmit the
necessary information. An inverse transform in the decoder restores the original pixel
coefficients. Under H.263 8x8 blocks of pixels (corresponding to those found in Figure
2.3) are used as inputs to the Transform block since compression tends to be most
efficient with this block size [1] [2]. The Discrete Cosine Transform (DCT) is often used
as the transform function since it has an efficient implementation in terms of hardware
and computational complexity [2].

The Quantizer block, as mentioned above, is responsible for quantizing the DCT
coefficients. This is simply a division of the DCT coefficients by a pre-selected factor.
During division some of the information is lost (e.g. division by 8 would effectively
truncate 3 of the least-significant bits (LSB) of a coefficient). The quantization factor
and the DCT coefficient are transmitted in the bitstream to the decoding block, which
multiplies the quantized factor to the transmitted coefficient, a process referred to as
inverse quantization, to get the original coefficient, albeit with some of the LSB missing.
An inverse transform is applied to retrieve the original block. The coding control of the
video encoder can increase the quantization factor to effectively decrease the number of
bits a block of DCT coefficients required to be transmitted. In this way, the bitrate of
compressed video transmitted over the transmission channel can be controlled. The
consequence, of course, is video degradation at the video decoder.

The previous two blocks, the Transform and Quantizer, serve to reduce the spatial
redundancy present in the picture information. That is, they compress the information
present in a single block of data for one frame. Since a video consists of a sequence of

pictures, it also makes sense to exploit the temporal redundancy often present in video,



especially considering that a particular frame is often not entirely different from the
previous one. Many parts, or blocks of a frame, are identical or closely related to a
corresponding block from the previous frame. Using temporal redundancy between
blocks of different frames to compress required video information is referred to as
Prediction.

Prediction consists of two processes - motion estimation and motion
compensation [2]. Motion estimation attempts to find the best match of a block of pixels
with the previous frame. Motion estimation’s goal is to find a vector that points to a
block of pixels in the previous frame that correspond to the current block of pixels in
question. In the case of H.263, the blocks are macroblock sized (16x16). Only
luminance values (256 values per macroblock) are usually checked during motion
estimation. Motion compensation then uses this motion vector to create a motion
compensated version of the current block of pixels. This new macroblock is basically the
difference of the two “matching” macroblocks and is defined by the following equation:
[2]

e(x,y,0)=1(x,y,t)—I(x—u,y—u,t—1) 3)
In equation 3, (u, v) respectively represent the x and y coordinates of the motion vector
found during motion estimation. The third dimension is time. Hence I(x, y, ) represents
the intensity at position x and y at time ¢#. Thus, the previous frame block is being
subtracted from the current block of pixels. The output of the motion compensation
block can then be Transformed using the DCT and Quantized and transmitted across the
channel along with the motion vector. The decoder can inverse this operation by
performing its own motion compensation to retrieve the current block of pixels, albeit
degraded by the quantization factor and any losses from the DCT inverse transform [2].
(Refer to Figure 2.5 for a picture of the encoder and decoders). Compression is achieved
if the blocks “match up” well, so maximum compression depends on the success of
motion estimation. The question of motion estimation algorithms, techniques and

implementations will be discussed in the next section and the rest of this paper.
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Figure 2.5 - Generic Video Encoder and Decoder Supporting Motion
Estimation/Compensation [2]

H.263 requires the use of both INTER and INTRA mode encoding for
macroblocks. INTRA refers to the transform and quantize method of compression, where
only spatial redundancy is compressed. The raw block of pixels is fed to the DCT
engines and the coefficients quantized and sent over the channel. INTER mode is when
the macroblock is placed through the motion estimation and motion compensation
engines. In most cases, for all video except those blocks in the first frame, motion
estimation is performed on the macroblock and the rating of the quality of the motion
vector is used to determine the INTER/INTRA decision. Adjacent macroblocks in a
frame can be either INTRA or INTER encoded depending upon the success of the motion
estimation operation.

From the above discussions, it becomes fairly obvious that compression can be

traded off with video quality on a number of fronts. These methods include:



e Threshold for selecting INTRA or INTER for a block. Efficiency of the
motion estimation algorithm to find a quality match for the macroblock in
question.

e (Quantization factor used in reducing the size of transformed coefficients.

These are true for a number of reasons. First, not every motion estimation
operation is perfect (nor is expected to be perfect) in finding a block that completely
matches the original, thus there are some errors in the pixel values for an INTER motion
compensated block. Secondly, since only luminance values are used for motion
estimation, further errors can be seen after translation to the RGB color space. INTRA
encoded blocks do not suffer these problems-they are always an “exact” translation of the
original block minus quantization and transform effects. The tradeoff comes with usually
more bits being translated for an INTRA block. For example, if an INTER encoded
block does find a perfect match, then no pixels (or “zero” DCT coefficients) need be
transmitted in the bit stream, only the motion vector is of consequence.

An important consideration is the quality of video produced by a codec. Since
this is, in essence, a subjective question dependent upon the viewer, a quantitative means
for measuring video quality is highly desirable. The Peak-Signal-to-Noise ratio (PSNR)
was introduced as a measure of video signal quality for a frame of video. The equation

for the PSNR is given as [2]:

2552

rows cols
1

z Z (Y —Yreconstructed) 2

j=1 i=1

PSNR =101og,

4

rows - cols

where Y is the luminance pixels of a frame of video (144x176 for the QCIF case) and

Y reconstructed T€presents the pixels of the reconstructed frame after motion estimation and
motion compensation (i.e. what the decoder will “see”). Also note that the reconstructed
frame is stored at the encoder and is used as the basis for the next frame’s motion
estimation procedure. While the PSNR is not useful as a measure of good video in and of
itself, it is most useful as a comparison between two related videos to measure relative
video quality improvement or degradation [2]. For the purposes of this research, it will
be used in this fashion to measure the effects of different motion estimation algorithms

and implementations on test videos.
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2.2 Motion Estimation Algorithms

With the importance of a good motion estimation algorithm established to enable
motion compensated prediction to work well, the problem turns into one of finding a
good algorithm for discovering good matches between macroblocks from different
frames. This section will explore the fundamentals of motion estimation algorithms,
including defining the problem of motion estimation, algorithm classifications and ways
to “rate” motion vectors.

Ideally, a video encoder would take full advantage of the compression offered by
motion compensation by scouring the entire previous frame for a match to find the best
possible match for the macroblock in question. However, that is not feasible. Refer to
Figure 2.6 for an illustration. Consider a macroblock size of 16x16 on a QCIF-sized
video frame. Also assume that any candidate macroblock must fit entirely within the
previous frame (i.e. not hang over the edge) and that a motion vector is the relative
coordinates between the upper-left-hand corner of the reference block and the candidate
block. Then, the upper left-hand pixel of a candidate macroblock must fit within the area
denoted in gray in the figure. A suitable candidate macroblock would then be any
macroblock that fits the area shown in the figure with its upper left-hand corner pixel
within the gray area. This gives a possibility of 161x129, or 20,769 motion vectors to be
checked per macroblock. With 99 macroblocks per frame, there are over 2 million

motion vectors to be checked and evaluated per a single frame of video.

11
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Usually then, the area of motion estimation is restricted to what is called a search

QCIF Frame

area. This greatly limits the number of possible candidate blocks from the impractical

statistics mentioned previously. For example, in H.263 the search area is limited to [-16,

+15] under normal operation [1]. Figure 2.7 illustrates this case. Again, the upper-left

hand corner of the reference block can be “shifted” anywhere inside the gray area. The

entire search area is 47x47 pixels to accommodate all the motion vectors. Now there are

only 31x31, or 961 motion vectors to be checked per macroblock and 95,139 per frame.

12
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Figure 2.7 - Illustration of Motion Estimation Under H.263

The result of any motion estimation operation should include not only a motion
vector, but also a way to enumerate the “fitness” or quality of that motion vector. Note
that this is extremely important in video encoders that support INTER/INTRA encoding
such as H.263. The fitness rating will be used by the control block of the encoder to
determine whether to use the motion compensated INTER-coded block or the INTRA-
coded block.

From the literature, the sum-of-absolute difference rating (SAD), the mean-
squared error (MSE), and the cross-correlation function (CCF) ratings are widely used [3]
[4][5]. The SAD, MSE, and CCF ratings for a given motion vector are given by:
(assuming 16x16 blocks) [3]

SAD(i, j) = > |y(n,m) = x(n+i,m+ j)| 4)
MSE(i, j) = 7z 2. D (v(n,m) = x(n +i,m + j)) (5)

15 15
y(n,m)x(n+i,m+ j)
CCF(,j)= m=0 n=0 1 (6)

1

[Z_:Z:y(n,m)z}z{Z_:Z:x(n+i,m+‘j)2}2
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The best matching criterion is found by using the CCF, at the expense of greater
computational complexity [4]. The SAD and MSE give similar results for quality of
motion vectors [3]. However, the SAD is the easiest to compute of the three, especially
in hardware. Hence, SAD is used in the proceeding discussions of the various motion
estimation algorithms and in the models developed as part of this research. Therefore, for
the selected macroblock size of 16x16 pixels, processing one SAD for a motion vector
requires 256 8-bit subtractions and 255 accumulate operations (additions). For all motion
estimation algorithms discussed hereafter, a motion vector is considered better if its
associated SAD rating is lower than another motion vector’s SAD rating.

The next sections detail some of the widely used motion estimation algorithms.
The basics of each algorithm are discussed, including computational complexity,
accuracy, and any advantages and disadvantages to implementing such an algorithm in
hardware.

2.2.1 Full-Search Block-Matching Algorithm

The Full-Search Block-Matching (FSBM) algorithm is the most straightforward
motion estimation operation. Simply speaking, it calls for searching the entire allowable
search area for the best motion vector-the one with the best SAD rating. Obviously, this
algorithm always finds the optimal motion vector for the given search area. It should also
be obvious this algorithm suffers from the largest computational complexity. For
example, considering the search area of [-7, +7], there are 225 SAD calculations that
must be performed for each macroblock in a frame. Again with 99 macroblocks in a
QCIF-sized frame, that translates to 22,275 SAD calculations per frame of video to
perform motion estimation.

The advantages of implementing FSBM as the motion estimation algorithm
include both the guaranteed optimality of the solution and the regularity of a hardware
implementation. This regularity stems from the fact that consecutive motion vectors
share many of the pixel values in calculation. This lends itself to using large array
processors to efficiently implement a FSBM motion estimation processor with relatively
simple control logic [6]. Specific implementations of FSBM motion estimation

processors are explored in more detail in the next section regarding previous research.
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Disadvantages of the FSBM algorithm lie in the large amounts of area required to
implement the systolic arrays, the high throughput requirements to calculate all the SADs
and the large amount of power required to drive the systolic arrays [7].
2.2.2 Three-Step Search

The Three-Step Search (TSS) algorithm as well as the next two algorithms (the
New Three-Step Search and the Four-Step Search) belong to the family of algorithms
known as the Two-Dimensional Logarithmic Search, where the search hones in on the
optimum motion vector by dividing the search space into portions and sampling motion
vectors at key points [2]. These algorithms “work™ on the basis of the Uniform Error
Surface Assumption (UESA). This concept states that the error surface created by taking
the SAD ratings at every possible motion vector point should reduce monotonically the
closer the motion vector is to the true minimum [3] [8] [9].

The TSS algorithm is defined by the following three steps [8]:

1. Search in a box pattern (9 points) located at the motion vectors: (-4, -4), (0, -4),
(+4, -4), (-4, 0), (0, 0), (+4, 0), (-4, +4), (0, +4), and (+4, +4). This search pattern
will be referred to as a 9x9 search box. Find the minimum SAD rating.

2. Take the previous “winning SAD” as the new center point. Then search in a
similar (box-like) fashion, but at a distance of 2. This is a 5x5 search box.

3. Move the “center” to the next SAD winner, but this time search again using a
box-distance of 1, or a 3x3 search box. The winning SAD from this step is the
winner.

The TSS is also illustrated by the following figure. Two separate operations are
illustrated in the figure. For both searches the starting point is (0, 0) with the box pattern
of nine points. The first search box (9x9) has been highlighted with shading. Suppose
that the best vector found in the first step is (+4, +4). The next step of the algorithm
proceeds with a smaller search box center at that new position. (+4, -6) wins that step.
The final step searches all immediate points around (+4, -6) with the lowest SAD found,
(+3, -7) being selected as the optimum motion vector. The left-bottom search illustrates
the situation when the winning SAD in the first step is (-4, +4) and proceeding in the
same fashion as described above. In both cases, notice how the size of the search box is

decreasing with each step of the algorithm.
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Figure 2.8 - TSS Example Searches

The algorithm has some very desirable characteristics. For the [-7, +7] search
area considered, the number of SAD calculations is 27 for each motion estimation
operation. Since the middle point of steps 2 and 3 are computed in previous steps, there
are really only 25 unique SAD calculations per motion estimation operation. This
translates to 2,475 SAD calculations per frame (QCIF), a much more favorable
computational complexity than with the FSBM case.

Some consequences exist with using the simplified TSS algorithm. The hardware
implementation becomes less straightforward and includes some considerations that
preclude usage of a simply array processor [10]. While the steps of the algorithm are
regular in relation to each other, the overall control logic is decidedly more complex than
with a the FSBM implementations. As before, implementations of the TSS in the
literature will be presented later.

Other problems with the algorithm include the lack of accuracy that occurs with
not checking every possible point. A variety of problems can cause the UESA to not
apply to a given set of pixels [9]:

e The aperture problem

e Local block image changes

e Luminance change between frames
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e Inconsistent movement between foreground and background in an image
sequence

Finally, another problem is seen with video that has either no motion or small amounts of
motion [9] [11] The TSS algorithm is inflexible and requires all 3 steps of the algorithm
and all 25 SAD calculations regardless of where the optimum motion vector may lie.
This process is inefficient when many of the macroblocks move a single pixel or two or
remain stationary. The next two algorithms discussed attempt to resolve that problem
while maintaining many of the advantages (and the form) of the TSS algorithm.
2.2.3 Three-Step Search Hybrid Algorithms

The New Three-Step Search (NTSS) algorithm was proposed in 1994 by Li, et. al
[9]. The algorithm attempts to bias the first step of the algorithm to search around the
zero vector, to detect small motion more efficiently than with the TSS. The algorithm
proceeds as follows: [9]

1. Search the 9 points as usual in the TSS algorithm. However, also include the 8
points directly surrounding the zero (center) motion vector. If the winning vector
is the zero vector, then stop. If the winning vector is one of the 8 points
surrounding the zero vector, then search the 8 points directly surrounding that
vector and stop.

2. Otherwise proceed with steps 2 and 3 of the TSS algorithm as usual.

The algorithm is illustrated in the following Figure 2.9 for the vector search ending (+2, -
1). In the first step all points highlighted with an oval are searched. Suppose the lowest
vector is found at (+1, -1) in the first step. Then all points surrounding that one are
searched in the special final step of the algorithm. The lowest SAD found from those

points is taken as the optimum, which is (+2, -1) in this case.
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The first step thus has 17 vectors to check. If the zero vector wins, this is the
amount of SADs that must be checked. This is obviously the best case for this algorithm.
Should the algorithm have to proceed to steps 2 and 3, then 33 unique values must be
checked, worse than the original TSS algorithm. Should the alternative case be selected,
where one of the 8 values surrounding the zero vector wins step 1, the number of SAD
calculations is either 20 or 23, both slightly better than TSS. The hope with using the
NTSS is that enough zero vectors and vectors close to the zero vector can be found to
result in an overall computation savings. For video with large motion, the NTSS is
obviously not a good choice, since more SAD calculations are needed.

The NTSS also further sacrifices some of the regularity in a hardware
implementation. This shows up in both the implementation of the SAD calculation
hardware and the control logic. There are separate decision steps in the algorithm that
must be accounted for, making the control logic more complex than the deterministic
TSS implementation.

Another hybrid TSS method is the Enhanced Three-Step Search algorithm [12].
This algorithm only changes the first step of the algorithm so that a smaller search box is
used to concentrate the first step towards the center of the search area. It promises to
achieve better results than the TSS method by using the same number of search points but

with faster convergence to vectors near the center of the search area.
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2.2.4 Four-Step Search

The Four-Step Search (4SS) is another algorithm that builds upon the TSS, while
being more center-biased. The 4SS differs in that it maintains a more regular search
pattern with half-stop techniques employed in the algorithm. The algorithm proceeds as
follows [11]:

1. The minimum SAD found using a 5x5 search box. Nine points are checked at (-2,
-2), (0, -2), (+2, -2), (-2, 0), (0, 0), (+2, 0), (-2, +2), (0, +2), and (+2, +2). If the
minimum is at the zero vector, then proceed to step 4, else go to step 2.

2. The 5x5 search box is maintained, centered at the winner of the previous step.
Notice that using the same sized windows creates a lot of overlap, or redundant
calculations that were searched in the previous step. If the winning vector is the
center of the search box, proceed to step 4. Otherwise, proceed on to Step 3.

3. Using the winner of Step 2, search exactly as mentioned in Step 2, but proceed to
Step 4, regardless of winner.

4. Reduce the size of the search box to 3x3. Then search around the previous step’s
winner for the final motion vector.

To better illustrate the algorithm, the following figure gives an example as to how the
search would proceed for the final motion vectors (+3, -7) and (-5, +3). Shading

highlights the original 5x5 search box.
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Figure 2.10 - 4SS Example Searches
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The 4SS offers a similar best-case scenario for computational complexity when
compared to the NTSS (17 searches). The worst-case situation for the 4SS is 27 search
points compared to 33 for the NTSS, which is an improvement. The average
computational complexity for some real-world images is reported to be better for 4SS
than NTSS [11].

The usage of the regular-sized search boxes enables a more regular hardware
implementation, as will be seen in the later sections. The hardware complexity is added
with enabling the motion estimator to detect the step 4 condition and stop the algorithm
when necessary. The flexibility of the algorithm enables it to use fewer searches for
small motion, which can translate to savings in the number of computations for small
motion or relatively still video. The worst-case number of calculations is a bit worse for
the 4SS than the TSS, which is 27 versus 25.

2.2.5 Other Algorithms

Some other algorithms have been proposed for improved performance over those
mentioned before. However, they lose regularity and generally are more applicable for a
software coder implementation. They include the Center-Biased Diamond Search
Algorithm and the Center-Biased Hybrid Search [13] [14].

The Center-Biased Diamond Search uses a diamond-shaped search area to search
for the optimum motion vector. It begins with a small diamond around the center and
“walks” the diamond pattern outward if the lowest motion vector is found not to be in the
center of the diamond. It has a best case of 13 search points and an average of 15.5
search points [13].

The Center-Biased Hybrid Search uses a combination of “X” patterns and
diamond-shaped patterns to more efficiently search for motion vectors. It promises a
10.2 average number of search points with an improved best case of 9 search points [14].
However, the increased lack of regularity makes this algorithm an even less suitable

choice for a hardware implementation.

2.3 Previous Research on Implementation

This section reviews previous work on motion estimation implementations. The

information is presented as a basis for the research work presented later and as an
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overview of the issues facing motion estimation block development. The research is
divided into sections based upon the algorithms being reviewed.
2.3.1 Full Search Block-Matching (FSBM) Research

The FSBM algorithm calls for searching all possible motion vectors, easing the
need to develop complex control logic. However, the problem arises to meet stringent
throughput requirements for the motion estimation block, often necessitating the
development of special purpose hardware [6]. In conjunction with the large arithmetic
calculation requirements, often large memory bandwidths are needed with FSBM blocks
[15].

To handle these large computational loads, some sort of a systolic array processor
is often used [2] [6] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26]. The
systolic array consists of a set of processing elements (PE) connected locally to share
data. The advantages include low control overhead, high clock rates, and high processor
efficiency (meaning that the PEs can be kept busy for the majority of the time) [6] [25].
The arrays can be either one-dimensional or two-dimensional. An example of a 1-D

systolic array is included in Figure 2.11.
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Figure 2.11 - Example 1-D Systolic Array [6]

The tradeoff with increased parallelism and higher throughput occurs with larger
memory bandwidth requirements, often requiring a multiple-ported memory to support
the PE array operation [6] [18] [25] [26]. In response to this, some architectures utilize
large shift registers to store pixel values for PEs farther in the chain [20] [21] [24]. 2-D
systolic arrays can further share data and allow even more parallelism by calculating
multiple SADs per unit of time [6] [16] [17] [18] [21] [25]. Figure 2.12 shows a 2-D
architecture that conserves current frame block memory accesses by using a 16x16 PE
array [25]. The current reference block pixels are stored local to each PE; hence no local
memory is required for these pixels. This further illustrates the severe trade-offs, in this

case between circuit area and memory, necessary with the FSBM implementations.
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Figure 2.12 - Example 2-D Systolic Array [25]
2.3.2 Three-Step Search Research
Many TSS models have been reported in the literature [10] [27] [28] [29] [30]
[31][32][33][34] [35]. As opposed to an overall throughput problem, most TSS models

attempt to overcome both the irregularity introduced by the TSS algorithm (when
compared to the FSBM) and the less-than-completely-deterministic nature of the
algorithm. The second and third steps of the algorithms are dependent upon the previous
step.

Some architectures use a 1-D systolic array [10] [29] [30] to achieve as much
parallelism as possible. One implementation [10] suffers latency problems due to the
step-dependence problem mentioned above. Also, a 3-port memory is required for
getting the current and previous search buffers to the correct PE array. The data is passed
by x-axis from PE to PE to maintain some benefits of the parallelism of the systolic array
after the latency of initialization is met. Two alternative methods for dealing with the
latency were presented in [29] and [30]. He and Liou proposed checking 3 points for
every single point in the TSS algorithm. These are referred to as checking vectors [29].
Their approach is to use the parallelism of a 1-D array to check extra points to enhance

accuracy. The latency penalty thus is traded off with the increased accuracy at little cost
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in computations [29]. The other method attacks the latency problem more directly [30].
The SAD accumulation procedures and the comparison structures are implemented in a
tree-fashion to reduce the overall latency by a factor of log, at the expense of more area.
Memory interleaving is used to reduce the overall bandwidth into a single memory
module. The proposed scheme uses a single bank to hold each of the 16x16 values, thus
there are 256 memory modules for a 16x16 block. This means that each pixel of a SAD
calculation can be accessed from a different module, supporting the throughput of the tree
of subtractors and accumulators. Pipeline interleaving is used to reduce the number of
idle cycles in the calculations [30]

Some parallel architectures were proposed for more efficient implementation of
the TSS algorithm [31] [32] [33] [34]. Costa, et. al. introduced a family of parallel
architectures [31] that can use 3, 9 or 27 PEs. Each set of PEs work in parallel on a row
of a search box. By increasing memory bandwidth, the larger PE sets can work on an
entire search box (9 PEs) or a larger search area (27 PEs) at once. Programmable delay
units are used to facilitate the parallelism [31]. Additionally, the architecture is modular
enough to combine PE structures and control units to create such things as large search
area motion estimators and forward-backward predictors [31]. Two of the other proposed
implementations [32] [33] use a 9-PE implementation to complete calculations for a
search box in parallel. The PEs use data from 9 different memory modules. The data
itself is loaded into these modules based upon a residual memory addressing system
based upon 2* (where k=2,1,0 for the different steps of the algorithm), so the PEs should
always be addressing one of the 9 memory modules exclusively at any given time [32]
[34].

Another architecture was developed using a mesh structure to solve the
parallelism problem without incurring high latency [35]. In this implementation, 9 PEs
are connected in a mesh fashion, with data connections to all 4 neighbors, similar to a
highly parallel general computing network. Instead of each PE computing all 256
calculations for a single SAD value, the PE calculates 16 values and shifts the partial
result to a neighbor. Through the proper memory interleaving, each PE can be connected
to its own memory module and the results of the 9 required SAD values are computed

after 256 clocks. The comparison step is also achieved using “intelligent” shifting of the
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data with on-board comparators, such that the final result is achieved after 4 clocks. This
reduces the latency problem with each step of the TSS [35].

The NTSS algorithm incorporates the 8 checking points around the zero vector in
the first step. He, et. al. proposed an architecture using 3 1-D arrays (48 total PEs) to
compute the difference values [36]. Programmable delay units are used to save re-
broadcasting of reference block pixels. These also allow pixel values to be shared among
the PEs [36]. However, this architecture requires extremely high memory bandwidth to
feed the 48 concurrently running PEs with search area data.

In addition to the models and implementations mentioned earlier some
algorithmic enhancements have been presented as well [37] [38] [39] [40] [41]. Jong, et.
al, suggest using multiple winners in each step of the TSS algorithm (the two lowest
SADs as an example) to improve the accuracy of real-world video motion estimation in
case the UESA assumption does not completely hold for an image [37]. Also, the
technique of pixel subsampling is mentioned as an alternative to reducing input memory
bandwidth and computational load. However, the authors have determined that
subsampling only the previous frame search area (candidate block) is necessary and
maintains good motion vector accuracy [37]. Xu, Po, and Cheung have proposed
tracking the motion vectors found in previous macroblocks and taking the ones most used
as starting points for subsequent applications of any block-matching algorithm, since
motion is consistent over time in most real-world images [38].

Taking the UESA assumption a bit further, searching both directions in the first
step of the TSS algorithm can be seen as wasteful, since only one direction will guide the
algorithm to the optimal vector. Hence, some algorithms add a step to check only
orthogonal directions from the zero-vector to better steer the TSS algorithm in the correct
direction based upon this preliminary first step [39] [40] [41]. The algorithms presented
by these works, called the simple and efficient search (SES) [39] and the fast three-step
search (FTSS) [40] reduce the number of checking points, on average, by half based upon
software simulation [39] [40].

2.3.3 Four-Step Search Research
With both the recent advent of the 4SS algorithm and its similarities to the TSS

algorithm in structure, relatively few implementations of a 4SS motion estimator were
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proposed in the open literature [42] [43]. The architecture introduced by Wu exhibits
some low-power characteristics and a representative implementation of the 4SS algorithm
[42]. Tt is presented in the following section, which describes low-power designs.
2.3.4 Low-Power Designs for Motion Estimation

A few attempts have been made at reducing the power consumption of FSBM
implementations [44] [45] [46] [47]. As could be implied from the previous discussions
on the large throughput requirements of the FSBM block, the motion estimator is
responsible for nearly 60% of the power dissipated in certain FSBM video encoders [44].
Thus, any reduction in power in the motion estimator would be critical for inclusion in a
portable or other power-conscious device.

Moshnyaga introduced the idea of a SAD criterion for shutting down the PEs after
a certain point in the calculation of a motion vector [44]. The proposed block alters the
FSBM algorithm by monitoring picture variation and increasing the threshold of other
blocks when the picture is changing rapidly (i.e. the SAD values are increasing and the
motion vectors are non-zero with an increasing frequency.) The basis for this research is
that most vectors are near the zero-vector, and motion is gradual over time. This allows
the threshold to be ramped up over time without much loss in motion vector accuracy.
The shutting down of PEs occurs by using gated clocks that are shut off when the given
threshold is breached. Only %4 of the calculations of the original FSBM algorithm are
necessary with this approach [44].

Do and Sousa presented an alternative strategy to shutting off the PEs [45] [46]
[47]. A conservative estimate is calculated for each row of the macroblock. This
estimate is simply the sum of all the previous search area pixels minus the sum of all the
current search area pixels for the given row [45]. If this estimate is greater than the
current SAD rating found so far, then the calculation is skipped for that vector. Hardware
structures are also presented to accomplish the estimation and the comparison and stop
operations. A blocking latch is used to “disable” PEs when determined to be necessary
by the power-reduction algorithm. As long as the power to compute the estimate is
conserved by the power saved by removing normal SAD calculations, an overall power

gain is achieved. A savings of 50% of calculations is reported [44]. Alternative
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implementations to this algorithm based upon the same concepts of a conservative SAD
estimate calculation and comparison have been presented in [45] and [46].

Wu introduced an efficient VLSI implementation of the 4SS [42]. A block
diagram of Wu’s motion estimator for a block size of 3x3 is given in Figure 2.13. The
PE structure proposed is a 3xN 2-D systolic array, where N is the height of the block size
being considered. Each column calculates a SAD for one column of the search box.
Therefore, 3 SADs are being calculated at any given time. (This is one row of the current
search box.) Notice that for each PE in a row, the local memory is delivering the correct
row of data. Programmable delay units (PDUs) delay the sharing of current reference
block pixel data between adjacent PE columns by either 1 or 2 clocks. This implements
either a 5x5 search box (Steps 1, 2, and 3) or a 3x3 search box (Step 4), respectively.
Power consumption is reduced in Wu’s model by recognizing the overlapping
calculations of SADs in the second and third step and disabling PDUs and PEs when
necessary. 40% of power was saved with this enhancement [42].

. PE PE PE
Candidate Array 1 Array 2 Array 3
Block Data
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Candidate
Block Data

Reference
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Block Data

Reference
Block Data

Controller and
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Figure 2.13 - 4SS Motion Estimation Implementation [42]
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Two papers present ideas of using less than the full 8-bits of the pixels for motion
estimation [48] [49]. Moshynaga proposed truncating the MSBs dynamically [48].
Basically, the two input pixel values are looked examined from the MSB to the LSB. As
long as the MSB of the two values are equal, those MSBs are thrown out. The idea is to
save the power toggling inherent in converting to 2’s complement and sign extending the
subtracted value after a result before sending it to the absolute value logic. The paper
shows that 2-3 bits are usually truncated on average for most test videos without
compromising PSNR. More importantly, the method reduces the switching activities of
the processing elements by 50%, which saves dynamic power dissipation by the same
amount. He and Liou proposed cutting off the LSBs of the pixel values and performing
SAD calculations on a predetermined number of the MSBs only [49]. Simulation results
show that over 50% of the gate count in the processing elements is reduced with a 4-bit
reduction in pixel values, while the PSNR is reduced only by 2%.

Two other techniques attempt to reduce the motion estimation procedure to that of
a binary matching procedure (i.e. 1-bit matching via filtering) [50] [51]. Mizuki, et. al
used a binary edge detector to reduce the 8-bit value image to a 1-bit edge detected
image, where edge colors are represented with a 1, and “non-edges” with a 0. Thus, the
PE is simplified greatly to a simple XOR and increment operation [50]. Obviously, this
PE is much simpler than one with an 8-bit subtractor, 16-bit adder, and a large register
used in SAD-calculating implementations. As long as the filtering operation for
converting the pixels down to a single-bit consumes less power than the SAD-calculating
PE would, a large amount of power can be saved. Natarajan, et. al. used a special filter to
compute the 1-bit value field that is matched for the motion vector computation. The
filter is a bandpass image that represents the mid-frequency content of the images. Again
the PE is greatly simplified to an XOR with an increment operation [51]. The primary
advantage of both architectures is that the hardware area associated with the processing
elements, and hence the power dissipation, is reduced greatly. Yeo and Hu proposed a

mesh-based systolic array for FSBM and TSS based binary block-matching architectures
[5].
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2.4 Analysis of Targeted Videos

The intended application for our low bit rate motion video system is for portable
usage with very low bandwidth available for video transmission. As mentioned in the
Introduction, these applications can include cellular phones, video surveillance, and
mobile patrols. Often, this type of video consists of “head and shoulders™ shots of a
person talking, a still picture, or other “low motion” video. This section examines some
test videos for information related to SAD ratings and motion vector distribution. The
information will be used later to justify some algorithmic alterations in the basic
algorithms that directly lead to low-power enhancements.

Three sample video clips were selected to represent real-world video clips. These
videos are summarized in Table 2.1 by their content and relative amount of motion.

Table 2.1 - Summary of Test Videos

Video | Description | Motion

Suzie Woman talking on the telephone Still head and shoulders (Low motion)

Carphone | Man in a car talking on a videophone with a | Animated facial motions and background
moving background. motion (medium Motion)

Foreman | Head and shoulders of a man talking with a | Head and shoulders with a large scene
large camera pan of a construction site. change during camera pan (High motion)

The first issue studied with the videos was the distributions of the SADs. This
can be important in a hardware solution so that the registers used to store SADs are of
sufficient size to achieve correct results but not to waste extra hardware on bits that were
not often used. To find these distributions, the video clips from Table 2.1 were simulated
for best SAD values found using the 4SS algorithm. We implemented a software H.263
encoder/decoder to obtain the distribution of SAD solutions for these video clips. Table

2.2 shows the bit-lengths of the best SADs for each macroblock.
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Table 2.2 - SAD Statistics for Basic Motion Estimation Algorithms

Suzie Carphone Foreman
SAD Bit-length | 7SS 4SS 7SS 4SS 7SS 4SS
<11 Bits 9138 9134 12947 13052 7655 7658
(61.9%) | (61.9%) | (34.3%) | (34.6 %) | (20.6 %) | (20.6 %)
11 Bits 5141 5138 16182 15996 18217 18355
(34.8%) | (34.8%) | (42.9%) | (42.4 %) | (49.1 %) | (49.4 %)
12 Bits 433 437 7443 7517 10338 10094
(2.93%) | (2.96%) | (19.7%) | (19.9 %) | (27.8 %) | (27.2 %)
13 Bits 42 45 1046 1051 873 960
(0.29%) | (3.05%) | (2.78 %) | (2.79 %) | (2.35 %) | (2.59 %)
14 Bits 0 0 98 101 45 61
(0.26 %) | (0.27 %) | (0.12 %) | (0.16 %)
15 Bits 0 0 0 0 0 0
16 Bits 0 0 3 5 0 0
(0.00 %) | (0.00 %)

From Table 2.2, it can be seen that most SAD ratings fall beneath the 13-bit
(8192) range. A majority of SAD ratings fall even further below this into the 12-bit, 11-
bit, and fewer ranges. For example, nearly 97% of the SAD solutions found in the Suzie
video sequence can be represented with 11 bits and fewer. For the Carphone and
Foreman sequences, 97% of SAD solutions can be represented using 12 bits and fewer.
This suggests that the upper bits of the SAD are not necessary for all calculations and
some hardware savings can be made in the sizes of registers, comparators, and associated
logic in the processing elements and the control unit. These issues will be explored
further in Chapter 4, which details low-power enhancements incorporated in the final
motion estimation block design.

The second area of analysis deals with the actual motion vectors that are used by
the video. With the types of video targeted for this system, small amounts of motion are
expected within the pictures, meaning that most motion vectors found by the motion
estimation unit should be close to the zero-vector. Table 2.3 shows the results of
software simulations using the 4SS algorithm on the test video sequences. For the low-
motion videos nearly 90% of all motion vectors are either the zero vector or one of the 8

vectors immediately surrounding it.
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Table 2.3 - Partial Motion Vector Distributions for Test Video Sequences

Zero Vector | Distance 1 from | Distance 2 from | Other

Zero Vector Zero Vector
Suzie 68.8 % 21.1 % 4.83 % 527 %
Carphone 63.2 % 22.9% 6.67 % 7.23 %
Foreman 44.8 % 26.2 % 10.7 % 18.3 %

These findings suggest that the 4SS algorithm would indeed be more effective as
a motion estimation algorithm for these types of low-motion video. The suggestion can
also be made that the 4SS algorithm can be further enhanced by biasing the first step of
the algorithm toward the center vector and still get the correct vector the vast majority of

the time. These observations are exploited in our low-power design for motion

estimation block.
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Chapter 3
Motion Estimation Block Design

The previous chapter introduced algorithms that have been used in motion
estimation block designs along with advantages and disadvantages on using each
algorithm. This chapter describes the designs based on some of those algorithms that
were developed and simulated as part of this research.

Three algorithms were implemented to examine their applicability to a dedicated
hardware solution and to perform comparative analysis with final results. The first
algorithm considered is a Full-Search Block Matching design from [2]. The algorithm is
included mostly for comparative purposes with our low-power design. As mentioned in
the previous chapter, the full search algorithm performs too many calculations and takes
up too much area, which renders it impractical for low-power design.

Secondly, a Three-Step Search (TSS) algorithm was implemented based upon the
minimum hardware solution presented in [15]. The implementation will be compared
and contrasted with the third algorithm implemented, the Four-Step Search (4SS)
algorithm. The 4SS design is heavily based upon the TSS engine. These algorithms
were selected for their applicability to a low-power solution for low-motion video.

This chapter presents the design and operation of these three algorithms. The
three models are considered as the “baseline” models, to be used for comparison with
each other and with later enhancements. The next chapter details the low-power
enhancements made to the 4SS model based on observations made earlier and some

previous research.

3.1 System Requirements
The desired performance characteristics of a motion estimation block should meet

the following requirements.
e Perform motion estimation on 16x16 pixel macroblocks.
e Use a search area of [-7,+7].
e Perform motion estimation for 99 macroblocks per frame (QCIF-size) for 15

frames/sec or 1,485 macroblocks/second.
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With these requirements the search area must include the previous 16x16 block plus 7
pixels to the left and right and 7 pixels above and below that block from the previous
frame. This implies a 30x30 search area, which will be used for all the motion estimation
blocks described in this chapter. The current frame search block and the previous frame
search area are stored in local (to the motion estimation block) SRAMs. The partitioning
of this memory can be different for different models and will be discussed in each
respective section. An overview of the motion estimation process, including an
illustration of the search area and the current frame reference block is included in Figure
3.1. The motion estimation blocks calculate SAD ratings for a set of motion vectors
depending upon the algorithm being implemented. The lowest SAD and motion vector
found are the outputs of the block. Table 3.1 shows the inputs and outputs of each
motion estimation block along with a brief description of their operation. The usage of
each signal inside the respective models will be discussed in the sections describing the

models in detail.

Motion
(0’ O) Ve(%or (l, J) (29’0)
) I
| |
I I
| <1 16x16
: l Candidate Block
! | (Previous Frame)
| |
16x16 | e ]
Reference Block
(Current Frame)
(0, 29) (29, 29)

Figure 3.1 - Motion Estimation Overview
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Table 3.1 - Input/Output Signals for All Models

Signal Input/Qutput | Description

CLOCK Input Global clock for a model. Each model uses a single clock
for all synchronous logic (registers, counters, etc.)

ENABLE | Input Begins the circuit operation. The circuit will hold state if
the ENABLE line is de-asserted.

RESET Input Global RESET. Will RESET all states, registers, and
counters in the circuit.

FINISHED | Output Informs external control circuitry to that MVX, MVY, and
SAD are valid.

MVX Output Four bit-signed value that signifies the output motion
vector in the x-direction. Valid values are from -7 to +7.
Not valid unless FINISHED is also asserted.

MVY Output 4-bit signed value that signifies the output motion vector
in the y-direction. Valid values are from -7 to +7. Not
valid unless FINISHED is also asserted.

SAD Output 16-bit unsigned value that represents the SAD rating of the

motion vector given by MVX and MVY. Not valid unless
FINISHED is also asserted.

The initialization of local memories is not included in the design considerations or

the power consumption numbers presented within. It is assumed that this process is

uniform for the models and therefore not an important design objective. The focus of this

research is on a comparative analysis of normal operation of the different motion

estimation block designs.
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3.2 Baseline Models

3.2.1 FSBM Baseline Model

As stated in the introduction to the chapter, the FSBM baseline model is based
upon the one presented in [2]. More specifically, the arithmetic unit design and memory
partitioning are used from the specifications found in that work. This model is
implemented for later comparative analysis with the other implementations more suitable
for low bit-rate video encoding. It also serves to illustrate the regularity and superior
throughput of a FSBM solution for large-scale, computationally intensive motion
estimation operations.
This model performs the Full-Search Block Matching motion estimation algorithm on
16x16 macroblocks within a search area of [-7, +7]. The design includes 15 processing
elements (PEs), 3 local memories (one for the reference block and 2 for the search area),
a comparator unit, and counters to control addressing into the memories. A block

diagram of the entire system is shown in Figure 3.2.

Reference Search Area Search Area
Block Memory Memory O Memory 1

J

PEO PE1 PE2 PE14

Comparator Unit

Figure 3.2 - Block Diagram of FSBM Model

The basic operation of the model is straightforward. Refer to the figure of the PE
in Figure 3.3 and the pixel-flow table during operation in Table 3.2 for the following

discussion. The PEs operate on a row of motion vectors at a time. Thus, the SADs for
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motion vectors (-7, -7), (-7, -6), (-7, -5)...(-7, +7) are computed in the first operation of
the circuit. Each PE receives three pixel values for each clock cycle, two search area
pixels and a reference block pixel. The reference block pixels are shared between PEs
through a delay register inside each PE. Note that only the first PE (PEO) is connected
directly to the reference block memory. Then, the reference block pixel is shifted to its
adjacent PE on the next clock. Each PE performs the basic SAD operation of computing
the absolute difference of the two 8-bit input pixel values and accumulating it via an
adder and a 16-bit register. All PEs are seeded and starting calculation after 14 clocks
from first enabling the circuit. The first PE has a valid SAD ready for processing after
256 clocks. Each clock after that an adjacent PE has a valid SAD. Then, external logic
resets the PE, and it is available for the next SAD. The comparator decides within a
clock cycle if the newly computed SAD is lower than the lowest SAD found so far. If so,
then the system saves it off including motion vector information. Otherwise, the system
disregards the SAD and proceeds. When the counters indicate that all SADs have been
calculated, the system asserts FINISHED and stops.

Search Search
Memory 0 _Memory 1
Reference
i to next PE
Block Pixel REG(S) ( )
Memory
Bank
_Select 5.4 mux
ABS
v SAD_OUT
ENABLE REG (16)
I

Figure 3.3 - FSBM Processing Element
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Table 3.2 - Pixel Flow for FSBM Model [2]

Cycle Input Data Processor Inputs
Reference | Candidate 0 | Candidate 1 | PEO PE1 PE14

0 To,0 Co.0 10,0 C0,0

1 ro,1 Co,1 10,1 Co,1 Io,0 Co.1

2 Top Co.2 Io2 Co2 Io.1 Co2

3 ro3 Co3 ro3 Co3 ro.2 Co3

13 ro,13 Co,13 0,13 Co,13 | To,12 Co,13

14 To,14 Co,14 10,14 Co,14 | 10,13 Co,14 10,0 Co,14

15 1,15 Co,15 ro,15Co,15 | To,14 To,1 Co,15

Co,15

16 I C10 Co,16 r10C10 I'0.15 Co,16 I'o2 Co,16

17 Iy Cl1.1 Co,17 I1,1C1.1 I10C1.1 0,3 Co,17

18 o C12 Co,18 ri2Cio rL1Ci2 T'o4 Co,18

30 I1,14 C1,14 €0,30 1,14 C1,14 I1,13C1, 14 I1,0C1,14

31 ris CL15 N/A riisCiis | r1,14C1s 11 €115

255 | 11505 C15,15 N/A I15,15C15,15 | 115,14 €15, 15 I'1s,1C15,15

256 Ci5,16 I15,15C15,16 I152Ci15,16

257 C1s5,17 I153C15,17

269 C1530 I15,15 C15,30

The next few paragraphs discuss the important pieces of the system in more
detail. The discussions include the local memory, the address counters, the reset logic,
and the comparator unit. Local memory is split up a bit differently than might be
expected for this model. The reference block is maintained as a single memory of 256
bytes. The reference block pixels are arranged in the row-major order. The candidate
block area memory, however, is split up to cover two 512 bytes blocks of memory. The
memory partitioning is illustrated in Figure 3.4. Note that the leftmost 16x30 pixels are
included in the left-hand memory (Area 0) and the remaining 14x30 pixels are included
in the right-hand memory (Area 1). This enables the continuous operation of the PEs as

illustrated above. Some of the larger memories are not completely utilized. These are

marked with hatch markings inside the figure.
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15

Reference Block
256 Bytes
{(16x16x8 bits)

29 29
Candidate Area 0 Candidate Area 1
512 Bytes 512 Bytes
(32x16x8 bits) (32x16x8 bits)

Figure 3.4 - Memory Partitioning for FSBM Model

The address counters act as the control logic for the system. Logic at the counter
outputs dictates activity in most of the system. Clearly, the addresses also dictate the
pixel values that flow from the memories to the PEs as described above. There are three
memory addresses that must be created: a reference block address and two search area
memory blocks.

Figure 3.5 shows the reference block address generation logic. Referring to Table
3.2, the reference block simply broadcasts the pixels in-order for the PE array to operate
correctly. This means that as soon as the ENABLE line is asserted, this logic acts as a
simple 8-bit counter. Then the reference block pixels are presented to PEO in order and
move through the delay chain to reach the rest of the PEs to achieve the pixel flow in

Table 3.2.

REFERENCE_BLOCK_ 4
ENABLEY Appr_LOw A
(COUNTER_4) REFERENCE_
L, |BLOCK_ADDR
q rd
A REFERENCE_BLOCK_ 4
5 B~ _ADDR_HIGH .
(COUNTER_4)

Figure 3.5 - Reference Block Address Generation Logic for FSBM Model
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By necessity, the candidate search area logic is a bit more complex. Two
addresses are computed, one for the left-hand memory (Area 0) and one for the right-
hand memory (Area 1). The lower 4 bits of both addresses are created by the four-bit
CANDIDATE AREA ADDR X counter. This counter counts as long as the ENABLE
line is asserted. To understand the derivation of the upper 5 bits, refer again to Table 3.2.
For each row of motion vectors being calculated, there are 16 rows of the search area that
must be calculated. These are represented by the CANDIDATE AREA ADDR Y
counter. This counter is reset for every row of motion vectors to calculate. (That
condition is detected when the CANDIDATE AREA ADDR X counter rolls over as
seen in the block diagram.) CANDIDATE AREA ADDR MVY is another counter that
represents the scaling of the upper 5 bits in the Y direction as the Y-coordinate of the
motion vector increases. This counter is incremented when both the ADDR X and
ADDR Y counters roll over. ADDR_Y and ADDR _MVY are added to from the upper 5
bits of the left-hand memory address. According to Table 3.2, the right hand address
shares some similarities with the left-hand address. The lower 4-bits (or relative x-offsets
to the memory bank) are identical as mentioned previously. However, the y-offset of the
right-hand address is a delayed version of the y-offset of the left-hand offset. Hence, the
5-bit register is included to save off the old y-offset in the logic below , as the x-counter

rolls over. The output of this register is used as the upper 5 bits of the right-hand address.

CANDIDATE
CANDIDATE_AREA _ 4 ADDRESS
ENABLE ADDR_X . N LEFT
(COUNTER_4) -
4
N
4 CANDIDATE_AREA _ 4 CANDIDATE
ADDR_Y A ADDRESS
(COUNTER_4) RIGHT_ N RIGHT
+ ADDR ’
4 I/ (REG_5)
Z
4 CANDIDATE_AREA _ 77
4 ADDR_MVY
(COUNTER_4)

Figure 3.6 - Candidate Block Addresses Generation Logic for FSBM Model
Two important pieces of “control logic” are directly derived from these counters
and are necessary for the correct operation of the circuit. The first is the generation of the

RESET lines. Figure 3.7 illustrates the logic block. It consists of a 14-bit shift-register.
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The ENABLE MVY line is the ENABLE line for the ADDR MVY counter above. As

this counter is being enabled, the PEs are finishing off their respective SAD calculations.

This bit is shifted through the shift register to reset the PEs in order. This RESET PE

value is also used to activate the comparator.

The other major control logic is the line to each PE to select which side of the

candidate memory to use (Memory Bank Select signal of the PE in Figure 3.3). It turns

out that this logic can be based entirely on the 4-bit ADDR_X counter. Referring back to
Table 3.2, the pattern of which memory to use repeats every 16 clocks, coinciding with

this counter. Table 3.3 gives the truth table of this logic for every PE.

ENABLE_MVY
&
%5
RESET_PE

SHIFT_REG_14

(13:0)

Figure 3.7 - PE Reset Logic for FSBM Model

Table 3.3 - Memory Select Truth Table
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The final major portion of the FSBM model is the Comparator Unit. As
mentioned in the description above, this unit is responsible for determining which SAD is
the lowest value and saving both the SAD and the motion vector information. Figure 3.8
gives the block diagram for the Comparator Unit logic. The RESET PE lines described
above signal when a SAD is ready in the respective PE. The encoder encodes this code
for the 15:1 MUX. The inputs to the 15:1 MUX are the 16 bit SAD values from the PEs.
The SAD from the proper PE is selected and passed to the 16-bit comparator. If this is
lower than the SAD stored in the 16-bit SAD OUT register, then the register is enabled
and the new SAD will be loaded at the next clock. In order to ensure that this SAD is
valid, both the comparison must be valid (asserted) and one of the SAD PEs active (OR-
gate in the logic). Also, if the comparison is valid, the motion vector registers (MVX and
MVY) reload a new motion vector. The X-coordinate of the motion vector is derived
from the encoded RESET PE lines, and the Y-coordinate of the motion vector is derived

from the CANDIDATE _AREA ADDR MVY counter.
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PE_SADs RESET_PE

(15x16bits)
o 16:4
15:1 16-bit MUX ENCODER
COMPARATOR_16
15
N
SAD_OUT
L 5 REGISTER 16
N
MVX MVX
(REG_4)
N
CANDIDATE_ADDR_MVY
_ADDR_ MVX MVY
? (REG_4)

Figure 3.8 - Comparator Block for FSBM Model

To illustrate the timing of the SAD collection and RESET processes, a simple timing

diagram is presented in Figure 3.9.
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CLOCK
ENABLE_MVY
RESET_PEO
RESET_PE1
SAD_OUT_PEO 0D32 0D3F 0005 001D
SAD_OUT_PE1 0E9A 0EA2 OEA4 000F
CougﬁsgagR_ XXXX OD3F 0EA4 XXXX
COMPARISON_
VALID
SAD_REG 12A4 12A4 0D3F OD3F
MVX_REG 0010 0010 1001 1001
MVY_REG 1111 1111 0111 0111

Figure 3.9 - Timing Diagram for Comparator Unit and PE Resets
This diagram depicts a typical situation where the counters dictate that the PEs are
finishing a round of SADs and the Comparator Unit decides if the SADs beat the best
SAD found so far. In this situation, the lowest SAD found so far is “12A4” at the motion
vector (+2, -1). The process of comparison is triggered by the ENABLE MVY line to
enable the MVY counter to increment. At this point the SAD OUT from PEO is valid.
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(Notice from Figure 3.3 that SAD OUT is taken from the input to the accumulator
register, allowing the SAD to be taken a cycle before it would appear at the register
output and allowing more efficient use of the PE.) RESET PEO is now enabled as a
result. Note that the register in the PE has a synchronous RESET operation with respect
to this input, therefore, the reset will not occur until the start of the next clock cycle,
preserving the SAD being used in this comparison. The MUX logic in the comparator
passes OD3F to the comparator logic, where it triggers a favorable comparison
(COMPARISON _VALID enabled). Therefore, on the next cycle, the SAD REG is
loaded with the new SAD and the motion vector registers update with the new motion
vector (-7, +7) for this example, since PEO only figures SADs for motion vectors with a
“-7” X-coordinate. The next clock cycle, these registers are updated. Also PEO resets
and begins calculating the next motion vector. The shift register now shifts the
RESET PE signal and RESET PE1 is asserted. This SAD passes through the MUX
logic but is larger than the new lowest SAD, so it does not trigger a favorable
comparison. The next cycle occurs and the Comparator Unit registers are preserved, PEI1
resets and begins its next calculation, and PE2’s SAD is compared, and so on.

The parallel nature of the system allows generous margins in the clocking of the
system for the necessary throughput goals of the motion estimator. Figuring the number
of clocks to complete a motion vector is straightforward by referring to Table 3.2
regarding pixel flow. Covering a search area of (-7,+7) requires 225 SADs to be
calculated. Each run through the pixel flow in Table 3.2 calculates 15 of those SADs.
Thus, there are 15 of those operations to complete. Since the PEs are completely utilized
without wasting cycles between SAD comparison and reset, these operations require 256
cycles for each of the 14 rows of motion vectors. The final row of motion vectors must
“wait” until the last SAD is completed. Thus, this row of motion vectors takes 269 cycles
to complete. This is a total of 3,853 clocks to compute a single motion vector.
Computing the goal of 1,485 macroblocks per second requires 5,721,705 clocks per
second or a clock rate of about 5.72 MHz. These results are summarized in Table 3.4,

including the number of memory accesses required during calculations.
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Table 3.4 - Performance Statistics for FSBM Model

FSBM Statistic Value
Clocks per Macroblock 3,853
Minimum Clock Rate for QCIF @ 15 fps ~5.72 MHz

Reference Block Memory Accesses per Macroblock 3840

Candidate Search Area Memory Accesses per Macroblock (Area 0) 3840

Candidate Search Area Memory Accesses per Macroblock (Area 1) 3840

3.2.2 TSS Baseline Model

The TSS baseline model 1s presented here as a more plausible approach to the

motion estimation low channel bandwidth and low power budget. The model developed

and described in this section is related to the minimum hardware-cost model presented by

Costa, et. al in terms of PE structure and data flow [31]. We redesigned the control logic

to simplify it to a single state machine.

Figure 3.10 gives an outline of the TSS baseline model. This model performs the

TSS algorithm as described in [8]. The macroblock size is 16x16 and the search area

considered is [-7, +7]. This design includes 3 processing elements (PEs), 2 local

memories, and a control unit. The control unit includes the state machine to control the

circuit, memory addressing counters, and a comparator unit.

Reference Block
Memory

Candidate Search Area
Memory

RESET N

ENABLE N| .
MVX Control Unit

D —

PEO

co<
co<

PE1 PE2

«—
T
SAD

MVY
< Comparator Logic

Figure 3.10 - Overview of TSS/4SS Baseline Model [31]

The circuit computes motion vectors and SADs according to the TSS algorithm as

follows.

1. The memory counters are reset to the defaults of a zero vector and a FFFF SAD

rating.
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The PEs operate on a set of three motion vectors at a time, representing a row of
vectors on a search box. For example, to being the TSS algorithm, PEO begins
calculations for (-4, -4), PE1 starts at (-4, 0), and PE2 starts at (-4, +4).
Information on pixel flow and actual SAD calculation follows this overview.

. As the PEs finish, the control unit enables the comparator to check each SAD. If
it wins, the motion vector information is saved off for the next step.

The PEs begin work on the next 3 motion vectors of a search box. The overall
order of calculating SADs of a search box is given in Figure 3.11 below.

If the search box is finished, the control logic determines if the algorithm is
finished or if the next step of the algorithm is required. If the next step is
required, the control unit changes the search box size and resets the memory
counters to point to the origin of the new search box.

. Repeat 2-5 until the algorithm is finished. Then the control unit asserts

FINISHED and the SAD, MVX, and MVY outputs are valid.

Computed in : 1 fz\ 3 :
Parallel NG \Z/ O/
I_ I - - - o 1 ____ [ _

c edi U ER e N — iy
omputed in | |
Parallel : 4 5 6 '
Computed in : !
Parallel ! YA 78X O\,

Figure 3.11 - Search Order for PEs in TSS/4SS Models [31]

The operation of the PEs is critical to the understanding of the circuit. The major

pieces of logic are the PE itself and the variable delay units (VDUs). The VDUs enable

the sharing of reference block pixels, in the same way as the delay latch enables the

parallelism in the FSBM model. Block diagrams of the PE and the VDUs are included in

Figures 3.12 and 3.13. Figures 3.14 and 3.15 detail the memory partitioning for this

model. Only two local memories are used for the TSS model. One is 256 bytes and

includes the reference block, arranged in order as 16 rows of 16 8-bit pixel values. The

candidate search area is included in a single 1kB memory, arranged as 30 rows of 30 8-
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bit pixel values to enable easier memory addressing, as will be described later. Table 3.5
reviews the pixel flow for the PEs during the first step of the algorithm, computing (-4.-
4), (0, -4), and (+4, -4), as an example. The first candidate pixel addressed is (3,3), since

(7, 7) represents the start of the zero vector block and the first motion vector is (-4, -4).

Reference Candidate
Block Block

SAD_OUT

Figure 3.12 - TSS/4SS Baseline Model Processing Element

SELECT
2 SEL
1
DATA_IN Jé DATA_OUT
= D Q3D QD Q0 —D Q —
FF FF FF 4:1 MUX FF
A A A A
CLOCK | | | [

Figure 3.13 - TSS Variable Delay Unit
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Reference Block
256 Bytes
{(16x16x8 bits)

29 )
Candidate Area
1 Kbyte

(32x32x8 bits)
Figure 3.14 - TSS/4SS Memory Partitioning

0 29 Memory Address Pixel Coordinates

0 0 0,0
1 (1,0)
2 (2,0)
3 (3,0)
29 (29,0)
30 Unused
31 Unused
32 (0,1)

29

Previous Search Area (30x30) Memory Organization

(1kB as 32x32 bytes)
Figure 3.15 - TSS/4SS Memory Organization by Rows

48



Table 3.5 - Pixel Flow to PEs in TSS/4SS Baseline Models

Clock | Reference | Candidate | PEO PE1 PE2
Memory | Memory
1] 10.0 C33 10.0C33 Disabled | Disabled
1 10.1 C34 10.1C34 Disabled | Disabled
2 T02 C35 102C35 Disabled | Disabled
3 103 C36 103 C36 Disabled | Disabled
4 To.4 C3,7 Tp4C37 T9,0C3.7 Disabled
5 To,5 C3,8 Tp,5C3,8 To,1C3,8 Disabled
6 To,6 C3,9 T0,6C3,9 Tp,2C3.9 Disabled
7 To,7 C3,10 To,7 C3,10 10,3 C3,10 Disabled
8 To.8 C3.11 To.8 C3.11 To.4C3.11 To,0C3.11
9 To9 C3,12 T9,9C3.12 To5C3.12 To,1C3.11
14 To,14 C3,17 T0,14€C3,17 | 10,10C3,17 | To,6 3,17
15 To,15 C3,18 To,15C3,18 | T0,11C3,18 | 1'0,7C3,18
16 C3,19 Disabled 0,12 C3,19 0,8 C3,19
17 C3,20 Disabled 10,13C320 | 10,9 C3.20
18 C321 Disabled | 19,14 C321 | 0,10 C321
19 C3.2 Disabled | ro15¢322 | o.11C322
20 C3,23 Disabled | Disabled 9,12 €323
21 C3,24 Disabled | Disabled 10,13 C3.24
22 C3.5 Disabled | Disabled | 1914 C325
23 C3,26 Disabled | Disabled 0,15 C326
24 I10 C43 1,0 Ca3 Disabled | Disabled
25 I Cas rii1css | Disabled | Disabled
382 SAD SAD I'15,14
Ready Ready C1825
383 SAD SAD I15.15
Ready Ready C18.26
384 SAD SAD SAD
Ready Ready Ready

In this example, the VDU would be set for a four-cycle delay on the reference
block pixels. This effectively implements the search box for step 1 of the TSS algorithm.
Other delay modes (2 and 1 cycle delay) implement different sized search boxes for steps
2 and 3 of the TSS algorithm. The other two important considerations with maintaining
the circuit include restarting the reference block counters and disabling the PEs at the
correct points in time. The first consideration is handled by the control unit and will be

described in more detail below. The ability to enable or disable a PE is another important
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consideration. This is accomplished by adding another bit to the VDUs for an ENABLE
line. By enabling the first PE for the first 16 clocks, then sending PEs 1 and 2 a
“delayed” version of this, PE1 will be enabled for clocks 4-19, and PE 2 will be enabled
for clocks 8-23. This strategy of using the VDUs also scales down as the search boxes
get smaller.

The control unit contains addressing counters, system state machine, and
comparator logic. A block diagram of the system is included in Figure 3.16. The finite
state machine generates the control signals for the system. The XCOUNTER and
YCOUNTER are used to address the memory and inform the finite state machine when
certain states are finished. The finite state machine, comparator unit, and address

generation logic are described in more detail in the following.

Current
RESET XCOUNTER T s Address
Finite State Machine >
ENABLE YCOUNTER |
X SCALING Previous
— Address

& | Address,

<|
3| Y_SCALING
SAD_PEO
SAD PE1 | COMPARATOR Motion | MVYX_OUT,
SAD_PE2 BLOCK Vector MVY_ OUT.
7 Decode —————>
SAD_OUT,

Figure 3.16 - TSS/4SS Control Logic Overview

The most important signals of the TSS control unit are the DELAY and STEP
signals. The STEP signal is a 2-bit counter that informs the control unit which row of a
current search box is being executed. The DELAY signal is a 2-bit counter that informs
the control unit which step of the TSS algorithm is being executed. The reason for it
being labeled DELAY is that this signal is used as the input to the VDUs. This counter
counts up from 0 to 1 to 2 for the three steps of the TSS algorithm. Figure 3.17 shows the
logic to generate these two important signals. ENABLE DELAY and ENABLE STEP
are generated by the finite state machine. RESET STEP is used to reset the STEP
counter (when a new search box is being started) and is also generated by the finite state

machine.
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ENABLE_
DELAY DELAY ' DELAY

(COUNTER_2)

RESET
ENABLE_
STEP STEP . STEP
(COUNTER_2)
RESET_STEP

Figure 3.17 - TSS DELAY and STEP Generation Logic
The finite state machine acts as the controlling device for the system, generating
all control signals. It is responsible for the timing of the control signals for the address
counters, the comparator unit, the processing elements and all other logic blocks in the
system. The state machine has 8 distinct states, described in Table 3.6 along with the
conditions that will switch state. The following paragraphs describe each of the states of

the finite state machine in more detail.
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Table 3.6 - State Descriptions for TSS/4SS Models

State | State Operation Next State Condition
Name
0 Reset Initialize all counters, If ENABLE asserted, proceed to State 1.
scaling factors, best SAD | Otherwise hold.
rating.
1 Count Enable counters and PEs. | XCOUNTER reaches end of row of

pixels, then proceed to State 2. If
XCOUNTER has not reached threshold,
then repeat State.

2 Counter Reset address counters. YCOUNTER  determines if SAD

Reset calculations are finished. If not, proceed
to State 1. Otherwise proceed to State 3.
3 Evaluate | Activate PEO input to Always proceed to State 4.
PEO Comparator.
4 Evaluate | Activate PE1 input to Always proceed to State 5.
PE1 Comparator.
5 Evaluate | Activate PE2 input to Always proceed to State 6.
PE2 Comparator.
6 Decision | Reset PEs. If algorithm finished, go to State 7.

Update counters for step | Otherwise proceed to State 1.
of algorithm and/or row
of search box.

Update scaling factors if
a step of TSS/4SS
algorithm completed.

7 Finished | Enable Motion Vector If RESET asserted, proceed to State 0.
output logic, hold SAD Otherwise hold.
output.

The Count state (State 1) is the state in which the address counters are activated
and counting and the PEs enabled. This is the only state in which SAD calculation takes
place. More specifically, the XCOUNTER is activated to enable the x-directional
counting to achieve the pixel flow of Table 3.5. Only SADs for one row of pixels are
calculated at a time for an “iteration” of State 1. The next state from State 1 is State 2,
where the counters are reset. However, the threshold for switching from State 1 to State
2 depends upon which Step of the TSS algorithm is being computed. Note that the
different size of the search box requires a different number of pixels to compute the entire
row. Table 3.7 summarizes the values of XCOUNTER that move the state machine from

State 1 to State 2.
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Table 3.7 - XCOUNTER Threshold for Moving From State 1 to State 2 for TSS

Algorithm
TSS Algorithm Step | Search Box Size | XCOUNTER Threshold
1 9x9 23
2 5x5 19
3 3x3 15

The Counter Reset state (State 2) resets the XCOUNTER to enabling moving
back to the left-hand side of a row of pixels. This state enables the YCOUNTER, so that
the SAD calculations move +1 pixel in the y-direction. Counter Reset usually then
proceeds back to the Count state (State 1) to enable PE operation again, unless the SAD
calculations for the row of the search box are completed. The completion condition, thus,
is that YCOUNTER = 15, indicating all rows of the SADs were calculated. Then PEs are
ready for comparison by the comparator unit, leading to the next states.

States 3, 4, and 5, the “Evaluate PE0”, “Evaluate PE1”, and “Evaluate PE2” states
respectively, simply enabling that PE’s input to the Comparator Unit. During these
states, the comparator logic determines if any of these SADs beat the current best SAD
found. Figure 3.18 shows a block diagram of the TSS/4SS comparator logic. The
PE VALID, inputs generated by the finite state machine are used to enable the MUX that
enables visibility of the correct PE’s SAD. During State 3, PE_ VALIDO is asserted. For
State 4, PE_ VALIDI is asserted and so on. If the SAD wins, then the new motion vector
information and SAD are saved off as new scaling factors and COMPARISON VALID

is asserted.
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Figure 3.18 - TSS/4SS Comparator Unit
The most critical state is State 6, the Decision State. The logic must determine in
this state the following questions:
e s the algorithm completely finished?
e Or is the search box finished, meaning a step of the algorithm has been
completed?
e Or is the search box incomplete and requires at least one more step of processing?
Based upon these questions a pseudocode for the logic can be derived, as in the

following:
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if (STEP == 2 and DELAY == 2) then
/* algorithm is finished */
proceed to state 7; /* Finished step */
elsif (STEP == 2) then
/* search box is finished, go to next step of
algorithm */
increment DELAY; /*Assert ENABLE DELAY */
reset STEP; /* Assert STEP RESET */
proceed to state 1; /* Count state */
else
/* search box not finished */
increment STEP; /* Assert STEP ENABLE */
proceed to state 1; /* Count state */
end if;
Figure 3.19 - Pseudocode for Decision State Logic of TSS Baseline Model
At stage 7, the motion estimation operation is complete. All counters in the
circuit are disabled, and computation stops. The SAD being asserted by the comparator
unit is the optimum according to the TSS algorithm. The MVX and MVY outputs are
valid. MVX and MVY are calculated via a combinational logic block that translates the

BASEX and BASEY outputs to their MVX and MVY equivalents.
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Table 3.8 - Translation from BASEX and BASEY to MVX and MVY

BASEX, BASEY | MVX, MVY
0000 (0) 1001 (-7)
0001 (1) 1010 (-6)
0010 (2) 1011 (-5)
0011 (3) 1100 (-4)
0100 (4) 1101 (-3)
0101 (5) 1110 (-2)
0110 (6) 1111 (-1)
0111 (7) 0000 (0)
1000 (8) 0001 (1)
1001 (9) 0010 (2)
1010 (10) 0011 (3)
1011 (11) 0100 (4)
1100 (12) 0101 (5)
1101 (13) 0110 (6)
1110 (14) 0111 (7)
1111 (15) XXXX

The address generation logic must address both the current frame reference block
memory and previous frame candidate area memory. The reference block address
generation is easy. Referring back to Table 3.5, the reference pixels must be presented a
row at a time as the Count state begins. Therefore, as shown in Figure 3.16, the reference
block address is simply the concatenation of the lowest 4 bits of the YCOUNTER and the
lowest 4 bits of the XCOUNTER. As YCOUNTER is implemented with each time that
State 2 is reached, all reference block pixels are reached for each row of the search box.

The candidate area memory address is more complex. There are two “fields” of
the candidate area address, the row indicator, or upper five bits that index the row of the
search area, and the column indicator, or lower five bits that index one of the 30 pixel
positions within a row. Figure 3.20 illustrates the components of the candidate area
address. The YCOUNTER and XCOUNTER are described above and represent the
stepping through the candidate areas as the PEs calculate SADs. The derivation of the

STEPY and STEPX are mentioned below.
9 54 0

YCOUNTER + STEPY XCOUNTER + STEPX

Figure 3.20 - Formation of a Candidate Area Address
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However, the question remains of how to start the address in the correct position.
This is where the “SCALING” logic blocks presented earlier come into use. Figure 3.19
illustrates the scaling logic. The BASEX and BASEY registers hold the coordinates
representing the center of the search box in the candidate area. Therefore, on reset, they
are set to 7 (0111), which are the starting candidate areas coordinates for the motion
vector (0, 0). There are two important functions to be considered with the scaling block.
The first is the scaling of the base addresses during normal operation, and the second is
the procedure by which a new base address is assigned should a new motion vector win
during operation. These are described in the next two paragraphs.

The “Base Address Scaling Logic” block performs address scaling based upon the
BASEX, BASEY, STEP, and DELAY inputs. The X-coordinate, BASEX, is shifted to
the left (subtracted) by either 4, 2, or 1 positions depending upon which step of the
algorithm is being executed (i.e. input signal DELAY). The rules for Y-coordinate
shifting depend also upon which row of the search box is being executed (i.e. input signal
STEP). If the first row is being executed, a factor should be subtracted from the BASEY.
For the second row, no change to BASEY is needed. For the final row, the factor should
be added to BASEY. The factor mentioned in these cases is also 4, 2, or 1 depending
upon input signal DELAY. The logic for this block has been synthesized based upon the
preceding rules. The resulting factors are STEPX and STEPY. When these are added to
the XCOUNTER and YCOUNTER, respectively, they form the two fields for the
candidate area address mentioned in Figure 3.18.

The scaling for the new addresses use the rest of the logic shown in Figure 3.21.
NEWBASEX and NEWBASEY hold the new values for BASEX and BASEY. BASEX
and BASEY load these values only when ENABLE BASE is asserted by the state
machine. (This occurs when a new step of the algorithm is being executed, i.e. when
STEP = 2 and the Decision state reached.) The NEWBASEX and NEWBASEY are
loaded with new values when the COMPARISON VALID signal is asserted signifying a
new low value from the comparator unit. First, look at the NEWBASEX input. It can
either represent BASEX plus or minus a factor based upon the step of the algorithm (4, 2,
or 1). Notice that these scaling factors are prefigured for each BASEX. The results are
passed through the 3:1 multiplexer to the NEWBASEX register depending on the
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STATE. The STATE is decoded to determine which PE (and therefore which coordinate

of the search box) is being accessed. The Y-shifting occurs in almost the same fashion.

Except this time, the STEP input is used in the mutliplexer to determine which row of the

search box is being looked at. That will determine which direction to shift the BASEY

value.
COMPARISON _
VALID ENABLE_BASE
' NEWBASEX |' BASEX ,
' REG 4 REG 4 |
: ( _4) : : ( _4) : Base Address
! \ X ) Scaling Logic
| NEWBASEY |[' 1 BASEY !
: (REG_4) - (REG_4) :
ST|ATE
—_
3:1 |
STEP |
‘_@
3:1 |
DELAY
e
_—
u2u . 31
’ 7 MUX
o

Figure 3.21 - Block Diagram of TSS Scaling Unit

STEPX
—

STEPY
—

The parallel computation of the PEs and reduced workload from the TSS allow a

minimum clocking requirement close to that of the FSBM model. The algorithm must

complete 3 steps of the algorithm. Table 3.9 shows exactly how many cycles of each

state must be executed for each step of the TSS algorithm.
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Table 3.9 - Number of Cycles for Each State Per Step of TSS Algorithm

State | State Name | Cycles for Step 1 | Cycles for Step 2 | Cycles for TSS Step 3
0 Reset 1 0 0
1 Count 24x16x3 20x16x3 18x16x3
(1152) (960) (864)
2 Counter Reset | 1x16x3 1x16x3 1x16x3
(48) (48) (48)
3 Evaluate PEO | 1x3 1x3 1x3
3 3 (€))
4 Evaluate PE1 | 1x3 1x3 1x3
3 (€)) (€))
5 Evaluate PE2 | 1x3 1x3 1x3
3) (€)) 3
6 Decision 1x3 1x3 1x3
3 3 (€))]
7 Finished 0 0 1
Total 1213 1020 925

Therefore, 3,158 clock cycles are required for a single motion estimation operation. At
the desired throughput of the system, this demands 4,689,630 clocks per second or a
frequency of about 4.7 MHz as the minimum clock frequency.

The issue of memory accesses becomes somewhat more complex to answer due to
the nature of the different size search boxes in the algorithms. The simple logic exists
inside the model to turn off memory when it is not needed. An example can be seen in
Table 3.5 for the Reference memory from clocks 16-23 and so on. For the reference
memory, only the 16x16 reference block is read per iteration of a row of motion vectors
of the search box. This is repeated then 3 times for a search box. Considering another
factor of 3 for the steps of the TSS algorithm and the number of reference memory
accesses 1s given by 16x16x3x3 = 2,304 accesses. The number of candidate area
memory accesses differs according to each step of the algorithm. For the first step, 24
accesses are required for each row, for the second step, 20 accesses, and 18 for the third.
Therefore, multiplying by the 16 and 3 factors for each step of the algorithm yields:

e 24x16x3 = 1,152 accesses for Step 1.
e 20x16x3 =960 accesses for Step 2.

e 18x16x3 = 864 accesses for Step 3.
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The total number of candidate area memory accesses for the TSS model is 2,976

accesses.

Table 3.10 summarizes the performance characteristics for the baseline TSS

model derived above.

Table 3.10 - Performance Statistics for TSS Model

TSS Statistic Value
Clocks per Macroblock 3,158
Minimum Clock Rate for QCIF @ 15 fps ~4.7 MHz
Reference Block Memory Accesses per Macroblock 2304
Candidate Search Area Memory Accesses per Macroblock 2976

3.2.3 4SS Baseline Model

The 4SS baseline model performs the 4SS motion estimation algorithm on a

group of pixels as defined by Po and Ma [11]. The implementation of this model is

nearly identical to the TSS model. The general structure is exactly the same. The major

differences between these models are highlighted in this section. Also, performance and

clocking requirements differ so those are presented in this section as well.

The following steps summarize the operation of this model as it performs a

motion estimation operation (differences from the TSS model are highlighted in italics).

1.

The memory counters are reset to the defaults of a zero vector and a FFFF SAD
rating.

The PEs operate on a set of three motion vectors at a time, representing a row of
vectors on a search box. For example, PEO begins calculations for (-2, -2), PEI
starts at (-2, 0), and PE?2 starts at (-2, +2).

As the PEs finish, the control unit enables the comparator to check each SAD. If
it wins, the motion vector information is saved off for the next step.

The PEs begin work on the next 3 motion vectors of a search box. The overall
order of calculating SADs of a search box is the same as in the TSS model (Figure
3.11 above).

If the search box is finished, the control logic determines if the algorithm is
finished or if the next step of the algorithm is required. If the next step is
required, the control unit changes the search box size and resets the memory

counters to point to the origin of the new search box. This step will differ from the
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TSS model in that the algorithm must proceed to the fourth step if the center
vector of a search box wins.
6. Repeat 2-5 until the algorithm is finished. Then the control unit asserts
FINISHED and the SAD, MVX, and MVY outputs are valid.
Obviously, one of the major differences between the TSS and 4SS models is that
the 9x9 search box is not used in the 4SS algorithm. Steps 1-3 of the 4SS algorithm use a
5x5 search box and the 4™ step uses the 3x3 search box. Recall that the VDU selects the
size of the search box being used for each step of the algorithm. Therefore, the 4-cycle
delay mode to implement the 9x9 search box is unnecessary in the 4SS model. This
simplifies the 4SS VDU to a device that delays pixel values by either 1 or 2 clocks as

shown in Figure 3.22.

SELECT
1
DATA_IN DATA_OUT
= D Q—0 —D Q -
JAN A\
CLOCK

Figure 3.22 - 4SS Model VDU
The DELAY input still represents the size of the search box, but now it cannot be

used to tell when the algorithm is completed. In the TSS model, the DELAY could be
incremented by asserting ENABLE DELAY every time the STEP counter reads 2 at the
Decision state, indicating that the search box was finished. In this case however, the
search box size (DELAY) being incremented represents moving to Step 4 of the 4SS
algorithm. This can only happen if

1. Three search boxes have already been searched, or

2. The previous search box winner was the center of the search box.
Figure 3.23 shows the DELAY and STEP generation logic for the 4SS baseline model

reflecting these new restrictions. STEP is generated as before, incremented or reset at the

61



Decision state by the finite state machine. DELAY, however, is not a counter, but a 1-bit
register. The register is reset to 0 upon reset, setting the VDUs to implement a 5x5
search box. A 2-bit counter (COUNT in the figure) is used to keep track of the number
of iterations of the 5x5 search box. When this hits “2” and STEP hits “2”, the algorithm
must jump to Step 4 so the DELAY REG input is asserted. The other way to assert that
input line is via the GO_STEP 4 signal. GO_STEP 4 is a piece of combinational logic
that asserts under the following condition:

(BASEX = NEWBASEX) - (BASEY = NEWBASEY) (1)

In other words, this signal shows that there is no change in the new base coordinates
about to be loaded into the BASEX and BASEY registers. If this condition is true when
the STEP input resets, or a new “step” of the algorithm is entered, then the center of the

previous search box has won and the algorithm should proceed to step 4.

RESET_STEP

l

GO_STEP 4
DELAY [DELAY,
ENABLE (REG_T)
COUNT COUNT COUNT(1)
(COUNTER_2) [ STEP(1)
RESET
ENABLE_
STEP STEP STEP
(COUNTER_2)
RESET STEP

Figure 3.23 - 4SS DELAY and STEP Generation Logic
Another difference shows up in the address scaling logic. A block diagram of this
logic for the 4SS baseline model is presented in Figure 3.24. Notice that its operation is
identical to that of the TSS model with one simplification. The scaling factors used to
add or subtract from the base addresses in both the new vector scaling logic and the

“Base Address Scaling Logic” only require factors of either 2 or 1 depending on the
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DELAY signal input. The reason is again due to the fact that the 9x9 search box with a

search point distance of 4 is not used in the 4SS model.

COMPARISON_
VALID ENABLE_BASE
‘[ NEWBASEX |! ! BASEX ! | STEPX,
! REG 4) b (REG_4) ! Base Address
' o I Scaling Logic STEPY
[ NEWBASEY |1 BASEY .
: (REG_4) - (REG_4) ; ;
STTTE
G
3:1 [

31
MUX G__[Eie__
DELAY
wop
T 21
u1u MUX
a

Figure 3.24 - Block Diagram of TSS Scaling Unit
Finally, a change must be made in the finite state machine for determining what
should happen upon reaching the Decision state. As mentioned previously, the logic for
the DELAY register handles switching between the search box sizes and therefore
handles which “Step” of the 4SS algorithm the circuit currently is executing. This can
simplify the pseudocode for the next state logic at the Decision state. This is summarized

in the following figure (Figure 3.25).
if (STEP == 2 and DELAY == 1) then

/* algorithm is finished */
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proceed to state 7; /* Finished step */
(STEP == 2)

elsif

then

/* search box is finished, go to next step of

algorithm */
reset STEP; /* Assert STEP RESET */
increment COUNT; /* Assert ENABLE COUNT */

proceed to state 1;

else

/* Count state */

/* search box not finished */

increment STEP; /* Assert STEP ENABLE */

proceed to state 1; /* Count state */

end if;

Figure 3.25 - Pseudocode for Decision State Logic of 4SS Baseline Model

When calculating performance statistics and minimum clock requirements for the

4SS model, the fact that the length of time of computation is not set as in the previous

two algorithms. There are 3 distinct lengths of time that can be observed, depending

upon whether the algorithms aborts early in the 1% or o steps or runs through its

entirety. Table 3.11 lists the number of cycles for each step of the 4SS algorithm with

this implementation. Notice that basically these are the same as those lengths of time for

the TSS algorithm steps 2 and 3 for the 5x5 and the 3x3 search boxes.

Table 3.11 - Number of Cycles for Each State Per Step of 4SS Algorithm

State | State Name Cycles for Cycles for Cycles for Cycles for
Step 1 Step 2 Step 3 Step 4
0 Reset 1 0 0 0
1 Count 20x16x3 20x16x3 20x16x3 18x16x3
(1152) (960) (960) (864)
2 Counter 1x16x3 1x16x3 1x16x3 1x16x3
Reset (48) (48) (48) (48)
3 Evaluate 1x3 1x3 1x3 1x3
PEO 3) 3) 3) A3)
4 Evaluate 1x3 1x3 1x3 1x3
PE] 3) 3) A3) A3)
5 Evaluate 1x3 1x3 1x3 1x3
PE2 3) 3) 3) 3)
6 Decision 1x3 1x3 1x3 1x3
3) 3) A3) A3)
7 Finished 0 0 0 1
Total | --------—-—- 1021 1020 1020 925
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Therefore, for a single motion estimation operation 1,946, 2966, or 3986 clock cycles are
required. The worst-case condition must be used to define the minimum clocking for this
algorithm. At the desired throughput of the system, 5,919,210 clocks per second are
needed or a frequency of about 5.9 MHz as the minimum clock frequency.

Memory accesses can be solved using the examples given for the TSS baseline
model above. The reference area memory will always be accessed 16x16x3 = 768 times
for each step of the 4SS algorithm, regardless of the search box size. For the candidate
area, since steps 1-3 of the 4SS algorithm directly correlate to Step 2 of the TSS
algorithm with the 5x5 search box, steps 1-3 require 20x16x3 = 960 accesses. The fourth
step of the 4SS algorithm uses a 3x3 search box, therefore 18x16x3 = 864 accesses are
required. The total number of candidate area memory accesses for the 4SS model can be
1824, 2784 or 3744 accesses.

Table 3.12 summarizes the performance characteristics for the baseline TSS
model derived above. Note that the table is split according to how many steps of the 4SS
algorithm are used for each motion estimation operation.

Table 3.12 - Performance Statistics for 4SS Model

4SS Statistic 2 Steps | 3 Steps | 4 Steps
Clocks per Macroblock 1,946 2,966 3,986
Minimum Clock Rate for QCIF @ 15 fps ~5.9 MHz | ~5.9 MHz | ~5.9 MH?
Reference Block Memory Accesses per Macroblock 1,536 2,304 3,072
Candidate Search Area Memory Accesses per Macroblock 1,824 2,784 3,744
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Chapter 4
Low-Power Enhancements

The motion estimation block can consume a large amount of power. The
necessary components for a motion estimator include counters to address memory, large
memories to store pixel values, arithmetic units to calculate SADs, comparators,
registers, and control logic. The complex block demands a good deal of power. To make
the problem worse, the motion estimation block is used nearly all the time. After the first
frame of a video sequence, motion estimation is applied to nearly every macroblock of
every frame of the video. In fact, high-throughput motion estimation blocks have been
estimated to consume nearly 50% of the power dissipated in a video encoder [6].

While the motion estimation block used for the targeted low-bit rate video
encoder is not as high-throughput as one for a high quality, high frame rate video system,
the demand of portable operation places a strain on the power dissipation of the block.
The proposed motion estimation design presented in this thesis must consume as little
power as possible. Optimizations are measured by reduction of power consumed by the
block or in reduction of memory accesses that occur during the operation.

Based upon power characterizations of the baseline models and the study of
targeted videos from Chapter 2, the four-step search model was chosen as the baseline for
the low-power enhancements. This chapter presents four major enhancements and some
minor design alterations to the baseline 4SS model to reduce power consumption.
Although most of these enhancements would work better for any low bit-rate video, the
final proposed design is optimized for low-motion video targeted by this system. Those
topics will be discussed as well as a rationale for each enhancement and a detailed
description of the implementation.

The first two alterations, removing redundant calculations and halting of SAD
calculations are purely design-related to the implementation of the 4SS algorithm. In
other words, they do not alter the output of the circuit in any way but should result in a
net power saving. The final two methods presented in this chapter, zero-biasing the

search and reducing bit-length of registers, alter the 4SS algorithm slightly.
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4.1 Redundant Search Removal

As the 4SS algorithm proceeds to the 2" and 3™ steps of the algorithm, many of
the motion vector SAD calculations are unnecessary. Those SADs have already been
computed and are found to be non-optimal. If those calculations can be removed in
subsequent steps, a power savings can be achieved. For an example, refer to Figure 4.1.
When moving from the 1% to the 2™ step and from the 2™ to the 3" step of the algorithm,
many of the calculations required by the new search box are redundant. In this example,
the motion vector at (0, -2) wins the first step, so the 2nd step is required. Placing the 5x5
search box at the new center of (0, -2) renders 6 of those 9 vectors to be redundant
(marked by R1 in the figure). In the best case, illustrated by the 3"-step search centered
at (+2, -4) 4 searches are redundant (marked by R2) in the figure. Generally speaking, 6
searches are redundant when the side of a search box wins, and 4 searches are redundant
when selecting the corner of the search box. For larger motion that uses most of the 4
available steps of the 4SS algorithm, this can lead to wasted power and an average

computational complexity greater than that of the TSS algorithm.
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Figure 4.1 - Illustration of 4SS Redundant Calculations
In our low-power design, logic has been added to detect this case and remove the
redundant SAD calculations from the subsequent search step. A special bit code is saved
off if a PE comparison is valid (i.e. the SAD of that PE is the lowest found so far.) This
code is used the next search step to gate the ENABLE fed to each PE. When a PE does
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not receives the ENABLE signal, it gates off all inputs to “0” and disables its
accumulator register, effectively stopping all switching activity for that SAD calculation

for that row of motion vectors. Figure 4.2 shows a block diagram of the logic.

New Step
COMPARISON_VALID  of Algorithm

|

STATE
| MASK_CODE |.|PE_DISABLE_HOLD| .| PE_DISABLE
STEP osic |~ (Rec.4 || (REG.4) |PE_DISABLEO,
PE_DISABLE |PE_DISABLE1
| S
LOGIC
DELAY PE DISABLE?2
>

Figure 4.2 - Block Diagram of Logic to Remove Redundant Calculations

As mentioned above, the code for enabling the PE DISABLE lines is stored in
the 4 bit register PE DISABLE. A two register “pipeline” structure implements this
functionality. Recall that COMPARISON VALID is asserted when a valid comparison
has been made. The STATE and STEP information determine exactly which PE in the
search box generated the successful comparison, so the MASK CODE logic can generate
the correct 4-bit code. STEP indicates the row of the search box being calculated (the y-
coordinate). STATE of the control unit will determine which of the 3 PEs is being active
in the comparator unit at that moment (x-coordinate). Figure 4.3 illustrates this indexing
of the correct PE. VHDL code was synthesized to produce the proper mask code to
identify which PE has won in the previous step. PE DISABLE HOLD is then loaded by
being enabled with the asserted COMPARISON VALID signal. This mask code then is
loaded into the next register in the chain, PE_DISABLE, when the algorithm shifts to the
next step. This logic equation to derive the signal “New Step of Algorithm is given as
equation 1 below, the condition being that STATE 1is 6 (the Decision state) and the STEP

is 2 (the last row of the search box).

NewStep = STATE?2 - STATE1- STATEQ - STEP1 (D)
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Figure 4.3 - Illustration of Indexing into Search Box to Determine Winning PE for
Generation of Redundant Search Removal MASK_CODE

At the next step of the algorithm, this 4-bit code, which gives the winning PE of
the previous step, is fed to combinational logic (PE_DISABLE Logic) to produce the
final signals that can turn off a PE if necessary. Note again that the DELAY line
indicates the size of the search box being used. STEP is also needed since the
PE DISABLE signals are different depending upon which row of the search box is being
calculated. For the 3x3 search box (step 4 or DELAY is 1), the PE DISABLE logic
defaults to calculating all motion vectors except the center one. This differs from the 5x5
search box case where turning off different PEs is necessary depending upon the winner.
Table 4.1 gives the truth table for the PE_DISABLE logic. Notice that a “1” in the table
means that the PE is enabled. A “0” means the PE should be shut off.

The PE DISABLE lines are logically combined with the PE ENABLE lines
generated for each the PEs as shown in Figure 4.4. If a PE DISABLE line is asserted,
then the PE is disabled. The final PE_ENABLE signal is deasserted for the length of that

PE_DISABLE D PE ENABLE
PE_ENABLE —

Figure 4.4 - PE_ENABLE Generation Logic with PE_DISABLE Signal

calculation.
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Table 4.1 - Truth Table for PE_DISABLE Logic

PE_DISABLE PE_DISABLE PE_DISABLE
(STEP = 0) (STEP =1) (STEP =2)

Winning | DELAY | 0 1 2 0 1 2 0 1 2
PE
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A final consideration must be made for the comparator unit. The SADs for the
disabled PEs are 0, since all computations are disabled for that PE. The logic for the
comparator unit needs to be altered from the baseline model to prevent this SAD from

being used. Figure 4.5 shows the logic of the enhanced comparator.
SAD_PEO SAD_PE1 SAD_PE2

PE_VALIDO \l, \L \|/

PE_DISABLEO }
PE_VALID1
PE_DISABLE1 } 4:1 MUX
PE_VALID2
PE_DISABLE2 }
\
COMPARATOR SAD OUT .
REG ¢
ENABLE  [COMPARISON’
REG 16 _VALID

Figure 4.5 - Comparator Unit with Redundant Search Removal Capability
The major difference between the new comparator unit and the old unit lies in the

multiplexer and the inputs from the state machine to the mutliplexer. The multiplexer has
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been altered so that when none of the three inputs are asserted, the output is FFFF, or the
largest possible number, guaranteeing that a positive comparison will NOT occur. The
PE VALID, signals are gated into the multiplexer by the respective PE DISABLE,
signal. The “negative logic” of the PE_ DISABLE lines enable this. As an example, look
at the case where the PE_ DISBALE mask for a particular SAD calculation is “001”. This
means that PEO and PE1 are disabled and will have a SAD value of 0 and PE2 is enabled
and will have a valid SAD after calculations. During evaluation of the PEs, PE VALIDO
and PE_VALIDI are asserted during states 3 and 4 respectively. However, since the
PE DISABLE signals are deasserted (the PE_ DISABLE mask does not “reset” to the
next value until Decision state) the multiplexer does not see a valid input and asserts
FFFF as the SAD value for those PEs. During state 5, the PE DISABLE2 and
PE VALID2 are both asserted, and the proper SAD is applied to the comparator to

determine if it should be used.

4.2 Comparator SAD Stop

The 4SS algorithm only requires an accurate SAD calculation if that SAD has
beaten the best SAD so far. Therefore, if a SAD calculation is obviously not going to
beat the best SAD found so far, any additional calculations of that SAD are completely
unnecessary. This scheme is most effective for smaller motion video, when an optimum
SAD can be found quickly, and more calculations in the PEs can be skipped.

This method is implemented with a simple comparator built-in to each PE. Figure
4.6 shows the new processing element with comparator logic. The “best” SAD found so
far is supplied to each PE (represented by the signal SAD IN in the figure). If the
calculated SAD for that PE increases to a value larger than the best SAD found
previously, the comparator flags a signal that is held until the PE is reset again. This
signal will force the PE to gate its inputs, again effectively shutting off switching activity.
Since the SAD value is obviously not going to win, it can be used without modification

by the controller during the evaluation steps without concern for altering final results.
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Reference Candidate
Block Block

5

PE_DISABLED
ENABLE _\_/_
ABS
SAD IN
REG(16)
| SAD_OUT

Figure 4.6 - Processing Element with Comparator to Enable SAD Stop

The timing diagram in Figure 4.7 illustrates exactly how the PE is disabled. (Note
that all pixel and register values in the diagram are decimal for clarity.) For this situation,
the SAD IN value, representing the best SAD found so far by the system is 232. The PE
has calculated a SAD value so far of 220, represented by SAD OUT. Since, the
SAD OUT is less than that of SAD IN, the COMPARATOR OUTPUT signal is
deasserted, and the PE DISABLED signal is high. The AND gates then allow the
REFERENCE BLOCK and CANDIDATE BLOCK pixel values to pass and be operated
upon by the subtractor and absolute value unit. In conjunction with this, the 16-bit
accumulator register is enabled. Notice then the second rising clock edge in the timing
diagram, where the PE inputs are 135 and 142. This gives an absolute difference of 7,
which when added to the previous SAD OUT gives a new SAD of 233. The comparator
flags this and enables its output. This output is synchronous with the clock, so the
SAD OUT clocks in the 233 value at the next rising edge. However, when the
COMPARATOR_OUT goes high at the next clock, PE DISABLED is now deasserted.
This effectively “gates out” the input pixel values to zero. The absolute difference is now
always zero, and the register is disabled from loading new values to help save more

power. Effectively, the state of the PE is frozen, until the control unit resets the PE, then
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the SAD OUT and COMPARATOR OUT resets to 0, re-enabling the PE for the next
SAD calculation. Note that the SAD OUT is higher than the SAD IN, so this value can
be used by the Comparator Unit during SAD evaluation states without any other logic.
The logic in the PE guarantees that this SAD, even though not completely accurate, will

not “win” and thus can be used as it is.

cLOCK [ T T s I e O e
REFERENCE_BLOCK [ 134 | 135 | 139 | 140 | 142 | 142 |
CANDIDATE_BLOCK | 140 | 142 | 160 | 162 | 164 | 163 |

GATED_REFERENCE BLOCK | 134 [ 135 | o | o | o [ o |

GATED_CANDIDATE BLock | 140 | 142 | o | o | o [ o |

ENABLE

PE_DISABLED |

ABS_OUTPUT [ ¢ | 7 | o | o | o [ o |

REG16_INPUT | 226 | 233 | 233 | 233 | 233 [ 233 |

SAD_OUT [ 220 | 226 | 233 | 233 | 233 | 233 |

SAD_IN | 232 |

COMPARATOR_OUT |

Figure 4.7 - Typical Timing Diagram for PE Comparator SAD Stop

4.3 Zero-biased Searches

The 4SS method consumes more power as more steps in the algorithm are
utilized. This observation is verified by the discrepancy in power consumption from
lower-motion video to larger-motion video seen in the baseline models. (Refer to
Chapter 5.) The zero-bias method simply reduces the SAD rating of the center motion
vector in the 1% through 3 steps by a factor value to induce the algorithm to a faster
ending, hopefully removing unnecessary steps in the algorithms while coming to an

acceptable solution. Figure 4.8 shows the comparator logic with the zero-bias step added.
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—
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SAD_OUT _

/7

REG
ENABLE

REG_16

Figure 4.8 - Comparator Unit with SAD Biasing Logic
The extra subtractor in the comparator unit either subtracts the bias factor from
the SAD PE1 or enables the SAD PEI to pass without alteration. (In other words, it
functions as a multiplexer and a subtractor.) The ENABLE line is decoded from STATE
and STEP (search box row) information that determines if the center PE of the search box

is active at that time according to the following equation: (STATE =4 and STEP = 1)

ENABLE = STATE?2 - STATE1 - STATEO - STEP1 - STEPO (2)

A final consideration has to deal with not using the SAD of a PE that has been
prematurely cut-off due to the comparator SAD stop method mentioned in the previous
section. This can artificially reduce a SAD rating of a center PE to be much lower than
the correct SAD rating minus the intended biasing factor. This is accomplished by
simply gating a signal to the center PE1 during the middle row of the search box (STEP =
1) to disable the comparator SAD-stop logic. This prevents gross errors such as the one

mentioned above from being introduced by the biasing logic.
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4.4 Reducing Length of SADs

Revisiting the analysis of the test videos from Section 2.4 reveals that the SAD
values from typical runs of the 4SS algorithm shows that for most data, the best SADs
never exceed 12-13 bits and are often of much smaller bit-widths.

Using this information, it becomes apparent that perhaps not all bits in the SAD
(16 in the baseline model) are necessary for computing accurate motion vectors given the
types of video quality required. Large SADs also mean that the motion vector will, in
most cases, not be used by the motion compensation unit anyway (i.e. the block will be
encoded in INTRA mode). This information is exploited in the reduced precision model,
where the length of the adder and the registers to hold the SAD in each PE (and the
associated comparators) are reduced in size.

To handle cases where the SAD will “overflow” the register lengths an overflow
detection scheme was devised. This scheme will detect an overflow condition by simply
comparing the MSB of the previous sum and the newly computed sum. If the previous
sum has an MSB of ‘1’ and the current sum has an MSB of ‘0’ then an overflow
condition has occurred. For example, for a 14-bit SAD with the MSB of the accumulator
being named REG(13) and the MSB of the adder being named REG(13), the overflow
condition would then be described by the equation:

OVERFLOW = ADD(13) - REG(13) 3)

A flip-flop is triggered to flag this overflow to both gate off any future inputs and
signal the controller to completely disregard this SAD during output evaluation phase.
The proposed PE with both comparator and reduced precision arithmetic logic is shown

in Figure 4.9.
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Figure 4.9 - PE with Reduced Bit-length Arithmetic and Overflow Detection Logic
Finally, the comparator unit must again be fitted with another enhancement such
that the overflowed SADs are not used. The technique used is very similar to that in
Figure 4.5 for not using SADs from disabled PEs. This involves gating the VALID
signals with the PE OVERFLOW signal. PE OVERFLOW is positive logic, so the
VALID signal should be deasserted when PE_ OVERFLOW is asserted. The equation for

the input line becomes:

PE _MUX ENABLE, =PE _VALID, - PE _DISABLE, - PE _OVERFLOW, (4)

The final logic for the comparator unit including the consideration for overflowed

PEs is shown in Figure 4.10 below.
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ENABLE COMPARISON’

REG_16 _VALID

Figure 4.10 - Complete Comparator Unit Including Logic to Disregard Overflowed
PEs

4.5 Miscellaneous Techniques

These power-savings techniques are based upon observations made during model
development and attempt to reduce computations. They have been implemented with the
“Combined” model that combines all of the power-savings techniques described in this
chapter into a single model proposed in this thesis as most power-efficient.

4.5.1 Disabling VDUs and Memory

During model simulations the observation was made that all PE’s were disabled
quite often. During this condition, all PEs have effectively shut off pixel inputs and
stopped calculations until evaluation and reset during the Decision State, or State 6. It
makes sense then that the VDUs and the Memory units do not have to supply any more
pixel values to the PEs, since they will be ignored anyway. A small amount of extra
logic can disable memory and VDUs. Adding the simple gates increases power
consumption slightly, but should result in an overall savings. This is because the gated
signals disable larger blocks of logic which consume more power than the gates to
generate the control signals. The net result should be a savings in power consumption for

the overall circuit.
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The memory access enable logic can disable the memories when needed. This
occurs when all the PEs are disabled during SAD calculation. Since this condition does
NOT stop the counters, any accesses to memory are unnecessary and should be disabled.
To decide whether a PE is shut-off for the duration of a SAD calculation, both the
PE DISABLE from the redundant search logic (Figure 4.4) and the PE DISABLED
signal derived from the comparator SAD-stop and overflow logic (Figure 4.9) are needed.
If either of those signals is deasserted (recall they are “negative” logic in relation to their
names), then the PE can safely be assumed to be disabled. In relation to the memory
enable signal, if any of the PEs are “alive”, then the memory must be enabled. This is
defined by the “OR” gate in Figure 4.11. Finally, a master signal MEMORY ENABLE
from the system enables memory when the circuit is enabled. This disables memory
during idle cycles in the video encoding system.

MEMORY_ENABLE GATED_MEMORY _
PE_DISABLE(0) ENABLE
PE_DISABLED(0) i
PE_DISABLE(1)
PE_DISABLED(1 )D_'
PE_DISABLE(2)
PE_DISABLED(2)

Figure 4.11 - Memory Access Disable Logic

Since there are two VDUSs to be disabled, the VDU disabling logic differs slightly
between them. (Refer to Figure 3.1 for better understanding.) Recall there are two sets
of VDUs, one between PEO and PE1, and another between PE1 and PE2. Recall also that
pixel flow occurs from PE 0 to PEI to PE2 through the VDUs. The condition, then, for
disabling a VDU must be that all the PEs “downstream” from that VDU must be
disabled. So to disable VDUO, both PE1 and PE2 must be disabled. To disable VDU,
only PE2 need be disabled. Figure 4.12 details the logic for each of these blocks. (Recall
a PE_DISABLED, signal is ‘1’ when PE, is enabled.)

PE_DISABLED2 VDU_ENABLE1

VDU_ENABLEO
PE_DISABLED1 ) >

Figure 4.12 - VDU Disable Logic
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4.5.2 Re-encoded Finite State Machine

Another possible power optimization includes optimizing the encoding for the
finite state machine. The optimization should reduce the transitions among the state bits
as much as possible to reduce dynamic power consumption. To optimize, the state
transitions and their probability to occur during normal operation should be determined.
Figure 4.13 shows a simple state diagram of the 4SS model. The percentages shown in
the figure reflect the probability of that path being taken when the circuit leaves that
state. Therefore, transitions back to O state, or reset, and transitions where the state is
maintained, during Count state (1), are not considered in the diagram. The only states
that have a choice as to which state will be next are Counter Reset state (2) and Decision
state (6). The percentages from the Decision state rely on the number of steps taken in
the 4SS algorithm. The statistic given in the figure for the 6-to-1 transition of 92%
pertains to the case where the algorithm uses all four steps. In case of the algorithm using
three steps, the 6-to-1 path would be taken 89% of the time and the 6-to-7 path 11%. The

statistics reduce to 83% and 17%, respectively. In any case, the 6-to-1 path dominates.

Figure 4.13 - State Machine Transitions
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The goal of the optimization is to encode transitions with high probability with a
smaller number of bit changes, possibly one bit change. It turns out that a Gray encoding
for the states fills this need. Table 4.2 shows the new encoding.

Table 4.2 - Re-encoded States for Power Optimization of 4SS Finite State Machine

State Old Encoding | New Encoding
Reset (0) 000 000
Count (1) 001 001
Counter Reset (2) 010 011
Evaluate PEO (3) 011 010
Evaluate PE1 (4) 100 110
Evaluate PE2 (5) 101 111
Decision (6) 110 101
Finished (7) 111 100

4.5.3 Combinational Logic Block Disabling

Logic should be designed carefully to reduce glitches or spurious inputs, as they
dissipate unnecessary power. One example of a block of logic that violates this principle
is the logic that translates the BASEX and BASEY values (detailing the center of the
search box in unsigned absolute coordinates) to MVX and MVY values understandable
by the outside world (signed 2’s complement 4-bit numbers). BASEX and BASEY
change often during the motion estimation operation; forcing changes to MVX and
MVY. However, the MVX and MVY values are not deemed valid by the system until
FINISHED is asserted at the end of the motion estimation calculation. This can lead to
unneeded switching inside the combinational logic that derives the MVX and MVY
outputs. Figure 4.14 shows a gating of the inputs to the motion vector logic based upon
the STATE of the system.

STATE_DECODE A
BASEX 4 U—H [4 MVX,

4 .
STATE_DECODE Motion Vector

4 | Translation Logic
BASEY 4 D—/—) [4 MVY,
4

Figure 4.14 - Gated Motion Vector Translation Logic
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4.6 Review of Low-Power Techniques

The major low-power techniques described in this chapter aim to reduce power
consumption through reducing the computational load in the 4SS algorithm. The
Redundant Search Removal and Comparator SAD Stop techniques removed calculations
that are part of the regular hardware implementation of the regular 4SS algorithm, but
unnecessary in reaching the final solution. The former method works best on removing
these unnecessary calculations in large-motion video while the latter works best on
removing those typically found in low-motion video motion estimation. The next two
methods attempted to reduce the computational load by slightly altering the 4SS
algorithm to reduce computational complexity without greatly disturbing the results. The
Zero-bias Method aims to bias the algorithm to select the center vector in steps 1-3 to
force a faster end to motion vector computation, reducing the overall number of points
that must be checked. The other proposed idea reduces the number of bits that can be
represented by a SAD. If a SAD calculation overflows the reduced bitlength, it is
discarded and not used. Computations are thus eliminated on candidate vectors that are
of too large a SAD.

Other methods in this chapter reduce transition activity in circuit elements
whenever possible. Logic was presented to disable the local memories and VDUs. The
state machine was reencoded so that all normal state transitions involve only a single bit.
Finally, combinational logic blocks (e.g. PEs, scaling logic in the controller, motion
vector decoders, etc.) are gated at the inputs to remove unnecessary signal transitions in
those logic blocks when the outputs are not needed. This also reduces power due to

glitches and spurious inputs.
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Chapter 5
Experimental Results

In this chapter we present experimental results of the low-power design methods
described in Chapter 4, both in terms of video quality and power characterization. Both
power characterizations of the circuit logic estimated from gate-level simulations and the
power consumed by memory accesses are considered in the results. The synthesized
circuit area and measured performance are also presented.

To measure video quality, an H.263 software encoder/decoder system was
developed. The motion estimation algorithms are implemented and measured for peak
signal-to-noise ratio (PSNR) as a quantitative measure of video quality. Additionally the
number of blocks transmitted in INTRA or INTER mode and length of encoded
bitstreams for the test videos were measured to validate the proposed motion estimation
design as a real-world encoder. Power dissipation was estimated for baseline models, a
model incorporating one low-power design technique and the model incorporating all the
low-power design techniques described in the previous chapter.

The rest of the chapter proceeds as follows. First, the general design flow of
model generation, synthesis, and simulation are presented. A discussion of the power-
characterization techniques is presented next. Then, the verification of the functionality
of the designs is discussed. Experimental results on area and performance, video quality
information, and power characterizations, and analysis on the results are presented

finally.

5.1 Design Flow and Power Characterization Procedures

This section highlights the design flow used in the development of hardware
models of the motion estimation designs described earlier. The flow is summarized in
Figure 5.1. The basic design flow generates a synthesized model suitable for gate-level
simulation derived from the Virginia Tech VLSI for Telecommunications (VTVT)
0.35um TSMC CMOS library. The library operates at a voltage of 3.3V and includes
capacitance and power characterization information necessary to perform gate-level

power characterization using Synopsys Power Compiler.
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Figure 5.1 - Design Flow for Model Development
High-level development is a fully functional prototype of a complete H.263

encoder and decoder system written in C. There are a variety of uses for this model in

developing the hardware.

Validation of motion estimation algorithms on measured video quality and
perceived video quality from actually viewing encoded video.

Examining algorithmic enhancements for their impact on functional performance
quickly.

Establishing a baseline for verification of the hardware motion estimation models.

&3



These advantages are realized by simply rewriting the motion estimation algorithm inside
the prototype encoder. The video quality can be observed and the results collected for
experiments.

The next models developed are algorithmic models in VHDL. They serve mostly
to verify correctness of the later RTL and synthesized models. This procedure will be
described more in detail in the next section. The RTL models are the heart of the design.
VHDL code was developed for the intentions of being verified for correct functional
performance and synthesis into a gate-level design. Synopsys Design Compiler
performed the actual hardware synthesis using the aforementioned 0.35 um library. A
synthesized model for gate-level simulation is produced in both VHDL files (for
simulation) and Synopsys database format (for later power characterization).

The power characterization procedures follow the general flow presented in
Figure 5.2. The RTL model is synthesized, and VHDL and Synopsys database format
files are produced. The VHDL file can be analyzed and simulated using the same test
benches developed for the RTL model verification. The VSS simulator, with the proper
options set, will produce a toggle file, that lists the toggle frequency of signal lines within
the gate-level simulation. The toggle file can be translated to a script file that is readable
in Design Compiler. Then, Design Compiler reads in the Synopsys database file on the
synthesized design, executes the toggle script, and reports the power consumed by the

circuit.

84



RTL Design

Gate-level
simulation
and signal toggle statistics

Read Switching
Activity

VTVT 0.35um Synopsys Design
TSMC CMOS Library 7 Compiler

Generate

Gate-level Design g
Toggle Script

Change Name Rules
for VHDL

Power Compiler

Power Report

Figure 5.2 - Power Characterization Flow using Synopsys Tools

Memory power is characterized by calculating the number of accesses made by
the model during operation. These access numbers can be obtained from the baseline
models by studying operation and extracting the number of steps used by the
implemented algorithm in each motion estimation operation. Scripts were developed to
read this from the RTL simulation outputs. As part of the low-power enhancements,
logic was added to detect periods when the memory could be disabled under certain
conditions. Additional hooks, or extra VHDL behavioral code, were added to the RTL
models to detect the number of clock periods these memory-disable conditions existed.
Therefore, during RTL simulation, in addition to verification information, the number of

memory accesses was extracted.

5.2 Design Verification

The RTL model was verified for functional correctness before synthesis and

power characterization. Obviously, this is important to validate any power findings. The

flow of verification is presented in Figure 5.3.
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Figure 5.3 - Design Verification Flow

As mentioned previously, the prototype H.263 software encoder/decoder is vital
to RTL model development and verification. The prototype is used as the starting point
in the verification flow. Motion estimation algorithms were first written in C and
plugged into the prototype. Extra subroutines extracted the pixel values from the
reference macroblocks and the search areas. These subroutines also extracted the motion
vectors and SAD ratings found with the software. The software itself was manually
verified for correctness.

The pixel information and motion vector files were then used as the stimulus for
the behavioral RAM model. This model is common to all the motion estimation models

and model-types (algorithmic, RTL, and synthesized). The RAM model is responsible

86



for initializing the RAMs and delivering data to the motion estimation model depending
on the addresses generated. The first model developed and verified was an algorithmic
model using VHDL in behavioral context as a pure programming language. This model
verified the VHDL algorithm, the behavioral RAM model and its initialization routine,
and the associated support scripts. These scripts processed performance statistics and
automatically verified functional correctness. Verification of the RTL and synthesized
models simply became a matter of plugging in the correct models into the RAM
initialization routine and test bench and checking (“diff’ing in Figure 5.3) the output file
against that produced by the algorithmic model. This process was automated by using
Perl scripts to automatically parse the macroblock input file, run the VSS simulator,
collect motion vector data from the output, and prepare the output file. Using the same
test benches for every model facilitated one set of scripts to perform design verification
(and power characterization and memory access statistical collection) automatically.
Over 13 frames worth of representative video were used to validate operation for each of
the three test videos used in the research. That translates to over 1300 macroblocks used

for model verification for each of the videos.

5.3 System Performance

This section details some performance parameters from the synthesized models.
These include area and timing reports. Comparisons are also made between the models
for area and speed tradeoffs.
5.3.1 Area

The relative area of each of the models was measured using Synopsys Design
Compiler. Area measurements included are an approximation based upon the cells used
from the 0.35um VTVT library, since the design exists only as a gate-level design. The
Design Compiler tool reports the number of equivalent NAND?2 cells used by the cells in
a synthesized design. The major models report the following areas as shown in Figure

5.4.
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Figure 5.4 - Areas of the Baseline Models

As expected the FSBM model sacrifices area, almost 3 times that of the other
models to achieve the superior throughput necessary to implement the FSBM algorithm.
In short, trading accuracy for area occurs (and power as will be seen later). The other
three models are closer in size. The 4SS requires less hardware than the TSS model,
mostly due to the fact that the VDUs shrink in size. The Combined model requires extra
logic for power savings features and is larger than the 4SS model upon which it is based.
The following table further breaks down the area relationship according to major
components in the TSS, 4SS and Proposed models.

Table 5.1 - Area of Major Components of Models (Equivalent NAND2 Gates)

TSS 4SS Combined

PEs 1335 (40%) | 1335 (47%) | 1644 (49%)

VDUs 676 (20%) | 306 (11%) | 340 (10%)

Controller | 1199 (36%) | 1148 (41%) | 1293 (39%)
Total 3301 2828 3331
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The area of the Combined model increases 18% compared to the 4SS model.
Most of this increase is due to the increased size of the processing elements to nearly half
of the entire model. The VDUs show a moderate increase to allow for the logic to disable
them described in Chapter 4. The Controller unit also shows an increase of nearly 13%
in size over the 4SS model. This increase is due to mostly the redundant search removal
logic and the alterations to the comparator.

The models with a single power-savings method enabled showed slight increases
in circuit area, ranging from 2921 to 3122. The reduced range arithmetic models reduced
circuit area as expected down to 2668 for the 12-bit model. This is another advantage for
including the reduced range arithmetic method in the Combined model-it can offset the
size increase by including other power-savings circuitry to result in a circuit
approximately the same size as the TSS model.

5.3.2 Performance

Synopsys Design Compiler supports generation of timing reports for the
synthesized models. This information is used to predict maximum throughput
performance based upon timing reports. When using this information a consideration
must be made for the RAM used in the models. It is modeled behaviorally in the
simulations and thus access time for the RAMs must be taken into account for a timing
path. There are two figures in the table below for timing. One is the delay reported by
Synopsys based upon information from the actual cell library. The other is the access
time that adds to the delay seen on the path. These two statistics are summed to generate
the total path delay for each model to predict maximum performance. For the FSBM
model, the worst-case access comes from the 512-byte memory and is 17.5 ns [52]. The

other models use the 1kB memory and its access time is taken as 21.8 ns [52].
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Table 5.2 - Timing and Performance Results for Major Models

Delay Worst-case | Total | Maximum Maximum

Path Memory (ns) Clock Throughput for

(ns) Access Frequency QCIF

(ns) (MHz) (fps)

FSBM 21.3 17.5 38.8 25.8 68
TSS 10.7 21.8 32.5 30.8 98
4SS 10.8 21.8 32.6 30.7 77
Combined - 15.1 21.8 36.9 27.1 68
Proposed
Model

From the results in the table, the minimum clocking requirements for 15 frames
per second video at QCIF are met easily by the timing for the models. In fact, there is
room to quadruple the frame rate if so desired in the 4SS and combined models. Notice
also, that memory access time dominates the performance of all the models. Finally, the
extra logic present in the combined models does reduce possible performance, but not by
an unsatisfactory margin (12%). The minimum clock speed of 5.9 MHz presented in

Chapter 3 satisfies timing requirements for the Combined model.

5.4 Video Results

While saving power in the hardware implementation of a motion estimator is the
primary focus of this research, care must also be taken to ensure that the video quality is
suitable for inclusion in a real-world design. This is where the prototype is extremely
valuable. Secondly, an important system consideration must be looked at for any motion
estimation block used in an H.263 system. That is, how many blocks can the algorithms
find matches for that are deemed suitable for motion compensation. This consideration
and the numerical measure of picture quality are looked at in this section.

5.4.1 Macroblock Mode Selections

Recall from Chapter 2 that every block can be encoded either INTER or INTRA.
INTRA implies that the SAD rating is too high and the macroblock is transformed,
quantized and sent across the channel without motion estimation. INTER mode implies
that a suitable match was found and the motion compensation unit is used and the block

difference (from the previous best-match block) and the motion vector are sent across the
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channel. The following table (Table 5.3) summarizes the results of INTER or INTRA
mode selection for all models. Note that “factor” for the zero-bias model indicates the
SAD biasing factor used for the center vector in the first step of the 4SS algorithm.

Table 5.3 - Mode Selection for Macroblocks in Test Videos

Suzie Carphone Foreman
INTER | INTRA | % | INTER | INTRA | % | INTER | INTRA| %

Full-Search 14713 | 38 99.7 | 37261 | 458 98.8 | 36691 | 434 98.8
TSS 14713 | 38 99.7 | 37200 | 519 98.6 | 36609 | 516 98.6
4SS 14713 | 38 99.7 | 37156 | 563 98.5 1 36505 | 620 98.3
Zero-bias 14709 | 42 99.7 | 37171 | 548 98.5 136509 | 616 98.3
(Factor of

100)

14-bit 14713 | 38 99.7 | 37156 | 563 98.5 | 36505 | 620 98.3
Arithmetic

13-bit 14708 | 43 99.7 | 37170 | 549 98.5 | 36462 | 663 98.2
Arithmetic

12-bit 14707 | 44 99.7 | 37447 | 272 99.3 | 36645 | 480 98.7
Arithmetic

Combined 14710 | 41 99.7 | 37444 | 275 99.3 | 36626 | 499 98.7

The results from this table reflect positively on the algorithmic changes made to
the models in attempts to reduce power consumption. For the Suzie video, the
algorithmic enhancements make virtually no change in the number of blocks sent in
INTER mode. In Carphone and Foreman, the number of INTER blocks degrades
somewhat from the FS algorithm due to the larger motion in the videos. However, the
number of blocks encoded INTER does not change significantly from the 4SS to the
single-method power savings models. Some significant “improvements” seem to be
made with the 12-bit Arithmetic and Combined models. The improvement, however,
results from the algorithm using the largest 12-bit number possible (4091) as the SAD
when a lower SAD cannot be found in the first two steps.

These results confirm that the compression techniques of H.263 are still usable
and the motion estimator still successful with the power-savings enhancements. A more
complete picture of the answer can be gained by including the information from the next
table (Table 5.4). This table gives the actual number of bits used by the encoded

bitstream of the entire video under the different motion estimation models.
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Table 5.4 - Encoded Bit-length of Test Videos Under Motion Estimation Models

Suzie Carphone Foreman
Number of % Number of % Number of %
Bits Increase Bits Increase Bits Increase
from F'S from F'S from F'S
Full- 391,584 0.0 889,968 0.0 945,088 0.0
Search
TSS 388,480 -0.8 888,616 -0.2 945,056 0.0
4SS 389,816 -0.5 890,568 0.1 955,576 1.1
Zero-bias 395,168 0.9 892,728 0.3 956,704 1.2
(Factor of
100)
14-bit 387,264 -1.1 890,984 0.1 955,776 1.1
Arithmetic
13-bit 391,376 0.6 889,472 -0.6 960,200 1.6
Arithmetic
12-bit 394,088 0.6 893,504 0.4 1,015,496 7.4
Arithmetic
Combined | 399,120 1.9 895,544 0.6 1,010,928 7.0

Again, for the Suzie and Carphone video sequences, the compression algorithm in
the encoder works well with the motion estimation block. The increase in the number of
bits transmitted is small, on the order of a 1-2% increase. Foreman, however, shows
similar results until the 12-bit Arithmetic model and the Combined models are
considered. The increase in bits transmitted is more significant to 7%. This is a primary
concern since the transmitter now must consume more power and the video encoder unit
must transmit more data. The largest increase in the bits transmitted occurs during the
large camera pan in the Foreman video, where motion increases drastically throughout
the entire picture. Despite the fact that more blocks are encoded INTER than in a typical
Full-Search model, those matches are not ideal and the motion compensation unit ends up
using more transmitted bits than if a better match or an INTRA block were transmitted.
This illustrates a trade-off made by targeting the system to reduce power consumption for
low-motion, low-SAD video.

5.4.2 Video Quality Measurements

Recall that the motion estimator and motion compensation units are not the only

units to be considered for video compression in an H.263 system. There is still the

transform block and more importantly the quantization factor. The quantization factor is

92




the factor by which transformed coefficients of a macroblock are divided to implement a
uniform compression (truncation) of least-significant bits. It is manipulated by the rate
control of the system to increase or decrease quantization if the bit-rate target is not being
maintained. A large increase in the number of bits may not be seen for the targeted low-
motion video. The H.263 algorithm quantizes the bitstream by a very large factor to
reduce the size of the bitstream and effectively trades off picture quality. To ensure a
complete answer to the question of the effectiveness of the new motion estimation block,
picture quality was measured for all videos and all models.

To review, the PSNR (picture-signal to noise ratio) measurement was used to
quantify picture quality. The equation was given in Section 2.4. Table 5.5 shows the
experimental results.

Table 5.5 - PSNR of Video Under Motion Estimation Models (dB)

Suzie | Carphone | Foreman
Full-Search 32.575 | 28.780 27.722
TSS 32.476 | 28.618 27.199
4SS 32.458 | 28.744 27.346
Zero-bias (Factor of 100) | 32.522 | 28.913 27.371
14-bit Arithmetic 32.458 | 28.744 27.346
13-bit Arithmetic 32.480 | 28.758 27.360
12-bit Arithmetic 32.420 | 28.662 27.128
Combined 32.451 | 28.866 27.213

These results again are favorable for the low-motion videos, Suzie and Carphone.
There is only a slight drop in PSNR for the Combined model in Suzie compared to Full-
Search and hardly no drop whatsoever from 4SS. Carphone actually shows a very slight
increase in PSNR. Foreman shows a 0.5 dB drop in PSNR from the Full-Search model.
Again, this illustrates the trade-off over using the motion estimator for video with larger
motions. The power consumption will increase for the transmitter and there will be a
drop in picture quality. However, a good point for the Combined model should be made
that there is little picture quality loss from the 4SS model and identical performance to

the TSS model.
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5.5 Power Dissipation

5.5.1 Gate-level Power Consumption

As mentioned above, the synthesized models were simulated for power
characterization using Synopsys Design Compiler and Power Compiler. The results are
presented in this section.

The first section looks at the baseline models. The results for the power
consumption of these models are shown in Table 5.6. The table includes the power
consumed by some of the major blocks of the circuit for later comparison. Notice that
the numbers do not completely add up. There is other miscellaneous logic in the models
that is not broken down in the table completely. The three major power-consuming
portions of the circuits were included to facilitate valid comparisons between the power
consumption of the models.

Table 5.6 - Circuit Power Consumption (mW) for Baseline Models

Baseline Model Suzie | Carphone | Foreman

FSBM PEs 23.25 22.69 21.15
Controller | 1.45 1.44 1.44
Total 2593 | 2533 23.88

TSS PEs 3.445 3.252 3.009

VDUs 0.987 0.967 0.966
Controller | 0.785 0.786 0.785
Total 6.633 6.428 6.202
4SS PEs 2.335 2.231 3.394
VDUs 0.396 0.387 0.656
Controller | 0.506 0.510 0.801
Total 3.858 3.758 5.853

As expected the TSS and the 4SS models dissipate much less power than the
FSBM model. The table illustrates that power dissipation for the 4SS model depends
greatly on the video processed. The 4SS models have the advantage of dissipating over
40% less power than the TSS model for low-to-medium-motion video. Large motion
video dissipates more power in the PEs than the TSS model, but again the smaller VDUs
account for an overall slight decrease in power consumption.

The power consumption was also characterized for models with a single
enhancement added as well as the final model that combines all presented methods.

Those results are shown in Table 5.7.
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Table 5.7 - Power Consumption of Enhanced Models

Model Suzie | Carphone | Foreman
Redundant Search Removal | PEs 1.856 1.862 2.321
VDUs 0.339 0.343 0.544
Controller | 0.550 0.556 0.863
Total 3.467 3.491 4.875
SAD Half-Stop PEs 1.947 1.656 3.114
VDUs 0.375 0.367 0.624
Controller | 0.504 0.508 0.798
Total 3.520 3.232 5.638
Zero-bias PEs 2.137 2.065 3.165
VDUs 0.354 0.350 0.604
Controller | 0.483 0.493 0.787
Total 3.523 3.472 5.466
14-bit Arithmetic PEs 2.225 2.120 3.226
VDUs 0.375 0.367 0.624
Controller | 0.506 0.510 0.801
Total 3.765 3.664 5.702
13-bit Arithmetic PEs 2.269 2.161 3.232
VDUs 0.396 0.387 0.644
Controller | 0.497 0.501 0.775
Total 3.744 3.639 5.579
12-bit Arithmetic PEs 2.091 1.854 2.471
VDUs 0.372 0.360 0.523
Controller | 0.485 0.485 0.671
Total 3.565 3.320 4.525
Combined - Proposed Model | PEs 1.399 1.213 1.690
VDUs 0.310 0.324 0.429
Controller | 0.479 0.524 0.670
Total 2.786 2.714 3.634

As expected, the redundant search removal achieves the largest power saving for
the larger-motion video, while the SAD Half-stop method worked best on the video with
less motion. The zero-bias method resulted in an average power savings. The reduced
arithmetic SAD model did not reduce power significantly until the length of the SAD was
reduced to 12 bits. Then, a large amount of power savings was seen in the Foreman
video.

The final results of the circuit power characterizations are summarized in Table
5.8. Included are the power savings compared with the baseline FSBM, TSS and 4SS

models.

95



Table 5.8 - Logic Power Dissipation and Power Savings for Major Models

Suzie | Carphone | Foreman
FSBM 25.93 25.33 23.88
TSS 6.633 6.428 6.202
4SS 3.858 3.758 5.853
Combined - Proposed Model | 2.786 2.575 3.634
Savings (vs. FSBM) 89.2% | 89.8% 84.8%
Savings (vs. TSS) 58.0% | 59.9% 41.4%
Savings (vs. 4SS) 27.8% | 31.5% 37.9%

The logic power savings are nearly 90% over a FSBM implementation. The
savings is 60% for small-motion video and 40% for larger-motion video over the TSS.
The power-savings enhancements help greatly reduce the power consumption of the
proposed model for large-motion video. Recall that the baseline 4SS model had power
consumption close to that of the baseline TSS model.

5.5.2 Memory Power Consumption

SRAMs are used to store the reference macroblock and candidate area pixel
values for access by the motion estimation unit. The SRAM sizes used are 256x8, 512x8,
and 1024x8. Each model uses the 256x8 RAM for its reference block pixels. The
candidate areas are partitioned differently depending upon the model. The FSBM model
uses two 512x8 SRAMs while the TSS and FSBM model, including the power-savings
models, uses a single 1024x8 SRAM. Since these memories can consume significant
power, the results of memory consumed due to accesses from the motion estimation
models are included in this section. A typical low-power layout of these memories has
the characteristics for delay and dynamic power consumption shown in Table 5.9 [52].

Table 5.9 - SRAM Statistics for Memories Used in Motion Estimation Models [52]

Memory Dynamic Access Time
Power (mW) (ns)

256 B 25.86 14.7

512 B 30.00 17.5

1 kB 41.54 21.8

The first models presented are the baseline models. Calculating power due to
memory accesses for the FSBM and TSS models is relatively easy, since the number of

accesses is fixed for each motion estimation operation. The 4SS baseline model must be
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simulated to obtain the average number of steps used in the algorithm. The results of
simulation on the 4SS baseline model are presented in Table 5.10.

Table 5.10 - Average Number of Steps for 4SS Baseline Model

Video 2 Steps | 3 Steps | 4 Steps | Average Number of Steps
Suzie 577 % | 332% | 9.0% 2.51
Carphone | 60.8 % | 23.7% | 155 % 2.55
Foreman | 2.2% | 257 % | 72.1 % 3.70

As expected, the Foreman video with the large motion uses an average of more
than an extra step of the 4SS algorithm to compute. This leads to larger memory
consumption as seen in the next table, Table 5.11. The memory access statistics are
either calculated or obtained from simulation are used to complete dynamic memory
power statistics for the baseline models. The FSBM algorithm has the worst power
consumption of all the baseline models. 4SS improves upon TSS by nearly 1 mW for
low-motion videos; however, a large-motion video such as the camera pan in Foreman
can drastically increase the memory power consumption, by over 2 mW in this case
compared to the TSS model.

Table 5.11 - Baseline Model Memory Power Consumption (mW)

Model FS | TSS 4SS

Video All | All | Suzie | Carphone | Foreman
Candidate Accesses 3840 | 2304 | 1928 | 1956 2838
Candidate Dynamic Power (mw) 291 | 1.75 | 1.46 | 1.49 2.16
Reference Accesses 7680 | 2976 | 2314 | 2349 3451
Reference Dynamic Power (mW) 6.08 | 4.90 | 4.19 |4.25 6.25
Total Dynamic Memory Power 8.99 [ 6.65 | 5.65 | 5.74 841
Consumed (mW)

The low-power enhancements can help reduce dynamic memory power in two

specific ways. The first one is by disabling memory during calculation when possible.
Three of the power-saving methods work by shutting off the PEs whenever possible.
Memory can be disabled when all 3 PEs of the 4SS model are disabled at one time. RTL
simulations measured the number of skipped accesses for each power-savings

enhancements. These results are given in Table 5.12.
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Table 5.12 - Memory Accesses Skipped by Disabling All PEs

Suzie | Carphone | Foreman
Redundant Searches 123 | 168 214
SAD Half-Stop 201 | 450 145
14-bit Arithmetic 0 0 0
13-bit Arithmetic 0 0 8
12-bit Arithmetic 28 102 134
Combined - Proposed Model | 81 86 647

The second method by which dynamic memory power can be reduced is seen in
the methods that change the 4SS algorithm, zero-biasing and reduced bit-length SADs.
Namely, these algorithms can both reduce the number of steps that are required for the
4SS algorithm. This directly affects not only logic power consumption but can reduce,
on average, the number of accesses to memory required per motion estimation operation.
As mentioned previously, RTL simulations were used to obtain the number of steps
required by the 4SS algorithm using the models with these enhancements. The results are
summarized in Table 5.12.

Table 5.13 - Average Number of Steps of 4SS Algorithm Used with Power-Savings

Enhancements
Suzie | Carphone | Foreman
4SS Baseline 251 2.55 3.70
Zero-bias 2.26 2.28 3.23
14-bit Arithmetic 2.51 2.55 3.70
13-bit Arithmetic 2.50 2.55 3.68
12-bit Arithmetic 2.50 2.53 3.39
Combined - Proposed Model | 2.26 2.28 3.24

Zero-biasing has the largest effect on reducing memory accesses by reducing the
average number of steps needed by the 4SS algorithm. While reducing the available bits
for a SAD value has the ability to change the algorithm, it is, in fact, the zero-biasing that
has the largest effect, since the Combined models statistics nearly identically correlate
with the single-method model using the zero-bias method.

These results were tabulated to give the following table for dynamic memory

power consumption for all the major models.

98



Table 5.14 - Dynamic Memory Power Consumption (mW)

Suzie | Carphone | Foreman
FS 8.99 8.99 8.99
TSS 6.65 6.65 6.65
4SS 5.65 5.74 8.41
Combined - Proposed Model | 4.86 491 5.69
Savings (vs. FSBM) 45.9% | 45.4% 36.7%
Savings (vs. TSS) 26.9% | 26.1% 14.4%
Savings (vs. 4SS) 14.0% | 14.5% 32.3%

Some amount of power reduction is seen with the low-motion videos-
approximately 14% compared to 4SS baseline and 26% better than the TSS baseline
model. For the large-motion Foreman video, the power reduction is much more
significant-over 32%. The large reduction in memory power is even more significant
with this video due to the fact that the Combined model could increase the number of bits
to encode the video. A larger power savings here is needed to offset an increase in
transmitter power for the entire system.

5.5.3 Total Power Consumption

A complete picture of the power consumption of these models can be gained by
considering the power consumed by the local memories with the power consumed by the
circuit elements.

Table 5.15 shows the total power consumption statistics for each

baseline model and the Combined model.

Table 5.15 - Total Power Consumption (mW)

Suzie | Carphone | Foreman

FS 3492 |34.32 32.87
TSS 13.28 | 13.08 12.85
4SS 9.51 19.50 14.26
Combined - Proposed Model | 7.65 7.49 9.32
Savings (vs. FSBM) 78.1% | 78.2% 71.6%
Savings (vs. TSS) 42.4% | 42.7% 27.5%
Savings (vs. 4SS) 19.6% | 21.2% 34.6%

The results show that considering memory power can lower expected power
savings due to the fact that local memory consumes a larger portion of power than the

circuit elements. The overall power savings are still significant with low-motion video
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showing a 20% decrease in overall power. 35% reductions are seen for larger-motion
video. The power characterizations, which are in the 7-9 mW range are feasible for use

in a mobile system.
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Chapter 6
Conclusion

Compressing the information required to transmit video is the principle goal of
any H.263 video encoding system. The process of video prediction compresses video by
estimating motion from the current frame based upon a previous frame and compensating
for that motion by transmitting only the difference in the blocks brought about by the
detected motion. Motion estimation, or the process of calculating motion, becomes the
most critical and computationally intensive part of the process of prediction. In this
research, we investigated algorithms and implementations to design a low-power
hardware block suitable to perform motion estimation for a low bit-rate, low-power, and
portable video system.

We described the three most widely known the motion estimation algorithms: the
Full-Search Block Matching, Three-Step Search, and Four-Step Search algorithms. Also
we reported some hybrid algorithms based upon the concepts presented within these
major algorithms. Implementations and low-power enhancements for the major
algorithms were also presented as the basis for introducing our proposed model and low-
power enhancements.

The motion estimation design targeted for low-motion video can be applicable to
videophones, mobile patrols, and videoconferencing. These videos were studied for
characteristics that could be exploited in a low-power model. Based upon this research
and our findings with baseline models, the 4SS algorithm was selected as the basic
algorithm for our proposed model. Other models were developed based upon the FSBM
and TSS algorithms for comparison with the proposed model. We proposed low-power
enhancements to the basic 4SS model to further enhance power savings.

Validation of results involved both video quality and power reduction. An entire
H.263 video codec was developed in software. The prototype allowed the viewing of
real-world video using the proposed motion estimation algorithms. Additionally,
measuring the compression efficiency (bitstream length) and video quality (PSNR) of
each proposed algorithm was facilitated by the prototype. Finally, the prototype was

used as a baseline for functional verification of the hardware models.
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We developed hardware models to enable gate-level simulation and power-
characterization using a design flow used in industry. The models were primarily
developed as VHDL RTL code and verified for functionality. Then, using a 0.35 um
CMOS library the RTL models were synthesized using Design Compiler. The resulting
gate-level VHDL code was simulated and characterized for power dissipation with an
input of data from test video.

The proposed model shows favorable characteristics for use in a real-world
system. The PSNR measurements are better than or equal to that achieved using a 4SS
motion estimation block. For low-motion to medium-motion video, the number of bits to
transmit video increases by only 1-2%. The number of equivalent NAND?2 gates of the
circuit is 3331, comparable to the basic TSS model. The circuit performance allows
usage of a low-speed clock, as low as 5.9 MHz to achieve 15 frames per second. The
logic-unit power consumption of the circuit logic is 2.786, 2.575, and 3.634 mW for three
test videos of increasing amounts of motion. These figures represent a savings of 30-
40% over a baseline 4SS model, 40-60% over the TSS model, and nearly 90% over the
FSBM model. The number of memory accesses required during operation are also
reduced. Our proposed model reduces these memory accesses by 14% over the 4SS
model for low-motion video and up to 30% for large-motion video, reducing memory
power by a similar margin. The total power consumption for this block is estimated to be
from 7.5-9 mW depending upon the type of video being motion estimated. This
represents a savings of 20-35% over baseline 4SS models and savings of 28-43% over
baseline TSS models.

From the results, it becomes evident that there is a good deal of timing slack in
the circuit. This means that at the low clock rates mentioned above, for most of any
given clock cycle, the circuit logic is holding state and not computing anything. It is
conceivable that some parts of the logic can be reduced in drive strength to reduce power
consumption. This will probably require analysis of the circuit at a circuit-level instead
of the gate-level analysis presented in this thesis to more accurately optimize the power
consumption. However, the reduction in power could be significant. It is left open for

future research.
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